Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -20,16 +20,17 @@
  */
 
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 
-/* INDENT OFF */
+
 /*
  * __k_tan( double x;  double y; int k )
  * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164
  * Input x is assumed to be bounded by ~pi/4 in magnitude.
  * Input y is the tail of x.

@@ -67,12 +68,15 @@
  */
 
 #include "libm.h"
 
 extern const double _TBL_tan_hi[], _TBL_tan_lo[];
+
 static const double q[] = {
-/* one  = */  1.0,
+/* one  = */
+        1.0,
+
 /*
  *                       2       2       -59.56
  * |sin(x) - pp1*x*(pp2+x *(pp3+x )| <= 2        for |x|<1/64
  */
 /* pp1  = */  8.33326120969096230395312119298978359438478946686e-0003,

@@ -100,11 +104,10 @@
 /* t4 = */  2.44968983934252770851003333518747240304946899414e+0000,
 /* t5 = */  6.07089252571767978849948121933266520500183105469e+0000,
 /* t6 = */ -2.49403756995593761658369658107403665781021118164e+0000,
 };
 
-
 #define one q[0]
 #define pp1 q[1]
 #define pp2 q[2]
 #define pp3 q[3]
 #define qq1 q[4]

@@ -114,67 +117,75 @@
 #define t3  q[8]
 #define t4  q[9]
 #define t5  q[10]
 #define t6  q[11]
 
-/* INDENT ON */
-
 
 double
-__k_tan(double x, double y, int k) {
+__k_tan(double x, double y, int k)
+{
         double a, t, z, w = 0.0L, s, c, r, rh, xh, xl;
         int i, j, hx, ix;
 
         t = one;
-        hx = ((int *) &x)[HIWORD];
+        hx = ((int *)&x)[HIWORD];
         ix = hx & 0x7fffffff;
+
         if (ix < 0x3fc40000) {          /* 0.15625 */
                 if (ix < 0x3e400000) {  /* 2^-27 */
-                        if ((i = (int) x) == 0)         /* generate inexact */
+                        if ((i = (int)x) == 0)  /* generate inexact */
                                 w = x;
+
                         t = y;
                 } else {
                         z = x * x;
-                        t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) *
-                                ((t4 + z) * (t5 + z * (t6 + z)));
+                        t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) * ((t4 +
+                            z) * (t5 + z * (t6 + z)));
                         w = x + t;
                 }
+
                 if (k == 0)
                         return (w);
+
                 /*
                  * Compute -1/(x+T) with great care
                  * Let r = -1/(x+T), rh = r chopped to 20 bits.
                  * Also let xh  = x+T chopped to 20 bits, xl = (x-xh)+T. Then
                  *   -1/(x+T)   = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T))
                  *              = rh + r*((1+rh*xh)+rh*xl).
                  */
                 rh = r = -one / w;
-                ((int *) &rh)[LOWORD] = 0;
+                ((int *)&rh)[LOWORD] = 0;
                 xh = w;
-                ((int *) &xh)[LOWORD] = 0;
+                ((int *)&xh)[LOWORD] = 0;
                 xl = (x - xh) + t;
                 return (rh + r * ((one + rh * xh) + rh * xl));
         }
+
         j = (ix + 0x4000) & 0x7fff8000;
         i = (j - 0x3fc40000) >> 15;
-        ((int *) &t)[HIWORD] = j;
+        ((int *)&t)[HIWORD] = j;
+
         if (hx > 0)
                 x = y - (t - x);
         else
                 x = -y - (t + x);
+
         a = _TBL_tan_hi[i];
         z = x * x;
         s = (pp1 * x) * (pp2 + z * (pp3 + z));  /* sin(x) */
         t = (qq1 * z) * (qq2 + z);              /* cos(x) - 1 */
+
         if (k == 0) {
                 w = a * s;
                 t = _TBL_tan_lo[i] + (s + a * w) / (one - (w - t));
                 return (hx < 0 ? -a - t : a + t);
         } else {
                 w = s + a * t;
                 c = w + _TBL_tan_lo[i];
                 t = a * s - t;
+
                 /*
                  * Now try to compute [(1-T)/(a+c)] accurately
                  *
                  * Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits.
                  * Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then

@@ -183,13 +194,13 @@
                  *              = rh + r*((1-T-rh*xh)-rh*xl)
                  *              = rh + r*(((1-rh*xh)-T)-rh*xl)
                  */
                 r = one / (a + c);
                 rh = (one - t) * r;
-                ((int *) &rh)[LOWORD] = 0;
+                ((int *)&rh)[LOWORD] = 0;
                 xh = a + c;
-                ((int *) &xh)[LOWORD] = 0;
+                ((int *)&xh)[LOWORD] = 0;
                 xl = (a - xh) + c;
                 z = rh + r * (((one - rh * xh) - t) - rh * xl);
                 return (hx >= 0 ? -z : z);
         }
 }