Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/C/__cos.c
+++ new/usr/src/lib/libm/common/C/__cos.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
↓ open down ↓ |
10 lines elided |
↑ open up ↑ |
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 +
21 22 /*
22 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 24 */
25 +
24 26 /*
25 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 28 * Use is subject to license terms.
27 29 */
28 30
29 -/* INDENT OFF */
31 +
30 32 /*
31 33 * __k_cos(double x; double y)
32 34 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
33 35 * Input x is assumed to be bounded by ~pi/4 in magnitude.
34 36 * Input y is the tail of x.
35 37 *
36 38 * Accurate Table look-up algorithm by K.C. Ng, May, 1995.
37 39 *
38 40 * Algorithm: see __sincos.c
39 41 */
40 42
41 43 #include "libm.h"
42 44
43 45 static const double sc[] = {
44 -/* ONE = */ 1.0,
46 +/* ONE = */
47 + 1.0,
45 48 /* NONE = */ -1.0,
49 +
46 50 /*
47 51 * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
48 52 */
49 -/* PP1 = */ -0.166666666666316558867252052378889521480627858683055567,
50 -/* PP2 = */ .008333315652997472323564894248466758248475374977974017927,
53 +/* PP1 = */-0.166666666666316558867252052378889521480627858683055567,
54 +/* PP2 = */.008333315652997472323564894248466758248475374977974017927,
55 +
51 56 /*
52 57 * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
53 58 * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
54 59 * | x |
55 60 */
56 -/* P1 = */ -1.666666666666629669805215138920301589656e-0001,
57 -/* P2 = */ 8.333333332390951295683993455280336376663e-0003,
58 -/* P3 = */ -1.984126237997976692791551778230098403960e-0004,
59 -/* P4 = */ 2.753403624854277237649987622848330351110e-0006,
61 +/* P1 = */ -1.666666666666629669805215138920301589656e-0001,
62 +/* P2 = */ 8.333333332390951295683993455280336376663e-0003,
63 +/* P3 = */ -1.984126237997976692791551778230098403960e-0004,
64 +/* P4 = */ 2.753403624854277237649987622848330351110e-0006,
65 +
60 66 /*
61 67 * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
62 68 */
63 -/* QQ1 = */ -0.4999999999975492381842911981948418542742729,
64 -/* QQ2 = */ 0.041666542904352059294545209158357640398771740,
69 +/* QQ1 = */-0.4999999999975492381842911981948418542742729,
70 +/* QQ2 = */0.041666542904352059294545209158357640398771740,
71 +
65 72 /*
66 73 * |cos(x) - (1+q1*x^2+...+q4*x^8)| <= 2^-55.86 for |x| <= 0.1640625 (10.5/64)
67 74 */
68 -/* Q1 = */ -0.5,
69 -/* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
70 -/* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
71 -/* Q4 = */ 2.478563078858589473679519517892953492192e-0005,
72 -};
73 -/* INDENT ON */
74 -
75 -#define ONE sc[0]
76 -#define NONE sc[1]
77 -#define PP1 sc[2]
78 -#define PP2 sc[3]
79 -#define P1 sc[4]
80 -#define P2 sc[5]
81 -#define P3 sc[6]
82 -#define P4 sc[7]
83 -#define QQ1 sc[8]
84 -#define QQ2 sc[9]
85 -#define Q1 sc[10]
86 -#define Q2 sc[11]
87 -#define Q3 sc[12]
88 -#define Q4 sc[13]
75 +/* Q1 = */ -0.5,
76 +/* Q2 = */ 4.166666666500350703680945520860748617445e-0002,
77 +/* Q3 = */ -1.388888596436972210694266290577848696006e-0003,
78 +/* Q4 = */ 2.478563078858589473679519517892953492192e-0005, };
79 +
80 +
81 +#define ONE sc[0]
82 +#define NONE sc[1]
83 +#define PP1 sc[2]
84 +#define PP2 sc[3]
85 +#define P1 sc[4]
86 +#define P2 sc[5]
87 +#define P3 sc[6]
88 +#define P4 sc[7]
89 +#define QQ1 sc[8]
90 +#define QQ2 sc[9]
91 +#define Q1 sc[10]
92 +#define Q2 sc[11]
93 +#define Q3 sc[12]
94 +#define Q4 sc[13]
89 95
90 96 extern const double _TBL_sincos[], _TBL_sincosx[];
91 97
92 98 double
93 -__k_cos(double x, double y) {
94 - double z, w, s, v, p, q;
95 - int i, j, n, hx, ix;
99 +__k_cos(double x, double y)
100 +{
101 + double z, w, s, v, p, q;
102 + int i, j, n, hx, ix;
96 103
97 104 hx = ((int *)&x)[HIWORD];
98 105 ix = hx & ~0x80000000;
99 106
100 - if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */
107 + if (ix <= 0x3fc50000) { /* |x| < 10.5/64 = 0.164062500 */
101 108 if (ix < 0x3e400000) /* |x| < 2**-27 */
102 109 if ((int)x == 0)
103 110 return (ONE);
111 +
104 112 z = x * x;
113 +
105 114 if (ix < 0x3f800000) /* |x| < 0.008 */
106 115 q = z * (QQ1 + z * QQ2);
107 116 else
108 117 q = z * ((Q1 + z * Q2) + (z * z) * (Q3 + z * Q4));
118 +
109 119 return (ONE + q);
110 - } else { /* 0.164062500 < |x| < ~pi/4 */
120 + } else { /* 0.164062500 < |x| < ~pi/4 */
111 121 n = ix >> 20;
112 122 i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
113 123 j = i - 10;
124 +
114 125 if (hx < 0)
115 126 v = -y - (_TBL_sincosx[j] + x);
116 127 else
117 128 v = y - (_TBL_sincosx[j] - x);
129 +
118 130 s = v * v;
119 131 j <<= 1;
120 132 w = _TBL_sincos[j];
121 - z = _TBL_sincos[j+1];
133 + z = _TBL_sincos[j + 1];
122 134 p = s * (PP1 + s * PP2);
123 135 q = s * (QQ1 + s * QQ2);
124 136 p = v + v * p;
125 137 return (z - (w * p - z * q));
126 138 }
127 139 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX