1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 32 /* 33 * __k_sin( double x; double y ) 34 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.785398164 35 * Input x is assumed to be bounded by ~pi/4 in magnitude. 36 * Input y is the tail of x. 37 * 38 * Accurate Table look-up algorithm by K.C. Ng, May, 1995. 39 * 40 * Algorithm: see __sincos.c 41 */ 42 43 #include "libm.h" 44 45 static const double sc[] = { 46 /* ONE = */ 47 1.0, 48 /* NONE = */ -1.0, 49 50 /* 51 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008 52 */ 53 /* PP1 = */-0.166666666666316558867252052378889521480627858683055567, 54 /* PP2 = */.008333315652997472323564894248466758248475374977974017927, 55 56 /* 57 * |(sin(x) - (x+p1*x^3+...+p4*x^9)| 58 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125 59 * | x | 60 */ 61 /* P1 = */ -1.666666666666629669805215138920301589656e-0001, 62 /* P2 = */ 8.333333332390951295683993455280336376663e-0003, 63 /* P3 = */ -1.984126237997976692791551778230098403960e-0004, 64 /* P4 = */ 2.753403624854277237649987622848330351110e-0006, 65 66 /* 67 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d) 68 */ 69 /* QQ1 = */-0.4999999999975492381842911981948418542742729, 70 /* QQ2 = */0.041666542904352059294545209158357640398771740, 71 72 /* 73 * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64) 74 */ 75 /* Q1 = */ -0.5, 76 /* Q2 = */ 4.166666666500350703680945520860748617445e-0002, 77 /* Q3 = */ -1.388888596436972210694266290577848696006e-0003, 78 /* Q4 = */ 2.478563078858589473679519517892953492192e-0005, 79 }; 80 81 82 #define ONE sc[0] 83 #define NONE sc[1] 84 #define PP1 sc[2] 85 #define PP2 sc[3] 86 #define P1 sc[4] 87 #define P2 sc[5] 88 #define P3 sc[6] 89 #define P4 sc[7] 90 #define QQ1 sc[8] 91 #define QQ2 sc[9] 92 #define Q1 sc[10] 93 #define Q2 sc[11] 94 #define Q3 sc[12] 95 #define Q4 sc[13] 96 97 extern const double _TBL_sincos[], _TBL_sincosx[]; 98 99 double 100 __k_sin(double x, double y) 101 { 102 double z, w, s, v, p, q; 103 int i, j, n, hx, ix; 104 105 hx = ((int *)&x)[HIWORD]; 106 ix = hx & ~0x80000000; 107 108 if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */ 109 if (ix < 0x3e400000) /* |x| < 2**-27 */ 110 if ((int)x == 0) 111 return (x + y); 112 113 z = x * x; 114 115 if (ix < 0x3f800000) /* |x| < 0.008 */ 116 p = (x * z) * (PP1 + z * PP2) + y; 117 else 118 p = (x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * 119 P4)) + y; 120 121 return (x + p); 122 } else { /* 0.164062500 < |x| < ~pi/4 */ 123 n = ix >> 20; 124 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n); 125 j = i - 10; 126 127 if (hx < 0) 128 v = -y - (_TBL_sincosx[j] + x); 129 else 130 v = y - (_TBL_sincosx[j] - x); 131 132 s = v * v; 133 j <<= 1; 134 w = _TBL_sincos[j]; 135 z = _TBL_sincos[j + 1]; 136 p = s * (PP1 + s * PP2); 137 q = s * (QQ1 + s * QQ2); 138 p = v + v * p; 139 s = w * q + z * p; 140 return ((hx >= 0) ? w + s : -(w + s)); 141 } 142 }