Print this page
11210 libm should be cstyle(1ONBLD) clean
@@ -20,16 +20,17 @@
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
+
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
-/* INDENT OFF */
+
/*
* __k_tan( double x; double y; int k )
* kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
* Input x is assumed to be bounded by ~pi/4 in magnitude.
* Input y is the tail of x.
@@ -67,12 +68,15 @@
*/
#include "libm.h"
extern const double _TBL_tan_hi[], _TBL_tan_lo[];
+
static const double q[] = {
-/* one = */ 1.0,
+/* one = */
+ 1.0,
+
/*
* 2 2 -59.56
* |sin(x) - pp1*x*(pp2+x *(pp3+x )| <= 2 for |x|<1/64
*/
/* pp1 = */ 8.33326120969096230395312119298978359438478946686e-0003,
@@ -100,11 +104,10 @@
/* t4 = */ 2.44968983934252770851003333518747240304946899414e+0000,
/* t5 = */ 6.07089252571767978849948121933266520500183105469e+0000,
/* t6 = */ -2.49403756995593761658369658107403665781021118164e+0000,
};
-
#define one q[0]
#define pp1 q[1]
#define pp2 q[2]
#define pp3 q[3]
#define qq1 q[4]
@@ -114,67 +117,75 @@
#define t3 q[8]
#define t4 q[9]
#define t5 q[10]
#define t6 q[11]
-/* INDENT ON */
-
double
-__k_tan(double x, double y, int k) {
+__k_tan(double x, double y, int k)
+{
double a, t, z, w = 0.0L, s, c, r, rh, xh, xl;
int i, j, hx, ix;
t = one;
- hx = ((int *) &x)[HIWORD];
+ hx = ((int *)&x)[HIWORD];
ix = hx & 0x7fffffff;
+
if (ix < 0x3fc40000) { /* 0.15625 */
if (ix < 0x3e400000) { /* 2^-27 */
- if ((i = (int) x) == 0) /* generate inexact */
+ if ((i = (int)x) == 0) /* generate inexact */
w = x;
+
t = y;
} else {
z = x * x;
- t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) *
- ((t4 + z) * (t5 + z * (t6 + z)));
+ t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) * ((t4 +
+ z) * (t5 + z * (t6 + z)));
w = x + t;
}
+
if (k == 0)
return (w);
+
/*
* Compute -1/(x+T) with great care
* Let r = -1/(x+T), rh = r chopped to 20 bits.
* Also let xh = x+T chopped to 20 bits, xl = (x-xh)+T. Then
* -1/(x+T) = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T))
* = rh + r*((1+rh*xh)+rh*xl).
*/
rh = r = -one / w;
- ((int *) &rh)[LOWORD] = 0;
+ ((int *)&rh)[LOWORD] = 0;
xh = w;
- ((int *) &xh)[LOWORD] = 0;
+ ((int *)&xh)[LOWORD] = 0;
xl = (x - xh) + t;
return (rh + r * ((one + rh * xh) + rh * xl));
}
+
j = (ix + 0x4000) & 0x7fff8000;
i = (j - 0x3fc40000) >> 15;
- ((int *) &t)[HIWORD] = j;
+ ((int *)&t)[HIWORD] = j;
+
if (hx > 0)
x = y - (t - x);
else
x = -y - (t + x);
+
a = _TBL_tan_hi[i];
z = x * x;
s = (pp1 * x) * (pp2 + z * (pp3 + z)); /* sin(x) */
t = (qq1 * z) * (qq2 + z); /* cos(x) - 1 */
+
if (k == 0) {
w = a * s;
t = _TBL_tan_lo[i] + (s + a * w) / (one - (w - t));
return (hx < 0 ? -a - t : a + t);
} else {
w = s + a * t;
c = w + _TBL_tan_lo[i];
t = a * s - t;
+
/*
* Now try to compute [(1-T)/(a+c)] accurately
*
* Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits.
* Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then
@@ -183,13 +194,13 @@
* = rh + r*((1-T-rh*xh)-rh*xl)
* = rh + r*(((1-rh*xh)-T)-rh*xl)
*/
r = one / (a + c);
rh = (one - t) * r;
- ((int *) &rh)[LOWORD] = 0;
+ ((int *)&rh)[LOWORD] = 0;
xh = a + c;
- ((int *) &xh)[LOWORD] = 0;
+ ((int *)&xh)[LOWORD] = 0;
xl = (a - xh) + c;
z = rh + r * (((one - rh * xh) - t) - rh * xl);
return (hx >= 0 ? -z : z);
}
}