new usr/src/cnd/ sgs/include/libld. h

R R R R

66771 Mon Feb 11 00:23:18 2019
new usr/src/cnd/ sgs/include/libld. h

10366 1d(1) should support GNU-style |inker sets

10367 1d(1) tests should be a real test
10368 want an 1d(1) regression test for

suite
i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

1168 /*

1169 * The auxiliary synbol descriptor contains the additional information (beyond
1170 * the synbol descriptor) required to process global symbols. These synbols are
1171 * accessed via an internal synbol hash table where locality of reference is
1172 * inportant for perfornmance.

1173 */

1174 struct sym aux {

1175 APl i st *sa_dfiles; /* files where synbol is defined */
1176 Sym sa_sym /* copy of syntab entry *

1177 const char *sa_vfile; /* first unavail able definition */
1178 const char *sa_rfile; /* file with first synmbol referenced */
1179 Wor d sa_hash; /* the pure hash val ue of synmbol */
1180 Word sa_PLTndx; /* index into PLT for synbol */

1181 Word sa_PLTGOTndx; /* GOT entry indx for PLT indirection */
1182 Vord sa_l i nkndx; /* index of associated synbol from */
1183 [* ET_DYN file */

1184 Hal f sa_symspec; /* special synbol ids */

1185 Hal f sa_over ndx; /* output file versioning index */
1186 Hal f sa_dver ndx; /* dependency versioning index */

1187 OGs_desc *sa_boundsec; /* output section of SECBOUND_ syms */
1188 #endif /* | codereview */

1189 };

1191 /*

1192 * Nodes used to track synmbols in the global AVL synbol dictionary.

1193 */

1194 struct sym avl node {

1195 avl _node_t sav_node; /* AVL node */

1196 Wor d sav_hash; /* synbol hash val ue */

1197 const char *sav_nane; /* synbol nane */

1198 Sym desc *sav_sdp; /* synbol descriptor */

1199 };

1201 /*

1202 * These are the ids for processing of ‘Special synbols’. They are used

1203 */to set the sym >sd_aux->sa_synspec field.

1204 *

1205 #define SDAUX_| D ETEXT
1206 #define SDAUX_| D EDATA
1207 #defi ne SDAUX_|I D_END
1208 #define SDAUX_| D DYN
1209 #define SDAUX_ID PLT
1210 #define SDAUX_|I D_GOT
1211 #define SDAUX_|I D_START
1212 #define SDAUX_| D_SECBOUND START 8
1213 #define SDAUX_| D_SECBOUND STOP 9
1214 #endif /* | codereview */

~NoOoOhWNE

1216 /*
1217 * Flags for symdesc.sd_flags
1218 */

1219 #define FLG SY_M/TOCOW 0x00000001

1220
1221

1222 #define FLG SY_GLOBREF 0x00000002
1223 #define FLG SY_WEAKDEF 0x00000004
0x00000008

1224 #define FLG SY_CLEAN

etext && _etext synbol */

edata && _edata synbol */

end, _end, & _END_ synbol */

DYNAM C && _DYNAM C synbol */
PROCEDURE_LI NKAGE_TABLE_ symbol */
_GLOBAL_OFFSET_TABLE_ synmbol */

START_ &% _START_ symbol */
__start_<section> symbols */

—_stop_<section> synbols */

* ok kb ok ok ok ok 3k

—~—— i — — —

assign synbol to comon (.bss) */
this is a result of a */
copy reloc agai nst sym */
a gl obal reference has been seen */
a weak definition has been used */
‘Symi entry points to original */

—~————— —
* ok Ok kX ok

new usr/src/cnd/ sgs/include/libld. h

1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

1280
1281
1282
1283

1285
1286
1287
1288
1289
1290

#def i ne FLG_SY_UPREQD

#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i

#def i

ne

ne
ne

ne
ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne
ne
ne
ne
ne
ne

ne
ne
ne
ne

ne

0x00000010

FLG_SY_NOTAVAI L 0x00000020

FLG_SY_REDUCED

0x00000040

FLG_SY_VERSPROM 0x00000080

FLG SY_PROT
FLG_SY_MAPREF

FLG SY_REFRSD
FLG SY_| NTPOSE
FLG_SY_| NVALI D
FLG_SY_SMaOT
FLG_SY_PARENT
FLG SY_LAZYLD
FLG SY_I SDI SC
FLG SY_PAREXPN
FLG SY_PLTPAD
FLG SY_REGSYM
FLG_SY_SOFOUND
FLG_SY_EXTERN
FLG_SY_MAPUSED
FLG_SY_COMVEXP

FLG SY_CVDREF

FLG SY_SPECSEC

FLG SY_TENTSYM
FLG SY_VI SI BLE
FLG_SY_STDFLTR
FLG_SY_AUXFLTR
FLG_SY_DYNSORT

FLG_SY_NODYNSORT 0x80000000

FLG SY_DEFAULT
FLG SY_SI NGLE
FLG_SY_PROTECT
FLG_SY_EXPORT

MBK_SY_GLOBAL \

(FLG_SY_DEFAULT |

0x00000100
0x00000200

0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000

0x01000000

0x02000000

0x04000000
0x08000000
0x10000000
0x20000000
0x40000000

0x0000100000000
0x0000200000000
0x0000400000000
0x0000800000000

FLG SY_SINGLE

input file (read-only). */
synbol val ue update is required, */
either it’s used as an entry */
point or for relocation, but */
it nmust be updated even if */
the -s flag is in effect */
synbol is not available to the */
application either because it */
originates froman inmplicitly */
referenced shared object, or */
because it is not part of a */
speci fied version. */
a global is reduced to |ocal */
version definition has been */
promoted to output file */
stv_protected visibility seen */
synbol reference generated by user */
frommapfile */
synbol s sd_ref has been raised */
due to a copy-relocs */
weak-strong pairing */
synbol defines an interposer */
unwant ed/ erroneous synbol */
smal | got index assigned to synmbol */
sparc only *
synbol to be found in parent */
only used with direct bindings *
synbol to cause |azyl oading of */
parent object */
synbol is a menber of a DI SCARDED */
section (COVDAT) */
partially init. synbol to be */
expanded */
pl t paddi ng has been allocated for */
this synbol */
REG STER synbol (sparc only) */
conpar ed agai nst an SO definition */
synbol is external, allows -zdefs */
error suppression */
mapfile synbol used (occurred */
within a rel ocatabl e object) */
COMMON synbol which has been */
al l ocated */
synbol was referenced fromthe */
command line. (ld -u <> */
Id -zrtldinfo=<> ...) */
section index is reserved value */
*

-~

tentative synbol */

synbols visibility determ ned */
synbol is a standard filter */

synbol is an auxiliary filter */

req. in dyn[synjtls]sort section */
excluded fromdyn[symtls]sort sec */

gl obal synbol, default */

gl obal synbol, singleton defined */

gl obal symbol, protected defined */

gl obal synbol, exported defined */
FLG_SY_EXPORT)

LG _SY_PROTECT |

this nask indicates that the */
synmbol has been explicitly */
defined within a mapfile */
definition, and is a candidate */

new usr/src/cnd/ sgs/include/libld. h 3 new usr/src/cnd/ sgs/include/libld. h 4

1291 /* for versioning */ 1357 #define FLG SDF_SELECT 0x01 /* version control selection required */
1358 #define FLG SDF_VERI FY 0x02 /* version definition verification */

1293 #define FLG SY_H DDEN 0x0001000000000 /* gl obal synbol, reduce to local */ 1359 /* required */

1294 #define FLG SY_ELIM 0x0002000000000 /* gl obal synbol, elimnate */ 1360 #define FLG SDF_ADDVER 0x04 /* add VERNEED references */

1295 #define FLG SY_|I GNORE 0x0004000000000 /* gl obal symnbol, ignored */
1362 /*

1297 #define MSK_SY_LOCAL (FLG_SY_HI DDEN | FLG SY_ELIM | FLG SY_I GNORE) 1363 * Structure to manage shared object version usage requirenents.

1298 /* this mask allows all |ocal state */ 1364 */

1299 /* flags to be renmoved when the */ 1365 struct sdv_desc {

1300 /* synmbol is copy relocated */ 1366 const char *sdv_nane; /* version nane */
1367 const char *sdv_ref; /* versions reference */

1302 #define FLG SY_EXPDEF 0x0008000000000 /* synbol visibility defined */ 1368 Wor d sdv_f 1l ags; /* flags */

1303 /* explicitly */ 1369 };

1305 #define MSK_SY_NOAUTO (FLG SY_SINGLE | FLG SY_EXPORT | FLG_SY_EXPDEF) 1371 #define FLG SDV_MATCHED 0x01 /* VERDEF found and nat ched */

1306 /* this mask indicates that the */

1307 /* synbol is not a candidate for */ 1373 /*

1308 /* aut o-reduction/elimnation */ 1374 * Structures to manage versioning information. Two versioning structures are
1375 * defined:

1310 #define FLG SY_MAPFILE 0x0010000000000 /* synbol attribute defined in a */ 1376 *

1311 /* mapfile */ 1377 * - a version descriptor maintains a linked list of versions and their

1312 #define FLG SY_DIR 0x0020000000000 /* gl obal synbol, direct bindings */ 1378 * associ ated dependencies. This is used to build the version definitions

1313 #define FLG SY_NDI R 0x0040000000000 /* gl obal synbol, nondirect bindings */ 1379 * for an image being created (see map_synbol), and to determine the

1314 #define FLG_SY_OVERLAP 0x0080000000000 /* nove entry overlap detected */ 1380 * ver si on dependency graph for any input files that are versioned.

1315 #define FLG SY_CAP 0x0100000000000 /* synbol is associated with */ 1381 *

1316 /* capabilities */ 1382 * - a version index array contains each version of an input file that is

1317 #define FLG SY_DEFERRED 0x0200000000000 /* synbol should not be bound to */ 1383 * bei ng processed. It infornms us which versions are avail able for

1318 /* during BIND_NOWrelocations */ 1384 */ bi nding, and is used to generate any version dependency infornation.
1385 *

1320 /* 1386 struct ver_desc {

1321 * A synbol can only be truly hidden if it is not a capabilities synbol. 1387 const char *vd_naneg; /* version nane */

1322 */ 1388 I fl_desc *vd_file; /* file that defined version */

1323 #define SYM IS _H DDEN(_sdp) \ 1389 Wor d vd_hash; /* hash val ue of name */

1324 (((_sdp)->sd_flags & (FLG SY_HIDDEN | FLG SY_CAP)) == FLG_SY_H DDEN) 1390 Hal f vd_ndx; /* coordinates with synmbol index */
1391 Hal f vd_f I ags; /* version information */

1326 /* 1392 APl i st *vd_deps; /* version dependencies */

1327 * Create a mask for (symst_other & visibility) since the gABl does not yet 1393 Ver _desc *vd_ref; /* dependency’s first reference */

1328 * define a ELF*_ST_OTHER nacro. 1394 };

1329 */

1330 #define MSK_SYM VI SI BI LI TY ox7 1396 struct ver_index {
1397 const char *vi _nane; /* dependency version nane */

1332 /* 1398 Hal f vi _flags; /* communi cates availability */

1333 * Structure to manage the shared object definition lists. There are two lists 1399 Hal f vi _over ndx; /* index assigned to this version in */

1334 * that use this structure: 1400 /* out put obj ect Verneed section */

1335 * 1401 Ver _desc *vi _desc; /* cross reference to descriptor */

1336 * - of | _soneed; maintain the list of inplicitly required dependencies 1402 };

1337 * (ie. shared objects needed by other shared objects). These definitions

1338 * may include RPATH s required to | ocate the dependencies, and any 1404 /*

1339 * version requirenents. 1405 * Define any internal version descriptor flags ([vd|lvi]_flags). Note that the

1340 * 1406 * first byte is reserved for user visible flags (refer VER FLGs in link.h).

1341 * - of | _socntl; maintains the shared object control definitions. These are 1407 */

1342 * provi ded by the user (via a napfile) and are used to indicate any 1408 #defi ne MSK_VER_USER 0oxof /* mask for user visible flags */

1343 * version control requirenents.

1344 */ 1410 #define FLG VER AVAI L 0x10 /* version is available for binding */

1345 struct sdf _desc { 1411 #define FLG VER REFER 0x20 /* version has been referenced */

1346 const char *sdf _nane; /* the shared objects file name */ 1412 #define FLG VER CYCLIC 0x40 /* a nenber of cyclic dependency */

1347 char *sdf _rpat h; /* library search path DT_RPATH */

1348 const char *sdf _rfile; /* referencing file for di agnostics */ 1414 | *

1349 I fl_desc *sdf _file; /* the final input file descriptor */ 1415 * isalist(1) descriptor - used to break an isalist string into its conponent

1350 Ali st *sdf _vers; /* list of versions that are required */ 1416 * options.

1351 I * fromthis object */ 1417 */

1352 Ali st *sdf _ver need; /* list of VERNEEDS to create for */ 1418 struct isa_opt {

1353 /* obj ect via mapfile ADDVERS */ 1419 char *i sa_name; /* i ndi vidual isa option name */

1354 Word sdf _fl ags; 1420 size_t i sa_nanmesz; * and associ ated size */

1355 }; 1421 };

new usr/src/cnd/ sgs/include/libld. h

1423 struct isa_desc {

1424 char *isa_list; /* sy
1425 size_t isa_listsz; I
1426 I sa_opt *isa_opt;

1427 size_t i sa_opt no;

1428 };

1430 /*

1431 * unane(2) descriptor - used to break a utsn

/* tabl e of individual

sinfo(SI_I SALIST) list */

and associ ated size */
isa options */
and associ ated nunber */

ame structure into its conponent

erating system name */
and associ ated size */

erating systemrel ease */
and associ ated size */

sections at the gl obal

put section descriptor */

erriding input section */
descriptor when discarded */

oup nane (signature synbol) */

data for group section */

nber of entries in group data */

rst and have value 0 */

1432 * options (at |least those that we're interested in).
1433 */

1434 struct uts_desc {

1435 char *ut s_osnane; /* op
1436 size_t ut s_osnanesz;

1437 char *uts_osrel; /* op
1438 size_t uts_osrel sz; /*
1439 };

1441 /*

1442 * SHT_GROUP descriptor - used to track group
1443 * level to resolve conflicts and determ ne which to keep.
1444 */

1445 struct group_desc {

1446 I s_desc *gd_i sc; /* in
1447 I's_desc *gd_oi sc; /* ov
1448 /*
1449 const char *gd_nane; /* gr
1450 Wor d *gd_dat a; /*
1451 size_t gd_cnt; /* nu
1452 };

1454 | *

1455 * Indexes into the |d_support_funcs[] table.
1456 */

1457 typedef enum {

1458 LDS_VERSION = 0, /* Must be fi
1459 LDS_| NPUT_DONE,

1460 LDS_START,

1461 LDS_ATEXI T,

1462 LDS_OPEN,

1463 LDS_FI LE,

1464 LDS_| NSEC,

1465 LDS_SEC,

1466 LDS_NuM

1467 } Support _ndx;

1469 /*

1470 * Structure to manage archive nenber caching. Each archive has an archive
1471 * descriptor (Ar_desc) associated with it. This contains pointers to the
1472 * archive synbol table (obtained by el f_getarsyns(3e)) and an auxiliary
1473 * structure (Ar_uax[]) that parallels this synmbol table. The nenber el ement
1474 * of this auxiliary table indicates whether the archive nenber associated with
1475 * the synbol offset has already been extracted (AREXTRACTED) or partially
1476 * processed (refer process_nenber())

1477 */

1478 typedef struct ar_mem {

1479 El f *amel f; /* elf descriptor for this nmenber */
1480 const char *am _nane; /* menbers nanme */

1481 const char *am pat h; /* path (ie. lib(foo.0)) */

1482 Sym *am syns; /* start of global synbols */

1483 char *am strs; /* associated string table start */
1484 Xwor d am sym; /* no. of global synbols */

1485 } Ar_nem

1487 typedef struct ar_aux {

1488 Sym desc *au_syns; /* internal synbol descriptor */

new usr/src/cnd/ sgs/include/libld. h

1489 Ar _nmem *au_nmem

1490 } Ar_aux;

1492 #define FLG ARMEM PROC (Ar_nem

1494 typedef struct ar_desc {

1495 const char *ad_nane;
1496 El f *ad_el f;

1497 El f _Arsym *ad_star

1498 Ar _aux *ad_aux;

1499 dev_t ad_st dev;
1500 ino_t ad_stino;
1501 of | _flag_t ad_f I ags;
1502 } Ar_desc;

1504 /*

1505 * Define any archive descriptor

/* associ ated nmenber */

*)_l
[* archive file nane */
/* elf descriptor for the archive */
t; /* archive synbol table start */
/* auxiliary synbol information */
/* device id and i node nunber for */
/* mul tiple inclusion checks */
/* archive specific cnd line flags */

flags. NOTE, nmake sure they do not clash with

chive extraction flags, as these are saved in

1506 * any output file descriptor ar
1507 * the sanme entry (see MSK_OF1_ARCHI VE).
1508 *

/
1509 #define FLG_ARD_EXTRACT 0x000100

1511 /* Mapfil e versions supported by
1512 #define MFV_NONE 0
1513 #define MFV_SYSV 1
1514 #define MFV_SOLARI S 2
1515 #define MFV_NUM 3]

1518 /*

1519 * Function Decl arati ons.
1520 */
1521 #if defi ned(_ELF64)

1523 #define | d_create_outfile

|
1524 #define |d_ent_setup
1525 #define | d_init_strings
1526 #define |d_init_target
1527 #define | d_make_secti ons
1528 #define 1d_ ma| n
1529 #define |d_ofl _cleanup
1530 #define |d_pr ocess mem
1531 #define I d_reloc_init
1532 #define | d_rel oc _process
1533 #define | d_symvalidate
1534 #define |d_update_outfile
1536 #el se
1538 #define | d_create_outfile
1539 #define |d_ent_setup
1540 #define ld_init_strings
1541 #define Id_init_target
1542 #define | d_make_sections
1543 #define | d_main
1544 #define | d_ofl _cl eanup
1545 #define | d_process_nem
1546 #define Id_reloc_init
1547 #define |d_rel oc_process
1548 #define | d_symvalidate
1549 #define | d_update_outfile

1551 #endi f

1553 extern int | d_get op

00 /* archive nenber has been extracted */

libld */

Not a valid version */
Original SystemV syntax */
Sol aris mapfile syntax */
of mapfile versions */

—_~——
* ok ok ok

1 d64_create_outfile
| d64_ent _set up

1 d64_i nit_strings

| d64_i ni t target

| d64_nake_sect i ons

1 d64_mai n

1 d64_of | _cl eanup

| d64_process_nmem
1d64_reloc_init

1 d64_r el oc_process
1 d64_sym val i dat e

| d64_update_outfile

1d32_create_outfile
| d32_ent _setup
1d32_init_strings
1d32 i nit target

| d32_nake_sect i ons

| d32_mai n

1 d32_of | _cl eanup

| d32_process_nem
1d32_reloc_init

| d32_rel oc_process
1 d32_sym val i date

1 d32_update_outfile

t(Lmlist *, int, int, char **);

new usr/src/cnd/ sgs/include/libld. h

1555 extern int | d32_mai n(int, char **, Half);
1556 extern int | d64_mai n(int, char **, Half);

1558 extern uintptr_t
1559 extern uintptr_t
1560 extern uintptr_t
1561 extern int

Id_create_outfile(Ol _desc *);

|

|

|

1562 extern uintptr_t |
i |

*

init_strings(O | _desc *);
make_sections(Ofl _desc *);

of | _cl eanup(O | _desc *)
d_process_nen(const char *,

1563 extern void

d
d
d
d
d
1564 extern |fl_desc |

ent _setup(Cfl _desc *, Xword);

init_target(Lmlist *, Half nach);

1565 size_t, Ol _desc *, Rej_desc *);

1566 extern uintptr_t Id_reloc_init(Ofl_desc *);
1567 extern uintptr_t I d_rel oc_process(O | _desc *);
1568 extern uintptr_t I d_symvalidate(O | _desc *);
1569 extern uintptr_t | d_update_outfile(Ofl _desc *);

1571 #ifdef __cplusplus
1572 }
1573 #endi f

1575 #endif /* _LIBLD H */

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

R R R R

60496 Mon Feb 11 00: 23: 19 2019
new usr/src/cnd/ sgs/1i bl d/ comon/l1ibld. nsg
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

HHHFH HHHF HHHFHFHBHHHHHHBHFH IR

CDDL HEADER START

The contents of this file are subject to the ternms of the
Conmmon Devel opment and Distribution License (the "License")
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

Copyright (c) 1995, 2010, Oacle and/or its affiliates. Al rights reserved.

Copyright (c) 2012, Joyent, Inc. Al rights reserved.
Copyright 2017 RackTop Systens.

@ _START_

#

Message file for cnd/sgs/libld.

@MSG | D_LI BLD

HHFHHFHFHHFHH T TR

TRANSLATI ON_NOTE -- Begi nni ng of USAGE nessage

The fol |l owi ng messages are the usage nessages for the |d command.

Tab characters (\t) are used to align the nessages.

Each usage nessage starts with \t, and if the nessage has nore than one
I'ine, the follow ng nmessages are aligned by 3 tab characters.
When you see \n\t\t\t, the first \n is used to change the line,
and following 3 tab characters are used to align the line.

Each usage nmessage option is surrounded by [and]. Then the

description of the option follows. The descriptions should be aligned,
so tab characters are padded as needed after the closing bracket

How to align the messages are up to the translators and the
I ocal i zati on engi neers.

In Clocale, the first 3 messages would | ook |ike the follow ng:

usage: Id [6:abc:.....] file(s)
create an absolute file
[—b] do not do special PIC relocations in a.out

[-c file] record configuration "file’

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 2
60 #
61 @ MSG_ARG _USAGE "usage: |d [-%] file(s)\n"
62 @ MSG ARG DETAIL_3 "\t[-32]\t\tenforce a 32-bit link-edit\n"
63 @ MSG_ARG DETAIL_6 "\t[-64]\t\tenforce a 64-bit |ink- edl t\n"
64 @ MSG_ARG DETAIL_A "\t[a]\t\tcreate an absolute file\n"
65 @ MSG_ARG DETAIL_B [-b]\t\tdo not do special PIC relocations in a.out\n"
66 @ MSG_ARG DETAI L_CBDR [-B direct | nodirect]\n\
67 \t\testablish direct bindings, or inhibit direct \
68 i ndi ng\'n
69 \t\tto, the object being created\n"
70 @ MSG_ARG _DETAI L_CBDY [-B dynam c | static]\n\
71 \t\tsearch for shared libraries|archives\n"
72 @ MSG_ARG DETAI L_CBE "\t[-B elimnate]\telinmnate unqualified global \
73 nmbol s fromthe\n\t\t\tsynbol table\n"
74 @ MSG_ARG DETAI L_CBG -B group]\trelocate object fromwthin group\n"
75 @ MSG_ARG _DETAI L_CBL " IB\I ocal]\ treduce unqualified global synbols to \
76 al\n"

77 @ MBG_ARG DETAI L_CBR
78 @ MBG_ARG DETAI L_CBS

80

81 @ MG ARG DETAIL_C
82 @ MSG_ARG DETAI L_CC
83 @ MSG_ARG DETAI L_D
84 @ MSG_ARG DETAI L_CD
85 @ MSG_ARG DETAIL_E
86

87 @ MSG_ARG DETAIL_F
88

89

90 @ MSG_ARG DETAI L_CF
92 @ MSG_ARG DETAI L_CG
94 @ MSG_ARG DETAI L_H
96 @ MSG_ARG DETAI L_|
97 @ MSG_ARG DETAI L_Cl
98 @ MSG_ARG DETAI L_L
100 @ MSG_ARG DETAI L_CL

102 @ MSG_ARG DETAI L_M
103 @ MSG_ARG DETAI L_CM

105 @ MSG_ARG DETAI L_CN
107 @ MSG_ARG DETAI L_O
109 @ MSG_ARG DETAI L_P
111 @ MSG_ARG DETAI L_CP

114 @ MSG_ARG DETAI L_CQ
116 @ MSG_ARG DETAI L_R
118 @ MBG_ARG DETAI L_CR

121 @ MSG ARG DETAIL_S
123 @ MSG_ARG DETAI L_CS
125 @ MSG_ARG DETAIL_T

-B reduce] \tprocess synbol reductions\n"

-B synbolic]\tbhind external references to \
initions when creatl ng\ n\

t\tshared objects\n"

-c nanme]\trecord configuration file 'name’\n"
-C]\t\tdemangl e C++ synbol nane di agnostics\n"
-dy | n]\toperate in dynam c|static node\n"
D token,...]\tprint diagnostic nmessages\n"

e epsyni, [--entry epsyni\n\

\tuse 'epsym as entry point address\n"

{ nane], [--auxiliary nanme]\n\
|

t
t\tspecify library for which this file is an \
iliary\n\t\t\tfilter\n"

-F nane], [--filter nane]\n\

t\tspecify library for which this fileis a filter\n
t

t

./_u//,u//,ﬂ//,ﬂ//,u//m_//”//,ﬁ//,u/g,ﬂ/—,—/w,//,”/U,”//

G, [-shared]\n\

\tcreate a shared object\n"

h nane] [——sonarm name] \ n\

\tuse 'nane’ as internal shared object identifier\n
i]\t\tignore LD LI BRARY PATH setting\n"

| name]\tuse 'name’ as path of interpreter\n"

I x], [--library x]\n\

\tsearch for |ibx.so or libx.a\n"

ath], [--library-path path]\n\

earch for libraries in directory 'path \n"
m\t\tprint menory map\n”

M rmphle]\tuse processing directives contained \
mapfile \n"

N stri ng]\tcreate a dynam ¢ dependency for \

—
—
0o

ing’\n"
o outfile], [--output outfl e]\n\
\tnane the output file "outfile \n"
-p audltllb]\tldentlfy audlt library to acconpany \
is object\n"
-Pauditlib]\tidentify audit library for \
essi ng the dependenci es\n\
\tof this object\n"
Qy | n]\tdo|do not place version information in \
ut file\n"
r], [--relocatable]\n\
\tcreate a rel ocatabl e object\n"
R path], [-rpath path]\n\
spemfy a library search path to be used at run \

[--strip-all]l\n\

trip any synbol and debuggi ng information\n"
upportlib]\n\

pecify a link-edit support library\n"

t\tdo not warn of nultiply-defined synbols \

-0 noun-

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

@ MBG_ARG DETAIL_U
@ MSG_ARG DETAI L_CV
@ MSG_ARG DETAI L_CY

@ MSG_ARG DETAI L_ZA .

@ MSG ARG DETAIL_ZAE "

@MBG ARG DETAIL_ZAL "
@ MBG_ARG DETAI L_ZADLI B *

@ MBG_ARG DETAI L_ZC

@ MSG_ARG _DETAI L_ZNC
@ MBG_ARG DETAI L_ZDEF

@ MBG_ARG DETAI L_ZDFS "\t
@ MBG ARG DETAIL_ZDRS "

@ MBG_ARG DETAI L_ZE "
@ MBG_ARG DETAI L_ZFATW

@ MSG ARG DETAIL_ZFA "

@ MBG_ARG DETAI L_ZGP

@ MBG_ARG DETAI L_ZGUI DE *

@ MBG_ARG DETAI L_ZH
@MSG ARG DETAIL_ZIG "
@ MSG_ARG DETAI L_ZI NA

@MBG ARG DETAIL_ZINI "\

that have\n\t\t\tdifferent sizes or alignments\n"
"\t[-u symane], [--undefined symane]\n\
\t\t\tcreate an undefined synbol ’symane’\n"
"\t[-V], [--version]\n\

\'t \tprlnt versi on |nf0rrrat|on\n

"\t[-Y P,dirlist]\tuse "dirlist’ as a default path \
searching for\n\

t

\t\t\tconbi ne| do not conmbine nmultiple relocation \
sections\n"

"\t[-z noconpstrtab]\n\t\t\tdi sabl e conpression of \
string tables\n"

"\t[-z deferred | nodeferred]\n\

\t\t\tenabl e| di sabl e deferred identification of \
shared object\n\t\t\tdependenci es\n"

-z defs], [--no-undefined]\n\

t\tdisal | ow undefined synbol

-z direct | nodirect]\n\

t\tenabl e| di sabl e direct

t\tdependenci es\ n"

-z endfiltee]\tmarks a filtee such that
nate a filters\n\t\t\tsearch\n"

references\n"

it will \

t\

t

t\

t\

t[

er

t[-z fatal-warnings | nofatal-warnings],\n\
t[--fatal -warnings | --no-fatal-warnings]\n\
t}tenabl e| di sable treatment of warnings as fatal\n
t

t\

i

t[

t\

t\

t[

t\

\
\
\
\
\
t
"\
\
\
\ z finiarray=function]\n\
\

t\tname of function to be appended to the \

ni _array\n"
"\t[-z groupperm | nogroupperm\n\
\t\t\tenabl e| di sabl e setting of _group per m ssi ons\ n\
\t\t\ton dynam ¢ dependenci es\ n"
"\t[-z guidance | -z guidance=itent,iten2,...]J\n\
\t\t\tenabl e gui dance warnings. itemns:
noal I, nodefs,\n\

Vt\t\ € nodi rect,
nounused\ n"

nol azyl oad, nonmapfile, notext, \

"\t[-z help], [--help]\n\

\t\t\tprint this usage nessage\n"

\t[-z ignore | record]\n\

\t\t\tignore|record unused dynam ¢ dependenci es\n"
"\t[-z initarray=function]\n\

\t\t\tnane of function to be appended to the \
.init_array\n"

t[-z initfirst]\tmark object to indicate that its \
init section shoul d\n\

\t\t\tbe executed before the .init section of any \

\t\t\tlibraries\n"

\t[-z absexec]\t\/\hen bui | di ng an execut abl e absol ute \
synbol s

Vtlt\t referenced in dynam c objects are pronoted to\n \
\t\t\tthe executable\n"

\t[-z allextract | defaultextract | weakextract],\n\
\t[--whol e-archive | --no-whol e-archive]\n\
\t\t\textract all menber files, only nenbers that \
resol ve\ n\

\t\t\tundefined or tentative synbols, or \

al | ow extraction of\n\

\t\t\tarchive nenbers to resolve weak references from\
\n\t\t\t\archive files\n"

\t[-z altexec64]\texecute the 64-bit |ink-editor\n"
"\t[-z assert-deflib]\n\

\t\t\tenables warnings for linking with libraries in\
the \n\t\t\tdefault search path\n\

\t[-z assert-deflib=libnane]\n\

\t\t\tenabl es warnings for linking with libraries in\
the \n\t\t\tdefault search path, but 'libnanme’ is exenpt
"\t[-z conbreloc | noconbrel oc]\n\

bi ndi ng to shared object\n\

new usr/src/cnd/ sgs/1ibl d/ common/libld. nsg

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

@ MBG_ARG DETAI L_ZI NT
@ MBG_ARG DETAI L_ZLAZY
@ MBG_ARG DETAI L_ZLD32
@ MBG_ARG DETAI L_ZLD64
@ MBG_ARG DETAI L_ZLO

@ MBG_ARG DETAI L_ZM
@ MSG_ARG DETAI L_ZNDFS
@ MBG_ARG_DETAI L_ZNDEF

MSG_ARG DETAI L_ZNDEL
MSG_ARG_DETAI L_ZNDLO
MSG_ARG_DETAI L_ZNDU
MSG_ARG _DETAI L_ZNLD
MBG_

@
@
@
@ > _
@ MBG_ARG_DETAI L_ZNPA
@

MSG_ARG DETAI L_ZNV
@ MSG_ARG_DETAI L_ZNOW
@ MBG_ARG DETAI L_ZO

@ MSG_ARG DETAI L_ZPI A

@ MBG_ARG DETAI L_ZRL
@ MBG_ARG DETAI L_ZRREL
@ MBG_ARG DETAI L_ZRS

@ MBG_ARG DETAI L_ZRSN

@ MBG_ARG DETAI L_ZRSGRP "

@ MBG_ARG DETAI L_ZSCAP
@ MSG_ARG _DETAI L_ZTARG
@ MBG_ARG DETAI L_ZT

@ MBG_ARG DETAI L_ZTO
@ MBG_ARG DETAI L_ZTW
@ MBG_ARG DETAI L_ZWRAP
@ MBG_ARG DETAI L_ZVER

z textwarn]\twarn if there are relocations \
inst text\n"

z wap=synbol],
\twap synbol

[-wrap=synbol], [--wap=synbol]\n\

ref erences\n"

i lant tant tankatanl

- =

other\n\t\t\tob]ects\n

"\t[-z interpose]\

\tdynanmic object is to be an ’interposer’ on direct\n\

\t\t\tbindings\n"

\t[-z lazyload | nol azyl oad]\ n\

\t\t\tenabl e| di sabl e del ayed | oadi ng of shared \

obj ect\n\t\t\tdependencr es\n"

\t[-z | d32=argl,arg2,...]\n\

\t\t\tdefine argurrents appllcable to the \

32-bit class of 1d(1)\

"\t[-z | d6éd=argl,arg2,...]\n\

\t\t\tdefine argurrents applicable to the \

64-bit class of Id(1)\n"

"\t[-z loadfltr]\tmark filter as requiring i nmedi ate \

| oadi ng of its\n\

Vt\t\tfiltees at runtime\n"

\t[-z nmuldefs], [--allownultiple-definition]\n\

\t\t\tallow nmultiply-defined synbol s\n"

"\t[-z nodefs]\tall ow undefined synbol references\n"

\t[-z nodefaul tlib]\n\

\t\t\trmark object to ignore any default library \

search path\n"

"\t[-z nodel ete]\tnark object as non-del etabl e\n"

"\t[-z nodl open]\tnmark object as non-dl open()’ abl e\n"

\t[-z nodunp]\tmark object as non-dl dunp()’ abl e\n"

"\t[-z noldynsynj\tdo not add a .SUNWI dynsym section\n"

"\t[-2z nopartial]\texpand any partially initialized \

synbol s\ n"

\t[-z noversion]\tdo not record any version sections\n"

\t[-z noM\tmark obj ect as requiring non-lazy \

bi ndi ng\ n*

"\t[-z origi n]\trmrk object as requiring $ORIG N\

processi ng\ n"

\t[-z preinitarray=function]\n\

\t\t\tnanme of function to be appended to the \

.preinit_array\n"

t[-z redl ocsynj\treduce local syms in .syntab to \
ni mum n"

t[-z relaxreloc]\trelax rules used for relocations \

gai nst COVDAT sections\n"

t[-z rescan]\tafter processing all argunents, rescan \

rchive list\n\

t\t\tuntil no further menber extraction occurs\n”

t[-z rescan-now] \ti medi ately rescan archive list \

ntil\n

t\t\tno further menber extraction occurs\n"

t[-z rescan-start archives... -z rescan-end],\n\

t[--start-group archives. ——end—group], \

-(archives. =)\ n\

t\t\trescan spemfled archi ve group upon reaching\ n\

t\t\tthe end of the group, until no further\n\

t\t\tnenber extraction occurs\n"

t[-z synbol cap]\tconvert object capabilities to \

ynbol capabilities\n"

t[-z target=platforni\n\

t\t\ttarget nmachine for cross |inking\n"

t[-2z text]\tdr sal | ow out put rel ocations against \

ext\n"

t[-z textoff]\tallow out put relocations against \

ext\n"

t

g

t

t

t

e

[-z verbose]\t\
nerate warnings for suspicious processings\n"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

259 #

260 # TRANSLATI ON_NOTE -- End of USACE nessage
261 #

262 @ MSG_GRP_| NVALNDX

263 invalid secti

"file %: group section [%]%: entry %l: \
oel"

on index:

265 # Rel ocation processing nessages (sone of these are required to satisfy
266 # do_reloc(), which is common code used by cnd/sgs/rtld - nmake sure both

267 # message files remain consistent).

269 @ MSG REL_NOFI T
270 val ue Ox% | x
271 @ MSG_REL_NONALI GN

273 @ MSG_REL_NULL
274 ski ppi ng nul |
275 @ MSG_REL_NOTSUP

"relocation error: %:

"rel ocation error: %:
272 of fset Ox%Ix is non-a
"relocation error: file %: section [%]%: \

le %: synbol %: \
"
le %: synbol %: \

f
does not f
f
l'igned"

rel ocation record"

"relocation error: %: file %: section [%]%: \

276 rel ocation not currently supported"

277 @ MSG_REL_PI CREDLCC

278 -z redl ocsym
279 @MSG REL_TLSLE

280 relocation il
281 @ MSG_REL_TLSBND

282 bound to: Y:
283 to object bei
284 @ MBG REL_TLSSTAT

285 relocation il

286 @ M5G_REL_TLSBADSYM

"relocation error: %: file % synbol %: \

may not be used for pic code"

"relocation error: %: file %: synbol ¥%: \

| egal when buil ding a shared object"

"relocation error: %: file %: synbol ¥%: \

rel ocation illegal when not bound \
ng created"

"relocation error: %: file %: synbol ¥%: \

| egal when building a static object”

"relocation error: %: file %: synbol %:

287 bad symbol type %: synbol type nust be TLS"

288 @ MSG_REL_BADTLS
289 relocation il
290 @ MSG_REL_BADGOTBASED

"relocation error: %: file %: synbol ¥%: \

| egal for TLS synbol”

"relocation error: %: file %: synbol %: a GOT \

291 rel ative relocation nmust reference a | ocal synbol"
292 @ MSG_REL_UNKNWSYM "relocation error: %: file %: section [%]%: \
293 attenpt to relocate with respect to unknown \

294 synbol %: of fset Ox% | x, synbol index %"

295 @ M5G_REL_UNSUPSZ

"relocation error: %: file %: synbol %: \

296 of fset size (% bytes) is not supported”

297 @ MSG_REL_| NVALOFFSET

"relocation error: %: file % section [%] %: \

298 invalid offset synbol '%’: offset Ox%I|x"

299 @ MSG_REL_I NVALRELT

"relocation error: file %: section [%]%: \

300 invalid relocation type: Ox%"

301 @ MSG_REL_EMPTYSEC

"relocation error: %: file %: synbol ¥%: \

302 attenpted agai nst enpty section [%] %"

303 @ MSG_REL_EXTERNSYM "relocation error: %: file %: synbol %: \

304 external symbolic relocation against non-allocatable \
305 section %; cannot be processed at runtine:

306 rel ocation ignored"

307 @ MSG_REL_UNEXPREL

"relocation error: %: file %: synbol %: \

308 unexpected rel ocation; generic processing perforned"

309 @ MBG_REL_UNEXPSYM

"relocation error: %: file %: synbol ¥%: \

310 unexpected synbol referenced fromfile %"

311 @ MSG_REL_SYMDI SC "relocation error: %: file %: section [%]%: \

312 synmbol %: synbol has been discarded with discarded \
313 section: [%] %"

314 @ MSG_REL_NOSYMBCOL
315 of fset: Ox% |

316 @ MSG_REL_DI SPREL1
317 di spl acenent
318 % at Ox% I x:

319 @ MSG_REL_UNSUPSI ZE

"relocation error: %: file %: section: [%] %: \

x: relocation requires reference synbol"

"relocation error: %: file %: synbol %: \

rel ocation applied to the synbol \
synbol % is a copy relocated synbol"

"relocation error: %: file %: section [%]%: \

320 rel ocati on agai nst section synbol unsupported”

322 @ MSG_REL_DI SPREL2

"relocation warning: %: file %: synbol %: \

323 may contain displacenent rel ocation”

new usr/src/cnd/ sgs/1ibl d/ common/libld. nsg

324 @ MSG_REL_DI SPREL3 “relocation warning: %: file %:

325 di spl acenent relocation applied to the synbol

326 %: at Ox% I x: displacenent relocation wll

327 visible in output iInmge"

328 @ MSG_REL_DI SPREL4 "relocation warning: %: file %: :

329 di spl acenent relocation to be applied to the synbol
330 %: at Ox% I x: displacenent relocation wll

331 visible in output iInmge"

332 @ MSG_REL_COPY "relocation warning: %: file %:

333 rel ocation bound to a synbol with STV_PROTECTED \
334 visibility"

335 @ MSG_RELI NVSEC "relocation warning: %: file %:

336 agai nst suspi ci ous section [%] %:;

337 @MSG REL_TLSIE "rel ocation warning: %: file %:

338 relocation has restricted use when building a shared \
339 obj ect”

341 @ MSG_REL_SLOPCDATNONAM “"rel ocation warning: %: file ¥%:

342 rel ocation agai nst di scarded COVDAT section [%] %:
343 redirected to file %"

344 @ MSG_REL_SLOPCDATNAM “rel ocation warning: %: file %:

345 synbol %: relocation against di scarded

346 section [%u] ¥%: redirected to file %"

347 @ MSG_REL_SLOPCDATNOSYM "rel ocation warning: %: file %:

348 synmbol %: rel ocation against di scarded COVDAT \
349 section [%] %: synbol not found,

351 @ MSG_REL_NOREG "relocation error: REG STER rel ocation not supported \
352 on target architecture"

354 #

355 # TRANSLATI ON_NOTE

356 # The following 7 nessages are the nmessage to print the

357 # foll owi ng exanpl e nessages.

358 #

359 #Text rel ocation renains ref erenced

360 # agai nst synbol of f set infile

361 #str 0x14 nmai n. o

362 #printf Ox1lc mai n. o

363 #

364 # The first two lines are the header, and the next nsgid

365 # is the format string for the header.

366 # Tabs and spaces are used for alignnent.

367 # The first and third % are for: "Text relocation remains agai nst synbol"
368 # The second % and fourth % are for: "referenced in file"

369 # The third % is for: "offset"

370 #

371 @MSG REL_RENAIN FMT_1 "% 40s\t %\ n Ys\t\t %5\t %"

372 #

373 # TRANSLATI ON_NOTE

374 # The next two nmsdid make a sentence. So translate:

375 # "Text relocation remain against synbol"

376 # And separate theminto two nsgstr considering the proper

377 # al i gnrment .

378 @MSG_REL_RWN I TM 11 "Text relocation remins"

379 @ MBG REL_RMN_| TM 12
380 @ MSG_REL_RMN_| TM 13

"agai nst symbol "))
"war ni ng: Text relocation remains"

382 @MSG_REL_RWN I TM 2 "of fset"

384 #

385 # TRANSLATI ON_NOTE

386 # The next two nsdid make a sentence. So translate:

387 # "referenced in file"

388 # And separate theminto two nsgstr considering the proper
389 # al i gnnment .

rel ocation ignored"
\

section [%] %:

section [%] %s:

rel ocation ignored”

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 7

390
391
392
393
394

396

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

430
431

433
435
436
437
438
439
441
443
444
445
446
449

451

454

@MSG_REL_RWN_ | TM 31
@ MSG_REL_RWN_| TM 32
@ MSG_REL_REMAI N_2
@ MSG_REL_REMAI N_3

"refer enced
"in file
"% 35s 0x% 8l | x\'t %"
"rel ocations renmin against allocatable but \
non-witable sections"

Files processing nessages

@MSG FIL_MJLINC 1

@ MBG_FI L_MULI NC_2

@ MBG_FI L_SOl NSTAT
@ MBG_FI L_I NVALSEC
@ MBG_FI L_NOTFOUND
@ MBG_FI L_MALSTR

@ MBG_FI L_PTHTOLONG
@ MBG_FI L_EXCLUDE

@ MSG _FI L_I NTERRUPT
@ MBG_FI L_I NVRELOCL
@ MBG_FI L_I N\VSHI NFO
@ MBG_FI L_I NVSHLI NK
@ MBG_FI L_I NVSHENTSI ZE
@ MBG_FI L_NOSTRTABLE

@ MSG_FI L_EXCSTRTABLE

@ MBG_FI L_NONAVESYM

@ MG _FI L_UNKCAP
@ MSG_FI L_BADSF1

@ MBG_FI L_| NADDR32SF1
@ MSG_FI L_EXADDR32SF1

@ MBG_FI L_BADORDREF

"file %: attenpted multiple inclusion of file"
ile %: linked to %: attenpted nultiple inclusion \
f file"

f
" f
o
input of shared object '%’ in static node"
..f

" f
" f
i
"fi

ile %: section [%] % has invalid type %"
ile %: required by %, not found"
ile %: section [%] %: malformed string table, \
nitial or final byte"
"' 9%/ %’ pathnane too |ong"
ile %: section [%] % contains both SHF_EXCLUDE and \

SHF_ALLOC flags: SHF_EXCLUDE ignored"

le %: creation interrupted: %"

ile %: section [%] %: relocations can not be \
plied agai nst section [%] %"

ile %: section [%]%: has invalid sh_info: %I1d"
ile %: section [%] %: has invalid sh_link: %1Id"
ile %: section [%] %: has invalid sh_entsize: %Id"
ile 9%: section [%]

bl e offset Ox% I x:

le ¥%: section [%] %:

bl e of fset Ox%I x:
size Ox% | x"

%: synbol [%l]: specifies string \
no string table is available"

synbol [%] : specifies string \
exceeds string table %: \

"file %: section [%]%: synbol[%l]: global synbol has
no nane"

"file %: section [%]%: unknown capability tag: %l"

"file %: section [%] %: unknown software \
capabilities: Ox%Ix; ignored"

"file %: section [%1] %: software capability ADDR32: is

ineffective when building 32-bit object; ignored"
"file %: section [%] ¥%: software capability ADDR32: \
requires executable be built with ADDR32 capability"

Recording nane conflicts

@ MSG_REC_OPTCNFLT
@ MSG_REC_OBJCNFLT
@ MSG_REC_CNFLTHI NT
System call nessages
@ MSG_SYS_OPEN

@ MBG_SYS_UNLI NK

@ MBG_SYS_MVAPANON
@ MBG_SYS_MALLOC

Messages related to pl
@ M5G_TARG_UNSUPPORTED

"file %: section [%] %: contains illegal reference \
to discarded section: [%]%"
"recording name conflict: file '%' and % provide \

identical dependency nanes: %"
"recording name conflict: file "%’ and file "% \
provi de identical dependency nanes: % %"
"(possible multiple inclusion of the same file)"

"file %: open failed: %"
"file %: unlink failed: %"
"mrap anon failed: %"

"mal loc failed: %"

at f orm support

"unsupported ELF nachine type: %"

ELF processing nessages

new usr/src/cnd/ sgs/1i bl d/ common/l1ibld. nmsg

456 @ MBG_ELF_LI BELF

458 @ MSG_ELF_ARMVEM
459

461 @ MG _ELF_ARSYM

463 @ MSG_ELF_VERSYM
464

466 @ MSG_ELF_NOGROUPSECT
467

“libel f: version not supported: %"
"file %: unable to |locate archive nenber;\n\t\
of f set =9, synbol =%"

"file % ignored: unable to | ocate archive synbol table"

"file %: version synbol section entry msmatch:\n\t\
(section [%] % entries=%l; section [%]% entries=%l)"

"file %: section [%]%: SHF_GROUP flag set,
correspondi ng SHT_GROUP section found"

but no \

469 # Section processing errors

471 @ MSG_SCN_NONALLOC
472

474 @ MSG_SCN_MULTI COVDAT
475

477 @ MSG_SCN_DWFOVRFLW
478
479 @ MBG_SCN_DWFBADENC

481 # Synbol

483 @ MBG_SYM NOSECDEF

484 @ MBG_SYM_| NVSEC

485

486 @ MBG_SYM TLS

487

488 @ MSG_SYM BADADDR

489

490

491 @ MSG_SYM BADADDR_ROTXT
492

493

494 @ MSG_SYM MULDEF
495 @ MBG_SYM_CONFVI S
496 @ MSG_SYM DI FFTYPE
497 @ MSG_SYM DI FFATTR
498

499 @ MSG_SYM FI LETYPES
500 @ MSG_SYM VI STYPES
501 @ MSG_SYM DEFTAKEN
502 @ MSG_SYM DEFUPDATE
503 @ MBG_SYM LARGER

504 @ MSG_SYM_TENTERR
505

507 @ MBG_SYM | NVSHNDX
508

509 @ MSG_SYM NONGLOB

510

511 @ MBG_SYM RESERVE

512 @ MSG_SYM _NOTNULL

513

514 @ MSG_SYM DUPSORTADDR
515

516

518 @ MSG_PSYM | NVM NFOL
519
520 @ MSG_PSYM_| NVM NFO2
521

"%: non-allocatable section %’ directed to a \

| oadabl e segnment: %"

"file %: section [%]%:
COVDAT nechani sns: %"

cannot be susceptible to multi

"O: section %: encoded DWARF data exceeds \

section size"
"U%: section Y%:

invalid DWARF encodi ng: %#x"

processing errors

"synbol "%’ in file % has no section definition"
"symbol '%’ in file % associated with invalid \
section[%|d]"

"synmbol "%’ in file % (STT_TLS), is defined \

in a non-SHF_TLS section"

"symbol "%’ in file %: section [%]%: size %l |x: \
synbol (address % #I Ix, size %tl1x) lies outside \

of containing section"

"synbol "%’ in file %: readonly text section \

[%] %: size % |x: synbol (address %l |x, \

size %t 1x) lies outside of containing section”

"symbol %’ is nultiply-defined:"

"synbol %’ has conflicting visibilities:"
"synbol ' %’ has differing types:"

"synbol ' %’ has differing %:\n\

\t(file % value=0x%1x; file % val ue=0x%1x);"
"\t(file % type=%; file % type=%);"

"\t(file % visibility=%; file % visibility=%);"
"\t% definition taken"

"\t% definition taken and updated with |arger size"
"\'tlargest val ue applied"

"\ttentative synbol cannot override defined symbol \
of snaller size"

"synmbol % has invalid section index; \
ignored:\n\t(file % val ue=%);"

"gl obal synbol % has non- gl obal
\t(file % val ue=%);"

"reserved synbol '%’ already defined in file %"

"undefined synbol "%’ with non-zero value encountered \
fromfile %"

"section %: synbol '%’ and synbol '%’ have the \
sanme address: 9%l | x: renove duplicate with \
NOSORTSYM nmapfile directive"

bi ndi ng: \ n\

"file %: section [%] ¥%:
0x% | x for synbol index"

"file %: section [%]%:
0x% 1 x for size"

entry[%] has invalid m.info:

entry[%l] has invalid m.info:

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 9

522 @ MSG_PSYM_ | NVMREPEAT “file %: section [%] %: entry[%] has invalid mrepeat
523 Ox% | x"

524 @ MSG_PSYM CANNOTEXPND “"file %: section [%]%: entry[%l] can not be expanded:
525 associ ated synbol size is unknown %"

526 @ MSG_PSYM NOSTATI C "and partial initialization cannot be deferred to \
527 a static object”

528 @ MSG_MOVE_OVERLAP "file %: section [%] %: synbol '%’ overlapping nove \
529 initialization: start=0x%1x, |ength=0x%Ix: \

530 start=0x%1x, |ength=0x% | x"

531 @ MSG_PSYM EXPREASONL "output file is static object"

532 @ MSG_PSYM _EXPREASON2 "-z nopartial option in effect”

533 @ MSG_PSYM EXPREASON3 "move infrastructure size is greater than nove data"
535 #

536 # Support library failures

537 #

538 @ MSG_SUP_NOLQOAD "dl open() of support library (%) failed with \

539 error: 9"

540 @ MSG_SUP_BADVERSI ON "initialization of support library (%) failed with \
541 bad version. supported: %l returned: %"

544 #

545 # TRANSLATI ON_NOTE

546 # The followi ng 7 nessages are the nmessage to print the

547 # fol l owi ng exanpl e nessages.

548 #

549 #Undefi ned first referenced

550 # synbol infile

551 #inquire hal t _hold. o

552 #

553 @ MBG_SYM FMT_UNDEF "o\ t\t\t Us\

554 \n % \t\t\t %s"

556 #

557 # TRANSLATI ON_NOTE

558 # The next two nsdid make a sentence. So translate:

559 # "Undefined synbol "

560 # And separate theminto two nmsgstr considering the proper

561 # al i gnnent .

562 @ MSG_SYM UNDEF_I TM 11 " Undef i ned"

563 @ MSG_SYM UNDEF_I TM 12 "synbol "

564 #

565 # TRANSLATI ON_NOTE

566 # The next two nmsdid make a sentence. So translate:

567 # "first referenced in file"

568 # And separate theminto two nmsgstr considering the proper

569 # al i gnnent .

570 @ MSG_SYM UNDEF_|I TM 21 "first referenced”

571 @MSG_SYM UNDEF_ITM 22 "in file"

572 #

574 @ MSG_SYM UND_UNDEF "% 355 U%s"

575 @ MSG_SYM UND_NOVER "% 35s % (synmbol has no version assigned)"

576 @ MSG_SYM UND_| MPL "% 35s % (synmbol belongs to inplicit dependency %s)"
577 @ MSG_SYM UND_NCOTA "% 35s % (synbol belongs to unavail able version % \
578 (%)) "

579 @ MSG_SYM UND BNDLOCAL "% 35s % (synbol scope specifies |ocal binding)"

581 @ MSG_SYM ENTRY "entry point"

582 @ MSG_SYM UNDEF "% synbol %' is undefined"

583 @ MSG_SYM EXTERN "o synbol "%’ is undefined (synbol belongs to \
584 dependency %s)"

585 @ MSG_SYM _NOCRT "symbol ' %’ not found, but % section exists - \

586 possible link-edit w thout using the conpiler driver"

new usr/src/cnd/ sgs/1i bl d/ common/1ibld. nsg

588

590
591
592

594
595
596
597
598

600
601
602
603
604

607

609
610
611
612
613
614
615
616
617
618
619
620
621
622
623

625

627
628
629
630
631
632
633

635
636
637
638

640

642
643
644
645
646
647
648

650
651
652
653

Qutput file update nmessages

@ MBG_UPD_NOREADSEG
@ M5G_UPD_NORDVRSEG
@ M5G_UPD_NCSEG

"No read-only segnents found. to 0"
"No read-wite segrments found.

"Setting 'end’ and '_end to 0"

Setting ' _etext’
Setting ' _edata’

to 0"

10

@ MSG_UPD_SEGOVERLAP "%: segnment address overlap;\n\
\tprevious segnment ending at address 0x% | x overl aps\n\
\tuser defined segnent '%’' starting at address Ox% | x"
@ MSG_UPD_LARGSI ZE "s: segment % cal cul ated size O0x% I x\ n\
\tis larger than user-defined size Ox%]I x"
@ MSG_UPD_NOBI TS "NOBI TS section found before end of initialized data"

@ MBG_SEG_FI RNOTLOAD
@ MBG_UPD_MULEHFRAVE

"First segnment has type %, PT_LOAD required: %"

have inconpatibile attributes and cannot \
be nerged into a single output section”

Version processing nmessages

@ MS5G_VER_H GHER "file %: version revision % is higher than \
expected %"
@ MSG_VER_NCEXI ST "file %: version '%’ does not exist:\n\

\trequired by file %"
"version '%' undefined,
\trequired by file %"
"file %: version ' %’
\trequired by file %"
"version synbol '%’ already defined in file %"
"version synbol '%’' fromfile % has an invalid \
version index (%)"
"unused $ADDVERS specification fromfile "%’ \
for object "%’ \nversion(s):"
"\t %"
"foll owi ng versions generate cyclic dependency:"

@ M5G_VER_UNDEF
@ MBG_VER_UNAVAI L

@ MSG_VER_DEFI NED
@ MBG_VER_| NVALNDX

is unavail abl e:\ n\

@ MBG_VER_ADDVERS

@ MBG_VER_ADDVER
@ MBG_VER _CYCLI C

Capabilities nmessages
@ MSG_CAP_MULDEF

@ MSG_CAP_MJULDEFSYMS

@ MSG_CAP_REDUNDANT

@ MBG_CAP_NOSYMSFOUND

"capabilities synbol '%’

"\t(file % synbol '%’;

"file %: section [%] %:
redundant,

"no gl obal synbols have been found that
with capabilities identified relocatable objects: \
-z synbol cap has no effect”

file % synbol "%’);"
synbol capabilities \

@ MSG_CAPI NFO_| N\VALSYM "file %: capabilities info section [%]%: index %d:
fam |y nenber synbol "%’ : invalid"

@ MSG_CAPI NFO_| NVALLEAD "file %: capabilities info section [%]%: index %l:
famly |l ead synmbol %’ : invalid synbol index %"

Basic strings

@ MBG_STR_ALI GNVENTS
@ M5G_STR_COVMAND

"al i gnment s"
"(command |ine)"

@ MSG_STR_TLSREL "(internal TLS rel ocation requirenent)"
@ MSG_STR_SI ZES "sizes"
MSG_STR_UNKNOMWN " <unknown>"

MSG_STR_SECTI ON

@

@ . "% (section)”
@ MSG_STR_SECTI ON_MSTR

#

#

#

#

"% (merged string section)"

TRANSLATI ON_NOTE
The el f_ function nane represents a man page reference and shoul d not
be transl ated.

"file %; section [%]% and file %; section [%] % \

referenced by version ' %’ :\n\

has multiply-defined menbers:"

as object capabilities are nore restrictive”
are associated \

\
\

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

698
699
700
701
702
703
704
705
706
707
708

710

713
714

716
717
718
719

@ MBG _ELF_BEG N

G_ELF_GETDATA
G_ELF_GETEHDR
G_ELF_GETPHDR
G_ELF_GETSCN
G_ELF_GETSHDR
G_ELF_NEMORY
G_ELF_NDXSCN
G_ELF_NEWDATA
G_ELF_NEWEHDR
G_ELF_NEWSCN
G_ELF_NEWPHDR
G ELF_STRPTR
G_ELF_UPDATE

555555555%555%

5 REJ_MACH
. REJ_CLASS

S REJ_DATA

S REJ_TYPE
 REJ_BADFLAG
S REJ_M SFLAG
S REJ_VERSI ON
" REJ_HAL

S REJ_US3

S REJ_STR
G_REJ_UNKFI LE
@ MSG_REJ_UNKCAP
@ MBG_REJ_HWCAP_1

CIORIIEISISIORISIC I GISISISISISISIGISISIGISISIC)
|0,0,6,0,0,6,0,0,0,6)

55555%555%5

@ MSG REJ_SFCAP_1

@ MSG_REJ_MACHCAP

@ MSG_REJ_PLATCAP

@ MSG_REJ_HWCAP_2

@ MSG_REJ_ARCHI VE

Qui dance nessages
@ MSG_GUI DE_SUMVARY
@ MBG_GUI DE_DEFS

@ MSG_GUI DE_DI RECT
@ MSG_GUI DE_LAZYLOAD

@ MBG_GUI DE_MAPFI LE
@ MBG_GUI DE_TEXT

@ MSG_GUI DE_UNUSED
@ END_

The follow ng strings
is via the MSG ORIl ()

#
#

@ MSG_STR_ECF

@ MBG_STR_ERROR
@ MSG_STR_EMPTY
@ MBG_QSTR_BANG

G_ELF_SWAP_W\RI NAGE

%: el f_begin"

%: elf_cntl”

%: elf_getarhdr”

%: el f_getarsynt

%: el f_getdata"

%: el f_getehdr"”

%: el f_getphdr"

%: el f_getscn: scnndx: %"
%: el f_getshdr"

%: el f_menmory”

%: el f_ndxscn"

%: el f_newdata"

%: el f_newehdr"

%: el f_newscn"

%: el f _newphdr"

%: elf_strptr"

%: el f_update"”

%: _elf_swap_winage"

OODDODDDODDDDDD®D®DDDMDD

%: wong ELF machine type %s"

%: wong ELF class: %"

%: wong ELF data fornat: %"

%: bad ELF type: %"

%: bad ELF flags value: %"

%: msmatched ELF flags val ue: %"

%: msmatched ELF/lib version: %"

%: HAL Rl extensions required"

%: Sun U traSPARC Il extensions required"
Y%s: 98"

%: unknown file type"

=%; unknown capability: %d"

"file %: hardware capability (CA SUNWHW1) \
unsupported: %"

"file %: software capability (CA_SUNWSF 1) \
unsupported: %"

"file %: machine capability (CA_SUNW MACH) \
unsupported: %"

"file Us: pIatformcapablIlty(O\ SUNW PLAT) \
unsupported: %"

"file %: hardware capability (CA_SUNWHW2) \
unsupported: %"

"file %: invalid archive use"

OPODD®DD®DDDMDD D

"see | d(1) -z guidance for nore infornation"

"-z defs option recommended for shared objects"
"-B direct or -z direct option recommended before \
first dependency"

"-z lazyl oad option recommended before \

first dependency

"version 2 mapfile syntax recommended: %"
"position mdependent (PIC) code recomended for \
shared objects"

"renmoval of unused dependency recommended: %"

represent reserved nanes. Reference to these strings
macro, and thus translations are not required.

" <gof >"
"<error>"

woprm

11

new usr/src/cnd/ sgs/1ibl d/ common/1i bl d. nsg

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

750
751
752
753
754
755
756
757

759
760

762

773

775
776
777
778
779
780
781
782
783
784
785

@ MBG_STR_COLON

MBG_QSTR_EQUAL
G_OSTR_PLUSEQ
G_QSTR_M NUSEQ
G_QSTR_ATSI GN

. OSTR_DASH
G_OSTR_LEFTBKT
G_QSTR_RI GHTBKT
G_QSTR_PI PE
G_QSTR_STAR

2

O
9
p)
8q

G_STR_SLASH
G_STR_COWVA
G_STR_DYNAM C
G STR ORI G/ N
G_STR_MACHI NE
G_STR_PLATFORM
G STR | SALI ST
G_STR_OSNAME
G_STR_OSREL

G STR_UU_REAL_U
G_STR_UU_WRAP_U
G_STR_UELF32
G_STR_UELF64
G_STR_USPARC
G_STR_UX86
G_STR_TRUE

555%555%555555555555%555%

G STR CDI R_ADD
G_STR_CDI R_CLEAR
G_STR_CDI R_ERROR
G_STR_CDI R_MFVER
G STR CDIR | F

G STR CDI R ELIF
G _STR_CDI R_ELSE
G_STR_CDI R_ENDI F

55555555

G_STR_CGROUP

S FMT_ARVEM
S FMT_COLPATH

S FMT_SYMNAM
G_FMI_NULLSYMNAM
@ MBG_FMI_STRCAT

SISO EESIOISISISISIS O ERSISISISISISIGISISIGISISISIRISISIRISISISISISISIGISIS)
D@0 6

2oR% 2@

@ MSG_PTH_RTLD
@ MBG_SUNW OST_SGS

Section strings

@ MBG_SCN_BSS
@ MBG_SCN_DATA
MSG_SCN_COMVENT

MSG_SCN_
MBG_SCN_DEBUG | NFO
MSG_SCN_DYNAM C
MBG_SCN_DYNSYMSORT
MSG_SCN_DYNTLSSORT
MSG_SCN_DYNSTR

G

MBG_SCN_DYNSYM

CISISCIGISISIGIC)]

5 STR_SUNW COVDAT

MSG_SCN_DYNSYM SHNDX

"(.dynamc)"

"$ORI G N’

" $MACHI NE*

" $PLATFORM'

"$l SALI ST"

" SOSNAME"

" $OSREL"
_real _
‘__wap_

" _ELF32"

" _ELF64"
_sparc"
_x86"

"true"

" $add"

"$cl ear”

"$error"

"$mapfil e_version
t$ifh

"Selif"

" $el se”

"$endi f"

" GROUP"
" SUNW_COVDAT"

"o (Us) "
"5 U
"y

" o[Y] "
" s "

“Jusr/1ib/ld. so. 1"
* SUNW CST_SGS"

". bss"

".data"

.comment "

". debug"”

". debug_i nf o"
".dynam c"

". SUNW dynsynsort"
" . SUNW dynt | ssort™
".dynstr”

". dynsynt

".dynsym shndx"

12

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

831
832
833

835
836
837
838
839
840
841
842
843

845

847
848
849
850
851

@ M5G_SCN_LDYNSYM
@ MBG_SCN_LDYNSYM _SHNDX "
5 SCN_EX_SHARED

22
Q
3
il

Q
Q

CFINI
[_FI NI ARRAY

[cor
_GNU_LI NKONCE

>

298999222
Uk

0,0,0,0,0,0,0,0,0,0,6,

9]
884

2
;
>

Igl I9
-
z28
m4awm

©,0,0,6)
—-
-
>

2
IE
—

5 SCN_PREI NI TARRAY

0,0

mmmwmmmwwmmwmmmmmwmmmmmmmmmmwmmmwwmmmmmm

88
>

22
88
>

5 SCN_SBSS

5 SCN_SBSS2

5 SCN_SDATA

5 SCN_SDATA2

5 SCN_SHSTRTAB
5 SCN_STAB

5 SCN_STABEXCL
5 SCN_STRTAB

222

5 SCN_SUNVREL OC

5 SCN_SUNVBYM NFO
5 SCN_SUNVWERSI ON
5 SCN_SUNVWERSYM

228
2y
b

5 SCN_SUNWCAPI NFO
5 SCN_SUNWCAPCHAI N
5 SCN_SYMTAB

5 SCN_SYMIAB_SHNDX

222
_|
o
)]
%]

5 SCN_TDATA
5 SCN_TEXT

5 SYM_FI NI ARRAY
5 SYM_| NI TARRAY
5 SYM_PREI NI TARRAY

o 5555555555%5555555%555%555555%555555555555

DO 6,0,0,0,0,0,60,0,60,0,60,0,60,0,0,6,60,0,0

section nanes

o €
g
9
8

(@a)
|

G_SCN_EHFRAME_HDR
G_SCN_GCC_X_TBL
MSG_SCN_JCR

55555 9

MSG_ENT_BSS
MSG_ENT_DATA
MSG_ENT_EXTRA
MSG_ENT_LDATA
MBG_ENT_LRODATA

QRO * APOPOAA*** AR MR

. SUNW | dynsynt
. SUNW | dynsym shndx"
.ex_shared"

. exception_ranges"
.excl"

“ofini

" fini_array”
.got"
.gnu. |i nkonce. "
hash"

".index"

Linit"
Linit_array"
".interp"

". 1 bss"

.l data"

.line"
".lrodata"
"oplt”

.prelnlt _array"
“.rel”

".shstrtab"
".stab"

.stab. exclstr"
".strtab"

" . SUNW nove"

". SUNW el oc"

" . SUNW symi nf 0"
". SUNW ver si on"
". SUNW ver synt
", SUNW cap"

" . SUNW capi nf 0"
". SUNW capchai n"
".syntab"
".syntab_shndx"
". tbss"
".tdata"
"text"

"finiarray"
"initarray"
"preinitarray"”

".ctors"

.dtors"
.eh_franme"
".eh_frame_hdr"
".gcc_except _table"
“jer”

Segrment nanmes for segnents referenced by entrance criteria

"bss"
"dat a"
"extra"
"| dat a"
"l rodata"

13

new usr/src/cnd/ sgs/1ibl d/ common/l1ibld. nsg

852
853

855

857
858

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875

877
878
879
880

882
883

885
886

888
889

891
892
893
894
895
896

898
899
900
901
902
903

905
906
907
908
909

911
913
914
915

917

@ MSG_ENT_NOTE
@ MBG_ENT_TEXT

Synbol nanes

@ MBG_SYM START
@ MBG_SYM MAI N

@MSG_ SYM FINI_U

@ MSG_SYM | NI T_U

@ MSG_SYM_DYNAM C

MSG_SYM DYNAM C U
G_SYM EDATA
G_SYM EDATA U
G_SYM END
G_SYM END_U
G_SYM ETEXT

G_SYM GOFTBL
G_SYM_GOFTBL_U
G_SYM PLKTBL™
G_SYM _PLKTBL_U
G_SYM_TLSGETADDR U

Ragzazaazzzag
U)
223
g
35

G _SYM L_END
G_SYM L_END_U
G_SYM L_START
G_SYM L_START_U

[SIOISISMCISIGIOISISIGISISIGISIS)

555%

@ MSG_SYM SECBOUND_START "
@ MBG_SYM_SECBOUND_STCP "

G_SYM_TLSGETADDR_WU "

"note"
"text"

_start"
"R n"

v fini"

_init"

" DYNAM C'

" _DYNAM C'

"edat a"

_edata"

"end"

" _end"

"etext"
etext"

" GLOBAL_OFFSET_TABLE '

" _GLOBAL_OFFSET_TABLE_ "

" PROCEDURE_LI| NKAGE_TABLE_"

" PR@EDURE LI NKAGE TABLE
tls_get_addr"

—_tls_get_addr"”

"END_'
END_*
" START_'
" _START_"

__start_
__stop_"

#endif /* ! codereview */

Support functions

@ MSG_SUP_VERSI ON
@ MSG_SUP_| NPUT_DONE

@ MSG_SUP_START_64
MBG_SUP_ATEXI T_64
G_SUP_CPEN_64
G SUP_FI LE_64
G_SUP_| NSEC_64
G_SUP_SEC 64

5555

G_SUP_START
G _SUP_ATEXI T
G_SUP_CPEN
G_SUP_FI LE
G_SUP_| NSEC
G_SUP_SEC

5%555%

Message previously in

@##**H* QAP QROOO
%

START
System error nessages
@ MSG_SYS_STAT

@ M5G_SYS_READ
@ M5G_SYS_NOTREG

"l d_version"
"1 d_i nput _done"

"l d_start 64"

"1 d_atexit6q"
"Id_open64"
"ld_file64"

d_i nput _secti on64"

|
"| d_section64"

file %: stat failed: %"
"file %: read failed: %"
fil

e %: is not a regular file"

Argument processing nessages

14

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg 15 new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg
984 # two lines. In Clocale, it would | ook |ike:
919 @ MSG_ARG_DY_I NCOwWP "% option is inconpatible with building a dynamc \ 985 #
920 execut abl e" 986 # out put i nput new
921 @ MSG_MARG_DY_I| NCOWP "% is inconpatible with building a dynamc \ 987 # section section di spl acenent si ze
922 execut abl e" 988 #
923 @ MSG_ARG_ST_| NCOwP "% option is inconpatible with building a static \ 989 # The \t characters are used for alignnent. (output section), (input section),
924 object (-dn, -r, --relocatable)” 990 # and (new displacenent) have to be aligned.
925 @ MSG_MARG_ST_I NCOWP "% is inconpatible with building a static \ 991 #
926 object (-dn, -r, --relocatable)"” 992 @ MSG_ENT_MAP_FMT. TIL2"\n%\t\t%\t\tf’/s\n"/s\t\t"/s\t\t°/5\t%3\n\n"
927 @ MSG_MARG_ST_ONLYAVL "% is only avail abl e when building a shared object" 993 @ MSG ENT_MAP_ FMI_TIL 3 "\n%\t\t9%\t\t %\ no%\t\t %\ t\t %\t \t %s\ n\ n"
928 @ MSG_ARG | NCOWP "option % and % are inconpatible" 994 @ MSG_ENT_| TM_OUTPUT "out put "
929 @ MSG_MARG | NCOWP "% and % are inconpatible" 995 @ MSG_ENT_| TM_| NPUT "i nput"
930 @ MSG_ARG_MIONCE "option % appears nore than once, first setting taken" 996 @ MSG_ENT_| TM_NEW "new'
931 @ MSG_MARG_MTONCE "%; appears nore than once, first setti ng taken" 997 @MSG ENT_|I TM SECTION "section”
932 @ MSG_ARG | LLEGAL "option % has illegal argunent ’'%’ 998 @ MSG ENT_| TM DI SPMNT " di spl acenent "
933 @ MSG_ARG_YP "option -YP and -Y% nmy not be specified concurrently" 999 @ MSG_ENT_| TM_SI ZE "5| ze"
934 @ MSG_ARG _STRI P "% specified with %; only debugging \ 1000 @MSG ENT_I TM VIRTUAL “"virtual "
935 information stripped” 1001 @ MSG_ENT_| TM ADDRESS " addr ess"”
936 @ MSG_ARG_NOFI LES "no files on input command |ine"
937 @ MSG_ARG _NOFLTR "option % is only neaningful when building a filter" 1003 @ MSG_ENT_NVAP_ENTRY_1 "% 8.8s\t\t\t%08. 21 | x\t9%®8. 2 | x\ n"
938 @ MSG_ARG_NODEFLI B "the default library search path has been suppressed, \ 1004 @ MSG_ENT_MAP_ENTRY_2 "\t\t% 8.8s\t%08. 21 | x\t%08. 2| | x %\ n"
939 but no runpaths have been specified via %"
940 @ MSG_ARG_NCENTRY "entry point synbol '%’ is undefined" 1006 #
941 @ MSG_ARG UNSUPPORTED "option % is no |onger supported; ignored" 1007 # TRANSLATI ON_NOTE -- nultiple defined synbol table header
942 @ MSG_MARG ONLY "option % can only be used with a %" 1008 #
943 @ MBG_ARG_UNKNOWN "unrecogni zed option '-%"'" 1009 # In C locale, an exanple output is:
944 @ MSG_ARG _LONG_UNKNOWN "unrecogni zed option ' %" 1010 #
945 @ MSG_ARG_USEHELP "use the -z help option for usage information" 1011 # MULTI PLY DEFI NED SYMBOLS
1012 #
1013 #
948 @ MSG_ARG _FLAGS "flags processing errors" 1014 #synbol definition used al so defined in
949 @ MSG_ARG FI LES "file processing errors. No output witten to %" 1015 #
950 @ MSG_ARG_SYM WARN "synbol referencing errors” 1016 #vari abl el nai n. o
951 @ MSG_ARG_SYM FATAL "synbol referencing errors. No output witten to %" 1017 # ./libfred. so
952 @ MBG_ARG AR GRP_OLAP "% cannot be nested" 1018 @ MSG ENT_MUL_FMI_TIL_O "\ n\n\t\t%s\n\n\n"
953 @ MSG_ARG_AR_GRP_BAD "% used w thout corresponding %" 1019 @ MSG ENT_MUL_TIL O "MJULTI PLY DEFI NED SYMBOLS"
1021 #
956 # Messages used to refer to options where there is nore than 1022 # TRANSLATI ON_NOTE -- This is the format string for:
957 # one nane accepted. 1023 #
1024 #synbol definition used al so defined in
959 @ MSG_MARG_AR_GRPS "archive rescan groups \ 1025 #
960 (-z rescan-start, -(, --start-group)” 1026 @ MSG ENT_MUL_FMI_TIL_1 "%s\t\t\t\t % %\ n\ n"
961 @ MSG_MARG AR GRP_END "archive rescan group end option \ 1027 @ MSG_ENT_MUL_I TM_ SYM "synbol "
962 (-z rescan-end, -), --end-group)" 1028 @ MSG_ENT_MUL_I TM DEF 0 "definition used"
963 @ MSG_MARG AR GRP_START "archive rescan group start option \ 1029 @ MSG ENT_MUL_I TM DEF_1 "al so defined in"
964 (-z rescan-start, -(, --start-group)”
965 @ MSG_MARG_ENTRY "entry point option (-e, --entry)" 1031 #
966 @ MSG _MARG FILTER AUX "auxiliary filter option (-f, --auxiliary)" 1032 # TRANSLATI ON_NOTE -- This is the format string for the second item
967 @ MSG_MARG FI LTER "filter option (-F, --filter)" 1033 #
968 @ MSG_MARG OUTFI LE "out put object option (-0, --output)"” 1034 @ MSG_ENT_MJL_ENTRY_1 "% 35s %\ n"
969 @ MBG_MARG_REL "rel ocatabl e object option (-r, --relocatable)"
970 @ MSG_NMARG_RPATH "runpath option (-R -rpath)" 1036 #
971 @ MSG_MARG_SO "shared object option (-G -shared)" 1037 # TRANSLATION_NOTE -- This is the fornmat string for the third item
972 @ MSG_MARG_SONAME "soname option (-h, --sonane)" 1038 #
973 @ MBSG_MARG_STRI P "strip option (-s, --strip-all)" 1039 @ MSG_ENT_MJUL_ENTRY_2 "\Vtvtveveveve\t s\ n®
975 # Entrance criteria nessages 1041 @ MSG_ENT_NOSEC 1 "mapfile: % segnent: section '%’ does not appear \
1042 in mapfile specified input file(s)"
977 @MNMSG ENT_MAP_FMT_TIL_1 "\t\t%\n\n" 1043 @ MSG_ENT_NGSEC 2 "mapfile: % segnent: section ’'%’ does not appear \
978 @MSG ENT_MAP_TITLE 1~ "LINK EDI TOR MEMORY MAP" 1044 in any input file"
980 # 1046 # Library nessages
981 # TRANSLATI ON_NOTE -- Entry nap header
982 # 1048 @ MSG_LI B_NOTFOUND "library -1%: not found"
983 # The next nmessage is a format string for a title. The title is conposed of 1049 @ MSG_LI B_MALFORM "LD_LI BRARY_PATH nal f or ned"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

1050

1053

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074

1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

1106
1107
1108
1109
1110
1111

1113
1114
1115

@ VBG LI B_BADYP

"-YP library path mal f or med"

Mapfile processing nmessages

@ MBG_MAP_BADAUTORED

@ MSG_MAP_BADFLAG
@ MSG_MAP_BADBNANVE

@ MBG_MAP_BADCNANE

@ MSG_MAP_UNEXI NHERI T
@ MSG_MAP_UNEXTOK

@ M5G_MAP_SEGEMPLOAD
@ MSG_VAP_SEGEMPEXE

@ MSG_MAP_SEGEMPATT
@ MSG_MAP_SEGEMPNOATT
@ MSG_MAP_SEGEMPSEC
@ MSG_MAP_SEGEMNOPERM

@ MBG_MAP_CNTADDRORDER
@ MBG_MAP_CNTDI SSEG

2

G_MAP_UNKENT

G_MAP_UNKSEG

5 MAP_UNKSYMDEF
5 MAP_UNKSEGTYP
5 MAP_UNKSOTYP

5 VAP_UNKSEGATT
5 MAP_UNKSEGFLG
5 MAP_UNKSECTYP

5> MAP_SEGSI ZE

00 0,60,60,000

MAP_SEGADDR
G_MAP_BADCAPVAL
@ MSG_MAP_UNKCAPATTR
@ VMBG_MAP_EMPTYCAP

0@ ® P0PeRe® ® ®
5% 2 RNRRRRD

@ MSG_MAP_SYMDEF1
@ MBG_MAP_SYNDEF2

"O: % Ilu: auto-reduction ('*’) can only be used in \
hi dden/l ocal, or elimnate scope"”

"U%: %Ilu: badly formed section flags ' % "

"%: %] u: basenane cannot contain path \
separator ('/'): 9"

"s: %I u: object nane cannot contain path \
separator ('/'): %"

"Us: %Wlu: redefining % attribute for '%' "

"Os: % | u: premature ECF"

"O: %Wlu: illegal character '\\%30 "

"Os: %Ilu: malformed entry”

"%: %Ilu: % not allowed on non-LOAD segnents”

"Us: %lu: % not allowed on STACK segnent"

"%: %lu: % set nore than once on sane |ine"

"Os: %Ilu: unterm nated quoted string: %"

"Us: %Ilu: section within segment ordering done on \

a non-exi stent segnent ' %’

": %1 u: unnanmed version cannot
versions: %"

"% : %] u: unexpected occurrence of

inherit fromother \

"%’ token"

"Us: %Ilu: enpty segnent nust be of type LOAD or NULL"
"%: %Ilu: a LOAD enpty segnent definition is only \
al | oned when creating a dynami c executabl e"

"U%: %Ilu: a LOAD enpty segnent nust have an address \
and size"
"Os: %Ilu: a NULL enpty segnent nust not have an \

address or size"

"U: %Ilu: enpty segnent can not have sections \
assigned to It"
"Os: %Ilu: enpty segnent nust not have \

p_flags set: Ox%"
"9: 9% 1u: segment cannot have an explicit address \
and al so be in the SEGVENT_ORDER list: %"
"o: %Il u: segment cannot be disabled: %"
"U%: % lu: cannot redefine entrance criteria: %"
"Us: %Ilu: segnent is already in % list: %"
"Us: %Wlu: section is already in OS_ ORDER list: %"
"U%: % Ilu: entrance criteria is already in \

IS ORDER list: %"
"9%: 9%l u: unknown entrance criteria \

(ASSI GN_SECTION): %"
"9: %1 u: unknown segnent: %"
"9: %1 u: unknown synbol definition: %"
"o : 9% | u: unknown internal segment type 9%d"
"U: % | u: unknown shared object type: %"
"9%: %1 u: unknown segnent attribute: %"
"9%: 9%l u: unknown segment flag: ?%"
"% : % | u: unknown section type: %"
"Os: %I1d: existing segnent size synbols cannot \
be reset: %"
"s: %Il u: segnment address or length "% %"
"U: % I|u: bad capability value: %"
"Us: % | u: unknown capability attribute %"
"Us: %Ilu: enpty capability definition; ignored"
"Us: %Ilu: synbol '%’ is already defined in file: \
%s: Us"
"Us: %Ilu: synbol '%’: %"

17

new usr/src/cnd/ sgs/libld/ comon/libld. nsg 18
1117 @ MSG_MAP_EXPSCOL %: % |u: expected a ';’'"

1118 @ MSG_NMAP_EXPEQU %: %lu: expected a'=, ':', '"|', or '@"

1119 @ MSG_MAP_EXPSEGATT ": %Il u: expected one or nore segnent attributes \
1120 after an ' =

1121 @ MSG_NMAP_EXPSEGNAM "U: %I u: expected a segnent nane at the beginning \
1122 of a line"

1123 @ MSG_MAP_EXPSEGTYPE "U%s: %Ilu: % segnent cannot be used with % \

1124 directive: %"

1125 @ MSG_MAP_EXPSYM 1 %: %Il u: expected a synbol name after '@"

1126 @ MSG_NMAP_EXPSYM 2 %: % | u: expected a synbol name after "{'"

1127 @ MSG_MAP_EXPSEC "Os: %I|u: expected a section nane after '|'"

1128 @ MSG_MAP_EXPSO "%: %Il u: expected a shared object definition \

1129 after '-'"

1130 @ MSG_MAP_MULTFI LTEE %: %lu: nultiple filtee definitions are unsupported"
1131 @ MSG_MAP_NCFI LTER "U%: %Wlu: filtee definition required"

1132 @ MSG_MAP_BADSF1 "o: %1 u: unknown software capabilities: Ox%Ix; \
1133 i gnor ed"

1134 @ MSG_MAP_| NADDR32SF1 "Os: %Ilu: software capability ADDR32: is ineffective \
1135 when buil ding 32-bit object: ignored”

1136 @ MSG_MAP_NO NTPOSE "%: %Ilu: interposition synmbols can only be defined \
1137 when bui |l ding a dynam c execut abl e"

1138 @ MSG_MAP_NCEXVLSZ "U%: %Ilu: value and size attributes are inconpatible \
1139 with extern or parent synbols"

1140 @ MSG_MAP_FLTR ONLYAVL "%: %l u: synbol filtering is only avail able when \
1141 bui I ding a shared object”

1143 @ MSG_MAP_SEGSAME "segnments '%’ and '%’ have the sane assigned \

1144 virtual address"”

1145 @ MSG_MAP_EXCLIM T "exceeds internal limt"

1146 @ MSG_MAP_NOBADFRM "nunber is badly forned"

1148 @ MSG_MAP_SEGTYP "segnent type"

1149 @ MSG_MAP_SEGVADDR "segnment virtual address”

1150 @ MSG_MAP_SEGPHYS "segment physical address"

1151 @ MSG_MAP_SEGLEN "segnment | ength"

1152 @ MSG_MAP_SEGFLAG "segnent flags"

1153 @ MSG_MAP_SEGALI GN "segnment alignment”

1154 @ MSG_MAP_SEGROUND "segment roundi ng"

1156 @ MSG_MAP_SECTYP "section type"

1157 @ MSG_MAP_SECFLAG "section flags"

1158 @ MSG_MAP_SECNAME "section nane"

1160 @ MSG_NMAP_SYMVAL "synbol val ue"

1161 @ MSG_MAP_SYMSI ZE "synbol size"

1163 @ MSG_MAP_DI FF_SYMVAL "synbol val ues differ"

1164 @ MSG_MAP_DI FF_SYMSZ "synbol sizes differ”

1165 @ MSG_MAP_DI FF_SYMIYP "synbol types differ"

1166 @ MSG_MAP_DI FF_SYM\DX “"synbol indexes differ"

1167 @ MSG_MAP_DI FF_SYM_CL "synbol scope conflict against |ocal and non-1local"
1168 @ MSG_MAP_DI FF_SYMGLOB "synbol scope conflict against singleton/exported"
1169 @ MSG_MAP_DI FF_SYMPROT "synbol scope conflict against protected"

1170 @ MSG_MAP_DI FF_SYMVER "synbol version conflict”

1171 @ MSG_MAP_DI FF_SYMVUL "symbol nultiple definition"

1172 @ MSG_MAP_DI FF_SNGLDI R "singl eton scope and direct declaration are \

1173 i nconpati bl e"

1174 @ MSG_MAP_DI FF_PROTNDI R "protect ed scope and no-direct declaration \

1175 are inconpati bl e"

1178 @ MSG_MAP_SECORDER "section ordering requested, but no matching section \
1179 found: segnent: % section: %"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg 19 new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg 20
1182 # Mapfile Directives 1248 version 2 or higher: %"
1249 @ MSG_MAP_CDI R_BADVER "U: % | u: unknown napfile version: %"
1184 @ MSG_MAP_EXP_ATTR Y% %Il expect ed attribute name (%), or \ 1250 @ MSG_MAP_CDIR_REPVER "9%: 9% | u: $mapfile_version nust be first directive \
1185 term nator (’ 1) s 1251 infile"
1186 @ MSG_MAP_EXP_CAPMASK "%%s: % | u: expect ed capabl Ilty name, integer value, or \ 1252 @ MSG_MAP_CDI R REQARG "%: % lu: % directive requires an argunment”
1187 term nator (’ 1) 1253 @ MSG_MAP_CDI R_REQNOARG "%: %l u: % directive does not accept argunents”
1188 @ MSG_MAP_EXP_CAPNAME "%: % | u: expect ed nan'e or termnator (';’, '}7): %" 1254 @ MSG_MAP_CDI R_BAD "9%: %1 u: unrecogni zed mapfile control directive"
1189 @ MSG_MAP_EXP_CAPI D "s: %Il u: expected nane, or '{’ follow ng %: %" 1255 @ MSG_MAP_CDI R_NO F "Us: %Wlu: % directive used without opening $if"
1190 @ MSG_MAP_EXP_CAPHW "Us: %I u: expect ed har dwar e capability, or \ 1256 @ MSG_MAP_CDI R_ELSE "U%: %lu: % directive preceded by $else on |ine %"
1191 term nator (’ 1) %" 1257 @ MSG_MAP_CDI R_NCEND "U%: 9% I|u: EOF encountered without closing $endif \
1192 @ MSG_MAP_EXP_CAPSF "Us: %Il u: expect ed software capability, or \ 1258 for $if on line %"
1193 term nator @ 1) %" 1259 @ MSG_MAP_CDI R_ERROR "Os: %Wlu: error: %"
1194 @ MSG_MAP_EXP_EQ "Us: %Wlu expect ed ' = foI | owing %: %"
1195 @ MSG_MAP_EXP_EQ ALL “O6: %I u: expected '=', '+=', or '-= following %: %"
1196 @ MSG_MAP_EXP_EQ PEQ "Os: %Ilu: expected '= "fol | owi ng %: %" 1262 # Mapfile Conditional Expressions
1197 @ MSG_MAP_EXP_DI R "Os: %Ilu: expected mapfile directive (%): %"
1198 @ MSG_MAP_SFLG EXBANG "%: % Ilu: '!’ appears wi thout corresponding flag" 1264 @ MSG_MAP_CEXP_TOKERR "%: % | u: syntax error in conditional expreSS| on at: Y%
1199 @ MSG_MAP_EXP_FI LNAM "Os: %Il u: expected file nane follow ng %: %" 1265 @ MSG_MAP_CEXP_SEMERR "%: %Il u: nalformed conditional expression”
1200 @ MSG_MAP_EXP_FILPATH "%: %l u: expected file path follow ng %: %" 1266 @ MSG_MAP_CEXP_BADOPUSE "%: % lu: invalid operator use in conditional \
1201 @ MSG_MAP_EXP_| NT "os: %Il u: expected integer value follow ng %: %" 1267 expression"
1202 @ MSG_MAP_EXP_LBKT ": %Ilu: expected '{' following %: %" 1268 @ MSG_MAP_CEXP_UNBALPAR "%: 9% | u: unbal anced parenthesis in conditional \
1203 @ MSG_MAP_EXP_OBJINAM "Os: % | u: expected object nane follow ng %: %" 1269 expressi on"
1204 @ MSG_MAP_SFLG ONEBANG "%: % lu: '!’ can only be specified once per flag" 1270 @ MSG_MAP_BADCESC ": % | u: unrecognized escape in double quoted \
1205 @ MSG_MAP_EXP_SECFLAG "%: % u: expect ed sect| on flag (%), !, or \ 1271 token: \\%\n"
1206 term nator (’ ’ %"
1207 @ MSG_MAP_EXP_SECNAM "Us: %Wlu expect ed section name fol | owi ng %: %" 1273 # Generic error diagnostic |abels
1208 @ MSG_MAP_EXP_SEGFLAG "%: % | u: expect ed segment flag (%), or \
1209 term nator (’ 1) s 1275 @ MSG_STR_NULL "(null)"
1210 @ MSG_MAP_EXP_ECNAM "Us: %Il expect ed ent rance criteria (ASSI GN_SECTION) \
1211 name, or termnator (';', '}'): %" 1277 @ MSG_DBG DFLT_FMT "debug: "
1212 @ MSG_MAP_EXP_SEGNAM "Os: %I u: expected segnent nane follow ng %: %" 1278 @ MSG_DBG_AQUT_FMI "debug: a. out:
1213 @ MSG_MAP_EXP_SEM "Os: %WIlu: expected ';’ to terminate %s: 9" 1279 @ MSG_DBG_NAME_FMI "debug: %:
1214 @ MSG_MAP_EXP_SEMLBKT "9%: %l u: expected ';’ or '{’ followi ng %: %"
1215 @ MSG_MAP_EXP_SEMRBKT "%s: 9%l u: expected ';’ or '}’ to terminate %: %" 1281 # -z assert-deflib strings
1216 @ MSG_MAP_EXP_SHTYPE "Os: %I u: expected section type: %"
1217 @ MSG_MAP_EXP_SYM "Us: %I u: expected synbol nane, synbol scope, \ 1283 @ MSG_ARG ASSDEFLI B_MALFORMED "library nane nmal fornmed: %"
1218 or '*': os" 1284 @ MSG_ARG_ASSDEFLI B_FOUND "dynami c library found on default search path \
1219 @ MSG_MAP_EXP_SYMEND "Us: %I expect ed inherited version nane, or \ 1285 (%): |ib%.so"
1220 terminator (';'): %"
1221 @ MSG _MAP_EXP_SYMDELIM "%s: % | u: expect ed one of ":', ';’, or "{': %" 1287 @ _END_
1222 @ MSG_MAP_EXP_SYMFLAG "%: %l u expect ed syr'rbol fI ag (%), or \
1223 termnpator (';', '}"):
1224 @ MSG_MAP_EXP_SYMNAM "Us: %Il u: expect ed synbol name follow ng %: %" 1290 # Software identification. Note, the SGU strings is historic, and has
1225 @ MSG_MAP_EXP_SYMSCOPE "%: %l u: expected synbol scope (%): %" 1291 # little relevance. It is preserved as applications have used this
1226 @ MSG_MAP_EXP_SYMIYPE "9%: %Il u: expected synbol type (%): %" 1292 # string to identify the Solaris link-editor.
1227 @MSG_MAP_EXP_VERSION "9%: 9% | u: expected version nanme follow ng %: %"
1228 @ MSG_MAP_BADEXTRA "% : % | u: unexpected text found followi ng % directive" 1294 @ MSG_SGS_I D "ld: Software Generation Uilities - \
1229 @ VMSG_MAP_VALUELIM T "s: % Ilu: nuneric value exceeds word size: %" 1295 Solaris Link Editors: "
1230 @ MSG_NMAP_MALVALUE "9%: % Ilu: nmalfornmed nuneric value: %"
1231 @ MSG_MAP_BADVALUETAIL "%: %l u: unexpected characters followi ng nuneric \ 1297 # The follow ng strings represent reserved words, files, pathnanes and synbols.
1232 constant: %" 1298 # Reference to this strings is via the MSG ORI () macro, and thus no nessage
1233 @ MSG_MAP_WSNEEDED "U: %I u: whitespace needed before token: %" 1299 # translation is required.
1234 @ MSG_MAP_BADCHAR "Os: %I u: unexpected text: %"
1235 @ MSG_MAP_BADKWQUOTE "%: %Ilu: mapfile keywords shoul d not be quoted: %" 1301 @ MSG_DBG_FOPEN_MODE "w'
1236 @ MSG_MAP_CDI R_NOTBOL "%: %Ilu: mapfile control directive not at start of \
1237 line: %" 1303 @ MSG _DBG CLS32_FMr "32:
1238 @ MSG_MAP_NOATTR "Us: %Wlu: % specified no attributes (empty {})" 1304 @ MSG_DBG_CLS64_FMI " 64:
1239 @ MSG_MAP_NOVALUES "Us: %Ilu: % specified wthout values”
1240 @ MSG_MAP_| NTERR "<internal error>" 1306 @ MSG_STR_PATHTOK v
1241 @ MSG_MAP_| SORDVER "U%: %Ilu: version O napfile ?0 flag and version 1 \ 1307 @ MSG_STR_AQUT "a.out"
1242 segnent |'S_ORDER attribute are mutual |y exclusive: %"
1243 @ MSG_MAP_SYMATTR "symbol attributes”; 1309 @ MSG STR LIB_A "U%s/1ib%.a"
1310 @ MSG_STR LI B_SO "%/ i b%. so"
1245 # Mapfile Control Directives 1311 @ MSG_STR_PATH "Usl U8
1312 @ MSG_STR_STRNL "os\ n"
1247 @ MSG_MAP_CDIR BADVDIR "%: %l u: $napfile_version directive nust specify \ 1313 @ MSG_STR_NL "\ n"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

1314

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332

1334
1335

1337

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

@ MBG_STR_CAPGROUPI D

@ MBG_STR LD DYNAM C
@ MSG_STR_SYMBOLI C
@ MSG_STR_ELI M NATE
MSG_STR_LOCAL
G_STR_PROGBI TS
G_STR_SYMIAB
G_STR_DYNSYM

G STR_REL

G STR_RELA
G_STR_STRTAB
G_STR_HASH

G STR LI B
G_STR_NOTE
G_STR_NOBI TS

@ MBG_STR_HWCAP_1
@ MSG_STR_SFCAP_1
@ MBG_STR_SCEXT

@ MSG_STR_CPTI ONS

90000000000
5%5%5%5%55

“ CAP_GROUP_%d"

"dynam c"
"synbol i c"
"elimnate"
"l ocal "
"progbi ts"
"synt ab"
"dynsynt'
"rel"

"rel a"
"strtab"
"hash"
“lib"

"not e"
"nobi ts"
"hwecap_1"
"sfcap_1"
".so"

"3:6:abc:d:e:f:h:
L

S: VW Y

Argunent processing strings

Q

g
SEEERE
gQurow

&%
B8
z
@]

5 ARG _BELI M NATE

0,0,0,60,6,6,60,0,

00,0,

35335335533 5-5-5-3-33-5-3-3-3-3-3-3-33-3-330-3-303 503]

RG_BSYMBCLI C

|
89720900

Ialalalalglalalalaglalalglaq
2920

88

5 ARG_ZDEFNODEF
5 ARG ZASLR
5 ARG_ZGUI DE

B0,
i

5 ARG_ZNOI NTERP
RG_ZRELAXRELOC

5 ARG_ZTEXT
5 ARG_ZTEXTOFF

888,

5 ARG ZTEXTALL

5 ARG_ZLOADFLTR
5 ARG_ZCOVBRELOC
RG_ZSYMBOLCAP

PR RN RN R DR DR DR DR DR DR DR R DR DR DD DD DR DD

SISO SRS SISISISISISISISISISICIGISISINISISISISISISISISIC)
1©,0,0,0,6,0,6,0,6),0,60,0,0,6),0,6),0,6),0,6,0),0,6),0,63,0,6,0,&

5 ARG_ZNORELAXRELCC "

5 ARG_ZFATWNOFATW

g
"G
"o g

_b"
="
"-Bdirect"
" - Bdynam c"
"-Belimnate"
- Bgr oup”
"-Blocal "
"-Bnodi rect”
"-Bsynbol i c"
-Btransl ator”
"o

-d"
"_dyu

e

—N

-p
_p
"-Q'
TRV
"oy
"\
"YU

"-z[def s| nodefs]"

"-zaslr"
"-zgui dance"
"-znodef s"
"—znointerp"
"-zrel axrel oc"

-znor el axrel oc"

"-ztext"
"-ztextof f"
"-ztextwarn"

"-z[text|textwarn|textoff]"

"-zloadfltr"
"-zconbrel oc”
"-zsynbol cap”

"-z[fatal -warni ngs| nof at al war ni ngs] "

cmoipirstu:z:BCDFRA:LMNP. QR

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

5 ARG_ABSEXEC
5 ARG_ALTEXEC64

OOﬂOOOO
>
88,
i
2
&

O

RG_NODI RECT

:

:
:

5 | NI TFI RST

5 | NI TARRAY

5 FI NI ARRAY

5 ARG_PREI NI TARRAY
RG_RTLDI NFO

5 ARG_DTRACE

5 ARG_TRANSLATOR

5 ARG_NOOPEN

383

5 ARG ORI G N

5
4
wn

5 ARG_NODEFS

3
:

5 ARG_NOVERS| ON

&
2

5 ARG_TEXTOFF

5 ARG_TEXTWARN
RG_MULDEFS
> ARG_NODELETE
5 ARG_NOI NTERP
5 ARG_NOPARTI AL

3
:
8

5 ARG_REDLOCSYM
5 ARG_VERBOSE
5 ARG_WEAKEXT
5 ARG_LOADFLTR
5 ARG_ALLEXTRT
5 ARG DFLEXTRT
5 ARG_COVBRELOC
5 ARG_NOCOVBRELCC
5 ARG_NODEFAULTLI B
5 ARG_ENDFI LTEE
5 ARG _LD32
5 ARG_LD64
5 ARG_RESCAN
5 ARG_RESCAN_NOW
5 ARG_RESCAN_START
5 ARG_RESCAN_END

>>>>>>>>>>>>>>>§>>>>>>>>>>>>>>>

©,0,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,60,0,0,6,0,0,0,0,0,6)

©,0,0,0

PR R R R R RN R R AR R R R RN R RN RN R RN RN RRR DR RNRRRDRRNRRRDRD

SISO SISO RIS SIS SISO SIS SRS SIS IS SIS SIS SIS SISO SIRISI SIS SISIGISISIGISISISISISISISISIS)]
19,6

"absexec"

"al t exec64"
"aslr"
"noconpstrtab”
"groupper ni'
"nogr oupper nt
"l azyl oad"
"nol azyl oad"
"interpose"
"direct”
"nodirect"
"ignore"
"record"
"initfirst"”
"initarray="
"finiarray="
"preinitarray="
"rtldinfo="
"dtrace="
"transl ator”
"nodl open”

" now'
"origin"
"defs"
“nodef s"
"nodunp”
"noversi on"

"nodel et e"
"noi nt erp"
"nopartial"
"norel oc"
"redl ocsynt
"ver bose"
"weakextract"
"l oadfl tr"

"al l extract"
"defaul textract"
"conbr el oc"
"noconbr el oc"
"nodefaul tlib"
"endfiltee"

" d32="

"1 de4="
"rescan"
"rescan- now'
“rescan-start”
"rescan- end"
"gui dance"
"nol dynsynt'
"rel axrel oc"
"nor el axrel oc"
"nosi ghandl er"
"gl obal audi t"
"target="

"ur ap="

"fat al - war ni ngs"

"nof at al - war ni ngs"

"hel p"

"group”
"reduce"”
"static"

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

1446
1447
1448
1449

1451
1452
1453

1455
1456
1457
1458

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482

1484
1485
1486
1487

1489
1490
1491
1492
1493
1494
1495
1496
1497

1499

1501
1502
1503
1504

1506
1507
1508

1510
1511

@ MSG_ARG_SYNBOLCAP
@ MBG_ARG_DEFERRED
G_ARG_NODEFERRED
S ARG_ASSDEFLI B

&
>
3
g

il
g

§8
;¢

|
=
%
m
w)

(S

_AUXFLTR
_MULDEFS
~| NTERP

~ ENDGROUP
—ENTRY
~STDFLTR
~FATWARN
~NOFATWARN
“HELP

~ LI BRARY

~ LI BPATH

~ NOUNDEF

~ NOAHOLEARC
—OUTPUT

BRERERRE 22X

e e B B B B B e R e e e e e e R B

~ STARTGROUP
“STRIP
—UNDEF
~VERSI ON
~VHOLEARC

i

NABLED
5 DI SABLED

>>> 2> >>rpr>>rr>>rr>>r>> >r> >
28 daBanadananaags

PRRD ARNRARNRNRNRNRNRNRNRNDD RAND ARD AR
falo)
i2

00,600 | 66,000000600000000000006 OBOL OO

5 ARG _DI SABLE

'
N

Q@ PO QRO * APOAAAA®* AR MBAAAPABARAOOBARRPOAARR MO AP @O

~ RELOCATABLE *

gui dance=i tem strings
|

"synbol cap”
"def erred”
"nodef erred"
"assert-deflib"

"-auxiliary"

-allow-rrult iple-definition"

"-dynami c- | i nke
"—end—group
"-entry"
"-filter"
"-fatal - warni ngs"
"-no-fatal - war ni ngs"
"-hel p"

"-library
"-1ibrary-path"
"-no-undefi ned"
"—no—mhole—archive"
"-out put"
"-rel ocat abl e"
"-start-group”
"-strip-all”
"-undefi ned"
"-version"
"-whol e-archi ve"
"_wrap"

.

)

"enabl ed"

"di sabl ed"

"enabl e"
"di sabl e"

MSG_ARG GUI DE_DELI M R
MSG_ARG_GUI DE_NO ALL “noal |
MBG_ARG_GUI DE_NO_DEFS "nodef s"
MSG_ARG_GUI DE_NO_DI RECT "nodirect"
MSG_ARG_GUI DE_NO_LAZYLQAD "nol azyl oad"
MSG_ARG_GUI DE_NO_MAPFI LE "nomapfile"
MBG_ARG_GUI DE_NO_TEXT "not ext"
MSG_ARG_GUI DE_NO_UNUSED "nounused"”
Envi ronnent variable strings

MSG LD RUN_PATH "LD_RUN_PATH'
MSG_LD_LI BPATH 32 "LD_LI BRARY_PATH 32"
MSG_LD_LI BPATH_64 "LD_LI BRARY_PATH_ 64"
MSG_LD_LI BPATH " LD_LI BRARY_PATH"
MSG_LD_NOVERS| ON_32 "LD_NOVERSI ON_32"
MSG_LD_NOVERSI ON_64 " LD_NOVERS| ON_64"
MSG_LD_NOVERSI ON " LD_NOVERS| ON'
MSG_SGS_SUPPCORT_32 " SGS_SUPPORT_32"
MSG_SGS_SUPPORT_64 " SGS_SUPPORT_64"

23

new usr/src/cnd/ sgs/1i bl d/ common/1i bl d. nsg

1512 @ MSG_SGS_SUPPORT " SGS_SUPPORT"

1515 # Synbol nanes

1517 @ MSG_SYM LI BVER U _lib_version"

1520 # Mapfile tokens

1522 @ MSG_MAP_LQAD "] oad"

1523 @ MSG_MAP_NOTE "not e"

1524 @ MSG_MAP_NULL “nul "

1525 @ MSG_MAP_STACK "stack"”

1526 @ MSG_MAP_ADDVERS "addvers"

1527 @ MSG_MAP_FUNCTI ON "function"

1528 @ MSG_MAP_DATA "dat a"

1529 @ MSG | NAP COMVON " conmon"

1530 @ MSG_MAP_PARENT "parent"

1531 @ MSG_MAP_EXTERN "extern"

1532 @ MSG_MAP_DI RECT "direct"

1533 @ MSG_MAP_NCDI RECT "nodi rect"

1534 @ MSG_MAP_FI LTER "filter"

1535 @ MSG_MAP_AUXI LI ARY "auxiliary"

1536 @ MSG_MAP_OVERRI DE "override"

1537 @ MSG_MAP_| NTERPOSE "interpose”

1538 @ MSG_MAP_DYNSORT "dynsort"

1539 @ MSG_MAP_NODYNSORT "nodynsort"

1541 @ MSG_MAPKW ALI GN "ALI G\

1542 @ MSG_MAPKW ALLOC "ALLOC'

1543 @ MSG_MAPKW ALLOW "ALLOW

1544 @ MSG_MAPKW AMD64 L ARGE " AMD64_LARCGE"
1545 @ MSG_MAPKW ASSI GN_SECTI ON " ASSI GN_SECTI ON'
1546 @ MSG_MAPKW AUX " AUXI LI ARY"
1547 @ MSG_MAPKW CAPABI LI TY " CAPABI LI TY"
1548 @ MSG_MAPKW COMVON " '

1549 @ MSG_MAPKW DATA " DATA"

1550 @ NSG NAPKW DEFAULT " DEFAULT"
1551 @ MSG_MAPKW DEPEND_VERSI ONS " DEPEND_VERSI ONS"
1552 @ MSG_MAPKW DI RECT "Dl RECT"

1553 @ MSG_MAPKW DI SABLE " DI SABLE"
1554 @ NBG NAPKW DYNSORT " DYNSORT"
1555 @ MSG_MAPKW ELI M NATE "ELI M NATE"
1556 @ MSG_MAPKW EXECUTE " EXECUTE"
1557 @ MSG_MAPKW EXPORTED " EXPORTED"
1558 @ NBG NAPKW EXTERN " EXTERN'

1559 @ MSG_MAPKW FI LTER "FI LTER"

1560 @ MSG_MAPKW FI LE_BASENANVE " Fl LE_BASENAME"
1561 @ MSG_MAPKW FI LE_PATH "FI LE_PATH"
1562 @ M5G_ NAPWV FI LE_OBINANMVE " FI LE_OBINAME"
1563 @ MSG_MAPKW FUNCTI ON " FUNCTI ON'
1564 @ MSG_MAPKW FLAGS " FLAGS"

1565 @ MSG_MAPKW GLOBAL " GLOBAL"

1566 @ MSG_MAPKW | NTERPOSE " | NTERPCSE"
1567 @ MSG_MAPKW HI DDEN " Hl DDEN"

1568 @ MSG_MAPKW HDR NOALLOC " HDR_NOALLCC'
1569 @ MSG_MAPKW HW " HW

1570 @ MSG_MAPKW HW 1 "HW 1"

1571 @ MSG_MAPKW HW 2 " HW 2"

1572 @ MSG_MAPKW | S_NANVE "1 S_NAMVE"
1573 @ MSG_MAPKW | S_ORDER "1 S_ORDER'
1574 @ MSG_MAPKW LOAD_SEGVENT " LOAD_SEGVENT"
1575 @ NSG NAPKW LOCAL " LOCAL"

1576 @ MSG_MAPKW MACHI NE " MACHI NE"
1577 @ MSG_MAPKW MAX_SI ZE " MAX_SI ZE"

24

new usr/src/cnd/ sgs/1ibl d/ comon/l1ibld. nmsg

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605

1608

MAPKW NOTE_SEGVENT
MAPKW NULL_SEGVENT
MAPKW OS_ORDER
MAPKW PADDR

MAPKW PARENT

MAPKW PHDR_ADD_NULL
MAPKW PLATFORM
MAPKW PROTECTED

:
2
:

MAPKW ROUND
MAPKW REQUI RE
MAPKW SEGVENT _ORDER

:
:

MAPKW SF_1

MAPKW S| NGLETON
MAPKW S| ZE

MAPKW S| ZE_SYMBOL

:
:
5

MAPKW SYMBOL_ SCOPE
MAPKW SYMBOL_VERSI ON
MAPKW SYMBOLT C
MAPKW TYPE

S MAPKW VADDR

G_MAPKW VALUE
MBG_MAPKW WRI TE

CIRISIOIIGICINISIOISIISIGISISIOISIGISIGICISIC)

@ M5G_STR_DTRACE

“ NOHDR'
* NODI RECT"

* NODYNSORT"

* NOTE_SEGVENT"
“ NULL_SEGVENT"
" 08_CRDER'

" PADDR’

" PARENT"

“ PHDR_ADD_NULL"
" PLATFORM

" PROTECTED"

" READ'

* ROUND"

* REQUI RE"

" SEGVENT _ORDER'
"

“SF_1"

* S| NGLETON"

" S| ZE"

"SI ZE_SYMBOL"

" STACK"

“ SYMBOL_SCCPE"
" SYMBOL_VERS| ON'
" SYMBOLT C'

" TYPE"

“ VADDR'

" VALUE"

“VRI TE"

" PT_SUNWDTRACE"

25

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

R R R R

97274 Mon Feb 11 00: 23: 19 2019
new usr/src/cnd/ sgs/1i bl d/ common/ syns. ¢
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)
LR EEEEEEEEE SRS RS RS RS S SRR SRS R E R R R EREEEEEEEEEEESEESEE]
1/*
* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

*

*

*

*

*

* You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
* or http://ww. opensol aris.org/os/licensing.

* See the License for the specific |anguage governing perm ssions

* and limtations under the License.
*
*
*
*
*
*
*
*
*

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

| f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

CDDL HEADER END

NRERRRERRRR R
COONOUITAWNROW©O~NOUTSWN

Copyright (c) 1988 AT&T
Al Rights Reserved

/

30 /*

31 * Synbol table managenent routines
*
/

34 #define ELF_TARGET_AMD64

36 #incl ude <stdio. h>

37 #incl ude <string. h>

38 #incl ude <debug. h>

39 #include <al | oca. h>

40 #endif /* | codereview */

41 #i ncl ude "msg. h"

42 #include "_libld. h"

44 | *

45 * AVL tree conparator function:

46 *

47 * The primary key is the synbol name hash with a secondary key of the synbol
48 * nane itself.

49 */

50 int

51 I{d_sym_avl _conmp(const void *eleml, const void *el en?)
52

53 Sym avl node *savl = (Sym avl node *)el ent;
54 Sym avl node *sav2 = (Sym avl node *)el en?;
55 int res;

57 res = savl->sav_hash - sav2->sav_hash;

59 if (res <0)

Copyright (c) 1989, 2010, Oracle and/or its affiliates. Al rights reserved.

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

60
61
62

114

116
117
118
119
120
121
122
123
124
125

return (-1);
if (res > 0)
return (1);
/*
* Hash is equal - now conpare name
*
/
res = strcnp(savl->sav_nanme, sav2->sav_nane);
if (res ==0
return (0);
if (res > 0)
return (1);
return (-1);
}
/*
* Focal point for verifying synbol nanes.
*
/
inline static const char *
string(Ofl _desc *ofl, Ifl_desc *ifl, Sym*sym const char *strs, size_t strsize,
int symmdx, Word shndx, Word synmsecndx, const char *synsecnane,
const char *strsecnane, sd_flag_t *flags)
Wor d name = sym >st_naneg;
if (name) {
if ((ifl->fl_flags & FLG | F_HSTRTAB) == 0) {
Id_eprintf(ofl, ERR FATAL, NMSG | NTL(MSG FI L_NOSTRTABLE),
1 fl->ifl_name, EC WORD(synsecndx), synmsecnane,
symdx, EC XWORD(nane));
return (NULL);
}
1f (name >= (Word)strsize) {
Id_eprintf(ofl, ERR FATAL,
MSG | NTL(MSG FI L_EXCSTRTABLE), ifl->ifl_nane,
EC WORD(synsecndx), synmsecnane, symdx,
EC_XWORD(nane), strsecnanme, EC XWORD(strsize));
return (NULL);
}
}
/*
* Determine if we're dealing with a register and if so validate it.
* If it’s a scratch register, a fabricated name will be returned.
*
if (ld_targ.t_ns.ms_is_regsym!= NULL) {
const char *regname = (*ld_targ.t_ns.nms_is_regsym (ofl, ifl,
sym strs, symdx, shndx, synsecnane, flags);
if (regnane == (const char *)S_ERROR) {
return (NULL);
}
i1f (regnane)
return (regnane);
}
/*
* |f this isn't a register, but we have a global synbol with a null
* nane, we're not going to be able to hash this, search for it, or
* do anything interesting. However, we've been accepting a synbol of
* this kind for ages now, so give the user a warning (rather than a
* fatal error), just in case this instance exists sonmewhere in the
* world and hasn’t, as yet, been a problem
*
/
if ((name == 0) && (ELF_ST_BIND(sym >st_info) != STB LOCAL)) {
I'd_eprintf(ofl, ERR WARNI NG, MSG_I NTL(MSG_FI L_NONAMESYM) ,

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

126 ifl->ifl_name, EC WORD(synmsecndx), synmsecnane, symdx,
127 EC_XWORD(nane)) ;

128 }

129 return (strs + nanme);

130 }

132 /*

133 * For producing synbol names strings to use in error nessages.

134 * If the synbol has a non-null nanme, then the string returned by

135 * this function is the output from denmangl e(), surrounded by

136 * single quotes. For null names, a descriptive string giving

137 * the synbol section and index is generated.

138 *

139 * This function uses an internal static buffer to hold the resulting
140 * string. The value returned is usable by the caller until the next

141 * call, at which point it is overwitten.

142 */

143 static const char *

144 demangl e_symane(const char *name, const char *syntab_nane, Wrd symmdx)

145 {

146 #define | NI T_BUFSI ZE 256

148 static char *buf ;

149 static size_t bufsi ze = 0;

150 size_t | en;

151 int use_nane;

153 use_nanme = (nanme != NULL) && (*nane != '"\0");

155 if (use_name) {

156 name = demangl e(nane) ;

157 len = strlen(nanme) + 2; /* Include room for quotes */
158 } else {

159 name = MSG ORI G(MSG_STR_EMPTY) ;

160 len = strl en(syntab_name) + 2 + CONV_|I NV_BUFSI ZE;

161

162 | en++; /* Null term nation */

164 /* 1f our buffer is too small, double it until it is big enough */
165 if (len > bufsize) {

166 size_t new_bufsize = bufsize;

167 char *new_buf ;

169 if (new_bufsize == 0)

170 new_bufsize = | NI T_BUFSI ZE;

171 while (len > new_ bufsize)

172 new_bufsize *= 2;

173 if ((new_buf = 1libld_nalloc(new bufsize)) == NULL)

174 return (name);

175 buf = new_buf;

176 buf si ze = new_buf si ze;

177 1

179 if (use_name) {

180 (void) snprintf(buf, bufsize, MSG ORI G MSG_FMI_SYMNAM) ,
181 } else {

182 (void) snprintf(buf, bufsize, MG OR G MSG _FMI_NULLSYMNAM ,
183 synt ab_nane, EC WORD(symdx));

184 }

186 return (buf);

188 #undef | N T_BUFSI ZE

189 }

191 /*

nane) ;

new usr/src/cnd/ sgs/1i bl d/ common/ syns. ¢

192
193
194
195
196
197
198
199
200 {
201
202
203
204
205

207
208
209
210
211
212

214
215
216
217
218
219
220
221
222
223
224
225
226

228
229
230
231

233
234
235
236
237
238
239
240

242
243

245
246

248
249
250

252
253
254
255
256
257 }

*
*
*
*
*
*
ui

Shared objects can be built that define specific synbols that can not be

directly bound to.

DF_1_ NCDIRECT dynamic flags entry).
that can’t be bound to directly, and if this files synbol
referenced, mark it so that we don't
/

These obj ects have a synminfo section (and an associ ated
Scan this table |ooking for symbols

is presently
directly bind to it.

ntptr_t
| d_sym nodirect(ls_desc *isp, Ifl_desc *ifl, Ol _desc *ofl)

Shdr *sifshdr, *synshdr;

Sym nf o *sifdata;

Sym *syndat a;

char *strdata;

ul ong_t cnt, _cnt;

/*

* Get the syminfo data, and determi ne the nunber of entries.

*/

si f shdr

i sp->i s_shdr;

sifdata = (Symnfo *)isp->i s_indat a->d_buf;
si

cnt =

/*

* CGet the associated synbol

*

if ((sifshdr->sh_link == 0) ||
/*

fshdr->sh_size / sifshdr->sh entS| ze;

tabl e.

(sifshdr->sh_link >= ifl->ifl_shnum) {

* Broken input file
*

Id_eprintf(ofl,

ERR_FATAL, MSG_I NTL(MSG_FI L_I NVSHI NFO) ,

1fl->ifl_name, Tsp->is_name, EC_XWORD(sifshdr->sh_ i nk));
return (0);

}
synmshdr = ifl->ifl_isdesc[sifshdr->sh_link]->is_shdr;
symdata = ifl->ifl_isdesc[sifshdr->sh_link]->is_ ~i ndat a- >d _buf;
*

* Get the string table associated with the synbol table.

*

/
strdata = ifl->ifl _isdesc[synshdr->sh_Iink]->is_indata->d_buf;
/*

* Traverse the sym nfo data for synmbols that can't

* bound to.

*

be directly

for (_cnt =1, sifdata++; _cnt < cnt; _cnt++, sifdata++) {
Sym *sym
char *str;
Sym desc *sdp;
if ((sifdata->si_flags & SYM NFO_FLG NOEXTDI RECT) == 0)
cont i nue;
sym = (Sym *)(syndata + _cnt);
str = (char *)(strdata + sym >st_nane);
if ((sdp ld_symfind(str, SYMNOHASH, NULL, ofl)) != NULL) {
f (ifl !'= sdp->sd_file)
continue;
sdp->sd_flags & ~FLG SY D R
sdp->sd_flags | = FLG SY_NDI R,
}

}
return (0);

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

259 /*

260 * If, during synbol processing, it is necessary to update a |local synbols

261 * contents before we have generated the synbol tables in the output inage,

262 * create a new synbol structure and copy the original synbol contents. Wile
263 * we are processing the input files, their |ocal synbols are part of the

264 * read-only nmapped inmage. Commonly, these synbols are copied to the new output
265 * file imge and then updated to reflect their new address and any change in
266 * attributes. However, sonetines during relocation counting, it is necessary
267 * to adjust the synbols information. This routine provides for the generation
268 * of a new synbol inage so that this update can be perforned.

269 * Al global synbols are copied to an internal synbol table to inprove locality
270 * of reference and hence performance, and thus this copying is not necessary.
271 */

272 uintptr_t

273 1 d_sym copy(Sym desc *sdp)

274

275 Sym *nsym

277 if (sdp->sd_flags & FLG SY_CLEAN)

278 if ((nsym=libld_ rmlloc(5|zeof (Sym)) == NULL)

279 return (S_ERROR);

280 *nsym = *(sdp->sd_sym;

281 sdp->sd_sym = nsym

282 sdp->sd_flags & ~FLG_SY_CLEAN,

283 }

284 return (1);

285 }

287 [*

288 * Finds a given nane in the link editors internal synbol table. |If no

289 * hash value is specified it is calculated. A pointer to the |ocated

291

290 * Symdesc entry is returned, or NULL if the symbol is not found.
*/

292 Sym desc *
293 I d_sym find(const char *nane, Word hash, avl_index_t *where, O _desc *ofl)

294 {
295

297
298
299
300
301

303
304
305
306
307
308

310
311
312
313
314

316
317
318
319
320 }

322 /*

Sym avl node gsav, *sav;

if (hash == SYM NOHASH)

/* LI NTED */

hash = (Word)el f_hash((const char *)nane);
gsav. sav_hash = hash;

gsav. sav_nane = nane;
/*

* Performsearch for synbol in AVL tree. Note that the 'where’ field
* is passed in fromthe caller. |If a 'where is present, it can be

* used in subsequent 'Id_symenter()’ calls if required.
*
/

sav = avl _find(&ofl->ofl _symavl, &gsav, where);

* |f symbol was not found in the avl tree, return null to show that.
*/

if (sav == NULL)
return (NULL);

/*
* Return synbol found.
*/

return (sav->sav_sdp);

323 * Enter a new synbol into the link editors internal synmbol table.

new usr/src/cnd/ sgs/1i bl d/ common/ syns. ¢

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

341
342
343
344
345
346
347

349

351
352
353
354
355
356
357
358
359
360
361
362

364
365
366
367

369
370
371
372
373
374
375
376

378
379
380

382
383
384
385
386
387
388
389

If the symbol is froman input file, information regarding the input file
and input section is also recorded. Oherwise (file == NULL) the synbol
has been internally generated (ie. _etext, _edata, etc.).
/

*
*
*
*
Sym desc *
I d_sym enter(const char *name, Sym *osym Wrd hash, |fl_desc *ifl,
O 1 _desc *ofl, Word ndx, Ver d shndx, sd_flag_t sdflags, avl _i ndex_t *where)

Sym desc *sdp;
Sym aux *sap;
Sym avl node *savl ;
char *_nane;
Sym *nsym
Hal f etype;
uchar _t Vis;
avl _i ndex_t _Wwhere;
/*
* Establish the file type.
*
if (ifl)

etype = ifl->ifl_ehdr->e_type;
el se
etype = ET_NONE;

of | ->of | _ent ercnt ++;
/*

* Allocate a Sym Descriptor, Auxiliary Descriptor, and a Sym AVLNode -
conti guously.

*

*/
if ((savl = 1libld_call oc(S_DROUND(sizeof (Sym avlnode)) +
S_DROUND(si zeof (Sym desc)) +
S _DROUND(si zeof (Symaux)), 1)) == NULL)
return ((Symdesc *)S ERROR);
sdp = (Sym desc *)((uintptr_t)savl +
DROUND(si zeof (Sym avl node)));
sap = (Symaux *)((uintptr_t)sdp +
S DROUND(si zeof (Sym desc)));

savl - >sav_sdp = sdp;

sdp->sd_file = ifl;

sdp->sd_aux = sap;

savl - >sav_hash = sap->sa_hash = hash;

/*
* Copy the synbol table entry fromthe input file into the internal
* entry and have the synmbol descriptor use it.

sdp- >sd_sym = nsym = &sap->sa_sym
*nsym = *osym

sdp- >sd_shndx = shndx;

sdp->sd_fl ags | = sdfl ags;

if ((_name = libld malloc(strlen(nane) + 1)) == NULL)
return ((Sym desc *)S_ERROR);
savl - >sav_nanme = sdp->sd_nanme = (const char *)strcpy(_nane, nane);

/*

* Enter Synbol in AVL tree.

*

/

if (where == 0) {
[* LINTED */
Sym avl node *_savl;
/*

* |f a previous Id_symfind() hasn’t initialized 'where’ do it

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

390
391
392
393
394
395
396

398
399
400
401
402
403
404
405

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

423
424
425
426
427
428
429
430
431
432
433
434

436
437
438
439

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

#i f

#endi f

* now.

=

where = & where;

_savl = avl_find(&ofl->ofl_symavl, savl, where);
assert(_savl == NULL);

}
avl _i nsert (&ofl->of | _symavl, savl, *where);

/*
* Record the section index. This is possible because the
* “ifl _isdesc’ table is filled before we start synbol processing.

*/
if ((sdfl ags & FLG SY_SPECSEC) || (nsym >st_shndx == SHN_UNDEF))
sdp->sd_i sc = NULL;
el se {
sdp->sd_isc = ifl->ifl_isdesc[shndx];

/'k

* If this synbol is froma rel ocatabl e object, make sure that
* it is still associated with a section. For exanple, an

* unknown section type (SHT_NULL) woul d have been rejected on
* input with a warning. Here, we nake the use of the synbol

* fatal. A synbol descriptor is still returned, so that the
* caller can continue processing all synbols, and hence flush
*/out as many error conditions as possible.

*

f

((etype == ET_REL) && (sdp->sd_isc == NULL)) {

I d_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG_SYM | NVSEC),
nane, Pfl-5ifl _nane, ECXWRD(shn x));

return (sdp)

}

/*
* Mark any COMMON synbols as ’'tentative'.
*/

if (sdflags & FLG SY_SPECSEC)
if (nsym >st_shndx == SHN_COMMON)
sdp->sd_flags | = FLG SY_TENTSYM
defi ned(_ELF64)
else if ((ld_targ.t mmmach == EM AMD64) &&
(nsym >st_shndx == SHN_X86_64_LCOVMON))
sdp->sd_flags | = FLG SY_TENTSYM

/*
* Establish the synbols visibility and reference.

*

vis = ELF_ST_VI SIBI LI TY(nsym >st _ot her);

if ((etype == ET_NONE) || (etype == ET_REL)) {
tch (vis) {
case STV_DEFAULT:
sdp->sd_flags | = FLG_SY_DEFAULT;
break;
case STV_| NTERNAL:
case STV_HI DDEN:
sdp->sd_flags | = FLG_SY_HI DDEN,
break;
case STV_PROTECTED:
sdp->sd_flags | = FLG_SY_PROTECT;
br eak;
case STV_EXPORTED:
sdp->sd_fl ags | = FLG_SY_EXPORT;
br eak;

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

456
457
458
459
460
461
462
463
464
465

467

469
470
471
472
473
474
475
476
477
478
479
480

482
483
484
485
486
487
488
489
490

492
493
494
495
496
497
498
499

501
502
503
504
505
506
507
508
509

511
512
513
514
515
516
517
518
519

521

case STV_S|I NGLETON:
sdp->sd_flags | = (FLG
of | ->of I _flagsl |= (F
br eak;

case STV_ELI M NATE:
sdp->sd_flags | = (FLG_SY_H DDEN | FLG SY_ELIM;
br eak;

Y SINGLE | FLG SY_NDIR);
G OF1_NDI RECT | FLG OF1_NGLBDIR);

defaul t:
assert(vis <= STV_ELI M NATE) ;
}

sdp->sd_ref = REF_REL_NEED;

/
Under -Bnodirect, all exported interfaces that have not
explicitly been defined protected or directly bound to, are
tagged to prevent direct binding.

/

* ok kb 3k

if ((ofl->ofl _flagsl & FLG OF1_ALNODI R) &&
((sdp->sd_flags & (FLG SY_PROTECT | FLG SY_DIR)) == 0) &&
(nsym >st_shndx != SHN_UNDEF)) {
sdp->sd_flags | = FLG SY_NDI R

} else {

sdp->sd_ref = REF_DYN_SEEN;

-

BT S
-

If this is a protected synbol, renenber this. Note, this
state is different fromthe FLG SY_PROTECT used to establish
a synbol definitions visibility. This state is used to warn
agal nst possi bl e copy rel ocations against this referenced
synbol .

(vis == STV_PROTECTED)
sdp->sd_flags | = FLG_SY_PROT;

If this is a SINGLETON definition, then indicate the synbol
can not be directly bound to, and retain the visibility.
This visibility will be inherited by any references nmade to
this synbol .

—h % ok % k¥ %
-

((vis == STV_SI NGLETON) && (nsym >st _shndx != SHN_UNDEF))
sdp >sd_flags |= (FLG_SY_SINGLE | FLG SY_NDIR);

If the new synbol is froma shared library and is associ at ed
with a SHT_NOBI TS section then this synbol originated froma
tentative synbol .

* ok ok k%
-

if (sdp->sd_isc &&
(sdp->sd_i sc->i s_shdr->sh_type == SHT_NOBI TS))
sdp->sd_flags | = FLG SY_TENTSYM
}

/*

* Recl assify any SHN_SUNW.I| GNORE synbols to SHN UNDEF so as to
* sinplify future processing.

*/

if (nsym >st_shndx == SHN_SUI\NV_I GNORE)
sdp- >sd_shndx = shndx = SHN_UNDEF;
sdp->sd_fl ags | = (FLG_SY_REDUCED |
FLG SY_HIDDEN | FLG SY_IGNORE | FLG SY_ELIM;

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

540
541
542
543
544
545
546
547
548
549
550
55118
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

573
574
575
576
577
578
579
580
581

583
584
585
586
587

#i f

#el se

#endi f

* |f this is an undefined, or commn synbol
* determ ne whether it is a global
* where REF_DYN_NEED definitions are returned back to undefines).
*
/
if ((etype == ET_REL) &&
(ELF_ST_BI ND(nsym >st _i nf 0)
((nsym >st _shndx == SHN UNDEF) |l
defi ned(_ELF64)
((nsym >st_shndx == SHN_COWMON) | |
((ld_targ.t. mmmich == EM AMD64) &&
(nsym >st_shndx == SHN X86_64_LCOVMON))))))

froma rel ocatabl e object

== STB_GLOBAL) &&
((sdflags & FLG _SY_SPECSEC) &&

/* BEGA N CSTYLED */

(nsym >st _shndx == SHN_COWON))))
/* END CSTYLED */

sdp->sd_flags | = FLG SY_GLOBREF;

Record the input filename on the referenced or defined files I|ist
for possible |ater diagnostics. The ‘sa_rfile’ pointer contains the
name of the file that first referenced this synbol and is used to
gener ate undefined synbol diagnostics (refer to symundef_entry()).
Note that this entry can be overridden if a reference froma

rel ocatabl e object is found after a reference froma shared object
(refer to symoverride()).

The ‘sa_dfiles’ list is used to maintain the list of files that
define the same synbol. This list can be used for two reasons:

is not available

- To save the first definition of a synbol that

for this link-edit.

- To save all definitions of a synbol when the -moption is in
effect. This is optional as it is used to list nultiple
(interposed) definitions of a synbol (refer to Idmap_out()),

* and can be quite expensive.
*
/
if (nsym>st_shndx == SHN_UNDEF) {
sap->sa_rfile = ifl->ifl_name;
} else {
if (sdp- />sd ref

* ok k ok kb % ok ok k% ok Kk ok ¥ ok

== REF_DYN_SEEN) {

A synbol
bel ongs to a version of a shared object that this
user does not wish to use, or if it belongs to an

* is determ ned to be unavailable if it
*

*

* inplicit shared object.
*/

f

(ifl->fl_vercnt) {
Ver _i ndex *Vvip;
Hal T vndx = ifl->ifl_versynindx];

sap- >sa_dverndx = vndx;

vip = & fl->ifl verndx[vndx]
if (!(vip->vi_flags & FLG_VER_AVAI L)) {
sdp->sd_flags | = FLG SY_NOTAVAI L;
sap->sa_vfile = ifl->ifl_name;
) }
if (M(ifl->ifl_flags & FLG | F_NEEDED))

sdp->sd_flags | = FLG_SY_NOTAVAI L;
} else if (etype == ET_REL) {
/*
* If this synbol has been obtained froma versioned

* input relocatable object then the new synmbol nust be
* pronoted to the versioning of the output file.

or weak reference (see build_osyn(),

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

588
589
590
591

593
594
595
596
597
598

600
601
602
603
604
605
606
607

609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

637 sym add_spec(const char *name, const char *unanme, Word sdaux_id,

638 sd_flag_t sdflags_u, sd_flag_t sdflags, O _desc *ofl)

639 {

640 Sym desc *sdp;

641 Sym desc *usdp;

642 Sym *sym

643 Wor d hash;

644 avl _i ndex_t wher e;

646 /* LINTED */

647 hash = (Wrd)el f_hash(unane);

648 if (usdp = Id_symfind(unane, hash, &where, ofl)) {

649 /*

650 * |f the underscore synbol exists and is undefined, or was
651 * defined in a shared library, convert it to a local synbol.
652 * Otherwise leave it as is and warn the user.

653 */

B T I I

*

if (ifl->fl_versym
I d_vers_pronote(sdp, ndx, ifl, ofl);
}
if ((ofl->ofl _flags & FLG OF_GENVAP) &&
((sdflags & FLG SY. ' SPECSEC) ==
if (aplist_append(&sap- >sa_dfi les, ifl->ifl_nane,

AL_CNT_SDP_DFI LES) == NULL)
return ((Symdesc *)S ERROR);

Provi ded we’re not processing a mapfile,
Mapfile processing requires the synbol
information, therefore the diagnosi ng of the synbol
| ater (see Dbg_map_synbol ()).

R
—~

if ((ifl == NULL) || ((ifl->ifl flags & FLG |F_MAPFILE) == 0))

DBG _CALL(Dbg_syns_entered(ofl, nsym sdp));

return (sdp);

Add a special synbol to the synbol table. Takes special synmbol name with
and w thout underscores. This routine is called, after all other synbol
resol ution has conpleted, to generate a reserved absol ute synbol (the

underscore version). Special synbols are updated with the appropriate
val ues in update_osym(). |If the user has already defined this synbol
issue a warning and | eave the synbol as is. |f the non-underscore synbol
is referenced then turn it into a weak alias of the underscored synbol .
The bits in sdflags_u are ORd into the flags field of the symbol for the
under scored synbol .

If this is a global synbol,
directly bound to, indicate that it can't be directly bound to.

Hi storically, nost special synbols only have nmeaning to the object
they exist, however, they've always been global. To ensure conpatibility
wi th any unexpect ed use presently in effect,
directly bound to. Note,
to create a synminfo table,
ot her synbol directives will the nodirect binding be recorded.
we don't create sym nfo sections for all objects we create,
unnecessary bloat to users who haven't explicitly requested extra synbol
information.

static uintptr_t

and it hasn't explicitly been defined as being
in which

ensure these synbols don't get
that establishing this state here isn't sufficient
only if a syminfo table is being created by some
Thi s ensures
as this mght add

10

di agnose the entered synbol .
to be updated with additional
is deferred until

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 11

654
655
656
657
658
659
660
661
662
663
664
665

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

689
690
691
692
693
694

696
697

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718

if ((usdp->sd_shndx == SHN_UNDEF) ||
(usdp->sd_ref I= REF REL_NEED)) {
usdp->sd_ref = REF_REL_NEED;
usdp- >sd_shndx = usdp->sd_sym >st_shndx = SHN_ABS;
usdp- >sd_fl ags | = FLG_SY_SPECSEC | sdfl ags_u;
usdp->sd_sym >st _info =
ELF_ST I NFQ{STB_GLOBAL, STT_OBJECT);

usdp->sd_i sc = NULL;
usdp- >sd_sym >st _si ze = 0;
usdp- >sd_sym >st_val ue = 0;
/* LI NTED */
usdp- >sd_aux- >sa_synspec = (Hal f)sdaux_id;

/*
* If a user hasn't specifically indicated that the
* scope of this synbol be nade |ocal, then |leave it
* as global (ie. prevent automatic scoping). The GOT
* shoul d be defined protected, whereas all other
* special synbols are tagged as no-direct.
*
if (!SYM.IS_H DDEN(usdp) &&
(sdflags & FLG SY_DEFAULT)) {
usdp- >sd_aux- >sa overndx = VER_NDX_GLOBAL;
if (sdaux_id == SDAUX_| D_GOT)
usdp- >sd_flags & ~FLG SY_NDI R;
usdp->sd_flags | = FLG SY PROTECT;
usdp->sd_sym >st _ot her = STV_| PROTECTED
} elseif (
((usdp->sd_flags & FLG SY_ DIR) == 0) &&
((of I ->of | _flags & FLG OF_ SYNBO_I O ==0)) {
usdp->sd_flags |= FLG_SY_ND R,
}

}
usdp- >sd_f | ags | = sdfl ags;

/*
* |f the reference originated froma napfile ensure
* we mark the synbol as used.
*/
if (usdp->sd_flags & FLG SY_NMAPREF)
usdp->sd_fl ags | = FLG_SY_MAPUSED;

DBG CALL(Dbg_symns_updat ed(of |, usdp, unane));

Id_eprintf(ofl, ERR WARNING MSG_ | NTL(MSG_SYM RESERVE),
unane, usdp->sd_file->ifl_nane);

}
#endif /* | codereview */

} else {
* I'f the synbol does not exist create it.
*

if ((sym= libld_calloc(sizeof (Sym, 1)) == NULL)
return (S_ERROR);
sym >st _shndx = SHN_ABS;
sym >st _info = ELF_ST_ I NFO(STB_GLOBAL, STT_OBJECT);
sym >st_size = 0;
sym >st _val ue = 0;
DBG CALL(Dbg_syns_created(ofl->of | _| m, unane));
if ((usdp = I'd_sym enter(unane, sym hash (1fl_desc *)NULL,
ofl, 0, SHN_ABS, (FLG SY_SPECSEC | sdflags u), &where)) ==
(Sym.desc *)S_ERROR)
return (S_ERROR);
usdp- >sd_ref = REF_REL_NEED;
/* LINTED */

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 12
719 usdp- >sd_aux- >sa_synspec = (Hal f)sdaux_i d;

721 usdp- >sd_aux- >sa_over ndx = VER _NDX_ GLOBAL;

723 if (sdaux_id == SDAUX_ | D_GOT) {

724 usdp->sd_flags | = FLG SY PROTECT,

725 usdp- >sd_sym >st _ot her = STV_PROTECTED,

726 } else if ((sdflags & FLG SY. DEFAULT) &&

727 ((of I ->of | _flags & FLG OF_SYMBOLIC) == 0)) {

728 usdp->sd_flags | = FLG SY_NDI R;

729 }

730 usdp- >sd_flags | = sdfl ags;

731 }

733 if (name & (sdp = I d_sym find(nane, SYM NOHASH, NULL, ofl)) &&
734 (sdp->sd_sym >st _shndx == SHN_UNDEF)) {

735 uchar _t bind;

737 /*

738 * |f the non-underscore synbol exists and i s undefined
739 * convert it to be a local. |[|f the underscore has

740 * sa_symspec set (ie. it was created above) then sinmulate this
741 * as a weak alias.

742 */

743 sdp- >sd_ref = REF_REL_NEED;

744 sdp- >sd_shndx = sdp->sd_sym >st_shndx = SHN_ABS;

745 sdp->sd_flags | = FLG SY_SPECSEC,

746 sdp->sd_isc = NULL;

747 sdp- >sd_sym >st_si ze = 0;

748 sdp->sd_sym >st_val ue = 0;

749 /* LI NTED */

750 sdp- >sd_aux- >sa_synmspec = (Hal f)sdaux_i d;

751 if (usdp->sd_aux->sa_synspec) {

752 usdp- >sd_aux- >sa_| i nkndx = 0;

753 sdp- >sd_aux->sa_l i nkndx = O;

754 bi nd = STB_WVEAK;

755 } else

756 bind = STB_GLOBAL;

757 sdp->sd_sym >st _info = ELF_ST_| NFQ(bi nd, STT_OBJECT);

759 *

760 * |f a user hasn't specifically indicated the scope of this
761 * synbol be nmade |ocal then |eave it as global (ie. prevent
762 * automatic scoping). The GOT shoul d be defined protected,
763 */Wnereas all other special synbols are tagged as no-direct.
764 *

765 if (!ISYMIS_H DDEN(sdp) &&

766 (sdfTags & FLG SY_DEFAULT)) {

767 sdp- >sd_aux- >sa_overndx = VER NDX_GLOBAL;

768 i f (sdaux_id == SDAUX_I D GOT) {

769 sdp->sd_flags & ~FLG SY_NDI R

770 sdp->sd_flags | = FLG SY_PROTECT;

771 sdp- >sd_sym >st _ot her = STV_ PROTECTED
772 } else if (((sdp- >sdf|ags&FLGSYDIR)) &&
773 ((of I ->of | _flags & FLG OF_SYMBOLI Q) == 0)) {
774 sdp->sd_flags | = FLG_SY_ND R

775 }

776 }

777 sdp->sd_fl ags | = sdfl ags;

779 /*

780 * |f the reference originated froma mapfile ensure

781 * we mark the synbol as used.

782 *

783 if (sdp->sd_flags & FLG SY_NMAPREF)

784 sdp->sd_flags | = FLG_SY_MAPUSED;

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 13

786
787
788
789

792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814

816
817
818
819
820
821
822

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

DBG_CALL(Dbg_syns_updat ed(ofl, sdp, nane));

}
return (1);

}
/*
* Undefined synmbols can fall into one of four types:
*
* - the synbol is really undefined (SHN_UNDEF).
*
* - ver si oni ng has been enabl ed, however this synbol has not been assigned
* to one of the defined versions.
*
* - the synbol has been defined by an inplicitly supplied library, ie. one
* whi ch was encounted because it was NEEDED by another library, rather
* than froma conmand |ine supplied |library which woul d becone the only
* dependency of the output file being produced.
*
* - the synbol has been defined by a version of a shared object that is
* not permtted for this link-edit.
*
* In all cases the file who nade the first reference to this synbol will have
* been recorded via the ‘sa_rfile’ pointer.
*
/
typedef enum {
UNDEF, NOVERSI ON, IMPLICIT, NOTAVAI L,
BNDLOCAL
} Type;

static const Msg format[] = {

® Ok Sk ok b ok O 3k OF R ok Rk Ok kb % b % b

*

*/

exit:

MSG_SYM UND_UNDEF,
MSG_SYM_UND_NOVER,
MSG_SYM UND_| MPL,
MSG_SYM UND_NOTA,
MSG_SYM_UND_BNDLOCAL

MBG_| NTL(MBG_SYM UND_UNDEF) */
MSG_| NTL(MSG_SYM_UND_NOVER) */
MBG_| NTL(MSG_SYM UND_I MPL) ~ */
MBG_| NTL(MSG_SYM_UND_NOTA) */
MBG_| NTL(MSG_SYM_ UND_BNDLOCAL) */

—~————
* ok Ok ok %

I ssue an undefined synbol nessage for the given synbol.

entry:

of | - Qutput descriptor

sdp - Undefined synbol to report

type - Type of undefined synbol

of| _flag - One of 0, FLG OF_FATAL, or FLG OF WARN.

undef _state - Address of variable to be initialized to 0
before the first call to symundef_entry, and passed
to each subsequent call. A non-zero value for *undef_state
indicates that this is not the first call in the series.

If *undef _state is 0, a title is issued.
A nessage for the undefined synbol is issued.

If ofl _flag is non-zero, its value is ORd into *undef_state. O herwi se,
all bits other than FLG OF FATAL and FLG OF WARN are set, in order to
provi de *undef_state with a non-zero val ue. These ot her bits have

no neani ng beyond that, and serve to ensure that *undef_state is
non-zero if symundef_entry() has been call ed.

static void

sym undef _entry(COf | _desc *ofl,

of |

Sym desc *sdp, Type type, ofl _flag_t ofl_flag,

_flag_t *undef_state)

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 14
851 {
852 const char *namel, *nane2, *name3;
853 I fl_desc *ifl = sdp->sd_file;
854 Sym aux *sap = sdp->sd_aux;
856 if (*undef_state == 0)
857 | d_epri ntf(ofl ERR_NONE, MSG_| NTL(MSG_SYM FMI_UNDEF) ,
858 MSG_I NTL(I\/SG SYM UNDEF_| TM A11),
859 MSG_| NTL(MSG_SYM_UNDEF_| TM 21) ,
860 MBG_| NTL(MSG_SYM UNDEF_| TM 12) ,
861 MBG_| NTL(MSG_SYM UNDEF_| TM 22))
863 of | - >of | fIags|—ofI fla g
864 *undef _state |= ofl _flag ? _flag : ~(FLG_OF_FATAL | FLG OF_WARN);
866 switch (type) {
867 case UNDEF:
868 case BNDLOCAL:
869 namel = sap->sa_rfile;
870 br eak;
871 case NOVERSI O\
872 namel = ifl->ifl_nane;
873 br eak;
874 case |MPLICIT:
875 nanel = sap->sa_rfile;
876 nane2 = ifl->ifl_nane;
877 br eak;
878 case NOTAVAI L:
879 nanel = sap->sa_rfile;
880 nane2 = sap->sa_vfile;
881 name3 = ifl->ifl_verndx[sap->sa_dverndx] . vi _nang;
882 br eak;
883 defaul t:
884 return;
885 }
887 Id_eprintf(ofl, ERR_NONE, MSG INTL(format[type]),
888 demangl e(sdp- >sd_nane), nanmel, nanme2, nane3);
889 }
891 /*
892 * |f an undef synbol exists naming a bound for the output section,
893 * turn it into a defined synbol with the correct val ue.
894 *
895 * W set an arbitrary 1KB linmt on the resulting synbol nanes.
896 *
897 static void

898

900
901
902

904
905
906
907
908
909
910
911
912
913
914
915
916

sym add_bounds(COf | _desc *of |,
{

OGs_desc *osp, Wrd bound)

Sym desc *bsdp;
char sym[1024];
size_t nsz;

switch (bound) {
case SDAUX | D_SECBCUND_START:
nsz = snprintf(sym, sizeof (sym), "%%",
MSG_ ORI G{ M5G_SYM SECBOUND_START), osp->0s_name + 1);
if (nsz > sizeof (sym))
return;
br eak;
case SDAUX_| D_SECBOUND_STOP:
nsz = snprintf(sym, sizeof (sym),
MSG_ORI G(MSG_SYM_SECBOUND STCP)
if (nsz > sizeof (sym))
return;

"o Ys"
osp->o0s_nane + 1);

br eak;

15

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

917 defaul t:

918 assert(0);

919 }

921 if ((bsdp = Id_symfind(sym, SYM NOHASH, NULL, ofl)) != NULL) {
922 i f ((bsdp->sd_shndx != SHN UNDEF) &&

923 (bsdp->sd_ref == REF_REL_NEED)) {

924 Id_eprintf(ofl, ERR WARNI NG MSG_| NTL(MSG_SYM RESERVE) ,
925 sym, bsdp— >sd_file->ifl _nane);

926 return;

927 }

929 DBG_CALL(Dbg_syns_updat ed(of |, bsdp, symn));

931 bsdp- >sd_aux- >sa_synmspec = bound;

932 bsdp- >sd_aux- >sa_boundsec = osp;

933 bsdp- >sd_fl ags | = FLG SY_SPECSEC;

934 bsdp- >sd_ref = REF_REL_NEED,

935 bsdp->sd_sym >st_info = ELF ST_I NFOQ(STB_GLOBAL, STT_NOTYPE);
936 bsdp- >sd_sym >st "ot her = STV_PROTECTED;

937 bsdp->sd_i sc = NULL;

938 bsdp- >sd_sym >st _si ze = O

939 bsdp- >sd_sym >st _val ue = 0;

940) bsdp- >sd_shndx = bsdp->sd_sym >st _shndx = SHN_ABS;

941

942 }

944 | *

945 #endif /* | codereview */

946 * At this point all synbol input processing has been conpleted, therefore
947 * conplete the synbol table entries by generating any necessary internal
948 * synbol s.

949 */

950 uintptr_t

951 |1 d_sym spec(Of | _desc *ofl)

952 {

953 Sym desc *sdp;

954 Sg_desc *sgp;

955 Aliste i dx1;

956 #endif /* ! codereview */

958 if (ofl->ofl_flags & FLG OF_RELOBJ)

959 return (1);

961 DBG _CALL(Dbg_syns_spec_title(ofl->ofl _Im));

963 /*

964 * For each section in the output file, look for synbols naned for the
965 * start/__stop patterns. |If references exist, flesh the synbols to
966 * be defined.

967 *

968 * the synbols are given values at the same tinme as the other special
969 * synbol s.

970 */

971 for (APLI ST_TRAVERSE(of | - >of | _segs, idx1, sgp)) {

972 Os_desc *osp;

973 Aliste idx2;

975 for (APLI ST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {

976 sym add_bounds(of |, osp, SDAUX | D_SECBOUND_START) ;
977 sym add_bounds(of |, osp, SDAUX_| D_SECBOUND STOP);
978 }

979 }

981 #endif /* | codereview */

982 if (symadd_spec(MSG ORI G{ MSG_SYM ETEXT), MSG ORI G MSG_SYM ETEXT_U),

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 16
983 SDAUX_| D_ETEXT, 0, (FLG_SY_DEFAULT | FLG SY_EXPDEF),

984 of|) == S_ERROR)

985 return (S_ERROR);

986 if (symadd_spec(MSG ORI G(VMSG_SYM EDATA), MSG_ORI G(MSG_SYM EDATA_U),
987 SDAUX_| D_EDATA, 0, (FLG SY_DEFAULT | FLG SY_EXPDEF),

988 of) == S_ERROR)

989 return (S_ERROR);

990 if (symadd_spec(MSG ORI G(MSG_SYM END), MSG ORI G{ MSG_SYM END_U),

991 SDAUX_| D_END, FLG _SY_DYNSORT, (FLG SY_DEFAULT | FLG SY EXPDEF)

992 of) == S_ERROR

993 r et urn (S_ERROR);

994 if (symadd_spec(MSG ORI G(MSG SYM L_END), MSG ORI G(MSG_SYM L_END U),
995 SDAUX_| D_END, 0, FLG SY_HI DDEN, ofl) == S_ERROR)

996 return (S_ERROR);

997 if (symadd_spec(MSG ORI G{MSG_SYM L_START), MSG ORI G{MSG SYM L_START U,
998 SDAUX_| D_START, 0, FLG SY HIDDEN, ofl) == S_ERROR)

999 return (S_ ERR(R)

1001 /*

1002 * Historically we've al ways produced a _DYNAM C synbol, even for

1003 * static executables (in which case its value will be 0).

1004 */

1005 if (symadd_spec(MSG ORI G(MSG SYM DYNAM C), MSG ORI G{ MSG_SYM DYNAM C U),
1006 SDAUX_| ID DYN, FLG SY_DYNSORT, (FLG SY | DEFAULT | FLG_SY_EXPDEF),

1007 of) == S_ERROR)

1008 r et urn (S_ERROR);

1010 if (OFL_ALLOW DYNSYMofl))

1011 if (sym add_spec(MSG_ORI G MSG_SYM PLKTBL),

1012 G_ORI G(MSG_SYM PLKTBL_U), SDAUX | D PLT,

1013 FLG SY_DYNSCRT, (FLG SY_DEFAULT | FLG_SY_EXPDEF),

1014 ofI) == S_ERROR)

1015 return (S_ERROR);

1017 /*

1018 * A GOT reference will be acconpani ed by the associ ated GOT synbol .
1019 */Make sure it gets assigned the appropriate special attributes.

1020 *

1021 if (((sdp I d_sym find(MSG ORI G MSG_SYM GOFTBL_U),

1022 SYM NOHASH, NULL, ofl)) !'= NULL) && (sdp->sd _ref != REF_DYN SEEN)) {
1023 if (symadd spec(MSG_ORI G{ MSG_SYM GOFTBL),

1024 MSG_ORI G{ MSG_SYM GOFTBL_U), SDAUX | D_ o FLG_SY_DYNSORT,
1025 (FLG SY_DEFAULT | FLG SY EXPDEF), ofl) == S_ERROR)

1026 return (S_ERROR);

1027 }

1029 return (1);

1030 }

1032 /*

1033 * Determine a potential capability symbol’s visibility.

1034 *

1035 * The -z synbol cap option transforns an object capabilities relocatable object
1036 * into a synmbol capabilities relocatable object. Any global function synbols,
1037 * or initialized global data symbols are candidates for transformng into |ocal
1038 * synbol capabilities definitions. However, if a user indicates that a synbol
1039 * should be denoted to local using a napfile, then there is no need to

1040 * transformthe associated gl obal synbol.

1041 *

1042 * Normally, a synbol’s visibility is determined after the symbol resolution
1043 * process, after all synbol state has been gathered and resol ved. However,
1044 * for -z synbolcap, this determnation is too late. Wen a global synbol is
1045 * read froman input file we need to determine it’'s visibility so as to decide
1046 * whether to create a local or not.

1047 *

1048 * If a user has explicitly defined this synbol as having |local scope within a

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 17

1049 * mapfile, then a synbol of the sane nanme already exists. However, explicit
1050 * definitions are uncommon, as nost napfiles define the gl obal synbol
1051 * requirenents together with an auto-reduction directive "*'. If this state
1052 * has been defined, then we nust make sure that the new symbol isn't a type
1053 * that can not be denoted to |ocal.

1054 */

1055 static int

1056 {sym_cap_vis(const char *nane, Word hash, Sym*sym O _desc *ofl)

1057

1058 Sym desc *sdp;

1059 uchar t Vis;

1060 avl _i ndex_t wher e;

1061 sd_flag_t sdflags = O;

1063 I*

1064 * Determine the visibility of the new synbol.

1065 */

1066 vis = ELF_ST_VI SI Bl LI TY(sym >st _ot her);

1067 switch (vis) {

1068 case STV_EXPORTED:

1069 sdfl ags | = FLG_SY_EXPORT;

1070 br eak;

1071 case STV_S| NGLETON:

1072 sdflags | = FLG SY_SI NGLE;

1073 br eak;

1074 }

1076 /*

1077 * Determ ne whether a synbol definition already exists, and if so
1078 * obtain the visibility.

1079 */

1080 if ((sdp = ld_symfind(name, hash, &where, ofl)) != NULL)

1081 sdfl ags | = sdp->sd_f| ags;

1083 /*

1084 * Determ ne whether the synbol flags indicate this synbol should be
1085 * hi dden.

1086 */

1087 if ((ofl->ofl _flags & (FLG OF AUTOLCL | FLG OF_AUTCELM) &&

1088 ((sdfl ags” & MBK_SY NOAUTO) == 0))

1089 sdfiags | = FLG_SY_H DDEN

1091 return ((sdflags & FLG SY_HI DDEN) == 0);

1092 }

1094 /*

1095 * This routine checks to see if a synbols visibility needs to be reduced to
1096 * either SYMBOLIC or LOCAL. This routine can be called fromeither

1097 * reloc_init() or symuvalidate().

1098 */

1099 void

1100 | d_sym adj ust_vi s(Sym desc *sdp, Ol _desc *ofl)

1101 {

1102 of| _flag_t oflags = ofl->of | _fl ags;

1103 Sym *sym = sdp->sd_sym

1105 if ((sdp->sd_ref == REF_REL_NEED) &&

1106 (sdp/ >sd_sym >st _shndx T= SHN_UNDEF)) {

1107

1108 * |f auto-reduction/elimnation is enabled, reduce any

1109 * non-versioned, and non-local capabilities global synbols.
1110 * A synbol is a candidate for auto-reduction/elimnation if:
1111 *

1112 oo the synbol wasn't explicitly defined within a mapfile
1113 * (in which case all the necessary state has been applied
1114 * to the synbol), or

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 18
1115 - the synbol isn't one of the famly of reserved

1116 * speci al synbols (ie. _end, _etext, etc.), or

1117 * - the synbol isn't a SINGETON, or

1118 - the synbol wasn’t explicitly defined within a version
1119 * definition associated with an input rel ocatabl e object.
1120 *

1121 * Indicate that the synbol has been reduced as it nay be
1122 * necessary to print these synbols later.

1123 */

1124 if ((oflags & (FLG OF_AUTOLCL | FLG OF_AUTCELM) &&

1125 ((sdp->sd_flags & MSK_SY_NOAUTO) == 0)) {

1126 if ((sdp->sd_flags & FLG SY_HI DDEN) == 0) {

1127 sdp->sd_flags | =

1128 (FLG_SY_REDUCED | FLG SY_HI DDEN);

1129 }

1131 if (ofl ags & (FLG_ OF_REDLSYM | FLG OF_AUTCELM) {
1132 sdp->sd_flags | = FLG SY_ELIM

1133 sym >st_other = STV_ELI M NATE |

1134 (sym >st_other & ~MSK_SYM VI SIBILITY);
1135 } else if (ELF_ST VISIBILITY(sym >st_other) !=

1136 STV_| NTERNAL)

1137 sym >st _ot her = STV_HI DDEN |

1138 (sym>st_other & ~MSK_SYM VI S| BI LI TY)
1139 }

1141 /*

1142 * |f -Bsynbolic is in effect, and the synmbol hasn't explicitly
1143 * been defined nodirect (via a mapfile), then bind the gl obal
1144 * synbol synbolically and assign the STV_PROTECTED visibility
1145 * attribute.

1146 */

1147 if ((ofl ags & FLG OF_SYMBOLI C)

1148 ((sdp->sd_flags & (FLG SY_HIDDEN | FLG SY_NDIR)) == 0)) {
1149 sdp->sd_flags | = FLG SY_PROTECT;

1150 if (ELF_ST VISIBILITY(syn}>st other) == STV_DEFAULT)
1151 sym >st _other = STV_PROTECTED |

1152 (sym >st_other & ~MSK_SYM VI SI BI LI TY);
1153 }

1154 }

1156 /*

1157 * Indicate that this symbol has had it's visibility checked so that
1158 * we don't need to do this investigation again.

1159 *

1160 sdp->sd_flags | = FLG SY_VI SI BLE;

1161 }

1163

1164 */ Make sure a synbol definition is local to the object being built.

1165

1166 inline static int

1167 {ensure_sym_l ocal (Of I _desc *ofl, Symdesc *sdp, const char *str)

1168

1169 if (sdp->sd_sym >st_shndx == SHN_UNDEF) {

1170 if (str) {

1171 Id_eprintf(ofl, ERR FATAL, NBG | NTL(MSG SYM UNDEF),
1172 str, der'r‘angl e((char *)sdp >sd_nane));

1173 }

1174 return (1);

1175 1

1176 if (sdp->sd_ref != REF_REL_NEED) {

1177 if (str)

1178 Id_eprintf(ofl, ERR FATAL, MBG | NTL(MSG SYM EXTERN),
1179 str, demangl e((char *)sdp >sd_nane) ,

1180 sdp- >sd_file->ifl_nane);

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 19 new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 20
1181 }
1182 return (1); 1248 /*
1183 } 1249 * The need_XXX bool eans are used to determ ne whether we need to
1250 * create each type of bss section. We used to create these sections
1185 sdp->sd_fl ags | = FLG_SY_UPREQD, 1251 * if the sumof the required sizes for each type were non-zero.
1186 if (sdp->sd_isc) { 1252 * However, it is possible for a conpiler to generate COMMON vari abl es
1187 sdp->sd_i sc->i s_flags | = FLG_| S_SECTREF; 1253 * of zero-length and this tricks that logic --- even zero-length
1188 sdp->sd_isc->is_file->fl_flags | = FLG | F_FI LEREF; 1254 * synbol s need an output section.
1189 } 1255 */
1190 return (0); 1256 need_bss = need_t|shss = FALSE;
1191 } 1257 #if defi ned(_ELF64)
1258 need_| bss = FALSE;
1193 /* 1259 #endi f
1194 * Make sure all the synbol definitions required for initarray, finiarray, or
1195 * preinitarray’s are local to the object being built. 1261 I*
1196 */ 1262 * Det erm ne how undefined synbols are handl ed:
1197 static int 1263 *
1198 ensure_array_l ocal (Ol _desc *of |, APlist *apl, const char *str) 1264 * fatal:
1199 { 1265 * If this link-edit calls for no undefined synbols to renain
1200 Aliste i dx; 1266 * (this is the default case when generating an executabl e but
1201 Sym desc *sdp; 1267 * can be enforced for any object using -z defs), a fatal error
1202 int ret = 0; 1268 ki condition will be indicated.
1269 *
1204 for (APLI ST_TRAVERSE(apl, idx, sdp)) 1270 * war ni ng:
1205 ret += ensure_sym|ocal (ofl, sdp, str); 1271 * If we're creating a shared object, and either the -Bsynbolic
1272 * flag is set, or the user has turned on the -z gui dance feature,
1207 return (ret); 1273 * then a non-fatal warni ng is issued for each synbol.
1208 } 1274 *
1275 * jgnore:
1210 /* 1276 * In all other cases, undefined synbols are quietly allowed.
1211 * After all synbol table input processing has been finished, and all relocation 1277 */
1212 * counting has been carried out (ie. no nore synbols will be read, generated, 1278 if (oflags & FLG OF_NOUNDEF) ({
1213 * or nodified), validate and count the relevant entries: 1279 undef = FLG OF FATAL;
1214 * 1280 } else if (oflags & FLG OF SHARCBJ)
1215 * - check and print any undefined synbols remaining. Note that if a synbol 1281 if ((oflags & FLG OF _SYMBOLI Q) ||
1216 * has been defined by virtue of the inclusion of an inplicit shared 1282 OFL_GUl DANCE(of |, FLG_OFG NO DEFS))
1217 * library, it is still classed as undefined. 1283 “undef = FLG_CF_V\ARN;
1218 * 1284 }
1219 * - count the nunber of global needed symbols together with the size of
1220 * their associated name strings (if scoping has been indicated these 1286 /*
1221 * synbol s may be reduced to |ocals). 1287 * |f the synbol is referenced froman inplicitly included shared object
1222 * 1288 * (ie. it’s not on the NEEDED list) then the synbol is also classified
1223 * - establish the size and alignnment requirements for the gl obal .bss 1289 * as undefined and a fatal error condition will be indicated.
1224 * section (the alignnent of this section is based on the first synbol 1290 *
1225 * that it will contain). 1291 if ((oflags & FLG OF_NOUNDEF) || !(oflags & FLG OF_SHARCBJ))
1226 */ 1292 needed = FLG OF FATAL;
1227 uintptr_t 1293 else if ((oflags & FLG OF SHAROBJ) &&
1228 1d_symvalidate(O | _desc *ofl) 1294 OFL_GUl DANCE(of I, FLG_OFG_NO DEFS))
1229 { 1295 “needed = FLG_G:_V\ARN
1230 Sym avl node *sav;
1231 Sym desc *sdp; 1297 /*
1232 Sym *sym 1298 * |f the output inmage is being versioned, then all synbol definitions
1233 of | _flag_t oflags = ofl->of | _fl ags; 1299 * must be associated with a version. Any synbol that isn't associated
1234 of | _flag_t undef = 0, needed = 0, verdesc = 0; 1300 * with a version is classified as undefined, and a fatal error
1235 Xwor d bssalign = 0, tlsalign = 0; 1301 * condition is indicated.
1236 Bool ean need_bss, need_tI sbss; 1302 e
1237 Xwor d bsssize = 0, tlssize = 0; 1303 if ((oflags & FLG OF_VERDEF) && (ofl->of | _vercnt > VER NDX_GLOBAL))
1238 #if def i ned(_ELF64) 1304 verdesc = FLG OF_FATAL;
1239 Xwor d | bssalign = 0, |bsssize = 0;
1240 Bool ean need_| bss; 1306 al | ow_| dynsym = OFL_ALLOW LDYNSYM of I) ;
1241 #endif
1242 int ret, allow_|dynsym 1308 if (allow_|dynsym {
1243 uchar _t type; 1309 /*
1244 of | _flag_t undef _state = 0; 1310 * Normally, we disallow synbols with O size from appearing
1311 * in a dyn[synjtls]sort section. However, there are sone
1246 DBG _CALL(Dbg_basi c_validate(ofl->ofl _Im)); 1312 * synbol s that serve special purposes that we want to exenpt

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 21

1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1335
1336
1337
1338
1339
1340
1341
1342

1344

1346
1347
1348
1349
1350
1351
1352
1353
1354

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365

1367
1368

1370
1371
1372
1373
1374
1375
1376
1377

*
*

*/

fromthis rule. Look themup, and set their
FLG SY_DYNSORT fl ag.

static const char *special[] = {

i nt

MG ORI G(MSG_SYM I NI T_U), I* _init */
MSG OR G{ MSG_SYM FI NI _Uj | /* “fini */
MSG_ORI G MSG_SYM START) , /* “start */
NULL

for (i = O speC|aI[|] = NULL; i++)

(((sdp =1d symflnd(spemal[l]
SYM NOHASH, NULL, ofl)) != NULL) &&
(sdp->sd_sym >st_size == 0)) {
if (I'd_sym copy(sdp) == S _ERROR)
return (S_ERROR);
sdp->sd_flags | = FLG SY_ DYNSO?T

}
}
/*
* Collect and validate the globals fromthe internal synbol table.
*
/
(sav = avl _first(&ofl->of | _symavl); sav;
sav = AVL_NEXT(&ofl ->of | _symavl, sav)) {
I s_desc *isp;
int undeferr = 0;
uchar _t Vi's;
sdp = sav->sav_sdp;

/*
*
*

*

if

*
*
*
*

|f

}

I f undefined synmbols are all owed, and we’re not being
asked to supply guidance, ignore any synbols that are

not needed.
/

(! (ofl ags & FLG OF_NOUNDEF) &&
1OFL_GUI DANCE(ofI FLG OFG NO DEFS) &&
(sdp->sd_ref == REF_DYN_SEEN))

conti nue;

If the symbol originates froman external or parent napfile
reference and hasn’t been matched to a reference froma
rel ocatabl e object, ignore it.

((sdp->sd_flags & (FLG SY_EXTERN | FLG SY_PARENT)) &&

((sdp->sd_flags & FLG_SY_MAPUSED) == 0)) {
sdp->sd_flags | = FLG_SY_I NVALI D
cont i nue;

sym = sdp->sd_sym
type = ELF_ST_TYPE(sym >st _i nfo);

| *

*

if

Sanity check TLS.
*
/

((type == STT_TLS) && (sym >st_size != 0) &&
(sym >st_shndx != SHN_UNDEF) &&
(sym >st _shndx != SHN_COMMON))

| s_desc *isp = sdp->sd_i sc;

11 _desc *ifl = sdp- >sdf|Ie

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

1379
1380
1381
1382
1383
1384
1385
1386

1388
1389

1391
1392
1393
1394
1395

1397
1398
1399
1400
1401

1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416

1418
1419
1420
1421
1422
1423
1424
1425

1427
1428
1429
1430
1431
1432
1433
1434

1436
1437
1438
1439
1440
1441
1442
1443
1444

}
if

if

-

L
-

* ok ok ok

22

if ((isp == NULL) || (isp->is_shdr == NULL) ||
((isp- >|s _shdr->sh_flags & SHF TLS) == 0)) {
I d_eprintf(ofl, ERR FATAL,
VSG INTL(NSG SYM TLS),
demangl e(sdp->sd name) ifl->ifl_name);
conti nue;

((sdp->sd_flags & FLG SY_VI SIBLE) == 0)
| d_sym adj ust _vi s(sdp, ofl);

((sdp->sd_fl ags & FLG_SY_REDUCED)
(ofl ags & FLG OF_PROCRED))
DBG CALL(Dbg_syns_reduce(ofl, DBG SYM REDUCE GLOBAL,
sdp, 0, 0));

Record any STV_SI NGLETON exi st ence.

((vis = ELF_ST_VI SI Bl LITY(sym >st_other)) == STV_SI NGLETON)
of | ->of | _dtflags_1 |= DF_1_SI NGLETON;

I'f building a shared object or executable, and this is a
non- weak UNDEF synmbol with reduced visibility (STV_*), then
give a fatal error.

(((oflags & FLG OF_RELOBJ) == 0) &&
(sym >st _shndx == SHN UNDEF) &&
(ELF_ST BIND(sym >st_info) != STB WEAK)) {
if (vis & (vis T= STV_SINGLET
sym undef _entry(ofl, sdp, BNDLOCAL,
FLG OF_FATAL, sundef _state);
cont i nue;

If this synmbol is defined in a non-allocatable section,
reduce it to local synbol.

(((isp = sdp->sd_isc) !=0) & isp->is_shdr &&
((|sp >is_shdr->sh_flags & SHF_ALLOC) == 0)) {
sdp->sd_flags [= (FLG SY_REDUCED | FLG SY_H DDEN);

If this synmbol originated as a SHN. SUNWIGNORE, it will have
been processed as an SHN UNDEF. Return the synbol to its
original index for validation, and propagation to the output
file.

*/

if

if

(sdp->sd_flags & FLG SY_| GNORE)
sdp->sd_shndx = SHN_SUNW | GNORE;

(undef) {

/*

* |If a non-weak reference remai ns undefined, or if a

* mapfile reference is not bound to the rel ocat abl e

* objects that make up the object being built, we have

* a fatal error.

*

*

*

The exceptions are synbols which are defined to be
found in the parent (FLG SY_PARENT), which is really

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 23

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

1508
1509
1510

only neani ngful for direct binding, or are defined
external (FLG SY_EXTERN) so as to suppress -zdefs
errors.

Regi ster synbols are al ways al |l owed to be UNDEF.

*
*
*
*
*
*
* Note that we don’t include references created via -u
* in the sane shared object binding test. This is for
* backward conpatibility, in that a nunber of archive
* makefile rules used -u to cause archive extraction.
* These sane rul es have been cut and pasted to apply
* to shared objects, and thus although the -u reference
* is redundant, flagging it as fatal coul d cause sone
* build to fail. Also we have docunented the use of
* -u as a nechanismto cause binding to weak version
* definitions, thus giving users an error condition
* woul d be incorrect.
*
f (!(sdp->sd_flags & FLG SY_REGSYM &&
((sym >st _shndx == SHN_UNDEF) &&
((ELF_ST_BIND(sym >st _info) != STB WEAK) &&
((sdp->sd_flags &
(FLG SY PARENT | FLG SY EXTERN)) == 0)) ||
((sdp->sd_flags &
(FLG_SY_MAPREF | FLG_SY_MAPUSED | FLG_SY_H DDEN
FLG SY_PROTECT)) == FLG SY_MAPREF))) {

sym undef _entry(ofl, sdp, UNDEF, undef,

&undef _state);
undeferr = 1;

} else {
/
For building things like shared objects (or anything
-znodefs), undefined synbols are all owed.

*
*
*
*
* |f a mapfile reference remains undefined the user
* woul d probably like a warning at |east (they’ ve
* usually mis-spelt the reference). Refer to the above
* comments for discussion on -u references, which
*/are not tested for in the same manner.
*
if ((sdp->sd_flags &

(FLG SY MAPREF | FLG SY MAPUSED)) ==
FLG_SY_MAPREF)

sym undef _entry(ofl, sdp, UNDEF, FLG OF_WARN,

&undef _state);
undeferr = 1;

-

* Ok ok ok ok ok ok

If this synbol conmes from a dependency mark the dependency
as required (-z ignore can result in unused dependencies

bei ng dropped). If we need to record dependency versioning
information indicate what version of the needed shared object
this synbol is part of. Flag the synbol as undefined if it
has not been nmade available to us.

if ((sdp->sd_ref == REF_DYN_NEED) &&
(! (sdp->sd_flags & FLG SY_REFRSD))) {
sdp->sd_file->ifl_flags | = FLG | F_DEPREQD,

/*
* Capture that we’ve bound to a synbol that doesn't
* allow being directly bound to.

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 24
1511 */

1512 if (sdp->sd_flags & FLG SY_NDI R)

1513 of | =>of I _flagsl | = FLG OF1_NG.BDI R,

1515 if (sdp->sd_file->ifl_vercnt) {

1516 int vndx;

1517 Ver _i ndex *vip;

1519 vndx = sdp->sd_aux->sa_dver ndx;

1520 vip = &dp->sd_file->ifl verndx[vndx]

1521 if (vip->vi_flags & FLG VER AVAIL) {

1522 vip->vi _flags | = FLG VER REFER;

1523 } else {

1524 sym undef _entry(ofl, sdp, NOTAVAIL,
1525 FLG CF FATAL, &undef state);
1526 conti nue;

1527 }

1528 }

1529 }

1531 /*

1532 * Test that we do not bind to synbol supplied froman inplicit
1533 * shared object. If a binding is froma weak reference it can
1534 * be ignored.

1535 *

1536 if (needed & !'undeferr && (sdp->sd_flags & FLG SY_GLOBREF) &&
1537 (sdp->sd_ref == REF_DYN NEED) &&

1538 (sdp->sd_flags & FLG SY_NOTAVAI L))

1539 sym undef _entry(ofl, sdp, IMPLICIT, needed,

1540 &undef _state);

1541 if (needed == FLG OF FATAL)

1542 cont i nue;

1543 }

1545 /*

1546 * Test that a synbol isn't going to be reduced to |ocal scope
1547 * which actually wants to bind to a shared object - if so it's
1548 * a fatal error.

1549 */

1550 if ((sdp->sd_ref == REF_DYN NEED) &&

1551 (sdp->sd_fl ags & (FLG_SY_HI DDEN | FLG SY_PROTECT))) {
1552 sym undef _entry(ofl, sdp, BNDLOCAL, FLG OF_FATAL,
1553 &undef _state);

1554 cont i nue;

1I555] }

1557 1=

1558 * |f the output inage is to be versioned then all synbol
1559 * definitions nmust be associated with a version. Renpve any
1560 * versioning that mght be left associated with an undefined
1561 * synbol .

1562 *

1563 if (verdesc && (sdp->sd_ref == REF_REL_NEED)) {

1564 f (sym>st_shndx == SHN |_UNDEF) {

1565 if (sdp->sd_aux & sdp->sd_aux->sa_over ndx)
1566 sdp- >sd_aux- >sa_overndx = O;

1567 } else {

1568 if (!SYM.IS_H DDEN(sdp) && sdp->sd_aux &&
1569 (sdp->sd_aux- >sa_overndx == 0)) {

1570 sym undef _entry(ofl, sdp, NOVERSI ON,
1571 verdesc, &undef_state);

1572 conti nue;

53] }

1574 }

1575 }

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 25
1577 1=

1578 * |f we don’t need the synbol there’s no need to process it
1579 * any further.

1580 */

1581 f (sdp->sd_ref == REF_DYN_SEEN)

1582 cont i nue;

1584 /*

1585 * Calculate the size and ali gnment requi renents for the gl obal
1586 * .bss and .tls sections. |If we're building a relocatable
1587 * object only account for scoped COVMON synbols (these wll
1588 * be converted to .bss references).

1589 *

1590 * When -z nopartial is in effect, partially initialized
1591 * synbols are directed to the special .data section

1592 * created for that purpose (ofl->ofl _isparexpn).

1593 * Otherwise, partially initialized synbols go to .bss.

1594 *

1595 * Also refer to nake_nvsections() in sunwrove. c

1596 *

1597 if ((sym >st _shndx == SHN_COWON) &&

1598 (((oflags & FLG OF_RELOBJ) == 0) ||

1599 (SYM | S H DDEN(sdp) && - (oflags & FLG_OF_PROCRED)))) {
1600 if ((sdp->sd_nobve == NULL) ||

1601 ((sdp >sd_flags & FLG SY_PAREXPN) == 0)) {

1602 f (type I'= STT TLS) {

1603 need_bss = TRUE;

1604 bsssi ze = (Xwor d) S_ROUND(bsssi ze,
1605 sym >st_val ue) + sym >st_si ze;
1606 if (sym>st_value > bssalign)

1607 bssalign = sym >st_val ue;
1608 } else {

1609 need_t | sbss = TRUE;

1610 tlssize = (Xword) S ROUND(t! ssi ze,
1611 sym >st _val ue) + sym >st_si ze;
1612 if (sym>st_value > tlsalign)

1613 tlsalign = sym >st_val ue;
1614 }

1615 }

1616 }

1618 #if defi ned(_ELF64)

1619 [*

1620 * Calculate the size and alignnent requirenent for the gl obal
1621 * .lbss. TLS or partially initialized synbols do not need to be
1622 * consi dered yet.

1623 */

1624 if ((ld_targ.t_ mmmach == EM AMD64) &&

1625 (sym >st shndx == SHN X86_64_LCOVWON)) {

1626 need_| bss = TRUE;

1627 | bsssize = (Xword) S ROUND(| bsssi ze, sym >st_val ue) +
1628 sym >st _si ze;

1629 if (sym>st_value > |bssalign)

1630 | bssalign = sym >st_val ue;

1631 }

1632 #endi f

1633 /*

1634 * |f a synbol was referenced via the command |ine

1635 * (Id -u <> ...), then this counts as a reference against the
1636 * synbol . Mar k any section that synbol is defined in.

1637 */

1638 if (((isp = sdp->sd_isc) !=0) &&

1639 (sdp->sd_flags & FLG_SY_CMDREF))

1640 isp->is_flags | = FLG | S_SECTREF;

1641 isp->is_file->fl_flags | = FLG | F_FI LEREF;

1642 }

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 26

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676

1678
1679
1680
1681
1682
1683
1684
1685

1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697

1699
1700
1701
1702
1703
1704
1705
1706

1708

Update the synbol count and the associated nane string size.
Note, a capabilities synbol nust renmain as visible as a

gl obal synbol. However, the runtime |inker recognizes the

hi dden requirement and ensures the synbol isn't nmade globally
* avail abl e at runtime.

*

/
if (SYMIS_ H DDEN(sdp) && (oflags & FLG OF_PROCRED)) {
/*

* ok kb 3k

* |f any reductions are being processed, keep a count
* of elimnated synbols, and if the synbol is being

* reduced to local, count it's size for the .syntab.

*/

if (sdp->sd_flags & FLG SY_ELIM {
of | - >of | _el i ncnt ++;

} else {
of | - >of | _scopecnt ++;

if ((((sdp- >sdf|ags & FLG SY_REGSYM == 0)
sym >st_nane) && (st _insert(ofl->ofl _strtab,
sdp->sd_name) == -1))

return (S_ERROR);
if (allow |dynsym & sym >st_name &&
I dynsym synt ype[type]) {
of | - >of | _dynscopecnt ++;

if (st_insert(ofl->ofl _dynst rtab,

sdp- >sd_nane) == -1)
return (S_ERROR);
/* Include it in sort section? */
DYNSORT_COUNT(sdp, sym type, ++);

} else {
of | ->of | _gl obcnt ++;

/*
* Check to see if this global variable should go into
* a sort section. Sort sections require a
* . SUNW.I| dynsym section, so, don’'t check unless a
* _SUNWIdynsymis allowed.
*
f (all ow | dynsym)
NSORT_COUNT(sdp, sym type, ++);

* |f global direct bindings are in effect, or this

* synbol has bound to a dependency which was specified

* as requiring direct bindings, and it hasn't

* explicitly been defined as a non-direct binding

*/synbol, mark it.

if (((ofl->ofl dtflags_1 & DF_1_DIRECT) || (i
(isp->is_file->ifl_flags & FLG | F_DI RECT)
((sdp->sd_flags & FLG SY_ NDIR) == 0))

sdp->sd_flags |= FLG SY_D R;

sp &&
) &&

/*
* |Insert the synmbol nane.
*/

if (((sdp->sd_flags & FLG SY_REGSYM == 0) ||
sym >st _nane) {
if (st_insert(ofl->ofl_strtab,
sdp->sd_nane) == -1)
return (S_ERROR);

if (I(ofl->of| _flags & FLG OF RELOB)) &&

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 27

1709
1710
1711
1712

1714
1715
1716
1717
1718
1719
1720
1721
1722
1723

1725
1726
1727
1728
1729
1730
1731
1732
1733

1735
1736
1737
1738
1739
1740

1742
1743
1744
1745
1746
1747
1748

1750
1751
1752
1753
1754
1755
1756

1758
1759
1760

1762
1763
1764
1765
1766

1768
1769
1770
1771
1772
1773
1774

(st_insert(ofl->of | _dynstrtab,
sdp->sd_nane) == -1))
return (S_ERROR);

}
/*
* |f this section offers a global synbol - record that
* fact.
*/
if (isp) {
isp->is_flags | = FLG | S_SECTREF;
isp->is_file->fl_flags | = FLG | F_FI LEREF;
}
}
}
/*

* Quidance: Use -z defs|nodefs when building shared objects.
*

* Qur caller issues this, unless we mask it out here. So we mask it
* out unless we've issued at |east one warnings or fatal error.
*/

if (!((ofl ags & FLG OF SHAROBJ) && OFL_GUI DANCE(of I ,
(undef _state & (FLG OF_FATAL | FLG.OF_WARN))))
of I->of | _gui defTags | = FLG_OFG_NO_DEFS;

FLG OFG NO DEFS) &&

/*

* |f we’ve encountered a fatal error during synbol validation then
* return now.

*

if (ofl->ofl_flags & FLG OF_FATAL)
return (1);

/*

* Now t hat synbol resolution is conpleted, scan any register synbols.
* From now on, we're only interested in those that contribute to the
* output file.

*/

if (ofl->ofl regsyms) {
int ndx;

for (ndx = 0; ndx < ofl->ofl_regsynmsno; ndx++)
if ((sdp = ofl->ofl _regsyms[ndx]) == NULL)
cont i nue;
if (sdp->sd_ref !|= REF_REL_NEED) {
of | ->of | _regsyns[ndx] = NULL;

conti nue;
}
of | ->of | _regsyntnt ++;
if (sdp->sd_sym >st_name == 0

sdp->sd_nanme = MSG_ORI G MSG_STR_EMPTY) ;

if (SYM.IS_H DDEN(sdp) |
(ELF_ST_BI ND(sdp- >sd_sym >st _i nfo) == STB_LOCAL))
of | =>of | _| regsyntnt ++;

}

/*

* Cenerate the .bss section now that we know its size and alignnent.
*

/
if (need_bss) {

if (l1d_make bss(ofl bsssi ze, bssalign,
ld_targ.t_id.id_bss) == S _ERROR)
return (S_ERROR);

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 28
1775 }

1776 if (need_tlsbss) {

1777 if (1d_make_bss(ofl, tlssize, tlsalign,

1778 ld_targ.t_id.id_tlsbss) == S ERROR)

1779 return (S_ERROR);

1780 }

1781 #if defi ned(_ELF64)

1782 if ((Id_targ.t_mmmach == EM AMD64) &&

1783 need_| bss && ! (of | ags & FLG OF RELOBJ))

1784 if (1d_make_bss(ofl, |bsssize, |bssalign,

1785 ld_targ.t_id.i d_I bss) == S_ERRO?)

1786 return (S_ERROR);

1787 }

1788 #endi f

1789 I*

1790 * Determ ne what entry point synmbol we need, and if found save its
1791 * synbol descriptor so that we can update the ELF header entry with the
1792 * synbols value | ater (see update_oehdr). Make sure the synbol is
1793 * tagged to ensure its update in case -s is in effect. Use any -e
1794 * option first, or the default entry points ‘_start’ and ‘main’.
1795 */

1796 ret = 0;

1797 if (ofl->ofl_entry) {

1798 if ((sdp = ld_symfind(ofl->ofl_entry, SYM NOHASH,

1799 NULL, ofl)) == NULL)

1800 Id_eprintf(ofl, ERR FATAL, MSG_| NTL(MSG_ARG _NCENTRY),
1801 of | ->of | _entry);

1802 ret ++;

1803 } else if (ensure_symlocal (ofl, sdp,

1804 G_| NTL(MSG_SYM ENTRY)) != 0) {

1805 ret++;

1806 } else {

1807 of | ->of | _entry = (void *)sdp;

1808 }

1809 } else if (((sdp = ld_symfind(MG CRIG(NSG SYM START) ,

1810 SYM NOHASH, NULL, ofl)) !'= NULL) && (ensure_sym| ocal (of I,

1811 sdp, 0) == 0))

1812 ofl ->of | _entry = (void *)sdp;

1814 } elseif (((sdp—ld symfmd(NBGCRIG(MSGSYMNAIN)

1815 SYM NOHASH, NULL, ofl)) !'= NULL) && (ensure_sym| ocal (ofl,

1816 sdp, 0) == 0)) {

1817 of | ->of | _entry = (void *)sdp;

1818 1

1820 /*

1821 * |f Id -zdtrace=<sym> was given, then validate that the synbol is
1822 * defined within the current object being built.

1823 *

1824 if ((sdp = ofl->ofl_dtracesym != 0)

1825 ret += ensure_sym|ocal (ofl, sdp, MSG OR G MSG _STR DTRACE));
1827 /*

1828 * If any initarray, finiarray or preinitarray functions have been
1829 * requested, make sure they are defined within the current object
1830 * being built.

1831 */

1832 if (ofl->ofl_initarray) {

1833 ret += ensure_array_|ocal (ofl, ofl->ofl_initarray,

1834 MSG_ORI G{ MSG_SYM | NI TARRAY)) ;

1835 1

1836 if (ofl->ofl _finiarray) {

1837 ret += ensure_array_|ocal (ofl, ofl->ofl_finiarray,

1838 MSG_ORI G(MSG_SYM FI NI ARRAY)) ;

1839 1

1840 if (ofl->of | _preiarray) {

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢

1841 ret += ensure_array_|ocal (ofl, ofl->ofl_preiarray,

1842 MBG_ORI G M5G_SYM PREI NI TARRAY)) ;

1843 }

1845 if (ret)

1846 return (S_ERROR);

1848 /*

1849 * |f we're required to record any needed dependenci es versioning
1850 * information calculate it now that all synmbols have been vali dated.
1851 */

1852 if ((oflags & (FLG OF VERNEED | FLG OF NOVERSEC)) == FLG OF VERNEED)
1853 return (1d_vers_check_need(ofl));

1854 el se

1855 return (1);

1856 }

1858 /*

1859 * gsort(3c) conparison function. As an optim zation for associating weak
1860 * synbols to their strong counterparts sort global synbols according to their
1861 * section index, address and bindi ng.

1862 */

1863 static int

1864 ?onpare(const voi d *sdppl, const void *sdpp2)

1865

1866 Sym desc *sdpl = *((Sym.desc **)sdppl);

1867 Sym desc *sdp2 = *((Sym.desc **)sdpp2);

1868 Sym *syml, *syn®;

1869 uchar _t bi nd1, bind2;

1871 /*

1872 * Synbol descriptors may be zero, nove these to the front of the
1873 * sorted array.

1874 */

1875 if (sdpl == NULL)

1876 return (-1);

1877 if (sdp2 == NULL)

1878 return (1);

1880 syml = sdpl->sd_sym

1881 syn2 = sdp2->sd_sym

1883 /*

1884 * Conpare the synbols section index. This is inportant when sorting
1885 * the synbol tables of relocatable objects. In this case, a synbols
1886 * value is the offset within the associated section, and thus many
1887 * synbol s can have the sanme value, but are effectively different
1888 * addresses.

1889 *

1890 if (syml->st_shndx > syn®2->st_shndx)

1891 return (1);

1892 if (syml->st_shndx < syn2->st_shndx)

1893 return (-1);

1895 /*

1896 * Conpare the synbols val ue (address).

1897 */

1898 if (syml->st_value > syn2->st_val ue)

1899 return (1);

1900 if (syml->st_val ue < syn2->st_val ue)

1901 return (-1);

1903 bi nd1 = ELF_ST_BI ND(syni- >st _i nfo);

1904 bi nd2 = ELF_ST_BI ND(syn®->st _i nfo);

1906 /*

new usr/src/cnd/ sgs/1i bl d/ common/ syns. ¢

1907
1908
1909
1910
1911
1912
1913

1915
1916 }
/

1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932

I T
-~

* |f two synbols have the sane address place the weak synbol before

* any strong counterpart.
*/

if (bindl > bind2)
return (-1);

if (bindl < bind2)
return (1);

return (0);

| ssue a MSG_SYM BADADDR error from | d_sym process(). This error
is issued when a synbol address/size is not contained by the
target section.

Such objects are at least partially corrupt, and the user would
be wel | advised to be skeptical of them and to ask their conpiler
supplier to fix the problem However, a distinction needs to be
made between synbols that reference readonly text, and those that
access witable data. Other than throwi ng off profiling results,
the readonly section case is |ess serious. We have encountered
such objects in the field. In order to allow existing objects

to continue working, we issue a warning rather than a fatal error
if the synbol is against readonly text. Cther cases are fatal.

1933 static void
1934 issue_badaddr_mnsg(Ifl_desc *ifl, Ol _desc *ofl, Symdesc *sdp,

1935
1936 {
1937
1938

1940
1941
1942
1943
1944
1945
1946
1947

1949
1950
1951
1952
1953 }
/

1955
1956
1957
1958
1959
1960

*
*
*
*
*

Sym *sym Word shndx)

Error err;
const char *neQ;

if ((sdp->sd_isc->is_shdr->sh_flags & (SHF_WRITE | SHF_ALLOQ)) ==
SHF_ALLCC) {
msg = MBG | NTL(MSG_SYM BADADDR ROTXT) ;
err = ERR_WARNI NG
} else {
msg = MBG | NTL(MSG_SYM BADADDR) ;
err = ERR_FATAL
}

Id_eprintf(ofl, err, msg, demangl e(sdp->sd_nane),
1fl->fl_name, shndx, sdp->sd_isc->is_naneg,
EC_XWORD(sdp- >sd_i sc- >i s_shdr - >sh_si ze),
EC_XWORD(sym >st _val ue), EC _XWORD(sym >st_si ze));

G obal synbols that are candidates for translation to |ocal capability
synbol s under -z synbol cap, are maintained on a |local synbol list. Once
all synmbols of a file are processed, this list is traversed to cull any

unnecessary weak synbol ali ases.
o/

1961 typedef struct {

1962
1963
1964
1965

Sym desc *c_nsdp; /* new | ead synbol */

Sym desc *c_osdp; /* original synbol */
Cap_group *c_group; /* synbol capability group */
Wor d c_ndx; /* synbol index */

1966 } Cap_pair;

1968 /
1969
1970
1971
1972

* Ok Ok Ok %

Process the synbol table for the specified input file. At this point all
input sections fromthis input file have been assigned an input section
descriptor which is saved in the ‘ifl_isdesc’ array.

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 31 new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 32
1973 * - l ocal synbols are saved (as is) if the input file is a relocatable 2039 return (1);
1974 * obj ect
1975 * 2041 if (isc->is_synshndx)
1976 * - gl obal synbols are added to the linkers internal symbol table if they 2042 symshndx = isc->i s_synmshndx->i s_i ndat a- >d_buf;
1977 * are not already present, otherwi se a synbol resolution function is
1978 * call ed upon to resol ve the conflict. 2044 DBG_CALL(Dbg_syns_process(ofl->of | _Inml, ifl));
1979 */
1980 uintptr_t 2046 synmsecndx = isc->is_scnndx;
1981 | d_sym process(ls_desc *isc, Ifl_desc *ifl, Ol _desc *ofl) 2047 if (isc->is_nane)
1982 { 2048 synsechane = isc->i s_nane;
1983 I* 2049 el se
1984 * This macro tests the given synbol to see if it is out of 2050 synmsecnane = MSG ORI G MSG_STR_EMPTY) ;
1985 * range relative to the section it references.
1986 * 2052 /*
1987 * entry: 2053 * Fromthe synbol tables section header information determ ne which
1988 * - ifl is arelative object (ET_REL) 2054 * strtab table is needed to locate the actual synmbol nanes.
1989 * _sdp - Synbol descriptor 2055 */
1990 * _sym - Synbol 2056 if (ifl->fl_flags & FLG | F_HSTRTAB) {
1991 * _type - Synbol type 2057 ndx = shdr—>sh_l i nk;
1992 kd 2058 if ((ndx == 0) || (ndx >=ifl->ifl_shnum) {
1993 * The following are tested: 2059 Id eprl ntf(ofl, ERR FATAL,
1994 * - Synbol length is non-zero 2060 G_| NTL(MSG_FI LI NVSHLI NK), ifl->ifl_name,
1995 * - Symbol type is a type that references code or data 2061 EC_WRD(symsecndx) symsecnanme, EC XWORD(ndx));
1996 * - Referenced section is not 0 (indicates an UNDEF synbol) 2062 return (S_ERROR);
1997 * and is not in the range of special values above SHN LORESERVE 2063 }
1998 * (excludi ng SHN_XI NDEX, which is OK). 2064 strsi ze = ifl->ifl_isdesc[ndx]->is_shdr->sh_size;
1999 * - W have a valid section header for the target section 2065 strs = ifl->ifl_isdesc[ndx]->s_indata->d_buf;
2000 * 2066 if (ifl->ifl_i sdesc[ndx] - >i s narre)
2001 * |f the above are all true, and the synbol position is not 2067 strsecnane = ifl->i fT_i sdesc[ndx]->i s_nane;
2002 * contained by the target section, this macro evaluates to 2068 el se
2003 * True (1). O herwi se, False(0). 2069 strsecname = MSG ORI G MSG_STR_EMPTY) ;
2004 */ 2070 } else {
2005 #define SYM LOC_BADADDR(_sdp, _sym _type) \ 2071 /*
2006 (_sym >st _si ze && dynsynsort_synt ype[_type] &&\ 2072 * There is no string table section in this input file
2007 (Zsym >st_shndx != SHN UNDEF) && \ 2073 * al though there are synbols in this synmbol table section.
2008 ((_sym>st_shndx < SHN_LORESERVE) || \ 2074 * This means that these synbols do not have names.
2009 (_sym >st_shndx == SHN_XI NDEX)) && \ 2075 * Currently, only scratch register synbols are allowed
2010 _sdp->sd_i sc & _sdp->sd_isc->is_shdr && \ 2076 * not to have nanes.
2011 ((_sym >st_value + _sym >st_size) > _sdp->sd_isc->is_shdr->sh_size)) 2077 */

2078 strsize = 0;
2013 Conv_i nv_buf _t inv_buf; 2079 strs = (char *)MSG_ ORI G(MSG_STR _EMPTY) ;
2014 Sym *sym = (Sym *)isc->i s_i ndat a- >d_buf ; 2080 strsecname = MSG ORI G(MSG_STR_ENPTY) ;
2015 Wor d *synmshndx = NULL; 2081 }
2016 Shdr *shdr = isc->is_shdr;
2017 Sym desc *sdp; 2083 /*
2018 size_t strsize; 2084 * Determ ne the nunber of |ocal synbols together with the total
2019 char *strs; 2085 * nunber we have to process.
2020 uchar _t type, bind; 2086 */
2021 Vord ndx, hash, local, total; 2087 total = (Wrd)(shdr->sh_size / shdr->sh_entsize);
2022 uchar _t osabi = ifl->ifl_ehdr->e_ident[El _CSABI]; 2088 l ocal = shdr->sh_info;
2023 Hal f mach = ifl->ifl_ehdr->e_machine;
2024 Hal f etype = ifl->ifl_ehdr->e_type; 2090 /*
2025 int etype_rel; 2091 * Allocate a synbol table index array and a | ocal synbol array
2026 const char *synsecnanme, *strsecnane; 2092 * (gl obal synbols are processed and added to the ofl->of | _synbkt[]
2027 Wor d synsecndx; 2093 * array). |If we are dealing with a relocatable object, allocate the
2028 avl _i ndex_t wher e; 2094 * | ocal synbol descriptors. |If this isn't a relocatable object we
2029 int test _gnu_hi dden_bi t, weak; 2095 * still have to process any shared object locals to determne if any
2030 Cap_desc *cdp = NULL; 2096 * register synbols exist. Al though these aren’t added to the output
2031 All st *cappairs = NULL; 2097 * image, they are used as part of synbol resolution.

2098 *
2033 I* 2099 f ((ifl->ifl_oldndx = 1ibld_malloc((size_t)(total *
2034 * |ts possible that a file may contain nore that one synbol table, 2100 si zeof (Symdesc *)))) == NULL)
2035 * ie. .dynsymand .syntab in a shared library. Only process the first 2101 return (S_ERROR);
2036 * table (here, we assune .dynsym cones before .syntab). 2102 etype_rel = (etype == ET_REL);
2037 */ 2103 if (etype_rel &% local) {
2038 if (ifl->ifl_synmscnt) 2104 if ((ifl->fl_locs =

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 33

2105 libld_calloc(sizeof (Symdesc), local)) == NULL)

2106 return (S_ERROR);

2107 /* LINTED */

2108 ifl->ifl_locscnt = (Wrd)local;

2109 }

2110 ifl->fl_symscnt = total;

2112 /*

2113 * |f there are local synbols to save add themto the synbol table
2114 * index array.

2115 */

2116 if (local) {

2117 int al l ow_| dynsym = OFL_ALLOW LDYNSYM of |) ;

2118 Sym desc *last _file_sdp = NULL;

2119 int last _file_ndx = 0;

2121 for (symr+, ndx = 1; ndx < |ocal; symt+, ndx++) {

2122 sd_flag_t sdf l ags = FLG_SY_CLEAN,

2123 Wor d shndx;

2124 const char *nare;

2125 Sym desc *rsdp;

2126 i nt shndx_bad = O;

2127 int syntab_enter = 1;

2129 /*

2130 * Determne and validate the associated section index.
2131 */

2132 if (symshndx && (sym >st_shndx == SHN_XI NDEX)) {

2133 shndx = synshndx[ndx] ;

2134 } else if ((shndx = sym >st shndx) >= SHN_LORESERVE) ({
2135 sdf | ags | = FLG_SY_SPECSEC;

2136 } else if (shndx > ifl->ifl_shnum {

2137 /* We need the name before we can issue error */
2138 shndx_bad = 1;

2139 }

2141 /*

2142 * Check if st_nane has a valid value or not.

2143 */

2144 if ((name = string(ofl, ifl, sym strs, strsize, ndx,
2145 shndx, synmsecndx, synsecnane, strsecnane,

2146 &sdflags)) == NULL)

2147 cont i nue;

2149 /*

2150 * Now that we have the nane, if the section index
2151 * was bad, report it.

2152 */

2153 if (shndx_bad) {

2154 Id_eprintf(ofl, ERR WARNI NG,

2155 MSG_| NTL(MSG_SYM | NVSHNDX) ,

2156 demangl e_symane(name, synsecnanme, ndx),
2157 ifl->ifl_nane,

2158 conv_sym shndx(osabi, mach, sym >st_shndx,
2159 CONV_FMI_DECI VAL, & nv_buf));

2160 conti nue;

2161 }

2163 /*

2164 * If this |ocal syrrbol table originates froma shared
2165 * object, then we're only interested in recording
2166 * register synbols. As |ocal synbol descriptors aren’t
2167 * allocated for shared objects, one will be allocated
2168 * to associated with the register synmbol. This synbol
2169 * won’'t becone part of the output image, but we nust
2170 * process it to test for register conflicts.

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 34
2171 */

2172 rsdp = sdp = NULL

2173 if (sdfl ags & FLG SY_REGSYM {

2174 /*

2175 * The presence of FLG SY_REGSYM neans t hat
2176 * the pointers in Id_targ.t_ns are non- NULL.
2177 */

2178 rsdp = (*ld_targ.t_ns.ns_reg_find)(sym ofl);
2179 if (rsdp !'=0) {

2180 /*

2181 * The fact that another register def-
2182 * inition has been found is fatal.
2183 * Call the verification routine to get
2184 * the error nessage and nove on.

2185 */

2186 (void) (*ld_targ.t_mns.nms_reg_check)
2187 (rsdp, sym nane, ifl, ofl);

2188 conti nue;

2189 }

2191 if (etype == ET_ YN) {

2192 if ((sdp l'ibld_calloc(

2193 sizeof (Symdesc), 1)) == NULL)
2194 return (S_ ERRCR)

2195 sdp->sd_ref = REF_DYN SEEN,

2197 /* WII not appear in output object */
2198 syntab_enter = 0;

2199 }

2200 } else if (etype == ET_DYN

2201 cont i nue;

2203 /*

2204 * Fill in the remaining synmbol descriptor information.
2205 */

2206 if (sdp == NULL) {

2207 dp-&(lfl->|f| _locs[ndx]);

2208 sdp->sd_ref = REF_REL_NEED;

2209 sdp- >sd_symdx = ndx;

2210 }

2211 if (rsdp == NULL) {

2212 sdp- >sd_nane = nane;

2213 sdp->sd_sym = sym

2214 sdp- >sd_shndx = shndx;

2215 sdp->sd_fl ags = sdfl ags;

2216 sdp->sd_file = ifl;

2217 ifl->ifl_ol dndx[ndx] = sdp;

2218 }

2220 DBG CALL(Dbg_syns_entry(ofl->ofl _Inl, ndx, sdp));

2222 /*

2223 * Reclassify any SHN_SUNW.I| GNORE synbol s to SHN_UNDEF
2224 * so as to sinplify future processing.

2225 */

2226 if (sym>st_shndx == SHN SUN\NIG\IOQE)

2227 sdp->sd shndx = shndx = SHN_UNDEF;

2228 sdp->sd_flags |= (FLG SY_IGNORE | FLG SY_ELIM;
2229 }

2231 /*

2232 * Process any register synbols.

2233 */

2234 if (sdp->sd_flags & FLG SY_REGSYM {

2235 /*

2236 * Add a diagnostic to indicate we've caught a

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 35

2237
2238
2239
2240

2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253

2255
2256
2257
2258
2259
2260

2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272

2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289

2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302

* register synbol, as this can be useful if a
* register conflict is later discovered.
*/

DBG CALL(Dbg_syns_entered(ofl, sym sdp));

/~k
If this register synbol hasn’t already been
recorded, enter it now.

*
*
*
* The presence of FLG SY_REGSYM neans that
* the pointers in Id_targ.t_ns are non- NULL.
*
if ((rsdp == NULL) &&
((*ld_targ.t_ms.ms_reg_enter)(sdp, ofl) ==
0))

return (S_ERROR);
}

/*
* Assign an input section.
*

if ((sym>st_shndx != SHN UNDEF) &&
((sdp->sd_flags & FLG SY_SPECSEC) == 0))
sdp->sd_isc = ifl->ifl_isdesc[shndx];

/*

* If this synbol falls within the range of a section
* being discarded, then discard the synbol itself.

* There is no reason to keep this local synbol.

*/

if (sdp->sd_isc &&

(sdp->sd_isc->s_flags & FLG IS DI SCARD)) {
sdp->sd_flags | = FLG SY_I SDI SC,
DBG_CALL(Dbg_syns_di scarded(of | ->of | _I m, sdp));
conti nue;

}

/*
* Skip any section synbols as new versions of these
* will be created.
*
/
if ((type = ELF_ST_TYPE(sym >st_info)) == STT_SECTION) {
if (sym>st_shndx == SHN_UNDEF) {
Id_eprintf(ofl, ERR WARNI NG
MSG_| NTL(MSG_SYM | NVSHNDX) ,
denangl e_symane(nanme, synsecnane,
ndx), ifl->ifl_nane,
conv_sym shndx(osabi, mach,
sym >st _shndx, CONV_FMT_DECI MAL,
& nv_buf));

cont i nue;

}

/

For a relocatable object, if this synbol is defined
and has non-zero |length and references an address

wi thin an associ ated section, then check its extents

*
*
*
*
* to make sure the section boundaries enconpass it.
* |f they don’t, the ELF file is corrupt.

*

/
if

(etype_rel) {
if (SYM_LOC BADADDR(sdp, sym type)) {
i ssue_badaddr _nmsg(ifl, ofl, sdp,
sym shndx);
if (ofl->ofl _flags & FLG OF_FATAL)

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 36
2303 conti nue;

2304 }

2306 /*

2307 * We have observed rel ocatabl e objects

2308 * containing identical adjacent STT_FILE
2309 * synbols. Discard any other than the first,
2310 * as they are all equivalent and the extras
2311 * do not add infornation.

2312 *

2313 * For the purpose of this test, we assune
2314 * that only the synbol type and the string
2315 * table offset (st_nanme) natter.

2316 */

2317 if (type == STT_FILE) {

2318 int toss = (last_file_sdp != NULL) &&
2319 ((ndx - 1) == last_file_ndx) &&
2320 (sym >st _name ==

2321 | ast_file_sdp->sd_sym >st_nane);
2323 last _file_sdp = sdp;

2324 last_file_ndx = ndx;

2325 if (toss) {

2326 sdp->sd_flags | = FLG_SY_I NVALI D;
2327 DBG_CALL(Dbg_syns_dup_di scar ded(
2328 of | ->of | _I ml, ndx, sdp));
2329 conti nue;

2330 }

2331 }

2332 }

2335 /*

2336 * Sanity check for TLS

2337 */

2338 if ((sym>st_size !=0) & ((type == STT_TLS) &&

2339 (sym >st_shndx !'= SHN COWN))) {

2340 I's_desc *isp = sdp->sd_isc;

2342 if ((isp == NULL) || (isp->is_shdr == NULL) ||
2343 ((isp->is_shdr->sh_flags & SHF_TLS) == 0)) {
2344 Id_eprintf(ofl, ERR FATAL,

2345 MSG_| NTL(MSG_SYM TLS),

2346 demangl e(sdp- >sd_nane),

2347 ifl->fl_nane);

2348 conti nue;

2349 }

2350 }

2352 /*

2353 * Carry our sonme basic sanity checks (these are just
2354 * sone of the erroneous synmbol entries we' ve cone
2355 * across, there's probably a ot nore). The synbol
2356 * will not be carried forward to the output file, which
2357 * won't be a problemunless a relocation is required
2358 * against it.

2359 */

2360 if (((sdp->sd_flags & FLG SY_SPECSEC) &&

2361 ((sym >st _shndx == SHN_COWON)) ||

2362 ((type == STT_FILE) &&

2363 (sym>st_shndx != SHN ABS))) |

2364 (sdp->sd_i sc && (sdp->sd_i sc->s_osdesc == NULL))) {
2365 Id_eprintf(ofl, ERR WARNI NG

2366 MSG_I NTL(MSG_SYM_| NVSHNDX) ,

2367 dermangl e_symane(nane, synsecnane, ndx),
2368 ifl->ifl_nane,

new usr/src/cnd/ sgs/1i bl d/ conmon/ syns. ¢ 37 new usr/src/cnd/ sgs/1i bl d/ common/ syns. ¢ 38
2369 conv_sym shndx(osabi, mach, sym >st_shndx, 2435 for (ndx = (int)local; ndx < total; symt+, ndx++) {
2370 CONV_FMI_DECI MAL, & nv buf)) 2436 const char *nane;
2371 sdp->sd_i sc = NULL; 2437 sd_flag_t sdfl ags = O;
2372 sdp->sd_flags | = FLG SY_I NVALI D; 2438 Word shndx;
2373 conti nue; 2439 int shndx_bad =
2374 } 2440 Sym *nsym = sym
2441 Cap_pai r *cpp = NULL;
2376 /* 2442 uchar _t ntype;
2377 * As these local synbols will beconme part of the output
2378 * image, record their nunber and name string size. 2444 /*
2379 * G obals are counted after all input file processing 2445 * Determ ne and validate the associated section index.
2380 * (and hence synbol resolution) is conplete during 2446)
2381 * symvalidate(). 2447 if (symshndx && (nsym >st_shndx == SHN_XI NDEX)) {
2382 */ 2448 shndx = symshndx[ndx] ;
2383 if (!(ofl->ofl_flags & FLG OF_REDLSYM && 2449 } else if ((shndx = nsym >st shndx) >= SHN_LORESERVE) {
2384 synmtab_enter) { 2450 sdfl ags | = FLG_SY_SPECSEC;
2385 of | ->of | _| ocscnt ++; 2451 } else if (shndx > ifl->ifl_shnum {
2452 /* W need the nane before we can issue error */
2387 if ((((sdp->sd_flags & FLG SY_REGSYM == 0) || 2453 shndx_bad = 1;
2388 sym >st_nane) && (st _insert(ofl->ofl _strtab, 2454 }
2389 sdp->sd_name) == -1))
2390 return (S_ERROR); 2456 l*
2457 * Check if st_nane has a valid value or not.
2392 if (allow_|dynsym & sym >st_name && 2458 */
2393 | dynsym synt ype[type]) { 2459 if ((name = string(ofl, ifl, nsym strs, strsize, ndx, shndx,
2394 of | - >of | _dynl ocscnt ++; 2460 synmsecndx, synmsecnane, strsecnane, &sdflags)) == NULL)
2395 i f (st_insert(ofl->of i _dynstrt ab, 2461 conti nue;
2396 sdp- >sd_nane) == -1)
2397 return (S_ERROR); 2463 /*
2398 /* Include it in sort section? */ 2464 * Now that we have the name, report an erroneous section index.
2399 DYNSORT_COUNT(sdp, sym type, ++); 2465 */
2400 } 2466 if (shndx_bad) {
2401 } 2467 Id_eprintf(ofl, ERR WARNI NG, MSG_| NTL(MSG_SYM | NVSHNDX) ,
2402 } 2468 denmangl e_syrmane(nanme, synsechane, ndx),
2403 } 2469 ifl->fl_nane,
2470 conv_sym shndx(osabi, mach, nsym >st_shndx,
2405 [* 2471 CONV_FMI_DECI MAL, & nv_buf));
2406 * The GNU Id interprets the top bit of the 16-bit Versym val ue 2472 conti nue;
2407 * (0x8000) as the "hidden" bit. If this bit is set, the |inker 2473 }
2408 * is supposed to act as if that symbol does not exist. The Solaris
2409 * |inker does not support this mechanism or the nodel of interface 2475 =
2410 * evolution that it allows, but we honor it in G\NUId produced 2476 * Test for the GNU hidden bit, and ignore synbols that
2411 * objects in order to interoperate with them 2477 * have it set.
2412 * 2478 */
2413 * Determine if we should honor the GNU hidden bit for this file. 2479 if (test_gnu_hidden_bit &&
2414 */ 2480 ((ifl->ifl_versyn{ndx] & 0x8000) != 0))
2415 test_gnu_hidden_bit = ((ifl->fl_flags & FLG IF_GNUVER) != 0) && 2481 conti nue;
2416 (1 fl->ifl versym 1= NULL);
2483 /*
2418 /* 2484 * The linker itself will generate synbols for _end, _etext,
2419 * Determ ne whether object capabilities for this file are being 2485 * _edata, _DYNAM C and _PROCEDURE_LI NKAGE TABLE , so don't
2420 * converted into synbol capabilities. |If so, global function synbols, 2486 * Dot her entering these synbols from shared obj ects. This
2421 * and initialized global data synbols, need special translation and 2487 * results in some wasted resol ution processing, which is hard
2422 * processing. 2488 * to feel, but if nothing else, pollutes diagnostic relocation
2423 */ 2489 * out put .
2424 if ((etype == ET_REL) && (ifl->ifl_flags & FLG | F_OTOSCAP)) 2490 *
2425 cdp = ifT->ifl_caps; 2491 f (nane[0] && (etype == ET_DYN) && (nsym >st_size == 0) &&
2492 (ELF_ST_TYPE(nsym >st _info) == STT_CBJ ECT) &&
2427 /* 2493 (name[0] =="_") && ((name[1l] == "e’) ||
2428 * Now scan the gl obal synmbols entering themin the internal synbol 2494 (name[1] =="'D) || (pame[l] == "P"))
2429 * table or resolving them as necessary. 2495 ((strcnp(name, MSG ORI G MSG_SYM ETEXT U)) == 0) ||
2430 */ 2496 (strcnp(nanme, MSG ORI G MSG_SYM EDATA U)) == 0) ||
2431 sym = (Sym *)i sc->i s_i ndat a- >d_buf ; 2497 (strcnp(nanme, MSG ORI G{MSG_SYM END U)) = O) | |
2432 sym += | ocal ; 2498 (strcnp(name, MSG_ ORI G{ MSG_SYM DYNAM C U)) == 0) ||
2433 weak = 0; 2499 (strcnp(nane, MSG ORI G{MSG SYM PLKTBL_U)) == 0))) {
2434 /* LINTED */ 2500 i fl->ifl_ol dndx[ndx] = 0;

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 39

2501
2502

2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518

2520
2521
2522
2523
2524
2525
2526
2527
2528

2530
2531
2532
2533
2534
2535
2536
2537

2539
2540
2541
2542
2543
2544

2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558

2560
2561
2562
2563
2564
2565
2566

conti nue;

The -z wrap=XXX option emulates the GNU Id --w ap=XXX
option. Wien XXX is the synbol to be w apped:

- An undefined reference to XXX is converted to ap_XXX
- An undefined reference to __real XXX is converted to XXX

*
*
*
*
*
*
*
* The idea is that the user can supply a wapper function
* __wap_XXX that does some work, and then uses the name
* _real _XXX to pass the call on to the real function. The
* wrapper objects are linked with the original unnodified
* objects to produce a w apped version of the output object.
*
f (ofl->of | _wap && nanme[0] && (shndx == SHN_UNDEF)) {

W apSynmNode wsn, *wsnp;

/*

* If this is the __real XXX form advance the
* pointer to reference the w apped nane.

*/

wsn. wsn_nane = nare;
if ((*nane ==" &&
(strncnp(name, MSG ORI G(MSG_STR UU REAL_U),
MSG STR UU REAL_U SI ZE) ==
wsn. wsn_nanme += MSG STR UU REAL_U Sl ZE;

* Is this synbol in the wap AVL tree? |If so, map
* XXX to __wap_XXX, and real _XXX to XXX. Note that

* wsn.wsn_name will equal the current value of name

* if the __real_ prefix is not present.

*/

if ((wsnp = avl _find(ofl->ofl _wap, &sn, 0)) != NULL) {

const char *ol d_nane = nane;

name = (Wsn.wsn_nanme == nane) ?
WSNp- >WSN_Wr apname : Wsn. Wsn_narme;
DBG_CALL(Dbg_syms_wr ap(of | ->of | _Tni, ndx,
ol d_nare, nane));

}

/*
* Determine and validate the synbols binding.
*/
bind = ELF_ST_BI ND(nsym >st _i nf o) ;
if ((bind T= STB_GLOBAL) && (bind != STB_WEAK)) {
Id_eprintf(ofl, ERR_WARNING MSG_| NTL(MSG_SYM NONGLOB),
demangl e_syrmane(name, synsechane, ndx),
ifl->ifl_nane,
conv_sym i nfo_bind(bind, 0, & nv_buf));
conti nue;

}
if (bind == STB_WEAK)
weak++;

*

* If this synbol falls within the range of a section being
* discarded, then discard the synbol itself.
*
/
if (((sdflags & FLG SY_SPECSEC) == 0) &&
(nsym >st _shndx != SHN_UNDEF)) {
| s_desc *isp;

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 40
2568 if (shndx >= ifl->ifl_shnum {

2569 /*

2570 * Carry our some basic sanity checks

2571 * The synmbol will not be carried forward to
2572 * the output file, which won't be a problem
2573 * unless a relocation is required against it.
2574 *

2575 Id eprlntf(ofl ERR_WARNI NG,

2576 INTL(NBG SYM | NVSHNDX) ,

2577 dermngl e_symane(nane, synsecname, ndx),
2578 ifl->ifl_nane,

2579 conv_sym shndx(osabi, mach, nsym >st_shndx,
2580 _FMI_DECI MAL, &i nv_buf));

2581 conti nue;

2582 }

2584 isp = ifl->fl_isdesc[shndx];

2585 if (isp & (isp- >|sflags&FLGISD|SO-\RD)) {

2586 if ((sdp =

2587 l'i bl d_cal | oc(sizeof (Symdesc), 1)) == NULL)
2588 return (S_ERROR);

2590 /*

2591 * Create a dummy synbol entry so that if we
2592 * find any references to this discarded synbol
2593 * we can conpensate.

2594 */

2595 sdp->sd_nane = nang;

2596 sdp->sd_sym = nsym

2597 sdp->sd_file = ifl;

2598 sdp->sd_i sc = isp

2599 sdp->sd_flags = FLG_ SY 1 SDI SC;

2600 i fl->ifT_ol dndx[ndx] = sdp;

2602 DBG _CALL(Dbg_syns_di scarded(of | ->of | _Iml, sdp));
2603 conti nue;

2604 }

2605 }

2607 /*

2608 * |f object capabilities for this file are being converted
2609 * into synmbol capabilities, then:

2610 *

2611 * - Any gl obal function, or initialized global data synbol
2612 * definitions (ie., those that are not associated with
2613 * speci al synbol types, ie., ABS, COWON, etc.), and which
2614 X have not been reduced to locals, are converted to synbol
2615 * references (UNDEF). This ensures that any reference to
2616 * the original symbol, for exanple froma relocation, get
2617 * associated to a capabilities famly |ead synbol, ie., a
2618 * generic instance.

2619 *

2620 *oo- For each gl obal function, or object synbol definition,
2621 * a new | ocal synmbol is created. The function or object
2622 * is renanmed using the capabilities CA SUNWID definition
2623 * (whi ch mi ght have been fabricated for this purpose -
2624 * see get_cap_group()). The new synbol nane is:

2625 *

2626 * <ori gi nal nanme>%<capability group identifier>

2627 *

2628 L This synbol is associated to the sanme |ocation, and
2629 * beconmes a capabilities fam |y nmenber.

2630 */

2631 /* LI NTED */

2632 hash = (Word)el f _hash(nane);

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 41

2634 ntype = LF ST_TYPE(nsym >st _i nfo);

2635 if (cdp && (nsym >st _shndx != SHN UNDEF) &&

2636 ((sdfla gs FLG SY_SPECSEC) == 0) &%

2637 ((ntype == STT_FUNC) || (ntype == STT_OBJECT))) {

2638 /*

2639 * Determine this synbol’s visibility. If a napfile has
2640 * indicated this synbol should be local, then there’'s
2641 * no point in transformng this global synmbol to a
2642 * capabilities synbol. Oherwi se, create a symbol
2643 * capability pair descriptor to record this synbol as
2644 * a candidate for translation.

2645 *

2646 if (symcap_vis(nanme, hash, sym ofl) &&

2647 ((cpp = alist_append(&cappairs, NULL,

2648 sizeof (Cap_pair), AL_CNT_CAP_PAIRS)) == NULL))
2649 return (S_ ERR(R)

2650 }

2652 if (cpp) {

2653 Sym *rsym

2655 DBG CALL(Dbg_syms_cap_convert(ofl, ndx, name, nsym);
2657 /*

2658 * Allocate a new synbol descriptor to represent the
2659 * transforned gl obal synmbol. The descriptor points
2660 * to the original synbol infornmation (which m ght
2661 * indicate a global or weak visibility). The synbol
2662 * information will be transforned into a | ocal synbol
2663 * |ater, after any weak aliases are culled.

2664 */

2665 if ((cpp->c_osdp

2666 I'ibld_nall OC(SI zeof (Sym.desc))) == NULL)

2667 return (S_ERROR);

2669 cpp- >c_osdp- >sd_nane = nane;

2670 cpp->c_osdp- >sd_sym = nsym

2671 cpp- >c_osdp- >sd_shndx = shndx;

2672 cpp->c_osdp->sd_file = ifl;

2673 cpp->c_osdp->sd_isc = ifl->ifl_isdesc[shndx];

2674 cpp->c_osdp- >sd_ref = REF_REL_NEED;

2676 /*

2677 * Save the capabilities group this synbol belongs to,
2678 * and the original synmbol index.

2679 */

2680 cpp->c_group = cdp->ca_groups->apl _data[0];

2681 cpp->c_ndx = ndx;

2683 /*

2684 * Replace the original synbol definition with a synbol
2685 * reference. Make sure this reference isn't left as a
2686 * weak.

2687 */

2688 if ((rsym=1libld_malloc(sizeof (Sym))) == NULL)

2689 return (S_ERROR);

2691 *rsym= *nsym

2693 rsym>st_info = ELF_ST INFO(STB_GLOBAL, ntype);

2694 rsym >st _shndx = shndx SHN_UNDEF;

2695 rsym >st_val ue = 0;

2696 rsym >st_size = 0;

2698 sdfl ags | = FLG_SY_CAP;

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 42
2700 nsym = rsym

2701 }

2703 /*

2704 * |f the synbol does not already exist in the internal synbol
2705 * table add it, otherwi se resolve the conflict. |If the synbol
2706 * fromthis file is kept, retain its synbol table index for
2707 * possible use in associating a global alias.

2708 */

2709 if ((sdp = ld_symfind(nane, hash, &where, ofl)) == NULL) {
2710 DBG_CALL(Dbg syns_gl obal (ofl ->of | _Im, ndx, nane));
2711 if ((sdp = Id_symenter(nane, nsym hash, ifl, ofl, ndx,
2712 shndx, sdflags, &where)) == (Sym.desc *)S ERROR)
2713 return (S_ERROR) ;

2715 } el se if (ld_ sym_resol ve(sdp, nsym ifl, ofl, ndx, shndx,
2716 dfl ags) == S_ERROR)

2717 return (S_ERROR);

2719 /*

2720 * Now that we have a synbol descriptor, retain the descriptor
2721 * for later use by synbol capabilities processing.

2722 */

2723 if (cpp)

2724 cpp->c_nsdp = sdp;

2726 /*

2727 * After we’ve conpared a defined synbol in one shared

2728 * object, flag the synbol so we don't conpare it again.

2729 */

2730 if ((etype == ET_DYN) && (nsym >st shndx '— SHN_UNDEF) &&
2731 ((sdp >sd flags & FLG SY_SOFOUND) == 0))

2732 sdp->sd_flags | = FLG_SY_ SG:OJND

2734 /*

2735 * |f the synbol is accepted fromthis file retain the synbol
2736 * index for possible use in aliasing.

2737 */

2738 if (sdp->sd_file == ifl)

2739 sdp- >sd_symdx = ndx;

2741 ifl->ifl_ol dndx[ndx] = sdp;

2743 /*

2744 * |f we’ve accepted a register synbol, continue to validate
2745 * it

2746 */

2747 if (sdp->sd_flags & FLG SY_REGSYM {

2748 Sym desc *rsdp;

2750 /*

2751 * The presence of FLG SY_REGSYM neans t hat

2752 * the pointers in Id_targ.t_ms are non- NULL.

2753 */

2754 rsdp = (*I d_t arg.t_ms. ms_reg_find)(sdp->sd_sym ofl);
2755 if (rsdp == NULL) |

2756 if ((*ld_targ.t_ns.nms_reg_enter)(sdp, ofl) == 0)
2757 return (S_ERROR);

2758 } else if (rsdp 1= sdp) {

2759 (void) (*ld_targ.t_ms.nms_reg_check)(rsdp,
2760 sdp->sd_sym sdp->sd_nane, ifl, ofl);
2761 }

2762 }

2764 /*

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 43

2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776

2778
2779
2780
2781
2782
2783
2784
2785
2786

2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824

2826
2827
2828
2829
2830

* For a relocatable object, if this synbol is defined
* and has non-zero length and references an address
* within an associated section, then check its extents
* to make sure the section boundaries enconpass it.
* |f they don’t, the ELF file is corrupt. Note that this
* gl obal synbol nay have cone from another file to satisfy
* an UNDEF synbol of the same name fromthis one. In that
* case, we don’t check it, because it was already checked
* as part of its own file.
*
/
f

(etype_rel && (sdp->sd_file ==ifl)) {
Sym *t sym = sdp->sd_sym

if (SYM LOC BADADDR(sdp, tsym
ELF_ST_TYPE(tsym>st _info))) {
i ssue_badaddr_nsg(ifl, ofl, sdp,
tsym tsym >st_shndx);
cont i nue;

}
DBG CALL(Dbg_util _nl (ofl->of | _Im, DBG NL_STD));

/
Associ ate weak (alias) synbols to their non-weak counterparts by
scanni ng the gl obal synbols one nore tine.

Thi s association is needed when processing the synbols froma shared
obj ect dependency when a a weak definition satisfies a reference:

- When buil ding a dynami c executable, if a referenced synbol is a
data item the synbol data is copied to the executabl es address
space. |In this copy-relocation case, we nust al so reassociate
the alias synbol with its new location in the executable.

- If the referenced synbol is a function then we nmay need to
pronote the synbols binding fromundefined weak to undefined,
otherwi se the run-time linker will not generate the correct
rel ocation error should the synbol not be found.

Weak alias association is also required when a | ocal dynsymtable
is being created. This table should only contain one instance of a
synmbol that is associated to a given address.

The true associ ation between a weak/strong synbol pair is that both
synbol entries are identical, thus first we create a sorted synbol
|'ist keyed off of the synmbols section index and value. [|f the synbol
bel ongs to the same section and has the sane val ue, then the chances
are that the rest of the synbols data is the same. This list is then
scanned for weak synbols, and if one is found then any strong
association will exist in the entries that follow Thus we just have
to scan one (typically a single alias) or nore (in the uncomon
instance of nmultiple weak to strong associations) entries to
*/determne if a match exists.
*
if (weak &% (OFL_ALLOWLDYNSYMofl) || (etype == ET_DYN)) &&

(total > local)) {
static Symdesc **sort;

* 0k kR ok ok bk ok % bk ok sk oF ok ko ok % ok k ok ¥ ok k ok ¥

static size_t osize = 0;

size_t nsize = (total - local) * sizeof (Symdesc *);
/*

* As we mght be processing many input files, and many synbols|
* try and reuse a static sort buffer. Note, presently we're

* playing the gane of never freeing any buffers as there's a

* pelief this wastes tine.

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 44
2831 */

2832 if ((osize == 0) || (nsize > osize)) {

2833 if ((sort = libld_nalloc(nsize)) == NULL)

2834 return (S_ERROR);

2835 osi ze = nsi ze;

2836 }

2837 (void) mentpy((void *)sort, & fl->ifl_oldndx[local], nsize);
2839 gsort(sort, (total - local), sizeof (Symdesc *), conpare);
2841 for (ndx = 0; ndx < (total - local); ndx++) {

2842 Sym desc *wsdp = sort[ndx];

2843 Sym *wsym

2844 int sndx;

2846 /*

2847 * |gnore any enpty synbol descriptor, or the case where
2848 * the synbol has been resolved to a different file.
2849 */

2850 if ((wsdp == NULL) || (wsdp->sd_file !I=ifl))

2851 continue;

2853 wsym = wsdp->sd_sym

2855 if ((wsym >st_shndx == SHN_UNDEF) ||

2856 (wsdp->sd_f | ags & FLG_SY_SPECSEC) ||

2857 (ELF_ST _BIND(wsym >st _i nfo) != STB WEAK))

2858 continue;

2860 /*

2861 * W have a weak synbol, if it has a strong alias it
2862 * will have been sorted to one of the follow ng sort
2863 * table entries. Note that we could have multiple weak
2864 * synbols aliased to one strong (if this occurs then
2865 * the strong synbol only nmaintains one alias back to
2866 * the | ast weak).

2867 */

2868 for (sndx = ndx + 1; sndx < (total - local); sndx++) {
2869 Sym desc *ssdp = sort[sndx];

2870 Sym *ssym

2871 sd_flag_t w_dynbits, s_dynbits;

2873 /*

2874 * lgnore any enpty synbol descriptor, or the
2875 * case where the synbol has been resolved to a
2876 * different file.

2877 */

2878 if ((ssdp == NULL) || (ssdp->sd_file I=ifl))
2879 conti nue;

2881 ssym = ssdp->sd_sym

2883 if (ssym>st_shndx == SHN_UNDEF)

2884 conti nue;

2886 if ((ssym>st_shndx != wsym >st_shndx) ||
2887 (ssym >st _val ue != wsym >st_val ue))

2888 br eak;

2890 if ((ssym>st_size != wsym >st_size) ||

2891 (ssdp->sd_flags & FLG SY SPECSEC) ||

2892 (ELF_ST_BIND(ssym >st_i nfo) == STB_WEAK))
2893 conti nue;

2895 /*

2896 * |f a sharable object, set link fields so

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 45

2897
2898
2899
2900
2901
2902
2903
2904

2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935

2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950

2952
2953
2954
2955
2956
2957

2959
2960
2961
2962

-

*
*
*
*
*
*
*
*
*
*

* that they reference each other."
S

if (etype == ET_DYN)
ssdp- >sd_aux->sa_| i nkndx =
(Wor d) wsdp- >sd_symadx;
wsdp- >sd_aux->sa_| i nkndx =
(Wor d) ssdp- >sd_symdx;

-

* Ok ok ok k ok k ok F ok ok

Det ermi ne whi ch of these two synbols go into
the sort section. |If a mapfile has nmade
explicit settings of the FLG SY_*DYNSORT
flags for both synbols, then we do what they
say. |If one has the DYNSORT flags set, we
set the NODYNSORT bit in the other. And if
neither has an explicit setting, then we
favor the weak synbol because they usually
I ack the |eading underscore.
/
w_dynbits = wsdp->sd_flags &
(FLG_SY_DYNSCRT | FLG_SY_NODYNSORT) ;
s_dynbits = ssdp->sd_flags &
(FLG_SY_DYNSORT [FLG_SY_NODYNSORT) ;
if (!'(w.dynbits & s_dynbits)) {
if (s_dynbits) {
if (s_dynbits == FLG_SY_DYNSORT)
wsdp->sd_flags | =
FLG_SY_NODYNSORT;
} else if (w.dynbits !=
FLG_SY_NODYNSORT) {
ssdp->sd_flags | =
FLG_SY_NODYNSORT;

break;

Havi ng processed all synbols, under -z synbol cap, reprocess any
synbol s that are being translated fromglobal to |locals. The synbol
pair that has been collected defines the original synbol (c_osdp),
which will becone a local, and the new synbol (c_nsdp), which w I
beconme a reference (UNDEF) for the original.

Scan these synbol pairs |ooking for weak synbols, which have non-weak
aliases. There is no need to translate both of these synbols to
locals, only the global is necessary.

*/

if

(cappairs) {
Aliste idx1;
Cap_pair *cppl;

for (ALIST TRAVERSE(cappal rs, idx1, cppl)) {
Sym desc sdpl cppl- >c_osdp;

Sym *synil = sdpl->sd_sym

uchar _t bi ndl = ELF_ST_BI ND(symil- >st _i nfo);
Aliste i dx2;

Cap_pair *cpp2;

/*

* |f this synbol isn't weak, it’'s capability menber is
* retained for the creation of a |local synbol.
*/

new usr/src/cnd/ sgs/libl d/ conmon/ syns. c 46
2963 if (bindl != STB_WEAK)

2964 conti nue;

2966 /*

2967 * |f this is a weak synbol, traverse the capabilities
2968 * list again to determine if a correspondi ng non-weak
2969 * synbol exists.

2970 */

2971 for (ALI ST_TRAVERSE(cappairs, idx2, cpp2)) {

2972 Sym desc *sdp2 = cpp2->c_osdp;

2973 Sym *symz = sdpz >sd_sym

2974 uchar _t nd2

2975 ELF_ST_BI ND(symz >st _info);

2977 if ((cppl == cpp2) ||

2978 (cppl->c_group != cpp2->c_group) ||

2979 (synmil- >st _value != synR->st_val ue) ||

2980 (bi nd2 =="STB_WEAK))

2981 cont|nue

2983 /*

2984 * The weak synbol (synl) has a non-weak (synR)
2985 * counterpart. There's no point in translating
2986 * both of these equivalent synbols to |ocals.
2987 * Add this synbol capability alias to the
2988 * capabilities famly information, and renove
2989 * the weak synbol .

2990 */

2991 if (ld_cap_add famly(ofl| cpp2->c_nsdp,

2992 cppl->c_nsdp, NULL, NULL) == S _ERROR)
2993 return (S_ERROR);

2995 free((void *)cppl->c_osdp);

2996 (void) alist_delete(cappairs, & dx1);

2997 }

2998 }

3000 DBG_CALL(Dbg_util _nl (ofl->ofl _Im, DBG NL_STD));

3002 /*

3003 * The capability pairs information now represents all the
3004 * gl obal synbols that need transformng to |locals. These
3005 * | ocal synbols are renaned using their group identifiers.
3006 *

3007 for (ALIST_TRAVERSE(cappairs, idxl, cppl)) {

3008 Sym desc *osdp = cppl->c_osdp;

3009 Obj capset *capset;

3010 size_t nsi ze, tsize;

3011 const char *onane;

3012 char *cnane, *idstr;

3013 Sym *csym

3015 *

3016 * |f the local synbol has not yet been translated
3017 * convert it to a local symbol with a nane.

3018 *

3019 if ((osdp->sd_flags & FLG SY_CAP) != 0)

3020 conti nue;

3022 /*

3023 * As we're converting object capabilities to synbol
3024 * capabilities, obtain the capabilities set for this
3025 * object, so as to retrieve the CA_SUNWID val ue.
3026 */

3027 capset = &cppl->c_group->cg_set;

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 47

3029 /*

3030 * Create a new nane fromthe existing synmbol and the
3031 * capabilities group identifier. Note, the delimter
3032 * between the synbol nane and identifier nane is hard-
3033 * coded here (%, so that we establish a convention
3034 * for transforned synbol nanes.

3035 */

3036 onane = osdp->sd_nane;

3038 idstr = capset->oc_id.cs_str;

3039 nsi ze = strlen(onane);

3040 t5|ze—n5|ze+1+str|en(|dstr) + 1;

3041 if ((cname = libld_malloc(tsize)) == 0)

3042 return (S_ERROR);

3044 (void) strcpy(cnane, onane) ;

3045 cnane[nsi ze++] = '%;

3046 (void) st rcpy(&cnama[nsi ze], idstr);

3048 /*

3049 * Allocate a new synbol table entry, transformthis
3050 * synbol to a local, and assign the new nane.

3051 */

3052 if ((csym=1libld_malloc(sizeof (Sym))) == NULL)

3053 return (S_ERROR);

3055 *csym = *osdp->sd_sym

3056 csym >st_info = ELF_ST_| NFO{ STB_LOCAL,

3057 ELF_ST_TYPE(osdp- >sd_sym >st _i nf o));

3059 osdp- >sd_nanme = cnang;

3060 osdp->sd_sym = csym

3061 osdp->sd_flags = FLG SY_CAP;

3063 /*

3064 * Keep track of this new |local symbol. As -z synbol cap
3065 * can only be used to create a rel ocatabl e object, a
3066 * dynam ¢ synbol table can't exist. Ensure there is
3067 * space reserved in the string table.

3068 */

3069 fl->of | _capl ocl cnt ++;

3070 f (st_insert(ofl->ofl_strtab, cname) == -1)

3071 return (S_ERROR);

3073 DBG CALL(Dbg_syns_cap_|l ocal (of |, cppl->c_ndx,

3074 cnane, csym osdp));

3076 /*

3077 * Establish this capability pair as a famly.

3078 */

3079 if (ld_cap_add_fam ly(ofl, cppl->c_nsdp, osdp,

3080 cppl->c_group, & fl->ifl_caps->ca_syns) == S_ERROR)
3081 return (S_ERROR);

3082 }

3083 }

3085 return (1);

3087 #undef SYM LOC_BADADDR

3088 }

3090 /*

3091 * Add an undefined synmbol to the synbol table. The reference originates from
3092 * the location identified by the message id (md). These references can
3093 * originate fromcommand line options such as -e, -u, -initarray, etc.

3094 * (identified with MSG_ | NTL(MSG_STR _COWAND)), or frominternal | y gener at ed

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 48

3095 * TLS relocation references (identified with MSG | NTL(MSG STR TLSREL)) .
3096 */

3097 Sym desc *

3098 | d_sym add_u(const char *name, O | _desc *ofl, Msg md)

3099 {

3100 Sym *sym

3101 11 _desc *ifl = NULL, *_ifl;

3102 Sym desc *sdp;

3103 Wor d hash;

3104 Aliste idx;

3105 avl _i ndex_t wher e;

3106 const char *reference = MSG_I NTL(mi d);

3108 /*

3109 * As an optim zation, determ ne whether we've already generated this
3110 * reference. |f the synbol doesn’'t already exist we’'ll create it.
3111 * O if the synbol does exist froma different source, we'll resolve
3112 * the conflict.

3113 */

3114 /* LINTED */

3115 hash = (W)rd)elf _hash(nane);

3116 if ((sdp = ld_symfind(name, hash, &where, ofl)) != NULL) {

3117 if ((sdp->sd_sym >st_. shndx == SHN_UNDEF) &&

3118 (sdp->sd_file-> fl_name == reference))

3119 return (sdp);

3120 }

3122 /*

3123 * Determ ne whether a pseudo input file descriptor exists to represent
3124 * the command |ine, as any gl obal synbol needs an input file descriptor
3125 * during any synbol resolution (refer to map_ifl () which provides a
3126 * simlar nethod for adding synbols from mapfiles).

3127 *

3128 for (APLIST_TRAVERSE(of | ->of | _objs, idx, _ifl))

3129 if (strenp(_ifl->ifl_nane, reference) == 0) {

3130 ifl = _ifl;

3131 br eak;

3132 }

3134 /*

3135 * |If no descriptor exists create one.

3136 */

3137 if (ifl == NULL) {

3138 if ((ifl libld_calloc(sizeof (Ifl_desc), 1)) == NULL)

3139 return ((Sym.desc *)S _ERROR);

3140 ifl->ifl_name = reference;

3141 ifl->ifl _flags = FLG | F_NEEDED | FLG | F_FI LEREF;

3142 if ((ifl=>ifl_ehdr = 1ibld_calloc(sizeof (Ehdr), 1)) == NULL)
3143 return ((Symdesc *)S ERROR);

3144 ifl->ifl_ehdr->e_type = ET_REL;

3146 if (aplist_append(&ofl->ofl _objs, ifl, AL_CNT_OFL_OBJS) == NULL)
3147 return ((Symdesc *)S ERROR);

3148 }

3150 /*

3151 * Allocate a synbol structure and add it to the gl obal synbol table.
3152 */

3153 if ((sym=1libld_calloc(sizeof (Sym, 1)) == NULL)

3154 return ((Symdesc *)S ERROR);

3155 sym >st _info = ELF ST_| NFOQ(STB_ GLCBAL STT_NOTYPE) ;

3156 sym >st _shndx = SHN_UNDEF;

3158 DBG_CALL(Dbg syms process(ofl->of | _Im, ifl));

3159 if (sdp == NULL) [

3160 DBG_CALL(Dbg_syns_gl obal (of I ->of | _I ml, 0, nane));

new usr/src/cnd/ sgs/libl d/ cormon/ syns. c 49

3161 if ((sdp = Il d_symenter(name, sym hash, ifl, ofl, 0, SHN_UNDEF,
3162 0, &nrhere)) == (Sym.desc *)S_ERROR)

3163 return ((Symdesc *)S ERROR);

3164 } else if (Id_symresolve(sdp, sym ifl, ofl, O,

3165 SHN_UNDEF, 0) == S_ERROR)

3166 return ((Symdesc *)S_ERROR);

3168 sdp->sd_fl ags & ~FLG SY_CLEAN,

3169 sdp->sd_fl ags | = FLG_SY_CMDREF;

3171 return (sdp);

3172 }

3174 | *

3175 * STT_SECTI ON synbol s have their st_name field set to NULL, and consequently
3176 * have no nane. Generate a nane suitable for diagnostic use for such a synbol
3177 * and store it in the input section descriptor. The resulting nane will be
3178 * of the form

3179 *

3180 * " XXX (section)"

3181 *

3182 * where XXX is the name of the section.

3183 *

3184 * entry:

3185 * isc - Input section associated with the synbol.

3186 * fmt - NULL, or format string to use.

3187 *

3188 * exit:

3189 * Sets isp->is_symnane to the allocated string. Returns the

3190 * string pointer, or NULL on allocation failure.

3191 */

3192 const char *
3193 | d_stt_section_sym name(ls_desc *isp)

3194 {

3195 const char *fnt;

3196 char *str;

3197 size_t | en;

3199 if ((isp == NULL) || (isp->is_name == NULL))

3200 return (NULL);

3202 if (isp->is_symname == NULL)

3203 fm = (isp->is_flags & FLG | S_GNSTRVRG ?
3204 MBG | NTL(MSG_STR_SECTI ON_MSTR) : MSG | NTL(MSG_STR SECTI ON) ;
3206 len = strlen(fnt) + strlen(isp->is_nanme) + 1;
3208 if ((str = 1libld_malloc(len)) == NULL)

3209 return (NULL);

3210 (void) snprintf(str, len, fnt, isp->is_nane);
3211 i sp->s_symnane = str;

3212 }

3214 return (isp->is_symnane);

3215 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

R R R R

118766 Mon Feb 11 00: 23: 20 2019
new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

132 /*

133 * Build and update any output synbol tables. Here we work on all the synbol
134 * tables at once to reduce the duplication of synbol and string manipul ation.
135 * Synbols and their associated strings are copied fromthe read-only input
136 * file images to the output image and their values and index’s updated In the
137 * output inmage.

138 */
139 static Addr
140 update_osym Ol _desc *ofl)

141 {

142 /*

143 * There are several places in this function where we w sh

144 * to insert a synbol index to the conmbined . SUNWI dynsyni . dynsym
145 * synbol table into one of the two sort sections (. SUNW dynsynsort
146 * or .SUNWdyntlssort), if that symbol has the right attributes.
147 * This macro is used to generate the necessary code froma single
148 * specification.

149 *

150 * entry:

151 * _sdp, _sym _type - As per DYNSORT_COUNT. See _libld.h
152 * _symndx - Index that _symwill have in the conbined

153 * . SUNW | dynsyni . dynsym synbol table.

154 */

155 #define ?D{D_TO_DYNSCRT(_sdp, _sym _type, _symndx) \

156

157 Word *_dynsort_arr, *_dynsort_ndx; \

158 \

159 if (dynsymsort_synmtype[_type]) { \

160 _dynsort_arr = dynsynsort; \

161 _dynsort_ndx = &Jynsynmsort_ndx; \

162 } elseif (_type == STT_TLS) { \

163 _dynsort_arr = dyntlssort; \

164 _dynsort_ndx = &Jyntlssort_ndx; \

165 } else {\

166 _dynsort_arr = NULL; \

167 3}

168 if ((_dynsort_arr !'= NULL) && DYNSORT_TEST_ATTR(_sdp, _sym) \
169 _dynsort_arr[(*_dynsort_ndx)++] = _symndx; \

170 1

172 Sym desc *sdp;

173 Sym avl node *sav;

174 Sg_desc *sgp, *tsgp = NULL, *dsgp = NULL, *esgp = NULL;
175 Os_desc *osp, *iosp = NULL, *fosp = NULL;

176 I's_desc *isc;

177 I fl_desc *ifl;

178 Wor d bssndx, etext_ndx, edata_ndx = 0, end_ndx, start_ndx;
179 Wor d end_abs = 0, etext_abs = 0, edata_abs;

180 Wor d tlsbssndx = 0, parexpnndx;

181 #if defi ned(_ELF64)

182 Wor d | bssndx = 0;

183 Addr | bssaddr = O;

184 #endi f

185 Addr bssaddr, etext = 0, edata = 0, end = 0, start = O;
186 Addr tlshssaddr = 0;

187 Addr par expnbase, parexpnaddr;

188 int start_set = 0;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 2
189 Sym _sym = {0}, *sym *syntab = NULL;

190 Sym *dynsym = NULL *| dynsym = NULL;

191 Wor d syntab_ndx = 0; /* index into .syntab */

192 Wor d synt ab_gbl _bndx /* .syntab ndx 1st gl obal */
193 Word | dynsym ndx = O; /* index into .SUNWI dynsym */
194 Word dynsym ndx = O; /* index into .dynsym */

195 Wor d scopesym ndx = 0; /* index into scoped synbols */
196 Wor d scopesym bndx = 0; /* .syntab ndx 1st scoped sym */
197 Word | dynscopesym ndx = 0; /* index to | dynsym scoped */
198 I* synbol s */

199 Word *dynsynsort = NULL; /* SUNW. dynsynsort index */
200 /* vector */

201 Word *dyntl ssort = NULL; /* SUNW dyntlssort index */
202 /* vector */

203 Word dynsymsort _ndx; /* index dynsynsort array */
204 Word dynt | ssort_ndx; /* index dyntlssort array */
205 Word *symdx; /* synbol index (for */

206 I* rel ocation use) */
207 Wor d *synmshndx = NULL; /* .syntab_shndx table */
208 Wor d *dynshndx = NULL; /* .dynsym shndx table */
209 Wor d *| dynshndx = NULL; /* . SUNWI dynsym shndx table */
210 Word I dynsym cnt = NULL; /* number of itens in */

211 I * . SUNW | dynsym */

212 Str_tbl *shstrtab;

213 Str_tbl *strtab;

214 Str_tbl *dynstr;

215 Wor d *hasht ab; /* hash table pointer */

216 Word *hashbkt ; /* hash tabl e bucket pointer */

217 Wor d *hashchai n; /* hash table chain pointer */

218 Wk_desc * ;

219 Ali st *weak = NULL;

220 of | _flag_t flags = ofl->of | _fl ags;

221 Ver sym *versym

222 Gottabl e *gottabl e; /* used for display got debugging */
223 * information */

224 Sym nf o *sym nf o;

225 Syms_list *sorted_syns; /* table to hold sorted synbols */
226 Wor d ssndx; /* global index into sorted_syns */
227 Word scndx; /* scoped index into sorted_syns */
228 size_t stof f; /* string offset */

229 Aliste i dx1;

231 /*

232 * Initialize pointers to the synbol table entries and the synbol

233 * table strings. Skip the first symbol entry and the first string
234 * table byte. Note that if we are not generating any output synbol
235 * tables we nust still generate and update internal copies so

236 * that the relocation phase has the correct information.

237 */

238 if (!(flags & FLG OF_STRIP) || (flags & FLG OF_RELOBJ) ||

239 ((flags & FLG OF_STATIO) && of | ->of | _osversym))

240 synt ab (Sym *) of | - >of | _ossynt ab- >o0s_out dat a- >d_buf ;

241 synt ab[sym ab_ndx++] = _sym

242 if (ofl->ofl _ossymshndx)

243 synshndx =

244 (Word *)ofl->of | _ossynmshndx- >0s_out dat a- >d_buf ;
245 1

246 i f (OFL_ALLONDYNSYMofl)) {

247 dynsym = (Sym *) of | - >of | _osdynsym >o0s_out dat a- >d_buf ;

248 dynsyni dynsym ndx++] = _sym

249 /*

250 * If we are also constructing a . SUNWI dynsym section

251 * to contain |local function synbols, then set it up too.

252 *

253 if (ofl->ofl_osldynsym

254 I dynsym = (Sym *) of | - >of | _osl dynsym >o0s_out dat a- >d_buf;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 3

255
256
257

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

293
294
295
296
297
298
299
300

302
303
304
305
306
307
308
309
310
311
312

314
315
316
317
318
319
320

| dynsynf | dynsym ndx++] = _sym
I dynsymcnt = 1"+ of | ->of I _dynl ocscnt +
of | - >of | _dynscopecnt;

/*
* If there is a SUNWIdynsym then there may al so
* be a . SUNWdynsynsort and/or .SUNWdyntl ssort
* sections, used to collect indices of function
* and data synbols sorted by address order.
*
/

if (ofl ->of|_osdynsymsort) { /* . SUNW dynsymsort */
dynsynsort = (Word *
of | ->of | osdynsyrrsort—>os out dat a- >d_buf ;
dynsynmsort _ndx = O;

}
if (ofl->ofl_osdyntlssort) { /* . SUNWdyntlssort */
dyntlssort = (Word *
of | - >of | _osdynt | ssort ->0s_out dat a- >d_buf ;
dyntl ssort_ndx = O;

}

/*
* Initialize the hash table.
*/

hashtab = (Wrd *)(of|->of | _oshash->os_out dat a- >d_buf);
hashbkt = &hasht ab[2] ;
hashchai n = &hasht ab[2 + ofl->of | _hashbkt s] ;
hashtab[0] = ofl->of | _hashbkts;
hashtab[1] = DYNSYM ALL_CNT(of |);
if (ofl->ofl_osdynshndx)
dynshndx =
(Word *)ofl ->of | _osdynshndx- >os_out dat a- >d_buf ;
if (ofl->ofl _osl dynshndx)
I dynshndx =
(Word *)ofl->ofl _osl dynshndx- >os_out dat a- >d_buf;

}
/*
* symmdx is the synbol index to be used for relocation processing. It
* points to the relevant syntab’s (.dynsymor .syntab) synbol ndx.
*/
if (dynsym
symdx = &Jynsym ndx;
el se
symdx = &synt ab_ndx;
/*
* |f we have version definitions initialize the version synbol index
* table. There is one entry for each synbol which contains the synbols
* version index.
*

if (!(flags & FLG OF_NOVERSEC) &&
(flags & (FLG_OF_VERNEED | FLG OF_VERDEF))) {
versym = (Versym *)of | ->of T _osver sym >os_out dat a- >d_buf ;
versyni 0] = NULL;
} else
versym = NULL;

/*
* |If syminfo section exists be prepared to fill it in.
*/

if (ofl->ofl_ossym nfo)
symi nfo = of |l ->of | _ossym nfo->o0s_out dat a- >d_buf ;
sym nfo[0].si_flags = SYM NFO_CURRENT;

} else

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

321

323
324
325
326
327
328

330

332
333
334
335
336
337
338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354
355
356
357
358

360
361
362
363

365
366
367
368
369
370
371
372
373

375
376
377
378
379
380
381
382
383

385
386

syminfo = NULL;

/*
* Setup our string tables.
*/

shstrtab = of | ->of | _shdrstt ab;
strtab = of | ->of | _strtab;
dynstr = ofl->of| _dynstrtab;

DBG CALL(Dbg_syms_sec_title(ofl->ofl _Inm));

/*
* Put output file name to the first .syntab and . SUNWI dynsym synbol .
*/

if (syntab) {
(void) st_setstring(strtab, ofl->ofl_nane, &stoff);
sym = &synt ab[synt ab_ndx++] ;
/* LI NTED */
sym >st _nane = st of f;
sym >st _val ue = 0;
sym >st_si ze 0;
sym >st_info ELF ST_INFQSTB_LOCAL, STT_FILE);
sym >st _ot her
sym >st _shndx

SHN ABS,;

if (versym & !dynsyn)
versyn{ 1] = 0;

}
if (ldynsym {
(void) st_setstring(dynstr, ofl->ofl_name, &stoff);
sym = & dynsyni | dynsym ndx] ;
/* LINTED */
sym >st _nane = stoff;
sym >st _val ue = 0;

sym >st_size = 0;
sym>st _info = ELF_ST_I NFO(STB_LOCAL, STT_FILE);
sym >st _ ;

other = 0;
sym >st _shndx = SHN_ABS;

/* Scoped synbols get filled in global |oop below */
| dynscopesym ndx = | dynsym ndx + 1;

I dynsym ndx += of | - >of | _dynscopecnt;

}

/*

* |f we are to display GOT summary information, then allocate
* the buffer to 'cache’ the GOT synmbols into now

*

/
i f (DBG_ENABLED)
if ((ofl->of| _gottable = gottable =
libld_calloc(ofl->ofl _gotcnt, sizeof (Gottable))) == NULL)
return ((Addr)S ERROR);
}

/*
* Traverse the program headers. Determne the |ast executable segnent
* and the | ast data segnent so that we can update etext and edata. If
*/vve have enpty segnents (reservations) record themfor setting _end.
*
for (APLI ST TRAVERSE(ofI—>ofI _segs, |dxl sgp)) {

Phdr &(sgp->sg_phdr);

Os_desc *osp,

Aliste idx2;

if (phd->p_type == PT_LQAD) {
i f (sgp->sg_osdescs != NULL) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 5 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c
387 Wor d _flags = phd->p_flags & (PF_W| PF_R); 453 /* LINTED */
454 start_ndx = el f _ndxscn(osp->0s_scn);
389 if (_fl ags == PF R) 455 start_set ++;
390 sgp = 456 }
391 else if (flags --(PF W| PF_R))
392 dsgp = sgp; 458 /*
393 } else if (sgp->sg_flags & FLG SG EMPTY) 459 * Wiile we're here, determi ne whether a .init or .fini
394 esgp = sgp; 460 * section exist.
395 } 461 */
462 if ((iosp == NULL) && (strcnp(osp->0s_nane,
397 I+ 463 NBGCRIG(MSGSCNIN T)) == 0))
398 * CGenerate a section synbol for each output section. 464 Sp = 0Sp
399 */ 465 if ((fosp == NULL) && (s trcnp(osp— >0S_nane,
400 for (APLI ST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) { 466 G_ ORI G(MSG_SCN_FINI')) == 0))
401 Wor d sect ndx; 467 fosp = osp;
468 }
403 sym= & sym 469 }
404 sym >st _val ue = osp->o0s_shdr->sh_addr;
405 sym>st_info = ELF_ST_ | NFQ{ STB_LOCAL, STT_SECTION); 471 I*
406 /* LINTED */ 472 * Add | ocal register synbols to the .dynsym These are required as
407 sectndx = el f_ndxscn(osp->0s_scn); 473 */DT_REG STER . dynamic entries nust have a synbol to reference.
474 *
409 if (syntab) { 475 if (ofl->ofl_regsyms &% dynsym {
410 if (sectndx >= SHN_LORESERVE) { 476 i nt ndx;
411 synmshndx[synt ab_ndx] = sect ndx;
412 sym >st _shndx = SHN_XI NDEX; 478 for (ndx = 0; ndx < ofl->ofl _regsymsno; ndx++) {
413 } else { 479 Sym desc *rsdp;
414 /* LINTED */
415 sym >st _shndx = (Hal f)sectndx; 481 if ((rsdp = ofl->ofl _regsyns[ndx]) == NULL)
416 } 482 conti nue;
417 synt ab[synt ab_ndx++] = *sym
418 } 484 if (ISYMIS H DDEN(rsdp) &&
485 (ELF_ST_BI ND(rsdp->sd_sym >st_info) != STB_LOCAL))
420 if (dynsym && (osp->os_flags & FLG OS_OUTREL)) 486 conti nue;
421 dynsyn{ dynsym ndx++] = *sym
488 dynsyni dynsym ndx] = *(rsdp->sd_sym;
423 if ((dynsym == NULL) || 489 rsdp- >sd_symdx = *symdx;
424 (osp->o0s_flags & FLG OS_QUTREL)) {
425 if (versym 491 i f (dynsynidynsym ndx].st_nane)
426 versyni* syrmdx - 1] = 0; 492 (void) st_setstring(dynstr, rsdp->sd_namne,
427 osp->o0s_i dentndx = *symdx - 1; 493 &stoff);
428 DBG _CALL(Dbg_syms_sec_entry(ofl->of | _Im, 494 dynsyni dynsym_ndx] .st_nanme = stoff;
429 osp->0s_i dent ndx, sgp, 0sp)); 495
430 } 496 dynsym ndx++;
497 }
432 /* 498 }
433 * Cenerate the .shstrtab for this section.
434 */ 500 I*
435 (void) st_setstring(shstrtab, osp->os_nane, &stoff); 501 * Having traversed all the output segnents, warn the user if the
436 osp->0s_shdr->sh_name = (Wrd)stoff; 502 * traditional text or data segnents don't exist. Otherw se fromthese
503 * segnments establish the values for ‘etext’, ‘edata’, ‘end, ‘END,
438 /* 504 * and ‘ START' .
439 * Find the section index for our special synbols. 505 */
440 */ 506 if (!(flags & FLG OF_RELOBJ)) {
441 if (sgp == tsgp) { 507 Sg_desc *sgp;
442 /* LINTED */
443 et ext _ndx = el f _ndxscn(osp->0s_scn); 509 if (tsgp)
444 } else if (dsgp == sgp) { 510 etext = tsgp->sg_phdr.p_vaddr + tsgp->sg_phdr.p_filesz;
445 if (osp->o0s_shdr->sh_type != SHT_NOBITS) { 511 el se {
446 [* LINTED */ 512 etext = (Addr)O0;
447 edata_ndx = el f_ndxscn(osp->0s_scn); 513 etext _ndx = SHN ABS;
448 } 514 etext _abs =
449 } 515 if (flags & FLG OF _VERBOSE)
516 Id_eprintf(ofl, ERR WARNI NG
451 if (start_set == 0) { 517 MSG_| NTL(MSG_UPD_NOREADSEG)) ;
452 start = sgp->sg_phdr. p_vaddr; 518 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 7

519
520
521
522
523
524
525
526
527
528

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

551
552

554
555

557
558
559
560
561
562
563
564
565
566
567
568
569
570

572
573
574
575
576
577
578
579
580
581
582

584

if (dsgp) {
edat

} else {

}

a = dsgp->sg_phdr.p_vaddr + dsgp->sg_phdr.p_filesz;

edata = (Addr)O;
edat a_ndx = SHN_ABS;
edata_abs = 1;
if (fTags & FLG OF VERBCSE)
Id_eprintf(ofl, ERR WARNI NG
MSG_I NTL(I\/BG UPD_NORDWRSEG)) ;

if (dsgp == NULL) {
if (ts

ap)
sgp

tsgp;
el se

sgp = 0;
} elseif (tsgp == NULL)

. sgp = dsgp;
else if (dsgp >sQ_| phdr p_vaddr > tsgp->sg_phdr. p_vaddr)
= dsg
else if (dsgp >sg phdr p_vaddr < tsgp->sg_phdr.p_vaddr)
sgp = tsgp;
el se {
/*
*/One of the segnents nust be of zero size.
if (tsgp->sg_phdr.p_nensz)
sgp = ;
el se
sgp = dsgp;
}
if (esgp && (esgp >sg_phdr. p_vaddr > sgp->sg_phdr. p_vaddr))
sgp = esgp;
if (sgp) {

end = sgp->sg_phdr. p_vaddr + sgp->sg_phdr.p_nensz;

/
If the last | oadable segnent is a read-only segnent,
then the application which uses the synbol _end to
find the beginning of witable heap area may cause
segnentation violation. W adjust the value of the
_end to skip to the next page boundary.

6401812 Systeminterface which returs beginning
heap woul d be nice.

Wien the above RFE is inplenented,

/coul d be changed in a better way.

*
* t he changes bel ow
f ((sgp >sg phdr p_flags & PF_W == 0)

= (Addr)S_ROUND(end, sysconf(_SC PAGESI ZE));

/*
* |f we're dealing with a menory reservation there are
* no sections to establish an index for _end, so assign
* it as an absolute.
*/
if (sgp->sg_osdescs != NULL) {

/*

* Determine the |ast section for this segnent.
*/

Os_desc *osp = sgp->sg_osdescs->apl _data
[sgp- >sg_osdescs->apl _nitens - 1];

/* LINTED */

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

585
586
587
588
589
590
591
592
593
594
595
596

598
599
600
601
602
603
604
605
606
607
608

610
611
612
613
614
615
616
617
618
619
620
621

623
624
625
626
627
628
629

631
632
633
634
635
636

638
639

641
642
643
644
645
646

648
649

end_ndx
} else {

end_ndx = SHN_ABS;

end_abs 1;

el f _ndxscn(osp->0s_scn);

} else {
end = (Addr) O;
end_ndx = SHN |_ABS;
end_abs = 1;
Id eprlntf(ofl

}
}
/*
* Initialize the scoped synbol table entry point. This is for
* the global synbols that have been scoped to locals and wll
* filled in during global symbol processing so that we don't h
* to traverse the globals synbol hash array nore than once.
*
/
if (syntab) {
scopesym bndx = syntab_ndx;
scopesym ndx = scopesym bndx;
syntab_ndx += ofl->of| _scopecnt;
}
/*

* |f expanding partially expanded synbol s under

* prepare to do that
*

if (ofl->ofl_isparexpn) {

}
/*

* |If we are generating a

osp = ofl ->of | _i sparexpn->i s_osdesc;

par expnbase = parexpnaddr = (Addr) (osp->o0s_shdr->sh_add
of | - >of | _i sparexpn->i s_i ndat a- >d_of f);

[* LINTED */

parexpnndx = el f _ndxscn(osp->0s_scn);

of | - >of | _par expnndx = osp->o0s_i dent ndx;

* assigning a new virtual address or displacenent (value).
*/

for

(APLI ST_TRAVERSE(of | - >of | _obj s, idx1, ifl))

Xwor d Indx, local = ifl->fl_locscnt;
Cap_desc *cdp = ifl->ifl_caps;
for (Indx = 1; Indx < Iocal I ndx++) {
Cot ndx gnp;
uchar _t type;
Wor d *_symshndx;
i nt enter_in_syntab, enter_in_|ldyns
int updat e_done;
sdp = ifl->ifl_ol dndx[| ndx];
sym = sdp->sd_sym
/*

* Assign a got offset if necessary.
*/

if ((ld_ targt nr.nr_assign_got != NULL) &&
(*ld_targ.t_nr.nr_assign_got)(ofl, sdp) ==
return ((Addr)S_ERROR);

i f (DBG_ENABLED) {
Aliste idx2;

ERR_WARNI NG, MSG_| NTL(MSG_UPD_NGCSEQ)) ;

al |
be
ave

'-z nopartial’,

r +

.syntab collect all the local synbols,

ym

S_ERROR)

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 9

651
652
653
654
655
656
657
658
659
660

662
663

665
666
667
668
669
670
671
672

674
675
676
677
678
679
680

682
683
684
685
686
687
688
689
690
691
692
693
694

696
697
698
699
700
701
702
703
704
705
706
707
708

710
711
712
713

715
716

for (ALI ST_TRAVERSE(sdp- >sd_GOTndxs,
idx2, gnp)) {
got t abl e->gt _sym = sdp;
got t abl e- >gt _gndx. gn_got ndx
gnp- >gn_got ndx;
got t abl e- >gt _gndx. gn_addend =
gnp->gn_addend;
got t abl e++;

if ((type = ELF_ST_TYPE(sym >st_info)) == STT_SECTI ON)
conti nue;

*
* | gnore any synbols that have been narked as invalid

* during input processing. Providing these aren’t used
* for relocation they Il just be dropped fromthe

* output inmage.

*

f

/
(sdp->sd_flags & FLG SY_I NVALI D)
conti nue;

*

* |f the section that this synbol was associated
* with has been discarded - then we discard

* the local synbol along with it.
*
f

/
(sdp->sd_flags & FLG SY_I SDI SO)
conti nue;

*
* |If this synbol is froma different file

* than the input descriptor we are processing,

* treat it as if it has FLG SY_| SDI SC set.

* Thi s happens when sl oppy_condat _rel oc()

* replaces a synbol to a discarded condat section
* with an equival ent synbol froma different

* file. W only want to enter such a synbol

* once --- as part of the file that actually

* supplies it.

*/

f

(ifl !'= sdp->sd_file)
conti nue;

Generate an output synmbol to represent this input
synbol. Even if the synbol table is to be stripped
we still need to update any local synbols that are
used during relocation.

* Ok ok ok

*/

enter_in_synmab = syntab &&
(' (ofl->of | _flags & FLG_OF_REDLSYM ||
sdp->sd_nove) ;

enter_in_| dynsym = | dynsym && sdp- >sd_nane &&
I dynsym syntype[type] &&
I'(of I ->of | _flags & FLG OF_REDLSYM);

_symshndx = NULL;

if (enter_in_syntab) {
if (ldynsym
sdp->sd_symdx = *symdx;
synt ab[syntab_ndx] = *sym

/*
* Provided this isn't an unnaned register

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 10
717 * synbol, update its nane.

718 */

719 if (((sdp->sd_flags & FLG SY_REGSYM == 0) ||
720 synt ab[synt ab_ndx] . st _nane) {

721 (void) st_setstring(strtab,

722 sdp- >sd_nane, &stoff);

723) synt ab[synt ab_ndx] . st _name = stoff;
724

725 sdp->sd_fl ags & ~FLG SY_CLEAN,

726 if (symshndx)

727 _synmshndx = &synshndx[synt ab_ndx] ;
728 sdp->sd_sym = sym = &synt ab[synt ab_ndx++] ;
730 if ((sdp->sd_flags & FLG SY_SPECSEC) &&

731 (sym >st_shndx == SHN_ABS) &&

732 lenter_in_ldynsym

733 conti nue;

734 } else if (enter_in_|ldynsym {

735 I*

736 * Not using syntab, but we do have |dynsym
737 * avail abl e.

738 */

739 I dynsyni | dynsym ndx] = *sym

740 (void) st_setstring(dynstr, sdp->sd_naneg,
741 &stoff);

742 I dynsyni | dynsym ndx] . st _nanme = stoff;

744 sdp- >sd_fl ags & ~FLG _SY_CLEAN,

745 if (ldynshndx)

746 _symshndx = & dynshndx[| dynsym ndx];
747 sdp->sd_sym = sym = & dynsyn{ | dynsym ndx] ;
748 /* Add it to sort section if it qualifies */
749 ADD_TO DYNSORT(sdp, sym type, |dynsym ndx);
750 I dynsym ndx++;

751 } else { /* Not using syntab or |dynsym */
752 I*

753 * |f this synbol requires nodifying to provide
754 * for a relocation or nove table update, make
755 * a copy of it.

756 *

757 if (!(sdp->sd_flags & FLG SY_UPREQD) &&

758 ! (sdp->sd_nove))

759 conti nue;

760 if ((sdp->sd flags & FLG SY SPECSEC) &&
761 (sym >st _shndx == SHN_ABS))

762 conti nue;

764 if (ld_symcopy(sdp) == S_ERROR)

765 return ((Addr)S_ERROR);

766 sym = sdp->sd_sym

767 }

769 /*

770 * Update the synmbols contents if necessary.

771 */

772 updat e_done = 0;

773 if (type == STT_FILE) {

774 sdp->sd_shndx = sym >st_shndx = SHN_ABS;
775 sdp->sd_fl ags | = FLG _SY_SPECSEC;

776 updat e_done = 1;

777 }

779 /*

780 * If we are expanding the |ocally bound partially
781 * initialized synbols, then update the address here.
782 */

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 11
783 if (ofl->ofl_isparexpn &

784 (sdp->sd_flags & FLG SY_PAREXPN) && !update_done) {
785 sym >st _shndx = par expnndx;

786 sdp->sd_i sc = of | ->of | _i spar expn;

787 sym >st_val ue = par expnaddr;

788 par expnaddr += sym >st_si ze;

789 if ((flags & FLG OF_RELOBJ) == 0)

790 sym >st _val ue -= par expnbase;

791 }

793 /*

794 * If this isn't an UNDEF synbol (ie. an input section
795 * is associated), update the synbols val ue and i ndex.
796 */

797 if (((isc = sdp->sd_isc) !'= NULL) && !update_done) {
798 Vord sect ndx;

800 osp = isc->is_osdesc;

801 /* LINTED */

802 sym >st _val ue +=

803 (OFf)_el f_getxoff(isc->is_indata);

804 if ((flags & FLG OF_RELOBJ) == 0)

805 sym >st _val ue += osp->o0s_shdr->sh_addr;
806 /*

807 * TLS synbols are relative to

808 * the TLS segnent.

809 */

810 if ((type == STT_TLS) &&

811 (of I ->of | _tlsphdr)) {

812 sym >st_val ue -=

813 of | ->of | _t| sphdr->p_vaddr;
814 }

815 }

816 /* LINTED */

817 if ((sdp->sd_shndx = sectndx =

818 el f _ndxscn(osp->0s_scn)) >= SHN_LORESERVE) {
819 if (_symshndx) {

820 *_synshndx = sect ndx;

821 }

822 sym >st_shndx = SHN_XI NDEX;

823 } else {

824 [* LINTED */

825 sym >st _shndx = sect ndx;

826 }

827 }

829 /*

830 * If entering the synbol in both the syntab and the
831 * | dynsym then the one in syntab needs to be

832 * copied to Idynsym If it is only in the |Idynsym
833 * then the code above already set it up and we have
834 * nothing nore to do here.

835 *

836 if (enter_in_syntab & enter_in_|ldynsyn) ({

837 I dynsyni | dynsym ndx] = *sym

838 (void) st_setstring(dynstr, sdp->sd_nane,

839 &stoff);

840 I dynsynf | dynsym_ndx] .st_nane = stoff;

842 if (_symshndx && | dynshndx)

843 I dynshndx[| dynsym ndx] = *_synshndx;
845 /* Add it to sort section if it qualifies */
846 ADD_TO DYNSORT(sdp, sym type, |dynsym ndx);
848 I dynsym ndx++;

849
850

852
853
854
855
856
857
858
859
860
861

863
864

866
867

869
870

872
873
874
875
876
877
878
879
880

882
883
884
885
886
887

889
890
891
892
893
894
895
896

898

900
901
902
903
904
905
906
907
908
909
910
911
912

new usr/src/cnd/ sgs/|ibl d/ common/ updat e. ¢ 12
}
}
/*
* |f this input file has undergone object to synbol
* capabilities conversion, supply any new capabilities synbols.
* These synbols are copies of the original global synbols, and
* follow the existing local synbols that are supplied fromthis
* input file (which are identified with a preceding STT_FILE).
*
/
if (syntab & cdp && cdp->ca_synms) {
Aliste idx2;
Cap_sym *csp
for (APLI ST_TRAVERSE(cdp->ca_syns, idx2, csp)) {
I's_desc *isp;
sdp = csp->cs_sdp;
sym = sdp->sd_sym
if ((|sp = sdp >sd_isc) !'= NULL) {
Cc *osp = isp->is_osdesc;
/*
* Update the synbols val ue.
*
/
/* LINTED */
sym >st _val ue +=
(OFf)_el f_getxoff(isp->is |ndata)
if ((flags & FLG OF_RELOBJ) == 0)
sym >st _val ue +=
osp->0s_shdr->sh_addr;
/*
* Update the synbols section index.
*
sdp- >sd_shndx = sym >st_shndx
el f _ndxscn(osp->0s_scn);
}
synt ab[syntab_ndx] = *sym
(void) st_setstring(strtab, sdp->sd_nane,
&stoff);
synt ab[syntab_ndx] . st _nane = stoff;
sdp->sd_symdx = synt ab_ndx++;
}
}
}
syntab_gbl _bndx = syntab_ndx; /* .symtab index of 1st global entry */
/*
* Two special synbols are ‘_init’ and ‘' _fini’. |If these are supplied
* by crti.o then they are used to represent the total concatenation of
* .init’ and ‘.fini’' sections.
*
* Determ ne whether any .init or .fini sections exist. |If these
* sections exist and a dynam c object is being built, but no ‘_init’
* _fini’ synbols are found, then the user is probably building
* this object directly fromld(1l) rather than using a conpiler driver
* provi des the synbols via crt’s.
*
* If the .init or .fini section exist, and their associated synbols,
* determine the size of the sections and updated the synmbols val ue
* accordingly.
*

913
914

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

915
916
917
918
919
920

922
923
924
925

927
928
929
930
931
932

934
935
936
937

939
940
941
942
943
944

946
947
948
949
950

952
953
954
955
956
957
958

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

977
978
979
980

#if

#endi f

SYM_NOHASH,

if (((sdp =1d symflnd(l\/SGO?lG(NBGSYMINIT v,

0,
ofl)) !'= NULL) && (sdp->sd_ref == REF_REL_NEED) && sdp->sd_isc &&

(sdp->sd_i sc->i s_osdesc == |osp)) {
if (Td_symcopy(sdp) == S_ERROR)
return ((Addr)S ERROR) ;

13

sdp->sd_sym >st _si ze = sdp->sd_i sc->i s_osdesc->0s_shdr->sh_si ze;

} else if (iosp & !(flags & FLG OF_RELOBJ)) {
Id eprlntf(ofl ERR_WARNI NG, MSG_| NTL(MSG_SYM NOCRT),
G(IVBGSYMINIT v, NSGCRIG(MSGSCNINIT))

}
if (((sdp = Id_symfind(MSG ORI G(MSG SYM FINI _U), SYMNCHASH, 0,

of 1)) !'= NULL) && (sdp->sd_ref == REF_REL_NEED) && sdp->sd_isc &&

(sdp->sd_i sc->i s_osdesc == fosp)) {
if (Td_symcopy(sdp) == S_ERROR)
return ((Addr)S ERROR) ;

sdp->sd_sym >st _size = sdp->sd_i sc->i s_osdesc->0s_shdr->sh_si ze;

} else if (fosp && !(flags & FLG OF_RELOBJ)) {
Id eprl nt f (of |, ERR WARNI NG, MSG_| NTL(MSG_SYM NOCRT) ,
ORI G(MSG SYM FINI_U), MSG ORI G(MSG SCN FINI));

}

/*
* Assign .bss information for use wth updati ng COMMON synbol s.
*
/
if (ofl->ofl_isbss) {
isc = ofl->of| _isbss;
osp = isc->i s_osdesc;
bssaddr = osp->os_shdr->sh_addr +
(OFf)_el f_getxoff(isc->is_indata);
/* LINTED */
bssndx = el f_ndxscn(osp->0s_scnh);

}
defi ned(_ELF64)
/*

* For and64 target, assign .lbss information for use
* with updating LCOWON synbol s
*/

if ((Id_targ.t m m mach == EM AMD64) && of | ->of | _i sl bss) {
osp = of | ->of |sI bss->i s_osdesc;

| bssaddr = osp->os_shdr->sh_addr +
(Of)_elf_getxoff(ofl->ofl _islbss->is_indata);

/* LINTED */

I bssndx = el f _ndxscn(osp->0s_scn);

/*
* Assign
*/
if (ofl->ofl_istlshss)
osp = ofl —>of| _istlsbss->i s_osdesc;
tl sbssaddr = osp->o0s_shdr->sh_addr +
(OFf)_el f_getxof f(ofl->of I _istlsbss->is_indata);
/* LINTED */
tlsbssndx = el f_ndxscn(osp->0s_scn);

if ((sorted_syms = libld_calloc(ofl->ofl_globcnt +
of | ->of I _elincnt + ofl->ofl _scopecnt,
sizeof (*sorted_syms))) == NULL)

return ((Addr)S_ERROR);

.tlsbss information for use with updati ng COWON synbol s.

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

982
983

985

987
988
989
990
991
992
993
994
995

997

999
1000
1001
1002
1003
1004
1005
1006
1007
1008

1010
1011
1012
1013
1014

1016
1017
1018
1019

1021
1022
1023
1024
1025
1026
1027
1028

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

scndx
ssndx

0
of | ->of | _scopecnt + ofl->ofl _elincnt;

DBG _CALL(Dbg_syns_up_title(ofl->ofl _Im));

| *

14

* Traverse the internal synbol table updating gl obal synmbol infornation
* and al | ocating conmon.
*/

for

(sav = avl _first(&ofl->ofl _symavl); sav;
sav = AVL_NEXT(&ofl->of | _symavl, sav)) {
Sym *synptr;
int | ocal ;
int restore;

sdp = sav->sav_sdp;

/*
* Ignore any synbols that have been marked as inval | d during
* input processing. Providing these aren't used fo
* relocation, they will be dropped from the out put |mage.
*
/
if (sdp->sd_flags & FLG SY_I NVALID) {

DBG_CALL(Dbg_syns_ol d(of I, sdp));
DBG_CALL(Dbg_syns_ignore(ofl, sdp));
cont i nue;

}

/*

* Only needed synbols are copied to the output synbol table.
*
/

if (sdp->sd_ref == REF_DYN_SEEN)
conti nue;

if (SYMIS H DDEN(sdp) && (flags & FLG OF PROCRED))
| ocal 1;

el se
|l ocal = 0;
if (local || (ofl->ofl_hashbkts == 0)) {
sorted_syns[scndx++].sl _sdp = sdp;
} else {
sorted_syms[ssndx].sl _hval = sdp->sd_aux->sa_hash %
of | - >of | _hashbkts;
sorted_syns[ssndx].sl_sdp = sdp;
ssndx++;
}
/*
* Note - expand the COMMON synbol s here because an address
* nmust be assigned to themin the sane order that space was
* calculated in symvalidate(). |If this ordering isn't
* followed differing alignment requirements can throw us all
* out of whack.
*
* The expanded .bss gl obal synbol is handled here as well.
*
* The actual adding entries into the synbol table still occurs
*

bel ow i n hashbucket order.
*
/
synptr = sdp->sd_sym
restore = 0;
if ((sdp->sd_flags & FLG SY_PAREXPN) ||
((sdp->sd_flags & FLG SY_SPECSEC) &&
(sdp->sd_shndx = synptr->st_shndx) == SHN_COWON)) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 15

1048 /*

1049 * An expanded synbol goes to a special .data section
1050 * prepared for that purpose (ofl->ofl_isparexpn).
1051 * Assign COMMON al | ocations to .bss.

1052 * Gtherwise leave it as is.

1053 */

1054 if (sdp->sd_flags & FLG SY_PAREXPN) {

1055 restore = 1;

1056 sdp- >sd shndx = par expnndx;

1057 sdp->sd_flags & ~FLG SY_SPECSEC,;

1058 synptr->st_val ue (Xword) S_ROUND(

1059 par expnaddr, synpt r->st_val ue);

1060 parexpnaddr = synptr->st_value +

1061 synptr->st_si ze;

1062 sdp->sd_i sc = of | ->of | _i spar expn;

1063 sdp->sd_flags | = FLG_SY_COWEXP;

1065 } else if (ELF_ST _TYPE(synptr->st_info) != STT_TLS &&
1066 (local || '(flags & FLG OF_RELOBJ))) {

1067 restore = 1;

1068 sdp->sd_shndx = bssndx;

1069 sdp->sd_flags & ~FLG SY_ SPECSEC;

1070 synptr->st_val ue = (Xword)S_ROUND(bssaddr,
1071 synptr->st_val ue);

1072 bssaddr = synptr->st_val ue + synptr->st_size;
1073 sdp->sd_i sc” = of | ->of | _i sbss;

1074 sdp->sd_flags | = FLG SY_ COVVEXP;

1076 } else if (ELF ST_TYPE(synptr->st_info) == STT_TLS &&
1077 (local || T(fTags & FLG OF RELOBJ))) {

1078 restore = 1

1079 sdp->sd_shndx = tl| sbssndx;

1080 sdp->sd_fl ags &= ~FLG SY_SPECSEG;

1081 synpt r->st_val ue (Xword) S_ROUND(t | sbssaddr,
1082 syrrptr->st_val ue);

1083 tl sbssaddr = serptr->st_vaI ue + synptr->st_size;
1084 sdp->sd_i sc = of | ->of | _i stl sbss;

1085 sdp->sd_flags | = FLG_SY_COMVEXP;

1086 I*

1087 * TLS synbols are relative to the TLS segnent.
1088 */

1089 synptr->st_value -= ofl->of| _t|sphdr->p_vaddr;
1090 }

1091 #if def i ned(_ELF64)

1092 Y else if ((Id_targ.t_mmmach == EM AMD64) &&

1093 (sdp->sd_flags & FLG SY. SPECSEC) &&

1094 ((sdp->sd_shndx = synptr->st_shndx) ==

1095 SHN_X86_64_LCOMVON) ~ &&

1096 ((local || !(flags & FLG OF_RELOBJ)))) {

1097 restore = 1;

1098 sdp- >sd_shndx = | bssndx;

1099 sdp->sd_fl ags &= ~FLG SY SPECSEC;

1100 synptr->st_val ue = (Xword) S_ROUND(| bssaddr,

1101 synptr->st_val ue);

1102 | bssaddr = synptr >st _val ue + synptr->st_size;

1103 sdp->sd_isc = of | ->of I _i sl bss;

1104 sdp->sd_flags | = FLG SY_ COMVEXP;

1105 #endi f

1106 }

1108 if (restore = 0)

1109 uchar _t type, bind;

1111 /*

1112 * Make sure this COMMON synbol is returned to the sane

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 16
1113 * binding as was defined in the original relocatable
1114 * obj ect reference.

1115 */

1116 type = ELF_ST_TYPE(synptr->st_info);

1117 if (sdp->sd_flags & FLG SY_GLOBREF)

1118 bind = STB_GLOBAL;

1119 el se

1120 bi nd = STB_WEAK;

1122 synptr->st_info = ELF_ST_I NFQ(bi nd, type);

1123 }

1124 1

1126 /*

1127 * If this is a dynam c object then add any |local capabilities synbols.
1128 */

1129 if (dynsym && of | ->of | _capfamilies) {

1130 Cap_avl node *cav;

1132 for (cav = avl _first(ofl->ofl _capfanmilies); cav;

1133 cav = AVL_NEXT(ofl->of| _capfamilies, cav)) {

1134 Cap_sym *csp;

1135 Aliste i dx;

1137 for (APLI ST_TRAVERSE(cav->cn_nenbers, idx, csp)) {
1138 sdp = csp->cs_sdp;

1140 DBG CALL(Dbg_syns_created(ofl->of | _Inl,

1141 sdp->sd_nane)) ;

1142 DBG CALL(Dbg_syms_entered(ofl, sdp->sd_sym
1143 sdp));

1145 dynsyni dynsym ndx] = *sdp->sd_sym

1147 (void) st_setstring(dynstr, sdp->sd_nane,
1148 &stoff);

1149 dynsyni dynsym_ndx] .st_nane = stoff;

1151 sdp->sd_sym = &Jynsyn{ dynsym ndx] ;

1152 sdp->sd_symdx = dynsym ndx;

1154 /*

1155 * Indicate that this is a capabilities symbol.
1156 * Note, that this identification only provides
1157 * informtion regarding the synbol that is
1158 * visible fromelfdunp(1l) -y. The association
1159 * of a synmbol to its capabilities is derived
1160 * froma .SUNWcapinfo entry.

1161 *

1162 f (syminfo) {

1163 sym nf o[dynsym ndx] .si _flags | =

1164 SYM NFO FLG CAP;

1165 }

1167 dynsym ndx++;

1168 }

1169 }

1170 }

1172 if (ofl->ofl _hashbkts) {

1173 gsort(sorted_syms + ofl->of | _scopecnt + ofl->ofl _elintnt,
1174 of | ->of | _gl obcnt, sizeof (Syms_list),

1175 (int (*)(const void *, const void *))sym hash_conpare);
1176 }

1178 for (ssndx = 0; ssndx < (ofl->ofl _elincnt + ofl->ofl_scopecnt +

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 17

1179 of | ->of | _gl obcnt); ssndx++) {

1180 const char *nane;

1181 Sym *sym

1182 Sym aux *sap,

1183 Hal f spec

1184 int Iocal = 0, dynlocal = 0, enter_in_syntab;
1185 Got ndx *gnp;

1186 Word sect ndx;

1188 sdp = sorted _syms[ssndx] . sl _sdp;

1189 sectndx = 0;

1191 if (syntab)

1192 enter_in_synmab = 1;

1193 el se

1194 enter_in_syntab = O;

1196 /*

1197 * Assign a got offset if necessary.

1198 *

1199 if ((Idtargt nr.nv_assign_got != NULL) &&

1200 (*Id_targ.t_nr.nr_assign_got)(ofl, sdp) == S_ERROR)
1201 return ((Addr)S_ERROR);

1203 if (DBG_ENABLED) {

1204 Aliste idx2;

1206 for (ALI ST_TRAVERSE(sdp->sd_GOTndxs, idx2, gnp)) {
1207 gottabl e->gt _sym = sdp;

1208 gott abl e- >gt _gndx. gn_got ndx = gnp- >gn_got ndx;
1209 got t abl e- >gt _gndx. gn_addend = gnp->gn_addend;
1210 gottabl e++

1211 }

1213 if (sdp->sd_aux && sdp->sd_aux->sa_PLTGOTndx) {
1214 gottabl e->gt _sym = sdp;

1215 got t abl e- >gt _gndx. gn_got ndx =

1216 sdp- >sd_aux- >sa_PLTGOIndx;

1217 gottabl e++;

1218 }

1219 }

1221 /*

1222 * If this synbol has been narked as being reduced to |ocal
1223 * scope then it will have to be placed in the scoped portion
1224 * of the .synmtab. Retain the appropriate index for use in
1225 * version synbol indexing and relocation.

1226 *

1227 if (SYM.|S_H DDEN(sdp) && (flags & FLG OF_PROCRED)) {

1228 local = 1,

1229 if (!(sdp->sd_flags & FLG SY_ELIM && !dynsym
1230 sdp->sd_symdx = scopesym ndx;

1231 el se

1232 sdp->sd_symdx = O;

1234 if (sdp->sd_flags & FLG SY_ELIM {

1235 enter_in_syntab = 0,

1236 } else if (Idynsym & sdp->sd_sym >st_name &&
1237 I dynsym synt ype[

1238 ELF_ST_TYPE(sdp->sd_sym >st_info)]) {

1239 “dynlocal = 1;

1240

1241 } else {

1242 sdp- >sd_symdx = *symdx;

1243 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 18
1245 1=

1246 * Copy basic synbol and string infornmation.

1247 */

1248 nane = sdp->sd_nane;

1249 sap = sdp->sd_aux;

1251 /*

1252 * If we require to record version synbol indexes, update the
1253 * associ ated version synbol information for all defined

1254 * synbols. If a version definition is required any zero val ue
1255 * synbol indexes would have been fl agged as undefined synbol
1256 * errors, however if we're just scoping these need to fall into
1257 * the base of global synbols.

1258 */

1259 f (sdp->sd_symdx && versym) {

1260 Hal f vndx = O;

1262 if (sdp->sd_flags & FLG_SY_WTOCOMY) {

1263 vndx = VER _NDX_GLOBAL;

1264 } else if (sdp->sd_ref == REF_REL_NEED) {

1265 vndx = sap->sa_over ndx;

1267 if ((vndx == 0) &&

1268 (sdp- >sd _sym >st _shndx ! = SHN_UNDEF)) {
1269 if (SYM.IS_HI DDEN(sdp))

1270 vndx = VER_NDX_LOCAL;

1271 el se

1272 vndx = VER _NDX_GLOBAL;

1273 }

1274 } else if ((sdp->sd_ref == REF_DYN_NEED) &&

1275 (sap->sa_dverndx > 0) &&

1276 (sap->sa_dverndx <= sdp->sd_file->ifl_vercnt) &&
1277 (sdp->sd_file->ifl_verndx != NULL))

1278 /* Use index of verneed record */

1279 vndx = sdp->sd_file->ifl_verndx

1280 [sap- >sa_dver ndx] . vi _over ndx;

1281

1282 ver syn{ sdp- >sd_symmdx] = vndx;

1283 }

1285 /*

1286 * |f we are creating the .sym nfo section then set per synbol
1287 * flags here.

1288 */

1289 if (sdp->sd_symdx && symnfo &&

1290 ! (sdp->sd_flags & FLG_SY_NOTAVAIL)) {

1291 I nt ndx = sdp >sd_symdx;

1292 APlist **al pp &(of I ->of | _syndtent);

1294 if (sdp->sd_flags & FLG_SY_WTOCOMV)

1295 /*

1296 * ldentify a copy relocation synbol.

1297 */

1298 sym nfo[ndx].si_flags | = SYM NFO_FLG_COPY;
1300 if (sdp->sd_ref == REF_DYN NEED) {

1301 I*

1302 A reference is bound to a needed dependency.

*
1303 * Save the syminfo entry, so that when the
1304 * .dynami c section has been updated, a
1305 * DT_NEEDED entry can be associ at ed

*

1306 (see update_osyminfo()).

1307 */

1308 if (aplist_append(al pp, sdp

1309 AL_CNT_OFL_SYM NFOSYNS) == NULL)

1310 return (0);

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 19

1312
1313
1314
1315
1316
1317

1319
1320
1321
1322
1323
1324
1325
1326
1327

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344

1346
1347
1348
1349
1350
1351
1352
1353

1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

1369
1370
1371
1372
1373
1374
1375
1376

/*
*
*

*

Fl ag that the synbol has a direct association
with the external reference (this is an old

tagging, that has no real effect by itself).
*/

sym nfo[ndx].si_flags | = SYM NFO_FLG DI RECT;

/*

-
-

f

* Ok ok kK ok kb kb

*

*/

if

Fl ag any lazy or deferred reference.

(sdp->sd_flags & FLG SY_LAZYLD)
symnfo[ndx].si _flags | =
SYM NFO_FLG_LAZYLOAD;
(sdp->sd_flags & FLG_SY_DEFERRED)
sym nfo[ndx].si_flags | =
SYM NFO_FLG_DEFERRED,

Enabl e direct synbol bindings if:

- Synbol was identified with the DI RECT
keyword in a mapfile.

- Synbol reference has been bound to a
dependency which was specified as
requiring direct bindings with -zdirect.

- Al synbol references are required to
use direct bindings via -Bdirect.

(sdp->sd flags & FLG SY_DI R)
syminfo[ndx].si_flags |=
SYM NFO_FLG DI RECTBIND

} else if ((sdp->sd_flags & FLG SY_EXTERN) &&
(sdp->sd_sym >st_shndx == SHN_UNDEF)) {
/*

*
*
*

*/

If this synmbol has been explicitly defined
as external, and remains unresol ved, mark
it as external.

sym nf o[ndx] . si _boundto = SYM NFO_BT_EXTERN;

} else if ((sdp->sd_flags & FLG SY_PARENT) &&
(sdp >sd_sym >st_shndx == SHN_UNDEF)) {

*
*
*
*

*/

sym
sym
if

If this synbol has been explicitly defined
to be a reference to a parent object,

i ndi cate whether a direct binding shoul d be
establ i shed.

info[ndx].si_flags | = SYM NFO_FLG DI RECT,;
i nf o[ndx] . si _boundto = SYM NFO_BT_PARENT;
(sdp->sd_flags & FLG SY_DI R
sym nfo[ndx].si_flags |=
SYM NFO_FLG_DI RECTBI ND;

} else if (sdp->sd_flags & FLG SY_STDFLTR) {
/*

*
*
*

A filter definition. Although this synbol
can only be a stub, it mght be necessary to
prevent external direct bindings.

sym nfo[ndx].si_flags | = SYM NFO FLG FI LTER;

if

(sdp->sd_flags & FLG SY_NDI R)

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 20
1377 symi nfo[ndx].si_flags | =

1378 SYM NFO_FLG_NOEXTDI RECT;

1380 } else if (sdp->sd_flags & FLG_SY_AUXFLTR) {

1381 /*

1382 * An auxiliary filter definition. By nature,
1383 * this definition is direct, in that should the
1384 * filtee lookup fail, we'Il fall back to this
1385 * object. It may still be necessary to

1386 * prevent external direct bindings.

1387 */

1388 sym nfo[ndx].si_flags | = SYM NFO FLG AUXI LI ARY
1389 if (sdp->sd_flags & FLG SY_NDI R)

1390 sym nfo[ndx].si_flags |=

1391 SYM NFO_FLG_NOEXTDI RECT;

1393 } else if ((sdp->sd_ref == REF_REL_NEED) &&

1394 (sdp->sd_sym >st_shndx != SHN_UNDEF)) {

1395 I*

1396 * This definition exists within the object
1397 * being created. Provide a default boundto
1398 * definition, which may be overridden |ater.
1399 */

1400 sym nf o[ndx] . si _boundt o = SYM NFO_BT_NONE;
1402 /*

1403 * Indicate whether it is necessary to prevent
1404 * external direct bindings.

1405

1406 if (sdp->sd_flags & FLG SY_NDIR) {

1407 sym nfo[ndx].si_flags | =

1408 SYM NFO_FLG_NOEXTDI RECT;

1409 }

1411 I*

1412 * Indicate that this synbol is acting as an
1413 * individual interposer

1414

1415 if (sdp->sd_flags & FLG SY_I NTPCSE) {

1416 sym nfo[ndx].si_flags |=

1417 SYM NFO_FLG_| NTERPCSE;

1418 }

1420 /*

1421 * Indicate that this synbol is deferred, and
1422 * hence shoul d not be bound to during Bl ND_NOW
1423 * rel ocations.

1424

1425 |f (sdp->sd_flags & FLG SY_DEFERRED) {

1426 symnfo[ndx].si_flags | =

1427 SYM NFO_FLG_DEFERRED;

1428 }

1430 /*

1431 * |f external bindings are allowed, indicate
1432 * the binding, and a direct binding if

1433 * necessary.

1434 */

1435 if ((sdp->sd_flags & FLG_ SY_NDIR) == 0) {

1436 sym nfo[ndx].si_flags |=

1437 SYM NFO_FLG_DI RECT;

1439 if (sdp->sd_flags & FLG SY_D R

1440 symnfo[ndx].si_flags |=

1441 SYM NFO_FLG DI RECTBI ND;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 21

1443
1444
1445
1446
1447
1448
1449

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465

1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

1480
1481
1482
1483

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498

1500
1501

1503
1504
1505
1506
1507
1508

/*

* Provide a default boundto definition,
* which may be overridden |ater.

*/

symi nfo[ndx] . si _boundto =
SYM NFO_BT_SELF;

}
/*
* Indicate that this is a capabilities synbol.
* Note, that this identification only provides
* information regarding the synbol that is
* visible fromelfdump(1l) -y. The association
*
*
*
if

of a synmbol to its capabilities is derived
froma .SUNWcapinfo entry.

((sdp >sd_flags & FLG SY_CAP) &&
of | - >of | _oscapi nf o)
sym nfo[ndx].si_flags |=
SYM NFO _FLG _CAP,

Note that the ‘sym value is reset to be one of the new
synbol table entries. This synbol will be updated further
dependi ng on the type of the synbol. Process the .syntab
first, followed by the .dynsym thus the ‘sym value wll
remain as the .dynsymval ue when the .dynsymis present.
This ensures that any versioning synbols st_nanme value wll
be appropriate for the string table used by version
entries.

—h ok ok % ok Ok ok % ok k%
-

if (enter_in_syntab) {
Vo

rd _symdx;

if (local)

_symdx = scopesym ndx;
el se

_symdx = synt ab_ndx;

symt ab[_symdx] = *sdp->sd_sym
sdp->sd_sym = sym = &synt ab[_symdx];
(void) st_setstring(strtab, nane, &stoff);
sym >st_nane = stoff;

}

1f (dynlocal) {
I dynsyni | dynscopesym ndx] = *sdp->sd_sym
sdp->sd_sym = sym = & dynsyni| dynscopesym ndx] ;
(void) st_setstring(dynstr, name, &stoff);
I dynsyni | dynscopesym ndx] . st _name = stoff;
/* Add it to sort section if it qualifies */
ADD_TO DYNSORT(sdp, sym ELF_ST_TYPE(sym >st_info),

| dynscopesym ndx) ;

}

if (dynsym&& !local) {
dynsyni dynsym ndx] = *sdp->sd_sym
/*
* Provided this isn't an unnaned regi ster synbol,
* update the synmbols nane and hash val ue.

if (((sdp->sd_flags & FLG SY_REGSYM == 0) ||
dynsyn{ dynsym ndx] . st _nane) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 22
1509 (void) st_setstring(dynstr, name, &stoff);
1510 dynsyn{ dynsym ndx] . st _nane = stoff;

1512 if (stoff) {

1513 Word hashval , _hashndx;

1515 hashval =

1516 sap->sa_hash % of | - >of | _hashbkts;
1518 /* LI NTED */

1519 if (_hashndx = hashbkt[hashval]) {
1520 whi | e (hashchai n[_hashndx]) {
1521 _hashndx =

1522 hashchai n[_hashndx] ;
1523

1524 hashchai n[_hashndx] =

1525 sdp- >sd_symdx;

1526 } else {

1527 hashbkt [hashval] =

1528 sdp- >sd_symdx;

1529 }

1530 }

1531 }

1532 sdp->sd_sym = sym = &Jynsyn{ dynsym ndx] ;

1534 /*

1535 * Add it to sort section if it qualifies.

1536 * The indexes in that section are relative to the
1537 * the adjacent SUNW.I dynsynm dynsym pair, so we

1538 * add the nunber of itens in SUNWIdynsymto the
1539 * dynsym i ndex.

1540 */

1541 ADD_TO DYNSORT(sdp, sym ELF_ST_TYPE(sym >st_info),
1542 I dynsym cnt + dynsym ndx);

1543 }

1545 if (lenter_in_syntab & (!dynsym || (local && !dynlocal))) {
1546 if (!(sdp->sd_flags & FLG_SY_UPREQD))

1547 conti nue;

1548 sym = sdp->sd_sym

1549 } else

1550 sdp->sd_fl ags & ~FLG SY_CLEAN,

1552 /*

1553 * |If we have a weak data synbol for which we need the real
1554 * synbol also, save this processing until later.

1555 *

1556 * The exception to this is if the weak/strong have PLT s
1557 * assigned to them |In that case we don’t do the post-weak
1558 * processing because the PLT s nust be maintained so that we
1559 * can do 'interpositioning’ on both of the synbols.

1560 */

1561 if ((sap->sa_linkndx) &&

1562 (ELF_ST_BIND(sym >st _i nfo) == STB_WEAK) &&

1563 (!sap->sa_PLTndx)) {

1564 Sym desc *_sdp;

1566 _sdp = sdp->sd_file->ifl_ol dndx[sap->sa_| i nkndx] ;
1568 if (sdp >sd_ref !'= REF_DYN_SEEN) {

1569 _desc wk;

1571 if (enter_in_syntab) {

1572 if (Tocal) {

1573 wk. wk_syntab =

1574 &synt ab[scopesym ndx] ;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 23

1575 scopesym ndx++;

1576 } else {

1577 wk. wk_syntab =

1578 &synt ab[synt ab_ndx] ;
1579 synt ab_ndx++;

1580

1581 } else {

1582 wk. wk_syntab = NULL;

1583 }

1584 1f (dynsym {

1585 i1f (!local) {

1586 wk. wk_dynsym =

1587 &dynsyni dynsym ndx] ;

1588 dynsym ndx++;

1589 } else |f (dynl ocal) {

1590 .wk_dynsym =

1591 & dynsynf | dynscopesym ndx] ;
1592 | dynscopesym ndx++;

1593

1594 } else {

1595 wk. wk_dynsym = NULL;

1596 }

1597 wk. wk_weak = sdp;

1598 wk.wk_alias = _sdp;

1600 if (alist_append(&nweak, &wk,

1601 sizeof (Wk_desc), AL CNT _WEAK) == NULL)
1602 return ((Addr)S ERROR) ;

1604 continue;

1605 }

1606 }

1608 DBG_CALL(Dbg_syns_ol d(ofl, sdp));

1610 spec = NULL;

1611 /*

1612 * assign new synbol val ue.

1613 */

1614 sect ndx = sdp->sd_shndx;

1615 if (sectndx == SHN UNDEF) {

1616 if (((sdp->sd_flags & FLG SY_REGSYM) == 0) &&

1617 (sym>st_value !'= 0)) {

1618 Id_eprintf(ofl, ERR WARNI NG,

1619 MSG_I NTL(NSG SYM NOTNULL) ,

1620 demangl e(nane), sdp->sd_ file->ifl _nane) ;
1621 }

1623 /*

1624 * Undefined weak global, if we are generating a static
1625 * executabl e, output as an absolute zero. O herw se
1626 * leave it as is, Id.so.1 will skip synmbols of this
1627 * type (this technique allows applications and
1628 * libraries to test for the existence of a synbol as an
1629 * indication of the presence or absence of certain
1630 * functionality).

1631 *

1632 if (OFL_I'S_STATIC EXEC(ofl) &&

1633 (ELF_ST_BI ND(sym >st _i nfo) == STB_WEAK)) {

1634 sdp->sd_f | ags |- FLG SY_ SPECSEC

1635 sdp->sd_shndx = sectndx = SHN_ABS;

1636 }

1637 } else if ((sdp->sd_flags & FLG SY_SPECSEC) &&

1638 (sectndx == SHN_COMMON)) {

1639 /* COMVONs have al ready been processed */

1640 [* EMPTY */

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 24
1641 ;

1642 } else {

1643 if ((sdp->sd_flags & FLG SY_SPECSEC) &&

1644 (sectndx == SHN_ABS))

1645 spec = sdp->sd_aux- >sa_synspec;

1647 /* LINTED */

1648 if (sdp->sd_flags & FLG SY_COMVEXP) {

1649 I

1650 * This is (or was) a COMWON synmbol which was
1651 * processed above - no processing

1652 * required here.

1653 */

1654 i

1655 } else if (sdp->sd_ref == REF_DYN NEED) {

1656 uchar_t type, bind;

1658 sect ndx = SHN_UNDEF;

1659 sym >st _val ue = 0;

1660 sym >st _size = 0;

1662 /*

1663 * Make sure this undefined synbol is returned
1664 * to the sane binding as was defined in the
1665 * original relocatable object reference.

1666 */

1667 type = ELF_ST_TYPE(sym > st_info);

1668 it (sdp->sd_fI l'ags & FLG_SY_GLOBREF)

1669 bind = STB_GLOBAL;

1670 el se

1671 bi nd = STB_WEAK;

1673 sym >st _info = ELF_ST_I NFQ(bi nd, type);

1675 } else if (((sdp->sd_flags & FLG SY_SPECSEC) == 0) &&
1676 (sdp->sd_ref == REF_REL_NEED)) {

1677 osp = sdp->sd_i sc->i s_osdesc;

1678 /* LINTED */

1679 sectndx = el f _ndxscn(osp->0s_scn);

1681 /*

1682 * In an executable, the new synbol value is the
1683 * old value (offset into defining section) plus
1684 * virtual address of defining section. In a
1685 * relocatable, the new value is the old val ue
1686 * plus the di spI acenent of the section within
1687 * the file.

1688 */

1689 /* LINTED */

1690 sym >st _val ue +=

1691 (OFf)_el f_getxoff(sdp->sd_isc->is_indata);
1693 if (!(flags & FLG OF_RELOBJ)) {

1694 sym >st _val ue += osp->o0s_shdr->sh_addr;
1695 /*

1696 * TLS synbols are relative to

1697 * the TLS segnent.

1698 */

1699 if ((ELF_ST_TYPE(sym >st_info) ==
1700 STT_TLS) && (ofl->of I _tlsphdr))
1701 sym >st _val ue -=

1702 of | ->of | _t| sphdr->p_vaddr;
1703 }

1704 }

1705 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

if (spec)
switch (spec) {
case SDAUX_| D_ETEXT:
sym >st _val ue = etext;
sect ndx = etext_ndx;
if (etext_abs)
sdp- >sd_fl ags | = FLG_SY_SPECSEC,
el se
sdp- >sd_f | ags & ~FLG_SY_SPECSEC;
break;
case SDAUX | D EDATA:
sym >st _val ue = edat a;
sect ndx = edat a_ndx;
if (edata_abs)
sdp->sd_fl ags | = FLG_SY_SPECSEC,
el se
sdp->sd_fl ags & ~FLG_SY_SPECSEC;
break;
case SDAUX | D END:
sym >st _val ue = end;
sect ndx = end_ndx;
if (end_abs)
sdp->sd_flags | = FLG_SY_SPECSEC,
el se
sdp->sd_fl ags & ~FLG_SY_SPECSEC;
br eak;
case SDAUX_| D_START:
sym >st val ue = start;
sectndx = start_ndx;
sdp->sd_flags & ~FLG SY_SPECSEC;
br eak;
case SDAUX_| D_DYN:
if (flags & FLG_ OF_DYNAM C) {
sym >st _val ue = ofl->
of | _osdynani c- >0s_shdr->sh_addr;
/* LINTED */
sectndx = el f_ndxscn(
of | ->of | _osdynanmi c->0s_scn);
sdp->sd_flags & ~FLG SY_ SPECSEC

br eak;
case SDAUX ID_PLT:
if (ofl->ofl_osplt) {
sym >st _val ue = ofl -
of | _ospl t - >o0s shdr->sh _addr;
/* LINTED */
sectndx = el f_ndxscn(
of | ->of| _osplt->o0s_scn);
sdp->sd_fl ags & ~FLG SY_ SPECSEC

br eak;
case SDAUX_|I D_GOT:
*

* Synbol bias for negative growing tables is
* stored in synbol’s value during
* allocate_got().
*
/

sym >st _val ue += of | ->
of | _osgot - >0s_shdr - >sh_addr ;
I* LINTED */
sectndx = el f_ndxscn(ofl->
of | _osgot - >0s_scn) ;
sdp->sd_flags & ~FLG_ SY SPECSEC;
br eak;
case SDAUX_ ID SECBOUND_START:
sym >st _val ue = sap->sa_boundsec->

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

1805
1806
1807

1809
1810
1811
1812
1813
1814

1816
1817
1818
1819
1820
1821
1822
1823
1824

1826
1827
1828
1829
1830

1832
1833

1835
1836
1837
1838

#endi f /*

os shdr >sh_addr;
sectndx = el f ndxscn(sap >sa_boundsec- >0s_scn) ;
sdp->sd_fl ags” & ~FLG_SY_SPECSEC,
br eak;
case SDAUX_| D_SECBQJND_STG?:
sym >st _val ue = sap->sa_boundsec->
os_shdr->sh_addr +
sap- >sa_boundsec- >0s_shdr - >sh_si ze;
sectndx = el f _ndxscn(sap->sa_boundsec->0s_scn);
sdp->sd_fl ags & ~FLG_SY_SPECSEC,

br eak;
coder evi ew */
defaul t:
/* NOTHI NG */
}

}

/*

* |f a plt index has been assigned to an undefined function,
* update the synbols value to the appropriate .plt address.
*

/

if ((flags & FLG OF DYNAM C) && (flags & FLG OF _EXEC) &&

(sdp->sd_file) &&

(sdp->sd_file->ifl_ehdr->e_type == ET_DYN) &&

(ELF_ST_TYPE(sym >st _info) == STT FUNC) &&

I (flags & FLG OF BFLAG) {

if (sap->sa_PLTndx)
sym >st _val ue =
(*Id_targ.t_nr.nv_cal c_plt_addr) (sdp, ofl);

}

*

* Finish updating the synbols.
)

*

* Sym Update: if scoped local - set |ocal binding
)

if (local)
sym >st_info = ELF_ST_|I NFQ(STB_LOCAL,
ELF_ST_TYPE(sym >st _info));

/*

* Sym Updated: If both the .syntab and .dynsym

* are present then we've actually updated the information in
* the .dynsym therefore copy this sanme information to the

* .symtab entry.

*

sdp- >sd_shndx = sect ndx;
if (enter_in_syntab && dynsym && (!local || dynlocal)) {
Word _symdx = dynl ocal ? scopesym ndx : syntab_ndx;

synt ab[_symndx] . st _val ue = sym >st_val ue;
synt ab[_symmdx] . st _size = sym >st_si ze;
synt ab[_symdx].st_info = sym >st _i nfo;
synt ab[_symdx] . st _ot her = sym >st _ot her;

}

if (enter_in_syntab) {
Wor d _symdx;

if (local)

_symdx = scopesym ndx++;
el se

_symdx = synt ab_ndx++;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 27

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848

1850
1851
1852
1853
1854
1855
1856
1857
1858

1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

1880
1881

1883
1884
1885
1886
1887
1888
1889
1890
1891
1892

1894
1895
1896

1898

1900
1901
1902
1903
1904

}
if (dyns

}

if (((sdp->sd_flags & FLG SY_SPECSEC) == 0) &&
(sectndx >= SHN_LORESERVE)) {
assert (synmshndx != NULL);
synmshndx[_symdx] = sect ndx;
synt ab[_symmdx] . st _shndx = SHN_XI NDEX;

} else {
/* LINTED */
) synt ab[_symmdx] . st _shndx = (Hal f)sectndx;
}/m&& (!local || dynlocal)) {
*

* dynsym and | dynsym are distinct tables, so

* we use indirection to access the right one
*/and the rel ated extended section index array.
*

Wor d _symdx;

Sym *_dynsym

Wor d *_dynshndx;

if (!local) {
_symdx = dynsym ndx++;
_dynsym = dynsym
dynshndx = dynshndx;

} else {
_symdx = | dynscopesym ndx++;
_dynsym = | dynsym
dynshndx = Idynshndx

}
if (((sdp->sd_flags & FLG SY_SPECSEC) == 0) &&
(sectndx >= SHN _LORESERVE)) {
assert(_dynshndx != NULL);
_dynshndx[_symdx] = sect ndx;
_dynsyn{ _symmdx] . st _shndx = SHN_XI NDEX;
} else {
/* LINTED */
_dynsyn{ _symdx] . st _shndx = (Hal f)sectndx;

DBG_CALL(Dbg_synms_new(of |, sym sdp));

Now t hat all
i nformation (
synbols will
its correct t

the synbol s have been processed update any weak synbol s
ie. copy all information except ‘st_name’). As both
be represented in the output, return the weak synbol to
ype.

r (ALIST TRAVERSE(V\.eak idxl, wkp)) {
*sdp,

Sym desc *_sdp;

Sym *sym *_sym *__sym
uchar _t bi nd;

sdp = wkp->wk_weak;

_sdp = wkp->wk_ali as;

_Sym =
sdp- >sd
/
If th
be | o

/

* ok Ok ok %

__sym= _sdp->sd_sym
_flags | = FLG_SY_WEAKDEF;

e synbol definition has been scoped then assign it to
cal, otherwise if it's froma shared object then we need

to maintain the binding of the original reference.

new usr/src/cnd/ sgs/ i bl d/ conmon/ updat e. c

1905
1906
1907
1908
1909
1910
1911
1912
1913
1914

1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936

1938
1939
1940
1941
1942

1944
1945
1946
1947
1948
1949
1950
1951
1952

1954
1955
1956
1957
1958
1959

1961
1962
1963
1964
1965
1966
1967
1968
1969
1970

if (SYMIS HI DDEN(sd)) {
if (flags & FLG OF PROCRED)
bi nd = STB_LOCAL;
el se
bind = STB WEAK;
} else if ((sdp->sd_ref == REF_DYN NEED) &&
(sdp->sd_flags & FLG SY_G.OBREF))
bi nd = STB_GLOBAL;
el se
bi nd = STB_WEAK;

DBG CALL(Dbg_syns_ol d(ofl, sdp));
if ((sym= wkp->wk_syntab) != NULL) {

sym >st _val ue = _sym >st_val ue;
sym >st_size = _sym >st_si ze;

sym >st _other = _sym >st_ot her;
sym >st _shndx = _sym >st_shndx;

sym >st _info = ELF_ST INFq bi nd
ELF_ST_TYPE(sym >st _info));

__Sym = sym

}

1f ((sym = wkp->wWk_dynsym) != NULL) {
sym >st_val ue = _sym >st_val ue;
sym >st_size = _sym >st_si ze;

sym >st _ot her _sym >st _ot her;
sym >st_shndx = _sym >st_shndx;
sym >st _info = ELF_ST INFq bi nd

ELF_ST_TYPE(sym >st _i nfo));
__sym= sym

}
DBG_CALL(Dbg_syms_newof |, _ sym sdp));

}

/*

* Now di spl ay GOT debugging information if required.
*
/

DBG CALL(Dbg_got _di splay(ofl, 0, O,
Id_targ.t_m mgot_xnunber, Id_targ.t_m mgot_entsize));

Update the section headers information. sh_info is
supposed to contain the offset at which the first

gl obal synmbol resides in the synbol table, while
sh_link contains the section index of the associ ated
string table.

* Ok ok ok ko

*/
if (syntab)
Sh *shdr

of | ->of | _ossynt ab->0s_shdr;

shdr->sh_i nfo = syntab_gbl _bndx;
/* LINTED */
shdr->sh_link = (Wrd)el f_ndxscn(ofl->ofl_osstrtab->0s_scn);
if (symshndx)
of | ->of | _ossynmshndx- >0s_shdr->sh_link =
(Word) el f _ndxscn(of | ->of | _ossynt ab->0s_scn);

Ensure that the expected nunber of synbols
were entered into the right spots:
- Scoped synbols in the right range
- Gobals start at the right spot
(correct nunber of |ocals entered)
- The table is exactly filled
(correct nunmber of gl obals entered)

* ok % ok ok ok %

*
/
assert ((scopesym bndx + ofl->of | _scopecnt) == scopesym ndx);

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 29 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 30
1971 assert (shdr->sh_info == SYMIAB_LOC CNT(ofl)); 2037 if (dynsymsort_ndx > 1) {
1972 assert((shdr->sh_info + ofl->of | _gl obcnt) == syntab_ndx); 2038 dynsort_conpare_syns = | dynsym
1973 } 2039 gsort (dynsynsort, dynsynsort _ndx,
1974 if (dynsym { 2040 si zeof (*dynsynsort), dynsort_conpare);
1975 Shdr *shdr = of | ->of | _osdynsym >0s_shdr; 2041 dynsort_dupwarn(ofl, |dynsym
2042 st _getstrbuf (dynstr),
1977 shdr->sh_info = DYNSYM_LOC_CNT(of |); 2043 dynsynsort, dynsynsort_ndx,
1978 /* LINTED */ 2044 M5G_ORI G{ MSG_SCN_DYNSYMSORT)) ;
1979 shdr->sh_link = (Wrd)el f_ndxscn(ofl->of | _osdynstr->0s_scn); 2045 }
2046
1981 of | - >of | _oshash->0s_shdr->sh_link = 2047 i1f (ofl->ofl _osdyntlssort) { /* . SUNWdyntlssort */
1982 /* LINTED */ 2048 of | ->of | _osdynt| ssort->o0s_shdr->sh_link =
1983 (Word) el f_ndxscn(of | ->of | _osdynsym >o0s_scn) ; 2049 (Word)el f_ndxscn(of | ->of | _osl dynsym >0s_scn);
1984 if (dynshndx) { 2050 assert (of | ->of | _dyntl ssortcnt == dyntl ssort_ndx);
1985 shdr = of | - >of | _osdynshndx- >o0s_shdr;
1986 shdr->sh_link = 2052 if (dyntlssort_ndx > 1) {
1987 (Word)el f_ndxscn(of | ->of | _osdynsym >0s_scn); 2053 dynsort_conpare_syns = | dynsym
1988 } 2054 gsort (dyntlssort, dyntlssort_ndx,
1989 } 2055 sizeof (*dyntlssort), dynsort_conpare);
1990 if (ldynsym { 2056 dynsort_dupwarn(ofl, |dynsym
1991 Shdr *shdr = of | ->of | _osl dynsym >os_shdr; 2057 st_getstrbuf(dynstr),
2058 dyntl ssort, dyntlssort_ndx,
1993 /* I dynsym has no gl obals, so give index one past the end */ 2059 MSG_ORI G{ MSG_SCN_DYNTLSSORT)) ;
1994 shdr->sh_info = | dynsym ndx; 2060 }
2061 }
1996 /* 2062 }
1997 * The | dynsym and dynsym nust be adjacent. The
1998 * idea is that rtld should be able to start with 2064 /*
1999 * the | dynsym and march straight through the end 2065 * Used by Id.so.1 only.
2000 * of dynsym seeing themas a single synbol table, 2066 */
2001 * despite the fact that they are in distinct sections. 2067 return (etext);
2002 * Ensure that this happened correctly.
2003 * 2069 #undef ADD_TO DYNSORT
2004 * Note that | use | dynsymndx here instead of the 2070 }
2005 * conputation | used to set the section size
2006 * (found in ldynsymecnt). The two will agree, unless 2072 | *
2007 * we sonmehow m scounted synbols or failed to insert them 2073 * Build the dynami c section.
2008 * all. Using | dynsym ndx here catches that error in 2074 *
2009 * addition to checking for adjacency. 2075 * This routine nust be maintained in parallel wth make_dynani c()
2010 */ 2076 * in sections.c
2011 assert (dynsym == (|l dynsym + | dynsym ndx)); 2077 *
2078 static int
2079 updat e_odynani c(Of | _desc *ofl)
2014 /* LINTED */ 2080 {
2015 shdr->sh_link = (Wrd)el f_ndxscn(ofl->of | _osdynstr->0s_scn); 2081 Aliste i dx;
2082 I fI _desc *ifl;
2017 if (ldynshndx) { 2083 Sym desc *sdp;
2018 shdr = of | ->of | _osl dynshndx->o0s_shdr; 2084 Shdr *shdr;
2019 shdr->sh_link = 2085 Dyn *_dyn = (Dyn *)ofl->of| _osdynam c->0s_out dat a- >d_buf ;
2020 (Word) el f _ndxscn(of | ->of | _osl dynsym >0s_scn); 2086 Dyn *dyn;
2021 } 2087 Os_desc *synosp, *strosp;
2088 Str_thbl *strtbl;
2023 /* 2089 size_t stoff;
2024 * The presence of .SUNWIdynsym neans that there nay be 2090 of | _flag_t flags = ofl->ofl _flags;
2025 * associated sort sections, one for regular synbols 2091 int not _relobj = !(flags & FLG OF_RELOBJ);
2026 * and the other for TLS. Each sort section needs the 2092 Wor d cnt;
2027 * foll owi ng done:
2028 * - Section header link references . SUNWI dynsym 2094 /*
2029 * - Shoul d have received the expected # of itens 2095 * Rel ocatabl e objects can be built with -r and -dy to trigger the
2030 * - Sorted by increasing address 2096 * creation of a .dynam c section. This nodel is used to create kernel
2031 */ 2097 * device drivers. The .dynanic section provides a subset of userland
2032 if (ofl->ofl _osdynsynsort) { /* . SUNW. dynsynsort */ 2098 * .dynamic entries, typically entries such as DT_NEEDED and DT_RUNPATH.
2033 of | ->of | _osdynsynsort->os_shdr->sh_|ink = 2099 kJ
2034 (Word) el f_ndxscn(ofl ->of | _osl dynsym >0s_scn); 2100 * Wthin a dynanmi c object, any .dynam c string references are to the
2035 assert (of | ->of | _dynsynsortcnt == dynsynsort _ndx) ; 2101 * .dynstr table. Wthin a relocatable object, these strings can reside
2102 * within the .strtab.

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 31

2103 */

2104 if (OFL_IS STATIC OBJ(ofl)) {

2105 synosp = of | ->of | _ossynt ab;

2106 strosp = of | ->of | _osstrtab;

2107 strtbl = ofl->of | _strtab;

2108 } else {

2109 synmosp = of | ->of | _osdynsym

2110 strosp = of | ->of | _osdynstr;

2111 strtbl = ofl->of| _dynstrtab;

2112 }

2114 /* LINTED */

2115 of | ->of | _osdynami c->0s_shdr->sh_link = (Wrd)el f_ndxscn(strosp->0s_scn);
2117 dyn = _dyn;

2119 for (APLIST_TRAVERSE(of | ->of | _sos, idx, ifl)) {

2120 if ((ifl->ifl_flags &

2121 (FLG I F_IGNORE | FLG | F_DEPREQD)) == FLG | F_| GNORE)
2122 conti nue;

2124 /*

2125 * Create and set up the DI_POSFLAG 1 entry here if required.
2126 */

2127 if ((ifl->fl_flags & MSK_| F_POSFLAGL) &&

2128 (ifl->ifl fIags&FLGIF NEEDED) && not _rel obj) {
2129 dyn->d_tag = DT_POSFLAG 1;

2130 if (ifl->fl flags & FLG | F_LAZYLD)

2131 dyn->d_un. d vaI = DF_P1_LAZYLQAD;

2132 if (ifl->fl_flags & FLG | F_GRPPRW)

2133 dyn->d_un.d vaI | = DF_P1_GROUPPERM
2134 if (ifl->fl_flags & FLG | F_DEFERRED)

2135 dyn- >d_un.d_val [= DF_P1_DEFERRED;

2136 dyn++;

2137 }

2139 if (ifl->ifl_flags & (FLG |F_NEEDED | FLG | F_NEEDSTR))
2140 dyn->d_tag = DT_NEEDED;

2141 el se

2142 cont i nue;

2144 (void) st_setstring(strtbl, ifl->ifl_sonane, &stoff);
2145 dyn->d_un. d_val = stoff;

2146 /* LINTED */

2147 ifl->ifl_neededndx = (Half)(((uintptr_t)dyn - (uintptr_t)_dyn) /
2148 si zeof (Dyn));

2149 dyn++;

2150 1

2152 if (not_relobj) {

2153 if (ofl->of | _dtsfltrs !'= NULL) {

2154 Dfltr_desc *df t p;

2156 for (ALIST_TRAVERSE(of | ->of | _dtsfltrs, idx, dftp)) {
2157 if (dftp->dft_flag == FLG SY_AUXFLTR)
2158 dyn->d_tag = DT_SUNW AUXI LI ARY;
2159 el se

2160 dyn->d_tag = DT_SUNWFILTER,
2162 (void) st_setstring(strtbl, dftp->dft_str,
2163 &stoff);

2164 dyn->d_un.d_val = stoff;

2165 dftp->dft_ndx = (Hal f) (((uintptr_t)dyn
2166 (uintptr_t)_dyn) / sizeof (Dyn));
2167 dyn++;

2168 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 32
2169 }

2170 1f (((sdp = ld_symfind(MSG ORI G MSG SYM IN T_U),
2171 SYM.NOHASH 0, of 1)) !I="NULL) &&

2172 (sdp->sd_ref == REF_REL_NEED) &&

2173 (sdp->sd_sym >st_shndx = SHN_UNDEF)) {

2174 dyn->d tag = DT_INIT;

2175 dyn->d_un.d_ptr = sdp- >sd_sym >st _val ue;
2176 dyn++;

2177 }

2178 if (((sdp = Id_sym find(MSG ORI G(MSG_SYM FINI _U),
2179 SYM NOHASH, 0, ofl)) !'= NULL) &&

2180 (sdp->sd_| ref == REF REL _NEED) &&

2181 (sdp->sd_sym >st _shndx = SHN_UNDEF)) {

2182 dyn->d tag = DT_FIN ;

2183 dyn->d_un.d_ptr = sdp- >sd_sym >st _val ue;
2184 dyn++;

2185 }

2186 1 f (ofl->ofl _sonane) {

2187 dyn->d_tag = DT_SONAME;

2188 (voi d) st_setstri ng(st rtbl, ofl->ofl_sonanme, &stoff);
2189 dyn->d_un.d_val = stoff;

2190 dyn++;

2191 }

2192 if (ofl->of | _filtees) {

2193 if (flags & FLG OF_Al {

2194 dyn->d_tag = DT_AUXI LI ARY;

2195 } else {

2196 dyn->d_tag = DT_FILTER,

2197

2198 (void) st_setstring(strtbl, ofl->ofl _filtees, &stoff);
2199 dyn->d_un.d_val = stoff;

2200 dyn++;

2201

2202 }

2204 if (ofl->ofl_rpath) {

2205 (void) st_setstring(strtbl, ofl->ofl _rpath, &stoff);
2206 dyn->d_tag = DT_RUNPATH,

2207 dyn->d_un.d_val = stoff;

2208 dyn++;

2209 dyn->d_tag = DT_RPATH,

2210 dyn->d_un.d_val = stoff;

2211 dyn++;

2212 1

2214 if (not_relobj) {

2215 Aliste idx;

2216 Sg_desc *sgp;

2218 if (ofl->ofl _config) {

2219 dyn->d_tag = DT_CONFI G

2220 (void) st_setstri ng(st rtbl, ofl->ofl_config, &stoff);
2221 dyn->d_un.d_val = stoff;

2222 dyn++;

2223 }

2224 1f (ofl->ofl _depaudit) {

2225 dyn->d_tag = DT_DEPAUDI T;

2226 (void) st_setstring(strtbl, ofl->ofl_depaudit, &stoff);
2227 dyn->d_un.d_val = stoff;

2228 dyn++;

2229 }

2230 if (ofl->ofl _audit) {

2231 dyn->d_tag = DT_AUDI T;

2232 (void) st_setstri ng(strtbl of | ->of | _audit, &stoff);
2233 dyn->d_un.d_val = stoff;

2234 dyn++;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

2235

2237
2238
2239

2241
2242
2243
2244

2246
2247
2248

2250
2251
2252
2253
2254
2255
2256
2257

2259
2260
2261

2263
2264

2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277

2279
2280
2281
2282

2284
2285
2286
2287
2288

2290
2291

2293
2294
2295

2297
2298
2299
2300

}

dyn->d_
dyn->d_
dyn++;

shdr =
dyn->d

tag = DT_HASH,

33

un.d_ptr = ofl->ofl _oshash->o0s_shdr->sh_addr;

strosp->os_shdr;
tag = DT_STRTAB;

dyn->d_un. d_ptr = shdr->sh_addr;

dyn++;

dyn->d

tag = DT_STRSZ;

dyn->d_un. d_ptr = shdr->sh_si ze;

dyn++;

/| *

* Not e,

* that
*/

shdr =
dyn->d

fol l ows.

synosp->0s_shdr;
tag = DT_SYMIAB;

the shdr is set and used in the ofl->of| _osl dynsym case

dyn->d_un.d_ptr = shdr->sh_addr;

dyn++,

dyn->d_

tag = DT_SYMENT,;

dyn->d_un.d_ptr = shdr->sh_entsi ze;

dyn++;

if (ofl

}
if (ofl

if (ofl

->of | _osl dynsym)
Shdr *| shdr

imedi ately
This neans t

wi thout a br
provide for

E A 3

{
= of I - >of | _osl dynsym >os_shdr;

We have arranged for the . SUNWIdynsymdata to be

in front of the .dynsym data.
hat you could start at the top

of . SUNWI dynsym and see the data for both tables

eak. This is the view we want to
DT_SUNW SYMTAB, which is why we

* add the | engths together.

*/

dyn->d_tag = DT_SUNW SYMTAB;

dyn->d_un.d_ptr
dyn++;

= | shdr->sh_addr;

dyn->d_tag = DT_ SUNW SYMSZ;

dyn->d_un. d_val
dyn++;

= | shdr->sh _size + shdr->sh_si ze;

->of | _osdynsynsort || ofl->ofl_osdyntlssort) {
dyn->d_tag = DT_SUNW SORTENT;

dyn->d_un. d_val
dyn++;

->of | _osdynsynsort) {
shd _osdynsynsort - >0s_shdr;

r = ofl->of|

= sizeof (Wrd);

dyn->d_tag = DT_SUNW SYMSORT;

dyn->d_un. d_ptr
dyn++;

= shdr->sh_addr;

dyn->d_tag = DT_SUNW SYMSORTSZ;

dyn->d_un. d_val
dyn++;

= shdr->sh_si ze;

new usr/src/cnd/ sgs/ i bl d/ conmon/ updat e. c 34
2302 if (ofl->ofl _osdyntlssort) {

2303 shdr = of | ->of | _osdynt | ssort->0s_shdr;

2305 dyn->d_tag = DT_SUNW TLSSORT;

2306 dyn->d_un.d_ptr = shdr->sh_addr;

2307 dyn++;

2309 dyn->d_tag = DT_SUNW TLSSORTSZ;

2310 dyn->d_un. d_val = shdr->sh_si ze;

2311 dyn++;

2312 }

2314 /*

2315 * Reserve the DT_CHECKSUM entry. |Its value will be filled in
2316 * after the conplete inage is built.

2317

2318 dyn->d_tag = DT_CHECKSUM

2319 of | - >of | _checksum = &dyn->d_un. d_val ;

2320 dyn++;

2322 /*

2323 * Versioning sections: DI_VERDEF and DT_VERNEED.

2324 *

2325 * The Solaris |d does not produce DT_VERSYM but the G\U I d
2326 * does, in order to support their style of versioning, which
2327 * differs from ours:

2328 *

2329 * - The top bit of the 16-bit Versymindex is

2330 * not part of the version, but is interpreted
2331 * as a "hidden bit"

2332 *

2333 * - External (SHN_UNDEF) synbols can have non-zero

2334 * Ver sym val ues, which specify versions in

2335 & referenced objects, via the Verneed section.
2336 *

2337 L - The vna_other field of the Vernaux structures

2338 * found in the Verneed section are not zero as
2339 & with Solaris, but instead contain the version
2340 * index to be used by Versymindices to reference
2341 * the given external version.

2342 *

2343 * The Solaris Id, rtld, and el fdunp prograns all interpret the
2344 * presence of DT_VERSYM as neaning that GNU versioning rul es
2345 * apply to the given file. If DI_VERSYMis not present,

2346 * then Solaris versioning rules apply. If we should ever need
2347 * to change our Id so that it does issue DI_VERSYM then
2348 * this rule for detecting GNU versioning will no | onger work.
2349 * In that case, we will have to invent a way to explicitly
2350 * specify the style of versioning in use, perhaps via a

2351 * new dynamic entry named sonething |ike DT_SUNW VERS|I ONSTYLE,
2352 * where the d_un.d_val value specifies which style is to be
2353 * used.

2354 *

2355 f ((flags & (FLG OF_VERDEF | FLG OF_NOVERSEC)) ==

2356 FLG OF VERDE)

2357 “shdr = ofl->of | _osverdef->0s_shdr;

2359 dyn->d_tag = DT_VERDEF;

2360 dyn->d_un. d_ptr = shdr->sh_addr;

2361 dyn++;

2362 dyn->d_t ag = DT_VERDEFNUM

2363 dyn->d_un.d_ptr = shdr->sh_info;

2364 dyn++;

2365 }

2366 if ((flags & (FLG OF_VERNEED | FLG OF NOVERSEC)) ==

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 35

2367
2368

2370
2371
2372
2373
2374
2375
2376

2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391

2393
2394

2396
2397
2398

2400
2401
2402
2403

2405
2406

2408
2409
2410

2412
2413
2414
2415

2417
2418

2420
2421
2422

2424
2425
2426
2427

2429
2430

2432

FLG_OF_VERNEED) {
shdr = of | ->of | _osver need- >o0s_shdr;

dyn->d_tag = DT_VERNEED,
dyn->d_un.d_ptr = shdr->sh_addr;
dyn++;

dyn->d_tag = DT_VERNEEDNUM
dyn->d_un.d_ptr = shdr->sh_info;

dyn++;

}

if ((flags & FLG OF_COWREL) && ofl->ofl _relocrelcnt) {
dyn->d_tag = ld_targ.t_m mrel _dt_count;
dyn->d_un.d_val = ofl->ofl _relocrelcnt;
dyn++;

}
if (flags & FLG OF _TEXTREL) {
/*

* Only the presence of this entry is used in this
* inplementation, not the value stored.
*/

dyn->d_tag = DT_TEXTREL;
dyn->d_un.d_val = 0;
dyn++;

if (ofl->ofl_osfiniarray)
shdr = ofl->of | _osfini array->o0s_shdr;

dyn->d_tag = DT_FI NI _ARRAY;
dyn->d_un. d_ptr = shdr->sh_addr;

dyn++;

dyn->d_tag = DT_FI NI _ARRAYSZ;
dyn->d_un. d_val = shdr->sh_si ze;
dyn++;

if (ofl->ofl_osinitarray)
shdr = of | ->of | _osi nitarray->o0s_shdr;

dyn->d_tag = DT_I NI T_ARRAY;
dyn->d_un. d_ptr = shdr->sh_addr;

dyn++;

dyn->d_tag = DT_I NI T_ARRAYSZ;
dyn->d_un.d_val = shdr->sh_size;
dyn++,

if (ofl->of | _ospreinitarray)
shdr = of| ->of | _ospreinitarray->o0s_shdr;

dyn->d_tag = DT_PRElI NI T_ARRAY;
dyn->d_un.d_ptr = shdr->sh_addr;

dyn++;
dyn->d_tag = DT_PRElI NI T_ARRAYSZ;
dyn->d_un.d_val = shdr->sh_size;
dyn++;

}

if (ofl->of | _pltcnt) {
shdr = of| ->of | _ospl t->0s_rel osdesc->0s_shdr;

dyn->d_tag = DT_PLTRELSZ;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443

2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459

2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475

2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488

2490
2491
2492
2493
2494
2495
2496
2497
2498

}
1f (ofl-

}
if (ofl-

}
if (ofl-

}
if (ofl-

36

dyn->d_un.d_ptr = shdr->sh_si ze;

dyn++;

dyn->d_tag = DT_PLTREL;

dyn->d_un.d_ptr = ld_targ.t_mmrel _dt_type;
dyn++;

dyn->d_tag = DT_JMPREL;

dyn->d_un.d_ptr = shdr->sh_addr;

dyn++;

>of | _pl t pad) {
shdr = of | ->of | _ospl t->o0s_shdr;

dyn->d_tag = DT_PLTPAD,
if (ofl->ofl_pltcnt) {
dyn->d_un.d_ptr = shdr->sh_addr +
ld_targ.t_mmplt_reservsz +
of | ->of | _pltcnt * Id_targ.t_mmplt_entsize;
} else
dyn->d_un.d_ptr = shdr->sh_addr;
dyn++;
dyn->d_tag = DT_PLTPADSZ;
dyn->d_un.d_val = ofl->ofl _pltpad *
ld_targ.t_mmplt_entsize;
dyn++;

>of | _rel ocsz) {
shdr = of | ->of | _osrel head->o0s_shdr;

dyn->d_tag = ld_targ.t_mmrel _dt_type;
dyn->d_un.d_ptr = shdr->sh_addr;

dyn++;

dyn->d_tag = ld_targ.t_m mrel _dt_size;
dyn->d_un.d_ptr = ofl->ofl _rel ocsz;
dyn++;

dyn->d_tag = ld_targ.t_mmrel _dt_ent;
if (shdr->sh_type == SHT_REL)
dyn->d_un.d_ptr = sizeof (Rel);
el se
dyn->d_un.d_ptr = sizeof (Rela);
dyn++;

>of | _ossyminfo) {
shdr = of | ->of | _ossyni nf o- >0s_shdr;

dyn->d_tag = DT_SYM NFQ,
dyn->d_un.d_ptr = shdr->sh_addr;

dyn++;

dyn->d_tag = DT_SYM NSZ;

dyn->d_un. d_val = shdr->sh_si ze;
dyn++;

dyn->d_tag = DT_SYM NENT;
dyn->d_un. d_val = sizeof (Syminfo);
dyn++;

>of | _osnmove) {
shdr = of | ->of | _osnove->o0s_shdr;

dyn->d_tag = DT_MOVETAB;
dyn->d_un.d_val = shdr->sh_addr;

dyn++;

dyn->d_tag = DT_MOVESZ;

dyn->d_un. d_val = shdr->sh_si ze;
dyn++;

dyn->d_tag = DT_MOVEENT;
dyn->d_un.d_val = shdr->sh_entsize;
dyn++;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 37

2499
2500
2501

2503
2504
2505

2507
2508
2509
2510
2511

2513
2514
2515
2516
2517

2519
2520
2521
2522
2523
2524

2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

2539
2540
2541
2542
2543
2544
2545
2546
2547
2548

2550
2551
2552
2553
2554

2556
2557
2558
2559
2560
2561

2563
2564

1f (ofl->ofl_regsyncnt) {
int ndx;

for (ndx = 0; ndx < ofl->of | _regsymsno; ndx++) {
if ((sdp = ofl->ofl _regsynms[ndx]) == NULL)

conti nue;
dyn->d_tag = | d_targ.t_m mdt_register;
dyn->d_un. d_val = sdp->sd_symdx;
dyn++;

}

for (APLI ST_TRAVERSE(of|->of | _rtldinfo, idx, sdp)) {
dyn=>d_tag = DT_SUNW RTLDI NF;
dyn->d_un.d_ptr = sdp->sd_sym >st_val ue;
dyn++;

}

if (((sgp = ofl->ofl_osdynam c->0s_sgdesc) != NULL) &&
(sgp->sg_phdr.p_flags & PF_W && ofl->ofl _osinterp) {
dyn->d_tag = DT_DEBUG
dyn->d_un.d_ptr = 0;
dyn++;

if (ofl->ofl _oscap) {
dyn->d_tag = DT_SUNW CAP;
dyn->d_un.d_val = ofl->ofl| _oscap->o0s_shdr->sh_addr;
dyn++;

}

i f (ofl->ofl _oscapinfo) {
dyn->d_tag = DT_SUNW CAPI NFG
dyn->d_un. d_val = ofl->of | _oscapi nfo->0s_shdr->sh_addr;
dyn++;

}
if (ofl->of | _oscapchain) {
shdr = of | ->of | _oscapchai n- >o0s_shdr;

dyn->d_tag = DT_SUNW CAPCHAI N;
dyn->d_un.d_val = shdr->sh_addr;

dyn++;
dyn->d_tag = DT_SUNW CAPCHAI NSZ;
dyn->d_un. d_val = shdr->sh_si ze;
dyn++;
dyn->d_tag = DT_SUNW CAPCHAI NENT;
dyn->d_un.d_val = shdr->sh_entsize;
dyn++;

if (ofl->ofl_aslr = 0) {
dyn->d_tag = DT_SUNWASLR;
dyn->d_un.d_val = (ofl->ofl_aslr == 1);
dyn++;

}

if (flags & FLG_OF_SYMBCLI Q) {
dyn->d_tag = DT_SYMBOLI G
dyn->d_un.d_val = 0;
dyn++;

}

dyn->d_tag = DT_FLAGS;
dyn->d_un.d_val = ofl->ofl _dtflags;

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 38
2565 dyn++;

2567 /*

2568 * |f -Bdirect was specified, but some NODI RECT synbols were specified
2569 * via a mapfile, or -znodirect was used on the cormand |ine, then
2570 * clear the DF_1_DI RECT flag. The resultant object will use per-synbol
2571 * direct bindings rather than be enabled for global direct bindings.
2572 *

2573 * |f any no-direct bindings exist within this object, set the
2574 * DF_1_NODI RECT flag. 1d(1) recognizes this flag when processing
2575 * dependenci es, and perforns extra work to ensure that no direct
2576 * bindings are established to the no-direct synbols that exist
2577 * within these dependenci es.

2578 *

2579 if (ofl->ofl flagsl & FLG OF1_NGLBDI R)

2580 ofl ->of | _dtflags_1 & ~DF_1_DI RECT;

2581 if (ofl->ofl _flagsl & FLG OF1_NDI RECT)

2582 of | ->of | _dtflags_1 | = DF_1_NODI RECT;

2584 dyn->d_tag = DT_FLAGS 1,

2585 dyn->d_un.d_val = ofl->of | _dtflags_1;

2586 dyn++;

2588 dyn->d_tag = DT_SUNW STRPAD,

2589 dyn->d_un. d_val = DYNSTR_EXTRA_PAD;

2590 dyn++;

2592 dyn->d_tag = DT_SUNW LDVACH,

2593 dyn->d_un.d_val = I d_sunw_| dmach();

2594 dyn++;

2596 (*ld_targ.t_nr.nr_nmach_updat e_odynam c) (of I, &dyn);

2598 for (cnt = 1 + DYNAM C_EXTRA_ELTS; cnt--; dyn++) {

2599 dyn->d_tag = DT_NULL;

2600 dyn->d_un.d_val = 0;

2601

2603 /*

2604 * Ensure that we wote the right nunber of entries. If not, we either
2605 * mscounted in nmake_dynamc(), or we did something wong in this
2606 * function.

2607 */

2608 assert ((ofl->of | _osdynani c->0s_shdr->sh_size /

2609 of | - >of | _osdynami c->0s_shdr->sh_ent si ze) ==

2610 ((uintptr_t)dyn - (uintptr_t)_dyn) / sizeof (*dyn));

2612 return (1);

2613 }

2615 /*

2616 * Build the version definition section

2617 */

2618 static int

2619 updat e_overdef (Ol _desc *of |)

2620 {

2621 Aliste i dx1;

2622 Ver _desc *vdp, *_vdp;

2623 Ver def *vdf, *_vdf;

2624 int num = O;

2625 Gs_desc *strosp;

2626 Str_tbl *strtbl;

2628 /*

2629 * Determ ne which string table to use.

2630 */

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 39

2631
2632
2633
2634
2635
2636
2637

2639
2640
2641
2642
2643
2644
2645

2647
2648
2649

2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665

2667

2669
2670
2671
2672
2673
2674
2675
2676

2678

2680
2681
2682
2683

2685
2686
2687
2688
2689

2691
2692
2693
2694
2695
2696

if (OFL_I'S STATIC 0BI(ofl))
of

strthl = | ->of | _strtab;
strosp = ofl->of|_osstrtab;
} else {
strtbl = ofl->of | _dynstrtab;
strosp = of | ->of | _osdynstr;
}
/*

* Traverse the version descriptors and update the version structures
* to point to the dynstr name in preparation for building the version
* section structure.
*
for (APLI ST_TRAVERSE(of | - >of | _verdesc, idx1, vdp)) {

Sym desc *sdp;

if (vdp->vd_fl ags & VER FLG BASE) {
const char *nanme = vdp->vd_naneg;
size_t stoff;

/*

* Create a new string table entry to represent the base
* version nane (there is no correspondi ng synbol for

*/thi s).
(void) st_setstring(strtbl, name, &stoff);
/* LI NTED */
vdp->vd_nanme = (const char *)stoff;
} else {
sdp = | d_sym find(vdp->vd_nane, vdp->vd_hash, 0, ofl);
/* LI NTED */

vdp->vd narre = (const char *)
(uintptr_t)sdp->sd_sym >st_nane;

}

_vdf = vdf = (Verdef *)ofl->ofl_osverdef->o0s_outdata->d_buf;

/*

* Traverse the version descriptors and update the version section to
* reflect each version and its associ ated dependenci es.

*/

for (APLI ST_TRAVERSE(of | - >of | _verdesc, idx1l, vdp)) {

Aliste idx2;
Hal f cnt = 1;
Ver daux *vdap, *_vdap;

_vdap = vdap = (Verdaux *)(vdf + 1);

vdf - >vd_versi on = VER DEF_CURRENT;

vdf - >vd_f | ags = vdp->vd_fl ags & MSK_VER USER
vdf - >vd_ndx = vdp- >vd_ndx;

vdf - >vd_hash = vdp- >vd_hash;

/* LINTED */
vdap- >vda_nane = (uintptr_t)vdp->vd_nane;
vdap++
/* LINTED */
_vdap->vda_next = (Word) ((uintptr_t)vdap - (uintptr_t)_vdap);
/*
* Traverse this versions dependency |list generating the
* appropriate version dependency entries.
*

for (APLI ST_TRAVERSE(vdp->vd_deps, idx2, _vdp)) {
/* LINTED */

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 40
2697 vdap- >vda_name = (uintptr_t)_vdp->vd_nane;

2698 _vdap = vdap;

2699 vdap++, cnt ++;

2700 /* LINTED */

2701 _vdap->vda_next = (Word) ((uintptr_t)vdap -

2702 (uintptr_t) vdap) ;

2703

2704 _vdap->vda_next = 0;

2706 /*

2707 * Record the versions auxiliary array offset and the associ ated
2708 * dependency count.

2709 *

2710 /* LINTED */

2711 vdf->vd_aux = (Word) ((uintptr_t)(vdf + 1) - (uintptr_t)vdf);
2712 vdf ->vd_cnt = cnt;

2714 /*

2715 * Record the next versions offset and update the version
2716 * pointer. Renenber the previous version offset as the very
2717 * |ast structures next pointer should be null

2718 */

2719 _vdf = vdf;

2720 vdf = (Verdef *)vdap, numt+;

2721 /* LINTED */

2722 _vdf->vd_next = (Word) ((uintptr_t)vdf - (uintptr_t)_vdf);
2723

2724 _vdf->vd_next = 0;

2726 /*

2727 * Record the string table association with the version definition
2728 * section, and the synbol table associated with the version synbol
2729 * table (the actual contents of the version synbol table are filled
2730 * in during synbol update).

2731 */

2732 /* LINTED */

2733 of | - >of | _osverdef->o0s_shdr->sh_link = (Wrd)el f_ndxscn(strosp->0s_scn);
2735 /*

2736 * The version definition sections ‘info’ field is used to indicate the
2737 * nunber of entries in this section.

2738 */

2739 of | - >of | _osverdef ->0s_shdr->sh_info = num

2741 return (1);

2742 }

2744 | *

2745 * Finish the version synbol index section

2746 */

2747 static void

2748
2750

2752
2753
2754
2755
2756
2757
2758
2759
2760

2762

updat e_oversyn(Of | _desc *ofl)
2749 {

Cs_desc *osp;

/*

* Record the synbol table associated with the version synbol table.
* The contents of the version synbol table are filled in during

* synbol update.

*/

if (OFL_IS STATIC OBJ(ofl))

osp = ofl->of | _ossynt ab;
el se

osp = ofl->of | _osdynsym

/* LINTED */

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 41
2763 of | ->of | _osver sym >0s_shdr->sh_l i nk = (Wrd)el f_ndxscn(osp->0s_scn);
2764 }

2766 /

2767 Buil d the version needed section

2768

2769 static int

2770 update_overneed(Ol _desc *ofl)

2771 {

2772 Aliste i dx1;

2773 I fI_desc *ifl;

2774 Ver need *vnd, *_vnd;

2775 Os_desc *strosp;

2776 Str_thbl *strtbl;

2777 Wor d num = O;

2779 _vnd = vnd = (Verneed *)ofl->of| _osverneed->os_out dat a- >d_buf ;
2781 /*

2782 * Determ ne which string table is appropriate.

2783 *

2784 if (OFL_IS_STATIC OBJ(ofl)) {

2785 strosp = of | ->of | _osstrt ab;

2786 strtbl = ofl->of | _strtab;

2787 } else {

2788 strosp = of | ->of | _osdynstr;

2789 strtbl = ofl->ofl _dynstrtab;

2790 }

2792 /*

2793 * Traverse the shared object |ist |ooking for dependenci es that have
2794 * versions defined within them

2795 *

2796 for (APLIST_TRAVERSE(of | ->of | _sos, idxl, ifl)) {

2797 Hal f _cnt;

2798 Wor d cnt = 0;

2799 Ver naux *_vnap, *vnap

2800 size_t stof f;

2802 if (1(ifl->ifl _flags & FLG | F_VERNEED))

2803 conti nue;

2805 vnd->vn_versi on = VER NEED_ CURRENT;

2807 (void) st_setstring(strtbl, ifl->ifl_sonane, &stoff);
2808 vnd->vn_file = stoff;

2810 _vnap = vnap = (Vernaux *)(vnd + 1);

2812 /*

2813 * Traverse the version index list recording

2814 * each version as a needed dependency.

2815 *

2816 for (_cnt = 0; _cnt <= ifl->ifl_vercnt; _cnt++)

2817 Ver _i ndex *vip = & fl->ifl_verndx[_cnt];
2819 if (vip->vi_flags & FLG VER REFER) {

2820 (void) st_setstring(strtbl, vip->vi_nane,
2821 &stoff);

2822 vnap->vna_nane = stoff;

2824 if (vip->vi_desc) {

2825 vnap->vna_hash = vi p->vi _desc->vd_hash;
2826 vnap->vna_fl ags =

2827 Vi p->vi _desc->vd_f | ags;
2828 } else {

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

2829
2830
2831
2832

2834
2835
2836
2837
2838
2839
2840
2841
2842
2843

2845
2846
2847
2848
2849
2850
2851

2853

2855
2856
2857
2858
2859
2860
2861
2862

2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874

2876
2877
2878
2879
2880
2881
2882

2884
2885

2887
2888
2889
2890
2891

42

vnap->vna_hash = 0;
vnap->vna_fl ags = O;

vnap- >vna_ot her = vi p->vi _over ndx;

/~k

* |f version Ainherits version B, then

* Bisinplicit in A It suffices for Id.so.1
* to verify A at runtime and skip B. The

* version nornalization process sets the | NFO
* flag for the versions we want I1d.so.1 to

* skip.

*

if

(vip->vi_flags & VER FLG | NFO)
vnap->vna_fl ags | = VER FLG | NFG

_vnap = vnap;
vnap++, cnt++;
_vnap->vna_next =

[* LINTED */

(Word) ((uintptr_t)vnap - (uintptr_t)_vnap);

}
_vnap->vna_next = 0;

/*

* Record the versions auxiliary array offset and
* the associ ated dependency count.

*/

/* LINTED */

vnd->vn_aux = (Word) ((uintptr_t)(vnd + 1) - (uintptr_t)vnd);
/* LINTED */

vnd->vn_cnt = (Hal f)cnt;

/*
* Record the next versions offset and update the version
* pointer. Remenber the previous version offset as the very
* |ast structures next pointer should be null.
*
/
_vnd = vnd;
vnd = (Verneed *)vnap, numt+;
/* LINTED */
_vnd->vn_next = (Word) ((uintptr_t)vnd - (uintptr_t)_vnd);

_vnd->vn_next = 0;

/*

* Use sh_link to record the associated string table section, and

* sh_info to indicate the nunber of entries contained in the section.

*/
/* LINTED */
of | ->of | _osver need- >0s_shdr->sh_l i nk
of | ->of | _osver need- >0s_shdr->sh_i nfo

return (1);
}
/*
* Update synminfo section.
*/

static uintptr_t
updat e_osym nf o(Of| _desc *ofl)

2892 {

2893
2894

Gs_desc
Symi nf o

(Word) el f _ndxscn(strosp->0s_scn);
num

*synosp, *infosp = ofl->ofl_ossym nfo;
*sip = infosp->0s_outdata->d_buf;

2895
2896
2897
2898

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c
Shdr *shdr = infosp->o0s_shdr;
char *strtab;
Aliste i dx;
Sym desc *sdp;
Sfltr_desc *sftp;

2899

2901
2902
2903
2904
2905
2906
2907

2909
2910
2911
2912
2913
2914

2916
2917
2918
2919
2920

2922
2923
2924
2925
2926

2928
2929
2930

2932
2933
2934
2935
2936
2937
2938
2939

2941
2942
2943
2944

2946
2947
2948
2949
2950
2951
2952
2953
2954 }

2956 /*

if (ofl->ofl flags & FLG OF RELOBJ) {

synmosp = of | ->of | _ossynt ab;

strtab = of | ->of | _osstrtab->o0s_out dat a- >d_buf;
} else {

synosp = of | - >of | _osdynsym
) strtab = of | ->of | _osdynstr->o0s_out dat a- >d_buf ;
/* LINTED */

i nf osp->0s_shdr->sh_|link = (Wrd)el f_ndxscn(synosp->0s_scn);
if (ofl->ofl_osdynami c)
i nf osp->0s_shdr->sh_info =
/* LINTED */
(Word) el f_ndxscn(of | ->of | _osdynani ¢c->0s_scn);

/*
* Update any references with the index into the dynamic table.

r (APLI ST_TRAVERSE(of | - >of | _syndtent, idx, sdp))
si p[sdp- >sd_symdx] . si _boundto = sdp->sd_fil e->i fl _neededndx;

| *

* Update any filtee references with the index into the dynam c table.
*/

for (ALIST_ TRAVERSE(ofI—>ofI _synfltrs, idx, sftp)) {
Dfltr_desc *df t p;

dftp = alist_iten(ofl->of | _dtsfltrs, sftp->sft_idx);
sip[sftp->sft_sdp->sd_symmdx] . si _boundto = dftp->dft_ndx;
/*
* Di splay debuggi ng i nformati on about section.
*/

DBG CALL(Dbg_syminfo_title(ofl->ofl _Im));
i f (DBG_ENABLED) {

Wor d _cnt, cnt = shdr->sh_size / shdr->sh_entsize;
Sym *syntab = synpsp->0s_out dat a- >d_buf ;
Dyn *dyn;

if (ofl->ofl _osdynanic)

dyn = of | ->of | _osdynani c- >0s_out dat a- >d_buf ;
el se

dyn = NULL;

for (_cnt = 1; _cnt < cnt; _cnt++) {
if (sip[_cnt].si flags || sip[_cnt].si_boundto)
I NTED */

7*

DBG _CALL(Dbg_sym nfo_entry(ofl->ofl _Im, _cnt,

&sip[_cnt], &syntab[_cnt], strtab, dyn));

}

}
return (1);

2957 * Build the output elf header.

2958 */

2959 static uint ptr
2960 updat e_oehdr (Ol _desc * ofl)

43

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 44
2961 {

2962 Ehdr *ehdr = of | ->of | _nehdr;

2964 /*

2965 * |f an entry point synmbol has already been established (refer

2966 * symvalidate()) sinply update the elf header entry point with the
2967 * synbols value. If no entry point is defined it will have been filled
2968 * wth the start address of the first section within the text segnent
2969 * (refer update_outfile()).

2970 */

2971 if (ofl->ofl_entry)

2972 ehdr->e_entry =

2973 ((Sym._ desc *) (of I ->of | _entry))->sd_sym >st _val ue;

2975 ehdr->e_ident[El _DATA] = Id_targ.t_m mdata;

2976 ehdr->e_version = ofl->of | _dehdr->e_version;

2978 /*

2979 * When generating a rel ocatabl e object under -z synbol cap, set the
2980 * e_machine to be generic, and renobve any e_flags. Input relocatable
2981 * objects may identify alternative e_nachine (m machplus) and e_fl ags
2982 * values. However, the functions within the created output object
2983 * are selected at runtime using the capabilities mechanism which
2984 * supersedes the e-machine and e_flags information. Therefore,

2985 * e_machine and e_flag values are not propagated to the output object,
2986 * as these values might prevent the kernel from | oading the object
2987 * before the runtine |inker gets control.

2988 *

2989 if (ofl->ofl_flags & FLG OF_OTOSCAP)

2990 ehdr->e_nachine = Id_targ.t_m m mach;

2991 ehdr->e_flags = 0;

2992 } else {

2993 *

2994 * Note. it may be necessary to update the e_flags field in the
2995 * machi ne dependent secti on.

2996 */

2997 ehdr->e_nachi ne = of | ->of | _dehdr - >e_nachi ne;

2998 ehdr->e_flags = ofl->of | _dehdr->e_fl ags;

3000 if (ehdr->e_machine !=Ild_targ.t_m mnach) {

3001 if (ehdr->e_machine != Id_targ.t_m m machpl us)

3002 return (S_ERROR);

3003 if ((ehdr->e_flags & | d_t arg.t_mmflagsplus) == 0)
3004 return (S_ERROR);

3005 }

3006 }

3008 if (ofl->ofl fIags&FLGO:SHARCBJ)

3009 ehdr->e_type = ET_DYN,

3010 else if (ofl->ofl _flags & FLG OF_RELOBJ)

3011 ehdr->e_type = ET_REL;

3012 el se

3013 ehdr->e_type = ET_EXEC,

3015 return (1);

3016 }

3018 /*

3019 * Perform nove table expansion.

3020 */

3021 static void

3022 {expand_rrove(o‘l_desc *of |, Symdesc *sdp, Move *nvp)

3023

3024 Gs_desc *osp;

3025 uchar _t *taddr, *taddrO;

3026 Sxwor d of f set;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 45

3027
3028

3030
3031

3033
3034
3035

3037
3038
3039
3040
3041

3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071 }

3073 /*

Hal f cnt;
uint_t stride;

osp = ofl->of | _i sparexpn->i s_osdesc;
of fset = sdp->sd_sym >st_val ue - osp->0s_shdr->sh_addr;

taddrO0 = taddr = osp->o0s_outdat a- >d_buf;
taddr += of fset;
taddr = taddr + mvp->m poffset;

for (cnt = 0; cnt < nm/p->mrepeat; cnt++) {
[* LINTED */
DBG_CALL(Dbg_npve_expand(ofl->of | _Im, nvp,
(Addr) (taddr - taddr0)));
stride = (uint_t)nmvp->mstride + 1;

/*
* Update the target address based upon the nove entry size.
* This size was validated in | d_process_nove().

*
/
[* LINTED */
switch (ELF_M SI ZE(nmvp->m.info)) {
case 1:
/* LINTED */
*taddr = (uchar_t)nvp->mval ue;
taddr += stride;
break;
case 2:
/* LINTED */
*((Hal f *)taddr) = (Half)nvp->mval ue;
taddr += 2 * stride;
break;
case 4:
/* LINTED */
*((Word *)taddr) = (Word) mvp->m val ue;
taddr += 4 * strlde
br eak;
case 8:
/* LI NTED */

*((u_longlong_t *)taddr) = mvp->mval ue;
taddr += 8 * stride;
br eak;

3074 * Update Move sections.
*/

3075

3076 static void
3077 update_nmove(Of | _desc *ofl)

3078 {
3079
3080
3081
3082
3083

3085
3086
3087
3088
3089
3090
3091
3092

Wor d ndx = 0;

of| _flag_t flags = ofl->of | _fl ags;
Move *onvp;

Aliste i dx1;

Sym desc *sdp;

/*

* Determ ne the index of the symbol table that will be referenced by
* the Move section.
*
/
if (C]:L_ALLON_DYNSYN[ofl))
/* LI ED */
ndx = (Word) el f_ndxscn(ofl->of | _osdynsym >o0s_scn);
else if (!(flags & FLG OF_STRIP) || (flags & FLG OF RELCBJ))

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

3093
3094

3096
3097
3098
3099
3100
3101
3102

3104
3105
3106
3107
3108
3109

3111
3112
3113
3114
3115

3117
3118
3119
3120
3121
3122

3124
3125

3127
3128
3129
3130
3131
3132
3133

3135
3136
3137
3138

3140
3141
3142
3143

3145
3146

3148

3150
3151
3152
3153
3154

3156
3157
3158

/* LINTED */
ndx = (Word) el f_ndxscn(ofl->ofl_ossyntab->0s_scn);

/*

* Update sh_link of the Mbve section, and point to the new Myve data.
*

/

if (ofl->ofl_osnove) {
of | - >of | _osnmove- >0s_shdr->sh_| i nk = ndx;
onvp = (Move *)ofl->of | _osmove- >os_out dat a- >d_buf ;

}

/*
* Update synbol entry index
&/

for (APLIST_TRAVERSE(of | ->of | _parsyms, idx1, sdp)) {
Aliste idx2;
M/_desc *np;

/*
* Expand nove table
*

if (sdp->sd_flags & FLG SY_PAREXPN) {
const char *str;

if (flags & FLG OF_STATI Q)

str = MSG_I NTL(MSG_PSYM EXPREASONL) ;
else if (ofl ->of| “flagsl & FLG OF1_NOPARTI)

str = MBG_| NTL(MSG_PSYM EXPREASON2) ;
el se

str = MSG_| NTL(MSG_PSYM _EXPREASON3) ;

DBG_CALL(Dbg_nove_parexpn(ofl->of | _Im,
sdp->sd_nane, str));

for (ALIST_TRAVERSE(sdp->sd_nove, idx2, mdp)) {
DBG _CALL(Dbg_nove_entryl(ofl->of | _Im, O,
mdp- >nd_nove, sdp));
expand_nove(ofl, sdp, ndp->nmd_nove);

cont i nue;

}

/*
* Process nove table
*

DBG_CALL(Dbg_nove_out nove(of | ->of | _| M, sdp->sd_nane));
for (ALIST_TRAVERSE(sdp->sd_nove, idx2, ndp)) {

Move *j rrvp,
i nt idx = 1;
Sym *sym

invp = ndp->nd_nove;
sym = sdp->sd_sym

DBG CALL(Dbg_nove_entryl(ofl->ofl _Im, 1, invp, sdp));

*onvp = *imp;
if ((flags & FLG OF_RELOBJ) == {
if (ELF_ST_BIND(sym >st_info) == STB_LOCAL) ({
Os_desc *osp = sdp- >sd i sc->i s_osdesc;
wrd ndx = osp->os_i dent ndx;

onvp->minfo =
/* LI NTED */
ELF_M I NFQ(ndx, imp->m.info);

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c

3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174

3176
3177
3178

3180
3181
3182

3184
3185
3186

3188
3189
3190
3191
3192
3193
3194

3196
3197
3198
3199
3200
3201

3203
3204
3205
3206
3207
3208

3210
3211
3212
3213
3214
3215

if (ELF_ST_TYPE(sym >st

47

_info) I=

STT_SECTI ON) {

} else {

onvp->m pof fset =
sym >st_val ue -
osp- >0s_shdr->sh_addr +
i mvp->m pof f set ;

onvp->minfo =

| *

LI NTED */

ELF_M | NFQ(sdp- >sd_symadx,

imv

} else {
Bool ean

if ((ELF_ST_BI ND(sym >st

(of | =>of | _f

i sredloc

p->m.info);

i sredl oc = FALSE;

info) == STB LOCAL) &&
Iags & FLG OF_REDLSYM)
TRUE;

if (isredloc && !(sdp—>sd move)) {

Os_desc
Wor d

*osp = sdp->sd_i sc->i s_osdesc;
ndx = osp->o0s_i dent ndx;

onvp->m.info =

| *

ELF_M | NFO(ndx,

LI NTED */
i nvp->m_ nfo);

onvp- >m pof f set += sym >st_val ue;

} else {

if (isredloc)

DBG _CALL(Dbg_syns_reduce(ofl,
DBG_SYM REDUCE_RETAI N,
sdp, idx,

of | - >of | _osnove->0s_nane)) ;

onvp->m.info =

| *

LI NTED */

ELF_M | NFQ(sdp- >sd_symdx,

i mv
}

DBG CALL(Dbg_nove_entry
onvp++;
i dx++;

}

/*

* Scan through the SHT_GROUP out put sections.
* fields as well as the section contents.

*/

static uintptr_t

updat e_ogroup(Cfl _desc *ofl)

3216 {

3217
3218
3219

3221
3222
3223
3224

Aliste i dx;
Gs_desc *osp;
uintptr_t error

r (APLI ST_ TRAVERSE(ofI->of
| s_desc
1T _desc
Shdr

= 0;

_osgroups,

*shdr = osp->o0s

p->m.info);

1(ofl->of | Im, 0, onvp, sdp))

Update their sh_link/sh_info

idx, osp)) {

_shdr;

new usr/src/cnd/ sgs/ i bl d/ conmon/ updat e. c

3225 Sym desc *sdp;

3226 Xwor d i, grpent;

3227 Wor d *gdat a;

3229 /*

3230 * Since input GROUP sections always create uni que
3231 * out put GROUP sections - we know there is only one
3232 * itemon the list.

3233 */

3234 isp = ld_os_first_isdesc(osp);

3236 ifl =isp->is_file;

3237 sdp = ifl->ifl_ol dndx[isp->is_shdr->sh_info];

3238 shdr->sh_|ink = (Wrd)el f_ndxscn(ofl->of | _ossynt ab->0s_scn) ;
3239 shdr->sh_i nfo = sdp->sd_symdx;

3241 /*

3242 * Scan through the group data section and update
3243 * all of the links to new val ues.

3244 */

3245 grpcnt = shdr->sh_size / shdr->sh_entsi ze;

3246 gdata = (Word *)osp->os_out dat a- >d_buf ;

3248 for (i =1; i < grpent; i++) {

3249 Os_desc *_osp;

3250 Is_desc *_isp = ifl->ifl_isdesc[gdata[i]];
3252 /*

3253 * |f the referenced section didn't make it to the
3254 * output file - just zero out the entry.
3255 */

3256 if ((_osp = _isp->i S_ _osdesc) == NULL)

3257 gdatal[i] = O;

3258 el se

3259 gdatal[i] = (Wrd)el f_ndxscn(_osp->0s_scn);
3260 }

3261

3262 return (error);

3263 }

3265 static void

3266 update_ostrtab(Os_desc *osp, Str_tbl *stp, uint_t extra)

3267 {

3268 El f_Data *dat a;

3270 if (osp == NULL)

3271 return;

3273 data = osp->o0s_out dat a;

3274 assert(data->d_size == (st_getstrtab_sz(stp) + extra));

3275 (void) st_setstrbuf(stp, data->d_buf, data->d_size - extra);
3276 /* 1f leaving an extra hole at the end, zero it */

3277 if (extra > 0)

3278 (void) nenset((char *)data->d_buf + data->d_size - extra,
3279 0x0, extra);

3280 }

3282 /*

3283 * Update capabilities information.

3284 *

3285 * If string table capabilities exist, then the associated string nust be
3286 */translated into an offset into the string table.

3287 *

3288 static void

3289 updat e_oscap(Cf |

3290 {

_desc *ofl)

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 49 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 50
3291 Os_desc *strosp, *cosp; 3357 for (APLI ST_TRAVERSE(of | - >of | _capgr oups, idx1, cgp)) {
3292 Cap *cap; 3358 Qoj capset *ocapset = &cgp->cg_set;
3293 Str_tbl *strtbl; 3359 Aliste i dx2;
3294 Capstr *capstr;
3295 size_t stoff; 3361 capstr = &ocapset->oc_id;
3296 Aliste i dx1; 3362 if (capstr->cs_str)
3363 (void) st_setstring(strtbl, capstr->cs_str,
3298 /* 3364 &stof) ;
3299 * Determ ne which synbol table or string table is appropriate. 3365 cap[capstr—>cs_ndx] .c_un.c_ptr = stoff;
3300 */ 3366
3301 if (OFL_IS_STATIC OBJ(ofl)) { 3367 for (ALIST_TRAVERSE(ocapset->oc_plat.cl_val, idx2,
3302 strosp = of | ->of | _osstrtab; 3368 capstr))
3303 strtbl = ofl->of | _strtab; 3369 (void) st_setstring(strtbhl, capstr->cs_str,
3304 } else { 3370 &stoff);
3305 strosp = ofl->of | _osdynstr; 3371 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3306 strtbl = ofl->of | _dynstrtab; 3372 }
3307 } 3373 for (ALI ST_TRAVERSE(ocapset->oc_nach. cl _val, idx2,
3374 capstr)) {
3309 /* 3375 (void) st set string(strthl, capstr->cs_str,
3310 * | f symbol capabilities exist, set the sh_link field of the . SUNW_cap 3376 &st of T
3311 * section to the . SUNW capi nfo section. 3377 cap[capstr—>cs_ndx] .c_un.c_ptr = stoff;
3312 */ 3378 }
3313 if (ofl->ofl_oscapinfo) { 3379 }
3314 cosp = ofl ->of | _oscap; 3380 }
3315 cosp->0s_shdr->sh_link = 3381 }
3316 (Word) el f_ndxscn(of | ->of | _oscapi nf o->0s_scn) ;
3317 } 3383 /*
3384 * Update the .SUNWcapi nfo, and possibly the . SUNW capchai n sections.
3319 /* 3385 */
3320 * |f there are capability strings to process, set the sh_info 3386 static void
3321 * field of the . SUNWcap section to the associated string table, and 3387 updat e_oscapi nfo(Of I _desc *ofl)
3322 * proceed to process any CA SUNW PLAT entries. 3388 {
3323 */ 3389 Cs_desc *synosp, *ciosp, *ccosp = NULL;
3324 if ((ofl->ofl_flags & FLG OF_CAPSTRS) == 0) 3390 Capi nf o *ocapi nf o;
3325 return; 3391 Capchai n *ocapchai n;
3392 Cap_avl node *cav;
3327 cosp = of | ->of | _oscap 3393 Word chai nndx = 0;
3328 cosp->0s_shdr->sh_i nf 0 = (Word) el f_ndxscn(strosp->0s_scn);
3395 /*
3330 cap = ofl ->of | _oscap->os_out dat a- >d_buf ; 3396 * Determ ne which synbol table is appropriate.
3397 */
3332 /* 3398 if (OFL_IS_STATIC OBJ(ofl))
3333 * Deternine whether an object capability identifier, or object 3399 synosp = of | ->of | _ossynt ab;
3334 * machi ne/ pl at form capabilities exists. 3400 el se
3335 */ 3401 synmosp = of | ->of | _osdynsym
3336 capstr = &ofl->of| _ocapset.oc_id;
3337 if (capstr->cs_str) { 3403 /*
3338 (void) st_setstring(strthbl, capstr >cs_str, &stoff); 3404 * Update the . SUNW capinfo sh_link to point to the appr oprl ate synbol
3339 cap[capstr->cs_ndx].c_un.c_ptr = stoff; 3405 * table section. If we're creating a dynani c object, the
3340 } 3406 * . SUNW capinfo sh_info is updated to point to the SUN\N_capchal n
3341 for (ALI ST_TRAVERSE(of | - >of | _ocapset.oc_pl at.cl _val, idx1, capstr)) { 3407 * secti on.
3342 (void) st_setstring(strthl, capstr->cs_str, &st off) 3408 *
3343 cap[capstr->cs_ndx].c_un.c_ptr = stoff; 3409 ciosp = ofl->of | _oscapi nfo;
3344 } 3410 ci osp->0s_shdr->sh_link = (Wrd)el f_ndxscn(synosp->0s_scn);
3345 for (ALI ST_TRAVERSE(of | - >of | _ocapset.oc_mach. cl _val, idx1, capstr)) {
3346 (void) st_setstring(strtbl, capstr->cs_str, &st off) 3412 if (OFL_I S_STATIC OBJ(ofl) == 0) {
3347 cap[capstr->cs_ndx].c_un.c_ptr = stoff; 3413 ccosp = ofl->of | _oscapchai n;
3348 } 3414) ci osp->o0s_shdr->sh_info = (Wrd)el f_ndxscn(ccosp->0s_scn);
3415
3350 /*
3351 * Determ ne any synbol capability identifiers, or machine/platform 3417 /*
3352 * capabilities. 3418 * Establish the data for each section. The first el ement of each
3353 */ 3419 * section defines the section’s version nunber.
3354 if (ofl->ofl_capgroups) { 3420 */
3355 Cap_gr oup *cgp; 3421 ocapi nfo = ci osp->o0s_out dat a- >d_buf ;
3422 ocapi nfo[0] = CAPI NFO_CURRENT;

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 51

3423
3424
3425
3426

3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482

3484
3485
3486
3487
3488

if (ccosp) {

-

© % * % k% ok 3k ok % ok ok sk oF Sk ok k ok ok % ok kb kb ko ko sk F 3k ok ok ok ok kb % OF F ok k ok ok ok o F
-~

f

ocapchai n = ccosp->0s_out dat a- >d_buf ;
ocapchai n[chai nndx++] = CAPCHAI N_CURRENT;

Traverse all capabilities famlies. Each menber has a . SUNW capi nfo
assignment. The .SUNWcapinfo entry differs for rel ocatabl e objects
and dynam c obj ects.

Rel ocat abl e obj ects:

ELF_C_GROUP ELF_C SYM
CAPI NFO_SUNW GLOB
CAPI NFO_SUNW GLOB
. SUNW cap i ndex

Fam |y | ead:
Fam |y | ead alias:
Fanm |y menber:

| ead synbol index
| ead synbol index
| ead synbol index

Dynani ¢ obj ects:
ELF_C_GROUP ELF_C_SYM

Fam |y | ead:

Fam |y | ead alias:

Fam |y menber:

CAPI NFO_SUNW GLOB
CAPI NFO_SUNW GLOB
. SUNW cap i ndex

. SUNW capchai n i ndex
. SUNW capchai n i ndex
| ead synbol index

The ELF_C GROUP field identifies a capabilities synbol. Lead
capability synmbols, and | ead capability aliases are identified by
a CAPI NFO_SUNW GLOB group identifier. For famly menbers, the
ELF_C GROUP provides an 1 ndex to the associate capabilities group
(i.e, an index into the SUNWcap section that defines a group).

For rel ocatabl e objects, the ELF_C SYMfield identifies the |ead
capability synbol. For the | ead synbol itself, the . SUNW capi nfo
index is the sane as the ELF_C SYMvalue. For |ead alias synbols,
the . SUNW capinfo index differs fromthe ELF_C SYMvalue. This
differentiation of CAPI NFO_ SUNW GLOB synbols allows 1d(1) to
identify, and propagate |lead alias synbols. For exanple, the |ead
capability synmbol nencpy() would have the ELF_C SYM for nmencpy(),
and the lead alias _menctpy() woul d al so have the ELF_C SYM for
mencpy() .

For dynami c objects, both a | ead capability synbol, and alias synbol
woul d have a ELF_C SYMval ue that represents the sane capability
chain index. The capability chain allows Id.so.1 to traverse a
famly chain for a given |lead synbol, and sel ect the nost appropriate
fam |y nenber. The .SUNWcapchain array contains a series of synbol

i ndexes for each fam |y menber:

chai ncap[n] chaincap[n + 1] chaincap[n + 2] chaincap[n + x]
foo() ndx foo% () ndx foo% () ndx 0

For fam |y nmenbers, the ELF_C _SYM val ue associates the capability
menbers wth their famly |l ead synbol. This association, although
unused within a dynamic object, allows 1d(1) to identify, and
propagate fam |y nmenbers when processing rel ocatabl e objects.

r (cav = avl _first(ofl->of | _capfanilies); cav;
cav = AVL_NEXT(of | ->of | _capfam lies, cav)) {

Cap_sym *csp;

Aliste i dx;

Sym desc *asdp, *lsdp = cav->cn_synmavl node. sav_sdp;

if (ccosp) {
/*
* For a dynamic object, identify this |ead synbol, and
* point it to the head of a capability chain. Set the
* head of the capability chain to the same | ead synbol .

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 52
3489 */

3490 ocapi nf o[| sdp->sd_symmdx] =

3491 ELF_C I NFQ(chai nndx, CAPI NFO SUNW GLOB) ;

3492 ocapchai n[chai nndx] = | sdp->sd_symdx;

3493 } else {

3494 /*

3495 * For a relocatable object, identify this |ead synbol,
3496 * and set the |lead symbol index to itself.

3497 */

3498 ocapi nf o[| sdp->sd_symmdx] =

3499 ELF_C I NFQ(| sdp->sd_symadx, CAPI NFO SUNW GLOB) ;
3500 }

3502 /*

3503 * Gather any |ead synbol aliases.

3504 i

3505 for (APLI ST_TRAVERSE(cav->cn_aliases, idx, asdp)) {

3506 if (ccosp) {

3507 /*

3508 * For a dynam c object, identify this |ead
3509 * alias synbol, and point it to the sane
3510 * capability chain index as the |ead synbol .
3511 */

3512 ocapi nf o[asdp->sd_symdx] =

3513 ELF_C_I NFQ(chai nndx, CAPI NFO_SUNW GLOB) ;
3514 } else {

3515 I*

3516 * For a relocatable object, identify this |ead
3517 * alias synbol, and set the |ead synbol index
3518 * to the lead synbol.

3519 */

3520 ocapi nf o[asdp- >sd_symdx] =

3521 ELF_C | NFQ(| sdp- >sd_symdx,

3522 CAPI NFO_SUNW GLOB) ;

3523 }

3524 }

3526 chai nndx++;

3528 /*

3529 * Gather the famly nenbers.

3530 */

3531 for (APLI ST_TRAVERSE(cav->cn_nenbers, idx, csp)) {

3532 Sym desc *msdp = csp->cs_sdp;

3534 /*

3535 * |dentify the menbers capability group, and the |ead
3536 * synbol of the family this synbol is a menber of.
3537 */

3538 ocapi nf o[nedp- >sd_symdx] =

3539 ELF_C | NFQ(| sdp->sd_symdx, csp->cs_group->cg_ndx);
3540 if (ccosp) {

3541 /*

3542 * For a dynamic object, set the next capability
3543 * chain to point to this fam |y nenber.

3544 *

3545 ocapchai n[chai nndx++] = nsdp->sd_symdx;

3546 }

3547 }

3549 /*

3550 */Any chain of famly nenbers is terminated with a 0 el enent.
3551 *

3552 if (ccosp)

3553 ocapchai n[chai nndx++] = 0;

3554

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 53 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 54

3555 } 3621 * - When generating a static inmage that does not require an interpreter
3622 * have the first |oadabl e segnment indicate the address of the first

3557 /* 3623 * .section as the start address (things like /kernel/unix and ufsboot

3558 * Translate the shdr->sh_{link, info} fromits input section value to that 3624 * expect this behavior).

3559 * of the corresponding shdr - >sh _{link, info} output section val ue. 3625 */

3560 */ 3626 uintptr_t

3561 static Wrd 3627 | d_update_outfile(Ofl _desc *ofl)

3562 translate_|ink(O | _desc *ofl, Os_desc *osp, Word link, const char *msg) 3628 {

3563 { 3629 Addr size, etext, vaddr;

3564 I s_desc isp; 3630 Sg_desc *sgp;

3565 I fI_desc ifl; 3631 Sg_desc *dtracesgp = NULL, *capsgp = NULL, *intpsgp = NULL;
3632 Gs_desc *osp

3567 /* 3633 int phdr ndx = 0, segndx = -1, secndx, intppndx, intpsndx;

3568 * Don't translate the special section nunbers. 3634 int dtracepndx, dtracesndx, cappndx, capsndx;

3569 B 3635 Ehdr *ehdr = ofl->of| _nehdr;

3570 if (link >= SHN_LORESERVE) 3636 Shdr *hshdr;

3571 return (link); 3637 Phdr *_phdr = NULL;
3638 Word phdrsz = (ehdr->e_phnum * ehdr->e_phentsize), shscnndx;

3573 /* 3639 of| _flag_t flags = ofl->of | _fl ags;

3574 * Does this output section translate back to an input file. 1f not 3640 Wor d ehdrsz = ehdr->e_ehsi ze;

3575 * then there is no translation to do. In this case we will assume that 3641 Bool ean nobi ts;

3576 * if sh_link has a value, it's the right val ue. 3642 O f of fset;

3577 i 3643 Aliste i dx1;

3578 isp = ld_os_first_isdesc(osp);

3579 if ((ifl =isp->is_file) == NULL) 3645 /*

3580 return (link); 3646 * Initialize the starting address for the first segnent. Executables
3647 * have different starting addresses dependi ng upon the target ABI,

3582 I* 3648 * where as shared objects have a starting address of 0. |If this is

3583 * Sanity check to make sure that the sh_{link, info} value 3649 * a 64-bit executable that is being constructed to run in a restricted

3584 * is within range for the input file 3650 * address space, use an alternative origin that will provide nore free

3585 */ 3651 * address space for the the eventual process.

3586 if (link >=ifl->ifl_shnun) { 3652 */

3587 Id_eprintf(ofl, ERR WARNING nsg, ifl->ifl_nane, 3653 if (ofl->ofl_flags & FLG OF_EXEC) {

3588 EC_WORD(i sp->i s_scnndx), isp->is_name, EC XWORD(!ink)); 3654 #if def i ned(_ELF64)

3589 return (link); 3655 if (ofl->ofl _ocapset.oc_sf_1.cmval & SF1_SUNW ADDR32)

3590 } 3656 vaddr = Id_targ.t_m m segm aorigin;
3657 el se

3592 /* 3658 #endi f

3593 * Follow the link to the input section. 3659 vaddr = I d_targ.t_m msegmorigin;

3594 */ 3660 } else

3595 if ((isp =ifl->fl_isdesc[link]) == NULL) 3661 vaddr = 0;

3596 return (0);

3597 if ((osp = isp->is_osdesc) == NULL) 3663 /*

3598 return (0); 3664 * Loop through the segnent descriptors and pick out what we need.
3665 */

3600 /* LINTED */ 3666 DBG CALL(Dbg_seg_title(ofl->ofl _Im));

3601 return ((Wrd)el f_ndxscn(osp->0s_scn)); 3667 for (APLI ST_TRAVERSE(of | ->of | _segs, 1dx1, sgp)) {

3602 } 3668 Phdr *phdr = &(sgp->sg_phdr);
3669 Xwor d p_align;

3604 /* 3670 Aliste 1 dx2;

3605 * Having created all of the necessary sections, segnents, and associ ated 3671 Sym desc *sdp;

3606 * headers, fill in the program headers and update any other data in the

3607 * output inmmge. Sone general rules: 3673 segndx++;

3608 *

3609 * - If an interpreter is required always generate a PT_PHDR entry as 3675 1=

3610 * well. It is this entry that triggers the kernel into passing the 3676 * If an interpreter is required generate a PT_| NTERP and

3611 * interpreter an aux vector instead of just a file descriptor. 3677 * PT_PHDR program header entry. The PT_PHDR entry describes

3612 * 3678 * the program header table itself. This information will be

3613 * - When generating an inmage that will be interpreted (ie. a dynamc 3679 * passed via the aux vector to the interpreter (ld.so.1).

3614 * executabl e, a shared object, or a static executable that has been 3680 * The program header array is actually part of the first

3615 * provided with an interpreter - weird, but possible), nake the initial 3681 * | oadabl e segnent (and the PT_PHDR entry is the first entry),

3616 * | oadabl e segnent include both the ehdr and phdr[]. Both of these 3682 * therefore its virtual address isn’'t known until the first

3617 * tables are used by the interpreter therefore it seens nore intuitive 3683 * | oadabl e segnent is processed.

3618 * to explicitly defined themas part of the mapped inmage rather than 3684 *

3619 * relying on page rounding by the interpreter to allow their access. 3685 f (phdr->p_type == PT_PHDR) {

3620 * 3686 if (ofl- >of| _osinterp) {

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 55

3687
3688

3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702

3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718

3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734

3736
3737
3738
3739
3740
3741
3742
3743
3744

3746
3747
3748
3749

3751
3752

phdr->p_of fset = ehdr->e_phoff;
phdr->p_filesz = phdr->p_nemsz = phdrsz,

DBG CALL(Dbg_seg_entry(ofl, segndx, sgp));
of | =>of | _phdr [phdr ndx++] = *phdr;

conti nue;
}
i f (phdr >p type == PT_I NTERP) {
(of —>of| _osinterp) {
intpsgp = sgp;
i nt psndx = segndx;
i nt ppndx = phdr ndx++;
cont i nue;
}
/'k
* If we are creating a PT_SUNWDTRACE segnent, remenber where
* the program header is. The header values are assigned after
* updat e_osyn() has conpleted and the synbol table addresses
* have been updat ed.
*
/
if (phdr->p_type == PT_SUNWDTRACE) {
if (o fI—>0fI _dtracesym &&
((flags & FLG OF_RELOBJ) == 0)) {
dtracesgp = sgp;
dtracesndx = segndx;
dtracepndx = phdrndx++;
conti nue;
}
/*
* |f a hardware/software capabilities section is required,
* generate the PT_SUNWCAP header. Note, as this cones before
* the first |oadable segment, we don’t yet know its real
* virtual address. This is updat ed later.
*
/
if (phdr >p type == PT_SUNWCAP) {
(of ->of| _oscap && (ofl->ofl _flags & FLG OF_PTCAP) &&
((flags & FLG_ OF_RELOBJ) == 0)) {
capsgp = sgp
capsndx = segndx;
cappndx = phdrndx++;
conti nue;
}
/*
* As the dynam c program header occurs after the |oadable
* headers in the segnent descriptor table, all the address
* information for the .dynam c output section will have been
* figured out by now.
*/

if (phdr->p_type == PT_DYNAM C) {
if (OFL_ ALLQNDYNSYN(ofI)) {
Shdr *shdr = of | ->of | _osdynam c->0s_shdr;

phdr->p_vaddr = shdr->sh_addr;

phdr - >p_of f set shdr->sh_of f set;
phdr->p_filesz = shdr->sh_si ze;
phdr->p_flags = I d_targ.t_m m dataseg_perm

DBG_CALL(Dbg_seg_ entry(ofl segndx, sgp));
of I =>of | _phdr [phdr ndx++] = *phdr

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

3753
3754
3755

3757
3758
3759
3760
3761
3762
3763
3764

3766
3767

3769

3771
3772
3773
3774
3775
3776
3777
3778
3779
3780

3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792

3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804

3806
3807

3809
3810
3811
3812
3813
3814
3815
3816
3817
3818

cont i nue;

}
/
As the unwi nd (.eh_frame_hdr) program header occurs after
the | oadabl e headers in the segnent descriptor table, all

*
*
*
* the address information for the .eh_frame output section
* will have been figured out by now.

*/

if

(phdr->p_type == PT_SUNW UNW ND) {
Shdr *shd

if (ofl->ofl _unwi ndhdr == NULL)
cont i nue;

shdr = of | ->of | _unwi ndhdr - >os_shdr;

phdr->p_fl ags R
phdr - >p_vaddr shdr - >sh_addr;
phdr - >p_nensz shdr->sh_si ze;
phdr->p_filesz = shdr->sh_size;
phdr->p_of f set = shdr->sh_of fset;

PF_R

phdr->p_align = shdr->sh_addral i gn
phdr - >p_paddr = 0;
of | - >of | _phdr[phdrndx++] = *phdr;
cont i nue;

}

/*

* The sunwstack programis used to convey non-default

* flags for the process stack. Only emt it if it would
* change the defaul t.

*/

if (phdr->p_type == PT_SUNWSTACK) ({
if (((flags & FLG OF_RELOBJ) == 0) &&
((sgp->sg_flags & FLG_ SG DI SABLED) == 0))
of | ->of | _phdr [phdr ndx++] = *phdr;
conti nue;
}
/*
* As the TLS program header occurs after the |oadable
* headers in the segnent descriptor table, all the address
*
*

information for the .tls output section will have been
figured out by now
S

if (phdr->p_type == PT_TLS) {
GCs_desc

_ *t| sosp;
Shdr *|lastfileshdr = NULL;
Shdr *firstshdr = NULL, *|astshdr;
Aliste i dx;

if (ofl->ofl _ostlsseg == NULL)
conti nue;

*

* Scan the output sections that have contributed TLS.

* Renenber the first and last so as to determine the

* TLS nenory size requirenent. Renenber the |ast

* progbits section to determ ne the TLS data

* contribution, which determ nes the TLS program

* header filesz.

*/

for (APLI ST_TRAVERSE(of | ->of | _ostl sseg, idx, tlsosp)) {
Shdr *tl sshdr = tlsosp->o0s_shdr;

56

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 57 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c
3885 /*

3820 if (firstshdr == NULL) 3886 * Check overl aps

3821 flrstshdr = tlsshdr; 3887 */

3822 if (tlsshdr->sh_type != SHT NCBI TS) 3888 for (i =0; i < phdrndx -1 i) {

3823 lastfileshdr = tlsshdr; 3889 Addr p_s = (ofl- >0f| _phdr[i]).p_vaddr;

3824 | astshdr = tlsshdr; 3890 Addr p_e;

3825 }
3892 if ((ofl->of| _phdr[i]).p_type != PT_LOAD)

3827 phdr->p_flags = PF_R | PF_W 3893 conti nue;

3828 phdr - >p_vaddr = f| rstshdr->sh_addr;

3829 phdr->p_of fset = firstshdr->sh offset; 3895 p_e = p_s + (ofl->of | _phdr[i]).p_nensz;

3830 phdr->p_align = fi rstshdr->sh_addralign; 3896 I1f (((p_s <= vaddr) && (p_e > vaddr)) ||
3897 ((vaddr <= p_s) && (v_e > p_s)))

3832 /* 3898 I d_eprintf(ofl, ERR WARNI NG

3833 * Determine the initialized TLS data size. This 3899 MSG_| NTL(I\/SG UPD_SEGOVERLAP) ,

3834 * address range is fromthe start of the TLS segnent 3900 of | =>of | _nanme, EC_ADDR(p_e

3835 * to the end of the |last piece of initialized data. 3901 sgp->sg_nane, EC ADDR(vaddr))

3836 */ 3902 }

3837 if (lastfileshdr) 3903 conti nue;

3838 phdr->p_filesz = lastfil eshdr->sh_offset + 3904 }

3839 lastfil eshdr->sh_size - phdr->p_offset;

3840 el se 3906 /*

3841 phdr->p_filesz = 0; 3907 * Having processed any of the special program headers any
3908 * renmaining headers wll be built to express individual

3843 /* 3909 * segments. Segnents are only built if they have out put

3844 * Determne the total TLS menory size. This includes 3910 * section descriptors associated with them (ie. sone form of

3845 * all TLS data and TLS uninitialized data. This 3911 * input section has been matched to this segment).

3846 * address range is fromthe start of the TLS segnent 3912 *

3847 * to the nmenory address of the |ast piece of 3913 if (sgp->sg_osdescs == NULL)

3848 * uninitialized data. 3914 conti nue;

3849 */

3850 phdr->p_nemsz = | astshdr->sh_addr + 3916 /*

3851 | ast shdr->sh_si ze - phdr->p_vaddr; 3917 * Determine the segments offset and size fromthe section
3918 * information provided fromelf_update().

3853 DBG CALL(Dbg_seg_entry(ofl, segndx, sgp)); 3919 * Allow for nultiple NOBITS sections.

3854 of | - >of | _phdr [phdrndx] = *phdr; 3920 */

3855 of | ->of | _t | sphdr = &of | ->of | _phdr [phdr ndx++] ; 3921 osp = sgp- >sg_osdescs->apl _data[0];

3856 conti nue; 3922 hshdr = osp->o0s_shdr;

3857 }
3924 phdr->p_filesz = 0;

3859 /* 3925 phdr->p_nensz = O;

3860 * |f this is an enpty segrment declaration, it will occur after 3926 phdr->p_offset = offset = hshdr->sh_offset;

3861 * all other |oadable segnents. As enpty segments can be

3862 * defined with fixed addresses, nake sure that no | oadabl e 3928 nobits = ((hshdr->sh_type == SHT_NOBI TS) &&

3863 * segments overlap. This mght occur as the object evolves 3929 ((sgp >sg_flags & FLG. SG 5> PHREQ == 0));

3864 * and the | oadabl e segnents grow, thus encroaching upon an

3865 * existing segnent reservation. 3931 for (APLI ST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {

3866 * 3932 Shdr *shdr = osp->o0s_shdr;

3867 * Segrments are only created for dynamic objects, thus this

3868 * checki ng can be ski pped when building a rel ocatabl e object. 3934 p_align = 0;

3869 */ 3935 i f (shdr->sh_addralign > p_align)

3870 if (!(flags & FLG OF_RELOBJ) && 3936 p_align = shdr->sh_addralign;

3871 (sgp->sg_flags & FLG_SG EMPTY)) {

3872 int [3938 offset = (OFf)S ROUND(of fset, shdr->sh_addralign);

3873 Addr v_e; 3939 of fset += shdr->sh_si ze;

3875 vaddr = phdr->p_vaddr; 3941 if (shdr->sh_type != SHT_NOBITS) {

3876 phdr->p_nenmsz = sgp->sg_| engt h; 3942 if (nobits) {

3877 DBG CALL(Dbg_seg_entry(ofl, segndx, sgp)); 3943 Id_eprintf(ofl, ERR FATAL,

3878 of | ->of | _phdr [phdr ndx++] = *phdr; 3944 MSG_| NTL(I\/BG UPD_NOBI TS)) ;
3945 return (S_ERROR);

3880 if (phdr->p_type != PT_LQAD) 3946 }

3881 conti nue; 3947 phdr->p_filesz = offset - phdr->p_offset;
3948 } else if ((sgp >sg_flags & FLG SG PHREQ == 0)

3883 v_e = vaddr + phdr->p_nensz; 3949 nobits = TRUE
3950 }

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 59

3951

3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970

3972
3973
3974
3975
3976
3977

3979
3980
3981
3982
3983
3984
3985

3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007

4009
4010
4011
4012
4013
4014
4015
4016

phdr->p_nensz = offset - hshdr->sh_of fset;

-

—h ook ok Ok % % %
-

If this is the first |oadable segnment of a dynami c object,

or an interpreter has been specified (a static object built
with an interpreter will still be given a PT_HDR entry), then
conpensate for the el f header and program header array. Both
of these are actually part of the |oadable segnent as they
may be inspected by the interpreter. Adjust the segnents
size and of fset accordingly.

(_phdr == NULL) && (phdr->p_type == PT_LOAD) &&
((ofl->of | _osinterp) || (flags & FLG OF_DYNAM Q)) &&
('(ofl->of| _dtflags_1 & DF_1_NOHDR))) {

si ze (Addr) S _| RClJND((phdrsz + ehdrsz),

hshdr- >sh_addral i gn);

phdr->p_of fset -= size;

phdr->p_filesz += size;

phdr->p_nmenmsz += si ze;

}

/*

* | f segnment size synbols are required (specified via a
* mapfile) update their val ue.

*

for (APLI ST_TRAVERSE(sgp->sg_si zesym idx2, sdp))
sdp- >sd_sym >st _val ue = phdr->p_nensz;

*

* |f no file content has been assigned to this segnent (it

* only contains no-bits sections), then reset the offset for
* consi stency.

*

if (phdr->p_filesz == 0)
phdr->p_offset = 0;

If a virtual address has been specified for this segnent
froma mapfile use it and make sure the previous segnent
does not run into this segnent.

* ok ok ok %

if (phdr->p_type == PT_LQOAD)
if ((sgp->sg_flags & FLG SG P_VADDR)) {
if (_phdr && (vaddr > phdr->p_vaddr) &&
(phdr->p_type == PT_LQAD))
Id eprlntf(ofl ERR_WARNI NG,
MSG_| NTL(MSG_UPD_SEGOVERLAP) ,
of | =>of | name EC ADDR(vaddr)
sgp- >sg_na
EC_ADDR(phdr >p_vaddr));
vaddr = phdr->p_vaddr;
phdr->p_align = 0;
} else {
vaddr = phdr->p_vaddr =
(Addr) S _ROUND(vaddr, phdr->p_align);

}

/*

* Adj ust the address offset and p_align if needed.
*

/

if (((sgp->sg_flags & FLG SG P_VADDR) == 0) &&
((of I ->of | _dtflags_1 & DF_1_NOHDR) == 0)) {
if (phdr- >p allgn 1= 0)
vad += phdr->p_of fset % phdr->p_align;
el se

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c 60
4017 vaddr += phdr->p_offset;

4018 phdr - >p_vaddr = vaddr;

4019 }

4021 /*

4022 * If an interpreter is required set the virtual address of the
4023 * PT_PHDR program header now that we know the virtual address
4024 * of the |oadable segment that contains it. Update the

4025 * PT_SUNWCAP header simlarly.

4026 */

4027 if ((_phdr == NULL) && (phdr->p_type == PT_LOAD)) {

4028 _phd phdr;

4030 if ((ofl->ofl _dtflags_1 & DF_1_NOHDR) == 0) {

4031 if (ofl->ofl_osinterp)

4032 of | ->of | _phdr[0] . p_vaddr =

4033 vaddr + ehdrsz;

4035 /*

4036 * Finally, if we're creating a dynam c object
4037 * (or a static object in which an interpreter
4038 * is specified) update the vaddr to reflect
4039 * the address of the first section within this
4040 * segnent.

4041 *

4042 f ((ofl->ofl _osinterp) ||

4043 (flags & FLG OF_DYNAM C))

4044 vaddr += size;

4045 } else {

4046

4047 * If the DF_1_NOHDR flag was set, and an

4048 * interpreter is being generated, the PT_PHDR
4049 * will not be part of any | oadabl e segment .
4050 */

4051 if (ofl->ofl_osinterp) {

4052 of | ->of | _phdr[0].p_v addr = 0;

4053 of | ->of | _phdr[0].p_ r're = 0;

4054 of | ->of | _phdr[0] . p_| Iags = 0;

4055 }

4056 }

4057 }

4059 /*

4060 * Ensure the ELF entry point defaults to zero. Typically, this
4061 * value is overridden in update_oehdr() to one of the standard
4062 * entry points. Historically, this default was set to the
4063 * address of first executable section, but this has since been
4064 * found to be nore confusing than it is hel pful.

4065 */

4066 ehdr->e_entry = 0;

4068 DBG CALL(Dbg_seg_entry(ofl, segndx, sgp));

4070 /*

4071 * Traverse the output section descriptors for this segnent so
4072 * that we can update the section headers addresses. W’ ve
4073 * calculated the virtual address of the initial section within
4074 * this segnent, so each successive section can be cal cul ated
4075 * based on their offsets from each other.

4076 *

4077 secndx = 0;

4078 hshdr = 0;

4079 for (APLI ST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {

4080 Shdr *shdr = osp->o0s_shdr;

4082 if (shdr->sh_link)

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 61

4083
4084

4086
4087
4088

4090
4091
4092
4093
4094

4096
4097
4098

4100
4101
4102

4104
4105
4106
4107
4108
4109
4110

4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122

4124
4125
4126
4127
4128
4129

4131
4132
4133

4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146

4148

*
*
*
*
*
*
*
*
*
if

| *

shdr->sh_link = translate_|ink(ofl, osp,
shdr=>sh_link, NMSG | NTL(MSG FIL_I NVSHLI NK));

if (shdr->sh_info &k (shdr->sh_flags & SHF_I NFO LI NK))
shdr->sh_info = translate_iink(ofl, osp,
shdr->sh_i nfo, MSG_ I NTL(MSG_FI L_I NVSHI NFO)) ;

if (!(flags & FLG OF_RELOBJ) &&
(phdr->p_type == PT_LOAD)) {
if (hshdr)
vaddr += (shdr->sh_of fset -
hshdr - >sh_of f set) ;

shdr->sh_addr = vaddr;

hshdr = shdr;

}

DBG CALL(Dbg_seg_os(ofl, osp, secndx));

secndx++;
}
/*
* Establish the virtual address of the end of the |last section
* in this segment so that the next segments offset can be
* calculated fromthis.
*/
if (hshdr)

vaddr += hshdr->sh_si ze;
/*

* Qutput sections for this segnent conplete. Adjust the

* virtual offset for the |ast sections size, and nmake sure we
* haven’t exceeded any maxi mum segnent | ength specification.
*/

if ((sgp->sg_length = 0) && (sgp->sg_length < phdr->p_nmemsz)) {
I d_eprintf(ofl, ERR FATAL, MSG_ | NTL(MSG UPD_LARGSI ZE),
of | ->of | _nane, sgp->sg_nane,
EC_XWORD(phdr - >p_nensz), EC XWORD(sgp->sg_| ength));
return (S_ERROR);
}

if (phdr->p_type == PT NOTE) {
phdr - >p_vaddr
phdr - >p_paddr
phdr->p_align
phdr - >p_nensz

’

SISISIS)

}

if ((phdr->p_type !'= PT_NULL) && ! (flags & FLG OF_RELOBJ))
of | ->of | _phdr [phdr ndx++] = *phdr;

Updat e any new output sections. \Wen building the initial output

i mge, a nunber of sections were created but left uninitialized (eg.
.dynsym .dynstr, .syntab, .syntab, etc.). Here we update these

sections with the appropriate data. Qher sections nay still be
nodi fied via rel oc_process().

Copy the interpreter nane into the .interp section.
/

(of I ->of | _interp)
(voi d) strcpy((char *)of | ->of | _osi nterp->o0s_outdata->d_buf,
fl->ofl _interp);

new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c

4149
4150
4151
4152
4153

4155
4156
4157
4158
4159
4160

4162
4163
4164
4165
4166
4167
4168

4170
4171
4172
4173

4175
4176
4177

4179
4180
4181
4182
4183
4184
4185

4187
4188

4190
4191
4192
4193
4194
4195
4196

4198
4199
4200

4202
4203
4204
4205
4206
4207
4208

4210
4211
4212
4213

* Update the .shstrtab, .strtab and .dynstr sections.
&/

updat e_ostrtab(ofl ->of | _osshstrtab, ofl->ofl_shdrsttab, 0);
updat e_ostrtab(of| ->of| _osstrtab, ofl->ofl_strtab, 0);
updat e_ostrtab(of| ->of | _osdynstr, ofl->ofl _dynstrtab, DYNSTR EXTRA_PAD);

/*
* Build any output synbol tables, the synbols information is copied
* and updated into the new output inmage.
*
/

if ((etext = update_osym(ofl)) == (Addr)S_ERROR)
return (S_ERROR);

/*
* |If we have an PT_I NTERP phdr, update it now fromthe associ ated
* section information.

*

if (intpsgp) {

Phdr *phdr
Shdr *shdr

&(i nt psgp->sg_phdr);
of | - >of | _osi nt er p- >os_shdr;

phdr - >p_vaddr shdr->sh_addr;

phdr->p_of f set = shdr->sh_of fset;

phdr - >p_nensz phdr->p_filesz = shdr->sh_size;
phdr->p_fl ags PF_R;

DBG_CALL(Dbg_seg_entry(ofl, intpsndx, intpsgp));
of I ->of | _phdr[int ppndx] = *phdr;
}

/*

* |f we have a PT_SUNWDTRACE phdr, update it now with the address of
* the synbol. 1It’s only now been updated via update_syn().

*/

if (dtracesgp) {

Phdr *aphdr, phdr = &(dtracesgp->sg_phdr);
Sym desc *sdp = of | ->of | _dtracesym
phdr - >p_vaddr
phdr - >p_nensz

sdp- >sd_sym >st _val ue;
sdp- >sd_sym >st _si ze;

/*

* Take pernissions fromthe segnent that the symbol is
* assoclated wth.

*/

aphdr = &sdp->sd_i sc->i s_osdesc- >0s_sgdesc->sg_phdr;
assert (aphdr);
phdr->p_flags = aphdr->p_fl ags;

DBG CALL(Dbg_seg_entry(ofl, dtracesndx, dtracesgp));
of | ->of | _phdr[dtracepndx] = *phdr;
}

/*
* |f we have a PT_SUNWCAP phdr, update it now fromthe associ at ed
* section information.
*
/

if (capsgp) {
Phdr *phdr
Shdr *shdr

&(capsgp- >sg_phdr);
of | - >of | _oscap->os_shdr;

phdr->p_vaddr = shdr->sh_addr;

phdr->p_of fset = shdr->sh_offset;
phdr->p_nmensz = phdr->p_filesz = shdr->sh_si ze;
phdr->p_flags = PF_R;

62

new usr/src/cnd/ sgs/ i bl d/ cormon/ update. c 63 new usr/src/cnd/ sgs/ i bl d/ cormon/ updat e. c
4215 DBG_CALL(Dbg_seg_ent ry(ofl capsndx, capsgp)); 4281 *((char *)ofl->ofl _osdynstr->o0s_outdata->d_buf) == "'\0"));
4216 of | - >of | _phdr [cappndx] = *phdr; 4282 assert ((of | ->of | _osdynstr == NULL) ||
4217 } 4283 (*(((char *)ofl->of | _osdynstr->0s_out dat a->d_buf) +
4284 of | - >of | _osdynstr->0s_out data->d_si ze - DYNSTR_EXTRA_PAD - 1)
4219 /* 4285 "N0"));
4220 * Update the GROUP sections.
4221 */ 4287 /*
4222 if (update_ogroup(ofl) == S ERROR) 4288 * Emt Strtab diagnostics.
4223 return (S_ERRO?) ; 4289 */
4290 DBG CALL(Dbg_sec_strtab(ofl->of | _Iml, ofl->ofl_osshstrtab,
4225 I* 4291 of | ->of | _shdrsttab));
4226 * Updat e Move Tabl e. 4292 DBG CALL(Dbg_sec_strtab(ofl->of | _Iml, ofl->ofl osstrtab,
4227 */ 4293 of | ->of | _strtab));
4228 if (ofl->ofl_osnmove || ofl->ofl _isparexpn) 4294 DBG CALL(Dbg_sec_strt ab(ofl ->of | _I M, ofl->ofl_osdynstr,
4229 updat e_nove(ofl); 4295 of | ->of I _dynstrtab));
4231 /* 4297 /*
4232 * Build any output headers, version information, dynam c structure and 4298 * Initialize the section headers string table index within the elf
4233 * syminfo structure. 4299 * header.
4234 S 4300 */
4235 if (update_oehdr(ofl) == S ERROR) 4301 /* LI NTED */
4236 return (S_ERROR); 4302 if ((shscnndx = el f_ndxscn(ofl->of | _osshstrtab->0s_scn)) <
4237 if (1(flags & FLG OF - NOVERSEQ)) { 4303 SHN_LORESERVE)
4238 if ((flags & FLG OF VERDEF) && 4304 of | - >of | _nehdr - >e_shstrndx =
4239 (updat e_overdef (of |) == S_ERROR)) 4305 /* LINTED */
4240 return (S_ERROR); 4306 (Hal f) shscnndx;
4241 if ((flags & FLG OF VERNEED) && 4307 } else {
4242 (updat e_overneed(ofl) == S_ERROR)) 4308
4243 return (S_ERROR); 4309 * |f the STRTAB section index doesn t fit into
4244 if (flags & (FLG OF VERNEED | FLG_OF_VERDEF)) 4310 * e_shstrndx, then we store it in 'shdr[0].st_link’.
4245 updat e_oversym(ofl); 4311 */
4246 1 4312 El f_Scn *scn;
4247 if (flags & FLG OF_DYNAM Q) { 4313 Shdr *shdr 0;
4248 if (update_odynami c(ofl) == S_ERROR)
4249 return (S_ERROR); 4315 if ((scn = elf_getscn(ofl->ofl _elf, 0)) == NULL) {
4250 1 4316 Id_eprintf(ofl, ERR ELF, MSG | NTL(NMBG ELF_GETSCN),
4251 if (ofl->ofl_ossym nfo) { 4317 of | ->of | _nane) ;
4252 if (update_osym nfo(ofl) == S_ERROR) 4318 return (S_ERROR);
4253 return (S_ERROR); 4319 1
4254 } 4320 i1f ((shdrO = el f_getshdr(scn)) == NULL) {
4321 I d_eprintf(ofl, ERR ELF, MSG | NTL(MSG ELF_GETSHDR),
4256 /* 4322 of | - >of | narre)
4257 * Update capabilities information if required. 4323 return (S_ERROR);
4258 */ 4324 1
4259 if (ofl->ofl_oscap) 4325 of | - >of | _nehdr->e_shstrndx = SHN_XI NDEX;
4260 updat e_oscap(ofl); 4326 shdr 0->sh_l i nk = shscnndx;
4261 if (ofl->ofl_oscapinfo) 4327 }
4262 updat e_oscapi nfo(ofl);
4329 return ((uintptr_t)etext);
4264 /* 4330 }
4265 * Sanity test: the first and last data byte of a string table
4266 * must be NULL.
4267 */
4268 assert ((of | ->of | _osshstrtab == NULL) ||
4269 (*((char *)ofl->of | _osshstrtab->o0s_outdata->d_buf) == "'\0"));
4270 assert((of | ->of | _osshstrtab == NULL) ||
4271 (*(((char *)ofl->ofl_osshstrtab->o0s_outdata->d_buf) +
4272 of | ->of | _osshstrtab->0s_outdata->d_size - 1) == '\0"));
4274 assert((of | ->of | _osstrtab == NULL) ||
4275 (*((char *)ofl->of | _osstrtab->0s_outdata->d_buf) == "'\0"));
4276 assert((ofl->of | _osstrtab == NULL) ||
4277 (*(((char *)ofl->of _osstrtab->0s_outdata->d_buf) +
4278 of | - >of | _osstrtab->o0s_outdata->d_size - 1) == "'\0"));
4280 assert ((ofl->of | _osdynstr == NULL) ||

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 1 new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 2

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 http//sunsol ve. eaSt/CgI/ShOW pl '7target:patcheslos_patches
88729 Mon Feb 11 00: 23: 20 2019

new usr/ src/ cnd/ sgs/ packages/ conrmon/ SUNWONI d- READVE 62 If it hasn't been rel eased, the patch will be in:

10366 1d(1) should support GNU-style |inker sets

10367 1d(1) tests should be a real test suite 64 I net/ sunsof t pat ch/ pat ches/t enporary

10368 want an 1d(1) regression test for i386 LDtls transition (10267)

Kk kkkkkkkkkkkkkkkkkkhkk Rk kkkkkkkkkkkhkkkkkkkkkkkkkkk*kkkk*x 66 Note, any patches |l ogged here refer to the tenporary ("T") nane, as we
1# 67 never know when they' re made official, and although we try to keep all
2 # Copyright (c) 1996, 2010, Oracle and/or its affiliates. Al rights reserved. 68 patch information up-to-date the real status of any patch can be
3 # 69 determ ned from
4 # CDDL HEADER START
5 # 71 http://sunsoftpatch. eng
6 # The contents of this file are subject to the terms of the
7 # Common Devel opnent and Distribution License (the "License"). 73 If it has been obsol eted, the patch will be in:

8 # You may not use this file except in conpliance with the License.
9 # 75 / net / on${ RELEASE} - pat ch/ on${ RELEASE} / pat ches/ ${ MACH} / obsol et e
10 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
11 # or http://ww. opensol aris.org/os/licensing.
12 # See the License for the specific |anguage governing permn ssions 78 Hi story:
13 # and limtations under the License.
14 # 80 Note, starting after Solaris 10, letter codes in parenthesis nay
15 # Wen distributing Covered Code, include this CDDL HEADER in each 81 be found follow ng the bug synopsis. Their neanings are as follows:
16 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
17 # |f applicable, add the followi ng bel ow this CDDL HEADER, with the 83 (D) A docunentation change acconpani es the inplenentation change.
18 # fields enclosed by brackets "[]" replaced with your own identifying 84 (P) A packagi ng change acconpani es the inplenmentati on change.
19 # information: Portions Copyright [yyyy] [nane of copyright owner]
20 # 86 In all cases, see the inplenmentation bug report for details.
21 # CDDL HEADER END
22 # 88 The foll owing bug fixes exist in the OSNET consolidation workspace
23 # Note: The contents of this file are used to determine the versioning 89 from which this package is created:
24 # information for the SGS tool set. The nunmber of CRs listed in
25 # this file nust grow nonotonically, or the SGS version will 91 ---------
26 # nove backwards, causing a great deal of confusion. As such, 92 Solaris 8
27 # CRs nust never be renpved fromthis file. See 93 ---------
28 # I'i bconv/ common/ bl d_vernot e. ksh, and bug#4519569 for nore 94 Bugi d Ri sk Synopsi s
29 # details on SGS versioni ng. 95
30 # 96 4225937 1386 linker emts sparc specific warning nessages
R e e e 97 4215164 shf_order flag handling broken by fix for 4194028.
32 SUNWNId - link-editors devel opnent package. 98 4215587 using Id and the -r option on solaris 7 with conpiler option -xarch=v9
R R L LT T 99 causes link errors.
100 4234657 103627-08 breaks purify 4.2 (plt padding should not be enabled for
35 The SUNWnI d package is an internal devel opnent package containing the 101 32-bit)
36 link-editors and sonme related tools. Al conponents live in the OSNET 102 4235241 dbx no | onger gets dlclose notification.
37 source base, but not all conponents are delivered as part of the nornmal O R e e
38 OSNET consolidation. The intent of this package is to provide access 104 Al the above changes are incorporated in the follow ng patches:
39 to new features/bugfixes before they become generally avail abl e. 105 Sol ari s/ SunGCS 5. 7_sparc patch 106950-05 (never rel eased)
106 Sol ari s/ SunGS 5. 7_x86 patch 106951-05 (never rel eased)
41 Ceneral link-editor infornation can be found: 107 Sol ari s/ SunCS 5. 6_sparc patch 107733-02 (never rel eased)
108 Sol ari s/ SunGsS 5. 6_x86 patch 107734-02
43 http://1inkers.central/ I e e T
44 http://1inkers. sfbay/ (al so known as |inkers. eng) 110 4248290 inetd dunps core upon bootup - failure in dlclose() |ogic.
111 4238071 dl open() |eaks while descriptors under |ow nenory conditions
46 Commrent s and Questi ons: A e e R
113 Al the above changes are incorporated in the follow ng patches:
48 Contact Rod Evans, Ali Bahram, and/or Seizo Sakurai. 114 Sol ari s/ SunGCS 5. 7_sparc patch 106950- 06
115 Sol ari s/ SunCS 5. 7_x86 patch 106951- 06
50 Wr ni ngs: 116 Sol ari s/ SunCS 5. 6_sparc patch 107733-03 (never rel eased)
117 Sol ari s/ SunCS 5. 6_x86 patch 107734-03
52 The postrenpve script for this package enpl oys /usr/sbin/static/nv, R R I T T T
53 and thus, besides the common core dependencies, this package al so 119 4267980 I NI TFIRST flag of the shard object could be ignored.
54 has a dependency on the SUNWutl package. L e e
121 Al the above changes plus:
56 Pat ches: 122 4238973 fix for 4121152 affects |inking of Ada objects
123 4158744 patch 103627-02 causes core when RPATH has bl ank entry and
58 If the patch has been made official, you'll find it in: 124 dl open/dl cl ose is used

125 are incorporated in the foll ow ng patches:

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Sol ari s/ SunGCS 5.5.1_sparc patch 103627-12

Sol ari s/ SunCS 5.5.1_x86 patch 103628-11
4256518 miscal cul ated calloc() during diclose/tsorting can result in segv
4254171 DT_SPARC_REG STER has invalid value associated with it

(never rel eased)

Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGCS 5. 7_sparc patch 106950- 07
Sol ari s/ SunCS 5. 7_x86 patch 106951- 07
Sol ari s/ SunCS 5. 6_sparc patch 107733- 04
Sol ari s/ SunCS 5. 6_x86 patch 107734-04

4293159 | d needs to conbine sections with and w thout SHF_ORDERED f| ag(condat)

4292238 linking a library which has a static char ptr invokes nprotect() call

(never rel eased)

Al'l the above changes except for:
4256518 niscal cul ated cal loc() during diclose/tsorting can result in segv
4254171 DT_SPARC_REG STER has invalid val ue associated with it.
pl us:
4238973 fix for 4121152 affects linking of Ada objects
4158744 patch 103627-02 causes core when RPATH has bl ank entry and
dl open/dl cl ose is used
are incorporated in the follow ng patches:
Sol ari s/ SunCS 5.5.1_sparc patch 103627-13
Sol ari s/ SunCS 5.5.1_x86 patch 103628-12
Al'l the above changes are incorporated in the foll ow ng patches:
Sol ari s/ SunGS 5. 7_sparc pat ch 106950- 08
Sol ari s/ SunCS 5. 7_x86 patch 106951- 08
Sol ari s/ SunGCS 5. 6_sparc patch 107733- 05
Sol ari s/ SunCS 5. 6_x86 patch 107734-05

Al'l the above changes pl us:
4238973 fix for 4121152 affects linking of Ada objects
4158744 patch 103627-02 causes core when RPATH has bl ank entry and
dl open/dl cl ose is used
are incorporated in the follow ng patches:
Sol ari s/ SunCS 5.5.1_sparc patch 103627- 14
Sol ari s/ SunGCsS 5.5.1_x86 patch 103628-13
Al'l the above changes pl us:
4351197 nfs perfornmance probl em by 103627-13
are incorporated in the follow ng patches:
Sol ari s/ SunGCS 5.5.1_sparc patch 103627-15
Sol ari s/ SunCS 5.5.1_x86 patch 103628- 14

Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGCS 5. 7_sparc patch 106950- 09
Sol ari s/ SunCS 5. 7_x86 patch 106951- 09
Sol ari s/ SunCS 5. 6_sparc patch 107733-06

Sol ari s/ SunoS 5. 6_x86 patch 107734- 06

4158971 increase the default segnment alignment for i386 to 64k
4064994 Add an $I SALI ST token to those understood by the dynamc |inker
XXXXXXX | a64 common code putback

4239308 LD_DEBUG busted for sparc nachi nes

4239008 Support MAP_ANON

4238494 |ink-auditing extensions required

4232239 R _SPARC LOX10 truncates field

4231722 R_SPARC_UA* rel ocations are busted

4235514 R _SPARC OLOL10 rel ocation fails

4244025 sgsnsg update

4239281 need to support SECREL rel ocations for ia64

4253751 i a64 linker nmust support PT_IA 64 _UNWND tables

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

4259254 dl nopen mnistakenly closes fd 0 (stdin) under certain error conditions
4260872 |ibel f hangs when |ibthread present

4224569 |inker core dunping when profiling specified

4270937 need nmechanismto suppress ld.so.1' s use of a default search path.
1050476 I d.so to permit configuration of search path

4273654 filtee processing using $I SALI ST coul d be optim zed

4271860 get MERCED cruft out of elf.h

4248991 Dynamic |oader (via PLT) corrupts register G4

4275754 cannot mmap file: Resource tenporarily unavail abl e

4277689 The |inker can not handl e rel ocati on agai nst MOVE tabl

4270766 atexit processing required on dlclose().

4279229 Add a "rel ease" token to those understood by the dynamic |inker
4215433 | d can bus error when insufficient disc space exists for output file
4285571 Pssst, want sone free disk space? 1d s mscalcul ating.

4286236 ar gives confusing "bad format" error with a null .stab section
4286838 |1 d.so.1 can’t handle a no-bits segnment

4287364 1d.so.1 runtinme configuration cleanup

4289573 disable linking of ia64 binaries for Solaris8

4293966 crle(1l)’s default directories should be supplied

Solaris 8 600 (1st Q update - s28ul)

Ri sk Synopsi s

4309212 dl symcan’'t find synbol
4311226 rejection of preloading in secure apps i s inconsistent
4312449 dlclose: invalid del etion of dependency can occur using RTLD GLOBAL

Al'l the above changes are incorporated in the foll ow ng patches:
Sol ari s/ SunCS 5. 8_sparc patch 109147-01
Sol ari s/ SunGS 5. 8_x86 patch 109148-01
Sol ari s/ SunGS 5. 7_sparc patch 106950- 10
Sol ari s/ SunCS 5. 7_x86 patch 106951- 10
Sol ari s/ SunCS 5. 6_sparc patch 107733-07
Sol ari s/ SunCS 5. 6_x86 patch 107734-07

Solaris 8 900 (2nd Q update - s28u2)

Ri sk Synopsi s

4324775 non-PI C code & -zconbreloc don't mx very well...
4327653 run-tinme |inker should preload tables it wll process (nadvise)
4324324 shared object code can be referenced before .init has fired
4321634 .init firing of multiple I NI TFIRST objects can fail
Al'l the above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 8_sparc patch 109147-03

Sol ari s/ SunCS 5. 8_x86 patch 109148-03

Sol ari s/ SunGS 5. 7_sparc patch 106950- 11

Sol ari s/ SunGS 5. 7_x86 patch 106951-11

Sol ari s/ SunGsS 5 patch 107733-08

Sol ari s/ SunCs 5 patch 107734-08
4338812 crle(1l) omts entries in the directory cache
4341496 RFE: provide a static version of /usr/bin/crle
4340878 rtld should treat $ORIG N |like LD LI BRARY_PATH in security issues
Al'l the above changes are incorporated in the foll ow ng patches:

Sol ari s/ SunGS 5. 8_sparc patch 109147- 04

Sol ari s/ SunCS 5. 8_x86 patch 109148- 04

Sol ari s/ SunCS 5. 7_sparc patch 106950- 12

Sol ari s/ SunGsS 5. 7_x86 patch 106951-12

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 5 new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE 6
A B R 324 4356879 PLTs could use faster code sequences in sone cases
259 4349563 auxiliary filter error handling regression introduced in 4165487 325 4367118 new fast baplt’'s fail when traversed twice in threaded application
260 4355795 1dd -r now gives "displacenment rel ocated" warnings 326 4366905 Need a way to determne path to a shared library
S R e e e 327 4351197 nfs perfornmance probl em by 103627-13
262 Al the above changes are incorporated in the follow ng pat ches: 328 4367405 LD LI BRARY_PATH 64 not bei ng used
263 Sol ari s/ SunCS 5. 7_sparc patch 106950- 13 329 4354500 SHF_ORDERED ordered scections does not properly sort sections
264 Sol ari s/ SunGS 5. 7_x86 patch 106951-13 330 4369068 1d(1)’s weak synbol processing is inefficient (slow and doesn’'t scale).
265 Sol ari s/ SunCS 5. 6_sparc patch 107733-09 K e e T
266 Sol ari s/ SunCS 5. 6_x86 patch 107734-09 332 Al the above changes are incorporated in the follow ng patches:
A A e e 333 Sol ari s/ SunCS 5. 8_sparc pat ch 109147-07
268 4210412 versioning a static executable causes Id to core dunp 334 Sol ari s/ SunCS 5. 8_x86 pat ch 109148- 07
269 4219652 Linker gives msleading error about not finding main (xarch=v9) 335 Sol ari s/ Sun0S 5. 7_sparc patch 106950- 14
270 4103449 | d command needs a command line flag to force 64-bits 336 Sol ari s/ SunCS 5. 7_x86 patch 106951- 14
271 4187211 problemwi th RDI SP32 linking in copy-rel ocated objects R A e e e L
272 4287274 dl addr, dlinfo do not provide the full path name of a shared object
273 4297563 dlclose still does not renpve all objects. 339 i
274 4250694 rtld_db needs a new auxvec entry 340 Solaris 8 701 (5th Qupdate - s28u5)
275 4235315 new features for rtld_db (DT_CHECKSUM dynanic linked .o files KN R e
276 4303609 64bit |ibelf.so.1 does not properly inplement elf_hash() 342 Bugi d Ri sk Synopsi s
277 4310901 su.static fails when OSNet build wth |azy-loading 343
278 4310324 el f_errno() causes Bus Error(coredunp) in 64-bit r'rultlthreaded progr ans 344 4368846 1d(1) fails to version sonme interfaces given in a napfile
279 4306415 | d core dunp 345 4077245 dunp core dunp on null pointer.
280 4316531 BCP: possible failure with dlclose/_preexec_exit_handl ers 346 4372554 el fdunp shoul d denangl e synbols (like nm dunp)
281 4313765 LD _BREADTH shoul d be shot 347 4371114 dl cl ose may unmap a promi scuous object while it’s still in use.
282 4318162 crle uses automatic strings in putenv. 348 4204447 el fdunp shoul d understand SHN AFTER/ SHN_BEG N macr o
283 4255943 Description of -t option inconplete. 349 4377941 initialization of interposers may not occur
284 4322528 sgs nessage test infrastucture needs inprovenent 350 4381116 |l dd/l1d.so.1 could aid in detecting unused dependenci es
285 4239213 Want an APl to obtain linker’s search path 351 4381783 dl open/dlclose of a IibCrun+libthread can dunp core
286 4324134 use of extern mapfile directives can contribute unused synbol s 352 4385402 |inker & run-tinme |inker nust support gABl ELF updates
287 4322581 ELF data structures could be |ayed out nore efficiently... 353 4394698 | d.so.1 does not process DF_SYMBOLIC - not gABI conformnng
288 4040628 Unnecessary section header synbols should be renoved from.dynsym 354 4394212 the link editor quietly ignores mssing support libraries
289 4300018 rtld: bindlock should be freed before calling call_fini() 355 4390308 | d.so.1 should provide nore flexibility LD PRELOAD ing 32-bit/64-bit
290 4336102 dl cl ose with non-del etabl e objects can m shandl e dependenci es 356 obj ects
291 4329785 m xi ng of SHT_SUNW COVDAT & SHF_ORDERED causes |d to seg fault 357 4401232 crle(1) could provide better flexibility for alternatives
292 4334617 COPY rel ocations shoul d be produces for references to .bss synbols 358 4401815 fix misc nits in debuggi ng output.
293 4248250 rel coation of |ocal ABS synbols incorrect 359 4402861 cl eanup /usr/deno/link_audit & /usr/tnp/l ibrtld_db deno source code.
294 4335801 For conplinmentary alignnments elimnate Id: warning: synbol ‘I1’ 360 4393044 el fdunp should all ow raw dunpi ng of sections
295 has differing a 361 4413168 SHF_ORDERED bit causes linker to generate a separate section
296 4336980 | d.so.1 relative path processing revisited K] e e
297 4243097 dlerror(3DL) is not affected by setlocal e(3C). 363 Al the above changes are incorporated in the follow ng patches:
298 4344528 dunp should renove -D and -1 usage nessage 364 Sol ari s/ SunCS 5. 8_sparc patch 109147-08
299 xxxxxxx enable LD ALTEXEC to access alternate |ink-editor 365 Sol ari s/ SunCS 5. 8_x86 patch 109148- 08
1 e e L e
301 Al the above changes are incorporated in the follow ng patches: 367 4452202 Typos in <sys/link.h>
302 Sol ari s/ SunGsS 5. 8_sparc patch 109147- 06 368 4452220 dunp doesn’t support RUNPATH
303 Sol ari s/ SunCS 5. 8_x86 patch 109148- 06 KL I e R e
{0 e e e 370 Al the above changes are incorporated in the follow ng patches:
371 Sol ari s/ SunCS 5. 8_sparc patch 109147-09
306 ---c---eeeie i e 372 Sol ari s/ SunGS 5. 8_x86 pat ch 109148- 09
307 Solaris 8 101 (3rd Qupdate - s28u3) K I e e
308 ---cmimie e
309 Bugid Ri sk Synopsi s 375 m o
310 376 Solaris 8 1001 (6th Q update - s28u6)
311 4346144 link-auditing: plt_tracing fails if LA SYMB_NOPLTENTER given after A e
312 bei ng bound 378 Bugid Ri sk Synopsi s
313 4346001 The | d should support nmapfile syntax to generate PT_SUNWSTACK segnent 379
314 4349137 rtld_db: A third fallback nethod for locating the |inkmap 380 4421842 fixups in SHT_GROUP processing required...
315 4343417 dl addr interface information inadequate 381 4450433 problemwith |iblddbg output on -Dsection,detail when
316 4343801 RFE: crle(1): provide option for updating configuration files 382 processi ng SHF_LI NK_ORDER
317 4346615 |1 d.so.1 attenpting to open a directory gives: No such device 1 R e e
318 4352233 crle should not honor unmask 384 Al the above changes are incorporated in the follow ng patches:
319 4352330 LD _PRELQOAD cannot use absolute path for privileged program 385 Sol ari s/ SunCS 5. 8_sparc patch 109147-10
320 4357805 RFE: man page for |d(1) does not docunent all -z or -B options in 386 Sol ari s/ SunCS 5. 8_x86 patch 109148-10
321 Sol aris 8 9/00 387 Sol ari s/ SunCS 5. 7_sparc patch 106950- 15
322 4358751 | d.so.1: LD XXX environ variables and LD FLAGS shoul d be synchroni zed. 388 Sol ari s/ SunCS 5. 7_x86 patch 106951- 15
323 4358862 link editors should reference "64" symiinks instead of sparcv9 (ia64). KL I R e

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 7 new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 8
390 4463473 pldd showi ng wrong out put 456 4289232 some of warni ng/ error/debuggi ng nessages fromlibld.so can be revised
1 N R e e 457 4462748 Linker Portion of TLS Support
392 Al the above changes are incorporated in the follow ng patches: 458 4496718 run-tine |inkers mutex_|l ocks not working with Id_libc interface
393 Sol ari s/ SunGS 5. 8_sparc patch 109147-11 459 4497270 The -zredl ocsym option should not elimnate partially initialized |ocal
394 Sol ari s/ SunCS 5. 8_x86 patch 109148-11 460 synbol s
K1 e e 461 4496963 dunpi ng an object with crle(l) that uses $ORIG N can loose its
462 dependenci es
397 mii e 463 4499413 Sun |inker orders of magnitude slower than gnu |inker
398 Solaris 8 202 (7th Qupdate - s28u7) 464 4461760 | azy |oading libXmand [ibXt can fail.
399 - 465 4469031 The partial initialized (local) synbols for intel platformis not
400 Bugi d Ri sk Synopsi s 466 wor ki ng.
401 467 4492883 Add |ink-editor option to multi-pass archives to resolve unsatisfied
402 4488954 | d.so.1 reuses sane buffer to send unmmappi ng range to 468 synbol s
403 _preexec_exit_handl ers() 469 4503731 linker-related conmands m sspell "argunent”
L e R R TR R 470 4503768 whocal I s(1) shoul d output nessages to stderr, not stdout
405 Al the above changes are incorporated in the follow ng patches: 471 4503748 whocal | s(1) usage nessage and manpage coul d be i nproved
406 Sol ari s/ SunGS 5. 8_sparc patch 109147-12 472 4503625 nm shoul d be taught about TLS synbols - that they aren’t allowed that is
407 Sol ari s/ SunCS 5. 8_x86 patch 109148-12 473 4300120 segnent address validation is too sinplistic to handl e segnent
L R e LR T T T 474 reservations
475 4404547 krtld/reloc.h could have better error nessage, has typos
410 --------- 476 4270931 R _SPARC _H X22 relocation is not handl ed properly
411 Solaris 9 477 4485320 | d needs to support nore the 32768 PLTs
412 --------- 478 4516434 sotruss can not watch libc_psr.so.1
413 Bugi d Ri sk Synopsi s 479 4213100 sotruss could use nore flexible pattern matching
414 480 4503457 |d seg fault with condat
415 4505289 incorrect handling of _START_ and _END_ 481 4510264 sections with SHF_TLS can conme in different orders...
416 4506164 nts does not recogni ze #linkbefore or #linkafter qualifiers 482 4518079 |ink-editor support library unable to nodify section header flags
417 4447560 strip is creating unexecutable files... 483 4515913 Id.so.1 can incorrectly decrenment external reference counts on dlclose()
418 4513842 library names not in |d.so string pool cause corefile bugs 484 4519569 |d -V does not return a interesting value...
LN e e 485 4524512 | d.so.1 should allow alternate term nation signals
420 Al the above changes are incorporated in the foll ow ng patches: 486 4524767 el fdunp di es on bogus sh_nane fields...
421 Sol ari s/ SunCS 5. 8_sparc patch 109147-13 487 4524735 | d getopt processing of -’ changed
422 Sol ari s/ SunGS 5. 8_x86 patch 109148-13 488 4521931 subroutine in a shared object as LOCL instead of G.OB
423 Sol ari s/ SunGS 5. 7_sparc patch 106950- 16 e I e e e
424 Sol ari s/ SunCS 5. 7_x86 patch 106951- 16 490 Al the above changes are incorporated in the foll ow ng patches:
L R e 491 Sol ari s/ SunCS 5. 8_sparc patch 109147-14
426 4291384 Id -Mwith a mapfile does not properly align Fortran REAL*8 data 492 Sol ari s/ SunCS 5. 8_x86 patch 109148-14
427 4413322 SunCS 5.9 librtld_db doesn't show dl opened ".0o" files anynore? 493 Sol ari s/ SunGCS 5. 7_sparc patch 106950-17
428 4429371 librtld_db busted on ia32 with SC6.x conpilers... 494 Sol ari s/ SunCS 5. 7_x86 patch 106951-17
429 4418274 el fdunp dunps core on invalid input e L R e e T T T R
430 4432224 libelf xlate routines are out of date 496 4532729 tentative definition of TLS variable causes linker to dunp core
431 4433643 Menory | eak using dlopen()/dlclose() in Solaris 8 497 4526745 fixup | d error nmessage about duplicate dependenci es/ needed names
432 4446564 |dd/|ddstub - core dunp conditions 498 4522999 Sol aris |inker one order of magnitude sl ower than GNU |inker
433 4446115 transl ating SUNW nove sections is broken 499 4518966 dl dunp undoes existing relocations with no thought of alignnent or size.
434 4450225 The rdb conmand can fall into an infinite | oop 500 4587441 Certain libraries have race conditions when setting error codes
435 4448531 Linker Causes Segnentation Fault 501 4523798 |inker option to align bss to | arge pagesize alignnents.
436 4453241 Regression in 4291384 can result in enpty synbol table. 502 4524008 |d can inproperly set st_size of synmbols named "_init" or "_fini"
437 4453398 invalid runpath token can cause Id to spin. 503 4619282 | d cannot link a programwith the option -sb
438 4460230 Id (for OS 5.8 and 5.9) |oses error nessage 504 4620846 Per| Configure probing broken by Id changes
439 4462245 | d.so.1 core dunps when executed directly... 505 4621122 multiple Id "-zinitarray=" on a commandline fails
440 4455802 need nore flexibility in establishing a support library for Id O R e R T
441 4467068 dyn_plt_entsize not properly initialized in ld.so.1 507 Sol ari s/ SunCS 5. 8_sparc patch 109147-15
442 4468779 el f_plt_trace_wite() broken on i386 (link-auditing) 508 Sol ari s/ SunGS 5. 8_x86 patch 109148- 15
443 4465871 -z1d32 and -zl d64 does not work the way it should 509 Sol ari s/ SunGS 5. 7_sparc patch 106950- 18
444 4461890 bad shared object created with -zredl ocsym 510 Sol ari s/ SunCS 5. 7_x86 patch 106951-18
445 4469400 I d.so.1: is_so_loaded isn't as efficient as we thought... 511 Sol ari s/ SunCS 5. 6_sparc patch 107733-10
446 4469566 | azy | oading fallback can reference un-rel ocated objects 512 Sol ari s/ SunCS 5. 6_x86 patch 107734-10
447 4470493 libelf incorectly translates NOTE sections accross architectures... L R L LR E R L P LR
448 4469684 rtld | eaks dl _handl es and permits on dl open/dlcl ose 514 Al the above changes pl us:
449 4475174 1d.so.1 prematurly reports the failure to |l oad a object... 515 4616944 ar seg faults when order of object file is reversed.
450 4475514 |1d.so.1 can core dunp in nenory allocation fails (no swap) 516 are incorporated in the follow ng patches:
451 4481851 Setting |d.so.1 environment variables globally would be useful 517 Sol ari s/ SunGS 5. 8_sparc patch 109147-16
452 4482035 setting LD PROFILE & LD AUDI T causes ping command to issue warni ngs 518 Sol ari s/ SunCS 5. 8_x86 patch 109148-16
453 on 5.8 N R LR
454 4377735 segnent reservations cause shrk() to fail 520 Al the above changes plus:
455 4491434 |1 d.so.1 can leak file-descriptors when | oadi ng sane naned objects 521 4872634 Large LD PRELOAD val ues can cause SEGV of process

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 9

522 are incorporated in the foll ow ng patches:

523
524
525

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585

Sol ari s/ SunCS 5. 6_sparc patch T107733-11
Sol ari s/ SunGsS 5. 6_x86 patch T107734-11

9 1202 (2nd Q update - s9u2)

Ri sk Synopsi s

4546416
4526752
4624658
4622472
4638070

4633860

4642829
4621479
4529912
4651709
4655066
4654406

4651493
4662575

4533195

4630224
4664855

4669582
4671493
4668517

4701749
4707808

4696204

4706503
4716929
4710814

add hel p nessages to |d.so ndbnodul e
we shoul d build and ship Id.so’s ndb nodul e
update 386 TLS rel ocation val ues
LA SYMB_DLSYM not set for |a_synbind() invocations
Idd/1d.so.1 could aid in detecting unreferenced dependenci es
PSARC/ 2002/ 096 Detecting unreferenced dependencies with |dd(1)
Optimzation for unused static global variables
PSARC/ 2002/ 113 1d -zignore - section elinination
Id.so.1 nprotect()’s text segment for weak relocations (it shouldn't)
"make’ in $SRC/ cnd/sgs/tools tries to install things in the proto area
purge ia64 source from sgs
dl open(RTLD_NCOLOAD) can di sabl e | azy | oadi ng
crle: -u with nonexistent config file doesn’t work
string tables created by the link-editor could be smaller...
PSARC/ 2002/ 160 | d -znoconpstrtab - disable string-table conpression
RTLD_NOW can result in binding to an object prior to its init being run.
I'i nker displacenment relocation checking introduces significant
I'i nker over head
Id interposes on malloc()/free() preventing support
nenory
crle get's confused about nenory | ayout of objects...
crle on application failed with 1d.so.1 encountering mrap()
ENOVEM err
| atest dynam c |inker causes libthread _init to get skipped
Id.so.1 inconsistantly assigns PATHNAME() on prinary objects
conpile with nap. bssalign doesn’'t copy _iob to bss
above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 9_sparc patch T112963-01
Sol ari s/ SunCS 5. 8_sparc patch T109147-17
Sol ari s/ SunGsS 5. 8_x86 patch T109148-17
On Solaris 8 + 109147-16 | d crashes when building a dynamic |library.
The 1dd command is broken in the latest 2.8 |inker patch.
above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 9_sparc patch T112963- 02
Sol ari s/ SunCS 5. 8_sparc patch T109147-18
Sol ari s/ SunGs 5. 8_x86 patch T109148-18
enabl e extended section indexes in relocatable objects
PSARC/ 2001/ 332 ELF gABI updates - round 11
PSARC/ 2002/ 369 libelf interfaces to support ELF Extended Sections
linkers need to cope with EF_SPARCV9_PSQ EF_SPARCV9_RMO
updating of local register synbols in dynam c syntab busted...
add "official" support for the "synbolic" keyword in |inker map-file
PSARC/ 2002/ 439 linker mapfile visibility declarations
above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 9_sparc patch T112963- 03
Sol ari s/ SunCS 5. 8_sparc patch T109147-19
Sol ari s/ SunCS 5. 8_x86 patch T109148- 19
5.7
5.7

library fromfreeing

returning

Sol ari s/ SunGs _sparc patch T106950- 19
Sol ari s/ SunCs _Xx86 patch T106951-19

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 10
588 -----cee e

589 Solaris 9 403 (3nd Qupdate - s9u3)

590 ---ce-meiemei it

591 Bugid Ri sk Synopsi s

592

593 4731174 strip(1l) does not fixup SHT_GROUP data

594 4733697 -zignore with gcc may exclude C++ exception sections

595 4733317 R _SPARC *_HI X22 cal cul ations are wong with 32bit LD building

596 ELF64 binaries

597 4735165 fatal |inker error when conpiling C++ progranms w th -xlinkopt

598 4736951 The nts broken when the target file is an archive file

L I e R T R
600 All the above changes are incorporated in the follow ng patches:

601 Sol ari s/ SunCS 5. 8_sparc patch T109147-20

602 Sol ari s/ SunCS 5. 8_x86 pat ch T109148- 20

603 Sol ari s/ SunGS 5. 7_sparc pat ch T106950- 20

604 Sol ari s/ SunCS 5. 7_x86 patch T106951- 20

(] e e TR
606 4739660 Threads deadl ock in schedl ock and dynamic |inker |ock.

607 4653148 |d.so.1/1ibc should unregister its dlclose() exit handler via a fini.
608 4743413 | d.so.1 doesn’t termnate argv with NULL pointer when invoked directly
609 4746231 |inker core-dunps when SECTION rel ocations are made agai nst di scarded
610 sections

611 4730433 |1 d.so.1 wastes tine repeatedly openi ng dependenci es

612 4744337 m ssing RD_CONSI STENT event with dl nopen(LD | D_NEWM ...)

613 4670835 rd_| oad_objiter can ignore callback’s return val ue

614 4745932 strip utility doesn’t strip out Dwarf2 debug section

615 4754751 "strip" comand doesn’'t renpve condat stab sections.

616 4755674 Patch 109147-18 results in coredunp.

[A e LR TR
618 Al the above changes are incorporated in the follow ng patches:

619 Sol ari s/ SunGS 5. 9_sparc patch T112963- 04

620 Sol ari s/ SunGS 5. 7_sparc patch T106950- 21

621 Sol ari s/ SunCS 5. 7_x86 patch T106951- 21

(A e e
623 4772927 strip core dunps on an archive library

624 4774727 direct-bindings can fail against copy-reloc synbols

[R e e
626 Al the above changes are incorporated in the follow ng patches:

627 Sol ari s/ SunGS 5. 9_sparc patch T112963- 05

628 Sol ari s/ SunCS 5. 9_x86 patch T113986-01

629 Sol ari s/ SunGS 5. 8_sparc patch T109147-21

630 Sol ari s/ SunGS 5. 8_x86 patch T109148-21

631 Sol ari s/ SunCS 5. 7_sparc pat ch T106950- 22

632 Sol ari s/ SunGsS 5. 7_x86 patch T106951- 22

(SR I e e R LR
635 oo

636 Solaris 9 803 (4th Qupdate - s9u4)

B37 - --meeee e

638 Bugid Ri sk Synopsi s

639

640 4730110 I d.so.1 list inplenentation could scale better

641 4728822 restrict the objects dlsym() searches.

642 PSARC/ 2002/ 478 New dl open(3dl) flag - RTLD_FI RST

643 4714146 crle: 64-bit secure pathnane is incorrect.

644 4504895 dl cl ose() does not renopve all objects

645 4698800 Wong conmments in /usr/lib/ld/sparcv9/ map.*

646 4745129 dldunp is inconsistent with .dynam c processing errors.

647 4753066 LD_SIGNAL isn't very useful in a threaded environnent

648 PSARC/ 2002/ 569 New dlinfo(3dl) flag - RTLD DI _SI GNAL

649 4765536 crle: synbolic links can confuse alternative object configuration info
650 4766815 |d -r of object the TLS data fails

651 4770484 el fdunp can not handle stripped archive file

652 4770494 The | d command gi ves inproper error nessage handling broken archive

653 4775738 overwiting output relocation table when "Id -zignore' is used

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 11

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

4778247
4779976
4787579
4783869
4778418
4792461

4461340
4790194
4804328
4806476

4731183
4816378
4817314
4811951
4802194
4715815
4793721

i
c
are incorporated in the

el fdunp -e of core files fails

el fdunp dies on bad relocation entries

invalid SHT_GROUP entries can cause |linker to seg fault

dliclose: filter closure exhibits hang/failure - introduced with 4504895
Id.so.1: there be nits out there

Thread- Local Storage - x86 instruction sequence updates

PSARC/ 2002/ 746 Thread-Local Storage - x86 instruction sequence updates
sgs: ugly build output while suppressing ia64 (64-bit) build on Intel
dlopen(..., RTLD GROUP) has an odd interaction with interposition

audi ting of threaded applications results in deadl ock

bui 1 ding rel ocatabl e objects with SHF_EXCLUDE | oses rel ocation
information

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGCS 5. 9_sparc patch T112963- 06

Sol ari s/ SunGCS 5. 9_x86 patch T113986- 02

Sol ari s/ SunGS 5. 8_sparc patch T109147- 22

Sol ari s/ SunGS 5. 8_x86 patch T109148- 22

conpiler creates .tlsbss section instead of .tbss as docunented

TLS: a tls test case dunps core with C and Cr+ conpil ers

TLS_GD rel ocations against |ocal synbols do not reference synbol...
non-default symbol visibility overriden by defi niti on in shared object
relocation error of nozilla built by K2 conpil

I'd should allow linking with no output file (or /dev/nuII)

Need a way to null all code in ISV objects enabling |Id performance

tuni ng
above changes pl us:
4796237 RFE:

I nk-edi tor becanme extrenmely slow with patch 109147-20 and
libraries

fol l owi ng patches:

Sol ari s/ SunGS 5. 9_sparc patch T112963- 07

Sol ari s/ SunGCS 5. 9_x86 patch T113986- 03

Sol ari s/ SunCS 5. 8_sparc patch T109147-23

Sol ari s/ SunCS 5. 8_x86 patch T109148-23

stati

9 1203 (5th Qupdate - s9ub)

Ri sk Synopsi s

4830584
4831650
4831544
4834784
4824026
4825296

4470917

4744411
4811969
4825065
4838226
4830889
4845764
4811093
4826315

mmap for the padding region doesn't get freed after dlclose
ld.so.1 can wal k off the end of it's call_init() array...

Idd using .so nodul es conpiled with FD7 conpiler caused a core dunp
Accessing nenbers in a TLS structure causes a core dunp in Oracle
segv when -z conbreloc is used with -xlinkopt

typo in el fdunp

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc patch T112963- 08

Sol ari s/ SunGS 5. 9_x86 patch T113986- 04

Sol ari s/ SunGS 5. 8_sparc patch T109147-24

Sol ari s/ SunCS 5. 8_x86 patch T109148- 24

Sol aris Process Model Unification (link-editor conponents only)
PSARC/ 2002/ 117 Sol ari s Process Mddel Unification

Bl oonmberg wants a faster |inker.

64-bit |inks can be nuch slower than 32-bit.

1d(1) should ignore consecutive enpty sections.

unr el ocat ed shared objects may be erroneously collected for
TLS: testcase coredunps with -xarch=v9 and -g

filter renoval can |eave dangling filtee pointer
apptrace -F libc date core dunps
Link editors need to be pre- and post-

init firing

Uni fied Process Mdel aware

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE 12
720 4868300 interposing on direct bindings can fail

721 4872634 Large LD PRELQAD val ues can cause SEGV of process

LY A e e e T
723 Al the above changes are incorporated in the follow ng patches:

724 Sol ari s/ SunGS 5. 9_sparc patch T112963- 09

725 Sol ari s/ SunCS 5. 9_x86 patch T113986- 05

726 Sol ari s/ SunGsS 5. 8_sparc patch T109147- 25

727 Sol ari s/ SunCS 5. 8_x86 patch T109148- 25

F2 2 I e R LR LR T
T30 - - mmmm e

731 Solaris 9 404 (6th Qupdate - s9u6)

782 - mrm e

733 Bugi d Ri sk Synopsi s

734

735 4870260 The el fdunp command shoul d produce nore warni ng nessage on invalid nove
736 entries.

737 4865418 enpty PT_TLS program headers cause problenms in TLS enabl ed applications
738 4825151 conpiler core dunped with a -nt -xF=%al| test

739 4845829 The runtine linker fails to dlopen() |ong path nane.

740 4900684 shared libraries with nore then 32768 plt's fail for sparc ELF64

741 4906062 Makefil es under usr/src/cnd/sgs needs to be updated

LY A e T T
743 Al the above changes are incorporated in the follow ng patches:

744 Sol ari s/ SunGCS 5.9 sparc patch T112963- 10

745 Sol ari s/ SunGCS 5. 9_x86 patch T113986- 06

746 Sol ari s/ SunCS 5.8 sparc patch T109147-26

747 Sol ari s/ SunCS 5. 8_x86 patch T109148- 26

748 Sol ari s/ SunGCS 5. 7_sparc patch T106950- 24

749 Sol ari s/ SunCS 5. 7_x86 patch T106951- 24

Al R e e
751 4900320 rtI d library mapping could be faster

752 4911775 | ement GOTDATA proposal in |d

753 PSARC/ 2003/ 477 SPARC GOTDATA instructi on sequences

754 4904565 Functionality to ignore relocations against external synbols

755 4764817 add section types SHT_DEBUG and SHT_DEBUGSTR

756 PSARC/ 2003/ 510 New ELF DEBUG and ANNOTATE secti ons

757 4850703 enabl e per-synbol direct bindings

758 4716275 Help required in the link analysis of runtime interfaces

759 PSARC/ 2003/ 519 Link-editors: Direct Binding Updates

760 4904573 el fdunp may hang when processing archive files

761 4918310 direct binding froman executable can't be interposed on

762 4918938 | d.so.1 has becone SPARC32PLUS - breaks 4.x binary conpatibility

763 4911796 S1S8 C++: |d dunp core when conpiled and |inked wth xlinkopt=1.

764 4889914 |d crashes with SEGY using -M nepfile under certain conditions

765 4911936 exception are not catch fromshared library with -zignore

L I e R T
767 Al the above changes are incorporated in the follow ng patches:

768 Sol ari s/ SunGS 5. 9_sparc patch T112963-11

769 Sol ari s/ SunGCS 5. 9_x86 patch T113986- 07

770 Sol ari s/ SunGS 5. 8_sparc patch T109147- 27

771 Sol ari s/ SunCS 5. 8_x86 patch T109148- 27

772 Sol ari s/ SunGS 5. 7_sparc pat ch T106950- 25

773 Sol ari s/ SunGS 5. 7_x86 patch T106951- 25
e LR LR R T
775 4946992 | d crashes due to huge nunber of sections (>65, 000)

776 4951840 nts -c goes into a | oop on executabl e program

777 4939869 Need additional relocation types for abs34 code nodel

778 PSARC/ 2003/ 684 abs34 ELF rel ocations

A R e
780 Al the above changes are incorporated in the follow ng patches:

781 Sol ari s/ SunGS 5. 9_sparc patch T112963-12

782 Sol ari s/ SunGCS 5. 9_x86 patch T113986- 08

783 Sol ari s/ SunCS 5. 8_sparc patch T109147-28

784 Sol ari s/ SunCS 5. 8_x86 patch T109148-28
72T

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

839
840
841
842
843
844
845
846
847
848
849
850
851

9 904 (7th Qupdate - s9u7)

Ri sk Synopsi s

13

4912214
4526878
4930997
4796286
4930985
4933300
4936305
4939626
4939565
4948119
4948427
4940894
4955373
4878827
4955802
4964415
4966465
4973865

4975598
4974828

Having nultiple of libc.so.1 in a link map causes malloc() to fail
Id.so.1 should pass MAP_ALIGN flag to give kernel nore flexibility
sgs bl d_vernote. ksh script needs to be hardend...

Id.so.1: scenario for trouble?

clean up cruft under usr/src/cnd/ sgs/tools

renove references to Utra-1 in librtld_db denp

string table conpression is much too slow. ..

SUNWONI d i nternal package nust be updated...

per-synbol filtering required

1d(1) -z loadfltr fails with per-synbol filterin

Id.so.1 gives fatal error when nul ti pl e RTLDI NFO obj ects are | oaded
I'd core dunps using "-xldscope=synbolic

per-synbol filtering refinenments

crle(1M - display post-UPM search paths, and conpensate for pre-UPM
/usr/ccs/bin/ld dunps core in process_reld(

el fdunp i ssues wong relocation error nmessage

LD NOAUXFLTR fails when object is both a standard and auxiliary filter
the link-editor does not scale properly when |linking objects wth
lots of syms

SHT_SUNW ANNOTATE section rel ocation not resolved

nss_files nss_conpat r_nt tests randomy segfaul ting

above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 9_sparc patch T112963-13
Sol ari s/ SunCS 5. 9_x86 patch T113986- 09

4860508
5002160
4967869
5006657
4915901
5021773

l'ink-editors shoul d create/pronote/verify hardware capabilities

crle: reservation for dunped objects gets confused by nmaped obj ect
linking stripped library causes segv in linker

link-editor doesn’t always handl e nodirect binding symnfo information
no way to see ELF information

Id.so.1 has trouble with objects having nore than 2 segnents.

above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 9_sparc patch T112963-14
Sol ari s/ SunGCS 5. 9_x86 patch T113986- 10
Sol ari s/ SunGS 5. 8_sparc patch T109147-29
Sol ari s/ SunCS 5. 8_x86 patch T109148-29

above changes pl us:
6850124 dl open reports "No such file or directory" in spite of ENOVEM
when mmap fails in anon_nmap()

are incorporated in the follow ng patches:

Sol ari s/ SunGCS 5. 9_sparc pat ch TXXXXXX- XX
Sol ari s/ SunCS 5. 9_x86 pat ch TXXXXXX- XX
10

Ri sk Synopsi s

5044797

4963676
5021541
5031495
5012172

4994738

Id.so.1: secure directory testing is being skipped during filtee
processi ng

Renove remaining static libraries

unnecessary PT_SUNWBSS segnent nay be created

el fdunp conpl ai ns about bad synbol entries in core files

Need error when creating shared object with .o conpiled
-xarch=v9 -xcode=abs44

rd_plt_resolution() resolves ebx-relative PLT entries incorrectly

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

5023493

Id -moutput with patc

h 109147-25 missing .o infor

mat i on

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_spar
Sol ari s/ SunGS 5. 9_x86
Sol ari s/ SunCS 5. 8_spar
Sol ari s/ SunGs 5. 8_x86

c patch T112963- 15
patch T113986- 11
c patch T109147- 30

patch T109148- 30

109147-29 & -30 break the build of on28-patch on Solaris 8 2/04

5071614
5029830
5034652
5036561
5042713
5047082
5047612
5047235
4798376
5041446
5032364
4707030
4968618
5062313
5056867
4918303
5058415
5067518

crle: provide for opti

onal alternative dependencie

Id.so.1 should save, and print, nore error nessage
Id.so.1 outputs non-fatal fatal nmessage about auxiliary filter libraries

4866170 broke Id.so’'s ::

set env

Id can core dunp on bad gcc objects
Id.so.1: secure pathnanme verification is flawed with filter use

el fdunp can core dunp
nits in denmo code

printing PT_I NTERP section

S.
S

gel f _update_*() functions inconsistently return NULL or O
M ID_TLSBSS and M ID UNKNO/\N have the same val ue

Enpty LD PRELOAD 64 do
synbol i ¢ |inkage cause

esn’t override LD PRELOAD
s core dunp

dl addr () can cause deadl ock in Ml apps.

$1 SALI ST/ $SHWCAP expans

ion should be nore flexible.

0@. so.1 shoul d not use conpiler-supplied crt*.o files
whocal I s cannot take nore than 10 argunents
The fix for 4918303 breaks the build if a new work space is used.

above changes are i

Sol ari s/ SunCS 5. 9_spar
Sol ari s/ SunGCS 5. 9_x86
Sol ari s/ SunCS 5. 8_spar
Sol ari s/ SunGs 5. 8_x86

c patch T112963- 16
patch T113986- 12
c patch T109147-31

patch T109148- 31

ncorporated in the foll ow ng patches:

file should report hardware/software capabilities (link-editor

5013759
5063580

5076838
5080344
5079061

5064973
5085792
5096272
5094135
5086352
5098205
5092414

5080256
5097347

conponents only)
libldstab: file /tnp/p
matching stri

osto..: .stab[.index|.sbfocu

s] found with no

el fdunp(1l) is built with a CTF section (the wong one)

Har dwar e capabilities
RTLD_DEFAULT can be ex

are not enforced for a.out
pensi ve

PSARC/ 2004/ 747 New dl syn(3c) Handl e - RTLD PROBE
al |l ow nornal relocs against TLS synbols for some sections

LD XXXX_64 shoul d over

ride LD XXXX

every executable or library has a . SUNWdof section

Bl oonberg wants a fast

er |dd.

l'ibld. so.3 should be built with a .SUN\Wctf ELF section, ready for CR

el fdunp gives wong se

ction nanme for the global of

fset table

Li nker patch 109147-29 mekes Broadvi son One-To-One server v4.1

installation fail

dunp(1) doesn’t list ELF hardware capabilities

recursive read lock in

gel f _getsyn()

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_spar
Sol ari s/ SunGCS 5. 9_x86
Sol ari s/ SunCS 5. 8_spar
Sol ari s/ SunCS 5. 8_x86

[patch T112963-17
patch T113986- 13
c patch T109147- 32

patch T109148- 32

ld.so.1 fail to run a Solaris9 programthat has libc Iinked with

5106206
5102601

6173852
6174599

6175609

-z lazyl oad

ON shoul d deliver a 64-

(1'i nk-edi tor conponent
enable link_auditing t
Iinker does not create
with SHF LI NK_ORDER
amd64 run-time |inker

bit operating systemfor Op
s only)

echnol ogy for and64
.eh_frame_hdr sections for

has a corrupted note section

teron systens

eh_frane sections

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 15

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

6175843
6182293
6183645
6178667
6181928
6182884
6173559
5105601
6189384
6177838
6190863
6191488
6192490

6192164

6195030
6195521
6198358
6204123
6207495

6217285

anmd64 rdb_deno files not installed
Id.so.1 can repeatedly relocate object .plts (RTLD _NOW.

Id core dunps when autormounter fails

Idd list unexpected (file not found) in x86 environnment.

Need new rel oc types R AMD64_GOTOFF64 and R_AMD64_GOTPC32

AVMD64: |d coredunps when building a shared library

The Id may set incorrect value for sh_addralign under sone conditions.
ld.so.1 gets a little too enthusiastic with interposition

Id.so.1 should accormpdate a fil es dev/inode change (libc | oopback mmt)
AVD64: |inker cannot resolve PLT for 32-bit a.out(s) on and64-S2 ker nel
sparc di sassenbly code shoul d be renoved from rdb_denmo
unwi nd eh_frame_hdr needs corrected encodi ng val ue
moe(1) returns 7lib/libc.so.1 for optimal expansion of
libraries

AVD64: i ntroduce dl and64getunwi nd interface

PSARC/ 2004/ 747 1i bc: : dl and64get unwi nd()

i bdl has bad version nanme

64-bit nmoe(1l) missed the train

AVD64: bad eh_frame_hdr data when C and C++ mixed in a.out
Id.so.1: synmbol |ookup fails even after |azy |oading fallback

UNI X98/ UNI X03 vsx nanespace violation DYNL. hdr/misc/dlfcn/T.dlfcn
14 Failed

ctfrmerge crashed during full onnv build

I'i bc HWCAP

10 106 (1st Q update - si10ul)

Ri sk Synopsi s

6209350
6212797

6257177
6219651

Do not include signature section fromdynanm c dependency library into
rel ocat abl e obj ect

The binary conpiled on SunCs4. x doesn’t
109147- 31

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGS 5. 9_sparc patch T112963-18

Sol ari s/ SunGCS 5. 9_x86 patch T113986- 14

Sol ari s/ SunCS 5. 8_sparc patch T109147-33

Sol ari s/ SunCS 5. 8_x86 patch T109148- 33

run on Sol aris8 with Patch

above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 10_sparc patch T117461-01

Sol ari s/ SunGCS 5. 10_x86 patch T118345-01

Sol ari s/ SunGS 5. 9_sparc patch T112963-19

Sol ari s/ SunCS 5. 9_x86 patch T113986- 15

Sol ari s/ SunCS 5. 8_sparc patch T109147-34

Sol ari s/ SunCS 5. 8_x86 patch T109148- 34
incremental builds of usr/src/cmd/sgs can fail.

AVD64: Linker does not issue error for out of range R_AMD64_PC32

above changes are incorporated in the follow ng patches:
Sol ari s/ SunOS 5. 10_sparc patch T117461- 02
Sol ari s/ SunCS 5. 10_x86 patch T118345-02
Sol ari s/ SunGS 5. 9_sparc patch T112963- 20
Sol ari s/ SunGCS 5. 9_x86 patch T113986- 16
Sol ari s/ SunCS 5. 8_sparc patch T109147-35
Sol ari s/ SunCS 5. 8_x86 pat ch T109148- 35

NOTE: The fix for 6219651 is only applicable for 5.10 x86 platform

5080443
6226206
6228472

lazy loading failure doesn’t clean up after itself (D)
Id.so.1 failure when processing single segnent hwcap filtee
Id.so.1: link-map control list stacking can | oose objects

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 16
984 6235000 random packages not getting installed in snv_09 and snv_10 -
985 rtld/ cormon/ mal | oc. ¢ Assertion
986 6219317 Large page support is needed for mapping executables, libraries and
987 files (link-editor conmponents only)
988 6244897 | d.so.1 can't run apps from commandl i ne
989 6251798 noe(1l) returns an internal assertion failure message in sone
990 ci rcunst ances
991 6251722 |d fails silently with exit 1 status when -z ignore passed
992 6254364 |d won't build I|ibgenunix.so with absolute rel ocations
993 6215444 |1 d.so.1 caches "not there" lazy libraries, foils svc.startd(1M’'s |ogic
994 6222525 dl sym(3C) trusts caller(), which may return wong results with tail call
995 optim zation
996 6241995 warnings in sgs should be fixed (link-editor conponents only)
997 6258834 direct binding availability should be verified at runtinme
998 6260361 |l ari shouldn’t count a.out non-zero undefined entries as interesting
999 6260780 | dd doesn’t recognize LD NOAUXFLTR
1000 6266261 Add | d(1) -Bnodirect support (D)
1001 6261990 invalid e_flags error could be a little nore friendly
1002 6261803 lari (1) should find nore events uninteresting (D)
1003 6267352 |ibld_malloc provides inadequate alignment
1004 6268693 SHN_SUNW. | GNORE synbol s should be allowed to be nulitiply defined
1005 6262789 |nfosys wants a faster |inker
O e R]
1007 All the above changes are incorporated in the follow ng patches:
1008 Sol ari s/ SunGCS 5. 10_sparc patch T117461- 03
1009 Sol ari s/ SunGCS 5. 10_x86 patch T118345-03
1010 Sol ari s/ SunCS 5. 9_sparc patch T112963-21
1011 Sol ari s/ SunGCS 5. 9_x86 patch T113986- 17
1012 Sol ari s/ SunGS 5. 8_sparc patch T109147- 36
1013 Sol ari s/ SunCS 5. 8_x86 patch T109148- 36
0 e e
1015 6283601 The usr/src/cnd/ sgs/ packages/ common/ copyri ght contains old information
1016 I egal Iy problematic
1017 6276905 dlinfo gives inconsistent results (relative vs absolute |inknane) (D)
1018 PSARC/ 2005/ 357 dlinfo(3c) RTLD DI _ARGSI NFO
1019 6284941 excessive link tines with nany groups/sections
1020 6280467 dl cl ose() unmaps shared library before library's _fini() has finished
1021 6291547 Id.so mishandl es LD AUDI T causing security problens.
I e R TP
1023 All the above changes are incorporated in the follow ng patches:
1024 Sol ari s/ SunCS 5. 10_sparc patch T117461-04
1025 Sol ari s/ SunGCS 5. 10_x86 patch T118345- 04
1026 Sol ari s/ SunGS 5. 9_sparc patch T112963- 22
1027 Sol ari s/ SunCS 5. 9_x86 patch T113986-18
1028 Sol ari s/ SunGS 5. 8_sparc patch T109147-37
1029 Sol ari s/ SunCS 5. 8_x86 patch T109148- 37
I e
1031 6295971 UNI X98/ UNI X03 *vsx* DYNL. hdr/misc/dlfcn/T.dlfcn 14 fails, auxv.h syntax
1032 error
1033 6299525 .init order failure when processing cycles
1034 6273855 gcc and sgs/crle don't get al ong
1035 6273864 gcc and sgs/libld don't get al ong
1036 6273875 gcc and sgs/rtld don’'t get al ong
1037 6272563 gcc and and64/krtl d/dorel oc.c don't get al ong
1038 6290157 gcc and sgs/librtld_db/rdb_deno don't get al ong
1039 6301218 Matl ab dunps core on startup when running on 112963-22 (D)
O O e e e T
1041 Al the above changes are incorporated in the follow ng patches:
1042 Sol ari s/ SunGS 5. 10_sparc patch T117461- 06
1043 Sol ari s/ SunCS 5. 10_x86 patch T118345-08
1044 Sol ari s/ SunGCS 5. 9_sparc patch T112963- 23
1045 Sol ari s/ SunCS 5. 9_x86 patch T113986-19
1046 Sol ari s/ SunGS 5. 8_sparc patch T109147- 38
1047 Sol ari s/ SunCS 5. 8_x86 patch T109148- 38
I e R e T T T
1049 6314115 Checkpoint refuses to start, crashes on start, after application of

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

I'i nker patch 112963- 22

above changes are incorporated in the follow ng patches:

Sol ari s/ SunGCS 5. 9_sparc patch T112963- 24
Sol ari s/ SunGCS 5. 9_x86 patch T113986- 20
Sol ari s/ SunCS 5. 8_sparc patch T109147-39
Sol ari s/ SunGs 5. 8_x86 patch T109148- 39

6318306
6318401
6324019
6324589
6236594

6314743
6311865

a dlsym) froma filter should be redirected to an associated filtee
m s-aligned TLS variabl e

Id.so.1: malloc alignment is insufficient for new conpilers

psh coredunps on x86 machi nes on snv_23

AMD64: Linker needs to handle the new .| bss section (D)

PSARC 2005/ 514 AMD64 - | arge section support

Li nker: incorrect resolution for R AVD64_GOTPC32

Li nker: x86 nedi um nodel ; invalid ELF program header
above changes are incorporated in the follow ng patches:
Sol ari s/ SunCS 5. 10_sparc patch T117461- 07

Sol ari s/ SunGCS 5. 10_x86 patch T118345-12

6309061
6310736
6329796
6332983

link_audit should use __asm _ with gcc

gcc and sgs/libld don't get along on SPARC

Menory |leak with iconv_open/iconv_close with patch 109147-33

s9 Ibi nker patches 112963-24/113986-20 causi ng cluster machi nes not
to boot

above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 10_sparc patch T117461- 08
Sol ari s/ SunCS 5. 10_x86 patch T121208- 02
Sol ari s/ SunCS 5. 9_sparc patch T112963- 25
Sol ari s/ SunCS 5. 9_x86 patch T113986- 21
Sol ari s/ SunGS 5. 8_sparc patch T109147- 40
Sol ari s/ SunCS 5. 8_x86 patch T109148- 40

The sparc S8/ S9/S10 |inker patches which include the fix for the
CR6222525 are hit by the CR6439613

above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 9_sparc patch T112963- 26
Sol ari s/ SunCS 5. 8_sparc patch T109147-41

Solaris 10 807 (4th Qupdate - s10u4)
Bugi d Ri sk Synopsi s
6487273 1 d.so.1 nay open arbitrary locale files when relative path is built
fromlocal e environnent vars
6487284 1d.so.1: buffer overflow in doprf() function
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 10_sparc patch T124922-01
Sol ari s/ SunGCS 5. 10_x86 patch T124923-01
Sol ari s/ SunCS 5. 9_sparc patch T112963- 27
Sol ari s/ SunCS 5. 9_x86 patch T113986- 22
Sol ari s/ SunGS 5. 8_sparc patch T109147-42
Sol ari s/ SunCS 5. 8_x86 patch T109148-41
6477132 1 d.so.1: nenory |eak when running set*id application
Al'l the above changes are incorporated in the follow ng patches:

Sol ari s/ SunOS 5. 10_sparc pat ch T124922-02
Sol ari s/ SunCS 5. 10_x86 pat ch T124923-02
Sol ari s/ SunGS 5. 9_sparc patch T112963- 30

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

1170
1171
1172

1174
1175
1176
1177

1179
1180

Sol ari s/ SunCS 5. 9_x86 patch T113986- 24
6340814 |1 d.so.1 core dunp with HWCAP rel ocat abl e obj ect + updated statistics
6307274 crle bug with LD LI BRARY_PATH
6317969 el fheader limted to 65535 segments (link-editor conponents only)
6350027 1d.so.1 aborts with assertion failed on and64
6362044 1d(1) inconsistencies with LD DEBUG=-Dunused and -zignore
6362047 1d.so.1 dunps core when conbi ni ng HACAP and LD PROFI LE
6304206 runtinme |inker may respect LANG and LC _MESSAGE nore than LC ALL
6363495 Catchup required with Intel relocations
6326497 |1 d.so not properly processing LD LI BRARY_PATH ending in :
6307146 nts dunps core when appending null string to conment section
6371877 LD PROFILE_64 with gprof does not produce correct results on and64
6372082 |d -r erroneously creates .got section on i386
6201866 and64: |inker synbol elimnation is broken
6372620 printstack() segfaults when called fromstatic function (D)
6380470 32-bit 1d(1) incorrectly builds 64-bit relocatable objects
6391407 Insufficient alignnent of 32-bit object in archive makes |d segfault
(libelf conmponent only) (D)
6316708 LD DEBUG shoul d provide a nmeans of identifying/isolating individual
link-map lists (P)
6280209 el fdunp cores on nenory nodel 0x3
6197234 el fdunp and dunp don’t handl e 64-bit synbols correctly
6398893 Ext ended section processing needs sonme work
6397256 | dd dunps core in elf_fix_nane
6327926 | d does not set etext symbol correctly for AVMD64 nmedi um nodel (D)
6390410 64-bit LD PROFILE can fail: relocation error when binding profile plt
6382945 AMDG64- GCC. dbx: internal error: dwarf reference attribute out of bounds
6262333 init section of .so dlopened fromaudit interface not being called
6409613 el f _outsync() should fsync()
6426048 C++ exceptions broken in Nevada for and64
6429418 1d.so.1: need work-around for Nvidia drivers use of static TLS
6429504 crle(1) shows wong defaults for non-existent 64-bit config file
6431835 data corruption on x64 in 64-bit npde while LD PROFILE is in effect
6423051 static TLS support within the link-editors needs a major face lift (D)
6388946 attenpting to dlopen a .o file mslabeled as .so fails
6446740 al |l ow mapfile synbol definitions to create backing storage (D)
4986360 | inker crash on exec of .so (as opposed to a.out) -- error preferred
i nst ead
6229145 | d: initarray/finiarray processing occurs after got size is determ ned
6324924 the linker should warn if there's a .init section but not _init
6424132 el fdunp inserts extra whitespace in bitmap val ue display
6449485 |1 d(1) creates nmisaligned TLS in binary conpiled with -xpg
6424550 Wite to unallocated (wua) errors when libraries are built with
-z lazyl oad
6464235 executing the 64-bit 1d(1) should be easy (D)
6465623 need a way of building unix without an interpreter
6467925 |1 d: section deletion (-z ignore) requires inprovenent
6357230 specfiles should be nuked (1ink-editor conponents only)
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunOS 5. 10_sparc patch T124922-03
Sol ari s/ SunGs 5. 10_x86 patch T124923- 03

These patches al so include the framework changes for the follow ng bug fixes.
However, the associated feature has not been enabled in Solaris 10 or earlier
rel eases:

6174390 crle configuration files are inconsistent across platforms (D, P)
6432984 |1 d(1) output file renoval - change default behavior (D)
PSARC/ 2006/ 353 1d(1) output file renoval - change default behavior

Solaris 10 508 (5th Qupdate - s10ub)

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 19

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

Bugi d Ri sk Synopsi s
6561987 data vac_conflict faults on lipthread libthread libs in s10.
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunOS 5. 10_sparc patch T127111-01
Sol ari s/ SunGs 5. 10_x86 patch T127112-01
6501793 GOTCP rel ocation transition (optimzation) fails with offsets > 2732
6532924 AMDG64: Solaris 5.11 55b: SEGV after whocatches
6551627 OGL: SI GSEGV when trying to use OpenGL pipeline with splash screen,
Sol ari s/ Nvidia only
Al'l the above changes are incorporated in the foll ow ng patches:
Sol ari s/ SunCS 5. 10_sparc patch T127111-04
Sol ari s/ SunGCsS 5. 10_x86 patch T127112- 04
6479848 Enhancenents to the linker support interface needed. (D)
PSARC/ 2006/ 595 |ink-editor support library interface - |d_open()
6521608 assertion failure in runtime |inker related to auditing
6494228 pclose() error when an audit library calls popen() and the main target
I's being run under |dd (D)
6568745 segfault when using LD DEBUG with bit_audit |ibrary when instrunmenting
nozilla (D)
PSARC/ 2007/ 413 Add - zgl obal audit option to |d
6602294 ps_pbrandnanme breaks apps |inked directly against librtld_db
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 10_sparc patch T127111- 07
Sol ari s/ SunGCS 5. 10_x86 patch T127112- 07
Sol aris 10 908 (6th Qupdate - s10u6)
Bugi d Ri sk Synopsi s
6672544 el f _rtbndr nmust support non-ABI aligned stacks on and64
6668050 First trip through PLT does not preserve args in xmmregisters
Al'l the above changes are incorporated in the follow ng patch:
Sol ari s/ SunGCS 5. 10_x86 patch T137138-01
Sol aris 10 409 (7th Qupdate - s10u7)
Bugi d Ri sk Synopsi s
6629404 Id with -z ignore doesn’'t scale
6606203 |ink editor ought to allow creation of >2gb sized objects (P)
Al'l the above changes are incorporated in the follow ng patches:
Sol ari s/ SunGS 5. 10_sparc patch T139574-01
Sol ari s/ SunCS 5. 10_x86 patch T139575-01
6746674 setuid applications do not find libraries any nore because trusted
directories behavior changed (D)
Al'l the above changes are incorporated in the foll ow ng patches:
Sol ari s/ SunCS 5. 10_sparc pat ch T139574- 02
Sol ari s/ SunGS 5. 10_x86 patch T139575- 02
6703683 Can’'t build Virtual Box on Build 88 or 89
6737579 process_req_lib() in libld consunes file descriptors
6685125 | d/ el fdunp do not handle ZERO term nator .eh_frane and64 unwi nd entry

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 20
I e
1249 Al the above changes are incorporated in the follow ng patches:

1250 Sol ari s/ SunCS 5. 10_sparc patch T139574-03

1251 Sol ari s/ SunCS 5. 10_x86 patch T139575- 03

IV e e e R R
1254 - -

1255 Sol aris 10 1009 (8th Qupdate - s10u8)

1256 ------mieme e

1257 Bugi d Ri sk Synopsi s

1258

1259 6782597 32-bit |d.so.1 needs to accept objects with |large inode nunber

1260 6805502 The addition of "inline" keywords to sgs code broke the |int

1261 verification in S10

1262 6807864 1d.so.1 is susceptible to a fatal dlsyn()/setlocale() race

(P K R e e e P
1264 Al the above changes are incorporated in the follow ng patches:

1265 Sol ari s/ SunGCS 5. 10_sparc patch T141692-01

1266 Sol ari s/ SunCS 5. 10_x86 patch T141693-01

1267 NOTE: The fix for 6805502 is only applicable to s10.

I e e R TR
1269 6826410 | d needs to sort sections using 32-bit sort keys

L R R R e e R]
1271 Al the above changes are incorporated in the follow ng patches:

1272 Sol ari s/ SunGCS 5. 10_sparc patch T141771-01

1273 Sol ari s/ SunCS 5. 10_x86 patch T141772-01

1274 NOTE: The fix for 6826410 is also available for s9 in the follow ng patches:
1275 Sol ari s/ SunGS 5. 9_sparc patch T112963- 33

1276 Sol ari s/ SunCS 5. 9_x86 patch T113986- 27

I A e
1278 6568447 bcp is broken by 6551627

1279 6599700 librtld_db needs better plugin support

1280 6713830 ndb dunped core reading a gcore

1281 6756048 rd_| oadobj _iter() should always invoke brand plugin callback

1282 6786744 32-bit dbx failed with unknown rtld_db.so error on snv_104

(2 R e e e T T
1284 All the above changes are incorporated in the follow ng patches:

1285 Sol ari s/ SunGS 5. 10_sparc patch T141444-06

1286 Sol ari s/ SunOS 5. 10_x86 patch T141445-06

L T A I R R]
1289 ----imie oo

1290 Sol aris 10 1005 (9th Q update - s10u9)

1291 ----- - mi e

1292 Bugi d Ri sk Synopsi s

1293

1294 6850124 dl open reports "No such file or directory" in spite of ENOVEM

1295 when mmap fails in anon_map()

1296 6826513 |dd gets confused by a crl e(l) LD PRELOAD setting

1297 6684577 |d shoul d propagate SHF_LINK_ORDER flag to ET_REL objects

1298 6524709 executables using /usr/lib/libc.so.1 as the ELF interpreter dunp core
1299 (link-editor conmponents only)

o D R R
1301 Al the above changes are incorporated in the follow ng patches:

1302 Sol ari s/ SunGCS 5. 10_sparc patch T143895-01

1303 Sol ari s/ SunOS 5. 10_x86 patch T143896- 01

] e e]
1806 -------mmmmm i

1307 Solaris 10 XXXX (10th Q update - s10ul0)

1308 ------cmm e

1309 Bugi d Ri sk Synopsi s

1310

1311 6478684 isainfo/cpuid reports pause instruction not supported on and64

1312 PSARC/ 2010/ 089 Renopval of AV_386_PAUSE and AV_386_MON

T 3T

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE

1314
1315
1316
1317

Al the

above changes are incorporated in the follow ng pat ches:
Sol ari s/ SunCS 5. 10_sparc pat ch TXXXXXX- XX
Sol ari s/ SunGs 5. 10_x86 pat ch TXXXXXX- XX

21

Sol ari s Nevada (OpenSol ari s 2008. 05, snv_86)

Bugi d Ri sk Synopsi s

6409350 BrandZ project integration into Solaris (link-editor conponents only)

6459189 UNI X03: *VSC* c99 conpiler overwites non-witable file

6423746 add an option to relax the resolution of COVDAT rel ocs (D)

4934427 runtine |inker should |load up static synbol names visible to
dl addr () (D
PSARC 2006/ 526 SHT_SUNW LDYNSYM - default |ocal synmbol addition

6448719 sys/elf.h could be updated with additional machine and ABI types

6336605 | i nk-editors need to support R *_SIZE rel ocations
PSARC/ 2006/ 558 R _*_SI ZE rel ocati on support

6475375 synbol search optimization to reduce rescans

6475497 el fdunp(1l) is msreporting sh_link

6482058 lari (1) could be faster, and handl e per-synbol filters better

6482974 defining virtual address of text segnent can result in an invalid data
segment

6476734 crle(1nm "-1" as described fails system crle cores trying to fix
/a/var/ld/ld config in failsafe

6487499 |ink_audit "make clobber" creates and popul ates proto area

6488141 |1d(1) should detect attenpt to reference 0-1ength .bss section

6496718 restricted visibility symbol references should trigger archive
extraction

6515970 HWCAP processing doesn’t clean up frmap structure - browser fails to
run java appl et

6494214 Refinenments to synbolic binding, synbol declarations and
interposition (D
PSARC/ 2006/ 714 1d(1) mapfile: synbol interpose definition

6475344 DTrace needs ELF function and data synbols sorted by address (D)
PSARC/ 2007/ 026 ELF synbol sort sections

6518480 Id -nel f_i 386 doesn’t conplain (D)

6519951 bfu is just another word for exit today (RPATH -> RUNPATH conversion
bites us) (D)

6521504 | d: hardware capabilities processing fromrel ocatabl es objects needs
har deni ng.

6518322 Some ELF utilities need updating for .SUNWIdynsym section (D)
PSARC/ 2007/ 074 -L option for nn(1) to display SHT_SUNW LDYNSYM synbol s

6523787 dl open() handle gets mistakenly orphaned - results in access to freed
nenory

6531189 SEGV in dl addr()

6527318 dl open(nane, RTLD NOLOAD) returns handl e for unloaded library

6518359 extern napfiles references to _init/_fini can create INNT/FIN
addresses of 0

6533587 1d.so.1: init/fini processing needs to conpensate for interposer
expectations

6516118 Reserved space needed in ELF dynam c section and string table (D)
PSARC/ 2007/ 127 Reserved space for editing ELF dynam c sections

6535688 el f dunp coul d be nore robust in the face of Purify (D)

6516665 The |ink-editors should be nore resilient against gcc’'s synbol
ver si oni ng

6541004 hwcap filter processing can |eak menory

5108874 el fdunp SEGVs on bad object file

6547441 Uninitialized variable causes I1d.so.1 to crash on object cleanup

6341667 el fdunp shoul d check alignnents of ELF header el enents

6387860 el fdunp cores, when processing linux built ELF file

6198202 nts -d dunps core

6246083 el fdunp shoul d all ow section index specification

(numeric -N equivalent) (D)
PSARC/ 2007/ 247 Add -1 option to el fdunp

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 22
1380 6556563 el fdunp section overlap checking is too slow for large files

1381 5006034 need ?E mapfile feature extension (D)

1382 6565476 rtld synbol version check prevents GNU I d binary fromrunning

1383 6567670 1d(1) synbol sizel/section size verification uncovers Haskell

1384 conpi | er inconsi stency

1385 6530249 el fdunp shoul d handl e ELF files with no section header table (D)
1386 PSARC/ 2007/ 395 Add -P option to el fdunp

1387 6573641 |d.so.1 does not maintain parent relationship to a dlopen() caller.
1388 6577462 Additional inprovenents needed to handling of gcc’s synbol versioning
1389 6583742 ELF string conversion library needs to |lose static witable buffers
1390 6589819 I d generated reference to _ tls_get_addr() fails when resolving to a
1391 shared object reference

1392 6595139 various applications should export yy* global variables for libl

1393 PSARC/ 2007/ 474 new | dd(1) -w option

1394 6597841 gel f _getdyn() reads one too many dynamic entries

1395 6603313 dlclose() can fail to unload objects after fix for 6573641

1396 6234471 need a way to edit ELF objects (D)

1397 PSARC/ 2007/ 509 el fedit

1398 5035454 m xing -Kpic and -KPIC nay cause SIGSEGV with -xarch=v9

1399 6473571 strip and nts get confused and corrupt files when passed

1400 non- ELF ar gunment s

1401 6253589 nts has probl enms handling nultiple SHT_NOTE sections

1402 6610591 do_rel oc() should not require unused argunents

1403 6602451 new synbol visibilities required: EXPORTED, SINGLETON and ELI M NATE (D)
1404 PSARC/ 2007/ 559 new synbol visibilities - EXPORTED, S| NGLETON, and
1405 ELI M NATE

1406 6570616 el fdunp shoul d display incorrectly aligned note section

1407 6614968 el fedit needs string table nodule (D

1408 6620533 HWCAP filtering can | eave uninitialized data behind - results in
1409 "rejected: Invalid argunent”

1410 6617855 nodirect tag can be ignored when other syminfo tags are available
1411 I'i nk-editor conponents only)

1412 6621066 Reduce need for new el fdunp options with every section type (D

1413 PSARC/ 2007/ 620 el fdunp -T, and sinplified matching

1414 6627765 soffice failure after integration of 6603313 - dangling GROUP pointer.
1415 6319025 SUNWht ool packagi ng i ssues in Nevada and S10ul.

1416 6626135 el fedit capabilities str->value mappi ng should cone from

1417 usr/ src/ comon/ el f cap

1418 6642769 1d(1) -z conbrel oc shoul d becone default behavior (D)

1419 PSARC/ 2008/ 006 make |1d(1) -z conbrel oc becone default behavior

1420 6634436 XFFLAG shoul d be updated. (link-editor conponents only)

1421 6492726 Merge SHF_MERGE| SHF_STRI NGS i nput sections (D)

1422 4947191 OSNet shoul d use direct bindings (link-editor conponents only)

1423 6654381 | azy | oading fall-back needs optini zing

1424 6658385 |1 d core dunmps when building Xorg on nv_82

1425 6516808 Id.so.1' s token expansion provides no escape for platforms that don't
1426 report HWCAP

1427 6668534 Direct bindings can conpronise function address conparisons from
1428 execut abl es

1429 6667661 Direct bindings can conprom se executables with insufficient copy
1430 rel ocation infornation

1431 6357282 1dd shoul d recogni ze PARENT and EXTERN synbol s (D)

1432 PSARC/ 2008/ 148 new | dd(1) -p option

1433 6672394 1dd(1) unused dependency processing is tricked by relocations errors
e e e e R T
1436 ------- - e oo

1437 Sol ari s Nevada (OpenSol ari s 2008.11, snv_101)

1438 - --cimo oo

1439 Bugi d Ri sk Synopsi s

1440

1441 6671255 |ink-editor should support cross |inking (D)

1442 PSARC/ 2008/ 179 cross |1 nk-editor

1443 6674666 el fedit dyn:posflagl needs option to locate el enent via NEEDED item
1444 6675591 elfwap - wap data in an ELF file (D, P)

1445 PSARC/ 2008/ 198 el fwap - wap data in an ELF file

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 23

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

1486
1487
1488
1489
1490

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

6678244
6679212
6681761
6509323

6686889
6695681
6516212
6678310

6699594
6699131
6702260
6703919
6701798
6706401

6705846

6686343
6712292
6716350
6720509
6617475

6724311
6724774
6728555
6734598
6735939
6354160

6744003
6749055

6752728
6756472

el fdunp dynami ¢ section sanity checking needs refinenment
sgs use of SCCS id for versioning is obstacle to nercurial
lies, darn lies, and |inker READVE files

Need to disable the Multiple Files |oading - sane nane, different
directories (or its stat() use)

Id.so.1 regression - bad pointer created with 6509323 integration

1 dd(1) crashes when run froma chrooted environnent

usr/src/cnd/ sgs/libelf warlock targets should be fixed or abandoned
using LD AUDIT, Id.so.1 calls shared library’'s .init before library is
fully relocated (link-editor conponents only)

The 1 d command has a probl em handling ' protected
el fdunp shoul d display core file notes (D)
single threading .init/.fini sections breaks staroffice

boot hangs intermttently on x86 with onnv daily. 0430 and on

Id can enter infinite | oop processing bad nmapfile

direct binding copy relocation fallback is insufficient for ild
gener ated objects

mul tithreaded C++ application seens to get
i nker code

I'dd(1) - unused search path diagnosis shoul d be enabl ed

I'd.so.1 should fall back to an interposer for failed direct bindings
usr/src/cmd/ sgs should be linted by nightly builds

usr/src/ cmd/ sgs/ sgsdemangl er shoul d be renpved

gas creates erroneous FILE synbols [was: 1d.so.1 is reported as

fal se positive by wsdiff

dl dunp() m shandl es R_AMD64_JUMWP_SLOT rel ocati ons

el fdunmp -n doesn’t print siginfo structure

Fix for and64 aw (6617475) breaks pure gcc builds

1d(1) archive processing failure due to mismatched file descriptors (D)
1d(1) discarded synmbol relocations errors (Studio and G\U).

Sol aris linker includes nore than one copy of code in binary when

I'i nki ng gnu obj ect code

1d(1) could provide better argunent pr ocessi ng diagnostics (D)

PSARC 2008/ 583 add gl d options to 1d(1)

I'd shoul d generate GNU styl e VERSYM i ndexes for VERNEED records (D)
PSARC/ 2008/ 603 ELF obj ects to adopt GNU-style Versym indexes
link-editor can enter UNDEF synbols in synbol sort sections

AQUT search path pruning (D

m gration

mapfil e keyword.

deadl ocked in the dynamic

Ri sk Synopsi s

6754965

6756953
6765299
6748160

6763342
6736890

6772661

6765931
6775062
6782977
6773695
6778453
6789925

6792906

introduce the SF1_SUNW ADDR32 bit
(l'ink-editor conponents only)
PSARC/ 2008/ 622 32-bit Address Restriction Software Capabilities Flag
custoner requests that DT_CONFI G strings be honored for secure apps (D)
Id --version-script option not conpatible with GN\U Id (D)

problemw th -zrescan (D)

PSARC/ 2008/ 651 New | d archive rescan options

sl oppy rel ocations need to get sloppier
PT_SUNWBSS shoul d be di sabl ed (D)

PSARC/ 2008/ 715 PT_SUNVBSS r enoval

I dd/ 1 ddstub/1d.so.1 dunp core in current
l'i bsof tcrypt o_hwcap. so. 1

nts generates unlink(NULL) systemcalls
remove /usr/lib/libldstab.so (D

Id segfaults after support lib version error sends bad args to vprintf()
Id -z nopartial can break non-pic objects

RTLD_GROUP prevents use of application defined nalloc

64-bit applications with SF1_SUNW ADDR32 require non-default starting
addr ess

Id -z nopartia

in software capabilities (D)

nightly while processing

fix breaks TLS

new usr/ src/ cnd/ sgs/ packages/ comrmon/ SUNWONI d- READVE

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

24

6686372 |1d.so.1 should use mmapobj (2)

6726108 dl open() perfornmance could be inproved.

6792836 | d is sl ow when processing GNU |inkonce sections

6797468 |1d.so.1: orphaned handles aren’t processed correctly

6798676 1d.so.1: enters infinite loop with realloc/defragnmentation |ogic

6237063 request extension to dl* famly to provide segnment bounds
information (D)
PSARC/ 2009/ 054 dlinfo(3c) - segment mapping retrieval

6800388 shstrtab can be sized incorrectly when -z ignore is used

6805009 | d.so.1: link nap control list tear down |eaves dangling pointer -
pfinstall does it again.

6807050 GNU |inkonce sections can create duplicate and i nconpatible
eh_frame FDE entries

Sol ari s Nevada

Bugi d Ri sk Synopsi s

6813909 general i ze eh_frame support to non-and64 platforns

6801536 | d: mapfile processing oddities unveiled through nmmapobj (2) observations

6802452 |ibelf shouldn't use MS_SYNC

6818012 nmtries to nodify readonly segnent and dunps core

6821646 xVM donD doesn’t boot on daily. 0324 and beyond

6822828 librtld_db can return RD_ERR before RD_NOVAPS, which conprom ses dbx
expect ati ons.

6821619 Sol aris |inkers need systematic approach to ELF OSABlI (D)
PSARC/ 2009/ 196 ELF objects to set OSABI / el fdunp -O option

6827468 6801536 breaks 'Id -s’ if there are weak/strong synbol pairs

6715578 AQUT (BCP) synbol | ookup can be conpronised with |azy | oading.

6752883 | d.so.1 error nessage should be buffered (not sent to stderr).

6577982 1d.so.1 calls getpid() before it should when any LD * are set

6831285 |inker LD DEBUG support needs inprovenents (D)

6806791 filter builds could be optinized (link-editor conponents only)

6823371 cal l oc() uses suboptinmal nenset () causing 15% regressi on i n SpecCPU2006
gcc code (link-editor conponents only)

6831308 Id.so.1: synbol rescanning does a little too much work

6837777 | d ordered section code uses too nmuch menory and works too hard

6841199 Undo 10 year old workaround and use 64-bit Id on 32-bit objects

6784790 | d shoul d exam ne archives to determi ne output object class/nachine (D)
PSARC/ 2009/ 305 | d -32 option

6849998 renpve undocunented mapfil e $SPECVERS and $NEED opti ons

6851224 el f _getshnun() and el f_getshstrndx() inconpatible with 2002 ELF gABI
agreenment (D)
PSARC/ 2009/ 363 repl ace el f_getphnum el f_getshnum and el f_getshstrndx

6853809 | d.so.1: rescan fallback optimzation is invalid

6854158 | d.so.1: interposition can be skipped because of incorrect
cal l er/destination validation

6862967 rd_| oadobj _iter() failing for core files

6856173 streans core dunps when conpiled in 64bit with a very large static
array size

6834197 | d pukes when given an enpty plate

6516644 per-synbol filtering shouldn’t be allowed in executabl es

6878605 | d should accept '% syntax when matching input SHT_PROGBI TS sections

6850768 | d option to autogenerate w appers/interposers sinmilar to GNU Id
--wrap (D)
PSARC/ 2009/ 493 |d -z wrap option

6888489 Nul | environment variables are not overriding crle(l) replaceable
envi ronment vari abl es.

6885456 Need to inplenent GNU-Id behavior in construction of .init/.fini
sections

6900241 1d should track SHT_GROUP sections by symbol name, not section name

6901773 Speci al handling of STT_SECTION group signature synbol for GNU objects

6901895 Failing asserts in | d update_osym() trying to build gcc 4.5 devel pnent
head

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 25

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625

1627
1628
1629
1630
1631

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643

6909523
6903688

6923449
6914728

6916788

6929607
6924224
6918143

6910387
6934123
6931044
6931056
6938628
6938111
6941727
6932220
6943772

6943432
6668759
6954032
6949596

6961755

6748925
6916796
6964517
6948720
6962343
6965723

6952219
6956152

6971440
6972234
6935867
6975290
6972860

core dunp when run "LD DEBUG=hel p Is" in non-English |ocale

mdb(1) can’'t resolve certain synbols in solarisl0-branded processes
fromthe gl obal zone

el fdunp msinterprets _init/_fini synbols in dynami c section test
Add dl _iterate_phdr() function to Id.so.1 (D)

PSARC/ 2010/ 015~ dI iterate_phdr

Id version 2 mapfile syntax (D)

PSARC/ 2009/ 688 Hunman readabl e and extensible |d mapfile syntax

Id generates incorrect VERDEF entries for ET_REL output objects
I'inker shoul d ignore SUNWdof when calculating the elf checksum
synbol capabilities (D)

PSARC/ 2010/ 022 Li nker-editors: Synbol Capabilities

.tdata and .tbss separation invalidates TLS program header infornation
el fdunp -d coredunps on PA-RISC el f

I'd should not allow SHT_PROGBI TS .eh_frane sections on and64 (D)

pvs -r output can include enpty versions in output

Id.so.1 should produce diagnostics for all dl*() entry points

nm ‘' No synbol table data’ nmessage goes to stdout

Id relocati on cache nenory use is excessive

Id -z allextract skips objects that |ack global synbols

Testing for a synbols existence with RTLD PROBE i s conprom sed by
RTLD_BI' ND_NOW

PSARC/ 2010/ XXX Def erred synbol references

dl sym(RTLD_PROBE) should only bind to synbol definitions

an external nethod for determ ning whether an ELF dependency is opti onal
Support library with I d_open and -z allextract in snv_139 do not mix
wrong section alignnent generated in joint conpilation with shared
l'ibrary

ld.so.1's -e argunments shoul d take precedence over environnment

vari abl es. (D)

nmoe returns wong hwcap library in sone circunstances

OSnet mapfiles should use version 2 link-editor syntax

OSnet mapfiles should use version 2 link-editor syntax (2nd pass)
SHT_I NI T_ARRAY etc. section names don’t follow ELF gABI (D)

sgsmsg shoul d use nkstenp() for tenporary file creation
I1bsoftcrypto synbol capabilities rely on conpiler generated
capabilities - gcc failure (link-editor conponents only)

I'd support for archives |larger than 2 GB (D

PSARC/ 2010/ 224 Support for archives larger than 2 GB

dlclose() froman auditor can be fatal. Preinit/activity events shoul d
be nore flexible. (D)

noe can core dunp while processing libc.

sgs denp’s could use sone cl eanup

.dynam c could be readonly in sharable objects

I'd mi shandl es GOT rel ocation against |ocal ABS synbol

I'd shoul d provide user guidance to inprove objects (D)

PSARC/ 2010/ 312 Li nk-edi tor gui dance

Ri sk Synopsi s

d may misalign sections only preceded by enpty sections
d crashes with '-z ignore’ due to a null data descriptor
ibld may accidentally return success while failing

% m¥ need to be preserved on way through PLT

I'd should tolerate SHT_PROGBI TS for .eh_frane sections on and64
Want -zassert-deflib for Id

Id.so.1 should check default paths for DT_DEPAUDI T

linker is insufficiently careful with strtok

I'i nker shoul d ignore unknown hardware capabilities
l'ink-editor builds bogus .eh_frame_hdr on ia32

G\U condat redirection does exact! y the wong thing

new usr/ src/ cnd/ sgs/ packages/ common/ SUNWONI d- READVE 26
1644 3439 di scarded sections shouldn’t end up on output lists

1645 3436 rel ocatabl e obj ects al so need sl oppy rel ocation

1646 3451 archive libraries with no synbols shouldn’t require a string table

1647 3616 SHF_GROUP sections shoul d not be discarded via other COVDAT nechani sns
1648 3709 need sl oppy relocation for GNU . debug_macro

1649 3722 link-editor is over restrictive of R AMD64_32 addends

1650 3926 mul tiple extern map file definitions corrupt synbol table entry

1651 3999 libld extended section handling is broken

1652 4003 dl dunp() can’t deal wth extended sections

1653 4227 Id --library-path is translated to -l-path, not -L

1654 4270 1d(1) argurrent error reporting is still pretty bad

1655 4383 libelf can’t wite extended sections when ELF_F_LAYOUT

1656 4959 conpl etel y discarded merged string sections will corrupt output objects
1657 4996 rtld _init race leads to incorrect synbol val ues

1658 5688 ELF tools need to be nore careful with dwarf data

1659 6098 1d(1) should not require synbols which identify group sections be gl obal
1660 6252 I'd should merge function/data-sections in the sane manner as G\U | d
1661 7323 1d(1) -zignore can erroneously discard init and fini arrays as unreferen
1662 7594 I'd -zaslr should accept Sol aris-conpatible val ues

1663 8616 I'd has trouble parsing -z options specified with -W

1664 10267 Id and GCC di sagree about i386 | ocal dynamic TLS

1665 10366 1d(1) should support GNU-style |inker sets

1666 #endif /* ! codereview */

new usr/ src/ pkg/ mani f ests/ systemtest-el ftest.nf

R R R R

2618 Mon Feb 11 00: 23:21 2019
new usr/ src/ pkg/ mani f ests/systemtest-el ftest.nf
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2018, Richard Lowe.

14 #

16 set name=pkg.fnri val ue=pkg:/systentest/elftest @(PKGVERS)
17 set nane=pkg.description value="ELF Unit Tests"

18 set nane=pkg.summary val ue="ELF Test Suite"

19 set nane=info.classification \

20 val ue=or g. opensol ari s. cat egory. 2008: Devel opnent / Syst em
21 set nane=variant.arch val ue=$(ARCH)

22 dir path=opt/elf-tests

23 dir path=opt/elf-tests/bin

24 dir path=opt/elf-tests/runfiles

25 dir path=opt/elf-tests/tests

26 dir path=opt/elf-tests/tests/assert-deflib

27 dir path=opt/elf-tests/tests/l|inker-sets

28 dir path=opt/elf-tests/tests/tls

29 dir path=opt/elf-tests/tests/tls/x64

30 dir path=opt/elf-tests/tests/tls/x64/ie

31 dir path=opt/elf-tests/tests/tls/x86

32 dir path=opt/elf-tests/tests/tls/x86/Id

33 file path=opt/el f-tests/bin/elftest nde=0555

34 file path=opt/elf-tests/runfil es/default.run node=0444

35 file path=opt/elf-tests/tests/assert-deflib/link.c nbde=0444

36 file path=opt/elf-tests/tests/assert-deflib/test-deflib node=0555

37 file path=opt/el f-tests/tests/l|inker-sets/in-use-check node=0555

38 file path=opt/el f-tests/tests/l|inker-sets/sinple nbde=0555

39 file path=opt/elf-tests/tests/|inker-sets/sinple-src.c node=0444

40 file path=opt/elf-tests/tests/|inker-sets/sinple.out node=0444

41 file path=opt/elf-tests/tests/tls/x64/iel Makefile.test node=0444

42 file path=opt/elf-tests/tests/tls/x64/ielstylel-func-with-rl1l2.s npbde=0444
43 file path=opt/elf-tests/tests/tls/x64/ielstylel-func-with-r13.s npbde=0444
44 file path=opt/elf-tests/tests/tls/x64/ielstylel-func.s node=0444

45 file path=opt/elf-tests/tests/tls/x64/ielstylel-min.s node=0444

46 file path=opt/elf-tests/tests/tls/x64/ielstyle2-wth-badness.s npde=0444
47 file path=opt/elf-tests/tests/tls/x64/ielstyle2-with-rl12.s node=0444
48 file path=opt/elf-tests/tests/tls/x64/ielstyle2-with-r13.s npde=0444
49 file path=opt/elf-tests/tests/tls/x64/ielstyle2. s node=0444

50 file path=opt/elf-tests/tests/tls/x64/ielx64-ie-test node=0555

51 file path=opt/elf-tests/tests/tls/x86/|d/ Makefile.test nmbde=0444

52 file path=opt/elf-tests/tests/tls/x86/1d/half-1dms npde=0444

53 file path=opt/elf-tests/tests/tls/x86/1d/x86-1d-test nmpbde=0555

54 license lic_CDDL |icense=lic_CDDL

55 depend fnri=devel oper/linker type=require

56 depend fnri=devel oper/object-file type=require
57 depend fnri=systemtest/testrunner type=require
58 #endif /* | codereview */

new usr/src/test/ Makefile

R R R R

687 Mon Feb 11 00: 23:21 2019
new usr/src/test/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You nay only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL should have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2014 Garrett D Anore <garrett @anore. org>

15 #

17 . PARALLEL: $(SUBDI RS)
19 SUBDI RS =\

20 crypto-tests \

21 elf-tests \

22 libc-tests \

23 os-tests \

24 smbelient-tests \

25 test-runner \

26 util-tests \

27 zfs-tests

19 SUBDIRS = |libc-tests crypto-tests os-tests test-runner util-tests zfs-tests \
20 snbclient-tests

29 include Makefile.com

new usr/src/test/elf-tests/ Makefile

R R R R

559 Mon Feb 11 00: 23:21 2019
new usr/src/test/el f-tests/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

14 #

16 . PARALLEL: $(SUBDI RS)
18 SUBDIRS = cnd doc runfiles tests

20 include $(SRC)/test/Mkefile.com
21 #endif /* | codereview */

new usr/src/test/elf-tests/cnd/ Makefile

R R R R

544 Mon Feb 11 00: 23:22 2019
new usr/src/test/el f-tests/cnd/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

14 #

16 . PARALLEL: $(SUBDI RS)
18 SUBDI RS = scripts

20 include $(SRC)/test/Mkefile.com
21 #endif /* | codereview */

new usr/src/test/elf-tests/cnd/ scripts/ Makefile

R R R R

852 Mon Feb 11 00: 23:22 2019
new usr/src/test/elf-tests/cnd/ scripts/ Makefile
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

15 #

17 include $(SRC)/ Makefil e. master
18 include $(SRC)/test/ Makefile.com

20 ROOTOPTPKG = $(ROOT)/opt/el f-tests
21 ROOTBIN = $(ROOTOPTPKG) / bi n

23 PROGS = el ftest

25 CVDS = $(PROGS: %=$(ROOTBI N) / %)
26 $(CVDS) := FI LEMODE = 0555

28 all lint clean clobber:
30 install: $(CMVDS)
32 $(CVDS): $(ROOTBI N)

34 $(ROOTBI N) :
$(INS. dir)

37 $(ROOTBIN)/ % % ksh
38 $(I NS. r enane)
39 #endif /* | codereview */

new usr/src/test/elf-tests/cnd/scripts/elftest.ksh

R R R R

990 Mon Feb 11 00: 23:22 2019
new usr/src/test/elf-tests/cnd/scripts/elftest.ksh
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!/usr/bin/ksh

3 #

4 # This file and its contents are supplied under the terms of the

5 # Common Devel oprment and Distribution License ("CDDL"), version 1.0.

6 # You may only use this file in accordance with the ternms of version

7 # 1.0 of the CDDL.

8 #

9 # A full copy of the text of the CDDL shoul d have acconpanied this
10 # source. A copy of the CDDL is also available via the Internet at
11 # http://ww.illunos.org/license/ CDDL.

12 #
14 #
15 # Copyright 2015 Nexenta Systens, Inc. All rights reserved.
16 #

18 export ELF _TESTS="/opt/elf-tests"
19 runner="/opt/test-runner/bin/run"

21 function fail

22

23 echo $1

24 exit ${2:-1}

25 }

27 function find_runfile

28 {

29 typeset distro=default

31 [[-n $distro]] &% echo $ELF_TESTS/runfiles/$distro.run
32}

34 while getopts c: c; do

35 case $c in

36 'c')

37 runfil e=$OPTARG

38 [[-f $runfile]] || fail "Cannot read file: $runfile"
39 55

40 esac

41 do

42 shi ft $((OPTIND - 1))

44 [[-z S$runfi
45 [[-z $runfi

mm

1] && runfile=$(find_runfile)
1] && fail "Couldn't determne distro"
47 $runner -c $runfile

49 exit $?
50 #endif /* 1 codereview */

new usr/src/test/elf-tests/doc/ READVE 1 new usr/src/test/elf-tests/doc/ READVE

R R R R 60 #endif /* ! codereview */

2003 Mon Feb 11 00: 23:22 2019
new usr/src/test/el f-tests/doc/ READVE
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2015 Nexenta Systens, Inc. Al rights reserved.

15 #

17 ELF Software Generation Uilities Unit Test Suite READVE

19 1. Building and installing the ELF/ SGS Unit Test Suite
20 2. Running the ELF/ SGS Unit Test Suite
21 3. Test results

25 1. Building and installing the ELF/SGS Unit Test Suite

27 The ELF/ SGS Unit Test Suite runs under the testrunner framework (which can be
28 installed as pkg:/systemtest/testrunner). To build both the ELF/SGS Unit Test S
29 and the testrunner without running a full nightly:

31 bui | d_machi ne$ bl denv [-d] <your_env_file>
32 bui | d_machi ne$ cd $SRC/ t est

33 bui | d_machi ne$ dneke install

34 bui | d_machi ne$ cd $SRC/ pkg

35 bui | d_machi ne$ dmeke install

37 Then set the publisher on the test machine to point to your repository and
38 install the ELF/SGS Unit Test Suite.

40 test_machi ne# pkg install pkg:/systenmtest/elftest

42 Note, the franmework will be installed automatically, as the ELF/ SGS Unit Test Su
43 depends on it.

45 2. Running the ELF/ SGS Unit Test Suite

47 The pre-requisites for running the ELF/SGS Unit Test Suite are:
48 None

50 Once the pre-requisites are satisfied, sinply run the elftest script:

52 test _machine$ /opt/elf-tests/bin/elftest

54 3. Test results

56 Wiile the ELF/ SGS Unit Test Suite is running, one informational line is printed
57 the end of each test, and a results summary is printed at the end of the run.

58 The results sumary includes the |ocation of the conplete |logs, which is of the
59 form/var/tnp/test_results/<l SO 8601 date>.

new usr/src/test/elf-tests/runfiles/Makefile

R R R R

908 Mon Feb 11 00: 23: 23 2019
new usr/src/test/elf-tests/runfiles/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this

8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012 by Del phix. Al rights reserved.

14 # Copyright 2014, Omi Tl Conputer Consulting, Inc. Al rights reserved.
15 # Copyright 2014 Garrett D Anore <garrett @anore. or g>

16 #

18 include $(SRC)/ Makefil e. master
20 SRCS = default.run

22 ROOTOPTPKG = $(ROOT)/opt/elf-tests
23 RUNFI LES = $(ROOTOPTPKG) / runfil es

25 CMDS = $(SRCS: %=$(RUNFI LES)/ %
26 $(CMVMDS) : = FI LEMODE = 0444

28 all: $(SRCS)

30 install: $(CVDS)

32 clean lint clobber:

34 $(CMDS): $(RUNFI LES) $(SRCS)
36 $(RUNFI LES) :

37 $(INS. dir)
39 $(RUNFILES)/ % %
40 $(INS.file)

41 #endif /* 1 codereview */

new usr/src/test/elf-tests/runfiles/default.run 1

R R R R

815 Mon Feb 11 00: 23: 23 2019
new usr/src/test/elf-tests/runfiles/default.run
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

2 #

3 # This file and its contents are supplied under the terms of the

4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the ternms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this
9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 # Copyright 2018, Richard Lowe.

15 [DEFAULT]

16 pre =

17 verbose = Fal se

18 qui et = Fal se

19 tinmeout = 60

20 post =

21 outputdir = /var/tnp/test_results

23 [/opt/elf-tests/tests/|inker-sets]
24 tests = ['sinple’, 'in-use-check’]

26 [/opt/elf-tests/tests/assert-deflib]
27 tests = ["test-deflib’]

30 [/opt/elf-tests/tests/tls/x64/ie]
31 arch = i86pc
32 tests = ['x64-ie-test’]

34 [/opt/elf-tests/tests/tls/x86/1d]
35 arch = i86pc

36 tests = ['x86-1d-test’]

37 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/ Makefile

R R R R

582 Mon Feb 11 00: 23: 23 2019
new usr/src/test/elf-tests/tests/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDI RS = \

18 assert-deflib \

19 l'i nker-sets \

20 tls

22 include $(SRC)/test/Mkefile.com
23 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/assert-deflib/ Makefile

R R R R

940 Mon Feb 11 00: 23: 23 2019
new usr/src/test/elf-tests/tests/assert-deflib/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

This file and its contents are supplied under the ternms of the
Common Devel opnent and Di stribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CDDL.

QCQOO~NOUIAWNEF

e
H O OHHHHHHHHHH

=
N

Copyright 2018, Richard Lowe.

i ncl ude $(SRC)/cnd/ Makefile.cnd
i nclude $(SRC)/test/Makefile.com

e
(6

=
~

PROG = test-deflib

[
©

DATAFI LES = link.c

N
[y

ROOTOPTPKG = $(ROOT)/opt/el f-tests
TESTDI R = $(ROOTOPTPKG / t ests/ assert-deflib

VDS = $(PROG %$(TESTDI R)/%
$(CMDS) : = FI LEMODE = 055

N
N

NN
g s

28 DATA = $(DATAFI LES: %$(TESTDI R /%
29 $(DATA) := FI LEMODE = 0444

31 all: $(PROG
33 install: all $(CVDS) $(DATA)

35 lint:

37 cl obber: clean

38 -$(RM $(PROO

40 cl ean:

41 -$(RV) $(CLEANFI LES)

43 $(CMVDS): $(TESTDIR) $(PROG)
45 $(TESTDI R)

46 $(INS. dir)
48 $(TESTDIR) /% %
49 $(INS.file)

50 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh

R R R R

3870 Mon Feb 11 00:23:24 2019
new usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/bin/ bash

2

3 # This file and its contents are supplied under the terms of the

4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.

5 # You may only use this file in accordance with the terns of version

6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this

9 # source. A copy of the CDDL is also available via the Internet at

10 # http://ww.illunps.org/license/ CDDL.

11 #

13 #

14 # Copyright (c) 2012, Joyent, Inc.

15 #

17 #

18 # This test validates that the -zassert-deflib option of 1d(1) works correctly.
19 # It requires that some cc is in your path and that you have passed in the path
20 # to the proto area with the new version of libld.so.4. One thing that we have
21 # to do is be careful with using LD LI BRARY_PATH. Setting LD LI BRARY_PATH does
22 # not change the default search path so we want to make sure that we use a

23 # different 1SA (e.g. 32-bit vs 64-bit) fromthe binary we’'re generating.

24 #

25 unalias -a

27 if [[-z $ELF_TESTS]]; then

28 print -u2 "Don’t know where the test data is rooted";

29 exit 1;

30 fi

32 #endif /* | codereview */

33 sh_pat h=

34 sh_lib="lib"

35 sh_l i b64="$sh_li b/ 64"

36 sh_sonanme="li bl d. so. 4"

37 sh_cc="gcc"

27 sh_cc="cc"

38 sh_cfl ags— - nB2"

39 sh_file="${ELF TESTS}/tests/ assert-deflib/link.c"
29 sh_file="link.c"

40 sh_arg0=$(basenane $0)

42 function fatal

43

44 | ocal nsg="%*"

45 [[-z "$m8g"]] &&% nsg="failed"
46 echo "$sh_arg0: $nsg" >&2

47 exit 1

48

__unchanged_portion_omtted_

82 sh_path=${1:-/}

72 sh_pat h=$1

73 [[-z "$1"]] && fatal "<proto root>"
83 validate

85 run "-W, -zassert-deflib" 0\
86 "Testing basic conpilation succeeds with warnings..." \

new usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh

87 "failed to conpile wth warnings"

89 run "-W,-zassert-deflib -W,-zfatal -warnings" 1\

90 "Testing basic conpilation fails if warning are fatal..." \
91 "1inking succeeeded, expected failure"

93 run "-W, -zassert-deflib=libc.so -W, -zfatal -warnings" 0\
94 "Testing basic exception with fatal warnings..." \

95 "linking failed despite exception”

97 run "-W, -zassert-deflib=libc.so -W, -zfatal -warnings" 0\
98 "Testing basic exception with fatal warnings..." \

99 "linking failed despite exception”

102 run "-W, -zassert-deflib=lib.so -W, -zfatal-warni ngs" 1\
103 "Testing invalid library nane.

104 "ld should not allowinvalid Ilbrary name"

106 run "-W, -zassert-deflib=libf -W,-zfatal-warnings" 1\

107 "Testing invalid library nanme..."

108 "ld should not allow invalid library name"

110 run "-W, -zassert-deflib=libf.s -W,-zfatal -warnings" 1\
111 "Testing invalid library name..." \

112 "ld should not allow invalid |library name"

114 run "-W, -zassert-deflib=libc.so -W,-zfatal-warnings -lelf" 1\
115 "Errors even if one library is under exception path..." \
116 "one exception shouldn't stop another"

118 args="-W, -zassert-deflib=libc.so -W, -zassert-deflib=libelf.so"
119 args="$args -W,-zfatal -warnings -lelf"

121 run "$args" 0\
122 "Mul tiple exceptions work..." \
123 "mul tiple exceptions don't work"

125 args="-W, -zassert-deflib=libc.so -W, -zassert-deflib=libelfe.so"
126 args="$args -W,-zfatal-warnings -lelf"

128 run "$args" 1\
129 "Exceptions only catch the specific library" \
130 "exceptions caught the wong library"

132 args="-W, -zassert-deflib=libc.so -W, -zassert-deflib=libel.so
133 args="$args -W,-zfatal-warnings -lelf"

135 run "$args" 1\
136 "Exceptions only catch the specific library" \
137 "exceptions caught the wong library"

139 echo "Tests passed.”
140 exit

new usr/src/test/elf-tests/tests/linker-sets/ Makefile

R R R R

967 Mon Feb 11 00: 23: 24 2019
new usr/src/test/elf-tests/tests/linker-sets/Mukefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cnd/ Makefile.cnd

15 include $(SRC)/test/ Makefile.com

17 PROG = sinple in-use-check

19 DATAFILES = simple-src.c \

20 si npl e. out

22 ROOTOPTPKG = $(ROOT)/opt/el f-tests

23 TESTDIR = $(ROOTOPTPKG /tests/|inker-sets

25 CVDS = $(PROG %$(TESTDI R)/ %

26 $(CVMDS) := FILEMODE = 0555

29 DATA = $(DATAFI LES: °/r¥$(TESTDI R /%
30 $(DATA) := FI LEMODE = 0444

32 all: $(PROG
34 install: all $(CVDS) $(DATA)

36 lint:

38 cl obber: clean

39 -$(RVM $(PROG

41 cl ean:

42 -$(RM $(CLEANFI LES)

44 $(CVDS): $(TESTDIR) $(PROG)
46 $(TESTDIR):

47 $(INS. dir)
49 $(TESTDI R)/% %
50 $(INS. file)

51 #endif /* | codereview */

new usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh 1

R R R R

1217 Mon Feb 11 00: 23: 24 2019
new usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/usr/bin/ksh

2 #

3 # This file and its contents are supplied under the terms of the

4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the ternms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this

9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 #

14 # Copyright 2018, Richard Lowe.

15 #

17 # Test that a sinple use of linker-sets, tat is, automatically generated start
18 # and end synbols for sections can be generated and used.

20 tnpdir=/tnp/test.$$
21 nkdir $tnpdir

22 cd $tnpdir

24 cl eanup() {

25 cd /

26 rm-fr $tnpdir
27 }

29 trap 'cleanup’ EXIT

31 cat > broken.c <<EOF
32 void *__start_text;

34 int

35 nmin()

36 {

37 return (0);
38 }

39 ECF

41 # W\ expect any alternate linker to be in LD ALTEXEC for us al ready
42 gcc -0 broken broken.c -Vall -Wextra -W, -zfatal -warnings > in-use. $$. out 2>&1
43 if (($?2 == 0)); then

44 print -u2 "use of a reserved synbol didn't fail"

45 exit 1;

46 fi

48 grep -q "~ d: warning: reserved synbol '__start_text’ already defined in file" i
49 if (($2 !'=0)); then

50 print -u2 "use of a reserved synbol failed for the wong reason"

51 exit 1;

52 fi

53 #endif /* | codereview */

new usr/src/test/elf-tests/tests/linker-sets/sinple-src.c 1 new usr/src/test/elf-tests/tests/linker-sets/sinple-src.c

R R R R

3415 Mon Feb 11 00:23:25 2019 61 #define SET_| TEM set, i) \
new usr/src/test/elf-tests/tests/linker-sets/sinple-src.c 62 ((SET_BEG N(set))[i])
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite 64 /*
10368 want an 1d(1) regression test for i386 LD tls transition (10267) 65 * Provide a count of the itens in a set.
LR EEEEEEEEE SRS RS RS RS S SRR SRS R E R R R EREEEEEEEEEEESEESEE] 66 */
1 /* The neat of this file is a copy of the FreeBSD sys/link_set.h */ 67 #define SET_COUNT(set) \
2 /* 68 (SET_LIM T(set) - SET_BEG N(set))
3 * SPDX-License-ldentifier: BSD 2-C ause-FreeBSD
4 * 70 struct foo {
5 * Copyright (c) 1999 John D. Polstra 71 char buf[128];
6 * Copyright (c) 1999,2001 Peter Wenm <pet er @r eeBSD. or g> 72 };
7 * Al rights reserved.
8 * 74 SET_DECLARE(foo, struct foo);
9 * Redistribution and use in source and binary fornms, with or w thout
10 * nodification, are pernmitted provided that the follow ng conditions 76 struct foo a ={ "foo" };
11 * are net: 77 struct foo b ={ "bar" };
12 * 1. Redistributions of source code nust retain the above copyri ght 78 struct foo ¢ = { "baz" };
13 * notice, this list of conditions and the foll ow ng disclaimer.
14 * 2. Redistributions in binary formnust reproduce the above copyri ght 80 MAKE_SET(foo, a);
15 * notice, this list of conditions and the follow ng disclaimer in the 81 MAKE_SET(foo, b);
16 * docunent ation and/or other materials provided with the distribution. 82 MAKE_SET(foo, c);
17 *
18 * THI'S SOFTWARE | S PROVI DED BY THE AUTHOR AND CONTRIBUTORS ‘*AS IS’ AND 84 int
19 * ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG BUT NOT LIM TED TO, THE 85 mamin(int __attribute__((unused)) argc, char __attribute__((unused)) **argv)
20 * | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPOSE 86 {
21 * ARE DI SCLAI MED. | N NO EVENT SHALL THE AUTHOR OR CONTRI BUTCRS BE LI ABLE 87 struct foo **c;
22 * FOR ANY DI RECT, | NDI RECT, | NCIDENTAL, SPECI AL, EXEMPLARY, OR CONSEQUENTI AL 88 int i =0;
23 * DAVMAGES (I NCLUDING BUT NOT LIM TED TO, PROCUREMENT OF SUBSTI TUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI NESS | NTERRUPTI ON) 90 printf("Set count: %\ n", SET_COUNT(fo00));
25 * HOWNEVER CAUSED AND ON ANY THEORY OF LI ABILITY, WHETHER | N CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDI NG NEGLI GENCE OR OTHERW SE) ARI SI NG | N ANY WAY
27 * OUT OF THE USE OF THI S SOFTWARE, EVEN | F ADVI SED OF THE POSSIBI LI TY OF 93 printf("a: %\n", ((struct foo *)__set_foo_sym a)->buf);
28 * SUCH DANMAGE. 94 printf("b: %\n", ((struct foo *)__set_foo_symb)->buf);
29 * 95 printf("c: %\n", ((struct foo *)__set_foo_symc)->buf);
30 * $FreeBSD$
31 */ 97 printf("item(foo, 0): %\n", SET_|ITEMfoo, O0)->buf);
98 printf("item(foo, 1): %\n", SET_ITEMfoo, 1)->buf);
33 #include <stdio. h> 99 printf("item(foo, 2): %s\n", SET_ITEMfoo0, 2)->buf);
35 #define MAKE_SET(set, sym \ 101 SET_FOREACH(c, foo) {
36 _asm_(".globl __start_set_" #set); \ 102 printf("foo[%l]: %\n", i, (*c)->buf);
37 _asm_(".globl _ stop_set_" #set); \ 103 i ++;
38 static __attribute_ ((section(".set_" #set), used)) \ 104 }
39 voi d const *__set_##set##_sym ##sym = &(sym 105 }
106 #endif /* | codereview */
41 | *
42 * Initialize before referring to a given |inker set.
43 */
44 #define SET_DECLARE(set, ptype) \
45 extern __attribute__((weak)) ptype *__start_set_ ## set; \
46 extern __attribute__((weak)) ptype *__stop_set_ ## set

48 #define SET_BEG N(set) (& _start_set_ ## set)
49 #define SET_LIM T(set) (& _stop_set_ ## set)

51 /*

52 * Iterate over all the elenents of a set.

53 *

54 * Sets always contain addresses of things, and "pvar" points to words

55 * containing those addresses. Thus is nust be declared as "type **pvar",
56 * and the address of each set itemis obtained inside the |oop by "*pvar".
57 */

58 #define SET_FOREACH(pvar, set) \

59 for (pvar = SET_BEG N(set); pvar < SET_LIM T(set); pvar++)

new usr/src/test/elf-tests/tests/linker-sets/sinple.out

R R R R

124 Mon Feb 11 00: 23: 25 2019
new usr/src/test/elf-tests/tests/linker-sets/sinple.out
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 Set count: 3

2 a: foo

3 b: bar

4 c: baz

5 itemfoo, 0): foo
6 itemfoo, 1): bar
7 item(foo, 2): baz
8 foo[0]: foo

9 foo[1]: bar

10 foo[2]: baz

11 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/linker-sets/sinple.sh 1

R R R R

1397 Mon Feb 11 00: 23: 25 2019
new usr/src/test/elf-tests/tests/linker-sets/sinple.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/usr/bin/ksh

2 #

3 # This file and its contents are supplied under the terms of the

4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the ternms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this

9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 #

14 # Copyright 2018, Richard Lowe.

15 #

17 # Test that a sinple use of linker-sets, tat is, automatically generated start
18 # and end synbols for sections can be generated and used.

20 if [[-z $ELF_TESTS]]; then

21 print -u2 "Don’t know where the test data is rooted";
22 exit 1;
23 fi

25 tnpdir=/tnmp/test.$$
26 nkdir $tnpdir

27 cd $tnpdir

29 cl eanup() {

30 cd /

31 rm-fr $tnpdir
32 }

34 trap 'cleanup’ EXIT

36 # W expect any alternate linker to be in LD ALTEXEC for us al ready
37 gcc -0 sinple ${ELF_TESTS}/tests/linker-sets/sinple-src.c -Wall -Wextra
38 if (($?2!=0)); then

39 print -u2 "conpilation of ${ELF_TESTS}/tests/l|inker-sets/sinple-src.c failed
40 exit 1;
41 fi

43 ./sinple > sinple. $$. out 2>&1
45 if (($?2 '=0)); then

46 print -u2 "execution of ${ELF _TESTS}/tests/l|inker-sets/sinple-src.c failed";
47 exit 1;
48 fi

50 diff -u ${ELF_TESTS}/tests/linker-sets/sinple.out sinple.$$. out
M=

51 if (($? 0)); then

52 print -u2 "${ELF_TESTS}/tests/|inker-sets/sinple-src.c output msmatch"
53 exit 1;

54 fi

55 #endif /* | codereview */

new usr/src/test/elf-tests/tests/tls/Makefile

R R R R

550 Mon Feb 11 00: 23: 25 2019
new usr/src/test/elf-tests/tests/tls/Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDI RS = x64 x86

19 include $(SRC)/test/ Makefile.com
20 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x64/ Makefile

R R R R

545 Mon Feb 11 00: 23: 26 2019
new usr/src/test/elf-tests/tests/tls/x64/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDIRS = ie

19 include $(SRC)/test/ Makefile.com
20 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x64/iel Makefile

R R R R

1117 Mon Feb 11 00: 23: 26 2019
new usr/src/test/elf-tests/tests/tls/x64/ielMukefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

This file and its contents are supplied under the ternms of the
Common Devel opnent and Di stribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CDDL.

QCQOWONOUTAWNE
H O OHHHHHHHHHH

Copyright 2018, Richard Lowe.

14 include $(SRC)/cnd/ Makefile.cnd
15 include $(SRC)/test/ Makefile.com

17 PROG = x64-ie-test

19 DATAFI LES = \
20 Makefile. test \
21 stylel-func-with-r12.s \
22 stylel-func-with-r13.s \
23 styl el-func.s \
24 stylel-nain.s \
25 styl e2-wi t h- badness. s \
26 style2-with-ri2.s \
27 style2-with-r13.s \
28 style2.s

30 ROOTOPTPKG = $(ROOT)/opt/elf-tests
31 TESTDIR = $(ROOTOPTPKG) /tests/tl s/ x64/ie

33 CMDS = $(PROG %$(TESTDI R)/ %

34 $(CVDS) := FI LEMODE = 0555

37 DATA = $(DATAFI LES: %=$(TESTDI R/ %
38 $(DATA) := FI LEMODE = 0444

40 all: $(PROG
42 install: all $(CVDS) $(DATA)

44 lint:

46 cl obber: clean

47 -$(RVM $(PROG

49 cl ean:

50 -$(RM) $(CLEANFI LES)

52 $(CMVDS): $(TESTDIR) $(PROG)
54 $(TESTDIR):

55 $(INS. dir)
57 $(TESTDI R)/% %
58 $(INS. file)

59 #endif /* | codereview */

new usr/src/test/elf-tests/tests/tls/x64/iel Makefile.test 1

R R R R

2363 Mon Feb 11 00: 23: 26 2019

new usr/src/test/elf-tests/tests/tls/x64/ielMakefile.test

10366 1d(1) shoul d support GNU-style |inker sets

10367 1d(1) tests should be a real test suite

10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

CQOWO~NOUTAWNE
H O OHHHHFHHHHH

This file and its contents are supplied under the ternms of the
Common Devel opnent and Distribution License (" "), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this

source. A copy of the CDDL is also available via the Internet at
http://ww.illunps.org/license/ CDDL.

Copyright 2012, Richard Lowe.

gcc
ude $(SRC)/ Makefil e. master

W have to use GCC, and only GCC. The best way is to ask cw(1l) which GCC to u

CC_CWD = $(ONBLD TOO_S)/bl n/ $(MACH) / cw - _gcc -_conpil er

cC = $(CC_CMVD: sh)

CFLAGS = -0l -nb4

LINK.c = $(CC) $(CFLAGS) -0 $@3%"

LINK. ¢ = env LD _ALTEXEC=$(PROTO)/usr/bin/and64/1d $(CC) $(CFLAGS) -0 $@ $"

COWPI LE. ¢ = $(CC) $(CFLAGS) -c -0 $@$"
COWPI LE. s = $(CC) $(CFLAGS) -c -0 $@$"

. KEEP_STATE:
install default: all

% 0: $(ELF_TESTS)/tests/tls/x64/iel %c
.c.0:

$(COVPI LE. ¢)
% 0: $(ELF_TESTS)/tests/tls/x64/iel%s

S. 0!
$(COWPI LE. s)

A basic use of TLS that uses the movg mir --> novq i/r variant
PROGS += style2
STYLE2OBJS = style2.0
styl e2: $(STYLE20OBJS)
$(LINK c)

A copy of style2 that uses %13 in the TLS sequence, and thus excercises the
REX transitions of the novg memreg -> novq immreg variant.
PROGS += style2-with-r13
STYLE2R130BJS = style2-with-r13.0
style2-with-ri13: $(STYLE2R130BJS)
$(LINK.)

A copy of style2 that uses %12 in the TLS sequence,
it is _not_ special to this variant
PROGS += style2-with-r12
STYLE2R120BJS = style2-with-r12.0
style2-with-r12: $(STYLE2R120BJS)
$(LINK. c)

so we can verify that

A copy of style2 that has a R AMD64_GOTTPOFF rel ocation with a bad insn sequen

new usr/src/test/elf-tests/tests/tls/x64/ielMakefile.test 2
51 STYLE2BADNESSOBJS = styl e2-wi t h- badness. o
52 styl e2-with-badness: $(STYLE2BADNESSOBJS)
53 -$(LINK. ¢)
55 # A basic use of TLS that uses the addg nemreg --> |l eaq nemreg vari ant

PROGS += stylel
STYLE1OBJS = stylel-main.o stylel-func.o
stylel: $(STYLE1OBIS)
$(LINK.)
A copy of stylel-func that uses %13 in the TLS sequence and thus excercises

the REX transitions.
PROGS += stylel-with-r13
STYLE1IR13OBJS = stylel-nain.o stylel-func-with-r13.0
stylel-with-r13: $(STYLEIR130BJS)

$(LINK. c)

of the addq nemreg --> |l eag nemreg vari ant

A copy of stylel-func that uses %12 to test the addq memreg --> addq inmreg
PROGS += stylel-with-r12
STYLE1R120BJS = stylel-nain.o stylel-func-with-rl12.0
stylel-with-r12: $(STYLEIR120BJS)
$(LINK.)

all: $(PROGS)
cl obber cl ean:
rm-f $(PROGS) $(STYLELOBJS) $(STYLELR130BJS) $(STYLE1IR120BJS) \
$(STYLE20BJIS) $(STYLE2R130BJS) $(STYLE2R120BJS) $(STYLE2BADNESSOBJS)
fail: style2-w th-badness FRC

FRC:

new usr/src/test/elf-tests/tests/tls/x64/ielstylel-func-with-rl2.s 1

R R R R

842 Mon Feb 11 00: 23: 27 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstylel-func-with-rl12.s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-wth-badness.s 1

R R R R

925 Mon Feb 11 00: 23:29 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-wth-badness.s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/

kokokokok ok kk

953
new usr/
10366 |1 d
10367 Id
10368 wal

kkokkokkokk

1/*

[
QOO NOUITAWN
* ok Gk kR % ok F

src/test/elf-tests/tests/tls/x64/ielstyle2-with-rl2.s

EE R

Mon Feb 11 00: 23: 29 2019
src/test/elf-tests/tests/tls/x64/ielstyle2-with-rl2.s

(1) should support GNU-style linker sets

(1) tests should be a real test suite

nt an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkhkkkhkkhkhk Rk khkhkhkkhkhkhkhhhkkkkkkkkkkkkkkkk k%

This file and its contents are supplied under the ternms of the
Conmmon Devel opment and Distribution License ("CDDL"), version 1.0.
You nmay only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://wwv.illunps.org/license/ CODL.

12 /*

13 * Copyright 2012, Richard Lowe.

14 */

16 .section .rodata.str1.1,"aMs", @rogbits,1
17 .LCO

18 .string "foo: %\n"

19 .text

20 .globl main

21 .type mai n, @unction

22 nmin:

23 . LFBO:

24 pushq % bp

25 .LCFIO

26 novq % sp, % bp

27 .LCFI1

28 nmovq f 00@OTTPOFF(% i p), % 12
29 addq %s:0, w12

30 nmovq % 12, % si

31 nov| $.LC0, %di

32 novl $0, %ax

33 cal | printf

34 nov| $0, Y%eax

35 | eave

36 ret

37 . LFEO:

38 . si main, .-main

39 .globl foo

40 .section .rodata.str1.1
41 . LCIL:

42 .string "foo"

44 #endif /* ! codereview */

45 .section .tdata, "awT", @rogbits
46 .align 8

47 .type foo, @bject

48 . sl ze foo, 8

49 foo:

50 . quad .LC1L

new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-with-r13.s 1

R R R R

952 Mon Feb 11 00: 23: 30 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstyle2-with-ri3.s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/src/test/elf-tests/tests/tls/x64/ielstyle2. s

R R R R

925 Mon Feb 11 00: 23: 30 2019
new usr/src/test/elf-tests/tests/tls/x64/ielstyle2. s
10366 1d(1) should support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

__unchanged_portion_omtted_

new usr/src/test/elf-tests/tests/tls/x64/ielx64-ie-test.sh

R R R R

2251 Mon Feb 11 00: 23: 31 2019
new usr/src/test/elf-tests/tests/tls/x64/ielx64-ie-test.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/bin/ksh

2 #

3 # This file and its contents are supplied under the terms of the
4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terns of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this
9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {

16 name=$1

17 pattern=$2

19 if /usr/bin/fgrep -q "${pattern}"; then

20 print -u2 "pass: $nane"

21 el se

22 print -u2 "FAIL: $nane"

23 exit

24 #endif /* | codereview */

25 fi

26 }

28 function dis_test {

29 name=${ 1}

30 func=${2}

31 file=${3}

32 patt er n=${ 4}

34) dis -F${func} ${file} | grep_test "${name}" "${pattern}"

35

37 if [[-z $ELF_TESTS]]; then

38 print -u2 "Don't know where the test data is rooted";

39 exit 1;

40 fi

42 make -f ${ELF _TESTS}/tests/tls/x64/iel Makefile.test
23 make PROTO="${1}"

44 dis_test "addg-->leaq 1" func stylel \

45 "func+0x10: 48 8d 92 f8 ff ff Ileaq - 0x8(% dx), % dx’
46 dis_test "addg-->leaq 2" func stylel \

47 "func+0x17: 48 8d b6 fO ff ff |leaq -0x10(% si), % si’
49 dis_test "addqg-->leaq w REX 1" func stylel-with-r13 \

50 "func+0x10: 48 8d 92 f8 ff ff leaq -0x8(% dx), % dx’
51 dis_test "addg-->leaq w REX 2" func stylel-with-r13 \

52 "func+0x17: 4d 8d ad fO ff ff |eaq -0x10(% 13), % 13’

54 dis_test "addg-->addq for SIB 1" func stylel-with-r12 \
55 "func+0x10: 48 8d 92 f8 ff ff leaq - 0x8(% dx) , % dx’
56 dis_test "addqg-->addq for SIB 2" func stylel-with-r12 \

57 "func+0x17: 49 81 c4 fO ff ff addq $- 0x10, % 12 <Oxfffffffffffffffo>’

new usr/src/test/elf-tests/tests/tls/x64/ielx64-ie-test.sh 2

59 dis_test "novg-->novqg" main style2\
60 "mai n+0x4: 48 ¢7 c6 fO ff ff novq $- 0x10, % si <Oxfffffffffffffffo>’

62 dis_test "novg-->npbvg W REX" main style2-with-r13 \
63 "mai n+0x4: 49 c7 ¢5 fO ff ff nmovg $-0x10, % 13 <Oxfffffffffffffffo>

65 dis_test "novg-->novq incase of SIB" nain style2-with-r12 \
66 "mai n+0x4: 49 c7 c4 fo ff ff wmovg $-0x10, %12 <Oxfffffffffffffffo>’

68 make -f ${ELF_TESTS}/tests/tls/x64/iel Makefile.test fail 2>&1 | grep_test "bad i
49 nmake PROTO="${1}" fail 2>&1 | grep_test "bad insn sequence" \
69 "1d: fatal: relocation error: R AVD64_TPOFF32: file style2-w th-badness.o: sy

new usr/src/test/elf-tests/tests/tls/x86/ Makefile

R R R R

545 Mon Feb 11 00: 23: 31 2019
new usr/src/test/elf-tests/tests/tls/x86/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LDtls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 #

13 # Copyright (c) 2012, 2016 by Del phix. Al rights reserved.

14 # Copyright 2018 Joyent, Inc.

15 #

17 SUBDIRS = | d

19 include $(SRC)/test/ Makefile.com
20 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile

R R R R

964 Mon Feb 11 00: 23: 31 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1#

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cnd/ Makefile.cnd

15 include $(SRC)/test/ Makefile.com

17 PROG = x86-1d-test

19 DATAFI LES = \

20 Makefile. test \

21 hal f-1dm s \

23 ROOTOPTPKG = $(ROOT)/opt/el f-tests

24 TESTDIR = $(ROOTOPTPKG) /tests/tl s/ x86/1d

26 CMDS = $(PROG %:$(TESTDI R)/%

27 $(CVMDS) := FILEMODE = 055

30 DATA = $(DATAFI LES: 0/<:$(TESTDI R) / %
31 $(DATA) := FI LEMODE = 0444

33 all: $(PROO

35 install: all $(CVDS) $(DATA)
37 lint:

39 cl obber: clean

40 -$(RVM $(PROG

42 cl ean:

43 -$(RM $(CLEANFI LES)

45 $(CVDS): $(TESTDIR) $(PROG)
47 $(TESTDIR):

48 $(INS. dir)
50 $(TESTDIR) /% %
51 $(INS.file)

52 #endif /* ! codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile.test 1

R R R R

1053 Mon Feb 11 00: 23: 31 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/ Makefile.test
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #

2 # This file and its contents are supplied under the ternms of the

3 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.

6 #

7 # A full copy of the text of the CDDL shoul d have acconpanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www. illunmps.org/license/ CDDL.

10 #

12 # Copyright 2012, Richard Lowe.

14 CC = gce

15 CFLAGS = -0l -nB2

17 LINK. c = $(CC) $(CFLAGS) -0 s@$"

18 COWILE.c = $ $(CFLAGS) -c -0 $@3$"

19 COWPILE. s = $(CC) $(CFLAGS) -c -0 $@ %"

21 . KEEP_STATE:
23 install default: all

25 % o0: $(ELF_TESTS)/tests/tls/x86/1d/ %c

26 $(COWPI LE. c)
27 % o: $(ELF_TESTS)/tests/tls/x86/1d/ %s
28 $(COWPI LE. s)

30 # an R 386_TLS LDMwith a regular R 386_PLT32 not a R 386_TLS LDM PLT
31 PROGS += hal f -1 dm

33 half-ldm half-Idmo

34 $(LINK. ¢)

36 all: $(PROGS)

38 cl obber cl ean:

39 rm-f $(PROGS) $(STYLELOBJS) $(STYLELR130BJS) $(STYLELR120BJS) \

40 $(STYLE20BJS) $(STYLE2R130BJS) $(STYLE2R120BJS) $(STYLE2BADNESSOBJS)

42 fail: style2-with-badness FRC

44 FRC
45 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/ half-ldms

R R R R

1355 Mon Feb 11 00: 23: 32 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/half-lIdms
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)
LR EEEEEEEEE SRS RS RS RS S SRR SRS R E R R R EREEEEEEEEEEESEESEE]

1/*
* This file and its contents are supplied under the terns of the
Common Devel opment and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the ternms of version
1.0 of the CDDL.

A full copy of the text of the CDDL should have acconpani ed this
source. A copy of the CDDL is also available via the Internet at

[N
QOO ~NOUIAWN
* Ok Gk ok R % ok F

/http://vwm/. illunmos.org/license/ CDDL. u
12 /*
13 * Copyright 2019, Richard Lowe.
14 =/
16 .section .rodata.str1.1,"aMs", @rogbits,1
17 . LCO:
18 .string "foo: % (%)\n"
19 .section .tdata, "awl", @rogbits
20 .align 4
21 .type foo, @bject
22 .size foo, 4
23 .local foo
24 foo:
25 .string "foo"
26 . text
27 .globl nmain
28 .type main, @unction
29 main:
30 pushl %ebp
31 nmovl %esp, %ebp
32 /*
33 * an R 386_TLS LDM rel ocation without a follow ng
34 * followed by an R 386_PLT32 relocation, rather than an
35 * R 386_TLS LDM PLT the call should be renoved, and _not_
36 * |eft alone unrelocated as it was prior to:
37 * 10267 |Id and GCC di sagree about i386 |ocal dynam c TLS
38 /
39 leal foo@LSLDM %ebx), %eax
40 call __ tls_get_addr@.LT
41 | eal foo@TPOFF(%ax), %edx
42 pushl %edx
43 pushl %edx
44 pushl $.LCO
45 call printf@LT
46 movl $0x0, Y%eax
a7 | eave
48 ret
49 .Size main, .-main

50 #endif /* 1 codereview */

new usr/src/test/elf-tests/tests/tls/x86/1d/x86-1d-test.sh

R R R R

1107 Mon Feb 11 00: 23: 32 2019
new usr/src/test/elf-tests/tests/tls/x86/1d/x86-1d-test.sh
10366 1d(1) shoul d support GNU-style |inker sets
10367 1d(1) tests should be a real test suite
10368 want an 1d(1) regression test for i386 LD tls transition (10267)

hkkkkkkkkkkkkkkkk kR ARk Rk Rk khkhkkkhkkkhhhhkhhkkhkhkkkkkkkk kK k%

1 #!'/bin/ksh

2 #

3 # This file and its contents are supplied under the terms of the
4 # Common Devel opnent and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the ternms of version
6 # 1.0 of the CDDL.

7 #

8 # A full copy of the text of the CDDL shoul d have acconpanied this
9 # source. A copy of the CDDL is also available via the Internet at
10 # http://ww.illunps.org/license/ CDDL.

11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {

16 name=$1

17 pattern=$2

19 if /usr/bin/grep -q "${pattern}"; then

20 print -u2 "pass: $nane"

21 el se

22 print -u2 "FAIL: $nane"

23 exit 1

24 fi

25 }

27 function dis_test {

28 name=${ 1}

29 func=${ 2}

30 file=${3}

31 patt er n=${ 4}

33 dis -F${func} ${file} | grep_test "${nane}" "${pattern}”

34}

36 if [[-z $ELF_TESTS]]; then

37 print -u2 "Don’t know where the test data is rooted";

38 exit 1;

39 fi

41 make -f ${ELF_TESTS}/tests/tls/x86/Id/ Makefile.test

43 dis_test "call-->nop" main half-1dm\
44 "mai n\ +0x9: Of 1f 44 00 00 nopl 0x0(Yeax, ¥%eax)’

46 ./half-1dm| grep_test 'half-ldm execution’ \
47 "AMoo: foo ([a-f0-9]*)%
48 #endif /* | codereview */

