1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 32 /* 33 * double __k_sincos(double x, double y, double *c); 34 * kernel sincos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 35 * Input x is assumed to be bounded by ~pi/4 in magnitude. 36 * Input y is the tail of x. 37 * return sin(x) with *c = cos(x) 38 * 39 * Accurate Table look-up algorithm by K.C. Ng, May, 1995. 40 * 41 * 1. Reduce x to x>0 by sin(-x)=-sin(x),cos(-x)=cos(x). 42 * 2. For 0<= x < pi/4, let i = (64*x chopped)-10. Let d = x - a[i], where 43 * a[i] is a double that is close to (i+10.5)/64 and such that 44 * sin(a[i]) and cos(a[i]) is close to a double (with error less 45 * than 2**-8 ulp). Then 46 * cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d) 47 * = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) - 48 * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5) 49 * = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) - 50 * TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)) 51 * sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d) 52 * = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) + 53 * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5) 54 * = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) + 55 * TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)) 56 * 57 * For |y| less than 10.5/64 = 0.1640625, use 58 * sin(y) = y + y^3*(p1+y^2*(p2+y^2*(p3+y^2*p4))) 59 * cos(y) = 1 + y^2*(q1+y^2*(q2+y^2*(q3+y^2*q4))) 60 * 61 * For |y| less than 0.008, use 62 * sin(y) = y + y^3*(pp1+y^2*pp2) 63 * cos(y) = 1 + y^2*(qq1+y^2*qq2) 64 * 65 * Accuracy: 66 * TRIG(x) returns trig(x) nearly rounded (less than 1 ulp) 67 */ 68 69 #include "libm.h" 70 71 static const double sc[] = { 72 /* ONE = */ 73 1.0, 74 /* NONE = */ -1.0, 75 76 /* 77 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 78 */ 79 /* PP1 = */-0.166666666666316558867252052378889521480627858683055567, 80 /* PP2 = */.008333315652997472323564894248466758248475374977974017927, 81 82 /* 83 * |(sin(x) - (x+p1*x^3+...+p4*x^9)| 84 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 85 * | x | 86 */ 87 /* P1 = */ -1.666666666666629669805215138920301589656e-0001, 88 /* P2 = */ 8.333333332390951295683993455280336376663e-0003, 89 /* P3 = */ -1.984126237997976692791551778230098403960e-0004, 90 /* P4 = */ 2.753403624854277237649987622848330351110e-0006, 91 92 /* 93 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) 94 */ 95 /* QQ1 = */-0.4999999999975492381842911981948418542742729, 96 /* QQ2 = */0.041666542904352059294545209158357640398771740, 97 98 /* 99 * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64) 100 */ 101 /* Q1 = */ -0.5, 102 /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, 103 /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, 104 /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, 105 }; 106 107 108 #define ONE sc[0] 109 #define NONE sc[1] 110 #define PP1 sc[2] 111 #define PP2 sc[3] 112 #define P1 sc[4] 113 #define P2 sc[5] 114 #define P3 sc[6] 115 #define P4 sc[7] 116 #define QQ1 sc[8] 117 #define QQ2 sc[9] 118 #define Q1 sc[10] 119 #define Q2 sc[11] 120 #define Q3 sc[12] 121 #define Q4 sc[13] 122 123 extern const double _TBL_sincos[], _TBL_sincosx[]; 124 125 double 126 __k_sincos(double x, double y, double *c) 127 { 128 double z, w, s, v, p, q; 129 int i, j, n, hx, ix; 130 131 hx = ((int *)&x)[HIWORD]; 132 ix = hx & ~0x80000000; 133 134 if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ 135 if (ix < 0x3e400000) { /* |x| < 2**-27 */ 136 if ((int)x == 0) 137 *c = ONE; 138 139 return (x + y); 140 } else { 141 z = x * x; 142 143 if (ix < 0x3f800000) { /* |x| < 0.008 */ 144 q = z * (QQ1 + z * QQ2); 145 p = (x * z) * (PP1 + z * PP2) + y; 146 } else { 147 q = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z * 148 Q4)); 149 p = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + 150 z * P4)) + y; 151 } 152 153 *c = ONE + q; 154 return (x + p); 155 } 156 } else { /* 0.164062500 < |x| < ~pi/4 */ 157 n = ix >> 20; 158 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); 159 j = i - 10; 160 161 if (hx < 0) 162 v = -y - (_TBL_sincosx[j] + x); 163 else 164 v = y - (_TBL_sincosx[j] - x); 165 166 s = v * v; 167 j <<= 1; 168 w = _TBL_sincos[j]; 169 z = _TBL_sincos[j + 1]; 170 p = s * (PP1 + s * PP2); 171 q = s * (QQ1 + s * QQ2); 172 p = v + v * p; 173 *c = z - (w * p - z * q); 174 s = w * q + z * p; 175 return ((hx >= 0) ? w + s : -(w + s)); 176 } 177 }