Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/C/__tan.c
+++ new/usr/src/lib/libm/common/C/__tan.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 -/* INDENT OFF */
31 +
31 32 /*
32 33 * __k_tan( double x; double y; int k )
33 34 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
34 35 * Input x is assumed to be bounded by ~pi/4 in magnitude.
35 36 * Input y is the tail of x.
36 37 * Input k indicate -- tan if k=0; else -1/tan
37 38 *
38 39 * Table look up algorithm
39 40 * 1. by tan(-x) = -tan(x), need only to consider positive x
40 41 * 2. if x < 5/32 = [0x3fc40000, 0] = 0.15625 , then
41 42 * if x < 2^-27 (hx < 0x3e400000 0), set w=x with inexact if x != 0
42 43 * else
43 44 * z = x*x;
44 45 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6))))))
45 46 * return (k == 0)? w: 1/w;
46 47 * 3. else
47 48 * ht = (hx + 0x4000)&0x7fff8000 (round x to a break point t)
48 49 * lt = 0
49 50 * i = (hy-0x3fc40000)>>15; (i<=64)
50 - * x' = (x - t)+y (|x'| ~<= 2^-7)
51 + * x' = (x - t)+y (|x'| ~<= 2^-7)
51 52 * By
52 53 * tan(t+x')
53 54 * = (tan(t)+tan(x'))/(1-tan(x')tan(t))
54 55 * We have
55 56 * sin(x')+tan(t)*(tan(t)*sin(x'))
56 57 * = tan(t) + ------------------------------- for k=0
57 58 * cos(x') - tan(t)*sin(x')
58 59 *
59 60 * cos(x') - tan(t)*sin(x')
60 61 * = - -------------------------------------- for k=1
61 62 * tan(t) + tan(t)*(cos(x')-1) + sin(x')
62 63 *
63 64 *
64 - * where tan(t) is from the table,
65 + * where tan(t) is from the table,
65 66 * sin(x') = x + pp1*x^3 + pp2*x^5
66 67 * cos(x') = 1 + qq1*x^2 + qq2*x^4
67 68 */
68 69
69 70 #include "libm.h"
70 71
71 72 extern const double _TBL_tan_hi[], _TBL_tan_lo[];
73 +
72 74 static const double q[] = {
73 -/* one = */ 1.0,
75 +/* one = */
76 + 1.0,
77 +
74 78 /*
75 79 * 2 2 -59.56
76 80 * |sin(x) - pp1*x*(pp2+x *(pp3+x )| <= 2 for |x|<1/64
77 81 */
78 -/* pp1 = */ 8.33326120969096230395312119298978359438478946686e-0003,
79 -/* pp2 = */ 1.20001038589438965215025680596868692381425944526e+0002,
82 +/* pp1 = */ 8.33326120969096230395312119298978359438478946686e-0003,
83 +/* pp2 = */ 1.20001038589438965215025680596868692381425944526e+0002,
80 84 /* pp3 = */ -2.00001730975089451192161504877731204032897949219e+0001,
81 85
82 86 /*
83 87 * 2 2 -56.19
84 88 * |cos(x) - (1+qq1*x (qq2+x ))| <= 2 for |x|<=1/128
85 89 */
86 -/* qq1 = */ 4.16665486385721928197511942926212213933467864990e-0002,
90 +/* qq1 = */ 4.16665486385721928197511942926212213933467864990e-0002,
87 91 /* qq2 = */ -1.20000339921340035687080671777948737144470214844e+0001,
88 92
89 93 /*
90 94 * |tan(x) - PF(x)|
91 95 * |--------------| <= 2^-58.57 for |x|<0.15625
92 96 * | x |
93 97 *
94 98 * where (let z = x*x)
95 99 * PF(x) = x + (t1*x*z)(t2 + z(t3 + z))(t4 + z)(t5 + z(t6 + z))
96 100 */
97 -/* t1 = */ 3.71923358986516816929168705030406272271648049355e-0003,
98 -/* t2 = */ 6.02645120354857866118436504621058702468872070312e+0000,
99 -/* t3 = */ 2.42627327587398156083509093150496482849121093750e+0000,
100 -/* t4 = */ 2.44968983934252770851003333518747240304946899414e+0000,
101 -/* t5 = */ 6.07089252571767978849948121933266520500183105469e+0000,
101 +/* t1 = */ 3.71923358986516816929168705030406272271648049355e-0003,
102 +/* t2 = */ 6.02645120354857866118436504621058702468872070312e+0000,
103 +/* t3 = */ 2.42627327587398156083509093150496482849121093750e+0000,
104 +/* t4 = */ 2.44968983934252770851003333518747240304946899414e+0000,
105 +/* t5 = */ 6.07089252571767978849948121933266520500183105469e+0000,
102 106 /* t6 = */ -2.49403756995593761658369658107403665781021118164e+0000,
103 107 };
104 108
105 -
106 -#define one q[0]
107 -#define pp1 q[1]
108 -#define pp2 q[2]
109 -#define pp3 q[3]
110 -#define qq1 q[4]
111 -#define qq2 q[5]
112 -#define t1 q[6]
113 -#define t2 q[7]
114 -#define t3 q[8]
115 -#define t4 q[9]
116 -#define t5 q[10]
117 -#define t6 q[11]
118 -
119 -/* INDENT ON */
109 +#define one q[0]
110 +#define pp1 q[1]
111 +#define pp2 q[2]
112 +#define pp3 q[3]
113 +#define qq1 q[4]
114 +#define qq2 q[5]
115 +#define t1 q[6]
116 +#define t2 q[7]
117 +#define t3 q[8]
118 +#define t4 q[9]
119 +#define t5 q[10]
120 +#define t6 q[11]
120 121
121 122
122 123 double
123 -__k_tan(double x, double y, int k) {
124 +__k_tan(double x, double y, int k)
125 +{
124 126 double a, t, z, w = 0.0L, s, c, r, rh, xh, xl;
125 127 int i, j, hx, ix;
126 128
127 129 t = one;
128 - hx = ((int *) &x)[HIWORD];
130 + hx = ((int *)&x)[HIWORD];
129 131 ix = hx & 0x7fffffff;
130 - if (ix < 0x3fc40000) { /* 0.15625 */
131 - if (ix < 0x3e400000) { /* 2^-27 */
132 - if ((i = (int) x) == 0) /* generate inexact */
132 +
133 + if (ix < 0x3fc40000) { /* 0.15625 */
134 + if (ix < 0x3e400000) { /* 2^-27 */
135 + if ((i = (int)x) == 0) /* generate inexact */
133 136 w = x;
137 +
134 138 t = y;
135 139 } else {
136 140 z = x * x;
137 - t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) *
138 - ((t4 + z) * (t5 + z * (t6 + z)));
141 + t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) * ((t4 +
142 + z) * (t5 + z * (t6 + z)));
139 143 w = x + t;
140 144 }
145 +
141 146 if (k == 0)
142 147 return (w);
148 +
143 149 /*
144 150 * Compute -1/(x+T) with great care
145 151 * Let r = -1/(x+T), rh = r chopped to 20 bits.
146 152 * Also let xh = x+T chopped to 20 bits, xl = (x-xh)+T. Then
147 153 * -1/(x+T) = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T))
148 154 * = rh + r*((1+rh*xh)+rh*xl).
149 155 */
150 156 rh = r = -one / w;
151 - ((int *) &rh)[LOWORD] = 0;
157 + ((int *)&rh)[LOWORD] = 0;
152 158 xh = w;
153 - ((int *) &xh)[LOWORD] = 0;
159 + ((int *)&xh)[LOWORD] = 0;
154 160 xl = (x - xh) + t;
155 161 return (rh + r * ((one + rh * xh) + rh * xl));
156 162 }
163 +
157 164 j = (ix + 0x4000) & 0x7fff8000;
158 165 i = (j - 0x3fc40000) >> 15;
159 - ((int *) &t)[HIWORD] = j;
166 + ((int *)&t)[HIWORD] = j;
167 +
160 168 if (hx > 0)
161 169 x = y - (t - x);
162 170 else
163 171 x = -y - (t + x);
172 +
164 173 a = _TBL_tan_hi[i];
165 174 z = x * x;
166 175 s = (pp1 * x) * (pp2 + z * (pp3 + z)); /* sin(x) */
167 176 t = (qq1 * z) * (qq2 + z); /* cos(x) - 1 */
177 +
168 178 if (k == 0) {
169 179 w = a * s;
170 180 t = _TBL_tan_lo[i] + (s + a * w) / (one - (w - t));
171 181 return (hx < 0 ? -a - t : a + t);
172 182 } else {
173 183 w = s + a * t;
174 184 c = w + _TBL_tan_lo[i];
175 185 t = a * s - t;
186 +
176 187 /*
177 188 * Now try to compute [(1-T)/(a+c)] accurately
178 189 *
179 190 * Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits.
180 191 * Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then
181 192 * (1-T)/(a+c) = rh + ((1-T)/(a+c)-rh)
182 193 * = rh + r*(1-T-rh*(a+c))
183 194 * = rh + r*((1-T-rh*xh)-rh*xl)
184 195 * = rh + r*(((1-rh*xh)-T)-rh*xl)
185 196 */
186 197 r = one / (a + c);
187 198 rh = (one - t) * r;
188 - ((int *) &rh)[LOWORD] = 0;
199 + ((int *)&rh)[LOWORD] = 0;
189 200 xh = a + c;
190 - ((int *) &xh)[LOWORD] = 0;
201 + ((int *)&xh)[LOWORD] = 0;
191 202 xl = (a - xh) + c;
192 203 z = rh + r * (((one - rh * xh) - t) - rh * xl);
193 204 return (hx >= 0 ? -z : z);
194 205 }
195 206 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX