Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/C/__sin.c
+++ new/usr/src/lib/libm/common/C/__sin.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
↓ open down ↓ |
10 lines elided |
↑ open up ↑ |
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 +
21 22 /*
22 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 24 */
25 +
24 26 /*
25 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 28 * Use is subject to license terms.
27 29 */
28 30
29 -/* INDENT OFF */
31 +
30 32 /*
31 33 * __k_sin( double x; double y )
32 34 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164
33 35 * Input x is assumed to be bounded by ~pi/4 in magnitude.
34 36 * Input y is the tail of x.
35 37 *
36 38 * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
37 39 *
38 40 * Algorithm: see __sincos.c
39 41 */
40 42
41 43 #include "libm.h"
42 44
43 45 static const double sc[] = {
44 -/* ONE = */ 1.0,
46 +/* ONE = */
47 + 1.0,
45 48 /* NONE = */ -1.0,
49 +
46 50 /*
47 51 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
48 52 */
49 -/* PP1 = */ -0.166666666666316558867252052378889521480627858683055567,
50 -/* PP2 = */ .008333315652997472323564894248466758248475374977974017927,
53 +/* PP1 = */-0.166666666666316558867252052378889521480627858683055567,
54 +/* PP2 = */.008333315652997472323564894248466758248475374977974017927,
55 +
51 56 /*
52 57 * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
53 58 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
54 59 * | x |
55 60 */
56 -/* P1 = */ -1.666666666666629669805215138920301589656e-0001,
57 -/* P2 = */ 8.333333332390951295683993455280336376663e-0003,
58 -/* P3 = */ -1.984126237997976692791551778230098403960e-0004,
59 -/* P4 = */ 2.753403624854277237649987622848330351110e-0006,
61 +/* P1 = */ -1.666666666666629669805215138920301589656e-0001,
62 +/* P2 = */ 8.333333332390951295683993455280336376663e-0003,
63 +/* P3 = */ -1.984126237997976692791551778230098403960e-0004,
64 +/* P4 = */ 2.753403624854277237649987622848330351110e-0006,
65 +
60 66 /*
61 67 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
62 68 */
63 -/* QQ1 = */ -0.4999999999975492381842911981948418542742729,
64 -/* QQ2 = */ 0.041666542904352059294545209158357640398771740,
69 +/* QQ1 = */-0.4999999999975492381842911981948418542742729,
70 +/* QQ2 = */0.041666542904352059294545209158357640398771740,
71 +
65 72 /*
66 73 * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64)
67 74 */
68 -/* Q1 = */ -0.5,
69 -/* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
70 -/* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
71 -/* Q4 = */ 2.478563078858589473679519517892953492192e-0005,
75 +/* Q1 = */ -0.5,
76 +/* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
77 +/* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
78 +/* Q4 = */ 2.478563078858589473679519517892953492192e-0005,
72 79 };
73 -/* INDENT ON */
74 80
75 -#define ONE sc[0]
76 -#define NONE sc[1]
77 -#define PP1 sc[2]
78 -#define PP2 sc[3]
79 -#define P1 sc[4]
80 -#define P2 sc[5]
81 -#define P3 sc[6]
82 -#define P4 sc[7]
83 -#define QQ1 sc[8]
84 -#define QQ2 sc[9]
85 -#define Q1 sc[10]
86 -#define Q2 sc[11]
87 -#define Q3 sc[12]
88 -#define Q4 sc[13]
81 +
82 +#define ONE sc[0]
83 +#define NONE sc[1]
84 +#define PP1 sc[2]
85 +#define PP2 sc[3]
86 +#define P1 sc[4]
87 +#define P2 sc[5]
88 +#define P3 sc[6]
89 +#define P4 sc[7]
90 +#define QQ1 sc[8]
91 +#define QQ2 sc[9]
92 +#define Q1 sc[10]
93 +#define Q2 sc[11]
94 +#define Q3 sc[12]
95 +#define Q4 sc[13]
89 96
90 97 extern const double _TBL_sincos[], _TBL_sincosx[];
91 98
92 99 double
93 -__k_sin(double x, double y) {
94 - double z, w, s, v, p, q;
95 - int i, j, n, hx, ix;
100 +__k_sin(double x, double y)
101 +{
102 + double z, w, s, v, p, q;
103 + int i, j, n, hx, ix;
96 104
97 105 hx = ((int *)&x)[HIWORD];
98 106 ix = hx & ~0x80000000;
99 107
100 - if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */
108 + if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */
101 109 if (ix < 0x3e400000) /* |x| < 2**-27 */
102 110 if ((int)x == 0)
103 111 return (x + y);
112 +
104 113 z = x * x;
114 +
105 115 if (ix < 0x3f800000) /* |x| < 0.008 */
106 116 p = (x * z) * (PP1 + z * PP2) + y;
107 117 else
108 - p = (x * z) * ((P1 + z * P2) + (z * z) * (P3 +
109 - z * P4)) + y;
118 + p = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + z *
119 + P4)) + y;
120 +
110 121 return (x + p);
111 - } else { /* 0.164062500 < |x| < ~pi/4 */
122 + } else { /* 0.164062500 < |x| < ~pi/4 */
112 123 n = ix >> 20;
113 124 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
114 125 j = i - 10;
126 +
115 127 if (hx < 0)
116 128 v = -y - (_TBL_sincosx[j] + x);
117 129 else
118 130 v = y - (_TBL_sincosx[j] - x);
131 +
119 132 s = v * v;
120 133 j <<= 1;
121 134 w = _TBL_sincos[j];
122 - z = _TBL_sincos[j+1];
135 + z = _TBL_sincos[j + 1];
123 136 p = s * (PP1 + s * PP2);
124 137 q = s * (QQ1 + s * QQ2);
125 138 p = v + v * p;
126 139 s = w * q + z * p;
127 - return ((hx >= 0)? w + s : -(w + s));
140 + return ((hx >= 0) ? w + s : -(w + s));
128 141 }
129 142 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX