Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/C/__sincos.c
+++ new/usr/src/lib/libm/common/C/__sincos.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
↓ open down ↓ |
10 lines elided |
↑ open up ↑ |
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 +
21 22 /*
22 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 24 */
25 +
24 26 /*
25 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 28 * Use is subject to license terms.
27 29 */
28 30
29 -/* INDENT OFF */
31 +
30 32 /*
31 33 * double __k_sincos(double x, double y, double *c);
32 34 * kernel sincos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
33 35 * Input x is assumed to be bounded by ~pi/4 in magnitude.
34 36 * Input y is the tail of x.
35 37 * return sin(x) with *c = cos(x)
36 38 *
37 39 * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
38 40 *
39 41 * 1. Reduce x to x>0 by sin(-x)=-sin(x),cos(-x)=cos(x).
40 42 * 2. For 0<= x < pi/4, let i = (64*x chopped)-10. Let d = x - a[i], where
41 43 * a[i] is a double that is close to (i+10.5)/64 and such that
42 44 * sin(a[i]) and cos(a[i]) is close to a double (with error less
43 45 * than 2**-8 ulp). Then
44 46 * cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d)
45 47 * = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) -
46 48 * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)
47 49 * = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) -
48 50 * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5))
49 51 * sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d)
50 52 * = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) +
51 53 * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)
52 54 * = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) +
53 55 * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5))
54 56 *
55 57 * For |y| less than 10.5/64 = 0.1640625, use
56 58 * sin(y) = y + y^3*(p1+y^2*(p2+y^2*(p3+y^2*p4)))
57 59 * cos(y) = 1 + y^2*(q1+y^2*(q2+y^2*(q3+y^2*q4)))
58 60 *
59 61 * For |y| less than 0.008, use
↓ open down ↓ |
20 lines elided |
↑ open up ↑ |
60 62 * sin(y) = y + y^3*(pp1+y^2*pp2)
61 63 * cos(y) = 1 + y^2*(qq1+y^2*qq2)
62 64 *
63 65 * Accuracy:
64 66 * TRIG(x) returns trig(x) nearly rounded (less than 1 ulp)
65 67 */
66 68
67 69 #include "libm.h"
68 70
69 71 static const double sc[] = {
70 -/* ONE = */ 1.0,
72 +/* ONE = */
73 + 1.0,
71 74 /* NONE = */ -1.0,
75 +
72 76 /*
73 77 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
74 78 */
75 -/* PP1 = */ -0.166666666666316558867252052378889521480627858683055567,
76 -/* PP2 = */ .008333315652997472323564894248466758248475374977974017927,
79 +/* PP1 = */-0.166666666666316558867252052378889521480627858683055567,
80 +/* PP2 = */.008333315652997472323564894248466758248475374977974017927,
81 +
77 82 /*
78 83 * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
79 84 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
80 85 * | x |
81 86 */
82 -/* P1 = */ -1.666666666666629669805215138920301589656e-0001,
83 -/* P2 = */ 8.333333332390951295683993455280336376663e-0003,
84 -/* P3 = */ -1.984126237997976692791551778230098403960e-0004,
85 -/* P4 = */ 2.753403624854277237649987622848330351110e-0006,
87 +/* P1 = */ -1.666666666666629669805215138920301589656e-0001,
88 +/* P2 = */ 8.333333332390951295683993455280336376663e-0003,
89 +/* P3 = */ -1.984126237997976692791551778230098403960e-0004,
90 +/* P4 = */ 2.753403624854277237649987622848330351110e-0006,
91 +
86 92 /*
87 93 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
88 94 */
89 -/* QQ1 = */ -0.4999999999975492381842911981948418542742729,
90 -/* QQ2 = */ 0.041666542904352059294545209158357640398771740,
95 +/* QQ1 = */-0.4999999999975492381842911981948418542742729,
96 +/* QQ2 = */0.041666542904352059294545209158357640398771740,
97 +
91 98 /*
92 99 * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64)
93 100 */
94 -/* Q1 = */ -0.5,
95 -/* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
96 -/* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
97 -/* Q4 = */ 2.478563078858589473679519517892953492192e-0005,
101 +/* Q1 = */ -0.5,
102 +/* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
103 +/* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
104 +/* Q4 = */ 2.478563078858589473679519517892953492192e-0005,
98 105 };
99 -/* INDENT ON */
100 106
101 -#define ONE sc[0]
102 -#define NONE sc[1]
103 -#define PP1 sc[2]
104 -#define PP2 sc[3]
105 -#define P1 sc[4]
106 -#define P2 sc[5]
107 -#define P3 sc[6]
108 -#define P4 sc[7]
109 -#define QQ1 sc[8]
110 -#define QQ2 sc[9]
111 -#define Q1 sc[10]
112 -#define Q2 sc[11]
113 -#define Q3 sc[12]
114 -#define Q4 sc[13]
107 +
108 +#define ONE sc[0]
109 +#define NONE sc[1]
110 +#define PP1 sc[2]
111 +#define PP2 sc[3]
112 +#define P1 sc[4]
113 +#define P2 sc[5]
114 +#define P3 sc[6]
115 +#define P4 sc[7]
116 +#define QQ1 sc[8]
117 +#define QQ2 sc[9]
118 +#define Q1 sc[10]
119 +#define Q2 sc[11]
120 +#define Q3 sc[12]
121 +#define Q4 sc[13]
115 122
116 123 extern const double _TBL_sincos[], _TBL_sincosx[];
117 124
118 125 double
119 -__k_sincos(double x, double y, double *c) {
120 - double z, w, s, v, p, q;
121 - int i, j, n, hx, ix;
126 +__k_sincos(double x, double y, double *c)
127 +{
128 + double z, w, s, v, p, q;
129 + int i, j, n, hx, ix;
122 130
123 131 hx = ((int *)&x)[HIWORD];
124 132 ix = hx & ~0x80000000;
125 133
126 - if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */
134 + if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */
127 135 if (ix < 0x3e400000) { /* |x| < 2**-27 */
128 136 if ((int)x == 0)
129 137 *c = ONE;
138 +
130 139 return (x + y);
131 140 } else {
132 141 z = x * x;
142 +
133 143 if (ix < 0x3f800000) { /* |x| < 0.008 */
134 144 q = z * (QQ1 + z * QQ2);
135 145 p = (x * z) * (PP1 + z * PP2) + y;
136 146 } else {
137 - q = z * ((Q1 + z * Q2) + (z * z) * (Q3 +
138 - z * Q4));
147 + q = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z *
148 + Q4));
139 149 p = (x * z) * ((P1 + z * P2) + (z * z) * (P3 +
140 150 z * P4)) + y;
141 151 }
152 +
142 153 *c = ONE + q;
143 154 return (x + p);
144 155 }
145 - } else { /* 0.164062500 < |x| < ~pi/4 */
156 + } else { /* 0.164062500 < |x| < ~pi/4 */
146 157 n = ix >> 20;
147 158 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
148 159 j = i - 10;
160 +
149 161 if (hx < 0)
150 162 v = -y - (_TBL_sincosx[j] + x);
151 163 else
152 164 v = y - (_TBL_sincosx[j] - x);
165 +
153 166 s = v * v;
154 167 j <<= 1;
155 168 w = _TBL_sincos[j];
156 - z = _TBL_sincos[j+1];
169 + z = _TBL_sincos[j + 1];
157 170 p = s * (PP1 + s * PP2);
158 171 q = s * (QQ1 + s * QQ2);
159 172 p = v + v * p;
160 173 *c = z - (w * p - z * q);
161 174 s = w * q + z * p;
162 - return ((hx >= 0)? w + s : -(w + s));
175 + return ((hx >= 0) ? w + s : -(w + s));
163 176 }
164 177 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX