Print this page
11175 libm should use signbit() correctly
11188 c99 math macros should return strictly backward compatible values


  52  *      yn(n,x) is similar in all respects, except
  53  *      that forward recursion is used for all
  54  *      values of n>1.
  55  *
  56  */
  57 
  58 #include "libm.h"
  59 #include <float.h>        /* DBL_MIN */
  60 #include <values.h>       /* X_TLOSS */
  61 #include "xpg6.h"       /* __xpg6 */
  62 
  63 #define GENERIC double
  64 
  65 static const GENERIC
  66         invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
  67         two     = 2.0,
  68         zero    = 0.0,
  69         one     = 1.0;
  70 
  71 GENERIC
  72 jn(int n, GENERIC x) {

  73         int i, sgn;
  74         GENERIC a, b, temp = 0;
  75         GENERIC z, w, ox, on;
  76 
  77         /*
  78          * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
  79          * Thus, J(-n,x) = J(n,-x)
  80          */
  81         ox = x; on = (GENERIC)n;


  82         if (n < 0) {
  83                 n = -n;
  84                 x = -x;
  85         }
  86         if (isnan(x))
  87                 return (x*x);   /* + -> * for Cheetah */
  88         if (!((int) _lib_version == libm_ieee ||
  89                 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
  90             if (fabs(x) > X_TLOSS)
  91                         return (_SVID_libm_err(on, ox, 38));
  92         }
  93         if (n == 0)
  94                 return (j0(x));
  95         if (n == 1)
  96                 return (j1(x));
  97         if ((n&1) == 0)
  98                 sgn = 0;                        /* even n */
  99         else
 100                 sgn = signbit(x);       /* old n  */
 101         x = fabs(x);
 102         if (x == zero||!finite(x)) b = zero;
 103         else if ((GENERIC)n <= x) {
 104                                         /*
 105                                          * Safe to use
 106                                          *  J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
 107                                          */
 108             if (x > 1.0e91) {
 109                                 /*
 110                                  * x >> n**2
 111                                  *    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 112                                  *   Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 113                                  *   Let s=sin(x), c=cos(x),
 114                                  *      xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 115                                  *
 116                                  *         n    sin(xn)*sqt2    cos(xn)*sqt2
 117                                  *      ----------------------------------
 118                                  *         0     s-c             c+s
 119                                  *         1    -s-c            -c+s
 120                                  *         2    -s+c            -c-s
 121                                  *         3     s+c             c-s
 122                                  */
 123                 switch (n&3) {
 124                     case 0: temp =  cos(x)+sin(x); break;
 125                     case 1: temp = -cos(x)+sin(x); break;
 126                     case 2: temp = -cos(x)-sin(x); break;
 127                     case 3: temp =  cos(x)-sin(x); break;








 128                 }
 129                 b = invsqrtpi*temp/sqrt(x);
 130             } else {
 131                         a = j0(x);
 132                         b = j1(x);
 133                         for (i = 1; i < n; i++) {
 134                     temp = b;
 135                     b = b*((GENERIC)(i+i)/x) - a; /* avoid underflow */

 136                     a = temp;
 137                         }
 138             }
 139         } else {
 140             if (x < 1e-9) {  /* use J(n,x) = 1/n!*(x/2)^n */
 141                 b = pow(0.5*x, (GENERIC) n);
 142                 if (b != zero) {
 143                     for (a = one, i = 1; i <= n; i++) a *= (GENERIC)i;

 144                     b = b/a;
 145                 }
 146             } else {
 147                 /*
 148                  * use backward recurrence
 149                  *                      x         x^2     x^2
 150                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 151                  *                      2n  - 2(n+1) - 2(n+2)
 152                  *
 153                  *                      1         1         1
 154                  *  (for large x)   =  ----  ------   ------   .....
 155                  *                      2n   2(n+1)   2(n+2)
 156                  *                      -- - ------ - ------ -
 157                  *                       x       x               x
 158                  *
 159                  * Let w = 2n/x and h = 2/x, then the above quotient
 160                  * is equal to the continued fraction:
 161                  *                  1
 162                  *      = -----------------------
 163                  *                         1
 164                  *         w - -----------------
 165                  *                        1
 166                  *                      w+h - ---------
 167                  *                         w+2h - ...
 168                  *
 169                  * To determine how many terms needed, let
 170                  * Q(0) = w, Q(1) = w(w+h) - 1,
 171                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
 172                  * When Q(k) > 1e4   good for single
 173                  * When Q(k) > 1e9   good for double
 174                  * When Q(k) > 1e17  good for quaduple
 175                  */
 176             /* determin k */
 177                 GENERIC t, v;
 178                 double q0, q1, h, tmp; int k, m;
 179                 w  = (n+n)/(double)x; h = 2.0/(double)x;
 180                 q0 = w;  z = w + h; q1 = w*z - 1.0; k = 1;






 181                 while (q1 < 1.0e9) {
 182                         k += 1; z += h;

 183                         tmp = z*q1 - q0;
 184                         q0 = q1;
 185                         q1 = tmp;
 186                 }
 187                 m = n+n;
 188                 for (t = zero, i = 2*(n+k); i >= m; i -= 2) t = one/(i/x-t);

 189                 a = t;
 190                 b = one;
 191                 /*
 192                  * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
 193                  *  hence, if n*(log(2n/x)) > ...
 194                  *  single 8.8722839355e+01
 195                  *  double 7.09782712893383973096e+02
 196                  *  long double 1.1356523406294143949491931077970765006170e+04
 197                  *  then recurrent value may overflow and the result is
 198                  *  likely underflow to zero
 199                  */
 200                 tmp = n;
 201                 v = two/x;
 202                 tmp = tmp*log(fabs(v*tmp));
 203                 if (tmp < 7.09782712893383973096e+02) {
 204                             for (i = n-1; i > 0; i--) {
 205                                 temp = b;
 206                                 b = ((i+i)/x)*b - a;
 207                             a = temp;
 208                                 }
 209                 } else {
 210                                 for (i = n-1; i > 0; i--) {
 211                                     temp = b;
 212                                     b = ((i+i)/x)*b - a;
 213                                     a = temp;
 214                                         if (b > 1e100) {
 215                                                 a /= b;
 216                                                 t /= b;
 217                                                 b  = 1.0;
 218                                         }
 219                                 }
 220                 }
 221                         b = (t*j0(x)/b);
 222             }
 223         }
 224         if (sgn == 1)
 225                 return (-b);
 226         else
 227                 return (b);
 228 }
 229 
 230 GENERIC
 231 yn(int n, GENERIC x) {

 232         int i;
 233         int sign;
 234         GENERIC a, b, temp = 0, ox, on;
 235 
 236         ox = x; on = (GENERIC)n;

 237         if (isnan(x))
 238                 return (x*x);   /* + -> * for Cheetah */
 239         if (x <= zero) {
 240                 if (x == zero) {
 241                         /* return -one/zero; */
 242                         return (_SVID_libm_err((GENERIC)n, x, 12));
 243                 } else {
 244                         /* return zero/zero; */
 245                         return (_SVID_libm_err((GENERIC)n, x, 13));
 246                 }
 247         }
 248         if (!((int) _lib_version == libm_ieee ||
 249                 (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
 250             if (x > X_TLOSS)
 251                         return (_SVID_libm_err(on, ox, 39));
 252         }
 253         sign = 1;
 254         if (n < 0) {
 255                 n = -n;
 256                 if ((n&1) == 1) sign = -1;
 257         }
 258         if (n == 0)
 259                 return (y0(x));
 260         if (n == 1)
 261                 return (sign*y1(x));
 262         if (!finite(x))
 263                 return (zero);
 264 
 265         if (x > 1.0e91) {
 266                                 /*
 267                                  * x >> n**2
 268                                  *  Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 269                                  *  Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 270                                  *  Let s = sin(x), c = cos(x),
 271                                  *  xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
 272                                  *
 273                                  *    n sin(xn)*sqt2    cos(xn)*sqt2
 274                                  *      ----------------------------------
 275                                  *       0       s-c             c+s
 276                                  *       1      -s-c            -c+s
 277                                  *       2      -s+c            -c-s
 278                                  *       3       s+c             c-s
 279                                  */
 280                 switch (n&3) {
 281                     case 0: temp =  sin(x)-cos(x); break;
 282                     case 1: temp = -sin(x)-cos(x); break;
 283                     case 2: temp = -sin(x)+cos(x); break;
 284                     case 3: temp =  sin(x)+cos(x); break;








 285                 }
 286                 b = invsqrtpi*temp/sqrt(x);
 287         } else {
 288                 a = y0(x);
 289                 b = y1(x);
 290                 /*
 291                  * fix 1262058 and take care of non-default rounding
 292                  */
 293                 for (i = 1; i < n; i++) {
 294                         temp = b;
 295                         b *= (GENERIC) (i + i) / x;
 296                         if (b <= -DBL_MAX)
 297                                 break;
 298                         b -= a;
 299                         a = temp;
 300                 }
 301         }
 302         if (sign > 0)
 303                 return (b);
 304         else


  52  *      yn(n,x) is similar in all respects, except
  53  *      that forward recursion is used for all
  54  *      values of n>1.
  55  *
  56  */
  57 
  58 #include "libm.h"
  59 #include <float.h>        /* DBL_MIN */
  60 #include <values.h>       /* X_TLOSS */
  61 #include "xpg6.h"       /* __xpg6 */
  62 
  63 #define GENERIC double
  64 
  65 static const GENERIC
  66         invsqrtpi = 5.641895835477562869480794515607725858441e-0001,
  67         two     = 2.0,
  68         zero    = 0.0,
  69         one     = 1.0;
  70 
  71 GENERIC
  72 jn(int n, GENERIC x)
  73 {
  74         int i, sgn;
  75         GENERIC a, b, temp = 0;
  76         GENERIC z, w, ox, on;
  77 
  78         /*
  79          * J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
  80          * Thus, J(-n,x) = J(n,-x)
  81          */
  82         ox = x;
  83         on = (GENERIC)n;
  84 
  85         if (n < 0) {
  86                 n = -n;
  87                 x = -x;
  88         }
  89         if (isnan(x))
  90                 return (x*x);   /* + -> * for Cheetah */
  91         if (!((int)_lib_version == libm_ieee ||
  92             (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
  93                 if (fabs(x) > X_TLOSS)
  94                         return (_SVID_libm_err(on, ox, 38));
  95         }
  96         if (n == 0)
  97                 return (j0(x));
  98         if (n == 1)
  99                 return (j1(x));
 100         if ((n&1) == 0)
 101                 sgn = 0;                        /* even n */
 102         else
 103                 sgn = signbit(x);       /* old n  */
 104         x = fabs(x);
 105         if (x == zero||!finite(x)) b = zero;
 106         else if ((GENERIC)n <= x) {
 107                                         /*
 108                                          * Safe to use
 109                                          *  J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
 110                                          */
 111                 if (x > 1.0e91) {
 112                                 /*
 113                                  * x >> n**2
 114                                  *    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 115                                  *   Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 116                                  *   Let s=sin(x), c=cos(x),
 117                                  *      xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
 118                                  *
 119                                  *         n    sin(xn)*sqt2    cos(xn)*sqt2
 120                                  *      ----------------------------------
 121                                  *         0     s-c             c+s
 122                                  *         1    -s-c            -c+s
 123                                  *         2    -s+c            -c-s
 124                                  *         3     s+c             c-s
 125                                  */
 126                         switch (n&3) {
 127                         case 0:
 128                                 temp =  cos(x)+sin(x);
 129                                 break;
 130                         case 1:
 131                                 temp = -cos(x)+sin(x);
 132                                 break;
 133                         case 2:
 134                                 temp = -cos(x)-sin(x);
 135                                 break;
 136                         case 3:
 137                                 temp =  cos(x)-sin(x);
 138                                 break;
 139                         }
 140                         b = invsqrtpi*temp/sqrt(x);
 141                 } else {
 142                         a = j0(x);
 143                         b = j1(x);
 144                         for (i = 1; i < n; i++) {
 145                                 temp = b;
 146                                 /* avoid underflow */
 147                                 b = b*((GENERIC)(i+i)/x) - a;
 148                                 a = temp;
 149                         }
 150                 }
 151         } else {
 152                 if (x < 1e-9) {      /* use J(n,x) = 1/n!*(x/2)^n */
 153                         b = pow(0.5*x, (GENERIC) n);
 154                         if (b != zero) {
 155                                 for (a = one, i = 1; i <= n; i++)
 156                                         a *= (GENERIC)i;
 157                                 b = b/a;
 158                         }
 159                 } else {
 160                         /*
 161                          * use backward recurrence
 162                          *                      x         x^2     x^2
 163                          *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
 164                          *                      2n  - 2(n+1) - 2(n+2)
 165                          *
 166                          *                      1         1         1
 167                          *  (for large x)   =  ----  ------   ------   .....
 168                          *                      2n   2(n+1)   2(n+2)
 169                          *                      -- - ------ - ------ -
 170                          *                       x       x               x
 171                          *
 172                          * Let w = 2n/x and h = 2/x, then the above quotient
 173                          * is equal to the continued fraction:
 174                          *                  1
 175                          *      = -----------------------
 176                          *                         1
 177                          *         w - -----------------
 178                          *                        1
 179                          *                      w+h - ---------
 180                          *                         w+2h - ...
 181                          *
 182                          * To determine how many terms needed, let
 183                          * Q(0) = w, Q(1) = w(w+h) - 1,
 184                          * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
 185                          * When Q(k) > 1e4   good for single
 186                          * When Q(k) > 1e9   good for double
 187                          * When Q(k) > 1e17  good for quaduple
 188                          */
 189                         /* determine k */
 190                         GENERIC t, v;
 191                         double q0, q1, h, tmp;
 192                         int k, m;
 193                         w  = (n+n)/(double)x;
 194                         h = 2.0/(double)x;
 195                         q0 = w;
 196                         z = w + h;
 197                         q1 = w*z - 1.0;
 198                         k = 1;
 199 
 200                         while (q1 < 1.0e9) {
 201                                 k += 1;
 202                                 z += h;
 203                                 tmp = z*q1 - q0;
 204                                 q0 = q1;
 205                                 q1 = tmp;
 206                         }
 207                         m = n+n;
 208                         for (t = zero, i = 2*(n+k); i >= m; i -= 2)
 209                                 t = one/(i/x-t);
 210                         a = t;
 211                         b = one;
 212                         /*
 213                          * estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
 214                          * hence, if n*(log(2n/x)) > ...
 215                          * single 8.8722839355e+01
 216                          * double 7.09782712893383973096e+02
 217                          * long double 1.1356523406294143949491931077970765006170e+04
 218                          * then recurrent value may overflow and the result is
 219                          * likely underflow to zero
 220                          */
 221                         tmp = n;
 222                         v = two/x;
 223                         tmp = tmp*log(fabs(v*tmp));
 224                         if (tmp < 7.09782712893383973096e+02) {
 225                                 for (i = n-1; i > 0; i--) {
 226                                         temp = b;
 227                                         b = ((i+i)/x)*b - a;
 228                                         a = temp;
 229                                 }
 230                         } else {
 231                                 for (i = n-1; i > 0; i--) {
 232                                         temp = b;
 233                                         b = ((i+i)/x)*b - a;
 234                                         a = temp;
 235                                         if (b > 1e100) {
 236                                                 a /= b;
 237                                                 t /= b;
 238                                                 b  = 1.0;
 239                                         }
 240                                 }
 241                         }
 242                         b = (t*j0(x)/b);
 243                 }
 244         }
 245         if (sgn != 0)
 246                 return (-b);
 247         else
 248                 return (b);
 249 }
 250 
 251 GENERIC
 252 yn(int n, GENERIC x)
 253 {
 254         int i;
 255         int sign;
 256         GENERIC a, b, temp = 0, ox, on;
 257 
 258         ox = x;
 259         on = (GENERIC)n;
 260         if (isnan(x))
 261                 return (x*x);   /* + -> * for Cheetah */
 262         if (x <= zero) {
 263                 if (x == zero) {
 264                         /* return -one/zero; */
 265                         return (_SVID_libm_err((GENERIC)n, x, 12));
 266                 } else {
 267                         /* return zero/zero; */
 268                         return (_SVID_libm_err((GENERIC)n, x, 13));
 269                 }
 270         }
 271         if (!((int)_lib_version == libm_ieee ||
 272             (__xpg6 & _C99SUSv3_math_errexcept) != 0)) {
 273                 if (x > X_TLOSS)
 274                         return (_SVID_libm_err(on, ox, 39));
 275         }
 276         sign = 1;
 277         if (n < 0) {
 278                 n = -n;
 279                 if ((n&1) == 1) sign = -1;
 280         }
 281         if (n == 0)
 282                 return (y0(x));
 283         if (n == 1)
 284                 return (sign*y1(x));
 285         if (!finite(x))
 286                 return (zero);
 287 
 288         if (x > 1.0e91) {
 289                                 /*
 290                                  * x >> n**2
 291                                  *  Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 292                                  *  Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
 293                                  *  Let s = sin(x), c = cos(x),
 294                                  *  xn = x-(2n+1)*pi/4, sqt2 = sqrt(2), then
 295                                  *
 296                                  *    n sin(xn)*sqt2    cos(xn)*sqt2
 297                                  *      ----------------------------------
 298                                  *       0       s-c             c+s
 299                                  *       1      -s-c            -c+s
 300                                  *       2      -s+c            -c-s
 301                                  *       3       s+c             c-s
 302                                  */
 303                 switch (n&3) {
 304                 case 0:
 305                         temp =  sin(x)-cos(x);
 306                         break;
 307                 case 1:
 308                         temp = -sin(x)-cos(x);
 309                         break;
 310                 case 2:
 311                         temp = -sin(x)+cos(x);
 312                         break;
 313                 case 3:
 314                         temp =  sin(x)+cos(x);
 315                         break;
 316                 }
 317                 b = invsqrtpi*temp/sqrt(x);
 318         } else {
 319                 a = y0(x);
 320                 b = y1(x);
 321                 /*
 322                  * fix 1262058 and take care of non-default rounding
 323                  */
 324                 for (i = 1; i < n; i++) {
 325                         temp = b;
 326                         b *= (GENERIC) (i + i) / x;
 327                         if (b <= -DBL_MAX)
 328                                 break;
 329                         b -= a;
 330                         a = temp;
 331                 }
 332         }
 333         if (sign > 0)
 334                 return (b);
 335         else