1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 32 /* 33 * __k_tan( double x; double y; int k ) 34 * kernel tan/cotan function on [-pi/4, pi/4], pi/4 ~ 0.785398164 35 * Input x is assumed to be bounded by ~pi/4 in magnitude. 36 * Input y is the tail of x. 37 * Input k indicate -- tan if k=0; else -1/tan 38 * 39 * Table look up algorithm 40 * 1. by tan(-x) = -tan(x), need only to consider positive x 41 * 2. if x < 5/32 = [0x3fc40000, 0] = 0.15625 , then 42 * if x < 2^-27 (hx < 0x3e400000 0), set w=x with inexact if x != 0 43 * else 44 * z = x*x; 45 * w = x + (y+(x*z)*(t1+z*(t2+z*(t3+z*(t4+z*(t5+z*t6)))))) 46 * return (k == 0)? w: 1/w; 47 * 3. else 48 * ht = (hx + 0x4000)&0x7fff8000 (round x to a break point t) 49 * lt = 0 50 * i = (hy-0x3fc40000)>>15; (i<=64) 51 * x' = (x - t)+y (|x'| ~<= 2^-7) 52 * By 53 * tan(t+x') 54 * = (tan(t)+tan(x'))/(1-tan(x')tan(t)) 55 * We have 56 * sin(x')+tan(t)*(tan(t)*sin(x')) 57 * = tan(t) + ------------------------------- for k=0 58 * cos(x') - tan(t)*sin(x') 59 * 60 * cos(x') - tan(t)*sin(x') 61 * = - -------------------------------------- for k=1 62 * tan(t) + tan(t)*(cos(x')-1) + sin(x') 63 * 64 * 65 * where tan(t) is from the table, 66 * sin(x') = x + pp1*x^3 + pp2*x^5 67 * cos(x') = 1 + qq1*x^2 + qq2*x^4 68 */ 69 70 #include "libm.h" 71 72 extern const double _TBL_tan_hi[], _TBL_tan_lo[]; 73 74 static const double q[] = { 75 /* one = */ 76 1.0, 77 78 /* 79 * 2 2 -59.56 80 * |sin(x) - pp1*x*(pp2+x *(pp3+x )| <= 2 for |x|<1/64 81 */ 82 /* pp1 = */ 8.33326120969096230395312119298978359438478946686e-0003, 83 /* pp2 = */ 1.20001038589438965215025680596868692381425944526e+0002, 84 /* pp3 = */ -2.00001730975089451192161504877731204032897949219e+0001, 85 86 /* 87 * 2 2 -56.19 88 * |cos(x) - (1+qq1*x (qq2+x ))| <= 2 for |x|<=1/128 89 */ 90 /* qq1 = */ 4.16665486385721928197511942926212213933467864990e-0002, 91 /* qq2 = */ -1.20000339921340035687080671777948737144470214844e+0001, 92 93 /* 94 * |tan(x) - PF(x)| 95 * |--------------| <= 2^-58.57 for |x|<0.15625 96 * | x | 97 * 98 * where (let z = x*x) 99 * PF(x) = x + (t1*x*z)(t2 + z(t3 + z))(t4 + z)(t5 + z(t6 + z)) 100 */ 101 /* t1 = */ 3.71923358986516816929168705030406272271648049355e-0003, 102 /* t2 = */ 6.02645120354857866118436504621058702468872070312e+0000, 103 /* t3 = */ 2.42627327587398156083509093150496482849121093750e+0000, 104 /* t4 = */ 2.44968983934252770851003333518747240304946899414e+0000, 105 /* t5 = */ 6.07089252571767978849948121933266520500183105469e+0000, 106 /* t6 = */ -2.49403756995593761658369658107403665781021118164e+0000, 107 }; 108 109 #define one q[0] 110 #define pp1 q[1] 111 #define pp2 q[2] 112 #define pp3 q[3] 113 #define qq1 q[4] 114 #define qq2 q[5] 115 #define t1 q[6] 116 #define t2 q[7] 117 #define t3 q[8] 118 #define t4 q[9] 119 #define t5 q[10] 120 #define t6 q[11] 121 122 123 double 124 __k_tan(double x, double y, int k) 125 { 126 double a, t, z, w = 0.0L, s, c, r, rh, xh, xl; 127 int i, j, hx, ix; 128 129 t = one; 130 hx = ((int *)&x)[HIWORD]; 131 ix = hx & 0x7fffffff; 132 133 if (ix < 0x3fc40000) { /* 0.15625 */ 134 if (ix < 0x3e400000) { /* 2^-27 */ 135 if ((i = (int)x) == 0) /* generate inexact */ 136 w = x; 137 138 t = y; 139 } else { 140 z = x * x; 141 t = y + (((t1 * x) * z) * (t2 + z * (t3 + z))) * ((t4 + 142 z) * (t5 + z * (t6 + z))); 143 w = x + t; 144 } 145 146 if (k == 0) 147 return (w); 148 149 /* 150 * Compute -1/(x+T) with great care 151 * Let r = -1/(x+T), rh = r chopped to 20 bits. 152 * Also let xh = x+T chopped to 20 bits, xl = (x-xh)+T. Then 153 * -1/(x+T) = rh + (-1/(x+T)-rh) = rh + r*(1+rh*(x+T)) 154 * = rh + r*((1+rh*xh)+rh*xl). 155 */ 156 rh = r = -one / w; 157 ((int *)&rh)[LOWORD] = 0; 158 xh = w; 159 ((int *)&xh)[LOWORD] = 0; 160 xl = (x - xh) + t; 161 return (rh + r * ((one + rh * xh) + rh * xl)); 162 } 163 164 j = (ix + 0x4000) & 0x7fff8000; 165 i = (j - 0x3fc40000) >> 15; 166 ((int *)&t)[HIWORD] = j; 167 168 if (hx > 0) 169 x = y - (t - x); 170 else 171 x = -y - (t + x); 172 173 a = _TBL_tan_hi[i]; 174 z = x * x; 175 s = (pp1 * x) * (pp2 + z * (pp3 + z)); /* sin(x) */ 176 t = (qq1 * z) * (qq2 + z); /* cos(x) - 1 */ 177 178 if (k == 0) { 179 w = a * s; 180 t = _TBL_tan_lo[i] + (s + a * w) / (one - (w - t)); 181 return (hx < 0 ? -a - t : a + t); 182 } else { 183 w = s + a * t; 184 c = w + _TBL_tan_lo[i]; 185 t = a * s - t; 186 187 /* 188 * Now try to compute [(1-T)/(a+c)] accurately 189 * 190 * Let r = 1/(a+c), rh = (1-T)*r chopped to 20 bits. 191 * Also let xh = a+c chopped to 20 bits, xl = (a-xh)+c. Then 192 * (1-T)/(a+c) = rh + ((1-T)/(a+c)-rh) 193 * = rh + r*(1-T-rh*(a+c)) 194 * = rh + r*((1-T-rh*xh)-rh*xl) 195 * = rh + r*(((1-rh*xh)-T)-rh*xl) 196 */ 197 r = one / (a + c); 198 rh = (one - t) * r; 199 ((int *)&rh)[LOWORD] = 0; 200 xh = a + c; 201 ((int *)&xh)[LOWORD] = 0; 202 xl = (a - xh) + c; 203 z = rh + r * (((one - rh * xh) - t) - rh * xl); 204 return (hx >= 0 ? -z : z); 205 } 206 }