
new/usr/src/cmd/sgs/include/libld.h 1

**
 66771 Mon Feb 11 00:23:18 2019
new/usr/src/cmd/sgs/include/libld.h
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

1168 /*
1169 * The auxiliary symbol descriptor contains the additional information (beyond
1170 * the symbol descriptor) required to process global symbols. These symbols are
1171 * accessed via an internal symbol hash table where locality of reference is
1172 * important for performance.
1173 */
1174 struct sym_aux {
1175 APlist *sa_dfiles; /* files where symbol is defined */
1176 Sym sa_sym; /* copy of symtab entry */
1177 const char *sa_vfile; /* first unavailable definition */
1178 const char *sa_rfile; /* file with first symbol referenced */
1179 Word sa_hash; /* the pure hash value of symbol */
1180 Word sa_PLTndx; /* index into PLT for symbol */
1181 Word sa_PLTGOTndx; /* GOT entry indx for PLT indirection */
1182 Word sa_linkndx; /* index of associated symbol from */
1183 /* ET_DYN file */
1184 Half sa_symspec; /* special symbol ids */
1185 Half sa_overndx; /* output file versioning index */
1186 Half sa_dverndx; /* dependency versioning index */
1187 Os_desc *sa_boundsec; /* output section of SECBOUND_ syms */
1188 #endif /* ! codereview */
1189 };

1191 /*
1192 * Nodes used to track symbols in the global AVL symbol dictionary.
1193 */
1194 struct sym_avlnode {
1195 avl_node_t sav_node; /* AVL node */
1196 Word sav_hash; /* symbol hash value */
1197 const char *sav_name; /* symbol name */
1198 Sym_desc *sav_sdp; /* symbol descriptor */
1199 };

1201 /*
1202 * These are the ids for processing of ‘Special symbols’. They are used
1203 * to set the sym->sd_aux->sa_symspec field.
1204 */
1205 #define SDAUX_ID_ETEXT 1 /* etext && _etext symbol */
1206 #define SDAUX_ID_EDATA 2 /* edata && _edata symbol */
1207 #define SDAUX_ID_END 3 /* end, _end, && _END_ symbol */
1208 #define SDAUX_ID_DYN 4 /* DYNAMIC && _DYNAMIC symbol */
1209 #define SDAUX_ID_PLT 5 /* _PROCEDURE_LINKAGE_TABLE_ symbol */
1210 #define SDAUX_ID_GOT 6 /* _GLOBAL_OFFSET_TABLE_ symbol */
1211 #define SDAUX_ID_START 7 /* START_ && _START_ symbol */
1212 #define SDAUX_ID_SECBOUND_START 8 /* __start_<section> symbols */
1213 #define SDAUX_ID_SECBOUND_STOP 9 /* __stop_<section> symbols */
1214 #endif /* ! codereview */

1216 /*
1217 * Flags for sym_desc.sd_flags
1218 */
1219 #define FLG_SY_MVTOCOMM 0x00000001 /* assign symbol to common (.bss) */
1220 /* this is a result of a */
1221 /* copy reloc against sym */
1222 #define FLG_SY_GLOBREF 0x00000002 /* a global reference has been seen */
1223 #define FLG_SY_WEAKDEF 0x00000004 /* a weak definition has been used */
1224 #define FLG_SY_CLEAN 0x00000008 /* ‘Sym’ entry points to original */

new/usr/src/cmd/sgs/include/libld.h 2

1225 /* input file (read-only). */
1226 #define FLG_SY_UPREQD 0x00000010 /* symbol value update is required, */
1227 /* either it’s used as an entry */
1228 /* point or for relocation, but */
1229 /* it must be updated even if */
1230 /* the -s flag is in effect */
1231 #define FLG_SY_NOTAVAIL 0x00000020 /* symbol is not available to the */
1232 /* application either because it */
1233 /* originates from an implicitly */
1234 /* referenced shared object, or */
1235 /* because it is not part of a */
1236 /* specified version. */
1237 #define FLG_SY_REDUCED 0x00000040 /* a global is reduced to local */
1238 #define FLG_SY_VERSPROM 0x00000080 /* version definition has been */
1239 /* promoted to output file */
1240 #define FLG_SY_PROT 0x00000100 /* stv_protected visibility seen */
1241 #define FLG_SY_MAPREF 0x00000200 /* symbol reference generated by user */
1242 /* from mapfile */
1243 #define FLG_SY_REFRSD 0x00000400 /* symbols sd_ref has been raised */
1244 /* due to a copy-relocs */
1245 /* weak-strong pairing */
1246 #define FLG_SY_INTPOSE 0x00000800 /* symbol defines an interposer */
1247 #define FLG_SY_INVALID 0x00001000 /* unwanted/erroneous symbol */
1248 #define FLG_SY_SMGOT 0x00002000 /* small got index assigned to symbol */
1249 /* sparc only */
1250 #define FLG_SY_PARENT 0x00004000 /* symbol to be found in parent */
1251 /* only used with direct bindings */
1252 #define FLG_SY_LAZYLD 0x00008000 /* symbol to cause lazyloading of */
1253 /* parent object */
1254 #define FLG_SY_ISDISC 0x00010000 /* symbol is a member of a DISCARDED */
1255 /* section (COMDAT) */
1256 #define FLG_SY_PAREXPN 0x00020000 /* partially init. symbol to be */
1257 /* expanded */
1258 #define FLG_SY_PLTPAD 0x00040000 /* pltpadding has been allocated for */
1259 /* this symbol */
1260 #define FLG_SY_REGSYM 0x00080000 /* REGISTER symbol (sparc only) */
1261 #define FLG_SY_SOFOUND 0x00100000 /* compared against an SO definition */
1262 #define FLG_SY_EXTERN 0x00200000 /* symbol is external, allows -zdefs */
1263 /* error suppression */
1264 #define FLG_SY_MAPUSED 0x00400000 /* mapfile symbol used (occurred */
1265 /* within a relocatable object) */
1266 #define FLG_SY_COMMEXP 0x00800000 /* COMMON symbol which has been */
1267 /* allocated */
1268 #define FLG_SY_CMDREF 0x01000000 /* symbol was referenced from the */
1269 /* command line. (ld -u <>, */
1270 /* ld -zrtldinfo=<>, ...) */
1271 #define FLG_SY_SPECSEC 0x02000000 /* section index is reserved value */
1272 /* ABS, COMMON, ... */
1273 #define FLG_SY_TENTSYM 0x04000000 /* tentative symbol */
1274 #define FLG_SY_VISIBLE 0x08000000 /* symbols visibility determined */
1275 #define FLG_SY_STDFLTR 0x10000000 /* symbol is a standard filter */
1276 #define FLG_SY_AUXFLTR 0x20000000 /* symbol is an auxiliary filter */
1277 #define FLG_SY_DYNSORT 0x40000000 /* req. in dyn[sym|tls]sort section */
1278 #define FLG_SY_NODYNSORT 0x80000000 /* excluded from dyn[sym_tls]sort sec */

1280 #define FLG_SY_DEFAULT 0x0000100000000 /* global symbol, default */
1281 #define FLG_SY_SINGLE 0x0000200000000 /* global symbol, singleton defined */
1282 #define FLG_SY_PROTECT 0x0000400000000 /* global symbol, protected defined */
1283 #define FLG_SY_EXPORT 0x0000800000000 /* global symbol, exported defined */

1285 #define MSK_SY_GLOBAL \
1286 (FLG_SY_DEFAULT | FLG_SY_SINGLE | FLG_SY_PROTECT | FLG_SY_EXPORT)
1287 /* this mask indicates that the */
1288 /* symbol has been explicitly */
1289 /* defined within a mapfile */
1290 /* definition, and is a candidate */

new/usr/src/cmd/sgs/include/libld.h 3

1291 /* for versioning */

1293 #define FLG_SY_HIDDEN 0x0001000000000 /* global symbol, reduce to local */
1294 #define FLG_SY_ELIM 0x0002000000000 /* global symbol, eliminate */
1295 #define FLG_SY_IGNORE 0x0004000000000 /* global symbol, ignored */

1297 #define MSK_SY_LOCAL (FLG_SY_HIDDEN | FLG_SY_ELIM | FLG_SY_IGNORE)
1298 /* this mask allows all local state */
1299 /* flags to be removed when the */
1300 /* symbol is copy relocated */

1302 #define FLG_SY_EXPDEF 0x0008000000000 /* symbol visibility defined */
1303 /* explicitly */

1305 #define MSK_SY_NOAUTO (FLG_SY_SINGLE | FLG_SY_EXPORT | FLG_SY_EXPDEF)
1306 /* this mask indicates that the */
1307 /* symbol is not a candidate for */
1308 /* auto-reduction/elimination */

1310 #define FLG_SY_MAPFILE 0x0010000000000 /* symbol attribute defined in a */
1311 /* mapfile */
1312 #define FLG_SY_DIR 0x0020000000000 /* global symbol, direct bindings */
1313 #define FLG_SY_NDIR 0x0040000000000 /* global symbol, nondirect bindings */
1314 #define FLG_SY_OVERLAP 0x0080000000000 /* move entry overlap detected */
1315 #define FLG_SY_CAP 0x0100000000000 /* symbol is associated with */
1316 /* capabilities */
1317 #define FLG_SY_DEFERRED 0x0200000000000 /* symbol should not be bound to */
1318 /* during BIND_NOW relocations */

1320 /*
1321 * A symbol can only be truly hidden if it is not a capabilities symbol.
1322 */
1323 #define SYM_IS_HIDDEN(_sdp) \
1324 (((_sdp)->sd_flags & (FLG_SY_HIDDEN | FLG_SY_CAP)) == FLG_SY_HIDDEN)

1326 /*
1327 * Create a mask for (sym.st_other & visibility) since the gABI does not yet
1328 * define a ELF*_ST_OTHER macro.
1329 */
1330 #define MSK_SYM_VISIBILITY 0x7

1332 /*
1333 * Structure to manage the shared object definition lists. There are two lists
1334 * that use this structure:
1335 *
1336 * - ofl_soneed; maintain the list of implicitly required dependencies
1337 * (ie. shared objects needed by other shared objects). These definitions
1338 * may include RPATH’s required to locate the dependencies, and any
1339 * version requirements.
1340 *
1341 * - ofl_socntl; maintains the shared object control definitions. These are
1342 * provided by the user (via a mapfile) and are used to indicate any
1343 * version control requirements.
1344 */
1345 struct sdf_desc {
1346 const char *sdf_name; /* the shared objects file name */
1347 char *sdf_rpath; /* library search path DT_RPATH */
1348 const char *sdf_rfile; /* referencing file for diagnostics */
1349 Ifl_desc *sdf_file; /* the final input file descriptor */
1350 Alist *sdf_vers; /* list of versions that are required */
1351 /* from this object */
1352 Alist *sdf_verneed; /* list of VERNEEDS to create for */
1353 /* object via mapfile ADDVERS */
1354 Word sdf_flags;
1355 };

new/usr/src/cmd/sgs/include/libld.h 4

1357 #define FLG_SDF_SELECT 0x01 /* version control selection required */
1358 #define FLG_SDF_VERIFY 0x02 /* version definition verification */
1359 /* required */
1360 #define FLG_SDF_ADDVER 0x04 /* add VERNEED references */

1362 /*
1363 * Structure to manage shared object version usage requirements.
1364 */
1365 struct sdv_desc {
1366 const char *sdv_name; /* version name */
1367 const char *sdv_ref; /* versions reference */
1368 Word sdv_flags; /* flags */
1369 };

1371 #define FLG_SDV_MATCHED 0x01 /* VERDEF found and matched */

1373 /*
1374 * Structures to manage versioning information. Two versioning structures are
1375 * defined:
1376 *
1377 * - a version descriptor maintains a linked list of versions and their
1378 * associated dependencies. This is used to build the version definitions
1379 * for an image being created (see map_symbol), and to determine the
1380 * version dependency graph for any input files that are versioned.
1381 *
1382 * - a version index array contains each version of an input file that is
1383 * being processed. It informs us which versions are available for
1384 * binding, and is used to generate any version dependency information.
1385 */
1386 struct ver_desc {
1387 const char *vd_name; /* version name */
1388 Ifl_desc *vd_file; /* file that defined version */
1389 Word vd_hash; /* hash value of name */
1390 Half vd_ndx; /* coordinates with symbol index */
1391 Half vd_flags; /* version information */
1392 APlist *vd_deps; /* version dependencies */
1393 Ver_desc *vd_ref; /* dependency’s first reference */
1394 };

1396 struct ver_index {
1397 const char *vi_name; /* dependency version name */
1398 Half vi_flags; /* communicates availability */
1399 Half vi_overndx; /* index assigned to this version in */
1400 /* output object Verneed section */
1401 Ver_desc *vi_desc; /* cross reference to descriptor */
1402 };

1404 /*
1405 * Define any internal version descriptor flags ([vd|vi]_flags). Note that the
1406 * first byte is reserved for user visible flags (refer VER_FLG’s in link.h).
1407 */
1408 #define MSK_VER_USER 0x0f /* mask for user visible flags */

1410 #define FLG_VER_AVAIL 0x10 /* version is available for binding */
1411 #define FLG_VER_REFER 0x20 /* version has been referenced */
1412 #define FLG_VER_CYCLIC 0x40 /* a member of cyclic dependency */

1414 /*
1415 * isalist(1) descriptor - used to break an isalist string into its component
1416 * options.
1417 */
1418 struct isa_opt {
1419 char *isa_name; /* individual isa option name */
1420 size_t isa_namesz; /* and associated size */
1421 };

new/usr/src/cmd/sgs/include/libld.h 5

1423 struct isa_desc {
1424 char *isa_list; /* sysinfo(SI_ISALIST) list */
1425 size_t isa_listsz; /* and associated size */
1426 Isa_opt *isa_opt; /* table of individual isa options */
1427 size_t isa_optno; /* and associated number */
1428 };

1430 /*
1431 * uname(2) descriptor - used to break a utsname structure into its component
1432 * options (at least those that we’re interested in).
1433 */
1434 struct uts_desc {
1435 char *uts_osname; /* operating system name */
1436 size_t uts_osnamesz; /* and associated size */
1437 char *uts_osrel; /* operating system release */
1438 size_t uts_osrelsz; /* and associated size */
1439 };

1441 /*
1442 * SHT_GROUP descriptor - used to track group sections at the global
1443 * level to resolve conflicts and determine which to keep.
1444 */
1445 struct group_desc {
1446 Is_desc *gd_isc; /* input section descriptor */
1447 Is_desc *gd_oisc; /* overriding input section */
1448 /* descriptor when discarded */
1449 const char *gd_name; /* group name (signature symbol) */
1450 Word *gd_data; /* data for group section */
1451 size_t gd_cnt; /* number of entries in group data */
1452 };

1454 /*
1455 * Indexes into the ld_support_funcs[] table.
1456 */
1457 typedef enum {
1458 LDS_VERSION = 0, /* Must be first and have value 0 */
1459 LDS_INPUT_DONE,
1460 LDS_START,
1461 LDS_ATEXIT,
1462 LDS_OPEN,
1463 LDS_FILE,
1464 LDS_INSEC,
1465 LDS_SEC,
1466 LDS_NUM
1467 } Support_ndx;

1469 /*
1470 * Structure to manage archive member caching. Each archive has an archive
1471 * descriptor (Ar_desc) associated with it. This contains pointers to the
1472 * archive symbol table (obtained by elf_getarsyms(3e)) and an auxiliary
1473 * structure (Ar_uax[]) that parallels this symbol table. The member element
1474 * of this auxiliary table indicates whether the archive member associated with
1475 * the symbol offset has already been extracted (AREXTRACTED) or partially
1476 * processed (refer process_member()).
1477 */
1478 typedef struct ar_mem {
1479 Elf *am_elf; /* elf descriptor for this member */
1480 const char *am_name; /* members name */
1481 const char *am_path; /* path (ie. lib(foo.o)) */
1482 Sym *am_syms; /* start of global symbols */
1483 char *am_strs; /* associated string table start */
1484 Xword am_symn; /* no. of global symbols */
1485 } Ar_mem;

1487 typedef struct ar_aux {
1488 Sym_desc *au_syms; /* internal symbol descriptor */

new/usr/src/cmd/sgs/include/libld.h 6

1489 Ar_mem *au_mem; /* associated member */
1490 } Ar_aux;

1492 #define FLG_ARMEM_PROC (Ar_mem *)-1

1494 typedef struct ar_desc {
1495 const char *ad_name; /* archive file name */
1496 Elf *ad_elf; /* elf descriptor for the archive */
1497 Elf_Arsym *ad_start; /* archive symbol table start */
1498 Ar_aux *ad_aux; /* auxiliary symbol information */
1499 dev_t ad_stdev; /* device id and inode number for */
1500 ino_t ad_stino; /* multiple inclusion checks */
1501 ofl_flag_t ad_flags; /* archive specific cmd line flags */
1502 } Ar_desc;

1504 /*
1505 * Define any archive descriptor flags. NOTE, make sure they do not clash with
1506 * any output file descriptor archive extraction flags, as these are saved in
1507 * the same entry (see MSK_OF1_ARCHIVE).
1508 */
1509 #define FLG_ARD_EXTRACT 0x00010000 /* archive member has been extracted */

1511 /* Mapfile versions supported by libld */
1512 #define MFV_NONE 0 /* Not a valid version */
1513 #define MFV_SYSV 1 /* Original System V syntax */
1514 #define MFV_SOLARIS 2 /* Solaris mapfile syntax */
1515 #define MFV_NUM 3 /* # of mapfile versions */

1518 /*
1519 * Function Declarations.
1520 */
1521 #if defined(_ELF64)

1523 #define ld_create_outfile ld64_create_outfile
1524 #define ld_ent_setup ld64_ent_setup
1525 #define ld_init_strings ld64_init_strings
1526 #define ld_init_target ld64_init_target
1527 #define ld_make_sections ld64_make_sections
1528 #define ld_main ld64_main
1529 #define ld_ofl_cleanup ld64_ofl_cleanup
1530 #define ld_process_mem ld64_process_mem
1531 #define ld_reloc_init ld64_reloc_init
1532 #define ld_reloc_process ld64_reloc_process
1533 #define ld_sym_validate ld64_sym_validate
1534 #define ld_update_outfile ld64_update_outfile

1536 #else

1538 #define ld_create_outfile ld32_create_outfile
1539 #define ld_ent_setup ld32_ent_setup
1540 #define ld_init_strings ld32_init_strings
1541 #define ld_init_target ld32_init_target
1542 #define ld_make_sections ld32_make_sections
1543 #define ld_main ld32_main
1544 #define ld_ofl_cleanup ld32_ofl_cleanup
1545 #define ld_process_mem ld32_process_mem
1546 #define ld_reloc_init ld32_reloc_init
1547 #define ld_reloc_process ld32_reloc_process
1548 #define ld_sym_validate ld32_sym_validate
1549 #define ld_update_outfile ld32_update_outfile

1551 #endif

1553 extern int ld_getopt(Lm_list *, int, int, char **);

new/usr/src/cmd/sgs/include/libld.h 7

1555 extern int ld32_main(int, char **, Half);
1556 extern int ld64_main(int, char **, Half);

1558 extern uintptr_t ld_create_outfile(Ofl_desc *);
1559 extern uintptr_t ld_ent_setup(Ofl_desc *, Xword);
1560 extern uintptr_t ld_init_strings(Ofl_desc *);
1561 extern int ld_init_target(Lm_list *, Half mach);
1562 extern uintptr_t ld_make_sections(Ofl_desc *);
1563 extern void ld_ofl_cleanup(Ofl_desc *);
1564 extern Ifl_desc *ld_process_mem(const char *, const char *, char *,
1565 size_t, Ofl_desc *, Rej_desc *);
1566 extern uintptr_t ld_reloc_init(Ofl_desc *);
1567 extern uintptr_t ld_reloc_process(Ofl_desc *);
1568 extern uintptr_t ld_sym_validate(Ofl_desc *);
1569 extern uintptr_t ld_update_outfile(Ofl_desc *);

1571 #ifdef __cplusplus
1572 }
1573 #endif

1575 #endif /* _LIBLD_H */

new/usr/src/cmd/sgs/libld/common/libld.msg 1

**
 60496 Mon Feb 11 00:23:19 2019
new/usr/src/cmd/sgs/libld/common/libld.msg
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 #

26 #
27 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
28 # Copyright 2017 RackTop Systems.
29 #

31 @ _START_

33 # Message file for cmd/sgs/libld.

35 @ MSG_ID_LIBLD

37 #
38 # TRANSLATION_NOTE -- Beginning of USAGE message
39 # The following messages are the usage messages for the ld command.
40 # Tab characters (\t) are used to align the messages.
41 #
42 # Each usage message starts with \t, and if the message has more than one
43 # line, the following messages are aligned by 3 tab characters.
44 # When you see \n\t\t\t, the first \n is used to change the line,
45 # and following 3 tab characters are used to align the line.
46 #
47 # Each usage message option is surrounded by [and]. Then the
48 # description of the option follows. The descriptions should be aligned,
49 # so tab characters are padded as needed after the closing bracket].
50 #
51 # How to align the messages are up to the translators and the
52 # localization engineers.
53 #
54 # In C locale, the first 3 messages would look like the following:
55 #
56 # usage: ld [-6:abc:.....] file(s)
57 # [-a] create an absolute file
58 # [-b] do not do special PIC relocations in a.out
59 # [-c file] record configuration ’file’

new/usr/src/cmd/sgs/libld/common/libld.msg 2

60 #
61 @ MSG_ARG_USAGE "usage: ld [-%s] file(s)\n"
62 @ MSG_ARG_DETAIL_3 "\t[-32]\t\tenforce a 32-bit link-edit\n"
63 @ MSG_ARG_DETAIL_6 "\t[-64]\t\tenforce a 64-bit link-edit\n"
64 @ MSG_ARG_DETAIL_A "\t[-a]\t\tcreate an absolute file\n"
65 @ MSG_ARG_DETAIL_B "\t[-b]\t\tdo not do special PIC relocations in a.out\n"
66 @ MSG_ARG_DETAIL_CBDR "\t[-B direct | nodirect]\n\
67 \t\t\testablish direct bindings, or inhibit direct \
68 binding\n\
69 \t\t\tto, the object being created\n"
70 @ MSG_ARG_DETAIL_CBDY "\t[-B dynamic | static]\n\
71 \t\t\tsearch for shared libraries|archives\n"
72 @ MSG_ARG_DETAIL_CBE "\t[-B eliminate]\teliminate unqualified global \
73 symbols from the\n\t\t\tsymbol table\n"
74 @ MSG_ARG_DETAIL_CBG "\t[-B group]\trelocate object from within group\n"
75 @ MSG_ARG_DETAIL_CBL "\t[-B local]\treduce unqualified global symbols to \
76 local\n"
77 @ MSG_ARG_DETAIL_CBR "\t[-B reduce]\tprocess symbol reductions\n"
78 @ MSG_ARG_DETAIL_CBS "\t[-B symbolic]\tbind external references to \
79 definitions when creating\n\
80 \t\t\tshared objects\n"
81 @ MSG_ARG_DETAIL_C "\t[-c name]\trecord configuration file ’name’\n"
82 @ MSG_ARG_DETAIL_CC "\t[-C]\t\tdemangle C++ symbol name diagnostics\n"
83 @ MSG_ARG_DETAIL_D "\t[-d y | n]\toperate in dynamic|static mode\n"
84 @ MSG_ARG_DETAIL_CD "\t[-D token,...]\tprint diagnostic messages\n"
85 @ MSG_ARG_DETAIL_E "\t[-e epsym], [--entry epsym]\n\
86 \t\t\tuse ’epsym’ as entry point address\n"
87 @ MSG_ARG_DETAIL_F "\t[-f name], [--auxiliary name]\n\
88 \t\t\tspecify library for which this file is an \
89 auxiliary\n\t\t\tfilter\n"
90 @ MSG_ARG_DETAIL_CF "\t[-F name], [--filter name]\n\
91 \t\t\tspecify library for which this file is a filter\n
92 @ MSG_ARG_DETAIL_CG "\t[-G], [-shared]\n\
93 \t\t\tcreate a shared object\n"
94 @ MSG_ARG_DETAIL_H "\t[-h name], [--soname name]\n\
95 \t\t\tuse ’name’ as internal shared object identifier\n
96 @ MSG_ARG_DETAIL_I "\t[-i]\t\tignore LD_LIBRARY_PATH setting\n"
97 @ MSG_ARG_DETAIL_CI "\t[-I name]\tuse ’name’ as path of interpreter\n"
98 @ MSG_ARG_DETAIL_L "\t[-l x], [--library x]\n\
99 \t\t\tsearch for libx.so or libx.a\n"
100 @ MSG_ARG_DETAIL_CL "\t[-L path], [--library-path path]\n\
101 \t\t\tsearch for libraries in directory ’path’\n"
102 @ MSG_ARG_DETAIL_M "\t[-m]\t\tprint memory map\n"
103 @ MSG_ARG_DETAIL_CM "\t[-M mapfile]\tuse processing directives contained \
104 in ’mapfile’\n"
105 @ MSG_ARG_DETAIL_CN "\t[-N string]\tcreate a dynamic dependency for \
106 ’string’\n"
107 @ MSG_ARG_DETAIL_O "\t[-o outfile], [--output outfile]\n\
108 \t\t\tname the output file ’outfile’\n"
109 @ MSG_ARG_DETAIL_P "\t[-p auditlib]\tidentify audit library to accompany \
110 this object\n"
111 @ MSG_ARG_DETAIL_CP "\t[-P auditlib]\tidentify audit library for \
112 processing the dependencies\n\
113 \t\t\tof this object\n"
114 @ MSG_ARG_DETAIL_CQ "\t[-Q y | n]\tdo|do not place version information in \
115 output file\n"
116 @ MSG_ARG_DETAIL_R "\t[-r], [--relocatable]\n\
117 \t\t\tcreate a relocatable object\n"
118 @ MSG_ARG_DETAIL_CR "\t[-R path], [-rpath path]\n\
119 \t\t\tspecify a library search path to be used at run \
120 time\n"
121 @ MSG_ARG_DETAIL_S "\t[-s], [--strip-all]\n\
122 \t\t\tstrip any symbol and debugging information\n"
123 @ MSG_ARG_DETAIL_CS "\t[-S supportlib]\n\
124 \t\t\tspecify a link-edit support library\n"
125 @ MSG_ARG_DETAIL_T "\t[-t]\t\tdo not warn of multiply-defined symbols \

new/usr/src/cmd/sgs/libld/common/libld.msg 3

126 that have\n\t\t\tdifferent sizes or alignments\n"
127 @ MSG_ARG_DETAIL_U "\t[-u symname], [--undefined symname]\n\
128 \t\t\tcreate an undefined symbol ’symname’\n"
129 @ MSG_ARG_DETAIL_CV "\t[-V], [--version]\n\
130 \t\t\tprint version information\n"
131 @ MSG_ARG_DETAIL_CY "\t[-Y P,dirlist]\tuse ’dirlist’ as a default path \
132 when searching for\n\
133 \t\t\tlibraries\n"
134 @ MSG_ARG_DETAIL_ZA "\t[-z absexec]\twhen building an executable absolute \
135 symbols\n \
136 \t\t\treferenced in dynamic objects are promoted to\n \
137 \t\t\tthe executable\n"
138 @ MSG_ARG_DETAIL_ZAE "\t[-z allextract | defaultextract | weakextract],\n\
139 \t[--whole-archive | --no-whole-archive]\n\
140 \t\t\textract all member files, only members that \
141 resolve\n\
142 \t\t\tundefined or tentative symbols, or \
143 allow extraction of\n\
144 \t\t\tarchive members to resolve weak references from \
145 \n\t\t\t\archive files\n"
146 @ MSG_ARG_DETAIL_ZAL "\t[-z altexec64]\texecute the 64-bit link-editor\n"
147 @ MSG_ARG_DETAIL_ZADLIB "\t[-z assert-deflib]\n\
148 \t\t\tenables warnings for linking with libraries in \
149 the \n\t\t\tdefault search path\n\
150 \t[-z assert-deflib=libname]\n\
151 \t\t\tenables warnings for linking with libraries in \
152 the \n\t\t\tdefault search path, but ’libname’ is exempt
153 @ MSG_ARG_DETAIL_ZC "\t[-z combreloc | nocombreloc]\n\
154 \t\t\tcombine|do not combine multiple relocation \
155 sections\n"
156 @ MSG_ARG_DETAIL_ZNC "\t[-z nocompstrtab]\n\t\t\tdisable compression of \
157 string tables\n"
158 @ MSG_ARG_DETAIL_ZDEF "\t[-z deferred | nodeferred]\n\
159 \t\t\tenable|disable deferred identification of \
160 shared object\n\t\t\tdependencies\n"
161 @ MSG_ARG_DETAIL_ZDFS "\t[-z defs], [--no-undefined]\n\
162 \t\t\tdisallow undefined symbol references\n"
163 @ MSG_ARG_DETAIL_ZDRS "\t[-z direct | nodirect]\n\
164 \t\t\tenable|disable direct binding to shared object\n\
165 \t\t\tdependencies\n"
166 @ MSG_ARG_DETAIL_ZE "\t[-z endfiltee]\tmarks a filtee such that it will \
167 terminate a filters\n\t\t\tsearch\n"
168 @ MSG_ARG_DETAIL_ZFATW "\t[-z fatal-warnings | nofatal-warnings],\n\
169 \t[--fatal-warnings | --no-fatal-warnings]\n\
170 \t\tenable|disable treatment of warnings as fatal\n"
171 @ MSG_ARG_DETAIL_ZFA "\t[-z finiarray=function]\n\
172 \t\t\tname of function to be appended to the \
173 .fini_array\n"
174 @ MSG_ARG_DETAIL_ZGP "\t[-z groupperm | nogroupperm]\n\
175 \t\t\tenable|disable setting of group permissions\n\
176 \t\t\ton dynamic dependencies\n"
177 @ MSG_ARG_DETAIL_ZGUIDE "\t[-z guidance | -z guidance=item1,item2,...]\n\
178 \t\t\tenable guidance warnings. items: \
179 noall, nodefs,\n\
180 \t\t\tnodirect, nolazyload, nomapfile, notext, \
181 nounused\n"
182 @ MSG_ARG_DETAIL_ZH "\t[-z help], [--help]\n\
183 \t\t\tprint this usage message\n"
184 @ MSG_ARG_DETAIL_ZIG "\t[-z ignore | record]\n\
185 \t\t\tignore|record unused dynamic dependencies\n"
186 @ MSG_ARG_DETAIL_ZINA "\t[-z initarray=function]\n\
187 \t\t\tname of function to be appended to the \
188 .init_array\n"
189 @ MSG_ARG_DETAIL_ZINI "\t[-z initfirst]\tmark object to indicate that its \
190 .init section should\n\
191 \t\t\tbe executed before the .init section of any \

new/usr/src/cmd/sgs/libld/common/libld.msg 4

192 other\n\t\t\tobjects\n"
193 @ MSG_ARG_DETAIL_ZINT "\t[-z interpose]\
194 \tdynamic object is to be an ’interposer’ on direct\n\
195 \t\t\tbindings\n"
196 @ MSG_ARG_DETAIL_ZLAZY "\t[-z lazyload | nolazyload]\n\
197 \t\t\tenable|disable delayed loading of shared \
198 object\n\t\t\tdependencies\n"
199 @ MSG_ARG_DETAIL_ZLD32 "\t[-z ld32=arg1,arg2,...]\n\
200 \t\t\tdefine arguments applicable to the \
201 32-bit class of ld(1)\n"
202 @ MSG_ARG_DETAIL_ZLD64 "\t[-z ld64=arg1,arg2,...]\n\
203 \t\t\tdefine arguments applicable to the \
204 64-bit class of ld(1)\n"
205 @ MSG_ARG_DETAIL_ZLO "\t[-z loadfltr]\tmark filter as requiring immediate \
206 loading of its\n\
207 \t\t\tfiltees at runtime\n"
208 @ MSG_ARG_DETAIL_ZM "\t[-z muldefs], [--allow-multiple-definition]\n\
209 \t\t\tallow multiply-defined symbols\n"
210 @ MSG_ARG_DETAIL_ZNDFS "\t[-z nodefs]\tallow undefined symbol references\n"
211 @ MSG_ARG_DETAIL_ZNDEF "\t[-z nodefaultlib]\n\
212 \t\t\tmark object to ignore any default library \
213 search path\n"
214 @ MSG_ARG_DETAIL_ZNDEL "\t[-z nodelete]\tmark object as non-deletable\n"
215 @ MSG_ARG_DETAIL_ZNDLO "\t[-z nodlopen]\tmark object as non-dlopen()’able\n"
216 @ MSG_ARG_DETAIL_ZNDU "\t[-z nodump]\tmark object as non-dldump()’able\n"
217 @ MSG_ARG_DETAIL_ZNLD "\t[-z noldynsym]\tdo not add a .SUNW_ldynsym section\n"
218 @ MSG_ARG_DETAIL_ZNPA "\t[-z nopartial]\texpand any partially initialized \
219 symbols\n"
220 @ MSG_ARG_DETAIL_ZNV "\t[-z noversion]\tdo not record any version sections\n"
221 @ MSG_ARG_DETAIL_ZNOW "\t[-z now]\tmark object as requiring non-lazy \
222 binding\n"
223 @ MSG_ARG_DETAIL_ZO "\t[-z origin]\tmark object as requiring $ORIGIN \
224 processing\n"
225 @ MSG_ARG_DETAIL_ZPIA "\t[-z preinitarray=function]\n\
226 \t\t\tname of function to be appended to the \
227 .preinit_array\n"
228 @ MSG_ARG_DETAIL_ZRL "\t[-z redlocsym]\treduce local syms in .symtab to \
229 a minimum\n"
230 @ MSG_ARG_DETAIL_ZRREL "\t[-z relaxreloc]\trelax rules used for relocations \
231 against COMDAT sections\n"
232 @ MSG_ARG_DETAIL_ZRS "\t[-z rescan]\tafter processing all arguments, rescan \
233 archive list\n\
234 \t\t\tuntil no further member extraction occurs\n"
235 @ MSG_ARG_DETAIL_ZRSN "\t[-z rescan-now]\timmediately rescan archive list \
236 until\n\
237 \t\t\tno further member extraction occurs\n"
238 @ MSG_ARG_DETAIL_ZRSGRP "\t[-z rescan-start archives... -z rescan-end],\n\
239 \t[--start-group archives... --end-group], \
240 [-(archives... -)]\n\
241 \t\t\trescan specified archive group upon reaching\n\
242 \t\t\tthe end of the group, until no further\n\
243 \t\t\tmember extraction occurs\n"
244 @ MSG_ARG_DETAIL_ZSCAP "\t[-z symbolcap]\tconvert object capabilities to \
245 symbol capabilities\n"
246 @ MSG_ARG_DETAIL_ZTARG "\t[-z target=platform]\n\
247 \t\t\ttarget machine for cross linking\n"
248 @ MSG_ARG_DETAIL_ZT "\t[-z text]\tdisallow output relocations against \
249 text\n"
250 @ MSG_ARG_DETAIL_ZTO "\t[-z textoff]\tallow output relocations against \
251 text\n"
252 @ MSG_ARG_DETAIL_ZTW "\t[-z textwarn]\twarn if there are relocations \
253 against text\n"
254 @ MSG_ARG_DETAIL_ZWRAP "\t[-z wrap=symbol], [-wrap=symbol], [--wrap=symbol]\n\
255 \t\t\twrap symbol references\n"
256 @ MSG_ARG_DETAIL_ZVER "\t[-z verbose]\t\
257 generate warnings for suspicious processings\n"

new/usr/src/cmd/sgs/libld/common/libld.msg 5

259 #
260 # TRANSLATION_NOTE -- End of USAGE message
261 #
262 @ MSG_GRP_INVALNDX "file %s: group section [%u]%s: entry %d: \
263 invalid section index: %d"

265 # Relocation processing messages (some of these are required to satisfy
266 # do_reloc(), which is common code used by cmd/sgs/rtld - make sure both
267 # message files remain consistent).

269 @ MSG_REL_NOFIT "relocation error: %s: file %s: symbol %s: \
270 value 0x%llx does not fit"
271 @ MSG_REL_NONALIGN "relocation error: %s: file %s: symbol %s: \
272 offset 0x%llx is non-aligned"
273 @ MSG_REL_NULL "relocation error: file %s: section [%u]%s: \
274 skipping null relocation record"
275 @ MSG_REL_NOTSUP "relocation error: %s: file %s: section [%u]%s: \
276 relocation not currently supported"
277 @ MSG_REL_PICREDLOC "relocation error: %s: file %s symbol %s: \
278 -z redlocsym may not be used for pic code"
279 @ MSG_REL_TLSLE "relocation error: %s: file %s: symbol %s: \
280 relocation illegal when building a shared object"
281 @ MSG_REL_TLSBND "relocation error: %s: file %s: symbol %s: \
282 bound to: %s: relocation illegal when not bound \
283 to object being created"
284 @ MSG_REL_TLSSTAT "relocation error: %s: file %s: symbol %s: \
285 relocation illegal when building a static object"
286 @ MSG_REL_TLSBADSYM "relocation error: %s: file %s: symbol %s: \
287 bad symbol type %s: symbol type must be TLS"
288 @ MSG_REL_BADTLS "relocation error: %s: file %s: symbol %s: \
289 relocation illegal for TLS symbol"
290 @ MSG_REL_BADGOTBASED "relocation error: %s: file %s: symbol %s: a GOT \
291 relative relocation must reference a local symbol"
292 @ MSG_REL_UNKNWSYM "relocation error: %s: file %s: section [%u]%s: \
293 attempt to relocate with respect to unknown \
294 symbol %s: offset 0x%llx, symbol index %d"
295 @ MSG_REL_UNSUPSZ "relocation error: %s: file %s: symbol %s: \
296 offset size (%d bytes) is not supported"
297 @ MSG_REL_INVALOFFSET "relocation error: %s: file %s section [%u]%s: \
298 invalid offset symbol ’%s’: offset 0x%llx"
299 @ MSG_REL_INVALRELT "relocation error: file %s: section [%u]%s: \
300 invalid relocation type: 0x%x"
301 @ MSG_REL_EMPTYSEC "relocation error: %s: file %s: symbol %s: \
302 attempted against empty section [%u]%s"
303 @ MSG_REL_EXTERNSYM "relocation error: %s: file %s: symbol %s: \
304 external symbolic relocation against non-allocatable \
305 section %s; cannot be processed at runtime: \
306 relocation ignored"
307 @ MSG_REL_UNEXPREL "relocation error: %s: file %s: symbol %s: \
308 unexpected relocation; generic processing performed"
309 @ MSG_REL_UNEXPSYM "relocation error: %s: file %s: symbol %s: \
310 unexpected symbol referenced from file %s"
311 @ MSG_REL_SYMDISC "relocation error: %s: file %s: section [%u]%s: \
312 symbol %s: symbol has been discarded with discarded \
313 section: [%u]%s"
314 @ MSG_REL_NOSYMBOL "relocation error: %s: file %s: section: [%u]%s: \
315 offset: 0x%llx: relocation requires reference symbol"
316 @ MSG_REL_DISPREL1 "relocation error: %s: file %s: symbol %s: \
317 displacement relocation applied to the symbol \
318 %s at 0x%llx: symbol %s is a copy relocated symbol"
319 @ MSG_REL_UNSUPSIZE "relocation error: %s: file %s: section [%u]%s: \
320 relocation against section symbol unsupported"

322 @ MSG_REL_DISPREL2 "relocation warning: %s: file %s: symbol %s: \
323 may contain displacement relocation"

new/usr/src/cmd/sgs/libld/common/libld.msg 6

324 @ MSG_REL_DISPREL3 "relocation warning: %s: file %s: symbol %s: \
325 displacement relocation applied to the symbol \
326 %s: at 0x%llx: displacement relocation will not be \
327 visible in output image"
328 @ MSG_REL_DISPREL4 "relocation warning: %s: file %s: symbol %s: \
329 displacement relocation to be applied to the symbol \
330 %s: at 0x%llx: displacement relocation will be \
331 visible in output image"
332 @ MSG_REL_COPY "relocation warning: %s: file %s: symbol %s: \
333 relocation bound to a symbol with STV_PROTECTED \
334 visibility"
335 @ MSG_RELINVSEC "relocation warning: %s: file %s: section: [%u]%s: \
336 against suspicious section [%u]%s; relocation ignored"
337 @ MSG_REL_TLSIE "relocation warning: %s: file %s: symbol %s: \
338 relocation has restricted use when building a shared \
339 object"

341 @ MSG_REL_SLOPCDATNONAM "relocation warning: %s: file %s: section [%u]%s: \
342 relocation against discarded COMDAT section [%u]%s: \
343 redirected to file %s"
344 @ MSG_REL_SLOPCDATNAM "relocation warning: %s: file %s: section [%u]%s: \
345 symbol %s: relocation against discarded COMDAT \
346 section [%u]%s: redirected to file %s"
347 @ MSG_REL_SLOPCDATNOSYM "relocation warning: %s: file %s: section [%u]%s: \
348 symbol %s: relocation against discarded COMDAT \
349 section [%u]%s: symbol not found, relocation ignored"

351 @ MSG_REL_NOREG "relocation error: REGISTER relocation not supported \
352 on target architecture"

354 #
355 # TRANSLATION_NOTE
356 # The following 7 messages are the message to print the
357 # following example messages.
358 #
359 #Text relocation remains referenced
360 # against symbol offset in file
361 #str 0x14 main.o
362 #printf 0x1c main.o
363 #
364 # The first two lines are the header, and the next msgid
365 # is the format string for the header.
366 # Tabs and spaces are used for alignment.
367 # The first and third %s are for: "Text relocation remains against symbol"
368 # The second %s and fourth %s are for: "referenced in file"
369 # The third %s is for: "offset"
370 #
371 @ MSG_REL_REMAIN_FMT_1 "%-40s\t%s\n %s\t\t %s\t%s"
372 #
373 # TRANSLATION_NOTE
374 # The next two msdid make a sentence. So translate:
375 # "Text relocation remain against symbol"
376 # And separate them into two msgstr considering the proper
377 # alignment.
378 @ MSG_REL_RMN_ITM_11 "Text relocation remains"
379 @ MSG_REL_RMN_ITM_12 "against symbol"
380 @ MSG_REL_RMN_ITM_13 "warning: Text relocation remains"

382 @ MSG_REL_RMN_ITM_2 "offset"

384 #
385 # TRANSLATION_NOTE
386 # The next two msdid make a sentence. So translate:
387 # "referenced in file"
388 # And separate them into two msgstr considering the proper
389 # alignment.

new/usr/src/cmd/sgs/libld/common/libld.msg 7

390 @ MSG_REL_RMN_ITM_31 "referenced"
391 @ MSG_REL_RMN_ITM_32 "in file"
392 @ MSG_REL_REMAIN_2 "%-35s 0x%-8llx\t%s"
393 @ MSG_REL_REMAIN_3 "relocations remain against allocatable but \
394 non-writable sections"

396 # Files processing messages

398 @ MSG_FIL_MULINC_1 "file %s: attempted multiple inclusion of file"
399 @ MSG_FIL_MULINC_2 "file %s: linked to %s: attempted multiple inclusion \
400 of file"
401 @ MSG_FIL_SOINSTAT "input of shared object ’%s’ in static mode"
402 @ MSG_FIL_INVALSEC "file %s: section [%u]%s has invalid type %s"
403 @ MSG_FIL_NOTFOUND "file %s: required by %s, not found"
404 @ MSG_FIL_MALSTR "file %s: section [%u]%s: malformed string table, \
405 initial or final byte"
406 @ MSG_FIL_PTHTOLONG "’%s/%s’ pathname too long"
407 @ MSG_FIL_EXCLUDE "file %s: section [%u]%s contains both SHF_EXCLUDE and \
408 SHF_ALLOC flags: SHF_EXCLUDE ignored"
409 @ MSG_FIL_INTERRUPT "file %s: creation interrupted: %s"
410 @ MSG_FIL_INVRELOC1 "file %s: section [%u]%s: relocations can not be \
411 applied against section [%u]%s"
412 @ MSG_FIL_INVSHINFO "file %s: section [%u]%s: has invalid sh_info: %lld"
413 @ MSG_FIL_INVSHLINK "file %s: section [%u]%s: has invalid sh_link: %lld"
414 @ MSG_FIL_INVSHENTSIZE "file %s: section [%u]%s: has invalid sh_entsize: %lld"
415 @ MSG_FIL_NOSTRTABLE "file %s: section [%u]%s: symbol[%d]: specifies string \
416 table offset 0x%llx: no string table is available"
417 @ MSG_FIL_EXCSTRTABLE "file %s: section [%u]%s: symbol[%d]: specifies string \
418 table offset 0x%llx: exceeds string table %s: \
419 size 0x%llx"
420 @ MSG_FIL_NONAMESYM "file %s: section [%u]%s: symbol[%d]: global symbol has
421 no name"
422 @ MSG_FIL_UNKCAP "file %s: section [%u]%s: unknown capability tag: %d"
423 @ MSG_FIL_BADSF1 "file %s: section [%u]%s: unknown software \
424 capabilities: 0x%llx; ignored"
425 @ MSG_FIL_INADDR32SF1 "file %s: section [%u]%s: software capability ADDR32: is
426 ineffective when building 32-bit object; ignored"
427 @ MSG_FIL_EXADDR32SF1 "file %s: section [%u]%s: software capability ADDR32: \
428 requires executable be built with ADDR32 capability"

430 @ MSG_FIL_BADORDREF "file %s: section [%u]%s: contains illegal reference \
431 to discarded section: [%u]%s"

433 # Recording name conflicts

435 @ MSG_REC_OPTCNFLT "recording name conflict: file ’%s’ and %s provide \
436 identical dependency names: %s"
437 @ MSG_REC_OBJCNFLT "recording name conflict: file ’%s’ and file ’%s’ \
438 provide identical dependency names: %s %s"
439 @ MSG_REC_CNFLTHINT "(possible multiple inclusion of the same file)"

441 # System call messages

443 @ MSG_SYS_OPEN "file %s: open failed: %s"
444 @ MSG_SYS_UNLINK "file %s: unlink failed: %s"
445 @ MSG_SYS_MMAPANON "mmap anon failed: %s"
446 @ MSG_SYS_MALLOC "malloc failed: %s"

449 # Messages related to platform support

451 @ MSG_TARG_UNSUPPORTED "unsupported ELF machine type: %s"

454 # ELF processing messages

new/usr/src/cmd/sgs/libld/common/libld.msg 8

456 @ MSG_ELF_LIBELF "libelf: version not supported: %d"

458 @ MSG_ELF_ARMEM "file %s: unable to locate archive member;\n\t\
459 offset=%x, symbol=%s"

461 @ MSG_ELF_ARSYM "file %s ignored: unable to locate archive symbol table"

463 @ MSG_ELF_VERSYM "file %s: version symbol section entry mismatch:\n\t\
464 (section [%u]%s entries=%d; section [%u]%s entries=%d)"

466 @ MSG_ELF_NOGROUPSECT "file %s: section [%u]%s: SHF_GROUP flag set, but no \
467 corresponding SHT_GROUP section found"

469 # Section processing errors

471 @ MSG_SCN_NONALLOC "%s: non-allocatable section ’%s’ directed to a \
472 loadable segment: %s"

474 @ MSG_SCN_MULTICOMDAT "file %s: section [%u]%s: cannot be susceptible to multi
475 COMDAT mechanisms: %s"

477 @ MSG_SCN_DWFOVRFLW "%s: section %s: encoded DWARF data exceeds \
478 section size"
479 @ MSG_SCN_DWFBADENC "%s: section %s: invalid DWARF encoding: %#x"

481 # Symbol processing errors

483 @ MSG_SYM_NOSECDEF "symbol ’%s’ in file %s has no section definition"
484 @ MSG_SYM_INVSEC "symbol ’%s’ in file %s associated with invalid \
485 section[%lld]"
486 @ MSG_SYM_TLS "symbol ’%s’ in file %s (STT_TLS), is defined \
487 in a non-SHF_TLS section"
488 @ MSG_SYM_BADADDR "symbol ’%s’ in file %s: section [%u]%s: size %#llx: \
489 symbol (address %#llx, size %#llx) lies outside \
490 of containing section"
491 @ MSG_SYM_BADADDR_ROTXT "symbol ’%s’ in file %s: readonly text section \
492 [%u]%s: size %#llx: symbol (address %#llx, \
493 size %#llx) lies outside of containing section"
494 @ MSG_SYM_MULDEF "symbol ’%s’ is multiply-defined:"
495 @ MSG_SYM_CONFVIS "symbol ’%s’ has conflicting visibilities:"
496 @ MSG_SYM_DIFFTYPE "symbol ’%s’ has differing types:"
497 @ MSG_SYM_DIFFATTR "symbol ’%s’ has differing %s:\n\
498 \t(file %s value=0x%llx; file %s value=0x%llx);"
499 @ MSG_SYM_FILETYPES "\t(file %s type=%s; file %s type=%s);"
500 @ MSG_SYM_VISTYPES "\t(file %s visibility=%s; file %s visibility=%s);"
501 @ MSG_SYM_DEFTAKEN "\t%s definition taken"
502 @ MSG_SYM_DEFUPDATE "\t%s definition taken and updated with larger size"
503 @ MSG_SYM_LARGER "\tlargest value applied"
504 @ MSG_SYM_TENTERR "\ttentative symbol cannot override defined symbol \
505 of smaller size"

507 @ MSG_SYM_INVSHNDX "symbol %s has invalid section index; \
508 ignored:\n\t(file %s value=%s);"
509 @ MSG_SYM_NONGLOB "global symbol %s has non-global binding:\n\
510 \t(file %s value=%s);"
511 @ MSG_SYM_RESERVE "reserved symbol ’%s’ already defined in file %s"
512 @ MSG_SYM_NOTNULL "undefined symbol ’%s’ with non-zero value encountered \
513 from file %s"
514 @ MSG_SYM_DUPSORTADDR "section %s: symbol ’%s’ and symbol ’%s’ have the \
515 same address: %#llx: remove duplicate with \
516 NOSORTSYM mapfile directive"

518 @ MSG_PSYM_INVMINFO1 "file %s: section [%u]%s: entry[%d] has invalid m_info:
519 0x%llx for symbol index"
520 @ MSG_PSYM_INVMINFO2 "file %s: section [%u]%s: entry[%d] has invalid m_info:
521 0x%llx for size"

new/usr/src/cmd/sgs/libld/common/libld.msg 9

522 @ MSG_PSYM_INVMREPEAT "file %s: section [%u]%s: entry[%d] has invalid m_repeat
523 0x%llx"
524 @ MSG_PSYM_CANNOTEXPND "file %s: section [%u]%s: entry[%d] can not be expanded:
525 associated symbol size is unknown %s"
526 @ MSG_PSYM_NOSTATIC "and partial initialization cannot be deferred to \
527 a static object"
528 @ MSG_MOVE_OVERLAP "file %s: section [%u]%s: symbol ’%s’ overlapping move \
529 initialization: start=0x%llx, length=0x%llx: \
530 start=0x%llx, length=0x%llx"
531 @ MSG_PSYM_EXPREASON1 "output file is static object"
532 @ MSG_PSYM_EXPREASON2 "-z nopartial option in effect"
533 @ MSG_PSYM_EXPREASON3 "move infrastructure size is greater than move data"

535 #
536 # Support library failures
537 #
538 @ MSG_SUP_NOLOAD "dlopen() of support library (%s) failed with \
539 error: %s"
540 @ MSG_SUP_BADVERSION "initialization of support library (%s) failed with \
541 bad version. supported: %d returned: %d"

544 #
545 # TRANSLATION_NOTE
546 # The following 7 messages are the message to print the
547 # following example messages.
548 #
549 #Undefined first referenced
550 # symbol in file
551 #inquire halt_hold.o
552 #
553 @ MSG_SYM_FMT_UNDEF "%s\t\t\t%s\
554 \n %s \t\t\t %s"

556 #
557 # TRANSLATION_NOTE
558 # The next two msdid make a sentence. So translate:
559 # "Undefined symbol"
560 # And separate them into two msgstr considering the proper
561 # alignment.
562 @ MSG_SYM_UNDEF_ITM_11 "Undefined"
563 @ MSG_SYM_UNDEF_ITM_12 "symbol"
564 #
565 # TRANSLATION_NOTE
566 # The next two msdid make a sentence. So translate:
567 # "first referenced in file"
568 # And separate them into two msgstr considering the proper
569 # alignment.
570 @ MSG_SYM_UNDEF_ITM_21 "first referenced"
571 @ MSG_SYM_UNDEF_ITM_22 "in file"
572 #

574 @ MSG_SYM_UND_UNDEF "%-35s %s"
575 @ MSG_SYM_UND_NOVER "%-35s %s (symbol has no version assigned)"
576 @ MSG_SYM_UND_IMPL "%-35s %s (symbol belongs to implicit dependency %s)"
577 @ MSG_SYM_UND_NOTA "%-35s %s (symbol belongs to unavailable version %s \
578 (%s))"
579 @ MSG_SYM_UND_BNDLOCAL "%-35s %s (symbol scope specifies local binding)"

581 @ MSG_SYM_ENTRY "entry point"
582 @ MSG_SYM_UNDEF "%s symbol ’%s’ is undefined"
583 @ MSG_SYM_EXTERN "%s symbol ’%s’ is undefined (symbol belongs to \
584 dependency %s)"
585 @ MSG_SYM_NOCRT "symbol ’%s’ not found, but %s section exists - \
586 possible link-edit without using the compiler driver"

new/usr/src/cmd/sgs/libld/common/libld.msg 10

588 # Output file update messages

590 @ MSG_UPD_NOREADSEG "No read-only segments found. Setting ’_etext’ to 0"
591 @ MSG_UPD_NORDWRSEG "No read-write segments found. Setting ’_edata’ to 0"
592 @ MSG_UPD_NOSEG "Setting ’end’ and ’_end’ to 0"

594 @ MSG_UPD_SEGOVERLAP "%s: segment address overlap;\n\
595 \tprevious segment ending at address 0x%llx overlaps\n\
596 \tuser defined segment ’%s’ starting at address 0x%llx"
597 @ MSG_UPD_LARGSIZE "%s: segment %s calculated size 0x%llx\n\
598 \tis larger than user-defined size 0x%llx"

600 @ MSG_UPD_NOBITS "NOBITS section found before end of initialized data"
601 @ MSG_SEG_FIRNOTLOAD "First segment has type %s, PT_LOAD required: %s"
602 @ MSG_UPD_MULEHFRAME "file %s; section [%u]%s and file %s; section [%u]%s \
603 have incompatibile attributes and cannot \
604 be merged into a single output section"

607 # Version processing messages

609 @ MSG_VER_HIGHER "file %s: version revision %d is higher than \
610 expected %d"
611 @ MSG_VER_NOEXIST "file %s: version ’%s’ does not exist:\n\
612 \trequired by file %s"
613 @ MSG_VER_UNDEF "version ’%s’ undefined, referenced by version ’%s’:\n\
614 \trequired by file %s"
615 @ MSG_VER_UNAVAIL "file %s: version ’%s’ is unavailable:\n\
616 \trequired by file %s"
617 @ MSG_VER_DEFINED "version symbol ’%s’ already defined in file %s"
618 @ MSG_VER_INVALNDX "version symbol ’%s’ from file %s has an invalid \
619 version index (%d)"
620 @ MSG_VER_ADDVERS "unused $ADDVERS specification from file ’%s’ \
621 for object ’%s’\nversion(s):"
622 @ MSG_VER_ADDVER "\t%s"
623 @ MSG_VER_CYCLIC "following versions generate cyclic dependency:"

625 # Capabilities messages

627 @ MSG_CAP_MULDEF "capabilities symbol ’%s’ has multiply-defined members:"
628 @ MSG_CAP_MULDEFSYMS "\t(file %s symbol ’%s’; file %s symbol ’%s’);"
629 @ MSG_CAP_REDUNDANT "file %s: section [%u]%s: symbol capabilities \
630 redundant, as object capabilities are more restrictive"
631 @ MSG_CAP_NOSYMSFOUND "no global symbols have been found that are associated \
632 with capabilities identified relocatable objects: \
633 -z symbolcap has no effect"

635 @ MSG_CAPINFO_INVALSYM "file %s: capabilities info section [%u]%s: index %d: \
636 family member symbol ’%s’: invalid"
637 @ MSG_CAPINFO_INVALLEAD "file %s: capabilities info section [%u]%s: index %d: \
638 family lead symbol ’%s’: invalid symbol index %d"

640 # Basic strings

642 @ MSG_STR_ALIGNMENTS "alignments"
643 @ MSG_STR_COMMAND "(command line)"
644 @ MSG_STR_TLSREL "(internal TLS relocation requirement)"
645 @ MSG_STR_SIZES "sizes"
646 @ MSG_STR_UNKNOWN "<unknown>"
647 @ MSG_STR_SECTION "%s (section)"
648 @ MSG_STR_SECTION_MSTR "%s (merged string section)"

650 #
651 # TRANSLATION_NOTE
652 # The elf_ function name represents a man page reference and should not
653 # be translated.

new/usr/src/cmd/sgs/libld/common/libld.msg 11

654 @ MSG_ELF_BEGIN "file %s: elf_begin"
655 @ MSG_ELF_CNTL "file %s: elf_cntl"
656 @ MSG_ELF_GETARHDR "file %s: elf_getarhdr"
657 @ MSG_ELF_GETARSYM "file %s: elf_getarsym"
658 @ MSG_ELF_GETDATA "file %s: elf_getdata"
659 @ MSG_ELF_GETEHDR "file %s: elf_getehdr"
660 @ MSG_ELF_GETPHDR "file %s: elf_getphdr"
661 @ MSG_ELF_GETSCN "file %s: elf_getscn: scnndx: %d"
662 @ MSG_ELF_GETSHDR "file %s: elf_getshdr"
663 @ MSG_ELF_MEMORY "file %s: elf_memory"
664 @ MSG_ELF_NDXSCN "file %s: elf_ndxscn"
665 @ MSG_ELF_NEWDATA "file %s: elf_newdata"
666 @ MSG_ELF_NEWEHDR "file %s: elf_newehdr"
667 @ MSG_ELF_NEWSCN "file %s: elf_newscn"
668 @ MSG_ELF_NEWPHDR "file %s: elf_newphdr"
669 @ MSG_ELF_STRPTR "file %s: elf_strptr"
670 @ MSG_ELF_UPDATE "file %s: elf_update"
671 @ MSG_ELF_SWAP_WRIMAGE "file %s: _elf_swap_wrimage"

674 @ MSG_REJ_MACH "file %s: wrong ELF machine type: %s"
675 @ MSG_REJ_CLASS "file %s: wrong ELF class: %s"
676 @ MSG_REJ_DATA "file %s: wrong ELF data format: %s"
677 @ MSG_REJ_TYPE "file %s: bad ELF type: %s"
678 @ MSG_REJ_BADFLAG "file %s: bad ELF flags value: %s"
679 @ MSG_REJ_MISFLAG "file %s: mismatched ELF flags value: %s"
680 @ MSG_REJ_VERSION "file %s: mismatched ELF/lib version: %s"
681 @ MSG_REJ_HAL "file %s: HAL R1 extensions required"
682 @ MSG_REJ_US3 "file %s: Sun UltraSPARC III extensions required"
683 @ MSG_REJ_STR "file %s: %s"
684 @ MSG_REJ_UNKFILE "file %s: unknown file type"
685 @ MSG_REJ_UNKCAP "file=%s; unknown capability: %d"
686 @ MSG_REJ_HWCAP_1 "file %s: hardware capability (CA_SUNW_HW_1) \
687 unsupported: %s"
688 @ MSG_REJ_SFCAP_1 "file %s: software capability (CA_SUNW_SF_1) \
689 unsupported: %s"
690 @ MSG_REJ_MACHCAP "file %s: machine capability (CA_SUNW_MACH) \
691 unsupported: %s"
692 @ MSG_REJ_PLATCAP "file %s: platform capability (CA_SUNW_PLAT) \
693 unsupported: %s"
694 @ MSG_REJ_HWCAP_2 "file %s: hardware capability (CA_SUNW_HW_2) \
695 unsupported: %s"
696 @ MSG_REJ_ARCHIVE "file %s: invalid archive use"

698 # Guidance messages
699 @ MSG_GUIDE_SUMMARY "see ld(1) -z guidance for more information"
700 @ MSG_GUIDE_DEFS "-z defs option recommended for shared objects"
701 @ MSG_GUIDE_DIRECT "-B direct or -z direct option recommended before \
702 first dependency"
703 @ MSG_GUIDE_LAZYLOAD "-z lazyload option recommended before \
704 first dependency"
705 @ MSG_GUIDE_MAPFILE "version 2 mapfile syntax recommended: %s"
706 @ MSG_GUIDE_TEXT "position independent (PIC) code recommended for \
707 shared objects"
708 @ MSG_GUIDE_UNUSED "removal of unused dependency recommended: %s"

710 @ _END_

713 # The following strings represent reserved names. Reference to these strings
714 # is via the MSG_ORIG() macro, and thus translations are not required.

716 @ MSG_STR_EOF "<eof>"
717 @ MSG_STR_ERROR "<error>"
718 @ MSG_STR_EMPTY ""
719 @ MSG_QSTR_BANG "’!’"

new/usr/src/cmd/sgs/libld/common/libld.msg 12

720 @ MSG_STR_COLON ":"
721 @ MSG_QSTR_COLON "’:’"
722 @ MSG_QSTR_SEMICOLON "’;’"
723 @ MSG_QSTR_EQUAL "’=’"
724 @ MSG_QSTR_PLUSEQ "’+=’"
725 @ MSG_QSTR_MINUSEQ "’-=’"
726 @ MSG_QSTR_ATSIGN "’@’"
727 @ MSG_QSTR_DASH "’-’"
728 @ MSG_QSTR_LEFTBKT "’{’"
729 @ MSG_QSTR_RIGHTBKT "’}’"
730 @ MSG_QSTR_PIPE "’|’"
731 @ MSG_QSTR_STAR "’*’"
732 @ MSG_STR_DOT "."
733 @ MSG_STR_SLASH "/"
734 @ MSG_STR_COMMA ","
735 @ MSG_STR_DYNAMIC "(.dynamic)"
736 @ MSG_STR_ORIGIN "$ORIGIN"
737 @ MSG_STR_MACHINE "$MACHINE"
738 @ MSG_STR_PLATFORM "$PLATFORM"
739 @ MSG_STR_ISALIST "$ISALIST"
740 @ MSG_STR_OSNAME "$OSNAME"
741 @ MSG_STR_OSREL "$OSREL"
742 @ MSG_STR_UU_REAL_U "__real_"
743 @ MSG_STR_UU_WRAP_U "__wrap_"
744 @ MSG_STR_UELF32 "_ELF32"
745 @ MSG_STR_UELF64 "_ELF64"
746 @ MSG_STR_USPARC "_sparc"
747 @ MSG_STR_UX86 "_x86"
748 @ MSG_STR_TRUE "true"

750 @ MSG_STR_CDIR_ADD "$add"
751 @ MSG_STR_CDIR_CLEAR "$clear"
752 @ MSG_STR_CDIR_ERROR "$error"
753 @ MSG_STR_CDIR_MFVER "$mapfile_version"
754 @ MSG_STR_CDIR_IF "$if"
755 @ MSG_STR_CDIR_ELIF "$elif"
756 @ MSG_STR_CDIR_ELSE "$else"
757 @ MSG_STR_CDIR_ENDIF "$endif"

759 @ MSG_STR_GROUP "GROUP"
760 @ MSG_STR_SUNW_COMDAT "SUNW_COMDAT"

762 @ MSG_FMT_ARMEM "%s(%s)"
763 @ MSG_FMT_COLPATH "%s:%s"
764 @ MSG_FMT_SYMNAM "’%s’"
765 @ MSG_FMT_NULLSYMNAM "%s[%d]"
766 @ MSG_FMT_STRCAT "%s%s"

768 @ MSG_PTH_RTLD "/usr/lib/ld.so.1"

770 @ MSG_SUNW_OST_SGS "SUNW_OST_SGS"

773 # Section strings

775 @ MSG_SCN_BSS ".bss"
776 @ MSG_SCN_DATA ".data"
777 @ MSG_SCN_COMMENT ".comment"
778 @ MSG_SCN_DEBUG ".debug"
779 @ MSG_SCN_DEBUG_INFO ".debug_info"
780 @ MSG_SCN_DYNAMIC ".dynamic"
781 @ MSG_SCN_DYNSYMSORT ".SUNW_dynsymsort"
782 @ MSG_SCN_DYNTLSSORT ".SUNW_dyntlssort"
783 @ MSG_SCN_DYNSTR ".dynstr"
784 @ MSG_SCN_DYNSYM ".dynsym"
785 @ MSG_SCN_DYNSYM_SHNDX ".dynsym_shndx"

new/usr/src/cmd/sgs/libld/common/libld.msg 13

786 @ MSG_SCN_LDYNSYM ".SUNW_ldynsym"
787 @ MSG_SCN_LDYNSYM_SHNDX ".SUNW_ldynsym_shndx"
788 @ MSG_SCN_EX_SHARED ".ex_shared"
789 @ MSG_SCN_EX_RANGES ".exception_ranges"
790 @ MSG_SCN_EXCL ".excl"
791 @ MSG_SCN_FINI ".fini"
792 @ MSG_SCN_FINIARRAY ".fini_array"
793 @ MSG_SCN_GOT ".got"
794 @ MSG_SCN_GNU_LINKONCE ".gnu.linkonce."
795 @ MSG_SCN_HASH ".hash"
796 @ MSG_SCN_INDEX ".index"
797 @ MSG_SCN_INIT ".init"
798 @ MSG_SCN_INITARRAY ".init_array"
799 @ MSG_SCN_INTERP ".interp"
800 @ MSG_SCN_LBSS ".lbss"
801 @ MSG_SCN_LDATA ".ldata"
802 @ MSG_SCN_LINE ".line"
803 @ MSG_SCN_LRODATA ".lrodata"
804 @ MSG_SCN_PLT ".plt"
805 @ MSG_SCN_PREINITARRAY ".preinit_array"
806 @ MSG_SCN_REL ".rel"
807 @ MSG_SCN_RELA ".rela"
808 @ MSG_SCN_RODATA ".rodata"
809 @ MSG_SCN_SBSS ".sbss"
810 @ MSG_SCN_SBSS2 ".sbss2"
811 @ MSG_SCN_SDATA ".sdata"
812 @ MSG_SCN_SDATA2 ".sdata2"
813 @ MSG_SCN_SHSTRTAB ".shstrtab"
814 @ MSG_SCN_STAB ".stab"
815 @ MSG_SCN_STABEXCL ".stab.exclstr"
816 @ MSG_SCN_STRTAB ".strtab"
817 @ MSG_SCN_SUNWMOVE ".SUNW_move"
818 @ MSG_SCN_SUNWRELOC ".SUNW_reloc"
819 @ MSG_SCN_SUNWSYMINFO ".SUNW_syminfo"
820 @ MSG_SCN_SUNWVERSION ".SUNW_version"
821 @ MSG_SCN_SUNWVERSYM ".SUNW_versym"
822 @ MSG_SCN_SUNWCAP ".SUNW_cap"
823 @ MSG_SCN_SUNWCAPINFO ".SUNW_capinfo"
824 @ MSG_SCN_SUNWCAPCHAIN ".SUNW_capchain"
825 @ MSG_SCN_SYMTAB ".symtab"
826 @ MSG_SCN_SYMTAB_SHNDX ".symtab_shndx"
827 @ MSG_SCN_TBSS ".tbss"
828 @ MSG_SCN_TDATA ".tdata"
829 @ MSG_SCN_TEXT ".text"

831 @ MSG_SYM_FINIARRAY "finiarray"
832 @ MSG_SYM_INITARRAY "initarray"
833 @ MSG_SYM_PREINITARRAY "preinitarray"

835 #
836 # GNU section names
837 #
838 @ MSG_SCN_CTORS ".ctors"
839 @ MSG_SCN_DTORS ".dtors"
840 @ MSG_SCN_EHFRAME ".eh_frame"
841 @ MSG_SCN_EHFRAME_HDR ".eh_frame_hdr"
842 @ MSG_SCN_GCC_X_TBL ".gcc_except_table"
843 @ MSG_SCN_JCR ".jcr"

845 # Segment names for segments referenced by entrance criteria

847 @ MSG_ENT_BSS "bss"
848 @ MSG_ENT_DATA "data"
849 @ MSG_ENT_EXTRA "extra"
850 @ MSG_ENT_LDATA "ldata"
851 @ MSG_ENT_LRODATA "lrodata"

new/usr/src/cmd/sgs/libld/common/libld.msg 14

852 @ MSG_ENT_NOTE "note"
853 @ MSG_ENT_TEXT "text"

855 # Symbol names

857 @ MSG_SYM_START "_start"
858 @ MSG_SYM_MAIN "main"

860 @ MSG_SYM_FINI_U "_fini"
861 @ MSG_SYM_INIT_U "_init"
862 @ MSG_SYM_DYNAMIC "DYNAMIC"
863 @ MSG_SYM_DYNAMIC_U "_DYNAMIC"
864 @ MSG_SYM_EDATA "edata"
865 @ MSG_SYM_EDATA_U "_edata"
866 @ MSG_SYM_END "end"
867 @ MSG_SYM_END_U "_end"
868 @ MSG_SYM_ETEXT "etext"
869 @ MSG_SYM_ETEXT_U "_etext"
870 @ MSG_SYM_GOFTBL "GLOBAL_OFFSET_TABLE_"
871 @ MSG_SYM_GOFTBL_U "_GLOBAL_OFFSET_TABLE_"
872 @ MSG_SYM_PLKTBL "PROCEDURE_LINKAGE_TABLE_"
873 @ MSG_SYM_PLKTBL_U "_PROCEDURE_LINKAGE_TABLE_"
874 @ MSG_SYM_TLSGETADDR_U "__tls_get_addr"
875 @ MSG_SYM_TLSGETADDR_UU "___tls_get_addr"

877 @ MSG_SYM_L_END "END_"
878 @ MSG_SYM_L_END_U "_END_"
879 @ MSG_SYM_L_START "START_"
880 @ MSG_SYM_L_START_U "_START_"

882 @ MSG_SYM_SECBOUND_START "__start_"
883 @ MSG_SYM_SECBOUND_STOP "__stop_"

885 #endif /* ! codereview */
886 # Support functions

888 @ MSG_SUP_VERSION "ld_version"
889 @ MSG_SUP_INPUT_DONE "ld_input_done"

891 @ MSG_SUP_START_64 "ld_start64"
892 @ MSG_SUP_ATEXIT_64 "ld_atexit64"
893 @ MSG_SUP_OPEN_64 "ld_open64"
894 @ MSG_SUP_FILE_64 "ld_file64"
895 @ MSG_SUP_INSEC_64 "ld_input_section64"
896 @ MSG_SUP_SEC_64 "ld_section64"

898 @ MSG_SUP_START "ld_start"
899 @ MSG_SUP_ATEXIT "ld_atexit"
900 @ MSG_SUP_OPEN "ld_open"
901 @ MSG_SUP_FILE "ld_file"
902 @ MSG_SUP_INSEC "ld_input_section"
903 @ MSG_SUP_SEC "ld_section"

905 #
906 # Message previously in ’ld’
907 #
908 #
909 @ _START_

911 # System error messages

913 @ MSG_SYS_STAT "file %s: stat failed: %s"
914 @ MSG_SYS_READ "file %s: read failed: %s"
915 @ MSG_SYS_NOTREG "file %s: is not a regular file"

917 # Argument processing messages

new/usr/src/cmd/sgs/libld/common/libld.msg 15

919 @ MSG_ARG_DY_INCOMP "%s option is incompatible with building a dynamic \
920 executable"
921 @ MSG_MARG_DY_INCOMP "%s is incompatible with building a dynamic \
922 executable"
923 @ MSG_ARG_ST_INCOMP "%s option is incompatible with building a static \
924 object (-dn, -r, --relocatable)"
925 @ MSG_MARG_ST_INCOMP "%s is incompatible with building a static \
926 object (-dn, -r, --relocatable)"
927 @ MSG_MARG_ST_ONLYAVL "%s is only available when building a shared object"
928 @ MSG_ARG_INCOMP "option %s and %s are incompatible"
929 @ MSG_MARG_INCOMP "%s and %s are incompatible"
930 @ MSG_ARG_MTONCE "option %s appears more than once, first setting taken"
931 @ MSG_MARG_MTONCE "%s appears more than once, first setting taken"
932 @ MSG_ARG_ILLEGAL "option %s has illegal argument ’%s’"
933 @ MSG_ARG_YP "option -YP and -Y%c may not be specified concurrently"
934 @ MSG_ARG_STRIP "%s specified with %s; only debugging \
935 information stripped"
936 @ MSG_ARG_NOFILES "no files on input command line"
937 @ MSG_ARG_NOFLTR "option %s is only meaningful when building a filter"
938 @ MSG_ARG_NODEFLIB "the default library search path has been suppressed, \
939 but no runpaths have been specified via %s"
940 @ MSG_ARG_NOENTRY "entry point symbol ’%s’ is undefined"
941 @ MSG_ARG_UNSUPPORTED "option %s is no longer supported; ignored"
942 @ MSG_MARG_ONLY "option %s can only be used with a %s"
943 @ MSG_ARG_UNKNOWN "unrecognized option ’-%c’"
944 @ MSG_ARG_LONG_UNKNOWN "unrecognized option ’%s’"
945 @ MSG_ARG_USEHELP "use the -z help option for usage information"

948 @ MSG_ARG_FLAGS "flags processing errors"
949 @ MSG_ARG_FILES "file processing errors. No output written to %s"
950 @ MSG_ARG_SYM_WARN "symbol referencing errors"
951 @ MSG_ARG_SYM_FATAL "symbol referencing errors. No output written to %s"
952 @ MSG_ARG_AR_GRP_OLAP "%s cannot be nested"
953 @ MSG_ARG_AR_GRP_BAD "%s used without corresponding %s"

956 # Messages used to refer to options where there is more than
957 # one name accepted.

959 @ MSG_MARG_AR_GRPS "archive rescan groups \
960 (-z rescan-start, -(, --start-group)"
961 @ MSG_MARG_AR_GRP_END "archive rescan group end option \
962 (-z rescan-end, -), --end-group)"
963 @ MSG_MARG_AR_GRP_START "archive rescan group start option \
964 (-z rescan-start, -(, --start-group)"
965 @ MSG_MARG_ENTRY "entry point option (-e, --entry)"
966 @ MSG_MARG_FILTER_AUX "auxiliary filter option (-f, --auxiliary)"
967 @ MSG_MARG_FILTER "filter option (-F, --filter)"
968 @ MSG_MARG_OUTFILE "output object option (-o, --output)"
969 @ MSG_MARG_REL "relocatable object option (-r, --relocatable)"
970 @ MSG_MARG_RPATH "runpath option (-R, -rpath)"
971 @ MSG_MARG_SO "shared object option (-G, -shared)"
972 @ MSG_MARG_SONAME "soname option (-h, --soname)"
973 @ MSG_MARG_STRIP "strip option (-s, --strip-all)"

975 # Entrance criteria messages

977 @ MSG_ENT_MAP_FMT_TIL_1 "\t\t%s\n\n"
978 @ MSG_ENT_MAP_TITLE_1 "LINK EDITOR MEMORY MAP"

980 #
981 # TRANSLATION_NOTE -- Entry map header
982 #
983 # The next message is a format string for a title. The title is composed of

new/usr/src/cmd/sgs/libld/common/libld.msg 16

984 # two lines. In C locale, it would look like:
985 #
986 # output input new
987 # section section displacement size
988 #
989 # The \t characters are used for alignment. (output section), (input section),
990 # and (new displacement) have to be aligned.
991 #
992 @ MSG_ENT_MAP_FMT_TIL_2 "\n%s\t\t%s\t\t%s\n%s\t\t%s\t\t%s\t%s\n\n"
993 @ MSG_ENT_MAP_FMT_TIL_3 "\n%s\t\t%s\t\t%s\n%s\t\t%s\t\t%s\t\t%s\n\n"
994 @ MSG_ENT_ITM_OUTPUT "output"
995 @ MSG_ENT_ITM_INPUT "input"
996 @ MSG_ENT_ITM_NEW "new"
997 @ MSG_ENT_ITM_SECTION "section"
998 @ MSG_ENT_ITM_DISPMNT "displacement"
999 @ MSG_ENT_ITM_SIZE "size"

1000 @ MSG_ENT_ITM_VIRTUAL "virtual"
1001 @ MSG_ENT_ITM_ADDRESS "address"

1003 @ MSG_ENT_MAP_ENTRY_1 "%-8.8s\t\t\t%08.2llx\t%08.2llx\n"
1004 @ MSG_ENT_MAP_ENTRY_2 "\t\t%-8.8s\t%08.2llx\t%08.2llx %s\n"

1006 #
1007 # TRANSLATION_NOTE -- multiple defined symbol table header
1008 #
1009 # In C locale, an example output is:
1010 #
1011 # MULTIPLY DEFINED SYMBOLS
1012 #
1013 #
1014 #symbol definition used also defined in
1015 #
1016 #variable1 main.o
1017 # ./libfred.so
1018 @ MSG_ENT_MUL_FMT_TIL_0 "\n\n\t\t%s\n\n\n"
1019 @ MSG_ENT_MUL_TIL_0 "MULTIPLY DEFINED SYMBOLS"

1021 #
1022 # TRANSLATION_NOTE -- This is the format string for:
1023 #
1024 #symbol definition used also defined in
1025 #
1026 @ MSG_ENT_MUL_FMT_TIL_1 "%s\t\t\t\t %s %s\n\n"
1027 @ MSG_ENT_MUL_ITM_SYM "symbol"
1028 @ MSG_ENT_MUL_ITM_DEF_0 "definition used"
1029 @ MSG_ENT_MUL_ITM_DEF_1 "also defined in"

1031 #
1032 # TRANSLATION_NOTE -- This is the format string for the second item:
1033 #
1034 @ MSG_ENT_MUL_ENTRY_1 "%-35s %s\n"

1036 #
1037 # TRANSLATION_NOTE -- This is the format string for the third item:
1038 #
1039 @ MSG_ENT_MUL_ENTRY_2 "\t\t\t\t\t\t\t%s\n"

1041 @ MSG_ENT_NOSEC_1 "mapfile: %s segment: section ’%s’ does not appear \
1042 in mapfile specified input file(s)"
1043 @ MSG_ENT_NOSEC_2 "mapfile: %s segment: section ’%s’ does not appear \
1044 in any input file"

1046 # Library messages

1048 @ MSG_LIB_NOTFOUND "library -l%s: not found"
1049 @ MSG_LIB_MALFORM "LD_LIBRARY_PATH malformed"

new/usr/src/cmd/sgs/libld/common/libld.msg 17

1050 @ MSG_LIB_BADYP "-YP library path malformed"

1053 # Mapfile processing messages

1055 @ MSG_MAP_BADAUTORED "%s: %llu: auto-reduction (’*’) can only be used in \
1056 hidden/local, or eliminate scope"
1057 @ MSG_MAP_BADFLAG "%s: %llu: badly formed section flags ’%s’"
1058 @ MSG_MAP_BADBNAME "%s: %llu: basename cannot contain path \
1059 separator (’/’): %s"
1060 @ MSG_MAP_BADONAME "%s: %llu: object name cannot contain path \
1061 separator (’/’): %s"
1062 @ MSG_MAP_REDEFATT "%s: %llu: redefining %s attribute for ’%s’"
1063 @ MSG_MAP_PREMEOF "%s: %llu: premature EOF"
1064 @ MSG_MAP_ILLCHAR "%s: %llu: illegal character ’\\%03o’"
1065 @ MSG_MAP_MALFORM "%s: %llu: malformed entry"
1066 @ MSG_MAP_NONLOAD "%s: %llu: %s not allowed on non-LOAD segments"
1067 @ MSG_MAP_NOSTACK1 "%s: %llu: %s not allowed on STACK segment"
1068 @ MSG_MAP_MOREONCE "%s: %llu: %s set more than once on same line"
1069 @ MSG_MAP_NOTERM "%s: %llu: unterminated quoted string: %s"
1070 @ MSG_MAP_SECINSEG "%s: %llu: section within segment ordering done on \
1071 a non-existent segment ’%s’"
1072 @ MSG_MAP_UNEXINHERIT "%s: %llu: unnamed version cannot inherit from other \
1073 versions: %s"
1074 @ MSG_MAP_UNEXTOK "%s: %llu: unexpected occurrence of ’%c’ token"

1076 @ MSG_MAP_SEGEMPLOAD "%s: %llu: empty segment must be of type LOAD or NULL"
1077 @ MSG_MAP_SEGEMPEXE "%s: %llu: a LOAD empty segment definition is only \
1078 allowed when creating a dynamic executable"
1079 @ MSG_MAP_SEGEMPATT "%s: %llu: a LOAD empty segment must have an address \
1080 and size"
1081 @ MSG_MAP_SEGEMPNOATT "%s: %llu: a NULL empty segment must not have an \
1082 address or size"
1083 @ MSG_MAP_SEGEMPSEC "%s: %llu: empty segment can not have sections \
1084 assigned to it"
1085 @ MSG_MAP_SEGEMNOPERM "%s: %llu: empty segment must not have \
1086 p_flags set: 0x%x"

1088 @ MSG_MAP_CNTADDRORDER "%s: %llu: segment cannot have an explicit address \
1089 and also be in the SEGMENT_ORDER list: %s"
1090 @ MSG_MAP_CNTDISSEG "%s: %llu: segment cannot be disabled: %s"
1091 @ MSG_MAP_DUPNAMENT "%s: %llu: cannot redefine entrance criteria: %s"
1092 @ MSG_MAP_DUPORDSEG "%s: %llu: segment is already in %s list: %s"
1093 @ MSG_MAP_DUP_OS_ORD "%s: %llu: section is already in OS_ORDER list: %s"
1094 @ MSG_MAP_DUP_IS_ORD "%s: %llu: entrance criteria is already in \
1095 IS_ORDER list: %s"
1096 @ MSG_MAP_UNKENT "%s: %llu: unknown entrance criteria \
1097 (ASSIGN_SECTION): %s"
1098 @ MSG_MAP_UNKSEG "%s: %llu: unknown segment: %s"
1099 @ MSG_MAP_UNKSYMDEF "%s: %llu: unknown symbol definition: %s"
1100 @ MSG_MAP_UNKSEGTYP "%s: %llu: unknown internal segment type %d"
1101 @ MSG_MAP_UNKSOTYP "%s: %llu: unknown shared object type: %s"
1102 @ MSG_MAP_UNKSEGATT "%s: %llu: unknown segment attribute: %s"
1103 @ MSG_MAP_UNKSEGFLG "%s: %llu: unknown segment flag: ?%c"
1104 @ MSG_MAP_UNKSECTYP "%s: %llu: unknown section type: %s"

1106 @ MSG_MAP_SEGSIZE "%s: %lld: existing segment size symbols cannot \
1107 be reset: %s"
1108 @ MSG_MAP_SEGADDR "%s: %llu: segment address or length ’%s’ %s"
1109 @ MSG_MAP_BADCAPVAL "%s: %llu: bad capability value: %s"
1110 @ MSG_MAP_UNKCAPATTR "%s: %llu: unknown capability attribute ’%s’"
1111 @ MSG_MAP_EMPTYCAP "%s: %llu: empty capability definition; ignored"

1113 @ MSG_MAP_SYMDEF1 "%s: %llu: symbol ’%s’ is already defined in file: \
1114 %s: %s"
1115 @ MSG_MAP_SYMDEF2 "%s: %llu: symbol ’%s’: %s"

new/usr/src/cmd/sgs/libld/common/libld.msg 18

1117 @ MSG_MAP_EXPSCOL "%s: %llu: expected a ’;’"
1118 @ MSG_MAP_EXPEQU "%s: %llu: expected a ’=’, ’:’, ’|’, or ’@’"
1119 @ MSG_MAP_EXPSEGATT "%s: %llu: expected one or more segment attributes \
1120 after an ’=’"
1121 @ MSG_MAP_EXPSEGNAM "%s: %llu: expected a segment name at the beginning \
1122 of a line"
1123 @ MSG_MAP_EXPSEGTYPE "%s: %llu: %s segment cannot be used with %s \
1124 directive: %s"
1125 @ MSG_MAP_EXPSYM_1 "%s: %llu: expected a symbol name after ’@’"
1126 @ MSG_MAP_EXPSYM_2 "%s: %llu: expected a symbol name after ’{’"
1127 @ MSG_MAP_EXPSEC "%s: %llu: expected a section name after ’|’"
1128 @ MSG_MAP_EXPSO "%s: %llu: expected a shared object definition \
1129 after ’-’"
1130 @ MSG_MAP_MULTFILTEE "%s: %llu: multiple filtee definitions are unsupported"
1131 @ MSG_MAP_NOFILTER "%s: %llu: filtee definition required"
1132 @ MSG_MAP_BADSF1 "%s: %llu: unknown software capabilities: 0x%llx; \
1133 ignored"
1134 @ MSG_MAP_INADDR32SF1 "%s: %llu: software capability ADDR32: is ineffective \
1135 when building 32-bit object: ignored"
1136 @ MSG_MAP_NOINTPOSE "%s: %llu: interposition symbols can only be defined \
1137 when building a dynamic executable"
1138 @ MSG_MAP_NOEXVLSZ "%s: %llu: value and size attributes are incompatible \
1139 with extern or parent symbols"
1140 @ MSG_MAP_FLTR_ONLYAVL "%s: %llu: symbol filtering is only available when \
1141 building a shared object"

1143 @ MSG_MAP_SEGSAME "segments ’%s’ and ’%s’ have the same assigned \
1144 virtual address"
1145 @ MSG_MAP_EXCLIMIT "exceeds internal limit"
1146 @ MSG_MAP_NOBADFRM "number is badly formed"

1148 @ MSG_MAP_SEGTYP "segment type"
1149 @ MSG_MAP_SEGVADDR "segment virtual address"
1150 @ MSG_MAP_SEGPHYS "segment physical address"
1151 @ MSG_MAP_SEGLEN "segment length"
1152 @ MSG_MAP_SEGFLAG "segment flags"
1153 @ MSG_MAP_SEGALIGN "segment alignment"
1154 @ MSG_MAP_SEGROUND "segment rounding"

1156 @ MSG_MAP_SECTYP "section type"
1157 @ MSG_MAP_SECFLAG "section flags"
1158 @ MSG_MAP_SECNAME "section name"

1160 @ MSG_MAP_SYMVAL "symbol value"
1161 @ MSG_MAP_SYMSIZE "symbol size"

1163 @ MSG_MAP_DIFF_SYMVAL "symbol values differ"
1164 @ MSG_MAP_DIFF_SYMSZ "symbol sizes differ"
1165 @ MSG_MAP_DIFF_SYMTYP "symbol types differ"
1166 @ MSG_MAP_DIFF_SYMNDX "symbol indexes differ"
1167 @ MSG_MAP_DIFF_SYMLCL "symbol scope conflict against local and non-local"
1168 @ MSG_MAP_DIFF_SYMGLOB "symbol scope conflict against singleton/exported"
1169 @ MSG_MAP_DIFF_SYMPROT "symbol scope conflict against protected"
1170 @ MSG_MAP_DIFF_SYMVER "symbol version conflict"
1171 @ MSG_MAP_DIFF_SYMMUL "symbol multiple definition"
1172 @ MSG_MAP_DIFF_SNGLDIR "singleton scope and direct declaration are \
1173 incompatible"
1174 @ MSG_MAP_DIFF_PROTNDIR "protected scope and no-direct declaration \
1175 are incompatible"

1178 @ MSG_MAP_SECORDER "section ordering requested, but no matching section \
1179 found: segment: %s section: %s"

new/usr/src/cmd/sgs/libld/common/libld.msg 19

1182 # Mapfile Directives

1184 @ MSG_MAP_EXP_ATTR "%s: %llu: expected attribute name (%s), or \
1185 terminator (’;’, ’}’): %s"
1186 @ MSG_MAP_EXP_CAPMASK "%s: %llu: expected capability name, integer value, or \
1187 terminator (’;’, ’}’): %s"
1188 @ MSG_MAP_EXP_CAPNAME "%s: %llu: expected name, or terminator (’;’, ’}’): %s"
1189 @ MSG_MAP_EXP_CAPID "%s: %llu: expected name, or ’{’ following %s: %s"
1190 @ MSG_MAP_EXP_CAPHW "%s: %llu: expected hardware capability, or \
1191 terminator (’;’, ’}’): %s"
1192 @ MSG_MAP_EXP_CAPSF "%s: %llu: expected software capability, or \
1193 terminator (’;’, ’}’): %s"
1194 @ MSG_MAP_EXP_EQ "%s: %llu: expected ’=’ following %s: %s"
1195 @ MSG_MAP_EXP_EQ_ALL "%s: %llu: expected ’=’, ’+=’, or ’-=’ following %s: %s"
1196 @ MSG_MAP_EXP_EQ_PEQ "%s: %llu: expected ’=’ following %s: %s"
1197 @ MSG_MAP_EXP_DIR "%s: %llu: expected mapfile directive (%s): %s"
1198 @ MSG_MAP_SFLG_EXBANG "%s: %llu: ’!’ appears without corresponding flag"
1199 @ MSG_MAP_EXP_FILNAM "%s: %llu: expected file name following %s: %s"
1200 @ MSG_MAP_EXP_FILPATH "%s: %llu: expected file path following %s: %s"
1201 @ MSG_MAP_EXP_INT "%s: %llu: expected integer value following %s: %s"
1202 @ MSG_MAP_EXP_LBKT "%s: %llu: expected ’{’ following %s: %s"
1203 @ MSG_MAP_EXP_OBJNAM "%s: %llu: expected object name following %s: %s"
1204 @ MSG_MAP_SFLG_ONEBANG "%s: %llu: ’!’ can only be specified once per flag"
1205 @ MSG_MAP_EXP_SECFLAG "%s: %llu: expected section flag (%s), ’!’, or \
1206 terminator (’;’, ’}’): %s"
1207 @ MSG_MAP_EXP_SECNAM "%s: %llu: expected section name following %s: %s"
1208 @ MSG_MAP_EXP_SEGFLAG "%s: %llu: expected segment flag (%s), or \
1209 terminator (’;’, ’}’): %s"
1210 @ MSG_MAP_EXP_ECNAM "%s: %llu: expected entrance criteria (ASSIGN_SECTION) \
1211 name, or terminator (’;’, ’}’): %s"
1212 @ MSG_MAP_EXP_SEGNAM "%s: %llu: expected segment name following %s: %s"
1213 @ MSG_MAP_EXP_SEM "%s: %llu: expected ’;’ to terminate %s: %s"
1214 @ MSG_MAP_EXP_SEMLBKT "%s: %llu: expected ’;’ or ’{’ following %s: %s"
1215 @ MSG_MAP_EXP_SEMRBKT "%s: %llu: expected ’;’ or ’}’ to terminate %s: %s"
1216 @ MSG_MAP_EXP_SHTYPE "%s: %llu: expected section type: %s"
1217 @ MSG_MAP_EXP_SYM "%s: %llu: expected symbol name, symbol scope, \
1218 or ’*’: %s"
1219 @ MSG_MAP_EXP_SYMEND "%s: %llu: expected inherited version name, or \
1220 terminator (’;’): %s"
1221 @ MSG_MAP_EXP_SYMDELIM "%s: %llu: expected one of ’:’, ’;’, or ’{’: %s"
1222 @ MSG_MAP_EXP_SYMFLAG "%s: %llu: expected symbol flag (%s), or \
1223 terminator (’;’, ’}’): %s"
1224 @ MSG_MAP_EXP_SYMNAM "%s: %llu: expected symbol name following %s: %s"
1225 @ MSG_MAP_EXP_SYMSCOPE "%s: %llu: expected symbol scope (%s): %s"
1226 @ MSG_MAP_EXP_SYMTYPE "%s: %llu: expected symbol type (%s): %s"
1227 @ MSG_MAP_EXP_VERSION "%s: %llu: expected version name following %s: %s"
1228 @ MSG_MAP_BADEXTRA "%s: %llu: unexpected text found following %s directive"
1229 @ MSG_MAP_VALUELIMIT "%s: %llu: numeric value exceeds word size: %s"
1230 @ MSG_MAP_MALVALUE "%s: %llu: malformed numeric value: %s"
1231 @ MSG_MAP_BADVALUETAIL "%s: %llu: unexpected characters following numeric \
1232 constant: %s"
1233 @ MSG_MAP_WSNEEDED "%s: %llu: whitespace needed before token: %s"
1234 @ MSG_MAP_BADCHAR "%s: %llu: unexpected text: %s"
1235 @ MSG_MAP_BADKWQUOTE "%s: %llu: mapfile keywords should not be quoted: %s"
1236 @ MSG_MAP_CDIR_NOTBOL "%s: %llu: mapfile control directive not at start of \
1237 line: %s"
1238 @ MSG_MAP_NOATTR "%s: %llu: %s specified no attributes (empty {})"
1239 @ MSG_MAP_NOVALUES "%s: %llu: %s specified without values"
1240 @ MSG_MAP_INTERR "<internal error>"
1241 @ MSG_MAP_ISORDVER "%s: %llu: version 0 mapfile ?O flag and version 1 \
1242 segment IS_ORDER attribute are mutually exclusive: %s"
1243 @ MSG_MAP_SYMATTR "symbol attributes";

1245 # Mapfile Control Directives

1247 @ MSG_MAP_CDIR_BADVDIR "%s: %llu: $mapfile_version directive must specify \

new/usr/src/cmd/sgs/libld/common/libld.msg 20

1248 version 2 or higher: %d"
1249 @ MSG_MAP_CDIR_BADVER "%s: %llu: unknown mapfile version: %d"
1250 @ MSG_MAP_CDIR_REPVER "%s: %llu: $mapfile_version must be first directive \
1251 in file"
1252 @ MSG_MAP_CDIR_REQARG "%s: %llu: %s directive requires an argument"
1253 @ MSG_MAP_CDIR_REQNOARG "%s: %llu: %s directive does not accept arguments"
1254 @ MSG_MAP_CDIR_BAD "%s: %llu: unrecognized mapfile control directive"
1255 @ MSG_MAP_CDIR_NOIF "%s: %llu: %s directive used without opening $if"
1256 @ MSG_MAP_CDIR_ELSE "%s: %llu: %s directive preceded by $else on line %d"
1257 @ MSG_MAP_CDIR_NOEND "%s: %llu: EOF encountered without closing $endif \
1258 for $if on line %d"
1259 @ MSG_MAP_CDIR_ERROR "%s: %llu: error: %s"

1262 # Mapfile Conditional Expressions

1264 @ MSG_MAP_CEXP_TOKERR "%s: %llu: syntax error in conditional expression at: %s
1265 @ MSG_MAP_CEXP_SEMERR "%s: %llu: malformed conditional expression"
1266 @ MSG_MAP_CEXP_BADOPUSE "%s: %llu: invalid operator use in conditional \
1267 expression"
1268 @ MSG_MAP_CEXP_UNBALPAR "%s: %llu: unbalanced parenthesis in conditional \
1269 expression"
1270 @ MSG_MAP_BADCESC "%s: %llu: unrecognized escape in double quoted \
1271 token: \\%c\n"

1273 # Generic error diagnostic labels

1275 @ MSG_STR_NULL "(null)"

1277 @ MSG_DBG_DFLT_FMT "debug: "
1278 @ MSG_DBG_AOUT_FMT "debug: a.out: "
1279 @ MSG_DBG_NAME_FMT "debug: %s: "

1281 # -z assert-deflib strings

1283 @ MSG_ARG_ASSDEFLIB_MALFORMED "library name malformed: %s"
1284 @ MSG_ARG_ASSDEFLIB_FOUND "dynamic library found on default search path \
1285 (%s): lib%s.so"

1287 @ _END_

1290 # Software identification. Note, the SGU strings is historic, and has
1291 # little relevance. It is preserved as applications have used this
1292 # string to identify the Solaris link-editor.

1294 @ MSG_SGS_ID "ld: Software Generation Utilities - \
1295 Solaris Link Editors: "

1297 # The following strings represent reserved words, files, pathnames and symbols.
1298 # Reference to this strings is via the MSG_ORIG() macro, and thus no message
1299 # translation is required.

1301 @ MSG_DBG_FOPEN_MODE "w"

1303 @ MSG_DBG_CLS32_FMT "32: "
1304 @ MSG_DBG_CLS64_FMT "64: "

1306 @ MSG_STR_PATHTOK ";:"
1307 @ MSG_STR_AOUT "a.out"

1309 @ MSG_STR_LIB_A "%s/lib%s.a"
1310 @ MSG_STR_LIB_SO "%s/lib%s.so"
1311 @ MSG_STR_PATH "%s/%s"
1312 @ MSG_STR_STRNL "%s\n"
1313 @ MSG_STR_NL "\n"

new/usr/src/cmd/sgs/libld/common/libld.msg 21

1314 @ MSG_STR_CAPGROUPID "CAP_GROUP_%d"

1316 @ MSG_STR_LD_DYNAMIC "dynamic"
1317 @ MSG_STR_SYMBOLIC "symbolic"
1318 @ MSG_STR_ELIMINATE "eliminate"
1319 @ MSG_STR_LOCAL "local"
1320 @ MSG_STR_PROGBITS "progbits"
1321 @ MSG_STR_SYMTAB "symtab"
1322 @ MSG_STR_DYNSYM "dynsym"
1323 @ MSG_STR_REL "rel"
1324 @ MSG_STR_RELA "rela"
1325 @ MSG_STR_STRTAB "strtab"
1326 @ MSG_STR_HASH "hash"
1327 @ MSG_STR_LIB "lib"
1328 @ MSG_STR_NOTE "note"
1329 @ MSG_STR_NOBITS "nobits"
1330 @ MSG_STR_HWCAP_1 "hwcap_1"
1331 @ MSG_STR_SFCAP_1 "sfcap_1"
1332 @ MSG_STR_SOEXT ".so"

1334 @ MSG_STR_OPTIONS "3:6:abc:d:e:f:h:il:mo:p:rstu:z:B:CD:F:GI:L:M:N:P:Q:R:\
1335 S:VW:Y:?"

1337 # Argument processing strings

1339 @ MSG_ARG_3 "-3"
1340 @ MSG_ARG_6 "-6"
1341 @ MSG_ARG_A "-a"
1342 @ MSG_ARG_B "-b"
1343 @ MSG_ARG_CB "-B"
1344 @ MSG_ARG_BDIRECT "-Bdirect"
1345 @ MSG_ARG_BDYNAMIC "-Bdynamic"
1346 @ MSG_ARG_BELIMINATE "-Beliminate"
1347 @ MSG_ARG_BGROUP "-Bgroup"
1348 @ MSG_ARG_BLOCAL "-Blocal"
1349 @ MSG_ARG_BNODIRECT "-Bnodirect"
1350 @ MSG_ARG_BSYMBOLIC "-Bsymbolic"
1351 @ MSG_ARG_BTRANSLATOR "-Btranslator"
1352 @ MSG_ARG_C "-c"
1353 @ MSG_ARG_D "-d"
1354 @ MSG_ARG_DY "-dy"
1355 @ MSG_ARG_CI "-I"
1356 @ MSG_ARG_CN "-N"
1357 @ MSG_ARG_P "-p"
1358 @ MSG_ARG_CP "-P"
1359 @ MSG_ARG_CQ "-Q"
1360 @ MSG_ARG_CY "-Y"
1361 @ MSG_ARG_CYL "-YL"
1362 @ MSG_ARG_CYP "-YP"
1363 @ MSG_ARG_CYU "-YU"
1364 @ MSG_ARG_Z "-z"
1365 @ MSG_ARG_ZDEFNODEF "-z[defs|nodefs]"
1366 @ MSG_ARG_ZASLR "-zaslr"
1367 @ MSG_ARG_ZGUIDE "-zguidance"
1368 @ MSG_ARG_ZNODEF "-znodefs"
1369 @ MSG_ARG_ZNOINTERP "-znointerp"
1370 @ MSG_ARG_ZRELAXRELOC "-zrelaxreloc"
1371 @ MSG_ARG_ZNORELAXRELOC "-znorelaxreloc"
1372 @ MSG_ARG_ZTEXT "-ztext"
1373 @ MSG_ARG_ZTEXTOFF "-ztextoff"
1374 @ MSG_ARG_ZTEXTWARN "-ztextwarn"
1375 @ MSG_ARG_ZTEXTALL "-z[text|textwarn|textoff]"
1376 @ MSG_ARG_ZLOADFLTR "-zloadfltr"
1377 @ MSG_ARG_ZCOMBRELOC "-zcombreloc"
1378 @ MSG_ARG_ZSYMBOLCAP "-zsymbolcap"
1379 @ MSG_ARG_ZFATWNOFATW "-z[fatal-warnings|nofatalwarnings]"

new/usr/src/cmd/sgs/libld/common/libld.msg 22

1381 @ MSG_ARG_ABSEXEC "absexec"
1382 @ MSG_ARG_ALTEXEC64 "altexec64"
1383 @ MSG_ARG_ASLR "aslr"
1384 @ MSG_ARG_NOCOMPSTRTAB "nocompstrtab"
1385 @ MSG_ARG_GROUPPERM "groupperm"
1386 @ MSG_ARG_NOGROUPPERM "nogroupperm"
1387 @ MSG_ARG_LAZYLOAD "lazyload"
1388 @ MSG_ARG_NOLAZYLOAD "nolazyload"
1389 @ MSG_ARG_INTERPOSE "interpose"
1390 @ MSG_ARG_DIRECT "direct"
1391 @ MSG_ARG_NODIRECT "nodirect"
1392 @ MSG_ARG_IGNORE "ignore"
1393 @ MSG_ARG_RECORD "record"
1394 @ MSG_ARG_INITFIRST "initfirst"
1395 @ MSG_ARG_INITARRAY "initarray="
1396 @ MSG_ARG_FINIARRAY "finiarray="
1397 @ MSG_ARG_PREINITARRAY "preinitarray="
1398 @ MSG_ARG_RTLDINFO "rtldinfo="
1399 @ MSG_ARG_DTRACE "dtrace="
1400 @ MSG_ARG_TRANSLATOR "translator"
1401 @ MSG_ARG_NOOPEN "nodlopen"
1402 @ MSG_ARG_NOW "now"
1403 @ MSG_ARG_ORIGIN "origin"
1404 @ MSG_ARG_DEFS "defs"
1405 @ MSG_ARG_NODEFS "nodefs"
1406 @ MSG_ARG_NODUMP "nodump"
1407 @ MSG_ARG_NOVERSION "noversion"
1408 @ MSG_ARG_TEXT "text"
1409 @ MSG_ARG_TEXTOFF "textoff"
1410 @ MSG_ARG_TEXTWARN "textwarn"
1411 @ MSG_ARG_MULDEFS "muldefs"
1412 @ MSG_ARG_NODELETE "nodelete"
1413 @ MSG_ARG_NOINTERP "nointerp"
1414 @ MSG_ARG_NOPARTIAL "nopartial"
1415 @ MSG_ARG_NORELOC "noreloc"
1416 @ MSG_ARG_REDLOCSYM "redlocsym"
1417 @ MSG_ARG_VERBOSE "verbose"
1418 @ MSG_ARG_WEAKEXT "weakextract"
1419 @ MSG_ARG_LOADFLTR "loadfltr"
1420 @ MSG_ARG_ALLEXTRT "allextract"
1421 @ MSG_ARG_DFLEXTRT "defaultextract"
1422 @ MSG_ARG_COMBRELOC "combreloc"
1423 @ MSG_ARG_NOCOMBRELOC "nocombreloc"
1424 @ MSG_ARG_NODEFAULTLIB "nodefaultlib"
1425 @ MSG_ARG_ENDFILTEE "endfiltee"
1426 @ MSG_ARG_LD32 "ld32="
1427 @ MSG_ARG_LD64 "ld64="
1428 @ MSG_ARG_RESCAN "rescan"
1429 @ MSG_ARG_RESCAN_NOW "rescan-now"
1430 @ MSG_ARG_RESCAN_START "rescan-start"
1431 @ MSG_ARG_RESCAN_END "rescan-end"
1432 @ MSG_ARG_GUIDE "guidance"
1433 @ MSG_ARG_NOLDYNSYM "noldynsym"
1434 @ MSG_ARG_RELAXRELOC "relaxreloc"
1435 @ MSG_ARG_NORELAXRELOC "norelaxreloc"
1436 @ MSG_ARG_NOSIGHANDLER "nosighandler"
1437 @ MSG_ARG_GLOBAUDIT "globalaudit"
1438 @ MSG_ARG_TARGET "target="
1439 @ MSG_ARG_WRAP "wrap="
1440 @ MSG_ARG_FATWARN "fatal-warnings"
1441 @ MSG_ARG_NOFATWARN "nofatal-warnings"
1442 @ MSG_ARG_HELP "help"
1443 @ MSG_ARG_GROUP "group"
1444 @ MSG_ARG_REDUCE "reduce"
1445 @ MSG_ARG_STATIC "static"

new/usr/src/cmd/sgs/libld/common/libld.msg 23

1446 @ MSG_ARG_SYMBOLCAP "symbolcap"
1447 @ MSG_ARG_DEFERRED "deferred"
1448 @ MSG_ARG_NODEFERRED "nodeferred"
1449 @ MSG_ARG_ASSDEFLIB "assert-deflib"

1451 @ MSG_ARG_LCOM "L,"
1452 @ MSG_ARG_PCOM "P,"
1453 @ MSG_ARG_UCOM "U,"

1455 @ MSG_ARG_T_RPATH "rpath"
1456 @ MSG_ARG_T_SHARED "shared"
1457 @ MSG_ARG_T_SONAME "soname"
1458 @ MSG_ARG_T_WL "l,-"

1460 @ MSG_ARG_T_AUXFLTR "-auxiliary"
1461 @ MSG_ARG_T_MULDEFS "-allow-multiple-definition"
1462 @ MSG_ARG_T_INTERP "-dynamic-linker"
1463 @ MSG_ARG_T_ENDGROUP "-end-group"
1464 @ MSG_ARG_T_ENTRY "-entry"
1465 @ MSG_ARG_T_STDFLTR "-filter"
1466 @ MSG_ARG_T_FATWARN "-fatal-warnings"
1467 @ MSG_ARG_T_NOFATWARN "-no-fatal-warnings"
1468 @ MSG_ARG_T_HELP "-help"
1469 @ MSG_ARG_T_LIBRARY "-library"
1470 @ MSG_ARG_T_LIBPATH "-library-path"
1471 @ MSG_ARG_T_NOUNDEF "-no-undefined"
1472 @ MSG_ARG_T_NOWHOLEARC "-no-whole-archive"
1473 @ MSG_ARG_T_OUTPUT "-output"
1474 @ MSG_ARG_T_RELOCATABLE "-relocatable"
1475 @ MSG_ARG_T_STARTGROUP "-start-group"
1476 @ MSG_ARG_T_STRIP "-strip-all"
1477 @ MSG_ARG_T_UNDEF "-undefined"
1478 @ MSG_ARG_T_VERSION "-version"
1479 @ MSG_ARG_T_WHOLEARC "-whole-archive"
1480 @ MSG_ARG_T_WRAP "-wrap"
1481 @ MSG_ARG_T_OPAR "("
1482 @ MSG_ARG_T_CPAR ")"

1484 @ MSG_ARG_ENABLED "enabled"
1485 @ MSG_ARG_DISABLED "disabled"
1486 @ MSG_ARG_ENABLE "enable"
1487 @ MSG_ARG_DISABLE "disable"

1489 # -z guidance=item strings
1490 @ MSG_ARG_GUIDE_DELIM ",: \t"
1491 @ MSG_ARG_GUIDE_NO_ALL "noall"
1492 @ MSG_ARG_GUIDE_NO_DEFS "nodefs"
1493 @ MSG_ARG_GUIDE_NO_DIRECT "nodirect"
1494 @ MSG_ARG_GUIDE_NO_LAZYLOAD "nolazyload"
1495 @ MSG_ARG_GUIDE_NO_MAPFILE "nomapfile"
1496 @ MSG_ARG_GUIDE_NO_TEXT "notext"
1497 @ MSG_ARG_GUIDE_NO_UNUSED "nounused"

1499 # Environment variable strings

1501 @ MSG_LD_RUN_PATH "LD_RUN_PATH"
1502 @ MSG_LD_LIBPATH_32 "LD_LIBRARY_PATH_32"
1503 @ MSG_LD_LIBPATH_64 "LD_LIBRARY_PATH_64"
1504 @ MSG_LD_LIBPATH "LD_LIBRARY_PATH"

1506 @ MSG_LD_NOVERSION_32 "LD_NOVERSION_32"
1507 @ MSG_LD_NOVERSION_64 "LD_NOVERSION_64"
1508 @ MSG_LD_NOVERSION "LD_NOVERSION"

1510 @ MSG_SGS_SUPPORT_32 "SGS_SUPPORT_32"
1511 @ MSG_SGS_SUPPORT_64 "SGS_SUPPORT_64"

new/usr/src/cmd/sgs/libld/common/libld.msg 24

1512 @ MSG_SGS_SUPPORT "SGS_SUPPORT"

1515 # Symbol names

1517 @ MSG_SYM_LIBVER_U "_lib_version"

1520 # Mapfile tokens

1522 @ MSG_MAP_LOAD "load"
1523 @ MSG_MAP_NOTE "note"
1524 @ MSG_MAP_NULL "null"
1525 @ MSG_MAP_STACK "stack"
1526 @ MSG_MAP_ADDVERS "addvers"
1527 @ MSG_MAP_FUNCTION "function"
1528 @ MSG_MAP_DATA "data"
1529 @ MSG_MAP_COMMON "common"
1530 @ MSG_MAP_PARENT "parent"
1531 @ MSG_MAP_EXTERN "extern"
1532 @ MSG_MAP_DIRECT "direct"
1533 @ MSG_MAP_NODIRECT "nodirect"
1534 @ MSG_MAP_FILTER "filter"
1535 @ MSG_MAP_AUXILIARY "auxiliary"
1536 @ MSG_MAP_OVERRIDE "override"
1537 @ MSG_MAP_INTERPOSE "interpose"
1538 @ MSG_MAP_DYNSORT "dynsort"
1539 @ MSG_MAP_NODYNSORT "nodynsort"

1541 @ MSG_MAPKW_ALIGN "ALIGN"
1542 @ MSG_MAPKW_ALLOC "ALLOC"
1543 @ MSG_MAPKW_ALLOW "ALLOW"
1544 @ MSG_MAPKW_AMD64_LARGE "AMD64_LARGE"
1545 @ MSG_MAPKW_ASSIGN_SECTION "ASSIGN_SECTION"
1546 @ MSG_MAPKW_AUX "AUXILIARY"
1547 @ MSG_MAPKW_CAPABILITY "CAPABILITY"
1548 @ MSG_MAPKW_COMMON "COMMON"
1549 @ MSG_MAPKW_DATA "DATA"
1550 @ MSG_MAPKW_DEFAULT "DEFAULT"
1551 @ MSG_MAPKW_DEPEND_VERSIONS "DEPEND_VERSIONS"
1552 @ MSG_MAPKW_DIRECT "DIRECT"
1553 @ MSG_MAPKW_DISABLE "DISABLE"
1554 @ MSG_MAPKW_DYNSORT "DYNSORT"
1555 @ MSG_MAPKW_ELIMINATE "ELIMINATE"
1556 @ MSG_MAPKW_EXECUTE "EXECUTE"
1557 @ MSG_MAPKW_EXPORTED "EXPORTED"
1558 @ MSG_MAPKW_EXTERN "EXTERN"
1559 @ MSG_MAPKW_FILTER "FILTER"
1560 @ MSG_MAPKW_FILE_BASENAME "FILE_BASENAME"
1561 @ MSG_MAPKW_FILE_PATH "FILE_PATH"
1562 @ MSG_MAPKW_FILE_OBJNAME "FILE_OBJNAME"
1563 @ MSG_MAPKW_FUNCTION "FUNCTION"
1564 @ MSG_MAPKW_FLAGS "FLAGS"
1565 @ MSG_MAPKW_GLOBAL "GLOBAL"
1566 @ MSG_MAPKW_INTERPOSE "INTERPOSE"
1567 @ MSG_MAPKW_HIDDEN "HIDDEN"
1568 @ MSG_MAPKW_HDR_NOALLOC "HDR_NOALLOC"
1569 @ MSG_MAPKW_HW "HW"
1570 @ MSG_MAPKW_HW_1 "HW_1"
1571 @ MSG_MAPKW_HW_2 "HW_2"
1572 @ MSG_MAPKW_IS_NAME "IS_NAME"
1573 @ MSG_MAPKW_IS_ORDER "IS_ORDER"
1574 @ MSG_MAPKW_LOAD_SEGMENT "LOAD_SEGMENT"
1575 @ MSG_MAPKW_LOCAL "LOCAL"
1576 @ MSG_MAPKW_MACHINE "MACHINE"
1577 @ MSG_MAPKW_MAX_SIZE "MAX_SIZE"

new/usr/src/cmd/sgs/libld/common/libld.msg 25

1578 @ MSG_MAPKW_NOHDR "NOHDR"
1579 @ MSG_MAPKW_NODIRECT "NODIRECT"
1580 @ MSG_MAPKW_NODYNSORT "NODYNSORT"
1581 @ MSG_MAPKW_NOTE_SEGMENT "NOTE_SEGMENT"
1582 @ MSG_MAPKW_NULL_SEGMENT "NULL_SEGMENT"
1583 @ MSG_MAPKW_OS_ORDER "OS_ORDER"
1584 @ MSG_MAPKW_PADDR "PADDR"
1585 @ MSG_MAPKW_PARENT "PARENT"
1586 @ MSG_MAPKW_PHDR_ADD_NULL "PHDR_ADD_NULL"
1587 @ MSG_MAPKW_PLATFORM "PLATFORM"
1588 @ MSG_MAPKW_PROTECTED "PROTECTED"
1589 @ MSG_MAPKW_READ "READ"
1590 @ MSG_MAPKW_ROUND "ROUND"
1591 @ MSG_MAPKW_REQUIRE "REQUIRE"
1592 @ MSG_MAPKW_SEGMENT_ORDER "SEGMENT_ORDER"
1593 @ MSG_MAPKW_SF "SF"
1594 @ MSG_MAPKW_SF_1 "SF_1"
1595 @ MSG_MAPKW_SINGLETON "SINGLETON"
1596 @ MSG_MAPKW_SIZE "SIZE"
1597 @ MSG_MAPKW_SIZE_SYMBOL "SIZE_SYMBOL"
1598 @ MSG_MAPKW_STACK "STACK"
1599 @ MSG_MAPKW_SYMBOL_SCOPE "SYMBOL_SCOPE"
1600 @ MSG_MAPKW_SYMBOL_VERSION "SYMBOL_VERSION"
1601 @ MSG_MAPKW_SYMBOLIC "SYMBOLIC"
1602 @ MSG_MAPKW_TYPE "TYPE"
1603 @ MSG_MAPKW_VADDR "VADDR"
1604 @ MSG_MAPKW_VALUE "VALUE"
1605 @ MSG_MAPKW_WRITE "WRITE"

1608 @ MSG_STR_DTRACE "PT_SUNWDTRACE"

new/usr/src/cmd/sgs/libld/common/syms.c 1

**
 97274 Mon Feb 11 00:23:19 2019
new/usr/src/cmd/sgs/libld/common/syms.c
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 1988 AT&T
24 * All Rights Reserved
25 *
26 *
27 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
28 */

30 /*
31 * Symbol table management routines
32 */

34 #define ELF_TARGET_AMD64

36 #include <stdio.h>
37 #include <string.h>
38 #include <debug.h>
39 #include <alloca.h>
40 #endif /* ! codereview */
41 #include "msg.h"
42 #include "_libld.h"

44 /*
45 * AVL tree comparator function:
46 *
47 * The primary key is the symbol name hash with a secondary key of the symbol
48 * name itself.
49 */
50 int
51 ld_sym_avl_comp(const void *elem1, const void *elem2)
52 {
53 Sym_avlnode *sav1 = (Sym_avlnode *)elem1;
54 Sym_avlnode *sav2 = (Sym_avlnode *)elem2;
55 int res;

57 res = sav1->sav_hash - sav2->sav_hash;

59 if (res < 0)

new/usr/src/cmd/sgs/libld/common/syms.c 2

60 return (-1);
61 if (res > 0)
62 return (1);

64 /*
65 * Hash is equal - now compare name
66 */
67 res = strcmp(sav1->sav_name, sav2->sav_name);
68 if (res == 0)
69 return (0);
70 if (res > 0)
71 return (1);
72 return (-1);
73 }

75 /*
76 * Focal point for verifying symbol names.
77 */
78 inline static const char *
79 string(Ofl_desc *ofl, Ifl_desc *ifl, Sym *sym, const char *strs, size_t strsize,
80 int symndx, Word shndx, Word symsecndx, const char *symsecname,
81 const char *strsecname, sd_flag_t *flags)
82 {
83 Word name = sym->st_name;

85 if (name) {
86 if ((ifl->ifl_flags & FLG_IF_HSTRTAB) == 0) {
87 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_FIL_NOSTRTABLE),
88 ifl->ifl_name, EC_WORD(symsecndx), symsecname,
89 symndx, EC_XWORD(name));
90 return (NULL);
91 }
92 if (name >= (Word)strsize) {
93 ld_eprintf(ofl, ERR_FATAL,
94 MSG_INTL(MSG_FIL_EXCSTRTABLE), ifl->ifl_name,
95 EC_WORD(symsecndx), symsecname, symndx,
96 EC_XWORD(name), strsecname, EC_XWORD(strsize));
97 return (NULL);
98 }
99 }

101 /*
102 * Determine if we’re dealing with a register and if so validate it.
103 * If it’s a scratch register, a fabricated name will be returned.
104 */
105 if (ld_targ.t_ms.ms_is_regsym != NULL) {
106 const char *regname = (*ld_targ.t_ms.ms_is_regsym)(ofl, ifl,
107 sym, strs, symndx, shndx, symsecname, flags);

109 if (regname == (const char *)S_ERROR) {
110 return (NULL);
111 }
112 if (regname)
113 return (regname);
114 }

116 /*
117 * If this isn’t a register, but we have a global symbol with a null
118 * name, we’re not going to be able to hash this, search for it, or
119 * do anything interesting. However, we’ve been accepting a symbol of
120 * this kind for ages now, so give the user a warning (rather than a
121 * fatal error), just in case this instance exists somewhere in the
122 * world and hasn’t, as yet, been a problem.
123 */
124 if ((name == 0) && (ELF_ST_BIND(sym->st_info) != STB_LOCAL)) {
125 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_FIL_NONAMESYM),

new/usr/src/cmd/sgs/libld/common/syms.c 3

126 ifl->ifl_name, EC_WORD(symsecndx), symsecname, symndx,
127 EC_XWORD(name));
128 }
129 return (strs + name);
130 }

132 /*
133 * For producing symbol names strings to use in error messages.
134 * If the symbol has a non-null name, then the string returned by
135 * this function is the output from demangle(), surrounded by
136 * single quotes. For null names, a descriptive string giving
137 * the symbol section and index is generated.
138 *
139 * This function uses an internal static buffer to hold the resulting
140 * string. The value returned is usable by the caller until the next
141 * call, at which point it is overwritten.
142 */
143 static const char *
144 demangle_symname(const char *name, const char *symtab_name, Word symndx)
145 {
146 #define INIT_BUFSIZE 256

148 static char *buf;
149 static size_t bufsize = 0;
150 size_t len;
151 int use_name;

153 use_name = (name != NULL) && (*name != ’\0’);

155 if (use_name) {
156 name = demangle(name);
157 len = strlen(name) + 2; /* Include room for quotes */
158 } else {
159 name = MSG_ORIG(MSG_STR_EMPTY);
160 len = strlen(symtab_name) + 2 + CONV_INV_BUFSIZE;
161 }
162 len++; /* Null termination */

164 /* If our buffer is too small, double it until it is big enough */
165 if (len > bufsize) {
166 size_t new_bufsize = bufsize;
167 char *new_buf;

169 if (new_bufsize == 0)
170 new_bufsize = INIT_BUFSIZE;
171 while (len > new_bufsize)
172 new_bufsize *= 2;
173 if ((new_buf = libld_malloc(new_bufsize)) == NULL)
174 return (name);
175 buf = new_buf;
176 bufsize = new_bufsize;
177 }

179 if (use_name) {
180 (void) snprintf(buf, bufsize, MSG_ORIG(MSG_FMT_SYMNAM), name);
181 } else {
182 (void) snprintf(buf, bufsize, MSG_ORIG(MSG_FMT_NULLSYMNAM),
183 symtab_name, EC_WORD(symndx));
184 }

186 return (buf);

188 #undef INIT_BUFSIZE
189 }

191 /*

new/usr/src/cmd/sgs/libld/common/syms.c 4

192 * Shared objects can be built that define specific symbols that can not be
193 * directly bound to. These objects have a syminfo section (and an associated
194 * DF_1_NODIRECT dynamic flags entry). Scan this table looking for symbols
195 * that can’t be bound to directly, and if this files symbol is presently
196 * referenced, mark it so that we don’t directly bind to it.
197 */
198 uintptr_t
199 ld_sym_nodirect(Is_desc *isp, Ifl_desc *ifl, Ofl_desc *ofl)
200 {
201 Shdr *sifshdr, *symshdr;
202 Syminfo *sifdata;
203 Sym *symdata;
204 char *strdata;
205 ulong_t cnt, _cnt;

207 /*
208 * Get the syminfo data, and determine the number of entries.
209 */
210 sifshdr = isp->is_shdr;
211 sifdata = (Syminfo *)isp->is_indata->d_buf;
212 cnt = sifshdr->sh_size / sifshdr->sh_entsize;

214 /*
215 * Get the associated symbol table.
216 */
217 if ((sifshdr->sh_link == 0) || (sifshdr->sh_link >= ifl->ifl_shnum)) {
218 /*
219 * Broken input file
220 */
221 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_FIL_INVSHINFO),
222 ifl->ifl_name, isp->is_name, EC_XWORD(sifshdr->sh_link));
223 return (0);
224 }
225 symshdr = ifl->ifl_isdesc[sifshdr->sh_link]->is_shdr;
226 symdata = ifl->ifl_isdesc[sifshdr->sh_link]->is_indata->d_buf;

228 /*
229 * Get the string table associated with the symbol table.
230 */
231 strdata = ifl->ifl_isdesc[symshdr->sh_link]->is_indata->d_buf;

233 /*
234 * Traverse the syminfo data for symbols that can’t be directly
235 * bound to.
236 */
237 for (_cnt = 1, sifdata++; _cnt < cnt; _cnt++, sifdata++) {
238 Sym *sym;
239 char *str;
240 Sym_desc *sdp;

242 if ((sifdata->si_flags & SYMINFO_FLG_NOEXTDIRECT) == 0)
243 continue;

245 sym = (Sym *)(symdata + _cnt);
246 str = (char *)(strdata + sym->st_name);

248 if ((sdp = ld_sym_find(str, SYM_NOHASH, NULL, ofl)) != NULL) {
249 if (ifl != sdp->sd_file)
250 continue;

252 sdp->sd_flags &= ~FLG_SY_DIR;
253 sdp->sd_flags |= FLG_SY_NDIR;
254 }
255 }
256 return (0);
257 }

new/usr/src/cmd/sgs/libld/common/syms.c 5

259 /*
260 * If, during symbol processing, it is necessary to update a local symbols
261 * contents before we have generated the symbol tables in the output image,
262 * create a new symbol structure and copy the original symbol contents. While
263 * we are processing the input files, their local symbols are part of the
264 * read-only mapped image. Commonly, these symbols are copied to the new output
265 * file image and then updated to reflect their new address and any change in
266 * attributes. However, sometimes during relocation counting, it is necessary
267 * to adjust the symbols information. This routine provides for the generation
268 * of a new symbol image so that this update can be performed.
269 * All global symbols are copied to an internal symbol table to improve locality
270 * of reference and hence performance, and thus this copying is not necessary.
271 */
272 uintptr_t
273 ld_sym_copy(Sym_desc *sdp)
274 {
275 Sym *nsym;

277 if (sdp->sd_flags & FLG_SY_CLEAN) {
278 if ((nsym = libld_malloc(sizeof (Sym))) == NULL)
279 return (S_ERROR);
280 *nsym = *(sdp->sd_sym);
281 sdp->sd_sym = nsym;
282 sdp->sd_flags &= ~FLG_SY_CLEAN;
283 }
284 return (1);
285 }

287 /*
288 * Finds a given name in the link editors internal symbol table. If no
289 * hash value is specified it is calculated. A pointer to the located
290 * Sym_desc entry is returned, or NULL if the symbol is not found.
291 */
292 Sym_desc *
293 ld_sym_find(const char *name, Word hash, avl_index_t *where, Ofl_desc *ofl)
294 {
295 Sym_avlnode qsav, *sav;

297 if (hash == SYM_NOHASH)
298 /* LINTED */
299 hash = (Word)elf_hash((const char *)name);
300 qsav.sav_hash = hash;
301 qsav.sav_name = name;

303 /*
304 * Perform search for symbol in AVL tree. Note that the ’where’ field
305 * is passed in from the caller. If a ’where’ is present, it can be
306 * used in subsequent ’ld_sym_enter()’ calls if required.
307 */
308 sav = avl_find(&ofl->ofl_symavl, &qsav, where);

310 /*
311 * If symbol was not found in the avl tree, return null to show that.
312 */
313 if (sav == NULL)
314 return (NULL);

316 /*
317 * Return symbol found.
318 */
319 return (sav->sav_sdp);
320 }

322 /*
323 * Enter a new symbol into the link editors internal symbol table.

new/usr/src/cmd/sgs/libld/common/syms.c 6

324 * If the symbol is from an input file, information regarding the input file
325 * and input section is also recorded. Otherwise (file == NULL) the symbol
326 * has been internally generated (ie. _etext, _edata, etc.).
327 */
328 Sym_desc *
329 ld_sym_enter(const char *name, Sym *osym, Word hash, Ifl_desc *ifl,
330 Ofl_desc *ofl, Word ndx, Word shndx, sd_flag_t sdflags, avl_index_t *where)
331 {
332 Sym_desc *sdp;
333 Sym_aux *sap;
334 Sym_avlnode *savl;
335 char *_name;
336 Sym *nsym;
337 Half etype;
338 uchar_t vis;
339 avl_index_t _where;

341 /*
342 * Establish the file type.
343 */
344 if (ifl)
345 etype = ifl->ifl_ehdr->e_type;
346 else
347 etype = ET_NONE;

349 ofl->ofl_entercnt++;

351 /*
352 * Allocate a Sym Descriptor, Auxiliary Descriptor, and a Sym AVLNode -
353 * contiguously.
354 */
355 if ((savl = libld_calloc(S_DROUND(sizeof (Sym_avlnode)) +
356 S_DROUND(sizeof (Sym_desc)) +
357 S_DROUND(sizeof (Sym_aux)), 1)) == NULL)
358 return ((Sym_desc *)S_ERROR);
359 sdp = (Sym_desc *)((uintptr_t)savl +
360 S_DROUND(sizeof (Sym_avlnode)));
361 sap = (Sym_aux *)((uintptr_t)sdp +
362 S_DROUND(sizeof (Sym_desc)));

364 savl->sav_sdp = sdp;
365 sdp->sd_file = ifl;
366 sdp->sd_aux = sap;
367 savl->sav_hash = sap->sa_hash = hash;

369 /*
370 * Copy the symbol table entry from the input file into the internal
371 * entry and have the symbol descriptor use it.
372 */
373 sdp->sd_sym = nsym = &sap->sa_sym;
374 *nsym = *osym;
375 sdp->sd_shndx = shndx;
376 sdp->sd_flags |= sdflags;

378 if ((_name = libld_malloc(strlen(name) + 1)) == NULL)
379 return ((Sym_desc *)S_ERROR);
380 savl->sav_name = sdp->sd_name = (const char *)strcpy(_name, name);

382 /*
383 * Enter Symbol in AVL tree.
384 */
385 if (where == 0) {
386 /* LINTED */
387 Sym_avlnode *_savl;
388 /*
389 * If a previous ld_sym_find() hasn’t initialized ’where’ do it

new/usr/src/cmd/sgs/libld/common/syms.c 7

390 * now.
391 */
392 where = &_where;
393 _savl = avl_find(&ofl->ofl_symavl, savl, where);
394 assert(_savl == NULL);
395 }
396 avl_insert(&ofl->ofl_symavl, savl, *where);

398 /*
399 * Record the section index. This is possible because the
400 * ‘ifl_isdesc’ table is filled before we start symbol processing.
401 */
402 if ((sdflags & FLG_SY_SPECSEC) || (nsym->st_shndx == SHN_UNDEF))
403 sdp->sd_isc = NULL;
404 else {
405 sdp->sd_isc = ifl->ifl_isdesc[shndx];

407 /*
408 * If this symbol is from a relocatable object, make sure that
409 * it is still associated with a section. For example, an
410 * unknown section type (SHT_NULL) would have been rejected on
411 * input with a warning. Here, we make the use of the symbol
412 * fatal. A symbol descriptor is still returned, so that the
413 * caller can continue processing all symbols, and hence flush
414 * out as many error conditions as possible.
415 */
416 if ((etype == ET_REL) && (sdp->sd_isc == NULL)) {
417 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_SYM_INVSEC),
418 name, ifl->ifl_name, EC_XWORD(shndx));
419 return (sdp);
420 }
421 }

423 /*
424 * Mark any COMMON symbols as ’tentative’.
425 */
426 if (sdflags & FLG_SY_SPECSEC) {
427 if (nsym->st_shndx == SHN_COMMON)
428 sdp->sd_flags |= FLG_SY_TENTSYM;
429 #if defined(_ELF64)
430 else if ((ld_targ.t_m.m_mach == EM_AMD64) &&
431 (nsym->st_shndx == SHN_X86_64_LCOMMON))
432 sdp->sd_flags |= FLG_SY_TENTSYM;
433 #endif
434 }

436 /*
437 * Establish the symbols visibility and reference.
438 */
439 vis = ELF_ST_VISIBILITY(nsym->st_other);

441 if ((etype == ET_NONE) || (etype == ET_REL)) {
442 switch (vis) {
443 case STV_DEFAULT:
444 sdp->sd_flags |= FLG_SY_DEFAULT;
445 break;
446 case STV_INTERNAL:
447 case STV_HIDDEN:
448 sdp->sd_flags |= FLG_SY_HIDDEN;
449 break;
450 case STV_PROTECTED:
451 sdp->sd_flags |= FLG_SY_PROTECT;
452 break;
453 case STV_EXPORTED:
454 sdp->sd_flags |= FLG_SY_EXPORT;
455 break;

new/usr/src/cmd/sgs/libld/common/syms.c 8

456 case STV_SINGLETON:
457 sdp->sd_flags |= (FLG_SY_SINGLE | FLG_SY_NDIR);
458 ofl->ofl_flags1 |= (FLG_OF1_NDIRECT | FLG_OF1_NGLBDIR);
459 break;
460 case STV_ELIMINATE:
461 sdp->sd_flags |= (FLG_SY_HIDDEN | FLG_SY_ELIM);
462 break;
463 default:
464 assert(vis <= STV_ELIMINATE);
465 }

467 sdp->sd_ref = REF_REL_NEED;

469 /*
470 * Under -Bnodirect, all exported interfaces that have not
471 * explicitly been defined protected or directly bound to, are
472 * tagged to prevent direct binding.
473 */
474 if ((ofl->ofl_flags1 & FLG_OF1_ALNODIR) &&
475 ((sdp->sd_flags & (FLG_SY_PROTECT | FLG_SY_DIR)) == 0) &&
476 (nsym->st_shndx != SHN_UNDEF)) {
477 sdp->sd_flags |= FLG_SY_NDIR;
478 }
479 } else {
480 sdp->sd_ref = REF_DYN_SEEN;

482 /*
483 * If this is a protected symbol, remember this. Note, this
484 * state is different from the FLG_SY_PROTECT used to establish
485 * a symbol definitions visibility. This state is used to warn
486 * against possible copy relocations against this referenced
487 * symbol.
488 */
489 if (vis == STV_PROTECTED)
490 sdp->sd_flags |= FLG_SY_PROT;

492 /*
493 * If this is a SINGLETON definition, then indicate the symbol
494 * can not be directly bound to, and retain the visibility.
495 * This visibility will be inherited by any references made to
496 * this symbol.
497 */
498 if ((vis == STV_SINGLETON) && (nsym->st_shndx != SHN_UNDEF))
499 sdp->sd_flags |= (FLG_SY_SINGLE | FLG_SY_NDIR);

501 /*
502 * If the new symbol is from a shared library and is associated
503 * with a SHT_NOBITS section then this symbol originated from a
504 * tentative symbol.
505 */
506 if (sdp->sd_isc &&
507 (sdp->sd_isc->is_shdr->sh_type == SHT_NOBITS))
508 sdp->sd_flags |= FLG_SY_TENTSYM;
509 }

511 /*
512 * Reclassify any SHN_SUNW_IGNORE symbols to SHN_UNDEF so as to
513 * simplify future processing.
514 */
515 if (nsym->st_shndx == SHN_SUNW_IGNORE) {
516 sdp->sd_shndx = shndx = SHN_UNDEF;
517 sdp->sd_flags |= (FLG_SY_REDUCED |
518 FLG_SY_HIDDEN | FLG_SY_IGNORE | FLG_SY_ELIM);
519 }

521 /*

new/usr/src/cmd/sgs/libld/common/syms.c 9

522 * If this is an undefined, or common symbol from a relocatable object
523 * determine whether it is a global or weak reference (see build_osym(),
524 * where REF_DYN_NEED definitions are returned back to undefines).
525 */
526 if ((etype == ET_REL) &&
527 (ELF_ST_BIND(nsym->st_info) == STB_GLOBAL) &&
528 ((nsym->st_shndx == SHN_UNDEF) || ((sdflags & FLG_SY_SPECSEC) &&
529 #if defined(_ELF64)
530 ((nsym->st_shndx == SHN_COMMON) ||
531 ((ld_targ.t_m.m_mach == EM_AMD64) &&
532 (nsym->st_shndx == SHN_X86_64_LCOMMON))))))
533 #else
534 /* BEGIN CSTYLED */
535 (nsym->st_shndx == SHN_COMMON))))
536 /* END CSTYLED */
537 #endif
538 sdp->sd_flags |= FLG_SY_GLOBREF;

540 /*
541 * Record the input filename on the referenced or defined files list
542 * for possible later diagnostics. The ‘sa_rfile’ pointer contains the
543 * name of the file that first referenced this symbol and is used to
544 * generate undefined symbol diagnostics (refer to sym_undef_entry()).
545 * Note that this entry can be overridden if a reference from a
546 * relocatable object is found after a reference from a shared object
547 * (refer to sym_override()).
548 * The ‘sa_dfiles’ list is used to maintain the list of files that
549 * define the same symbol. This list can be used for two reasons:
550 *
551 * - To save the first definition of a symbol that is not available
552 * for this link-edit.
553 *
554 * - To save all definitions of a symbol when the -m option is in
555 * effect. This is optional as it is used to list multiple
556 * (interposed) definitions of a symbol (refer to ldmap_out()),
557 * and can be quite expensive.
558 */
559 if (nsym->st_shndx == SHN_UNDEF) {
560 sap->sa_rfile = ifl->ifl_name;
561 } else {
562 if (sdp->sd_ref == REF_DYN_SEEN) {
563 /*
564 * A symbol is determined to be unavailable if it
565 * belongs to a version of a shared object that this
566 * user does not wish to use, or if it belongs to an
567 * implicit shared object.
568 */
569 if (ifl->ifl_vercnt) {
570 Ver_index *vip;
571 Half vndx = ifl->ifl_versym[ndx];

573 sap->sa_dverndx = vndx;
574 vip = &ifl->ifl_verndx[vndx];
575 if (!(vip->vi_flags & FLG_VER_AVAIL)) {
576 sdp->sd_flags |= FLG_SY_NOTAVAIL;
577 sap->sa_vfile = ifl->ifl_name;
578 }
579 }
580 if (!(ifl->ifl_flags & FLG_IF_NEEDED))
581 sdp->sd_flags |= FLG_SY_NOTAVAIL;

583 } else if (etype == ET_REL) {
584 /*
585 * If this symbol has been obtained from a versioned
586 * input relocatable object then the new symbol must be
587 * promoted to the versioning of the output file.

new/usr/src/cmd/sgs/libld/common/syms.c 10

588 */
589 if (ifl->ifl_versym)
590 ld_vers_promote(sdp, ndx, ifl, ofl);
591 }

593 if ((ofl->ofl_flags & FLG_OF_GENMAP) &&
594 ((sdflags & FLG_SY_SPECSEC) == 0))
595 if (aplist_append(&sap->sa_dfiles, ifl->ifl_name,
596 AL_CNT_SDP_DFILES) == NULL)
597 return ((Sym_desc *)S_ERROR);
598 }

600 /*
601 * Provided we’re not processing a mapfile, diagnose the entered symbol.
602 * Mapfile processing requires the symbol to be updated with additional
603 * information, therefore the diagnosing of the symbol is deferred until
604 * later (see Dbg_map_symbol()).
605 */
606 if ((ifl == NULL) || ((ifl->ifl_flags & FLG_IF_MAPFILE) == 0))
607 DBG_CALL(Dbg_syms_entered(ofl, nsym, sdp));

609 return (sdp);
610 }

612 /*
613 * Add a special symbol to the symbol table. Takes special symbol name with
614 * and without underscores. This routine is called, after all other symbol
615 * resolution has completed, to generate a reserved absolute symbol (the
616 * underscore version). Special symbols are updated with the appropriate
617 * values in update_osym(). If the user has already defined this symbol
618 * issue a warning and leave the symbol as is. If the non-underscore symbol
619 * is referenced then turn it into a weak alias of the underscored symbol.
620 *
621 * The bits in sdflags_u are OR’d into the flags field of the symbol for the
622 * underscored symbol.
623 *
624 * If this is a global symbol, and it hasn’t explicitly been defined as being
625 * directly bound to, indicate that it can’t be directly bound to.
626 * Historically, most special symbols only have meaning to the object in which
627 * they exist, however, they’ve always been global. To ensure compatibility
628 * with any unexpected use presently in effect, ensure these symbols don’t get
629 * directly bound to. Note, that establishing this state here isn’t sufficient
630 * to create a syminfo table, only if a syminfo table is being created by some
631 * other symbol directives will the nodirect binding be recorded. This ensures
632 * we don’t create syminfo sections for all objects we create, as this might add
633 * unnecessary bloat to users who haven’t explicitly requested extra symbol
634 * information.
635 */
636 static uintptr_t
637 sym_add_spec(const char *name, const char *uname, Word sdaux_id,
638 sd_flag_t sdflags_u, sd_flag_t sdflags, Ofl_desc *ofl)
639 {
640 Sym_desc *sdp;
641 Sym_desc *usdp;
642 Sym *sym;
643 Word hash;
644 avl_index_t where;

646 /* LINTED */
647 hash = (Word)elf_hash(uname);
648 if (usdp = ld_sym_find(uname, hash, &where, ofl)) {
649 /*
650 * If the underscore symbol exists and is undefined, or was
651 * defined in a shared library, convert it to a local symbol.
652 * Otherwise leave it as is and warn the user.
653 */

new/usr/src/cmd/sgs/libld/common/syms.c 11

654 if ((usdp->sd_shndx == SHN_UNDEF) ||
655 (usdp->sd_ref != REF_REL_NEED)) {
656 usdp->sd_ref = REF_REL_NEED;
657 usdp->sd_shndx = usdp->sd_sym->st_shndx = SHN_ABS;
658 usdp->sd_flags |= FLG_SY_SPECSEC | sdflags_u;
659 usdp->sd_sym->st_info =
660 ELF_ST_INFO(STB_GLOBAL, STT_OBJECT);
661 usdp->sd_isc = NULL;
662 usdp->sd_sym->st_size = 0;
663 usdp->sd_sym->st_value = 0;
664 /* LINTED */
665 usdp->sd_aux->sa_symspec = (Half)sdaux_id;

667 /*
668 * If a user hasn’t specifically indicated that the
669 * scope of this symbol be made local, then leave it
670 * as global (ie. prevent automatic scoping). The GOT
671 * should be defined protected, whereas all other
672 * special symbols are tagged as no-direct.
673 */
674 if (!SYM_IS_HIDDEN(usdp) &&
675 (sdflags & FLG_SY_DEFAULT)) {
676 usdp->sd_aux->sa_overndx = VER_NDX_GLOBAL;
677 if (sdaux_id == SDAUX_ID_GOT) {
678 usdp->sd_flags &= ~FLG_SY_NDIR;
679 usdp->sd_flags |= FLG_SY_PROTECT;
680 usdp->sd_sym->st_other = STV_PROTECTED;
681 } else if (
682 ((usdp->sd_flags & FLG_SY_DIR) == 0) &&
683 ((ofl->ofl_flags & FLG_OF_SYMBOLIC) == 0)) {
684 usdp->sd_flags |= FLG_SY_NDIR;
685 }
686 }
687 usdp->sd_flags |= sdflags;

689 /*
690 * If the reference originated from a mapfile ensure
691 * we mark the symbol as used.
692 */
693 if (usdp->sd_flags & FLG_SY_MAPREF)
694 usdp->sd_flags |= FLG_SY_MAPUSED;

696 DBG_CALL(Dbg_syms_updated(ofl, usdp, uname));
697 } else {
39 } else
698 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_RESERVE),
699 uname, usdp->sd_file->ifl_name);
700 }
701 #endif /* ! codereview */
702 } else {
703 /*
704 * If the symbol does not exist create it.
705 */
706 if ((sym = libld_calloc(sizeof (Sym), 1)) == NULL)
707 return (S_ERROR);
708 sym->st_shndx = SHN_ABS;
709 sym->st_info = ELF_ST_INFO(STB_GLOBAL, STT_OBJECT);
710 sym->st_size = 0;
711 sym->st_value = 0;
712 DBG_CALL(Dbg_syms_created(ofl->ofl_lml, uname));
713 if ((usdp = ld_sym_enter(uname, sym, hash, (Ifl_desc *)NULL,
714 ofl, 0, SHN_ABS, (FLG_SY_SPECSEC | sdflags_u), &where)) ==
715 (Sym_desc *)S_ERROR)
716 return (S_ERROR);
717 usdp->sd_ref = REF_REL_NEED;
718 /* LINTED */

new/usr/src/cmd/sgs/libld/common/syms.c 12

719 usdp->sd_aux->sa_symspec = (Half)sdaux_id;

721 usdp->sd_aux->sa_overndx = VER_NDX_GLOBAL;

723 if (sdaux_id == SDAUX_ID_GOT) {
724 usdp->sd_flags |= FLG_SY_PROTECT;
725 usdp->sd_sym->st_other = STV_PROTECTED;
726 } else if ((sdflags & FLG_SY_DEFAULT) &&
727 ((ofl->ofl_flags & FLG_OF_SYMBOLIC) == 0)) {
728 usdp->sd_flags |= FLG_SY_NDIR;
729 }
730 usdp->sd_flags |= sdflags;
731 }

733 if (name && (sdp = ld_sym_find(name, SYM_NOHASH, NULL, ofl)) &&
734 (sdp->sd_sym->st_shndx == SHN_UNDEF)) {
735 uchar_t bind;

737 /*
738 * If the non-underscore symbol exists and is undefined
739 * convert it to be a local. If the underscore has
740 * sa_symspec set (ie. it was created above) then simulate this
741 * as a weak alias.
742 */
743 sdp->sd_ref = REF_REL_NEED;
744 sdp->sd_shndx = sdp->sd_sym->st_shndx = SHN_ABS;
745 sdp->sd_flags |= FLG_SY_SPECSEC;
746 sdp->sd_isc = NULL;
747 sdp->sd_sym->st_size = 0;
748 sdp->sd_sym->st_value = 0;
749 /* LINTED */
750 sdp->sd_aux->sa_symspec = (Half)sdaux_id;
751 if (usdp->sd_aux->sa_symspec) {
752 usdp->sd_aux->sa_linkndx = 0;
753 sdp->sd_aux->sa_linkndx = 0;
754 bind = STB_WEAK;
755 } else
756 bind = STB_GLOBAL;
757 sdp->sd_sym->st_info = ELF_ST_INFO(bind, STT_OBJECT);

759 /*
760 * If a user hasn’t specifically indicated the scope of this
761 * symbol be made local then leave it as global (ie. prevent
762 * automatic scoping). The GOT should be defined protected,
763 * whereas all other special symbols are tagged as no-direct.
764 */
765 if (!SYM_IS_HIDDEN(sdp) &&
766 (sdflags & FLG_SY_DEFAULT)) {
767 sdp->sd_aux->sa_overndx = VER_NDX_GLOBAL;
768 if (sdaux_id == SDAUX_ID_GOT) {
769 sdp->sd_flags &= ~FLG_SY_NDIR;
770 sdp->sd_flags |= FLG_SY_PROTECT;
771 sdp->sd_sym->st_other = STV_PROTECTED;
772 } else if (((sdp->sd_flags & FLG_SY_DIR) == 0) &&
773 ((ofl->ofl_flags & FLG_OF_SYMBOLIC) == 0)) {
774 sdp->sd_flags |= FLG_SY_NDIR;
775 }
776 }
777 sdp->sd_flags |= sdflags;

779 /*
780 * If the reference originated from a mapfile ensure
781 * we mark the symbol as used.
782 */
783 if (sdp->sd_flags & FLG_SY_MAPREF)
784 sdp->sd_flags |= FLG_SY_MAPUSED;

new/usr/src/cmd/sgs/libld/common/syms.c 13

786 DBG_CALL(Dbg_syms_updated(ofl, sdp, name));
787 }
788 return (1);
789 }

792 /*
793 * Undefined symbols can fall into one of four types:
794 *
795 * - the symbol is really undefined (SHN_UNDEF).
796 *
797 * - versioning has been enabled, however this symbol has not been assigned
798 * to one of the defined versions.
799 *
800 * - the symbol has been defined by an implicitly supplied library, ie. one
801 * which was encounted because it was NEEDED by another library, rather
802 * than from a command line supplied library which would become the only
803 * dependency of the output file being produced.
804 *
805 * - the symbol has been defined by a version of a shared object that is
806 * not permitted for this link-edit.
807 *
808 * In all cases the file who made the first reference to this symbol will have
809 * been recorded via the ‘sa_rfile’ pointer.
810 */
811 typedef enum {
812 UNDEF, NOVERSION, IMPLICIT, NOTAVAIL,
813 BNDLOCAL
814 } Type;

816 static const Msg format[] = {
817 MSG_SYM_UND_UNDEF, /* MSG_INTL(MSG_SYM_UND_UNDEF) */
818 MSG_SYM_UND_NOVER, /* MSG_INTL(MSG_SYM_UND_NOVER) */
819 MSG_SYM_UND_IMPL, /* MSG_INTL(MSG_SYM_UND_IMPL) */
820 MSG_SYM_UND_NOTA, /* MSG_INTL(MSG_SYM_UND_NOTA) */
821 MSG_SYM_UND_BNDLOCAL /* MSG_INTL(MSG_SYM_UND_BNDLOCAL) */
822 };

824 /*
825 * Issue an undefined symbol message for the given symbol.
826 *
827 * entry:
828 * ofl - Output descriptor
829 * sdp - Undefined symbol to report
830 * type - Type of undefined symbol
831 * ofl_flag - One of 0, FLG_OF_FATAL, or FLG_OF_WARN.
832 * undef_state - Address of variable to be initialized to 0
833 * before the first call to sym_undef_entry, and passed
834 * to each subsequent call. A non-zero value for *undef_state
835 * indicates that this is not the first call in the series.
836 *
837 * exit:
838 * If *undef_state is 0, a title is issued.
839 *
840 * A message for the undefined symbol is issued.
841 *
842 * If ofl_flag is non-zero, its value is OR’d into *undef_state. Otherwise,
843 * all bits other than FLG_OF_FATAL and FLG_OF_WARN are set, in order to
844 * provide *undef_state with a non-zero value. These other bits have
845 * no meaning beyond that, and serve to ensure that *undef_state is
846 * non-zero if sym_undef_entry() has been called.
847 */
848 static void
849 sym_undef_entry(Ofl_desc *ofl, Sym_desc *sdp, Type type, ofl_flag_t ofl_flag,
850 ofl_flag_t *undef_state)

new/usr/src/cmd/sgs/libld/common/syms.c 14

851 {
852 const char *name1, *name2, *name3;
853 Ifl_desc *ifl = sdp->sd_file;
854 Sym_aux *sap = sdp->sd_aux;

856 if (*undef_state == 0)
857 ld_eprintf(ofl, ERR_NONE, MSG_INTL(MSG_SYM_FMT_UNDEF),
858 MSG_INTL(MSG_SYM_UNDEF_ITM_11),
859 MSG_INTL(MSG_SYM_UNDEF_ITM_21),
860 MSG_INTL(MSG_SYM_UNDEF_ITM_12),
861 MSG_INTL(MSG_SYM_UNDEF_ITM_22));

863 ofl->ofl_flags |= ofl_flag;
864 *undef_state |= ofl_flag ? ofl_flag : ~(FLG_OF_FATAL | FLG_OF_WARN);

866 switch (type) {
867 case UNDEF:
868 case BNDLOCAL:
869 name1 = sap->sa_rfile;
870 break;
871 case NOVERSION:
872 name1 = ifl->ifl_name;
873 break;
874 case IMPLICIT:
875 name1 = sap->sa_rfile;
876 name2 = ifl->ifl_name;
877 break;
878 case NOTAVAIL:
879 name1 = sap->sa_rfile;
880 name2 = sap->sa_vfile;
881 name3 = ifl->ifl_verndx[sap->sa_dverndx].vi_name;
882 break;
883 default:
884 return;
885 }

887 ld_eprintf(ofl, ERR_NONE, MSG_INTL(format[type]),
888 demangle(sdp->sd_name), name1, name2, name3);
889 }

891 /*
892 * If an undef symbol exists naming a bound for the output section,
893 * turn it into a defined symbol with the correct value.
894 *
895 * We set an arbitrary 1KB limit on the resulting symbol names.
896 */
897 static void
898 sym_add_bounds(Ofl_desc *ofl, Os_desc *osp, Word bound)
899 {
900 Sym_desc *bsdp;
901 char symn[1024];
902 size_t nsz;

904 switch (bound) {
905 case SDAUX_ID_SECBOUND_START:
906 nsz = snprintf(symn, sizeof (symn), "%s%s",
907 MSG_ORIG(MSG_SYM_SECBOUND_START), osp->os_name + 1);
908 if (nsz > sizeof (symn))
909 return;
910 break;
911 case SDAUX_ID_SECBOUND_STOP:
912 nsz = snprintf(symn, sizeof (symn), "%s%s",
913 MSG_ORIG(MSG_SYM_SECBOUND_STOP), osp->os_name + 1);
914 if (nsz > sizeof (symn))
915 return;
916 break;

new/usr/src/cmd/sgs/libld/common/syms.c 15

917 default:
918 assert(0);
919 }

921 if ((bsdp = ld_sym_find(symn, SYM_NOHASH, NULL, ofl)) != NULL) {
922 if ((bsdp->sd_shndx != SHN_UNDEF) &&
923 (bsdp->sd_ref == REF_REL_NEED)) {
924 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_RESERVE),
925 symn, bsdp->sd_file->ifl_name);
926 return;
927 }

929 DBG_CALL(Dbg_syms_updated(ofl, bsdp, symn));

931 bsdp->sd_aux->sa_symspec = bound;
932 bsdp->sd_aux->sa_boundsec = osp;
933 bsdp->sd_flags |= FLG_SY_SPECSEC;
934 bsdp->sd_ref = REF_REL_NEED;
935 bsdp->sd_sym->st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
936 bsdp->sd_sym->st_other = STV_PROTECTED;
937 bsdp->sd_isc = NULL;
938 bsdp->sd_sym->st_size = 0;
939 bsdp->sd_sym->st_value = 0;
940 bsdp->sd_shndx = bsdp->sd_sym->st_shndx = SHN_ABS;
941 }
942 }

944 /*
945 #endif /* ! codereview */
946 * At this point all symbol input processing has been completed, therefore
947 * complete the symbol table entries by generating any necessary internal
948 * symbols.
949 */
950 uintptr_t
951 ld_sym_spec(Ofl_desc *ofl)
952 {
953 Sym_desc *sdp;
954 Sg_desc *sgp;
955 Aliste idx1;
956 #endif /* ! codereview */

958 if (ofl->ofl_flags & FLG_OF_RELOBJ)
959 return (1);

961 DBG_CALL(Dbg_syms_spec_title(ofl->ofl_lml));

963 /*
964 * For each section in the output file, look for symbols named for the
965 * __start/__stop patterns. If references exist, flesh the symbols to
966 * be defined.
967 *
968 * the symbols are given values at the same time as the other special
969 * symbols.
970 */
971 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
972 Os_desc *osp;
973 Aliste idx2;

975 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
976 sym_add_bounds(ofl, osp, SDAUX_ID_SECBOUND_START);
977 sym_add_bounds(ofl, osp, SDAUX_ID_SECBOUND_STOP);
978 }
979 }

981 #endif /* ! codereview */
982 if (sym_add_spec(MSG_ORIG(MSG_SYM_ETEXT), MSG_ORIG(MSG_SYM_ETEXT_U),

new/usr/src/cmd/sgs/libld/common/syms.c 16

983 SDAUX_ID_ETEXT, 0, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
984 ofl) == S_ERROR)
985 return (S_ERROR);
986 if (sym_add_spec(MSG_ORIG(MSG_SYM_EDATA), MSG_ORIG(MSG_SYM_EDATA_U),
987 SDAUX_ID_EDATA, 0, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
988 ofl) == S_ERROR)
989 return (S_ERROR);
990 if (sym_add_spec(MSG_ORIG(MSG_SYM_END), MSG_ORIG(MSG_SYM_END_U),
991 SDAUX_ID_END, FLG_SY_DYNSORT, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
992 ofl) == S_ERROR)
993 return (S_ERROR);
994 if (sym_add_spec(MSG_ORIG(MSG_SYM_L_END), MSG_ORIG(MSG_SYM_L_END_U),
995 SDAUX_ID_END, 0, FLG_SY_HIDDEN, ofl) == S_ERROR)
996 return (S_ERROR);
997 if (sym_add_spec(MSG_ORIG(MSG_SYM_L_START), MSG_ORIG(MSG_SYM_L_START_U),
998 SDAUX_ID_START, 0, FLG_SY_HIDDEN, ofl) == S_ERROR)
999 return (S_ERROR);

1001 /*
1002 * Historically we’ve always produced a _DYNAMIC symbol, even for
1003 * static executables (in which case its value will be 0).
1004 */
1005 if (sym_add_spec(MSG_ORIG(MSG_SYM_DYNAMIC), MSG_ORIG(MSG_SYM_DYNAMIC_U),
1006 SDAUX_ID_DYN, FLG_SY_DYNSORT, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
1007 ofl) == S_ERROR)
1008 return (S_ERROR);

1010 if (OFL_ALLOW_DYNSYM(ofl))
1011 if (sym_add_spec(MSG_ORIG(MSG_SYM_PLKTBL),
1012 MSG_ORIG(MSG_SYM_PLKTBL_U), SDAUX_ID_PLT,
1013 FLG_SY_DYNSORT, (FLG_SY_DEFAULT | FLG_SY_EXPDEF),
1014 ofl) == S_ERROR)
1015 return (S_ERROR);

1017 /*
1018 * A GOT reference will be accompanied by the associated GOT symbol.
1019 * Make sure it gets assigned the appropriate special attributes.
1020 */
1021 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_GOFTBL_U),
1022 SYM_NOHASH, NULL, ofl)) != NULL) && (sdp->sd_ref != REF_DYN_SEEN)) {
1023 if (sym_add_spec(MSG_ORIG(MSG_SYM_GOFTBL),
1024 MSG_ORIG(MSG_SYM_GOFTBL_U), SDAUX_ID_GOT, FLG_SY_DYNSORT,
1025 (FLG_SY_DEFAULT | FLG_SY_EXPDEF), ofl) == S_ERROR)
1026 return (S_ERROR);
1027 }

1029 return (1);
1030 }

1032 /*
1033 * Determine a potential capability symbol’s visibility.
1034 *
1035 * The -z symbolcap option transforms an object capabilities relocatable object
1036 * into a symbol capabilities relocatable object. Any global function symbols,
1037 * or initialized global data symbols are candidates for transforming into local
1038 * symbol capabilities definitions. However, if a user indicates that a symbol
1039 * should be demoted to local using a mapfile, then there is no need to
1040 * transform the associated global symbol.
1041 *
1042 * Normally, a symbol’s visibility is determined after the symbol resolution
1043 * process, after all symbol state has been gathered and resolved. However,
1044 * for -z symbolcap, this determination is too late. When a global symbol is
1045 * read from an input file we need to determine it’s visibility so as to decide
1046 * whether to create a local or not.
1047 *
1048 * If a user has explicitly defined this symbol as having local scope within a

new/usr/src/cmd/sgs/libld/common/syms.c 17

1049 * mapfile, then a symbol of the same name already exists. However, explicit
1050 * local definitions are uncommon, as most mapfiles define the global symbol
1051 * requirements together with an auto-reduction directive ’*’. If this state
1052 * has been defined, then we must make sure that the new symbol isn’t a type
1053 * that can not be demoted to local.
1054 */
1055 static int
1056 sym_cap_vis(const char *name, Word hash, Sym *sym, Ofl_desc *ofl)
1057 {
1058 Sym_desc *sdp;
1059 uchar_t vis;
1060 avl_index_t where;
1061 sd_flag_t sdflags = 0;

1063 /*
1064 * Determine the visibility of the new symbol.
1065 */
1066 vis = ELF_ST_VISIBILITY(sym->st_other);
1067 switch (vis) {
1068 case STV_EXPORTED:
1069 sdflags |= FLG_SY_EXPORT;
1070 break;
1071 case STV_SINGLETON:
1072 sdflags |= FLG_SY_SINGLE;
1073 break;
1074 }

1076 /*
1077 * Determine whether a symbol definition already exists, and if so
1078 * obtain the visibility.
1079 */
1080 if ((sdp = ld_sym_find(name, hash, &where, ofl)) != NULL)
1081 sdflags |= sdp->sd_flags;

1083 /*
1084 * Determine whether the symbol flags indicate this symbol should be
1085 * hidden.
1086 */
1087 if ((ofl->ofl_flags & (FLG_OF_AUTOLCL | FLG_OF_AUTOELM)) &&
1088 ((sdflags & MSK_SY_NOAUTO) == 0))
1089 sdflags |= FLG_SY_HIDDEN;

1091 return ((sdflags & FLG_SY_HIDDEN) == 0);
1092 }

1094 /*
1095 * This routine checks to see if a symbols visibility needs to be reduced to
1096 * either SYMBOLIC or LOCAL. This routine can be called from either
1097 * reloc_init() or sym_validate().
1098 */
1099 void
1100 ld_sym_adjust_vis(Sym_desc *sdp, Ofl_desc *ofl)
1101 {
1102 ofl_flag_t oflags = ofl->ofl_flags;
1103 Sym *sym = sdp->sd_sym;

1105 if ((sdp->sd_ref == REF_REL_NEED) &&
1106 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
1107 /*
1108 * If auto-reduction/elimination is enabled, reduce any
1109 * non-versioned, and non-local capabilities global symbols.
1110 * A symbol is a candidate for auto-reduction/elimination if:
1111 *
1112 * - the symbol wasn’t explicitly defined within a mapfile
1113 * (in which case all the necessary state has been applied
1114 * to the symbol), or

new/usr/src/cmd/sgs/libld/common/syms.c 18

1115 * - the symbol isn’t one of the family of reserved
1116 * special symbols (ie. _end, _etext, etc.), or
1117 * - the symbol isn’t a SINGLETON, or
1118 * - the symbol wasn’t explicitly defined within a version
1119 * definition associated with an input relocatable object.
1120 *
1121 * Indicate that the symbol has been reduced as it may be
1122 * necessary to print these symbols later.
1123 */
1124 if ((oflags & (FLG_OF_AUTOLCL | FLG_OF_AUTOELM)) &&
1125 ((sdp->sd_flags & MSK_SY_NOAUTO) == 0)) {
1126 if ((sdp->sd_flags & FLG_SY_HIDDEN) == 0) {
1127 sdp->sd_flags |=
1128 (FLG_SY_REDUCED | FLG_SY_HIDDEN);
1129 }

1131 if (oflags & (FLG_OF_REDLSYM | FLG_OF_AUTOELM)) {
1132 sdp->sd_flags |= FLG_SY_ELIM;
1133 sym->st_other = STV_ELIMINATE |
1134 (sym->st_other & ~MSK_SYM_VISIBILITY);
1135 } else if (ELF_ST_VISIBILITY(sym->st_other) !=
1136 STV_INTERNAL)
1137 sym->st_other = STV_HIDDEN |
1138 (sym->st_other & ~MSK_SYM_VISIBILITY);
1139 }

1141 /*
1142 * If -Bsymbolic is in effect, and the symbol hasn’t explicitly
1143 * been defined nodirect (via a mapfile), then bind the global
1144 * symbol symbolically and assign the STV_PROTECTED visibility
1145 * attribute.
1146 */
1147 if ((oflags & FLG_OF_SYMBOLIC) &&
1148 ((sdp->sd_flags & (FLG_SY_HIDDEN | FLG_SY_NDIR)) == 0)) {
1149 sdp->sd_flags |= FLG_SY_PROTECT;
1150 if (ELF_ST_VISIBILITY(sym->st_other) == STV_DEFAULT)
1151 sym->st_other = STV_PROTECTED |
1152 (sym->st_other & ~MSK_SYM_VISIBILITY);
1153 }
1154 }

1156 /*
1157 * Indicate that this symbol has had it’s visibility checked so that
1158 * we don’t need to do this investigation again.
1159 */
1160 sdp->sd_flags |= FLG_SY_VISIBLE;
1161 }

1163 /*
1164 * Make sure a symbol definition is local to the object being built.
1165 */
1166 inline static int
1167 ensure_sym_local(Ofl_desc *ofl, Sym_desc *sdp, const char *str)
1168 {
1169 if (sdp->sd_sym->st_shndx == SHN_UNDEF) {
1170 if (str) {
1171 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_SYM_UNDEF),
1172 str, demangle((char *)sdp->sd_name));
1173 }
1174 return (1);
1175 }
1176 if (sdp->sd_ref != REF_REL_NEED) {
1177 if (str) {
1178 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_SYM_EXTERN),
1179 str, demangle((char *)sdp->sd_name),
1180 sdp->sd_file->ifl_name);

new/usr/src/cmd/sgs/libld/common/syms.c 19

1181 }
1182 return (1);
1183 }

1185 sdp->sd_flags |= FLG_SY_UPREQD;
1186 if (sdp->sd_isc) {
1187 sdp->sd_isc->is_flags |= FLG_IS_SECTREF;
1188 sdp->sd_isc->is_file->ifl_flags |= FLG_IF_FILEREF;
1189 }
1190 return (0);
1191 }

1193 /*
1194 * Make sure all the symbol definitions required for initarray, finiarray, or
1195 * preinitarray’s are local to the object being built.
1196 */
1197 static int
1198 ensure_array_local(Ofl_desc *ofl, APlist *apl, const char *str)
1199 {
1200 Aliste idx;
1201 Sym_desc *sdp;
1202 int ret = 0;

1204 for (APLIST_TRAVERSE(apl, idx, sdp))
1205 ret += ensure_sym_local(ofl, sdp, str);

1207 return (ret);
1208 }

1210 /*
1211 * After all symbol table input processing has been finished, and all relocation
1212 * counting has been carried out (ie. no more symbols will be read, generated,
1213 * or modified), validate and count the relevant entries:
1214 *
1215 * - check and print any undefined symbols remaining. Note that if a symbol
1216 * has been defined by virtue of the inclusion of an implicit shared
1217 * library, it is still classed as undefined.
1218 *
1219 * - count the number of global needed symbols together with the size of
1220 * their associated name strings (if scoping has been indicated these
1221 * symbols may be reduced to locals).
1222 *
1223 * - establish the size and alignment requirements for the global .bss
1224 * section (the alignment of this section is based on the first symbol
1225 * that it will contain).
1226 */
1227 uintptr_t
1228 ld_sym_validate(Ofl_desc *ofl)
1229 {
1230 Sym_avlnode *sav;
1231 Sym_desc *sdp;
1232 Sym *sym;
1233 ofl_flag_t oflags = ofl->ofl_flags;
1234 ofl_flag_t undef = 0, needed = 0, verdesc = 0;
1235 Xword bssalign = 0, tlsalign = 0;
1236 Boolean need_bss, need_tlsbss;
1237 Xword bsssize = 0, tlssize = 0;
1238 #if defined(_ELF64)
1239 Xword lbssalign = 0, lbsssize = 0;
1240 Boolean need_lbss;
1241 #endif
1242 int ret, allow_ldynsym;
1243 uchar_t type;
1244 ofl_flag_t undef_state = 0;

1246 DBG_CALL(Dbg_basic_validate(ofl->ofl_lml));

new/usr/src/cmd/sgs/libld/common/syms.c 20

1248 /*
1249 * The need_XXX booleans are used to determine whether we need to
1250 * create each type of bss section. We used to create these sections
1251 * if the sum of the required sizes for each type were non-zero.
1252 * However, it is possible for a compiler to generate COMMON variables
1253 * of zero-length and this tricks that logic --- even zero-length
1254 * symbols need an output section.
1255 */
1256 need_bss = need_tlsbss = FALSE;
1257 #if defined(_ELF64)
1258 need_lbss = FALSE;
1259 #endif

1261 /*
1262 * Determine how undefined symbols are handled:
1263 *
1264 * fatal:
1265 * If this link-edit calls for no undefined symbols to remain
1266 * (this is the default case when generating an executable but
1267 * can be enforced for any object using -z defs), a fatal error
1268 * condition will be indicated.
1269 *
1270 * warning:
1271 * If we’re creating a shared object, and either the -Bsymbolic
1272 * flag is set, or the user has turned on the -z guidance feature,
1273 * then a non-fatal warning is issued for each symbol.
1274 *
1275 * ignore:
1276 * In all other cases, undefined symbols are quietly allowed.
1277 */
1278 if (oflags & FLG_OF_NOUNDEF) {
1279 undef = FLG_OF_FATAL;
1280 } else if (oflags & FLG_OF_SHAROBJ) {
1281 if ((oflags & FLG_OF_SYMBOLIC) ||
1282 OFL_GUIDANCE(ofl, FLG_OFG_NO_DEFS))
1283 undef = FLG_OF_WARN;
1284 }

1286 /*
1287 * If the symbol is referenced from an implicitly included shared object
1288 * (ie. it’s not on the NEEDED list) then the symbol is also classified
1289 * as undefined and a fatal error condition will be indicated.
1290 */
1291 if ((oflags & FLG_OF_NOUNDEF) || !(oflags & FLG_OF_SHAROBJ))
1292 needed = FLG_OF_FATAL;
1293 else if ((oflags & FLG_OF_SHAROBJ) &&
1294 OFL_GUIDANCE(ofl, FLG_OFG_NO_DEFS))
1295 needed = FLG_OF_WARN;

1297 /*
1298 * If the output image is being versioned, then all symbol definitions
1299 * must be associated with a version. Any symbol that isn’t associated
1300 * with a version is classified as undefined, and a fatal error
1301 * condition is indicated.
1302 */
1303 if ((oflags & FLG_OF_VERDEF) && (ofl->ofl_vercnt > VER_NDX_GLOBAL))
1304 verdesc = FLG_OF_FATAL;

1306 allow_ldynsym = OFL_ALLOW_LDYNSYM(ofl);

1308 if (allow_ldynsym) {
1309 /*
1310 * Normally, we disallow symbols with 0 size from appearing
1311 * in a dyn[sym|tls]sort section. However, there are some
1312 * symbols that serve special purposes that we want to exempt

new/usr/src/cmd/sgs/libld/common/syms.c 21

1313 * from this rule. Look them up, and set their
1314 * FLG_SY_DYNSORT flag.
1315 */
1316 static const char *special[] = {
1317 MSG_ORIG(MSG_SYM_INIT_U), /* _init */
1318 MSG_ORIG(MSG_SYM_FINI_U), /* _fini */
1319 MSG_ORIG(MSG_SYM_START), /* _start */
1320 NULL
1321 };
1322 int i;

1324 for (i = 0; special[i] != NULL; i++) {
1325 if (((sdp = ld_sym_find(special[i],
1326 SYM_NOHASH, NULL, ofl)) != NULL) &&
1327 (sdp->sd_sym->st_size == 0)) {
1328 if (ld_sym_copy(sdp) == S_ERROR)
1329 return (S_ERROR);
1330 sdp->sd_flags |= FLG_SY_DYNSORT;
1331 }
1332 }
1333 }

1335 /*
1336 * Collect and validate the globals from the internal symbol table.
1337 */
1338 for (sav = avl_first(&ofl->ofl_symavl); sav;
1339 sav = AVL_NEXT(&ofl->ofl_symavl, sav)) {
1340 Is_desc *isp;
1341 int undeferr = 0;
1342 uchar_t vis;

1344 sdp = sav->sav_sdp;

1346 /*
1347 * If undefined symbols are allowed, and we’re not being
1348 * asked to supply guidance, ignore any symbols that are
1349 * not needed.
1350 */
1351 if (!(oflags & FLG_OF_NOUNDEF) &&
1352 !OFL_GUIDANCE(ofl, FLG_OFG_NO_DEFS) &&
1353 (sdp->sd_ref == REF_DYN_SEEN))
1354 continue;

1356 /*
1357 * If the symbol originates from an external or parent mapfile
1358 * reference and hasn’t been matched to a reference from a
1359 * relocatable object, ignore it.
1360 */
1361 if ((sdp->sd_flags & (FLG_SY_EXTERN | FLG_SY_PARENT)) &&
1362 ((sdp->sd_flags & FLG_SY_MAPUSED) == 0)) {
1363 sdp->sd_flags |= FLG_SY_INVALID;
1364 continue;
1365 }

1367 sym = sdp->sd_sym;
1368 type = ELF_ST_TYPE(sym->st_info);

1370 /*
1371 * Sanity check TLS.
1372 */
1373 if ((type == STT_TLS) && (sym->st_size != 0) &&
1374 (sym->st_shndx != SHN_UNDEF) &&
1375 (sym->st_shndx != SHN_COMMON)) {
1376 Is_desc *isp = sdp->sd_isc;
1377 Ifl_desc *ifl = sdp->sd_file;

new/usr/src/cmd/sgs/libld/common/syms.c 22

1379 if ((isp == NULL) || (isp->is_shdr == NULL) ||
1380 ((isp->is_shdr->sh_flags & SHF_TLS) == 0)) {
1381 ld_eprintf(ofl, ERR_FATAL,
1382 MSG_INTL(MSG_SYM_TLS),
1383 demangle(sdp->sd_name), ifl->ifl_name);
1384 continue;
1385 }
1386 }

1388 if ((sdp->sd_flags & FLG_SY_VISIBLE) == 0)
1389 ld_sym_adjust_vis(sdp, ofl);

1391 if ((sdp->sd_flags & FLG_SY_REDUCED) &&
1392 (oflags & FLG_OF_PROCRED)) {
1393 DBG_CALL(Dbg_syms_reduce(ofl, DBG_SYM_REDUCE_GLOBAL,
1394 sdp, 0, 0));
1395 }

1397 /*
1398 * Record any STV_SINGLETON existence.
1399 */
1400 if ((vis = ELF_ST_VISIBILITY(sym->st_other)) == STV_SINGLETON)
1401 ofl->ofl_dtflags_1 |= DF_1_SINGLETON;

1403 /*
1404 * If building a shared object or executable, and this is a
1405 * non-weak UNDEF symbol with reduced visibility (STV_*), then
1406 * give a fatal error.
1407 */
1408 if (((oflags & FLG_OF_RELOBJ) == 0) &&
1409 (sym->st_shndx == SHN_UNDEF) &&
1410 (ELF_ST_BIND(sym->st_info) != STB_WEAK)) {
1411 if (vis && (vis != STV_SINGLETON)) {
1412 sym_undef_entry(ofl, sdp, BNDLOCAL,
1413 FLG_OF_FATAL, &undef_state);
1414 continue;
1415 }
1416 }

1418 /*
1419 * If this symbol is defined in a non-allocatable section,
1420 * reduce it to local symbol.
1421 */
1422 if (((isp = sdp->sd_isc) != 0) && isp->is_shdr &&
1423 ((isp->is_shdr->sh_flags & SHF_ALLOC) == 0)) {
1424 sdp->sd_flags |= (FLG_SY_REDUCED | FLG_SY_HIDDEN);
1425 }

1427 /*
1428 * If this symbol originated as a SHN_SUNW_IGNORE, it will have
1429 * been processed as an SHN_UNDEF. Return the symbol to its
1430 * original index for validation, and propagation to the output
1431 * file.
1432 */
1433 if (sdp->sd_flags & FLG_SY_IGNORE)
1434 sdp->sd_shndx = SHN_SUNW_IGNORE;

1436 if (undef) {
1437 /*
1438 * If a non-weak reference remains undefined, or if a
1439 * mapfile reference is not bound to the relocatable
1440 * objects that make up the object being built, we have
1441 * a fatal error.
1442 *
1443 * The exceptions are symbols which are defined to be
1444 * found in the parent (FLG_SY_PARENT), which is really

new/usr/src/cmd/sgs/libld/common/syms.c 23

1445 * only meaningful for direct binding, or are defined
1446 * external (FLG_SY_EXTERN) so as to suppress -zdefs
1447 * errors.
1448 *
1449 * Register symbols are always allowed to be UNDEF.
1450 *
1451 * Note that we don’t include references created via -u
1452 * in the same shared object binding test. This is for
1453 * backward compatibility, in that a number of archive
1454 * makefile rules used -u to cause archive extraction.
1455 * These same rules have been cut and pasted to apply
1456 * to shared objects, and thus although the -u reference
1457 * is redundant, flagging it as fatal could cause some
1458 * build to fail. Also we have documented the use of
1459 * -u as a mechanism to cause binding to weak version
1460 * definitions, thus giving users an error condition
1461 * would be incorrect.
1462 */
1463 if (!(sdp->sd_flags & FLG_SY_REGSYM) &&
1464 ((sym->st_shndx == SHN_UNDEF) &&
1465 ((ELF_ST_BIND(sym->st_info) != STB_WEAK) &&
1466 ((sdp->sd_flags &
1467 (FLG_SY_PARENT | FLG_SY_EXTERN)) == 0)) ||
1468 ((sdp->sd_flags &
1469 (FLG_SY_MAPREF | FLG_SY_MAPUSED | FLG_SY_HIDDEN |
1470 FLG_SY_PROTECT)) == FLG_SY_MAPREF))) {
1471 sym_undef_entry(ofl, sdp, UNDEF, undef,
1472 &undef_state);
1473 undeferr = 1;
1474 }

1476 } else {
1477 /*
1478 * For building things like shared objects (or anything
1479 * -znodefs), undefined symbols are allowed.
1480 *
1481 * If a mapfile reference remains undefined the user
1482 * would probably like a warning at least (they’ve
1483 * usually mis-spelt the reference). Refer to the above
1484 * comments for discussion on -u references, which
1485 * are not tested for in the same manner.
1486 */
1487 if ((sdp->sd_flags &
1488 (FLG_SY_MAPREF | FLG_SY_MAPUSED)) ==
1489 FLG_SY_MAPREF) {
1490 sym_undef_entry(ofl, sdp, UNDEF, FLG_OF_WARN,
1491 &undef_state);
1492 undeferr = 1;
1493 }
1494 }

1496 /*
1497 * If this symbol comes from a dependency mark the dependency
1498 * as required (-z ignore can result in unused dependencies
1499 * being dropped). If we need to record dependency versioning
1500 * information indicate what version of the needed shared object
1501 * this symbol is part of. Flag the symbol as undefined if it
1502 * has not been made available to us.
1503 */
1504 if ((sdp->sd_ref == REF_DYN_NEED) &&
1505 (!(sdp->sd_flags & FLG_SY_REFRSD))) {
1506 sdp->sd_file->ifl_flags |= FLG_IF_DEPREQD;

1508 /*
1509 * Capture that we’ve bound to a symbol that doesn’t
1510 * allow being directly bound to.

new/usr/src/cmd/sgs/libld/common/syms.c 24

1511 */
1512 if (sdp->sd_flags & FLG_SY_NDIR)
1513 ofl->ofl_flags1 |= FLG_OF1_NGLBDIR;

1515 if (sdp->sd_file->ifl_vercnt) {
1516 int vndx;
1517 Ver_index *vip;

1519 vndx = sdp->sd_aux->sa_dverndx;
1520 vip = &sdp->sd_file->ifl_verndx[vndx];
1521 if (vip->vi_flags & FLG_VER_AVAIL) {
1522 vip->vi_flags |= FLG_VER_REFER;
1523 } else {
1524 sym_undef_entry(ofl, sdp, NOTAVAIL,
1525 FLG_OF_FATAL, &undef_state);
1526 continue;
1527 }
1528 }
1529 }

1531 /*
1532 * Test that we do not bind to symbol supplied from an implicit
1533 * shared object. If a binding is from a weak reference it can
1534 * be ignored.
1535 */
1536 if (needed && !undeferr && (sdp->sd_flags & FLG_SY_GLOBREF) &&
1537 (sdp->sd_ref == REF_DYN_NEED) &&
1538 (sdp->sd_flags & FLG_SY_NOTAVAIL)) {
1539 sym_undef_entry(ofl, sdp, IMPLICIT, needed,
1540 &undef_state);
1541 if (needed == FLG_OF_FATAL)
1542 continue;
1543 }

1545 /*
1546 * Test that a symbol isn’t going to be reduced to local scope
1547 * which actually wants to bind to a shared object - if so it’s
1548 * a fatal error.
1549 */
1550 if ((sdp->sd_ref == REF_DYN_NEED) &&
1551 (sdp->sd_flags & (FLG_SY_HIDDEN | FLG_SY_PROTECT))) {
1552 sym_undef_entry(ofl, sdp, BNDLOCAL, FLG_OF_FATAL,
1553 &undef_state);
1554 continue;
1555 }

1557 /*
1558 * If the output image is to be versioned then all symbol
1559 * definitions must be associated with a version. Remove any
1560 * versioning that might be left associated with an undefined
1561 * symbol.
1562 */
1563 if (verdesc && (sdp->sd_ref == REF_REL_NEED)) {
1564 if (sym->st_shndx == SHN_UNDEF) {
1565 if (sdp->sd_aux && sdp->sd_aux->sa_overndx)
1566 sdp->sd_aux->sa_overndx = 0;
1567 } else {
1568 if (!SYM_IS_HIDDEN(sdp) && sdp->sd_aux &&
1569 (sdp->sd_aux->sa_overndx == 0)) {
1570 sym_undef_entry(ofl, sdp, NOVERSION,
1571 verdesc, &undef_state);
1572 continue;
1573 }
1574 }
1575 }

new/usr/src/cmd/sgs/libld/common/syms.c 25

1577 /*
1578 * If we don’t need the symbol there’s no need to process it
1579 * any further.
1580 */
1581 if (sdp->sd_ref == REF_DYN_SEEN)
1582 continue;

1584 /*
1585 * Calculate the size and alignment requirements for the global
1586 * .bss and .tls sections. If we’re building a relocatable
1587 * object only account for scoped COMMON symbols (these will
1588 * be converted to .bss references).
1589 *
1590 * When -z nopartial is in effect, partially initialized
1591 * symbols are directed to the special .data section
1592 * created for that purpose (ofl->ofl_isparexpn).
1593 * Otherwise, partially initialized symbols go to .bss.
1594 *
1595 * Also refer to make_mvsections() in sunwmove.c
1596 */
1597 if ((sym->st_shndx == SHN_COMMON) &&
1598 (((oflags & FLG_OF_RELOBJ) == 0) ||
1599 (SYM_IS_HIDDEN(sdp) && (oflags & FLG_OF_PROCRED)))) {
1600 if ((sdp->sd_move == NULL) ||
1601 ((sdp->sd_flags & FLG_SY_PAREXPN) == 0)) {
1602 if (type != STT_TLS) {
1603 need_bss = TRUE;
1604 bsssize = (Xword)S_ROUND(bsssize,
1605 sym->st_value) + sym->st_size;
1606 if (sym->st_value > bssalign)
1607 bssalign = sym->st_value;
1608 } else {
1609 need_tlsbss = TRUE;
1610 tlssize = (Xword)S_ROUND(tlssize,
1611 sym->st_value) + sym->st_size;
1612 if (sym->st_value > tlsalign)
1613 tlsalign = sym->st_value;
1614 }
1615 }
1616 }

1618 #if defined(_ELF64)
1619 /*
1620 * Calculate the size and alignment requirement for the global
1621 * .lbss. TLS or partially initialized symbols do not need to be
1622 * considered yet.
1623 */
1624 if ((ld_targ.t_m.m_mach == EM_AMD64) &&
1625 (sym->st_shndx == SHN_X86_64_LCOMMON)) {
1626 need_lbss = TRUE;
1627 lbsssize = (Xword)S_ROUND(lbsssize, sym->st_value) +
1628 sym->st_size;
1629 if (sym->st_value > lbssalign)
1630 lbssalign = sym->st_value;
1631 }
1632 #endif
1633 /*
1634 * If a symbol was referenced via the command line
1635 * (ld -u <>, ...), then this counts as a reference against the
1636 * symbol. Mark any section that symbol is defined in.
1637 */
1638 if (((isp = sdp->sd_isc) != 0) &&
1639 (sdp->sd_flags & FLG_SY_CMDREF)) {
1640 isp->is_flags |= FLG_IS_SECTREF;
1641 isp->is_file->ifl_flags |= FLG_IF_FILEREF;
1642 }

new/usr/src/cmd/sgs/libld/common/syms.c 26

1644 /*
1645 * Update the symbol count and the associated name string size.
1646 * Note, a capabilities symbol must remain as visible as a
1647 * global symbol. However, the runtime linker recognizes the
1648 * hidden requirement and ensures the symbol isn’t made globally
1649 * available at runtime.
1650 */
1651 if (SYM_IS_HIDDEN(sdp) && (oflags & FLG_OF_PROCRED)) {
1652 /*
1653 * If any reductions are being processed, keep a count
1654 * of eliminated symbols, and if the symbol is being
1655 * reduced to local, count it’s size for the .symtab.
1656 */
1657 if (sdp->sd_flags & FLG_SY_ELIM) {
1658 ofl->ofl_elimcnt++;
1659 } else {
1660 ofl->ofl_scopecnt++;
1661 if ((((sdp->sd_flags & FLG_SY_REGSYM) == 0) ||
1662 sym->st_name) && (st_insert(ofl->ofl_strtab,
1663 sdp->sd_name) == -1))
1664 return (S_ERROR);
1665 if (allow_ldynsym && sym->st_name &&
1666 ldynsym_symtype[type]) {
1667 ofl->ofl_dynscopecnt++;
1668 if (st_insert(ofl->ofl_dynstrtab,
1669 sdp->sd_name) == -1)
1670 return (S_ERROR);
1671 /* Include it in sort section? */
1672 DYNSORT_COUNT(sdp, sym, type, ++);
1673 }
1674 }
1675 } else {
1676 ofl->ofl_globcnt++;

1678 /*
1679 * Check to see if this global variable should go into
1680 * a sort section. Sort sections require a
1681 * .SUNW_ldynsym section, so, don’t check unless a
1682 * .SUNW_ldynsym is allowed.
1683 */
1684 if (allow_ldynsym)
1685 DYNSORT_COUNT(sdp, sym, type, ++);

1687 /*
1688 * If global direct bindings are in effect, or this
1689 * symbol has bound to a dependency which was specified
1690 * as requiring direct bindings, and it hasn’t
1691 * explicitly been defined as a non-direct binding
1692 * symbol, mark it.
1693 */
1694 if (((ofl->ofl_dtflags_1 & DF_1_DIRECT) || (isp &&
1695 (isp->is_file->ifl_flags & FLG_IF_DIRECT))) &&
1696 ((sdp->sd_flags & FLG_SY_NDIR) == 0))
1697 sdp->sd_flags |= FLG_SY_DIR;

1699 /*
1700 * Insert the symbol name.
1701 */
1702 if (((sdp->sd_flags & FLG_SY_REGSYM) == 0) ||
1703 sym->st_name) {
1704 if (st_insert(ofl->ofl_strtab,
1705 sdp->sd_name) == -1)
1706 return (S_ERROR);

1708 if (!(ofl->ofl_flags & FLG_OF_RELOBJ) &&

new/usr/src/cmd/sgs/libld/common/syms.c 27

1709 (st_insert(ofl->ofl_dynstrtab,
1710 sdp->sd_name) == -1))
1711 return (S_ERROR);
1712 }

1714 /*
1715 * If this section offers a global symbol - record that
1716 * fact.
1717 */
1718 if (isp) {
1719 isp->is_flags |= FLG_IS_SECTREF;
1720 isp->is_file->ifl_flags |= FLG_IF_FILEREF;
1721 }
1722 }
1723 }

1725 /*
1726 * Guidance: Use -z defs|nodefs when building shared objects.
1727 *
1728 * Our caller issues this, unless we mask it out here. So we mask it
1729 * out unless we’ve issued at least one warnings or fatal error.
1730 */
1731 if (!((oflags & FLG_OF_SHAROBJ) && OFL_GUIDANCE(ofl, FLG_OFG_NO_DEFS) &&
1732 (undef_state & (FLG_OF_FATAL | FLG_OF_WARN))))
1733 ofl->ofl_guideflags |= FLG_OFG_NO_DEFS;

1735 /*
1736 * If we’ve encountered a fatal error during symbol validation then
1737 * return now.
1738 */
1739 if (ofl->ofl_flags & FLG_OF_FATAL)
1740 return (1);

1742 /*
1743 * Now that symbol resolution is completed, scan any register symbols.
1744 * From now on, we’re only interested in those that contribute to the
1745 * output file.
1746 */
1747 if (ofl->ofl_regsyms) {
1748 int ndx;

1750 for (ndx = 0; ndx < ofl->ofl_regsymsno; ndx++) {
1751 if ((sdp = ofl->ofl_regsyms[ndx]) == NULL)
1752 continue;
1753 if (sdp->sd_ref != REF_REL_NEED) {
1754 ofl->ofl_regsyms[ndx] = NULL;
1755 continue;
1756 }

1758 ofl->ofl_regsymcnt++;
1759 if (sdp->sd_sym->st_name == 0)
1760 sdp->sd_name = MSG_ORIG(MSG_STR_EMPTY);

1762 if (SYM_IS_HIDDEN(sdp) ||
1763 (ELF_ST_BIND(sdp->sd_sym->st_info) == STB_LOCAL))
1764 ofl->ofl_lregsymcnt++;
1765 }
1766 }

1768 /*
1769 * Generate the .bss section now that we know its size and alignment.
1770 */
1771 if (need_bss) {
1772 if (ld_make_bss(ofl, bsssize, bssalign,
1773 ld_targ.t_id.id_bss) == S_ERROR)
1774 return (S_ERROR);

new/usr/src/cmd/sgs/libld/common/syms.c 28

1775 }
1776 if (need_tlsbss) {
1777 if (ld_make_bss(ofl, tlssize, tlsalign,
1778 ld_targ.t_id.id_tlsbss) == S_ERROR)
1779 return (S_ERROR);
1780 }
1781 #if defined(_ELF64)
1782 if ((ld_targ.t_m.m_mach == EM_AMD64) &&
1783 need_lbss && !(oflags & FLG_OF_RELOBJ)) {
1784 if (ld_make_bss(ofl, lbsssize, lbssalign,
1785 ld_targ.t_id.id_lbss) == S_ERROR)
1786 return (S_ERROR);
1787 }
1788 #endif
1789 /*
1790 * Determine what entry point symbol we need, and if found save its
1791 * symbol descriptor so that we can update the ELF header entry with the
1792 * symbols value later (see update_oehdr). Make sure the symbol is
1793 * tagged to ensure its update in case -s is in effect. Use any -e
1794 * option first, or the default entry points ‘_start’ and ‘main’.
1795 */
1796 ret = 0;
1797 if (ofl->ofl_entry) {
1798 if ((sdp = ld_sym_find(ofl->ofl_entry, SYM_NOHASH,
1799 NULL, ofl)) == NULL) {
1800 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_ARG_NOENTRY),
1801 ofl->ofl_entry);
1802 ret++;
1803 } else if (ensure_sym_local(ofl, sdp,
1804 MSG_INTL(MSG_SYM_ENTRY)) != 0) {
1805 ret++;
1806 } else {
1807 ofl->ofl_entry = (void *)sdp;
1808 }
1809 } else if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_START),
1810 SYM_NOHASH, NULL, ofl)) != NULL) && (ensure_sym_local(ofl,
1811 sdp, 0) == 0)) {
1812 ofl->ofl_entry = (void *)sdp;

1814 } else if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_MAIN),
1815 SYM_NOHASH, NULL, ofl)) != NULL) && (ensure_sym_local(ofl,
1816 sdp, 0) == 0)) {
1817 ofl->ofl_entry = (void *)sdp;
1818 }

1820 /*
1821 * If ld -zdtrace=<sym> was given, then validate that the symbol is
1822 * defined within the current object being built.
1823 */
1824 if ((sdp = ofl->ofl_dtracesym) != 0)
1825 ret += ensure_sym_local(ofl, sdp, MSG_ORIG(MSG_STR_DTRACE));

1827 /*
1828 * If any initarray, finiarray or preinitarray functions have been
1829 * requested, make sure they are defined within the current object
1830 * being built.
1831 */
1832 if (ofl->ofl_initarray) {
1833 ret += ensure_array_local(ofl, ofl->ofl_initarray,
1834 MSG_ORIG(MSG_SYM_INITARRAY));
1835 }
1836 if (ofl->ofl_finiarray) {
1837 ret += ensure_array_local(ofl, ofl->ofl_finiarray,
1838 MSG_ORIG(MSG_SYM_FINIARRAY));
1839 }
1840 if (ofl->ofl_preiarray) {

new/usr/src/cmd/sgs/libld/common/syms.c 29

1841 ret += ensure_array_local(ofl, ofl->ofl_preiarray,
1842 MSG_ORIG(MSG_SYM_PREINITARRAY));
1843 }

1845 if (ret)
1846 return (S_ERROR);

1848 /*
1849 * If we’re required to record any needed dependencies versioning
1850 * information calculate it now that all symbols have been validated.
1851 */
1852 if ((oflags & (FLG_OF_VERNEED | FLG_OF_NOVERSEC)) == FLG_OF_VERNEED)
1853 return (ld_vers_check_need(ofl));
1854 else
1855 return (1);
1856 }

1858 /*
1859 * qsort(3c) comparison function. As an optimization for associating weak
1860 * symbols to their strong counterparts sort global symbols according to their
1861 * section index, address and binding.
1862 */
1863 static int
1864 compare(const void *sdpp1, const void *sdpp2)
1865 {
1866 Sym_desc *sdp1 = *((Sym_desc **)sdpp1);
1867 Sym_desc *sdp2 = *((Sym_desc **)sdpp2);
1868 Sym *sym1, *sym2;
1869 uchar_t bind1, bind2;

1871 /*
1872 * Symbol descriptors may be zero, move these to the front of the
1873 * sorted array.
1874 */
1875 if (sdp1 == NULL)
1876 return (-1);
1877 if (sdp2 == NULL)
1878 return (1);

1880 sym1 = sdp1->sd_sym;
1881 sym2 = sdp2->sd_sym;

1883 /*
1884 * Compare the symbols section index. This is important when sorting
1885 * the symbol tables of relocatable objects. In this case, a symbols
1886 * value is the offset within the associated section, and thus many
1887 * symbols can have the same value, but are effectively different
1888 * addresses.
1889 */
1890 if (sym1->st_shndx > sym2->st_shndx)
1891 return (1);
1892 if (sym1->st_shndx < sym2->st_shndx)
1893 return (-1);

1895 /*
1896 * Compare the symbols value (address).
1897 */
1898 if (sym1->st_value > sym2->st_value)
1899 return (1);
1900 if (sym1->st_value < sym2->st_value)
1901 return (-1);

1903 bind1 = ELF_ST_BIND(sym1->st_info);
1904 bind2 = ELF_ST_BIND(sym2->st_info);

1906 /*

new/usr/src/cmd/sgs/libld/common/syms.c 30

1907 * If two symbols have the same address place the weak symbol before
1908 * any strong counterpart.
1909 */
1910 if (bind1 > bind2)
1911 return (-1);
1912 if (bind1 < bind2)
1913 return (1);

1915 return (0);
1916 }

1918 /*
1919 * Issue a MSG_SYM_BADADDR error from ld_sym_process(). This error
1920 * is issued when a symbol address/size is not contained by the
1921 * target section.
1922 *
1923 * Such objects are at least partially corrupt, and the user would
1924 * be well advised to be skeptical of them, and to ask their compiler
1925 * supplier to fix the problem. However, a distinction needs to be
1926 * made between symbols that reference readonly text, and those that
1927 * access writable data. Other than throwing off profiling results,
1928 * the readonly section case is less serious. We have encountered
1929 * such objects in the field. In order to allow existing objects
1930 * to continue working, we issue a warning rather than a fatal error
1931 * if the symbol is against readonly text. Other cases are fatal.
1932 */
1933 static void
1934 issue_badaddr_msg(Ifl_desc *ifl, Ofl_desc *ofl, Sym_desc *sdp,
1935 Sym *sym, Word shndx)
1936 {
1937 Error err;
1938 const char *msg;

1940 if ((sdp->sd_isc->is_shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) ==
1941 SHF_ALLOC) {
1942 msg = MSG_INTL(MSG_SYM_BADADDR_ROTXT);
1943 err = ERR_WARNING;
1944 } else {
1945 msg = MSG_INTL(MSG_SYM_BADADDR);
1946 err = ERR_FATAL;
1947 }

1949 ld_eprintf(ofl, err, msg, demangle(sdp->sd_name),
1950 ifl->ifl_name, shndx, sdp->sd_isc->is_name,
1951 EC_XWORD(sdp->sd_isc->is_shdr->sh_size),
1952 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1953 }

1955 /*
1956 * Global symbols that are candidates for translation to local capability
1957 * symbols under -z symbolcap, are maintained on a local symbol list. Once
1958 * all symbols of a file are processed, this list is traversed to cull any
1959 * unnecessary weak symbol aliases.
1960 */
1961 typedef struct {
1962 Sym_desc *c_nsdp; /* new lead symbol */
1963 Sym_desc *c_osdp; /* original symbol */
1964 Cap_group *c_group; /* symbol capability group */
1965 Word c_ndx; /* symbol index */
1966 } Cap_pair;

1968 /*
1969 * Process the symbol table for the specified input file. At this point all
1970 * input sections from this input file have been assigned an input section
1971 * descriptor which is saved in the ‘ifl_isdesc’ array.
1972 *

new/usr/src/cmd/sgs/libld/common/syms.c 31

1973 * - local symbols are saved (as is) if the input file is a relocatable
1974 * object
1975 *
1976 * - global symbols are added to the linkers internal symbol table if they
1977 * are not already present, otherwise a symbol resolution function is
1978 * called upon to resolve the conflict.
1979 */
1980 uintptr_t
1981 ld_sym_process(Is_desc *isc, Ifl_desc *ifl, Ofl_desc *ofl)
1982 {
1983 /*
1984 * This macro tests the given symbol to see if it is out of
1985 * range relative to the section it references.
1986 *
1987 * entry:
1988 * - ifl is a relative object (ET_REL)
1989 * _sdp - Symbol descriptor
1990 * _sym - Symbol
1991 * _type - Symbol type
1992 *
1993 * The following are tested:
1994 * - Symbol length is non-zero
1995 * - Symbol type is a type that references code or data
1996 * - Referenced section is not 0 (indicates an UNDEF symbol)
1997 * and is not in the range of special values above SHN_LORESERVE
1998 * (excluding SHN_XINDEX, which is OK).
1999 * - We have a valid section header for the target section
2000 *
2001 * If the above are all true, and the symbol position is not
2002 * contained by the target section, this macro evaluates to
2003 * True (1). Otherwise, False(0).
2004 */
2005 #define SYM_LOC_BADADDR(_sdp, _sym, _type) \
2006 (_sym->st_size && dynsymsort_symtype[_type] && \
2007 (_sym->st_shndx != SHN_UNDEF) && \
2008 ((_sym->st_shndx < SHN_LORESERVE) || \
2009 (_sym->st_shndx == SHN_XINDEX)) && \
2010 _sdp->sd_isc && _sdp->sd_isc->is_shdr && \
2011 ((_sym->st_value + _sym->st_size) > _sdp->sd_isc->is_shdr->sh_size))

2013 Conv_inv_buf_t inv_buf;
2014 Sym *sym = (Sym *)isc->is_indata->d_buf;
2015 Word *symshndx = NULL;
2016 Shdr *shdr = isc->is_shdr;
2017 Sym_desc *sdp;
2018 size_t strsize;
2019 char *strs;
2020 uchar_t type, bind;
2021 Word ndx, hash, local, total;
2022 uchar_t osabi = ifl->ifl_ehdr->e_ident[EI_OSABI];
2023 Half mach = ifl->ifl_ehdr->e_machine;
2024 Half etype = ifl->ifl_ehdr->e_type;
2025 int etype_rel;
2026 const char *symsecname, *strsecname;
2027 Word symsecndx;
2028 avl_index_t where;
2029 int test_gnu_hidden_bit, weak;
2030 Cap_desc *cdp = NULL;
2031 Alist *cappairs = NULL;

2033 /*
2034 * Its possible that a file may contain more that one symbol table,
2035 * ie. .dynsym and .symtab in a shared library. Only process the first
2036 * table (here, we assume .dynsym comes before .symtab).
2037 */
2038 if (ifl->ifl_symscnt)

new/usr/src/cmd/sgs/libld/common/syms.c 32

2039 return (1);

2041 if (isc->is_symshndx)
2042 symshndx = isc->is_symshndx->is_indata->d_buf;

2044 DBG_CALL(Dbg_syms_process(ofl->ofl_lml, ifl));

2046 symsecndx = isc->is_scnndx;
2047 if (isc->is_name)
2048 symsecname = isc->is_name;
2049 else
2050 symsecname = MSG_ORIG(MSG_STR_EMPTY);

2052 /*
2053 * From the symbol tables section header information determine which
2054 * strtab table is needed to locate the actual symbol names.
2055 */
2056 if (ifl->ifl_flags & FLG_IF_HSTRTAB) {
2057 ndx = shdr->sh_link;
2058 if ((ndx == 0) || (ndx >= ifl->ifl_shnum)) {
2059 ld_eprintf(ofl, ERR_FATAL,
2060 MSG_INTL(MSG_FIL_INVSHLINK), ifl->ifl_name,
2061 EC_WORD(symsecndx), symsecname, EC_XWORD(ndx));
2062 return (S_ERROR);
2063 }
2064 strsize = ifl->ifl_isdesc[ndx]->is_shdr->sh_size;
2065 strs = ifl->ifl_isdesc[ndx]->is_indata->d_buf;
2066 if (ifl->ifl_isdesc[ndx]->is_name)
2067 strsecname = ifl->ifl_isdesc[ndx]->is_name;
2068 else
2069 strsecname = MSG_ORIG(MSG_STR_EMPTY);
2070 } else {
2071 /*
2072 * There is no string table section in this input file
2073 * although there are symbols in this symbol table section.
2074 * This means that these symbols do not have names.
2075 * Currently, only scratch register symbols are allowed
2076 * not to have names.
2077 */
2078 strsize = 0;
2079 strs = (char *)MSG_ORIG(MSG_STR_EMPTY);
2080 strsecname = MSG_ORIG(MSG_STR_EMPTY);
2081 }

2083 /*
2084 * Determine the number of local symbols together with the total
2085 * number we have to process.
2086 */
2087 total = (Word)(shdr->sh_size / shdr->sh_entsize);
2088 local = shdr->sh_info;

2090 /*
2091 * Allocate a symbol table index array and a local symbol array
2092 * (global symbols are processed and added to the ofl->ofl_symbkt[]
2093 * array). If we are dealing with a relocatable object, allocate the
2094 * local symbol descriptors. If this isn’t a relocatable object we
2095 * still have to process any shared object locals to determine if any
2096 * register symbols exist. Although these aren’t added to the output
2097 * image, they are used as part of symbol resolution.
2098 */
2099 if ((ifl->ifl_oldndx = libld_malloc((size_t)(total *
2100 sizeof (Sym_desc *)))) == NULL)
2101 return (S_ERROR);
2102 etype_rel = (etype == ET_REL);
2103 if (etype_rel && local) {
2104 if ((ifl->ifl_locs =

new/usr/src/cmd/sgs/libld/common/syms.c 33

2105 libld_calloc(sizeof (Sym_desc), local)) == NULL)
2106 return (S_ERROR);
2107 /* LINTED */
2108 ifl->ifl_locscnt = (Word)local;
2109 }
2110 ifl->ifl_symscnt = total;

2112 /*
2113 * If there are local symbols to save add them to the symbol table
2114 * index array.
2115 */
2116 if (local) {
2117 int allow_ldynsym = OFL_ALLOW_LDYNSYM(ofl);
2118 Sym_desc *last_file_sdp = NULL;
2119 int last_file_ndx = 0;

2121 for (sym++, ndx = 1; ndx < local; sym++, ndx++) {
2122 sd_flag_t sdflags = FLG_SY_CLEAN;
2123 Word shndx;
2124 const char *name;
2125 Sym_desc *rsdp;
2126 int shndx_bad = 0;
2127 int symtab_enter = 1;

2129 /*
2130 * Determine and validate the associated section index.
2131 */
2132 if (symshndx && (sym->st_shndx == SHN_XINDEX)) {
2133 shndx = symshndx[ndx];
2134 } else if ((shndx = sym->st_shndx) >= SHN_LORESERVE) {
2135 sdflags |= FLG_SY_SPECSEC;
2136 } else if (shndx > ifl->ifl_shnum) {
2137 /* We need the name before we can issue error */
2138 shndx_bad = 1;
2139 }

2141 /*
2142 * Check if st_name has a valid value or not.
2143 */
2144 if ((name = string(ofl, ifl, sym, strs, strsize, ndx,
2145 shndx, symsecndx, symsecname, strsecname,
2146 &sdflags)) == NULL)
2147 continue;

2149 /*
2150 * Now that we have the name, if the section index
2151 * was bad, report it.
2152 */
2153 if (shndx_bad) {
2154 ld_eprintf(ofl, ERR_WARNING,
2155 MSG_INTL(MSG_SYM_INVSHNDX),
2156 demangle_symname(name, symsecname, ndx),
2157 ifl->ifl_name,
2158 conv_sym_shndx(osabi, mach, sym->st_shndx,
2159 CONV_FMT_DECIMAL, &inv_buf));
2160 continue;
2161 }

2163 /*
2164 * If this local symbol table originates from a shared
2165 * object, then we’re only interested in recording
2166 * register symbols. As local symbol descriptors aren’t
2167 * allocated for shared objects, one will be allocated
2168 * to associated with the register symbol. This symbol
2169 * won’t become part of the output image, but we must
2170 * process it to test for register conflicts.

new/usr/src/cmd/sgs/libld/common/syms.c 34

2171 */
2172 rsdp = sdp = NULL;
2173 if (sdflags & FLG_SY_REGSYM) {
2174 /*
2175 * The presence of FLG_SY_REGSYM means that
2176 * the pointers in ld_targ.t_ms are non-NULL.
2177 */
2178 rsdp = (*ld_targ.t_ms.ms_reg_find)(sym, ofl);
2179 if (rsdp != 0) {
2180 /*
2181 * The fact that another register def-
2182 * inition has been found is fatal.
2183 * Call the verification routine to get
2184 * the error message and move on.
2185 */
2186 (void) (*ld_targ.t_ms.ms_reg_check)
2187 (rsdp, sym, name, ifl, ofl);
2188 continue;
2189 }

2191 if (etype == ET_DYN) {
2192 if ((sdp = libld_calloc(
2193 sizeof (Sym_desc), 1)) == NULL)
2194 return (S_ERROR);
2195 sdp->sd_ref = REF_DYN_SEEN;

2197 /* Will not appear in output object */
2198 symtab_enter = 0;
2199 }
2200 } else if (etype == ET_DYN)
2201 continue;

2203 /*
2204 * Fill in the remaining symbol descriptor information.
2205 */
2206 if (sdp == NULL) {
2207 sdp = &(ifl->ifl_locs[ndx]);
2208 sdp->sd_ref = REF_REL_NEED;
2209 sdp->sd_symndx = ndx;
2210 }
2211 if (rsdp == NULL) {
2212 sdp->sd_name = name;
2213 sdp->sd_sym = sym;
2214 sdp->sd_shndx = shndx;
2215 sdp->sd_flags = sdflags;
2216 sdp->sd_file = ifl;
2217 ifl->ifl_oldndx[ndx] = sdp;
2218 }

2220 DBG_CALL(Dbg_syms_entry(ofl->ofl_lml, ndx, sdp));

2222 /*
2223 * Reclassify any SHN_SUNW_IGNORE symbols to SHN_UNDEF
2224 * so as to simplify future processing.
2225 */
2226 if (sym->st_shndx == SHN_SUNW_IGNORE) {
2227 sdp->sd_shndx = shndx = SHN_UNDEF;
2228 sdp->sd_flags |= (FLG_SY_IGNORE | FLG_SY_ELIM);
2229 }

2231 /*
2232 * Process any register symbols.
2233 */
2234 if (sdp->sd_flags & FLG_SY_REGSYM) {
2235 /*
2236 * Add a diagnostic to indicate we’ve caught a

new/usr/src/cmd/sgs/libld/common/syms.c 35

2237 * register symbol, as this can be useful if a
2238 * register conflict is later discovered.
2239 */
2240 DBG_CALL(Dbg_syms_entered(ofl, sym, sdp));

2242 /*
2243 * If this register symbol hasn’t already been
2244 * recorded, enter it now.
2245 *
2246 * The presence of FLG_SY_REGSYM means that
2247 * the pointers in ld_targ.t_ms are non-NULL.
2248 */
2249 if ((rsdp == NULL) &&
2250 ((*ld_targ.t_ms.ms_reg_enter)(sdp, ofl) ==
2251 0))
2252 return (S_ERROR);
2253 }

2255 /*
2256 * Assign an input section.
2257 */
2258 if ((sym->st_shndx != SHN_UNDEF) &&
2259 ((sdp->sd_flags & FLG_SY_SPECSEC) == 0))
2260 sdp->sd_isc = ifl->ifl_isdesc[shndx];

2262 /*
2263 * If this symbol falls within the range of a section
2264 * being discarded, then discard the symbol itself.
2265 * There is no reason to keep this local symbol.
2266 */
2267 if (sdp->sd_isc &&
2268 (sdp->sd_isc->is_flags & FLG_IS_DISCARD)) {
2269 sdp->sd_flags |= FLG_SY_ISDISC;
2270 DBG_CALL(Dbg_syms_discarded(ofl->ofl_lml, sdp));
2271 continue;
2272 }

2274 /*
2275 * Skip any section symbols as new versions of these
2276 * will be created.
2277 */
2278 if ((type = ELF_ST_TYPE(sym->st_info)) == STT_SECTION) {
2279 if (sym->st_shndx == SHN_UNDEF) {
2280 ld_eprintf(ofl, ERR_WARNING,
2281 MSG_INTL(MSG_SYM_INVSHNDX),
2282 demangle_symname(name, symsecname,
2283 ndx), ifl->ifl_name,
2284 conv_sym_shndx(osabi, mach,
2285 sym->st_shndx, CONV_FMT_DECIMAL,
2286 &inv_buf));
2287 }
2288 continue;
2289 }

2291 /*
2292 * For a relocatable object, if this symbol is defined
2293 * and has non-zero length and references an address
2294 * within an associated section, then check its extents
2295 * to make sure the section boundaries encompass it.
2296 * If they don’t, the ELF file is corrupt.
2297 */
2298 if (etype_rel) {
2299 if (SYM_LOC_BADADDR(sdp, sym, type)) {
2300 issue_badaddr_msg(ifl, ofl, sdp,
2301 sym, shndx);
2302 if (ofl->ofl_flags & FLG_OF_FATAL)

new/usr/src/cmd/sgs/libld/common/syms.c 36

2303 continue;
2304 }

2306 /*
2307 * We have observed relocatable objects
2308 * containing identical adjacent STT_FILE
2309 * symbols. Discard any other than the first,
2310 * as they are all equivalent and the extras
2311 * do not add information.
2312 *
2313 * For the purpose of this test, we assume
2314 * that only the symbol type and the string
2315 * table offset (st_name) matter.
2316 */
2317 if (type == STT_FILE) {
2318 int toss = (last_file_sdp != NULL) &&
2319 ((ndx - 1) == last_file_ndx) &&
2320 (sym->st_name ==
2321 last_file_sdp->sd_sym->st_name);

2323 last_file_sdp = sdp;
2324 last_file_ndx = ndx;
2325 if (toss) {
2326 sdp->sd_flags |= FLG_SY_INVALID;
2327 DBG_CALL(Dbg_syms_dup_discarded(
2328 ofl->ofl_lml, ndx, sdp));
2329 continue;
2330 }
2331 }
2332 }

2335 /*
2336 * Sanity check for TLS
2337 */
2338 if ((sym->st_size != 0) && ((type == STT_TLS) &&
2339 (sym->st_shndx != SHN_COMMON))) {
2340 Is_desc *isp = sdp->sd_isc;

2342 if ((isp == NULL) || (isp->is_shdr == NULL) ||
2343 ((isp->is_shdr->sh_flags & SHF_TLS) == 0)) {
2344 ld_eprintf(ofl, ERR_FATAL,
2345 MSG_INTL(MSG_SYM_TLS),
2346 demangle(sdp->sd_name),
2347 ifl->ifl_name);
2348 continue;
2349 }
2350 }

2352 /*
2353 * Carry our some basic sanity checks (these are just
2354 * some of the erroneous symbol entries we’ve come
2355 * across, there’s probably a lot more). The symbol
2356 * will not be carried forward to the output file, which
2357 * won’t be a problem unless a relocation is required
2358 * against it.
2359 */
2360 if (((sdp->sd_flags & FLG_SY_SPECSEC) &&
2361 ((sym->st_shndx == SHN_COMMON)) ||
2362 ((type == STT_FILE) &&
2363 (sym->st_shndx != SHN_ABS))) ||
2364 (sdp->sd_isc && (sdp->sd_isc->is_osdesc == NULL))) {
2365 ld_eprintf(ofl, ERR_WARNING,
2366 MSG_INTL(MSG_SYM_INVSHNDX),
2367 demangle_symname(name, symsecname, ndx),
2368 ifl->ifl_name,

new/usr/src/cmd/sgs/libld/common/syms.c 37

2369 conv_sym_shndx(osabi, mach, sym->st_shndx,
2370 CONV_FMT_DECIMAL, &inv_buf));
2371 sdp->sd_isc = NULL;
2372 sdp->sd_flags |= FLG_SY_INVALID;
2373 continue;
2374 }

2376 /*
2377 * As these local symbols will become part of the output
2378 * image, record their number and name string size.
2379 * Globals are counted after all input file processing
2380 * (and hence symbol resolution) is complete during
2381 * sym_validate().
2382 */
2383 if (!(ofl->ofl_flags & FLG_OF_REDLSYM) &&
2384 symtab_enter) {
2385 ofl->ofl_locscnt++;

2387 if ((((sdp->sd_flags & FLG_SY_REGSYM) == 0) ||
2388 sym->st_name) && (st_insert(ofl->ofl_strtab,
2389 sdp->sd_name) == -1))
2390 return (S_ERROR);

2392 if (allow_ldynsym && sym->st_name &&
2393 ldynsym_symtype[type]) {
2394 ofl->ofl_dynlocscnt++;
2395 if (st_insert(ofl->ofl_dynstrtab,
2396 sdp->sd_name) == -1)
2397 return (S_ERROR);
2398 /* Include it in sort section? */
2399 DYNSORT_COUNT(sdp, sym, type, ++);
2400 }
2401 }
2402 }
2403 }

2405 /*
2406 * The GNU ld interprets the top bit of the 16-bit Versym value
2407 * (0x8000) as the "hidden" bit. If this bit is set, the linker
2408 * is supposed to act as if that symbol does not exist. The Solaris
2409 * linker does not support this mechanism, or the model of interface
2410 * evolution that it allows, but we honor it in GNU ld produced
2411 * objects in order to interoperate with them.
2412 *
2413 * Determine if we should honor the GNU hidden bit for this file.
2414 */
2415 test_gnu_hidden_bit = ((ifl->ifl_flags & FLG_IF_GNUVER) != 0) &&
2416 (ifl->ifl_versym != NULL);

2418 /*
2419 * Determine whether object capabilities for this file are being
2420 * converted into symbol capabilities. If so, global function symbols,
2421 * and initialized global data symbols, need special translation and
2422 * processing.
2423 */
2424 if ((etype == ET_REL) && (ifl->ifl_flags & FLG_IF_OTOSCAP))
2425 cdp = ifl->ifl_caps;

2427 /*
2428 * Now scan the global symbols entering them in the internal symbol
2429 * table or resolving them as necessary.
2430 */
2431 sym = (Sym *)isc->is_indata->d_buf;
2432 sym += local;
2433 weak = 0;
2434 /* LINTED */

new/usr/src/cmd/sgs/libld/common/syms.c 38

2435 for (ndx = (int)local; ndx < total; sym++, ndx++) {
2436 const char *name;
2437 sd_flag_t sdflags = 0;
2438 Word shndx;
2439 int shndx_bad = 0;
2440 Sym *nsym = sym;
2441 Cap_pair *cpp = NULL;
2442 uchar_t ntype;

2444 /*
2445 * Determine and validate the associated section index.
2446 */
2447 if (symshndx && (nsym->st_shndx == SHN_XINDEX)) {
2448 shndx = symshndx[ndx];
2449 } else if ((shndx = nsym->st_shndx) >= SHN_LORESERVE) {
2450 sdflags |= FLG_SY_SPECSEC;
2451 } else if (shndx > ifl->ifl_shnum) {
2452 /* We need the name before we can issue error */
2453 shndx_bad = 1;
2454 }

2456 /*
2457 * Check if st_name has a valid value or not.
2458 */
2459 if ((name = string(ofl, ifl, nsym, strs, strsize, ndx, shndx,
2460 symsecndx, symsecname, strsecname, &sdflags)) == NULL)
2461 continue;

2463 /*
2464 * Now that we have the name, report an erroneous section index.
2465 */
2466 if (shndx_bad) {
2467 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_INVSHNDX),
2468 demangle_symname(name, symsecname, ndx),
2469 ifl->ifl_name,
2470 conv_sym_shndx(osabi, mach, nsym->st_shndx,
2471 CONV_FMT_DECIMAL, &inv_buf));
2472 continue;
2473 }

2475 /*
2476 * Test for the GNU hidden bit, and ignore symbols that
2477 * have it set.
2478 */
2479 if (test_gnu_hidden_bit &&
2480 ((ifl->ifl_versym[ndx] & 0x8000) != 0))
2481 continue;

2483 /*
2484 * The linker itself will generate symbols for _end, _etext,
2485 * _edata, _DYNAMIC and _PROCEDURE_LINKAGE_TABLE_, so don’t
2486 * bother entering these symbols from shared objects. This
2487 * results in some wasted resolution processing, which is hard
2488 * to feel, but if nothing else, pollutes diagnostic relocation
2489 * output.
2490 */
2491 if (name[0] && (etype == ET_DYN) && (nsym->st_size == 0) &&
2492 (ELF_ST_TYPE(nsym->st_info) == STT_OBJECT) &&
2493 (name[0] == ’_’) && ((name[1] == ’e’) ||
2494 (name[1] == ’D’) || (name[1] == ’P’)) &&
2495 ((strcmp(name, MSG_ORIG(MSG_SYM_ETEXT_U)) == 0) ||
2496 (strcmp(name, MSG_ORIG(MSG_SYM_EDATA_U)) == 0) ||
2497 (strcmp(name, MSG_ORIG(MSG_SYM_END_U)) == 0) ||
2498 (strcmp(name, MSG_ORIG(MSG_SYM_DYNAMIC_U)) == 0) ||
2499 (strcmp(name, MSG_ORIG(MSG_SYM_PLKTBL_U)) == 0))) {
2500 ifl->ifl_oldndx[ndx] = 0;

new/usr/src/cmd/sgs/libld/common/syms.c 39

2501 continue;
2502 }

2504 /*
2505 * The ’-z wrap=XXX’ option emulates the GNU ld --wrap=XXX
2506 * option. When XXX is the symbol to be wrapped:
2507 *
2508 * - An undefined reference to XXX is converted to __wrap_XXX
2509 * - An undefined reference to __real_XXX is converted to XXX
2510 *
2511 * The idea is that the user can supply a wrapper function
2512 * __wrap_XXX that does some work, and then uses the name
2513 * __real_XXX to pass the call on to the real function. The
2514 * wrapper objects are linked with the original unmodified
2515 * objects to produce a wrapped version of the output object.
2516 */
2517 if (ofl->ofl_wrap && name[0] && (shndx == SHN_UNDEF)) {
2518 WrapSymNode wsn, *wsnp;

2520 /*
2521 * If this is the __real_XXX form, advance the
2522 * pointer to reference the wrapped name.
2523 */
2524 wsn.wsn_name = name;
2525 if ((*name == ’_’) &&
2526 (strncmp(name, MSG_ORIG(MSG_STR_UU_REAL_U),
2527 MSG_STR_UU_REAL_U_SIZE) == 0))
2528 wsn.wsn_name += MSG_STR_UU_REAL_U_SIZE;

2530 /*
2531 * Is this symbol in the wrap AVL tree? If so, map
2532 * XXX to __wrap_XXX, and __real_XXX to XXX. Note that
2533 * wsn.wsn_name will equal the current value of name
2534 * if the __real_ prefix is not present.
2535 */
2536 if ((wsnp = avl_find(ofl->ofl_wrap, &wsn, 0)) != NULL) {
2537 const char *old_name = name;

2539 name = (wsn.wsn_name == name) ?
2540 wsnp->wsn_wrapname : wsn.wsn_name;
2541 DBG_CALL(Dbg_syms_wrap(ofl->ofl_lml, ndx,
2542 old_name, name));
2543 }
2544 }

2546 /*
2547 * Determine and validate the symbols binding.
2548 */
2549 bind = ELF_ST_BIND(nsym->st_info);
2550 if ((bind != STB_GLOBAL) && (bind != STB_WEAK)) {
2551 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_NONGLOB),
2552 demangle_symname(name, symsecname, ndx),
2553 ifl->ifl_name,
2554 conv_sym_info_bind(bind, 0, &inv_buf));
2555 continue;
2556 }
2557 if (bind == STB_WEAK)
2558 weak++;

2560 /*
2561 * If this symbol falls within the range of a section being
2562 * discarded, then discard the symbol itself.
2563 */
2564 if (((sdflags & FLG_SY_SPECSEC) == 0) &&
2565 (nsym->st_shndx != SHN_UNDEF)) {
2566 Is_desc *isp;

new/usr/src/cmd/sgs/libld/common/syms.c 40

2568 if (shndx >= ifl->ifl_shnum) {
2569 /*
2570 * Carry our some basic sanity checks
2571 * The symbol will not be carried forward to
2572 * the output file, which won’t be a problem
2573 * unless a relocation is required against it.
2574 */
2575 ld_eprintf(ofl, ERR_WARNING,
2576 MSG_INTL(MSG_SYM_INVSHNDX),
2577 demangle_symname(name, symsecname, ndx),
2578 ifl->ifl_name,
2579 conv_sym_shndx(osabi, mach, nsym->st_shndx,
2580 CONV_FMT_DECIMAL, &inv_buf));
2581 continue;
2582 }

2584 isp = ifl->ifl_isdesc[shndx];
2585 if (isp && (isp->is_flags & FLG_IS_DISCARD)) {
2586 if ((sdp =
2587 libld_calloc(sizeof (Sym_desc), 1)) == NULL)
2588 return (S_ERROR);

2590 /*
2591 * Create a dummy symbol entry so that if we
2592 * find any references to this discarded symbol
2593 * we can compensate.
2594 */
2595 sdp->sd_name = name;
2596 sdp->sd_sym = nsym;
2597 sdp->sd_file = ifl;
2598 sdp->sd_isc = isp;
2599 sdp->sd_flags = FLG_SY_ISDISC;
2600 ifl->ifl_oldndx[ndx] = sdp;

2602 DBG_CALL(Dbg_syms_discarded(ofl->ofl_lml, sdp));
2603 continue;
2604 }
2605 }

2607 /*
2608 * If object capabilities for this file are being converted
2609 * into symbol capabilities, then:
2610 *
2611 * - Any global function, or initialized global data symbol
2612 * definitions (ie., those that are not associated with
2613 * special symbol types, ie., ABS, COMMON, etc.), and which
2614 * have not been reduced to locals, are converted to symbol
2615 * references (UNDEF). This ensures that any reference to
2616 * the original symbol, for example from a relocation, get
2617 * associated to a capabilities family lead symbol, ie., a
2618 * generic instance.
2619 *
2620 * - For each global function, or object symbol definition,
2621 * a new local symbol is created. The function or object
2622 * is renamed using the capabilities CA_SUNW_ID definition
2623 * (which might have been fabricated for this purpose -
2624 * see get_cap_group()). The new symbol name is:
2625 *
2626 * <original name>%<capability group identifier>
2627 *
2628 * This symbol is associated to the same location, and
2629 * becomes a capabilities family member.
2630 */
2631 /* LINTED */
2632 hash = (Word)elf_hash(name);

new/usr/src/cmd/sgs/libld/common/syms.c 41

2634 ntype = ELF_ST_TYPE(nsym->st_info);
2635 if (cdp && (nsym->st_shndx != SHN_UNDEF) &&
2636 ((sdflags & FLG_SY_SPECSEC) == 0) &&
2637 ((ntype == STT_FUNC) || (ntype == STT_OBJECT))) {
2638 /*
2639 * Determine this symbol’s visibility. If a mapfile has
2640 * indicated this symbol should be local, then there’s
2641 * no point in transforming this global symbol to a
2642 * capabilities symbol. Otherwise, create a symbol
2643 * capability pair descriptor to record this symbol as
2644 * a candidate for translation.
2645 */
2646 if (sym_cap_vis(name, hash, sym, ofl) &&
2647 ((cpp = alist_append(&cappairs, NULL,
2648 sizeof (Cap_pair), AL_CNT_CAP_PAIRS)) == NULL))
2649 return (S_ERROR);
2650 }

2652 if (cpp) {
2653 Sym *rsym;

2655 DBG_CALL(Dbg_syms_cap_convert(ofl, ndx, name, nsym));

2657 /*
2658 * Allocate a new symbol descriptor to represent the
2659 * transformed global symbol. The descriptor points
2660 * to the original symbol information (which might
2661 * indicate a global or weak visibility). The symbol
2662 * information will be transformed into a local symbol
2663 * later, after any weak aliases are culled.
2664 */
2665 if ((cpp->c_osdp =
2666 libld_malloc(sizeof (Sym_desc))) == NULL)
2667 return (S_ERROR);

2669 cpp->c_osdp->sd_name = name;
2670 cpp->c_osdp->sd_sym = nsym;
2671 cpp->c_osdp->sd_shndx = shndx;
2672 cpp->c_osdp->sd_file = ifl;
2673 cpp->c_osdp->sd_isc = ifl->ifl_isdesc[shndx];
2674 cpp->c_osdp->sd_ref = REF_REL_NEED;

2676 /*
2677 * Save the capabilities group this symbol belongs to,
2678 * and the original symbol index.
2679 */
2680 cpp->c_group = cdp->ca_groups->apl_data[0];
2681 cpp->c_ndx = ndx;

2683 /*
2684 * Replace the original symbol definition with a symbol
2685 * reference. Make sure this reference isn’t left as a
2686 * weak.
2687 */
2688 if ((rsym = libld_malloc(sizeof (Sym))) == NULL)
2689 return (S_ERROR);

2691 *rsym = *nsym;

2693 rsym->st_info = ELF_ST_INFO(STB_GLOBAL, ntype);
2694 rsym->st_shndx = shndx = SHN_UNDEF;
2695 rsym->st_value = 0;
2696 rsym->st_size = 0;

2698 sdflags |= FLG_SY_CAP;

new/usr/src/cmd/sgs/libld/common/syms.c 42

2700 nsym = rsym;
2701 }

2703 /*
2704 * If the symbol does not already exist in the internal symbol
2705 * table add it, otherwise resolve the conflict. If the symbol
2706 * from this file is kept, retain its symbol table index for
2707 * possible use in associating a global alias.
2708 */
2709 if ((sdp = ld_sym_find(name, hash, &where, ofl)) == NULL) {
2710 DBG_CALL(Dbg_syms_global(ofl->ofl_lml, ndx, name));
2711 if ((sdp = ld_sym_enter(name, nsym, hash, ifl, ofl, ndx,
2712 shndx, sdflags, &where)) == (Sym_desc *)S_ERROR)
2713 return (S_ERROR);

2715 } else if (ld_sym_resolve(sdp, nsym, ifl, ofl, ndx, shndx,
2716 sdflags) == S_ERROR)
2717 return (S_ERROR);

2719 /*
2720 * Now that we have a symbol descriptor, retain the descriptor
2721 * for later use by symbol capabilities processing.
2722 */
2723 if (cpp)
2724 cpp->c_nsdp = sdp;

2726 /*
2727 * After we’ve compared a defined symbol in one shared
2728 * object, flag the symbol so we don’t compare it again.
2729 */
2730 if ((etype == ET_DYN) && (nsym->st_shndx != SHN_UNDEF) &&
2731 ((sdp->sd_flags & FLG_SY_SOFOUND) == 0))
2732 sdp->sd_flags |= FLG_SY_SOFOUND;

2734 /*
2735 * If the symbol is accepted from this file retain the symbol
2736 * index for possible use in aliasing.
2737 */
2738 if (sdp->sd_file == ifl)
2739 sdp->sd_symndx = ndx;

2741 ifl->ifl_oldndx[ndx] = sdp;

2743 /*
2744 * If we’ve accepted a register symbol, continue to validate
2745 * it.
2746 */
2747 if (sdp->sd_flags & FLG_SY_REGSYM) {
2748 Sym_desc *rsdp;

2750 /*
2751 * The presence of FLG_SY_REGSYM means that
2752 * the pointers in ld_targ.t_ms are non-NULL.
2753 */
2754 rsdp = (*ld_targ.t_ms.ms_reg_find)(sdp->sd_sym, ofl);
2755 if (rsdp == NULL) {
2756 if ((*ld_targ.t_ms.ms_reg_enter)(sdp, ofl) == 0)
2757 return (S_ERROR);
2758 } else if (rsdp != sdp) {
2759 (void) (*ld_targ.t_ms.ms_reg_check)(rsdp,
2760 sdp->sd_sym, sdp->sd_name, ifl, ofl);
2761 }
2762 }

2764 /*

new/usr/src/cmd/sgs/libld/common/syms.c 43

2765 * For a relocatable object, if this symbol is defined
2766 * and has non-zero length and references an address
2767 * within an associated section, then check its extents
2768 * to make sure the section boundaries encompass it.
2769 * If they don’t, the ELF file is corrupt. Note that this
2770 * global symbol may have come from another file to satisfy
2771 * an UNDEF symbol of the same name from this one. In that
2772 * case, we don’t check it, because it was already checked
2773 * as part of its own file.
2774 */
2775 if (etype_rel && (sdp->sd_file == ifl)) {
2776 Sym *tsym = sdp->sd_sym;

2778 if (SYM_LOC_BADADDR(sdp, tsym,
2779 ELF_ST_TYPE(tsym->st_info))) {
2780 issue_badaddr_msg(ifl, ofl, sdp,
2781 tsym, tsym->st_shndx);
2782 continue;
2783 }
2784 }
2785 }
2786 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD));

2788 /*
2789 * Associate weak (alias) symbols to their non-weak counterparts by
2790 * scanning the global symbols one more time.
2791 *
2792 * This association is needed when processing the symbols from a shared
2793 * object dependency when a a weak definition satisfies a reference:
2794 *
2795 * - When building a dynamic executable, if a referenced symbol is a
2796 * data item, the symbol data is copied to the executables address
2797 * space. In this copy-relocation case, we must also reassociate
2798 * the alias symbol with its new location in the executable.
2799 *
2800 * - If the referenced symbol is a function then we may need to
2801 * promote the symbols binding from undefined weak to undefined,
2802 * otherwise the run-time linker will not generate the correct
2803 * relocation error should the symbol not be found.
2804 *
2805 * Weak alias association is also required when a local dynsym table
2806 * is being created. This table should only contain one instance of a
2807 * symbol that is associated to a given address.
2808 *
2809 * The true association between a weak/strong symbol pair is that both
2810 * symbol entries are identical, thus first we create a sorted symbol
2811 * list keyed off of the symbols section index and value. If the symbol
2812 * belongs to the same section and has the same value, then the chances
2813 * are that the rest of the symbols data is the same. This list is then
2814 * scanned for weak symbols, and if one is found then any strong
2815 * association will exist in the entries that follow. Thus we just have
2816 * to scan one (typically a single alias) or more (in the uncommon
2817 * instance of multiple weak to strong associations) entries to
2818 * determine if a match exists.
2819 */
2820 if (weak && (OFL_ALLOW_LDYNSYM(ofl) || (etype == ET_DYN)) &&
2821 (total > local)) {
2822 static Sym_desc **sort;
2823 static size_t osize = 0;
2824 size_t nsize = (total - local) * sizeof (Sym_desc *);

2826 /*
2827 * As we might be processing many input files, and many symbols,
2828 * try and reuse a static sort buffer. Note, presently we’re
2829 * playing the game of never freeing any buffers as there’s a
2830 * belief this wastes time.

new/usr/src/cmd/sgs/libld/common/syms.c 44

2831 */
2832 if ((osize == 0) || (nsize > osize)) {
2833 if ((sort = libld_malloc(nsize)) == NULL)
2834 return (S_ERROR);
2835 osize = nsize;
2836 }
2837 (void) memcpy((void *)sort, &ifl->ifl_oldndx[local], nsize);

2839 qsort(sort, (total - local), sizeof (Sym_desc *), compare);

2841 for (ndx = 0; ndx < (total - local); ndx++) {
2842 Sym_desc *wsdp = sort[ndx];
2843 Sym *wsym;
2844 int sndx;

2846 /*
2847 * Ignore any empty symbol descriptor, or the case where
2848 * the symbol has been resolved to a different file.
2849 */
2850 if ((wsdp == NULL) || (wsdp->sd_file != ifl))
2851 continue;

2853 wsym = wsdp->sd_sym;

2855 if ((wsym->st_shndx == SHN_UNDEF) ||
2856 (wsdp->sd_flags & FLG_SY_SPECSEC) ||
2857 (ELF_ST_BIND(wsym->st_info) != STB_WEAK))
2858 continue;

2860 /*
2861 * We have a weak symbol, if it has a strong alias it
2862 * will have been sorted to one of the following sort
2863 * table entries. Note that we could have multiple weak
2864 * symbols aliased to one strong (if this occurs then
2865 * the strong symbol only maintains one alias back to
2866 * the last weak).
2867 */
2868 for (sndx = ndx + 1; sndx < (total - local); sndx++) {
2869 Sym_desc *ssdp = sort[sndx];
2870 Sym *ssym;
2871 sd_flag_t w_dynbits, s_dynbits;

2873 /*
2874 * Ignore any empty symbol descriptor, or the
2875 * case where the symbol has been resolved to a
2876 * different file.
2877 */
2878 if ((ssdp == NULL) || (ssdp->sd_file != ifl))
2879 continue;

2881 ssym = ssdp->sd_sym;

2883 if (ssym->st_shndx == SHN_UNDEF)
2884 continue;

2886 if ((ssym->st_shndx != wsym->st_shndx) ||
2887 (ssym->st_value != wsym->st_value))
2888 break;

2890 if ((ssym->st_size != wsym->st_size) ||
2891 (ssdp->sd_flags & FLG_SY_SPECSEC) ||
2892 (ELF_ST_BIND(ssym->st_info) == STB_WEAK))
2893 continue;

2895 /*
2896 * If a sharable object, set link fields so

new/usr/src/cmd/sgs/libld/common/syms.c 45

2897 * that they reference each other.‘
2898 */
2899 if (etype == ET_DYN) {
2900 ssdp->sd_aux->sa_linkndx =
2901 (Word)wsdp->sd_symndx;
2902 wsdp->sd_aux->sa_linkndx =
2903 (Word)ssdp->sd_symndx;
2904 }

2906 /*
2907 * Determine which of these two symbols go into
2908 * the sort section. If a mapfile has made
2909 * explicit settings of the FLG_SY_*DYNSORT
2910 * flags for both symbols, then we do what they
2911 * say. If one has the DYNSORT flags set, we
2912 * set the NODYNSORT bit in the other. And if
2913 * neither has an explicit setting, then we
2914 * favor the weak symbol because they usually
2915 * lack the leading underscore.
2916 */
2917 w_dynbits = wsdp->sd_flags &
2918 (FLG_SY_DYNSORT | FLG_SY_NODYNSORT);
2919 s_dynbits = ssdp->sd_flags &
2920 (FLG_SY_DYNSORT | FLG_SY_NODYNSORT);
2921 if (!(w_dynbits && s_dynbits)) {
2922 if (s_dynbits) {
2923 if (s_dynbits == FLG_SY_DYNSORT)
2924 wsdp->sd_flags |=
2925 FLG_SY_NODYNSORT;
2926 } else if (w_dynbits !=
2927 FLG_SY_NODYNSORT) {
2928 ssdp->sd_flags |=
2929 FLG_SY_NODYNSORT;
2930 }
2931 }
2932 break;
2933 }
2934 }
2935 }

2937 /*
2938 * Having processed all symbols, under -z symbolcap, reprocess any
2939 * symbols that are being translated from global to locals. The symbol
2940 * pair that has been collected defines the original symbol (c_osdp),
2941 * which will become a local, and the new symbol (c_nsdp), which will
2942 * become a reference (UNDEF) for the original.
2943 *
2944 * Scan these symbol pairs looking for weak symbols, which have non-weak
2945 * aliases. There is no need to translate both of these symbols to
2946 * locals, only the global is necessary.
2947 */
2948 if (cappairs) {
2949 Aliste idx1;
2950 Cap_pair *cpp1;

2952 for (ALIST_TRAVERSE(cappairs, idx1, cpp1)) {
2953 Sym_desc *sdp1 = cpp1->c_osdp;
2954 Sym *sym1 = sdp1->sd_sym;
2955 uchar_t bind1 = ELF_ST_BIND(sym1->st_info);
2956 Aliste idx2;
2957 Cap_pair *cpp2;

2959 /*
2960 * If this symbol isn’t weak, it’s capability member is
2961 * retained for the creation of a local symbol.
2962 */

new/usr/src/cmd/sgs/libld/common/syms.c 46

2963 if (bind1 != STB_WEAK)
2964 continue;

2966 /*
2967 * If this is a weak symbol, traverse the capabilities
2968 * list again to determine if a corresponding non-weak
2969 * symbol exists.
2970 */
2971 for (ALIST_TRAVERSE(cappairs, idx2, cpp2)) {
2972 Sym_desc *sdp2 = cpp2->c_osdp;
2973 Sym *sym2 = sdp2->sd_sym;
2974 uchar_t bind2 =
2975 ELF_ST_BIND(sym2->st_info);

2977 if ((cpp1 == cpp2) ||
2978 (cpp1->c_group != cpp2->c_group) ||
2979 (sym1->st_value != sym2->st_value) ||
2980 (bind2 == STB_WEAK))
2981 continue;

2983 /*
2984 * The weak symbol (sym1) has a non-weak (sym2)
2985 * counterpart. There’s no point in translating
2986 * both of these equivalent symbols to locals.
2987 * Add this symbol capability alias to the
2988 * capabilities family information, and remove
2989 * the weak symbol.
2990 */
2991 if (ld_cap_add_family(ofl, cpp2->c_nsdp,
2992 cpp1->c_nsdp, NULL, NULL) == S_ERROR)
2993 return (S_ERROR);

2995 free((void *)cpp1->c_osdp);
2996 (void) alist_delete(cappairs, &idx1);
2997 }
2998 }

3000 DBG_CALL(Dbg_util_nl(ofl->ofl_lml, DBG_NL_STD));

3002 /*
3003 * The capability pairs information now represents all the
3004 * global symbols that need transforming to locals. These
3005 * local symbols are renamed using their group identifiers.
3006 */
3007 for (ALIST_TRAVERSE(cappairs, idx1, cpp1)) {
3008 Sym_desc *osdp = cpp1->c_osdp;
3009 Objcapset *capset;
3010 size_t nsize, tsize;
3011 const char *oname;
3012 char *cname, *idstr;
3013 Sym *csym;

3015 /*
3016 * If the local symbol has not yet been translated
3017 * convert it to a local symbol with a name.
3018 */
3019 if ((osdp->sd_flags & FLG_SY_CAP) != 0)
3020 continue;

3022 /*
3023 * As we’re converting object capabilities to symbol
3024 * capabilities, obtain the capabilities set for this
3025 * object, so as to retrieve the CA_SUNW_ID value.
3026 */
3027 capset = &cpp1->c_group->cg_set;

new/usr/src/cmd/sgs/libld/common/syms.c 47

3029 /*
3030 * Create a new name from the existing symbol and the
3031 * capabilities group identifier. Note, the delimiter
3032 * between the symbol name and identifier name is hard-
3033 * coded here (%), so that we establish a convention
3034 * for transformed symbol names.
3035 */
3036 oname = osdp->sd_name;

3038 idstr = capset->oc_id.cs_str;
3039 nsize = strlen(oname);
3040 tsize = nsize + 1 + strlen(idstr) + 1;
3041 if ((cname = libld_malloc(tsize)) == 0)
3042 return (S_ERROR);

3044 (void) strcpy(cname, oname);
3045 cname[nsize++] = ’%’;
3046 (void) strcpy(&cname[nsize], idstr);

3048 /*
3049 * Allocate a new symbol table entry, transform this
3050 * symbol to a local, and assign the new name.
3051 */
3052 if ((csym = libld_malloc(sizeof (Sym))) == NULL)
3053 return (S_ERROR);

3055 *csym = *osdp->sd_sym;
3056 csym->st_info = ELF_ST_INFO(STB_LOCAL,
3057 ELF_ST_TYPE(osdp->sd_sym->st_info));

3059 osdp->sd_name = cname;
3060 osdp->sd_sym = csym;
3061 osdp->sd_flags = FLG_SY_CAP;

3063 /*
3064 * Keep track of this new local symbol. As -z symbolcap
3065 * can only be used to create a relocatable object, a
3066 * dynamic symbol table can’t exist. Ensure there is
3067 * space reserved in the string table.
3068 */
3069 ofl->ofl_caploclcnt++;
3070 if (st_insert(ofl->ofl_strtab, cname) == -1)
3071 return (S_ERROR);

3073 DBG_CALL(Dbg_syms_cap_local(ofl, cpp1->c_ndx,
3074 cname, csym, osdp));

3076 /*
3077 * Establish this capability pair as a family.
3078 */
3079 if (ld_cap_add_family(ofl, cpp1->c_nsdp, osdp,
3080 cpp1->c_group, &ifl->ifl_caps->ca_syms) == S_ERROR)
3081 return (S_ERROR);
3082 }
3083 }

3085 return (1);

3087 #undef SYM_LOC_BADADDR
3088 }

3090 /*
3091 * Add an undefined symbol to the symbol table. The reference originates from
3092 * the location identified by the message id (mid). These references can
3093 * originate from command line options such as -e, -u, -initarray, etc.
3094 * (identified with MSG_INTL(MSG_STR_COMMAND)), or from internally generated

new/usr/src/cmd/sgs/libld/common/syms.c 48

3095 * TLS relocation references (identified with MSG_INTL(MSG_STR_TLSREL)).
3096 */
3097 Sym_desc *
3098 ld_sym_add_u(const char *name, Ofl_desc *ofl, Msg mid)
3099 {
3100 Sym *sym;
3101 Ifl_desc *ifl = NULL, *_ifl;
3102 Sym_desc *sdp;
3103 Word hash;
3104 Aliste idx;
3105 avl_index_t where;
3106 const char *reference = MSG_INTL(mid);

3108 /*
3109 * As an optimization, determine whether we’ve already generated this
3110 * reference. If the symbol doesn’t already exist we’ll create it.
3111 * Or if the symbol does exist from a different source, we’ll resolve
3112 * the conflict.
3113 */
3114 /* LINTED */
3115 hash = (Word)elf_hash(name);
3116 if ((sdp = ld_sym_find(name, hash, &where, ofl)) != NULL) {
3117 if ((sdp->sd_sym->st_shndx == SHN_UNDEF) &&
3118 (sdp->sd_file->ifl_name == reference))
3119 return (sdp);
3120 }

3122 /*
3123 * Determine whether a pseudo input file descriptor exists to represent
3124 * the command line, as any global symbol needs an input file descriptor
3125 * during any symbol resolution (refer to map_ifl() which provides a
3126 * similar method for adding symbols from mapfiles).
3127 */
3128 for (APLIST_TRAVERSE(ofl->ofl_objs, idx, _ifl))
3129 if (strcmp(_ifl->ifl_name, reference) == 0) {
3130 ifl = _ifl;
3131 break;
3132 }

3134 /*
3135 * If no descriptor exists create one.
3136 */
3137 if (ifl == NULL) {
3138 if ((ifl = libld_calloc(sizeof (Ifl_desc), 1)) == NULL)
3139 return ((Sym_desc *)S_ERROR);
3140 ifl->ifl_name = reference;
3141 ifl->ifl_flags = FLG_IF_NEEDED | FLG_IF_FILEREF;
3142 if ((ifl->ifl_ehdr = libld_calloc(sizeof (Ehdr), 1)) == NULL)
3143 return ((Sym_desc *)S_ERROR);
3144 ifl->ifl_ehdr->e_type = ET_REL;

3146 if (aplist_append(&ofl->ofl_objs, ifl, AL_CNT_OFL_OBJS) == NULL)
3147 return ((Sym_desc *)S_ERROR);
3148 }

3150 /*
3151 * Allocate a symbol structure and add it to the global symbol table.
3152 */
3153 if ((sym = libld_calloc(sizeof (Sym), 1)) == NULL)
3154 return ((Sym_desc *)S_ERROR);
3155 sym->st_info = ELF_ST_INFO(STB_GLOBAL, STT_NOTYPE);
3156 sym->st_shndx = SHN_UNDEF;

3158 DBG_CALL(Dbg_syms_process(ofl->ofl_lml, ifl));
3159 if (sdp == NULL) {
3160 DBG_CALL(Dbg_syms_global(ofl->ofl_lml, 0, name));

new/usr/src/cmd/sgs/libld/common/syms.c 49

3161 if ((sdp = ld_sym_enter(name, sym, hash, ifl, ofl, 0, SHN_UNDEF,
3162 0, &where)) == (Sym_desc *)S_ERROR)
3163 return ((Sym_desc *)S_ERROR);
3164 } else if (ld_sym_resolve(sdp, sym, ifl, ofl, 0,
3165 SHN_UNDEF, 0) == S_ERROR)
3166 return ((Sym_desc *)S_ERROR);

3168 sdp->sd_flags &= ~FLG_SY_CLEAN;
3169 sdp->sd_flags |= FLG_SY_CMDREF;

3171 return (sdp);
3172 }

3174 /*
3175 * STT_SECTION symbols have their st_name field set to NULL, and consequently
3176 * have no name. Generate a name suitable for diagnostic use for such a symbol
3177 * and store it in the input section descriptor. The resulting name will be
3178 * of the form:
3179 *
3180 * "XXX (section)"
3181 *
3182 * where XXX is the name of the section.
3183 *
3184 * entry:
3185 * isc - Input section associated with the symbol.
3186 * fmt - NULL, or format string to use.
3187 *
3188 * exit:
3189 * Sets isp->is_sym_name to the allocated string. Returns the
3190 * string pointer, or NULL on allocation failure.
3191 */
3192 const char *
3193 ld_stt_section_sym_name(Is_desc *isp)
3194 {
3195 const char *fmt;
3196 char *str;
3197 size_t len;

3199 if ((isp == NULL) || (isp->is_name == NULL))
3200 return (NULL);

3202 if (isp->is_sym_name == NULL) {
3203 fmt = (isp->is_flags & FLG_IS_GNSTRMRG) ?
3204 MSG_INTL(MSG_STR_SECTION_MSTR) : MSG_INTL(MSG_STR_SECTION);

3206 len = strlen(fmt) + strlen(isp->is_name) + 1;

3208 if ((str = libld_malloc(len)) == NULL)
3209 return (NULL);
3210 (void) snprintf(str, len, fmt, isp->is_name);
3211 isp->is_sym_name = str;
3212 }

3214 return (isp->is_sym_name);
3215 }

new/usr/src/cmd/sgs/libld/common/update.c 1

**
 118766 Mon Feb 11 00:23:20 2019
new/usr/src/cmd/sgs/libld/common/update.c
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

132 /*
133 * Build and update any output symbol tables. Here we work on all the symbol
134 * tables at once to reduce the duplication of symbol and string manipulation.
135 * Symbols and their associated strings are copied from the read-only input
136 * file images to the output image and their values and index’s updated in the
137 * output image.
138 */
139 static Addr
140 update_osym(Ofl_desc *ofl)
141 {
142 /*
143 * There are several places in this function where we wish
144 * to insert a symbol index to the combined .SUNW_ldynsym/.dynsym
145 * symbol table into one of the two sort sections (.SUNW_dynsymsort
146 * or .SUNW_dyntlssort), if that symbol has the right attributes.
147 * This macro is used to generate the necessary code from a single
148 * specification.
149 *
150 * entry:
151 * _sdp, _sym, _type - As per DYNSORT_COUNT. See _libld.h
152 * _sym_ndx - Index that _sym will have in the combined
153 * .SUNW_ldynsym/.dynsym symbol table.
154 */
155 #define ADD_TO_DYNSORT(_sdp, _sym, _type, _sym_ndx) \
156 { \
157 Word *_dynsort_arr, *_dynsort_ndx; \
158 \
159 if (dynsymsort_symtype[_type]) { \
160 _dynsort_arr = dynsymsort; \
161 _dynsort_ndx = &dynsymsort_ndx; \
162 } else if (_type == STT_TLS) { \
163 _dynsort_arr = dyntlssort; \
164 _dynsort_ndx = &dyntlssort_ndx; \
165 } else { \
166 _dynsort_arr = NULL; \
167 } \
168 if ((_dynsort_arr != NULL) && DYNSORT_TEST_ATTR(_sdp, _sym)) \
169 _dynsort_arr[(*_dynsort_ndx)++] = _sym_ndx; \
170 }

172 Sym_desc *sdp;
173 Sym_avlnode *sav;
174 Sg_desc *sgp, *tsgp = NULL, *dsgp = NULL, *esgp = NULL;
175 Os_desc *osp, *iosp = NULL, *fosp = NULL;
176 Is_desc *isc;
177 Ifl_desc *ifl;
178 Word bssndx, etext_ndx, edata_ndx = 0, end_ndx, start_ndx;
179 Word end_abs = 0, etext_abs = 0, edata_abs;
180 Word tlsbssndx = 0, parexpnndx;
181 #if defined(_ELF64)
182 Word lbssndx = 0;
183 Addr lbssaddr = 0;
184 #endif
185 Addr bssaddr, etext = 0, edata = 0, end = 0, start = 0;
186 Addr tlsbssaddr = 0;
187 Addr parexpnbase, parexpnaddr;
188 int start_set = 0;

new/usr/src/cmd/sgs/libld/common/update.c 2

189 Sym _sym = {0}, *sym, *symtab = NULL;
190 Sym *dynsym = NULL, *ldynsym = NULL;
191 Word symtab_ndx = 0; /* index into .symtab */
192 Word symtab_gbl_bndx; /* .symtab ndx 1st global */
193 Word ldynsym_ndx = 0; /* index into .SUNW_ldynsym */
194 Word dynsym_ndx = 0; /* index into .dynsym */
195 Word scopesym_ndx = 0; /* index into scoped symbols */
196 Word scopesym_bndx = 0; /* .symtab ndx 1st scoped sym */
197 Word ldynscopesym_ndx = 0; /* index to ldynsym scoped */
198 /* symbols */
199 Word *dynsymsort = NULL; /* SUNW_dynsymsort index */
200 /* vector */
201 Word *dyntlssort = NULL; /* SUNW_dyntlssort index */
202 /* vector */
203 Word dynsymsort_ndx; /* index dynsymsort array */
204 Word dyntlssort_ndx; /* index dyntlssort array */
205 Word *symndx; /* symbol index (for */
206 /* relocation use) */
207 Word *symshndx = NULL; /* .symtab_shndx table */
208 Word *dynshndx = NULL; /* .dynsym_shndx table */
209 Word *ldynshndx = NULL; /* .SUNW_ldynsym_shndx table */
210 Word ldynsym_cnt = NULL; /* number of items in */
211 /* .SUNW_ldynsym */
212 Str_tbl *shstrtab;
213 Str_tbl *strtab;
214 Str_tbl *dynstr;
215 Word *hashtab; /* hash table pointer */
216 Word *hashbkt; /* hash table bucket pointer */
217 Word *hashchain; /* hash table chain pointer */
218 Wk_desc *wkp;
219 Alist *weak = NULL;
220 ofl_flag_t flags = ofl->ofl_flags;
221 Versym *versym;
222 Gottable *gottable; /* used for display got debugging */
223 /* information */
224 Syminfo *syminfo;
225 Sym_s_list *sorted_syms; /* table to hold sorted symbols */
226 Word ssndx; /* global index into sorted_syms */
227 Word scndx; /* scoped index into sorted_syms */
228 size_t stoff; /* string offset */
229 Aliste idx1;

231 /*
232 * Initialize pointers to the symbol table entries and the symbol
233 * table strings. Skip the first symbol entry and the first string
234 * table byte. Note that if we are not generating any output symbol
235 * tables we must still generate and update internal copies so
236 * that the relocation phase has the correct information.
237 */
238 if (!(flags & FLG_OF_STRIP) || (flags & FLG_OF_RELOBJ) ||
239 ((flags & FLG_OF_STATIC) && ofl->ofl_osversym)) {
240 symtab = (Sym *)ofl->ofl_ossymtab->os_outdata->d_buf;
241 symtab[symtab_ndx++] = _sym;
242 if (ofl->ofl_ossymshndx)
243 symshndx =
244 (Word *)ofl->ofl_ossymshndx->os_outdata->d_buf;
245 }
246 if (OFL_ALLOW_DYNSYM(ofl)) {
247 dynsym = (Sym *)ofl->ofl_osdynsym->os_outdata->d_buf;
248 dynsym[dynsym_ndx++] = _sym;
249 /*
250 * If we are also constructing a .SUNW_ldynsym section
251 * to contain local function symbols, then set it up too.
252 */
253 if (ofl->ofl_osldynsym) {
254 ldynsym = (Sym *)ofl->ofl_osldynsym->os_outdata->d_buf;

new/usr/src/cmd/sgs/libld/common/update.c 3

255 ldynsym[ldynsym_ndx++] = _sym;
256 ldynsym_cnt = 1 + ofl->ofl_dynlocscnt +
257 ofl->ofl_dynscopecnt;

259 /*
260 * If there is a SUNW_ldynsym, then there may also
261 * be a .SUNW_dynsymsort and/or .SUNW_dyntlssort
262 * sections, used to collect indices of function
263 * and data symbols sorted by address order.
264 */
265 if (ofl->ofl_osdynsymsort) { /* .SUNW_dynsymsort */
266 dynsymsort = (Word *)
267 ofl->ofl_osdynsymsort->os_outdata->d_buf;
268 dynsymsort_ndx = 0;
269 }
270 if (ofl->ofl_osdyntlssort) { /* .SUNW_dyntlssort */
271 dyntlssort = (Word *)
272 ofl->ofl_osdyntlssort->os_outdata->d_buf;
273 dyntlssort_ndx = 0;
274 }
275 }

277 /*
278 * Initialize the hash table.
279 */
280 hashtab = (Word *)(ofl->ofl_oshash->os_outdata->d_buf);
281 hashbkt = &hashtab[2];
282 hashchain = &hashtab[2 + ofl->ofl_hashbkts];
283 hashtab[0] = ofl->ofl_hashbkts;
284 hashtab[1] = DYNSYM_ALL_CNT(ofl);
285 if (ofl->ofl_osdynshndx)
286 dynshndx =
287 (Word *)ofl->ofl_osdynshndx->os_outdata->d_buf;
288 if (ofl->ofl_osldynshndx)
289 ldynshndx =
290 (Word *)ofl->ofl_osldynshndx->os_outdata->d_buf;
291 }

293 /*
294 * symndx is the symbol index to be used for relocation processing. It
295 * points to the relevant symtab’s (.dynsym or .symtab) symbol ndx.
296 */
297 if (dynsym)
298 symndx = &dynsym_ndx;
299 else
300 symndx = &symtab_ndx;

302 /*
303 * If we have version definitions initialize the version symbol index
304 * table. There is one entry for each symbol which contains the symbols
305 * version index.
306 */
307 if (!(flags & FLG_OF_NOVERSEC) &&
308 (flags & (FLG_OF_VERNEED | FLG_OF_VERDEF))) {
309 versym = (Versym *)ofl->ofl_osversym->os_outdata->d_buf;
310 versym[0] = NULL;
311 } else
312 versym = NULL;

314 /*
315 * If syminfo section exists be prepared to fill it in.
316 */
317 if (ofl->ofl_ossyminfo) {
318 syminfo = ofl->ofl_ossyminfo->os_outdata->d_buf;
319 syminfo[0].si_flags = SYMINFO_CURRENT;
320 } else

new/usr/src/cmd/sgs/libld/common/update.c 4

321 syminfo = NULL;

323 /*
324 * Setup our string tables.
325 */
326 shstrtab = ofl->ofl_shdrsttab;
327 strtab = ofl->ofl_strtab;
328 dynstr = ofl->ofl_dynstrtab;

330 DBG_CALL(Dbg_syms_sec_title(ofl->ofl_lml));

332 /*
333 * Put output file name to the first .symtab and .SUNW_ldynsym symbol.
334 */
335 if (symtab) {
336 (void) st_setstring(strtab, ofl->ofl_name, &stoff);
337 sym = &symtab[symtab_ndx++];
338 /* LINTED */
339 sym->st_name = stoff;
340 sym->st_value = 0;
341 sym->st_size = 0;
342 sym->st_info = ELF_ST_INFO(STB_LOCAL, STT_FILE);
343 sym->st_other = 0;
344 sym->st_shndx = SHN_ABS;

346 if (versym && !dynsym)
347 versym[1] = 0;
348 }
349 if (ldynsym) {
350 (void) st_setstring(dynstr, ofl->ofl_name, &stoff);
351 sym = &ldynsym[ldynsym_ndx];
352 /* LINTED */
353 sym->st_name = stoff;
354 sym->st_value = 0;
355 sym->st_size = 0;
356 sym->st_info = ELF_ST_INFO(STB_LOCAL, STT_FILE);
357 sym->st_other = 0;
358 sym->st_shndx = SHN_ABS;

360 /* Scoped symbols get filled in global loop below */
361 ldynscopesym_ndx = ldynsym_ndx + 1;
362 ldynsym_ndx += ofl->ofl_dynscopecnt;
363 }

365 /*
366 * If we are to display GOT summary information, then allocate
367 * the buffer to ’cache’ the GOT symbols into now.
368 */
369 if (DBG_ENABLED) {
370 if ((ofl->ofl_gottable = gottable =
371 libld_calloc(ofl->ofl_gotcnt, sizeof (Gottable))) == NULL)
372 return ((Addr)S_ERROR);
373 }

375 /*
376 * Traverse the program headers. Determine the last executable segment
377 * and the last data segment so that we can update etext and edata. If
378 * we have empty segments (reservations) record them for setting _end.
379 */
380 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
381 Phdr *phd = &(sgp->sg_phdr);
382 Os_desc *osp;
383 Aliste idx2;

385 if (phd->p_type == PT_LOAD) {
386 if (sgp->sg_osdescs != NULL) {

new/usr/src/cmd/sgs/libld/common/update.c 5

387 Word _flags = phd->p_flags & (PF_W | PF_R);

389 if (_flags == PF_R)
390 tsgp = sgp;
391 else if (_flags == (PF_W | PF_R))
392 dsgp = sgp;
393 } else if (sgp->sg_flags & FLG_SG_EMPTY)
394 esgp = sgp;
395 }

397 /*
398 * Generate a section symbol for each output section.
399 */
400 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
401 Word sectndx;

403 sym = &_sym;
404 sym->st_value = osp->os_shdr->sh_addr;
405 sym->st_info = ELF_ST_INFO(STB_LOCAL, STT_SECTION);
406 /* LINTED */
407 sectndx = elf_ndxscn(osp->os_scn);

409 if (symtab) {
410 if (sectndx >= SHN_LORESERVE) {
411 symshndx[symtab_ndx] = sectndx;
412 sym->st_shndx = SHN_XINDEX;
413 } else {
414 /* LINTED */
415 sym->st_shndx = (Half)sectndx;
416 }
417 symtab[symtab_ndx++] = *sym;
418 }

420 if (dynsym && (osp->os_flags & FLG_OS_OUTREL))
421 dynsym[dynsym_ndx++] = *sym;

423 if ((dynsym == NULL) ||
424 (osp->os_flags & FLG_OS_OUTREL)) {
425 if (versym)
426 versym[*symndx - 1] = 0;
427 osp->os_identndx = *symndx - 1;
428 DBG_CALL(Dbg_syms_sec_entry(ofl->ofl_lml,
429 osp->os_identndx, sgp, osp));
430 }

432 /*
433 * Generate the .shstrtab for this section.
434 */
435 (void) st_setstring(shstrtab, osp->os_name, &stoff);
436 osp->os_shdr->sh_name = (Word)stoff;

438 /*
439 * Find the section index for our special symbols.
440 */
441 if (sgp == tsgp) {
442 /* LINTED */
443 etext_ndx = elf_ndxscn(osp->os_scn);
444 } else if (dsgp == sgp) {
445 if (osp->os_shdr->sh_type != SHT_NOBITS) {
446 /* LINTED */
447 edata_ndx = elf_ndxscn(osp->os_scn);
448 }
449 }

451 if (start_set == 0) {
452 start = sgp->sg_phdr.p_vaddr;

new/usr/src/cmd/sgs/libld/common/update.c 6

453 /* LINTED */
454 start_ndx = elf_ndxscn(osp->os_scn);
455 start_set++;
456 }

458 /*
459 * While we’re here, determine whether a .init or .fini
460 * section exist.
461 */
462 if ((iosp == NULL) && (strcmp(osp->os_name,
463 MSG_ORIG(MSG_SCN_INIT)) == 0))
464 iosp = osp;
465 if ((fosp == NULL) && (strcmp(osp->os_name,
466 MSG_ORIG(MSG_SCN_FINI)) == 0))
467 fosp = osp;
468 }
469 }

471 /*
472 * Add local register symbols to the .dynsym. These are required as
473 * DT_REGISTER .dynamic entries must have a symbol to reference.
474 */
475 if (ofl->ofl_regsyms && dynsym) {
476 int ndx;

478 for (ndx = 0; ndx < ofl->ofl_regsymsno; ndx++) {
479 Sym_desc *rsdp;

481 if ((rsdp = ofl->ofl_regsyms[ndx]) == NULL)
482 continue;

484 if (!SYM_IS_HIDDEN(rsdp) &&
485 (ELF_ST_BIND(rsdp->sd_sym->st_info) != STB_LOCAL))
486 continue;

488 dynsym[dynsym_ndx] = *(rsdp->sd_sym);
489 rsdp->sd_symndx = *symndx;

491 if (dynsym[dynsym_ndx].st_name) {
492 (void) st_setstring(dynstr, rsdp->sd_name,
493 &stoff);
494 dynsym[dynsym_ndx].st_name = stoff;
495 }
496 dynsym_ndx++;
497 }
498 }

500 /*
501 * Having traversed all the output segments, warn the user if the
502 * traditional text or data segments don’t exist. Otherwise from these
503 * segments establish the values for ‘etext’, ‘edata’, ‘end’, ‘END’,
504 * and ‘START’.
505 */
506 if (!(flags & FLG_OF_RELOBJ)) {
507 Sg_desc *sgp;

509 if (tsgp)
510 etext = tsgp->sg_phdr.p_vaddr + tsgp->sg_phdr.p_filesz;
511 else {
512 etext = (Addr)0;
513 etext_ndx = SHN_ABS;
514 etext_abs = 1;
515 if (flags & FLG_OF_VERBOSE)
516 ld_eprintf(ofl, ERR_WARNING,
517 MSG_INTL(MSG_UPD_NOREADSEG));
518 }

new/usr/src/cmd/sgs/libld/common/update.c 7

519 if (dsgp) {
520 edata = dsgp->sg_phdr.p_vaddr + dsgp->sg_phdr.p_filesz;
521 } else {
522 edata = (Addr)0;
523 edata_ndx = SHN_ABS;
524 edata_abs = 1;
525 if (flags & FLG_OF_VERBOSE)
526 ld_eprintf(ofl, ERR_WARNING,
527 MSG_INTL(MSG_UPD_NORDWRSEG));
528 }

530 if (dsgp == NULL) {
531 if (tsgp)
532 sgp = tsgp;
533 else
534 sgp = 0;
535 } else if (tsgp == NULL)
536 sgp = dsgp;
537 else if (dsgp->sg_phdr.p_vaddr > tsgp->sg_phdr.p_vaddr)
538 sgp = dsgp;
539 else if (dsgp->sg_phdr.p_vaddr < tsgp->sg_phdr.p_vaddr)
540 sgp = tsgp;
541 else {
542 /*
543 * One of the segments must be of zero size.
544 */
545 if (tsgp->sg_phdr.p_memsz)
546 sgp = tsgp;
547 else
548 sgp = dsgp;
549 }

551 if (esgp && (esgp->sg_phdr.p_vaddr > sgp->sg_phdr.p_vaddr))
552 sgp = esgp;

554 if (sgp) {
555 end = sgp->sg_phdr.p_vaddr + sgp->sg_phdr.p_memsz;

557 /*
558 * If the last loadable segment is a read-only segment,
559 * then the application which uses the symbol _end to
560 * find the beginning of writable heap area may cause
561 * segmentation violation. We adjust the value of the
562 * _end to skip to the next page boundary.
563 *
564 * 6401812 System interface which returs beginning
565 * heap would be nice.
566 * When the above RFE is implemented, the changes below
567 * could be changed in a better way.
568 */
569 if ((sgp->sg_phdr.p_flags & PF_W) == 0)
570 end = (Addr)S_ROUND(end, sysconf(_SC_PAGESIZE));

572 /*
573 * If we’re dealing with a memory reservation there are
574 * no sections to establish an index for _end, so assign
575 * it as an absolute.
576 */
577 if (sgp->sg_osdescs != NULL) {
578 /*
579 * Determine the last section for this segment.
580 */
581 Os_desc *osp = sgp->sg_osdescs->apl_data
582 [sgp->sg_osdescs->apl_nitems - 1];

584 /* LINTED */

new/usr/src/cmd/sgs/libld/common/update.c 8

585 end_ndx = elf_ndxscn(osp->os_scn);
586 } else {
587 end_ndx = SHN_ABS;
588 end_abs = 1;
589 }
590 } else {
591 end = (Addr) 0;
592 end_ndx = SHN_ABS;
593 end_abs = 1;
594 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_UPD_NOSEG));
595 }
596 }

598 /*
599 * Initialize the scoped symbol table entry point. This is for all
600 * the global symbols that have been scoped to locals and will be
601 * filled in during global symbol processing so that we don’t have
602 * to traverse the globals symbol hash array more than once.
603 */
604 if (symtab) {
605 scopesym_bndx = symtab_ndx;
606 scopesym_ndx = scopesym_bndx;
607 symtab_ndx += ofl->ofl_scopecnt;
608 }

610 /*
611 * If expanding partially expanded symbols under ’-z nopartial’,
612 * prepare to do that.
613 */
614 if (ofl->ofl_isparexpn) {
615 osp = ofl->ofl_isparexpn->is_osdesc;
616 parexpnbase = parexpnaddr = (Addr)(osp->os_shdr->sh_addr +
617 ofl->ofl_isparexpn->is_indata->d_off);
618 /* LINTED */
619 parexpnndx = elf_ndxscn(osp->os_scn);
620 ofl->ofl_parexpnndx = osp->os_identndx;
621 }

623 /*
624 * If we are generating a .symtab collect all the local symbols,
625 * assigning a new virtual address or displacement (value).
626 */
627 for (APLIST_TRAVERSE(ofl->ofl_objs, idx1, ifl)) {
628 Xword lndx, local = ifl->ifl_locscnt;
629 Cap_desc *cdp = ifl->ifl_caps;

631 for (lndx = 1; lndx < local; lndx++) {
632 Gotndx *gnp;
633 uchar_t type;
634 Word *_symshndx;
635 int enter_in_symtab, enter_in_ldynsym;
636 int update_done;

638 sdp = ifl->ifl_oldndx[lndx];
639 sym = sdp->sd_sym;

641 /*
642 * Assign a got offset if necessary.
643 */
644 if ((ld_targ.t_mr.mr_assign_got != NULL) &&
645 (*ld_targ.t_mr.mr_assign_got)(ofl, sdp) == S_ERROR)
646 return ((Addr)S_ERROR);

648 if (DBG_ENABLED) {
649 Aliste idx2;

new/usr/src/cmd/sgs/libld/common/update.c 9

651 for (ALIST_TRAVERSE(sdp->sd_GOTndxs,
652 idx2, gnp)) {
653 gottable->gt_sym = sdp;
654 gottable->gt_gndx.gn_gotndx =
655 gnp->gn_gotndx;
656 gottable->gt_gndx.gn_addend =
657 gnp->gn_addend;
658 gottable++;
659 }
660 }

662 if ((type = ELF_ST_TYPE(sym->st_info)) == STT_SECTION)
663 continue;

665 /*
666 * Ignore any symbols that have been marked as invalid
667 * during input processing. Providing these aren’t used
668 * for relocation they’ll just be dropped from the
669 * output image.
670 */
671 if (sdp->sd_flags & FLG_SY_INVALID)
672 continue;

674 /*
675 * If the section that this symbol was associated
676 * with has been discarded - then we discard
677 * the local symbol along with it.
678 */
679 if (sdp->sd_flags & FLG_SY_ISDISC)
680 continue;

682 /*
683 * If this symbol is from a different file
684 * than the input descriptor we are processing,
685 * treat it as if it has FLG_SY_ISDISC set.
686 * This happens when sloppy_comdat_reloc()
687 * replaces a symbol to a discarded comdat section
688 * with an equivalent symbol from a different
689 * file. We only want to enter such a symbol
690 * once --- as part of the file that actually
691 * supplies it.
692 */
693 if (ifl != sdp->sd_file)
694 continue;

696 /*
697 * Generate an output symbol to represent this input
698 * symbol. Even if the symbol table is to be stripped
699 * we still need to update any local symbols that are
700 * used during relocation.
701 */
702 enter_in_symtab = symtab &&
703 (!(ofl->ofl_flags & FLG_OF_REDLSYM) ||
704 sdp->sd_move);
705 enter_in_ldynsym = ldynsym && sdp->sd_name &&
706 ldynsym_symtype[type] &&
707 !(ofl->ofl_flags & FLG_OF_REDLSYM);
708 _symshndx = NULL;

710 if (enter_in_symtab) {
711 if (!dynsym)
712 sdp->sd_symndx = *symndx;
713 symtab[symtab_ndx] = *sym;

715 /*
716 * Provided this isn’t an unnamed register

new/usr/src/cmd/sgs/libld/common/update.c 10

717 * symbol, update its name.
718 */
719 if (((sdp->sd_flags & FLG_SY_REGSYM) == 0) ||
720 symtab[symtab_ndx].st_name) {
721 (void) st_setstring(strtab,
722 sdp->sd_name, &stoff);
723 symtab[symtab_ndx].st_name = stoff;
724 }
725 sdp->sd_flags &= ~FLG_SY_CLEAN;
726 if (symshndx)
727 _symshndx = &symshndx[symtab_ndx];
728 sdp->sd_sym = sym = &symtab[symtab_ndx++];

730 if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
731 (sym->st_shndx == SHN_ABS) &&
732 !enter_in_ldynsym)
733 continue;
734 } else if (enter_in_ldynsym) {
735 /*
736 * Not using symtab, but we do have ldynsym
737 * available.
738 */
739 ldynsym[ldynsym_ndx] = *sym;
740 (void) st_setstring(dynstr, sdp->sd_name,
741 &stoff);
742 ldynsym[ldynsym_ndx].st_name = stoff;

744 sdp->sd_flags &= ~FLG_SY_CLEAN;
745 if (ldynshndx)
746 _symshndx = &ldynshndx[ldynsym_ndx];
747 sdp->sd_sym = sym = &ldynsym[ldynsym_ndx];
748 /* Add it to sort section if it qualifies */
749 ADD_TO_DYNSORT(sdp, sym, type, ldynsym_ndx);
750 ldynsym_ndx++;
751 } else { /* Not using symtab or ldynsym */
752 /*
753 * If this symbol requires modifying to provide
754 * for a relocation or move table update, make
755 * a copy of it.
756 */
757 if (!(sdp->sd_flags & FLG_SY_UPREQD) &&
758 !(sdp->sd_move))
759 continue;
760 if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
761 (sym->st_shndx == SHN_ABS))
762 continue;

764 if (ld_sym_copy(sdp) == S_ERROR)
765 return ((Addr)S_ERROR);
766 sym = sdp->sd_sym;
767 }

769 /*
770 * Update the symbols contents if necessary.
771 */
772 update_done = 0;
773 if (type == STT_FILE) {
774 sdp->sd_shndx = sym->st_shndx = SHN_ABS;
775 sdp->sd_flags |= FLG_SY_SPECSEC;
776 update_done = 1;
777 }

779 /*
780 * If we are expanding the locally bound partially
781 * initialized symbols, then update the address here.
782 */

new/usr/src/cmd/sgs/libld/common/update.c 11

783 if (ofl->ofl_isparexpn &&
784 (sdp->sd_flags & FLG_SY_PAREXPN) && !update_done) {
785 sym->st_shndx = parexpnndx;
786 sdp->sd_isc = ofl->ofl_isparexpn;
787 sym->st_value = parexpnaddr;
788 parexpnaddr += sym->st_size;
789 if ((flags & FLG_OF_RELOBJ) == 0)
790 sym->st_value -= parexpnbase;
791 }

793 /*
794 * If this isn’t an UNDEF symbol (ie. an input section
795 * is associated), update the symbols value and index.
796 */
797 if (((isc = sdp->sd_isc) != NULL) && !update_done) {
798 Word sectndx;

800 osp = isc->is_osdesc;
801 /* LINTED */
802 sym->st_value +=
803 (Off)_elf_getxoff(isc->is_indata);
804 if ((flags & FLG_OF_RELOBJ) == 0) {
805 sym->st_value += osp->os_shdr->sh_addr;
806 /*
807 * TLS symbols are relative to
808 * the TLS segment.
809 */
810 if ((type == STT_TLS) &&
811 (ofl->ofl_tlsphdr)) {
812 sym->st_value -=
813 ofl->ofl_tlsphdr->p_vaddr;
814 }
815 }
816 /* LINTED */
817 if ((sdp->sd_shndx = sectndx =
818 elf_ndxscn(osp->os_scn)) >= SHN_LORESERVE) {
819 if (_symshndx) {
820 *_symshndx = sectndx;
821 }
822 sym->st_shndx = SHN_XINDEX;
823 } else {
824 /* LINTED */
825 sym->st_shndx = sectndx;
826 }
827 }

829 /*
830 * If entering the symbol in both the symtab and the
831 * ldynsym, then the one in symtab needs to be
832 * copied to ldynsym. If it is only in the ldynsym,
833 * then the code above already set it up and we have
834 * nothing more to do here.
835 */
836 if (enter_in_symtab && enter_in_ldynsym) {
837 ldynsym[ldynsym_ndx] = *sym;
838 (void) st_setstring(dynstr, sdp->sd_name,
839 &stoff);
840 ldynsym[ldynsym_ndx].st_name = stoff;

842 if (_symshndx && ldynshndx)
843 ldynshndx[ldynsym_ndx] = *_symshndx;

845 /* Add it to sort section if it qualifies */
846 ADD_TO_DYNSORT(sdp, sym, type, ldynsym_ndx);

848 ldynsym_ndx++;

new/usr/src/cmd/sgs/libld/common/update.c 12

849 }
850 }

852 /*
853 * If this input file has undergone object to symbol
854 * capabilities conversion, supply any new capabilities symbols.
855 * These symbols are copies of the original global symbols, and
856 * follow the existing local symbols that are supplied from this
857 * input file (which are identified with a preceding STT_FILE).
858 */
859 if (symtab && cdp && cdp->ca_syms) {
860 Aliste idx2;
861 Cap_sym *csp;

863 for (APLIST_TRAVERSE(cdp->ca_syms, idx2, csp)) {
864 Is_desc *isp;

866 sdp = csp->cs_sdp;
867 sym = sdp->sd_sym;

869 if ((isp = sdp->sd_isc) != NULL) {
870 Os_desc *osp = isp->is_osdesc;

872 /*
873 * Update the symbols value.
874 */
875 /* LINTED */
876 sym->st_value +=
877 (Off)_elf_getxoff(isp->is_indata);
878 if ((flags & FLG_OF_RELOBJ) == 0)
879 sym->st_value +=
880 osp->os_shdr->sh_addr;

882 /*
883 * Update the symbols section index.
884 */
885 sdp->sd_shndx = sym->st_shndx =
886 elf_ndxscn(osp->os_scn);
887 }

889 symtab[symtab_ndx] = *sym;
890 (void) st_setstring(strtab, sdp->sd_name,
891 &stoff);
892 symtab[symtab_ndx].st_name = stoff;
893 sdp->sd_symndx = symtab_ndx++;
894 }
895 }
896 }

898 symtab_gbl_bndx = symtab_ndx; /* .symtab index of 1st global entry */

900 /*
901 * Two special symbols are ‘_init’ and ‘_fini’. If these are supplied
902 * by crti.o then they are used to represent the total concatenation of
903 * the ‘.init’ and ‘.fini’ sections.
904 *
905 * Determine whether any .init or .fini sections exist. If these
906 * sections exist and a dynamic object is being built, but no ‘_init’
907 * or ‘_fini’ symbols are found, then the user is probably building
908 * this object directly from ld(1) rather than using a compiler driver
909 * that provides the symbols via crt’s.
910 *
911 * If the .init or .fini section exist, and their associated symbols,
912 * determine the size of the sections and updated the symbols value
913 * accordingly.
914 */

new/usr/src/cmd/sgs/libld/common/update.c 13

915 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_INIT_U), SYM_NOHASH, 0,
916 ofl)) != NULL) && (sdp->sd_ref == REF_REL_NEED) && sdp->sd_isc &&
917 (sdp->sd_isc->is_osdesc == iosp)) {
918 if (ld_sym_copy(sdp) == S_ERROR)
919 return ((Addr)S_ERROR);
920 sdp->sd_sym->st_size = sdp->sd_isc->is_osdesc->os_shdr->sh_size;

922 } else if (iosp && !(flags & FLG_OF_RELOBJ)) {
923 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_NOCRT),
924 MSG_ORIG(MSG_SYM_INIT_U), MSG_ORIG(MSG_SCN_INIT));
925 }

927 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_FINI_U), SYM_NOHASH, 0,
928 ofl)) != NULL) && (sdp->sd_ref == REF_REL_NEED) && sdp->sd_isc &&
929 (sdp->sd_isc->is_osdesc == fosp)) {
930 if (ld_sym_copy(sdp) == S_ERROR)
931 return ((Addr)S_ERROR);
932 sdp->sd_sym->st_size = sdp->sd_isc->is_osdesc->os_shdr->sh_size;

934 } else if (fosp && !(flags & FLG_OF_RELOBJ)) {
935 ld_eprintf(ofl, ERR_WARNING, MSG_INTL(MSG_SYM_NOCRT),
936 MSG_ORIG(MSG_SYM_FINI_U), MSG_ORIG(MSG_SCN_FINI));
937 }

939 /*
940 * Assign .bss information for use with updating COMMON symbols.
941 */
942 if (ofl->ofl_isbss) {
943 isc = ofl->ofl_isbss;
944 osp = isc->is_osdesc;

946 bssaddr = osp->os_shdr->sh_addr +
947 (Off)_elf_getxoff(isc->is_indata);
948 /* LINTED */
949 bssndx = elf_ndxscn(osp->os_scn);
950 }

952 #if defined(_ELF64)
953 /*
954 * For amd64 target, assign .lbss information for use
955 * with updating LCOMMON symbols.
956 */
957 if ((ld_targ.t_m.m_mach == EM_AMD64) && ofl->ofl_islbss) {
958 osp = ofl->ofl_islbss->is_osdesc;

960 lbssaddr = osp->os_shdr->sh_addr +
961 (Off)_elf_getxoff(ofl->ofl_islbss->is_indata);
962 /* LINTED */
963 lbssndx = elf_ndxscn(osp->os_scn);
964 }
965 #endif
966 /*
967 * Assign .tlsbss information for use with updating COMMON symbols.
968 */
969 if (ofl->ofl_istlsbss) {
970 osp = ofl->ofl_istlsbss->is_osdesc;
971 tlsbssaddr = osp->os_shdr->sh_addr +
972 (Off)_elf_getxoff(ofl->ofl_istlsbss->is_indata);
973 /* LINTED */
974 tlsbssndx = elf_ndxscn(osp->os_scn);
975 }

977 if ((sorted_syms = libld_calloc(ofl->ofl_globcnt +
978 ofl->ofl_elimcnt + ofl->ofl_scopecnt,
979 sizeof (*sorted_syms))) == NULL)
980 return ((Addr)S_ERROR);

new/usr/src/cmd/sgs/libld/common/update.c 14

982 scndx = 0;
983 ssndx = ofl->ofl_scopecnt + ofl->ofl_elimcnt;

985 DBG_CALL(Dbg_syms_up_title(ofl->ofl_lml));

987 /*
988 * Traverse the internal symbol table updating global symbol information
989 * and allocating common.
990 */
991 for (sav = avl_first(&ofl->ofl_symavl); sav;
992 sav = AVL_NEXT(&ofl->ofl_symavl, sav)) {
993 Sym *symptr;
994 int local;
995 int restore;

997 sdp = sav->sav_sdp;

999 /*
1000 * Ignore any symbols that have been marked as invalid during
1001 * input processing. Providing these aren’t used for
1002 * relocation, they will be dropped from the output image.
1003 */
1004 if (sdp->sd_flags & FLG_SY_INVALID) {
1005 DBG_CALL(Dbg_syms_old(ofl, sdp));
1006 DBG_CALL(Dbg_syms_ignore(ofl, sdp));
1007 continue;
1008 }

1010 /*
1011 * Only needed symbols are copied to the output symbol table.
1012 */
1013 if (sdp->sd_ref == REF_DYN_SEEN)
1014 continue;

1016 if (SYM_IS_HIDDEN(sdp) && (flags & FLG_OF_PROCRED))
1017 local = 1;
1018 else
1019 local = 0;

1021 if (local || (ofl->ofl_hashbkts == 0)) {
1022 sorted_syms[scndx++].sl_sdp = sdp;
1023 } else {
1024 sorted_syms[ssndx].sl_hval = sdp->sd_aux->sa_hash %
1025 ofl->ofl_hashbkts;
1026 sorted_syms[ssndx].sl_sdp = sdp;
1027 ssndx++;
1028 }

1030 /*
1031 * Note - expand the COMMON symbols here because an address
1032 * must be assigned to them in the same order that space was
1033 * calculated in sym_validate(). If this ordering isn’t
1034 * followed differing alignment requirements can throw us all
1035 * out of whack.
1036 *
1037 * The expanded .bss global symbol is handled here as well.
1038 *
1039 * The actual adding entries into the symbol table still occurs
1040 * below in hashbucket order.
1041 */
1042 symptr = sdp->sd_sym;
1043 restore = 0;
1044 if ((sdp->sd_flags & FLG_SY_PAREXPN) ||
1045 ((sdp->sd_flags & FLG_SY_SPECSEC) &&
1046 (sdp->sd_shndx = symptr->st_shndx) == SHN_COMMON)) {

new/usr/src/cmd/sgs/libld/common/update.c 15

1048 /*
1049 * An expanded symbol goes to a special .data section
1050 * prepared for that purpose (ofl->ofl_isparexpn).
1051 * Assign COMMON allocations to .bss.
1052 * Otherwise leave it as is.
1053 */
1054 if (sdp->sd_flags & FLG_SY_PAREXPN) {
1055 restore = 1;
1056 sdp->sd_shndx = parexpnndx;
1057 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1058 symptr->st_value = (Xword) S_ROUND(
1059 parexpnaddr, symptr->st_value);
1060 parexpnaddr = symptr->st_value +
1061 symptr->st_size;
1062 sdp->sd_isc = ofl->ofl_isparexpn;
1063 sdp->sd_flags |= FLG_SY_COMMEXP;

1065 } else if (ELF_ST_TYPE(symptr->st_info) != STT_TLS &&
1066 (local || !(flags & FLG_OF_RELOBJ))) {
1067 restore = 1;
1068 sdp->sd_shndx = bssndx;
1069 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1070 symptr->st_value = (Xword)S_ROUND(bssaddr,
1071 symptr->st_value);
1072 bssaddr = symptr->st_value + symptr->st_size;
1073 sdp->sd_isc = ofl->ofl_isbss;
1074 sdp->sd_flags |= FLG_SY_COMMEXP;

1076 } else if (ELF_ST_TYPE(symptr->st_info) == STT_TLS &&
1077 (local || !(flags & FLG_OF_RELOBJ))) {
1078 restore = 1;
1079 sdp->sd_shndx = tlsbssndx;
1080 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1081 symptr->st_value = (Xword)S_ROUND(tlsbssaddr,
1082 symptr->st_value);
1083 tlsbssaddr = symptr->st_value + symptr->st_size;
1084 sdp->sd_isc = ofl->ofl_istlsbss;
1085 sdp->sd_flags |= FLG_SY_COMMEXP;
1086 /*
1087 * TLS symbols are relative to the TLS segment.
1088 */
1089 symptr->st_value -= ofl->ofl_tlsphdr->p_vaddr;
1090 }
1091 #if defined(_ELF64)
1092 } else if ((ld_targ.t_m.m_mach == EM_AMD64) &&
1093 (sdp->sd_flags & FLG_SY_SPECSEC) &&
1094 ((sdp->sd_shndx = symptr->st_shndx) ==
1095 SHN_X86_64_LCOMMON) &&
1096 ((local || !(flags & FLG_OF_RELOBJ)))) {
1097 restore = 1;
1098 sdp->sd_shndx = lbssndx;
1099 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1100 symptr->st_value = (Xword)S_ROUND(lbssaddr,
1101 symptr->st_value);
1102 lbssaddr = symptr->st_value + symptr->st_size;
1103 sdp->sd_isc = ofl->ofl_islbss;
1104 sdp->sd_flags |= FLG_SY_COMMEXP;
1105 #endif
1106 }

1108 if (restore != 0) {
1109 uchar_t type, bind;

1111 /*
1112 * Make sure this COMMON symbol is returned to the same

new/usr/src/cmd/sgs/libld/common/update.c 16

1113 * binding as was defined in the original relocatable
1114 * object reference.
1115 */
1116 type = ELF_ST_TYPE(symptr->st_info);
1117 if (sdp->sd_flags & FLG_SY_GLOBREF)
1118 bind = STB_GLOBAL;
1119 else
1120 bind = STB_WEAK;

1122 symptr->st_info = ELF_ST_INFO(bind, type);
1123 }
1124 }

1126 /*
1127 * If this is a dynamic object then add any local capabilities symbols.
1128 */
1129 if (dynsym && ofl->ofl_capfamilies) {
1130 Cap_avlnode *cav;

1132 for (cav = avl_first(ofl->ofl_capfamilies); cav;
1133 cav = AVL_NEXT(ofl->ofl_capfamilies, cav)) {
1134 Cap_sym *csp;
1135 Aliste idx;

1137 for (APLIST_TRAVERSE(cav->cn_members, idx, csp)) {
1138 sdp = csp->cs_sdp;

1140 DBG_CALL(Dbg_syms_created(ofl->ofl_lml,
1141 sdp->sd_name));
1142 DBG_CALL(Dbg_syms_entered(ofl, sdp->sd_sym,
1143 sdp));

1145 dynsym[dynsym_ndx] = *sdp->sd_sym;

1147 (void) st_setstring(dynstr, sdp->sd_name,
1148 &stoff);
1149 dynsym[dynsym_ndx].st_name = stoff;

1151 sdp->sd_sym = &dynsym[dynsym_ndx];
1152 sdp->sd_symndx = dynsym_ndx;

1154 /*
1155 * Indicate that this is a capabilities symbol.
1156 * Note, that this identification only provides
1157 * information regarding the symbol that is
1158 * visible from elfdump(1) -y. The association
1159 * of a symbol to its capabilities is derived
1160 * from a .SUNW_capinfo entry.
1161 */
1162 if (syminfo) {
1163 syminfo[dynsym_ndx].si_flags |=
1164 SYMINFO_FLG_CAP;
1165 }

1167 dynsym_ndx++;
1168 }
1169 }
1170 }

1172 if (ofl->ofl_hashbkts) {
1173 qsort(sorted_syms + ofl->ofl_scopecnt + ofl->ofl_elimcnt,
1174 ofl->ofl_globcnt, sizeof (Sym_s_list),
1175 (int (*)(const void *, const void *))sym_hash_compare);
1176 }

1178 for (ssndx = 0; ssndx < (ofl->ofl_elimcnt + ofl->ofl_scopecnt +

new/usr/src/cmd/sgs/libld/common/update.c 17

1179 ofl->ofl_globcnt); ssndx++) {
1180 const char *name;
1181 Sym *sym;
1182 Sym_aux *sap;
1183 Half spec;
1184 int local = 0, dynlocal = 0, enter_in_symtab;
1185 Gotndx *gnp;
1186 Word sectndx;

1188 sdp = sorted_syms[ssndx].sl_sdp;
1189 sectndx = 0;

1191 if (symtab)
1192 enter_in_symtab = 1;
1193 else
1194 enter_in_symtab = 0;

1196 /*
1197 * Assign a got offset if necessary.
1198 */
1199 if ((ld_targ.t_mr.mr_assign_got != NULL) &&
1200 (*ld_targ.t_mr.mr_assign_got)(ofl, sdp) == S_ERROR)
1201 return ((Addr)S_ERROR);

1203 if (DBG_ENABLED) {
1204 Aliste idx2;

1206 for (ALIST_TRAVERSE(sdp->sd_GOTndxs, idx2, gnp)) {
1207 gottable->gt_sym = sdp;
1208 gottable->gt_gndx.gn_gotndx = gnp->gn_gotndx;
1209 gottable->gt_gndx.gn_addend = gnp->gn_addend;
1210 gottable++;
1211 }

1213 if (sdp->sd_aux && sdp->sd_aux->sa_PLTGOTndx) {
1214 gottable->gt_sym = sdp;
1215 gottable->gt_gndx.gn_gotndx =
1216 sdp->sd_aux->sa_PLTGOTndx;
1217 gottable++;
1218 }
1219 }

1221 /*
1222 * If this symbol has been marked as being reduced to local
1223 * scope then it will have to be placed in the scoped portion
1224 * of the .symtab. Retain the appropriate index for use in
1225 * version symbol indexing and relocation.
1226 */
1227 if (SYM_IS_HIDDEN(sdp) && (flags & FLG_OF_PROCRED)) {
1228 local = 1;
1229 if (!(sdp->sd_flags & FLG_SY_ELIM) && !dynsym)
1230 sdp->sd_symndx = scopesym_ndx;
1231 else
1232 sdp->sd_symndx = 0;

1234 if (sdp->sd_flags & FLG_SY_ELIM) {
1235 enter_in_symtab = 0;
1236 } else if (ldynsym && sdp->sd_sym->st_name &&
1237 ldynsym_symtype[
1238 ELF_ST_TYPE(sdp->sd_sym->st_info)]) {
1239 dynlocal = 1;
1240 }
1241 } else {
1242 sdp->sd_symndx = *symndx;
1243 }

new/usr/src/cmd/sgs/libld/common/update.c 18

1245 /*
1246 * Copy basic symbol and string information.
1247 */
1248 name = sdp->sd_name;
1249 sap = sdp->sd_aux;

1251 /*
1252 * If we require to record version symbol indexes, update the
1253 * associated version symbol information for all defined
1254 * symbols. If a version definition is required any zero value
1255 * symbol indexes would have been flagged as undefined symbol
1256 * errors, however if we’re just scoping these need to fall into
1257 * the base of global symbols.
1258 */
1259 if (sdp->sd_symndx && versym) {
1260 Half vndx = 0;

1262 if (sdp->sd_flags & FLG_SY_MVTOCOMM) {
1263 vndx = VER_NDX_GLOBAL;
1264 } else if (sdp->sd_ref == REF_REL_NEED) {
1265 vndx = sap->sa_overndx;

1267 if ((vndx == 0) &&
1268 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
1269 if (SYM_IS_HIDDEN(sdp))
1270 vndx = VER_NDX_LOCAL;
1271 else
1272 vndx = VER_NDX_GLOBAL;
1273 }
1274 } else if ((sdp->sd_ref == REF_DYN_NEED) &&
1275 (sap->sa_dverndx > 0) &&
1276 (sap->sa_dverndx <= sdp->sd_file->ifl_vercnt) &&
1277 (sdp->sd_file->ifl_verndx != NULL)) {
1278 /* Use index of verneed record */
1279 vndx = sdp->sd_file->ifl_verndx
1280 [sap->sa_dverndx].vi_overndx;
1281 }
1282 versym[sdp->sd_symndx] = vndx;
1283 }

1285 /*
1286 * If we are creating the .syminfo section then set per symbol
1287 * flags here.
1288 */
1289 if (sdp->sd_symndx && syminfo &&
1290 !(sdp->sd_flags & FLG_SY_NOTAVAIL)) {
1291 int ndx = sdp->sd_symndx;
1292 APlist **alpp = &(ofl->ofl_symdtent);

1294 if (sdp->sd_flags & FLG_SY_MVTOCOMM)
1295 /*
1296 * Identify a copy relocation symbol.
1297 */
1298 syminfo[ndx].si_flags |= SYMINFO_FLG_COPY;

1300 if (sdp->sd_ref == REF_DYN_NEED) {
1301 /*
1302 * A reference is bound to a needed dependency.
1303 * Save the syminfo entry, so that when the
1304 * .dynamic section has been updated, a
1305 * DT_NEEDED entry can be associated
1306 * (see update_osyminfo()).
1307 */
1308 if (aplist_append(alpp, sdp,
1309 AL_CNT_OFL_SYMINFOSYMS) == NULL)
1310 return (0);

new/usr/src/cmd/sgs/libld/common/update.c 19

1312 /*
1313 * Flag that the symbol has a direct association
1314 * with the external reference (this is an old
1315 * tagging, that has no real effect by itself).
1316 */
1317 syminfo[ndx].si_flags |= SYMINFO_FLG_DIRECT;

1319 /*
1320 * Flag any lazy or deferred reference.
1321 */
1322 if (sdp->sd_flags & FLG_SY_LAZYLD)
1323 syminfo[ndx].si_flags |=
1324 SYMINFO_FLG_LAZYLOAD;
1325 if (sdp->sd_flags & FLG_SY_DEFERRED)
1326 syminfo[ndx].si_flags |=
1327 SYMINFO_FLG_DEFERRED;

1329 /*
1330 * Enable direct symbol bindings if:
1331 *
1332 * - Symbol was identified with the DIRECT
1333 * keyword in a mapfile.
1334 *
1335 * - Symbol reference has been bound to a
1336 * dependency which was specified as
1337 * requiring direct bindings with -zdirect.
1338 *
1339 * - All symbol references are required to
1340 * use direct bindings via -Bdirect.
1341 */
1342 if (sdp->sd_flags & FLG_SY_DIR)
1343 syminfo[ndx].si_flags |=
1344 SYMINFO_FLG_DIRECTBIND;

1346 } else if ((sdp->sd_flags & FLG_SY_EXTERN) &&
1347 (sdp->sd_sym->st_shndx == SHN_UNDEF)) {
1348 /*
1349 * If this symbol has been explicitly defined
1350 * as external, and remains unresolved, mark
1351 * it as external.
1352 */
1353 syminfo[ndx].si_boundto = SYMINFO_BT_EXTERN;

1355 } else if ((sdp->sd_flags & FLG_SY_PARENT) &&
1356 (sdp->sd_sym->st_shndx == SHN_UNDEF)) {
1357 /*
1358 * If this symbol has been explicitly defined
1359 * to be a reference to a parent object,
1360 * indicate whether a direct binding should be
1361 * established.
1362 */
1363 syminfo[ndx].si_flags |= SYMINFO_FLG_DIRECT;
1364 syminfo[ndx].si_boundto = SYMINFO_BT_PARENT;
1365 if (sdp->sd_flags & FLG_SY_DIR)
1366 syminfo[ndx].si_flags |=
1367 SYMINFO_FLG_DIRECTBIND;

1369 } else if (sdp->sd_flags & FLG_SY_STDFLTR) {
1370 /*
1371 * A filter definition. Although this symbol
1372 * can only be a stub, it might be necessary to
1373 * prevent external direct bindings.
1374 */
1375 syminfo[ndx].si_flags |= SYMINFO_FLG_FILTER;
1376 if (sdp->sd_flags & FLG_SY_NDIR)

new/usr/src/cmd/sgs/libld/common/update.c 20

1377 syminfo[ndx].si_flags |=
1378 SYMINFO_FLG_NOEXTDIRECT;

1380 } else if (sdp->sd_flags & FLG_SY_AUXFLTR) {
1381 /*
1382 * An auxiliary filter definition. By nature,
1383 * this definition is direct, in that should the
1384 * filtee lookup fail, we’ll fall back to this
1385 * object. It may still be necessary to
1386 * prevent external direct bindings.
1387 */
1388 syminfo[ndx].si_flags |= SYMINFO_FLG_AUXILIARY;
1389 if (sdp->sd_flags & FLG_SY_NDIR)
1390 syminfo[ndx].si_flags |=
1391 SYMINFO_FLG_NOEXTDIRECT;

1393 } else if ((sdp->sd_ref == REF_REL_NEED) &&
1394 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
1395 /*
1396 * This definition exists within the object
1397 * being created. Provide a default boundto
1398 * definition, which may be overridden later.
1399 */
1400 syminfo[ndx].si_boundto = SYMINFO_BT_NONE;

1402 /*
1403 * Indicate whether it is necessary to prevent
1404 * external direct bindings.
1405 */
1406 if (sdp->sd_flags & FLG_SY_NDIR) {
1407 syminfo[ndx].si_flags |=
1408 SYMINFO_FLG_NOEXTDIRECT;
1409 }

1411 /*
1412 * Indicate that this symbol is acting as an
1413 * individual interposer.
1414 */
1415 if (sdp->sd_flags & FLG_SY_INTPOSE) {
1416 syminfo[ndx].si_flags |=
1417 SYMINFO_FLG_INTERPOSE;
1418 }

1420 /*
1421 * Indicate that this symbol is deferred, and
1422 * hence should not be bound to during BIND_NOW
1423 * relocations.
1424 */
1425 if (sdp->sd_flags & FLG_SY_DEFERRED) {
1426 syminfo[ndx].si_flags |=
1427 SYMINFO_FLG_DEFERRED;
1428 }

1430 /*
1431 * If external bindings are allowed, indicate
1432 * the binding, and a direct binding if
1433 * necessary.
1434 */
1435 if ((sdp->sd_flags & FLG_SY_NDIR) == 0) {
1436 syminfo[ndx].si_flags |=
1437 SYMINFO_FLG_DIRECT;

1439 if (sdp->sd_flags & FLG_SY_DIR)
1440 syminfo[ndx].si_flags |=
1441 SYMINFO_FLG_DIRECTBIND;

new/usr/src/cmd/sgs/libld/common/update.c 21

1443 /*
1444 * Provide a default boundto definition,
1445 * which may be overridden later.
1446 */
1447 syminfo[ndx].si_boundto =
1448 SYMINFO_BT_SELF;
1449 }

1451 /*
1452 * Indicate that this is a capabilities symbol.
1453 * Note, that this identification only provides
1454 * information regarding the symbol that is
1455 * visible from elfdump(1) -y. The association
1456 * of a symbol to its capabilities is derived
1457 * from a .SUNW_capinfo entry.
1458 */
1459 if ((sdp->sd_flags & FLG_SY_CAP) &&
1460 ofl->ofl_oscapinfo) {
1461 syminfo[ndx].si_flags |=
1462 SYMINFO_FLG_CAP;
1463 }
1464 }
1465 }

1467 /*
1468 * Note that the ‘sym’ value is reset to be one of the new
1469 * symbol table entries. This symbol will be updated further
1470 * depending on the type of the symbol. Process the .symtab
1471 * first, followed by the .dynsym, thus the ‘sym’ value will
1472 * remain as the .dynsym value when the .dynsym is present.
1473 * This ensures that any versioning symbols st_name value will
1474 * be appropriate for the string table used by version
1475 * entries.
1476 */
1477 if (enter_in_symtab) {
1478 Word _symndx;

1480 if (local)
1481 _symndx = scopesym_ndx;
1482 else
1483 _symndx = symtab_ndx;

1485 symtab[_symndx] = *sdp->sd_sym;
1486 sdp->sd_sym = sym = &symtab[_symndx];
1487 (void) st_setstring(strtab, name, &stoff);
1488 sym->st_name = stoff;
1489 }
1490 if (dynlocal) {
1491 ldynsym[ldynscopesym_ndx] = *sdp->sd_sym;
1492 sdp->sd_sym = sym = &ldynsym[ldynscopesym_ndx];
1493 (void) st_setstring(dynstr, name, &stoff);
1494 ldynsym[ldynscopesym_ndx].st_name = stoff;
1495 /* Add it to sort section if it qualifies */
1496 ADD_TO_DYNSORT(sdp, sym, ELF_ST_TYPE(sym->st_info),
1497 ldynscopesym_ndx);
1498 }

1500 if (dynsym && !local) {
1501 dynsym[dynsym_ndx] = *sdp->sd_sym;

1503 /*
1504 * Provided this isn’t an unnamed register symbol,
1505 * update the symbols name and hash value.
1506 */
1507 if (((sdp->sd_flags & FLG_SY_REGSYM) == 0) ||
1508 dynsym[dynsym_ndx].st_name) {

new/usr/src/cmd/sgs/libld/common/update.c 22

1509 (void) st_setstring(dynstr, name, &stoff);
1510 dynsym[dynsym_ndx].st_name = stoff;

1512 if (stoff) {
1513 Word hashval, _hashndx;

1515 hashval =
1516 sap->sa_hash % ofl->ofl_hashbkts;

1518 /* LINTED */
1519 if (_hashndx = hashbkt[hashval]) {
1520 while (hashchain[_hashndx]) {
1521 _hashndx =
1522 hashchain[_hashndx];
1523 }
1524 hashchain[_hashndx] =
1525 sdp->sd_symndx;
1526 } else {
1527 hashbkt[hashval] =
1528 sdp->sd_symndx;
1529 }
1530 }
1531 }
1532 sdp->sd_sym = sym = &dynsym[dynsym_ndx];

1534 /*
1535 * Add it to sort section if it qualifies.
1536 * The indexes in that section are relative to the
1537 * the adjacent SUNW_ldynsym/dymsym pair, so we
1538 * add the number of items in SUNW_ldynsym to the
1539 * dynsym index.
1540 */
1541 ADD_TO_DYNSORT(sdp, sym, ELF_ST_TYPE(sym->st_info),
1542 ldynsym_cnt + dynsym_ndx);
1543 }

1545 if (!enter_in_symtab && (!dynsym || (local && !dynlocal))) {
1546 if (!(sdp->sd_flags & FLG_SY_UPREQD))
1547 continue;
1548 sym = sdp->sd_sym;
1549 } else
1550 sdp->sd_flags &= ~FLG_SY_CLEAN;

1552 /*
1553 * If we have a weak data symbol for which we need the real
1554 * symbol also, save this processing until later.
1555 *
1556 * The exception to this is if the weak/strong have PLT’s
1557 * assigned to them. In that case we don’t do the post-weak
1558 * processing because the PLT’s must be maintained so that we
1559 * can do ’interpositioning’ on both of the symbols.
1560 */
1561 if ((sap->sa_linkndx) &&
1562 (ELF_ST_BIND(sym->st_info) == STB_WEAK) &&
1563 (!sap->sa_PLTndx)) {
1564 Sym_desc *_sdp;

1566 _sdp = sdp->sd_file->ifl_oldndx[sap->sa_linkndx];

1568 if (_sdp->sd_ref != REF_DYN_SEEN) {
1569 Wk_desc wk;

1571 if (enter_in_symtab) {
1572 if (local) {
1573 wk.wk_symtab =
1574 &symtab[scopesym_ndx];

new/usr/src/cmd/sgs/libld/common/update.c 23

1575 scopesym_ndx++;
1576 } else {
1577 wk.wk_symtab =
1578 &symtab[symtab_ndx];
1579 symtab_ndx++;
1580 }
1581 } else {
1582 wk.wk_symtab = NULL;
1583 }
1584 if (dynsym) {
1585 if (!local) {
1586 wk.wk_dynsym =
1587 &dynsym[dynsym_ndx];
1588 dynsym_ndx++;
1589 } else if (dynlocal) {
1590 wk.wk_dynsym =
1591 &ldynsym[ldynscopesym_ndx];
1592 ldynscopesym_ndx++;
1593 }
1594 } else {
1595 wk.wk_dynsym = NULL;
1596 }
1597 wk.wk_weak = sdp;
1598 wk.wk_alias = _sdp;

1600 if (alist_append(&weak, &wk,
1601 sizeof (Wk_desc), AL_CNT_WEAK) == NULL)
1602 return ((Addr)S_ERROR);

1604 continue;
1605 }
1606 }

1608 DBG_CALL(Dbg_syms_old(ofl, sdp));

1610 spec = NULL;
1611 /*
1612 * assign new symbol value.
1613 */
1614 sectndx = sdp->sd_shndx;
1615 if (sectndx == SHN_UNDEF) {
1616 if (((sdp->sd_flags & FLG_SY_REGSYM) == 0) &&
1617 (sym->st_value != 0)) {
1618 ld_eprintf(ofl, ERR_WARNING,
1619 MSG_INTL(MSG_SYM_NOTNULL),
1620 demangle(name), sdp->sd_file->ifl_name);
1621 }

1623 /*
1624 * Undefined weak global, if we are generating a static
1625 * executable, output as an absolute zero. Otherwise
1626 * leave it as is, ld.so.1 will skip symbols of this
1627 * type (this technique allows applications and
1628 * libraries to test for the existence of a symbol as an
1629 * indication of the presence or absence of certain
1630 * functionality).
1631 */
1632 if (OFL_IS_STATIC_EXEC(ofl) &&
1633 (ELF_ST_BIND(sym->st_info) == STB_WEAK)) {
1634 sdp->sd_flags |= FLG_SY_SPECSEC;
1635 sdp->sd_shndx = sectndx = SHN_ABS;
1636 }
1637 } else if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
1638 (sectndx == SHN_COMMON)) {
1639 /* COMMONs have already been processed */
1640 /* EMPTY */

new/usr/src/cmd/sgs/libld/common/update.c 24

1641 ;
1642 } else {
1643 if ((sdp->sd_flags & FLG_SY_SPECSEC) &&
1644 (sectndx == SHN_ABS))
1645 spec = sdp->sd_aux->sa_symspec;

1647 /* LINTED */
1648 if (sdp->sd_flags & FLG_SY_COMMEXP) {
1649 /*
1650 * This is (or was) a COMMON symbol which was
1651 * processed above - no processing
1652 * required here.
1653 */
1654 ;
1655 } else if (sdp->sd_ref == REF_DYN_NEED) {
1656 uchar_t type, bind;

1658 sectndx = SHN_UNDEF;
1659 sym->st_value = 0;
1660 sym->st_size = 0;

1662 /*
1663 * Make sure this undefined symbol is returned
1664 * to the same binding as was defined in the
1665 * original relocatable object reference.
1666 */
1667 type = ELF_ST_TYPE(sym-> st_info);
1668 if (sdp->sd_flags & FLG_SY_GLOBREF)
1669 bind = STB_GLOBAL;
1670 else
1671 bind = STB_WEAK;

1673 sym->st_info = ELF_ST_INFO(bind, type);

1675 } else if (((sdp->sd_flags & FLG_SY_SPECSEC) == 0) &&
1676 (sdp->sd_ref == REF_REL_NEED)) {
1677 osp = sdp->sd_isc->is_osdesc;
1678 /* LINTED */
1679 sectndx = elf_ndxscn(osp->os_scn);

1681 /*
1682 * In an executable, the new symbol value is the
1683 * old value (offset into defining section) plus
1684 * virtual address of defining section. In a
1685 * relocatable, the new value is the old value
1686 * plus the displacement of the section within
1687 * the file.
1688 */
1689 /* LINTED */
1690 sym->st_value +=
1691 (Off)_elf_getxoff(sdp->sd_isc->is_indata);

1693 if (!(flags & FLG_OF_RELOBJ)) {
1694 sym->st_value += osp->os_shdr->sh_addr;
1695 /*
1696 * TLS symbols are relative to
1697 * the TLS segment.
1698 */
1699 if ((ELF_ST_TYPE(sym->st_info) ==
1700 STT_TLS) && (ofl->ofl_tlsphdr))
1701 sym->st_value -=
1702 ofl->ofl_tlsphdr->p_vaddr;
1703 }
1704 }
1705 }

new/usr/src/cmd/sgs/libld/common/update.c 25

1707 if (spec) {
1708 switch (spec) {
1709 case SDAUX_ID_ETEXT:
1710 sym->st_value = etext;
1711 sectndx = etext_ndx;
1712 if (etext_abs)
1713 sdp->sd_flags |= FLG_SY_SPECSEC;
1714 else
1715 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1716 break;
1717 case SDAUX_ID_EDATA:
1718 sym->st_value = edata;
1719 sectndx = edata_ndx;
1720 if (edata_abs)
1721 sdp->sd_flags |= FLG_SY_SPECSEC;
1722 else
1723 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1724 break;
1725 case SDAUX_ID_END:
1726 sym->st_value = end;
1727 sectndx = end_ndx;
1728 if (end_abs)
1729 sdp->sd_flags |= FLG_SY_SPECSEC;
1730 else
1731 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1732 break;
1733 case SDAUX_ID_START:
1734 sym->st_value = start;
1735 sectndx = start_ndx;
1736 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1737 break;
1738 case SDAUX_ID_DYN:
1739 if (flags & FLG_OF_DYNAMIC) {
1740 sym->st_value = ofl->
1741 ofl_osdynamic->os_shdr->sh_addr;
1742 /* LINTED */
1743 sectndx = elf_ndxscn(
1744 ofl->ofl_osdynamic->os_scn);
1745 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1746 }
1747 break;
1748 case SDAUX_ID_PLT:
1749 if (ofl->ofl_osplt) {
1750 sym->st_value = ofl->
1751 ofl_osplt->os_shdr->sh_addr;
1752 /* LINTED */
1753 sectndx = elf_ndxscn(
1754 ofl->ofl_osplt->os_scn);
1755 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1756 }
1757 break;
1758 case SDAUX_ID_GOT:
1759 /*
1760 * Symbol bias for negative growing tables is
1761 * stored in symbol’s value during
1762 * allocate_got().
1763 */
1764 sym->st_value += ofl->
1765 ofl_osgot->os_shdr->sh_addr;
1766 /* LINTED */
1767 sectndx = elf_ndxscn(ofl->
1768 ofl_osgot->os_scn);
1769 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1770 break;
1771 case SDAUX_ID_SECBOUND_START:
1772 sym->st_value = sap->sa_boundsec->

new/usr/src/cmd/sgs/libld/common/update.c 26

1773 os_shdr->sh_addr;
1774 sectndx = elf_ndxscn(sap->sa_boundsec->os_scn);
1775 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1776 break;
1777 case SDAUX_ID_SECBOUND_STOP:
1778 sym->st_value = sap->sa_boundsec->
1779 os_shdr->sh_addr +
1780 sap->sa_boundsec->os_shdr->sh_size;
1781 sectndx = elf_ndxscn(sap->sa_boundsec->os_scn);
1782 sdp->sd_flags &= ~FLG_SY_SPECSEC;
1783 break;
1784 #endif /* ! codereview */
1785 default:
1786 /* NOTHING */
1787 ;
1788 }
1789 }

1791 /*
1792 * If a plt index has been assigned to an undefined function,
1793 * update the symbols value to the appropriate .plt address.
1794 */
1795 if ((flags & FLG_OF_DYNAMIC) && (flags & FLG_OF_EXEC) &&
1796 (sdp->sd_file) &&
1797 (sdp->sd_file->ifl_ehdr->e_type == ET_DYN) &&
1798 (ELF_ST_TYPE(sym->st_info) == STT_FUNC) &&
1799 !(flags & FLG_OF_BFLAG)) {
1800 if (sap->sa_PLTndx)
1801 sym->st_value =
1802 (*ld_targ.t_mr.mr_calc_plt_addr)(sdp, ofl);
1803 }

1805 /*
1806 * Finish updating the symbols.
1807 */

1809 /*
1810 * Sym Update: if scoped local - set local binding
1811 */
1812 if (local)
1813 sym->st_info = ELF_ST_INFO(STB_LOCAL,
1814 ELF_ST_TYPE(sym->st_info));

1816 /*
1817 * Sym Updated: If both the .symtab and .dynsym
1818 * are present then we’ve actually updated the information in
1819 * the .dynsym, therefore copy this same information to the
1820 * .symtab entry.
1821 */
1822 sdp->sd_shndx = sectndx;
1823 if (enter_in_symtab && dynsym && (!local || dynlocal)) {
1824 Word _symndx = dynlocal ? scopesym_ndx : symtab_ndx;

1826 symtab[_symndx].st_value = sym->st_value;
1827 symtab[_symndx].st_size = sym->st_size;
1828 symtab[_symndx].st_info = sym->st_info;
1829 symtab[_symndx].st_other = sym->st_other;
1830 }

1832 if (enter_in_symtab) {
1833 Word _symndx;

1835 if (local)
1836 _symndx = scopesym_ndx++;
1837 else
1838 _symndx = symtab_ndx++;

new/usr/src/cmd/sgs/libld/common/update.c 27

1839 if (((sdp->sd_flags & FLG_SY_SPECSEC) == 0) &&
1840 (sectndx >= SHN_LORESERVE)) {
1841 assert(symshndx != NULL);
1842 symshndx[_symndx] = sectndx;
1843 symtab[_symndx].st_shndx = SHN_XINDEX;
1844 } else {
1845 /* LINTED */
1846 symtab[_symndx].st_shndx = (Half)sectndx;
1847 }
1848 }

1850 if (dynsym && (!local || dynlocal)) {
1851 /*
1852 * dynsym and ldynsym are distinct tables, so
1853 * we use indirection to access the right one
1854 * and the related extended section index array.
1855 */
1856 Word _symndx;
1857 Sym *_dynsym;
1858 Word *_dynshndx;

1860 if (!local) {
1861 _symndx = dynsym_ndx++;
1862 _dynsym = dynsym;
1863 _dynshndx = dynshndx;
1864 } else {
1865 _symndx = ldynscopesym_ndx++;
1866 _dynsym = ldynsym;
1867 _dynshndx = ldynshndx;
1868 }
1869 if (((sdp->sd_flags & FLG_SY_SPECSEC) == 0) &&
1870 (sectndx >= SHN_LORESERVE)) {
1871 assert(_dynshndx != NULL);
1872 _dynshndx[_symndx] = sectndx;
1873 _dynsym[_symndx].st_shndx = SHN_XINDEX;
1874 } else {
1875 /* LINTED */
1876 _dynsym[_symndx].st_shndx = (Half)sectndx;
1877 }
1878 }

1880 DBG_CALL(Dbg_syms_new(ofl, sym, sdp));
1881 }

1883 /*
1884 * Now that all the symbols have been processed update any weak symbols
1885 * information (ie. copy all information except ‘st_name’). As both
1886 * symbols will be represented in the output, return the weak symbol to
1887 * its correct type.
1888 */
1889 for (ALIST_TRAVERSE(weak, idx1, wkp)) {
1890 Sym_desc *sdp, *_sdp;
1891 Sym *sym, *_sym, *__sym;
1892 uchar_t bind;

1894 sdp = wkp->wk_weak;
1895 _sdp = wkp->wk_alias;
1896 _sym = __sym = _sdp->sd_sym;

1898 sdp->sd_flags |= FLG_SY_WEAKDEF;

1900 /*
1901 * If the symbol definition has been scoped then assign it to
1902 * be local, otherwise if it’s from a shared object then we need
1903 * to maintain the binding of the original reference.
1904 */

new/usr/src/cmd/sgs/libld/common/update.c 28

1905 if (SYM_IS_HIDDEN(sdp)) {
1906 if (flags & FLG_OF_PROCRED)
1907 bind = STB_LOCAL;
1908 else
1909 bind = STB_WEAK;
1910 } else if ((sdp->sd_ref == REF_DYN_NEED) &&
1911 (sdp->sd_flags & FLG_SY_GLOBREF))
1912 bind = STB_GLOBAL;
1913 else
1914 bind = STB_WEAK;

1916 DBG_CALL(Dbg_syms_old(ofl, sdp));
1917 if ((sym = wkp->wk_symtab) != NULL) {
1918 sym->st_value = _sym->st_value;
1919 sym->st_size = _sym->st_size;
1920 sym->st_other = _sym->st_other;
1921 sym->st_shndx = _sym->st_shndx;
1922 sym->st_info = ELF_ST_INFO(bind,
1923 ELF_ST_TYPE(sym->st_info));
1924 __sym = sym;
1925 }
1926 if ((sym = wkp->wk_dynsym) != NULL) {
1927 sym->st_value = _sym->st_value;
1928 sym->st_size = _sym->st_size;
1929 sym->st_other = _sym->st_other;
1930 sym->st_shndx = _sym->st_shndx;
1931 sym->st_info = ELF_ST_INFO(bind,
1932 ELF_ST_TYPE(sym->st_info));
1933 __sym = sym;
1934 }
1935 DBG_CALL(Dbg_syms_new(ofl, __sym, sdp));
1936 }

1938 /*
1939 * Now display GOT debugging information if required.
1940 */
1941 DBG_CALL(Dbg_got_display(ofl, 0, 0,
1942 ld_targ.t_m.m_got_xnumber, ld_targ.t_m.m_got_entsize));

1944 /*
1945 * Update the section headers information. sh_info is
1946 * supposed to contain the offset at which the first
1947 * global symbol resides in the symbol table, while
1948 * sh_link contains the section index of the associated
1949 * string table.
1950 */
1951 if (symtab) {
1952 Shdr *shdr = ofl->ofl_ossymtab->os_shdr;

1954 shdr->sh_info = symtab_gbl_bndx;
1955 /* LINTED */
1956 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_osstrtab->os_scn);
1957 if (symshndx)
1958 ofl->ofl_ossymshndx->os_shdr->sh_link =
1959 (Word)elf_ndxscn(ofl->ofl_ossymtab->os_scn);

1961 /*
1962 * Ensure that the expected number of symbols
1963 * were entered into the right spots:
1964 * - Scoped symbols in the right range
1965 * - Globals start at the right spot
1966 * (correct number of locals entered)
1967 * - The table is exactly filled
1968 * (correct number of globals entered)
1969 */
1970 assert((scopesym_bndx + ofl->ofl_scopecnt) == scopesym_ndx);

new/usr/src/cmd/sgs/libld/common/update.c 29

1971 assert(shdr->sh_info == SYMTAB_LOC_CNT(ofl));
1972 assert((shdr->sh_info + ofl->ofl_globcnt) == symtab_ndx);
1973 }
1974 if (dynsym) {
1975 Shdr *shdr = ofl->ofl_osdynsym->os_shdr;

1977 shdr->sh_info = DYNSYM_LOC_CNT(ofl);
1978 /* LINTED */
1979 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_osdynstr->os_scn);

1981 ofl->ofl_oshash->os_shdr->sh_link =
1982 /* LINTED */
1983 (Word)elf_ndxscn(ofl->ofl_osdynsym->os_scn);
1984 if (dynshndx) {
1985 shdr = ofl->ofl_osdynshndx->os_shdr;
1986 shdr->sh_link =
1987 (Word)elf_ndxscn(ofl->ofl_osdynsym->os_scn);
1988 }
1989 }
1990 if (ldynsym) {
1991 Shdr *shdr = ofl->ofl_osldynsym->os_shdr;

1993 /* ldynsym has no globals, so give index one past the end */
1994 shdr->sh_info = ldynsym_ndx;

1996 /*
1997 * The ldynsym and dynsym must be adjacent. The
1998 * idea is that rtld should be able to start with
1999 * the ldynsym and march straight through the end
2000 * of dynsym, seeing them as a single symbol table,
2001 * despite the fact that they are in distinct sections.
2002 * Ensure that this happened correctly.
2003 *
2004 * Note that I use ldynsym_ndx here instead of the
2005 * computation I used to set the section size
2006 * (found in ldynsym_cnt). The two will agree, unless
2007 * we somehow miscounted symbols or failed to insert them
2008 * all. Using ldynsym_ndx here catches that error in
2009 * addition to checking for adjacency.
2010 */
2011 assert(dynsym == (ldynsym + ldynsym_ndx));

2014 /* LINTED */
2015 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_osdynstr->os_scn);

2017 if (ldynshndx) {
2018 shdr = ofl->ofl_osldynshndx->os_shdr;
2019 shdr->sh_link =
2020 (Word)elf_ndxscn(ofl->ofl_osldynsym->os_scn);
2021 }

2023 /*
2024 * The presence of .SUNW_ldynsym means that there may be
2025 * associated sort sections, one for regular symbols
2026 * and the other for TLS. Each sort section needs the
2027 * following done:
2028 * - Section header link references .SUNW_ldynsym
2029 * - Should have received the expected # of items
2030 * - Sorted by increasing address
2031 */
2032 if (ofl->ofl_osdynsymsort) { /* .SUNW_dynsymsort */
2033 ofl->ofl_osdynsymsort->os_shdr->sh_link =
2034 (Word)elf_ndxscn(ofl->ofl_osldynsym->os_scn);
2035 assert(ofl->ofl_dynsymsortcnt == dynsymsort_ndx);

new/usr/src/cmd/sgs/libld/common/update.c 30

2037 if (dynsymsort_ndx > 1) {
2038 dynsort_compare_syms = ldynsym;
2039 qsort(dynsymsort, dynsymsort_ndx,
2040 sizeof (*dynsymsort), dynsort_compare);
2041 dynsort_dupwarn(ofl, ldynsym,
2042 st_getstrbuf(dynstr),
2043 dynsymsort, dynsymsort_ndx,
2044 MSG_ORIG(MSG_SCN_DYNSYMSORT));
2045 }
2046 }
2047 if (ofl->ofl_osdyntlssort) { /* .SUNW_dyntlssort */
2048 ofl->ofl_osdyntlssort->os_shdr->sh_link =
2049 (Word)elf_ndxscn(ofl->ofl_osldynsym->os_scn);
2050 assert(ofl->ofl_dyntlssortcnt == dyntlssort_ndx);

2052 if (dyntlssort_ndx > 1) {
2053 dynsort_compare_syms = ldynsym;
2054 qsort(dyntlssort, dyntlssort_ndx,
2055 sizeof (*dyntlssort), dynsort_compare);
2056 dynsort_dupwarn(ofl, ldynsym,
2057 st_getstrbuf(dynstr),
2058 dyntlssort, dyntlssort_ndx,
2059 MSG_ORIG(MSG_SCN_DYNTLSSORT));
2060 }
2061 }
2062 }

2064 /*
2065 * Used by ld.so.1 only.
2066 */
2067 return (etext);

2069 #undef ADD_TO_DYNSORT
2070 }

2072 /*
2073 * Build the dynamic section.
2074 *
2075 * This routine must be maintained in parallel with make_dynamic()
2076 * in sections.c
2077 */
2078 static int
2079 update_odynamic(Ofl_desc *ofl)
2080 {
2081 Aliste idx;
2082 Ifl_desc *ifl;
2083 Sym_desc *sdp;
2084 Shdr *shdr;
2085 Dyn *_dyn = (Dyn *)ofl->ofl_osdynamic->os_outdata->d_buf;
2086 Dyn *dyn;
2087 Os_desc *symosp, *strosp;
2088 Str_tbl *strtbl;
2089 size_t stoff;
2090 ofl_flag_t flags = ofl->ofl_flags;
2091 int not_relobj = !(flags & FLG_OF_RELOBJ);
2092 Word cnt;

2094 /*
2095 * Relocatable objects can be built with -r and -dy to trigger the
2096 * creation of a .dynamic section. This model is used to create kernel
2097 * device drivers. The .dynamic section provides a subset of userland
2098 * .dynamic entries, typically entries such as DT_NEEDED and DT_RUNPATH.
2099 *
2100 * Within a dynamic object, any .dynamic string references are to the
2101 * .dynstr table. Within a relocatable object, these strings can reside
2102 * within the .strtab.

new/usr/src/cmd/sgs/libld/common/update.c 31

2103 */
2104 if (OFL_IS_STATIC_OBJ(ofl)) {
2105 symosp = ofl->ofl_ossymtab;
2106 strosp = ofl->ofl_osstrtab;
2107 strtbl = ofl->ofl_strtab;
2108 } else {
2109 symosp = ofl->ofl_osdynsym;
2110 strosp = ofl->ofl_osdynstr;
2111 strtbl = ofl->ofl_dynstrtab;
2112 }

2114 /* LINTED */
2115 ofl->ofl_osdynamic->os_shdr->sh_link = (Word)elf_ndxscn(strosp->os_scn);

2117 dyn = _dyn;

2119 for (APLIST_TRAVERSE(ofl->ofl_sos, idx, ifl)) {
2120 if ((ifl->ifl_flags &
2121 (FLG_IF_IGNORE | FLG_IF_DEPREQD)) == FLG_IF_IGNORE)
2122 continue;

2124 /*
2125 * Create and set up the DT_POSFLAG_1 entry here if required.
2126 */
2127 if ((ifl->ifl_flags & MSK_IF_POSFLAG1) &&
2128 (ifl->ifl_flags & FLG_IF_NEEDED) && not_relobj) {
2129 dyn->d_tag = DT_POSFLAG_1;
2130 if (ifl->ifl_flags & FLG_IF_LAZYLD)
2131 dyn->d_un.d_val = DF_P1_LAZYLOAD;
2132 if (ifl->ifl_flags & FLG_IF_GRPPRM)
2133 dyn->d_un.d_val |= DF_P1_GROUPPERM;
2134 if (ifl->ifl_flags & FLG_IF_DEFERRED)
2135 dyn->d_un.d_val |= DF_P1_DEFERRED;
2136 dyn++;
2137 }

2139 if (ifl->ifl_flags & (FLG_IF_NEEDED | FLG_IF_NEEDSTR))
2140 dyn->d_tag = DT_NEEDED;
2141 else
2142 continue;

2144 (void) st_setstring(strtbl, ifl->ifl_soname, &stoff);
2145 dyn->d_un.d_val = stoff;
2146 /* LINTED */
2147 ifl->ifl_neededndx = (Half)(((uintptr_t)dyn - (uintptr_t)_dyn) /
2148 sizeof (Dyn));
2149 dyn++;
2150 }

2152 if (not_relobj) {
2153 if (ofl->ofl_dtsfltrs != NULL) {
2154 Dfltr_desc *dftp;

2156 for (ALIST_TRAVERSE(ofl->ofl_dtsfltrs, idx, dftp)) {
2157 if (dftp->dft_flag == FLG_SY_AUXFLTR)
2158 dyn->d_tag = DT_SUNW_AUXILIARY;
2159 else
2160 dyn->d_tag = DT_SUNW_FILTER;

2162 (void) st_setstring(strtbl, dftp->dft_str,
2163 &stoff);
2164 dyn->d_un.d_val = stoff;
2165 dftp->dft_ndx = (Half)(((uintptr_t)dyn -
2166 (uintptr_t)_dyn) / sizeof (Dyn));
2167 dyn++;
2168 }

new/usr/src/cmd/sgs/libld/common/update.c 32

2169 }
2170 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_INIT_U),
2171 SYM_NOHASH, 0, ofl)) != NULL) &&
2172 (sdp->sd_ref == REF_REL_NEED) &&
2173 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
2174 dyn->d_tag = DT_INIT;
2175 dyn->d_un.d_ptr = sdp->sd_sym->st_value;
2176 dyn++;
2177 }
2178 if (((sdp = ld_sym_find(MSG_ORIG(MSG_SYM_FINI_U),
2179 SYM_NOHASH, 0, ofl)) != NULL) &&
2180 (sdp->sd_ref == REF_REL_NEED) &&
2181 (sdp->sd_sym->st_shndx != SHN_UNDEF)) {
2182 dyn->d_tag = DT_FINI;
2183 dyn->d_un.d_ptr = sdp->sd_sym->st_value;
2184 dyn++;
2185 }
2186 if (ofl->ofl_soname) {
2187 dyn->d_tag = DT_SONAME;
2188 (void) st_setstring(strtbl, ofl->ofl_soname, &stoff);
2189 dyn->d_un.d_val = stoff;
2190 dyn++;
2191 }
2192 if (ofl->ofl_filtees) {
2193 if (flags & FLG_OF_AUX) {
2194 dyn->d_tag = DT_AUXILIARY;
2195 } else {
2196 dyn->d_tag = DT_FILTER;
2197 }
2198 (void) st_setstring(strtbl, ofl->ofl_filtees, &stoff);
2199 dyn->d_un.d_val = stoff;
2200 dyn++;
2201 }
2202 }

2204 if (ofl->ofl_rpath) {
2205 (void) st_setstring(strtbl, ofl->ofl_rpath, &stoff);
2206 dyn->d_tag = DT_RUNPATH;
2207 dyn->d_un.d_val = stoff;
2208 dyn++;
2209 dyn->d_tag = DT_RPATH;
2210 dyn->d_un.d_val = stoff;
2211 dyn++;
2212 }

2214 if (not_relobj) {
2215 Aliste idx;
2216 Sg_desc *sgp;

2218 if (ofl->ofl_config) {
2219 dyn->d_tag = DT_CONFIG;
2220 (void) st_setstring(strtbl, ofl->ofl_config, &stoff);
2221 dyn->d_un.d_val = stoff;
2222 dyn++;
2223 }
2224 if (ofl->ofl_depaudit) {
2225 dyn->d_tag = DT_DEPAUDIT;
2226 (void) st_setstring(strtbl, ofl->ofl_depaudit, &stoff);
2227 dyn->d_un.d_val = stoff;
2228 dyn++;
2229 }
2230 if (ofl->ofl_audit) {
2231 dyn->d_tag = DT_AUDIT;
2232 (void) st_setstring(strtbl, ofl->ofl_audit, &stoff);
2233 dyn->d_un.d_val = stoff;
2234 dyn++;

new/usr/src/cmd/sgs/libld/common/update.c 33

2235 }

2237 dyn->d_tag = DT_HASH;
2238 dyn->d_un.d_ptr = ofl->ofl_oshash->os_shdr->sh_addr;
2239 dyn++;

2241 shdr = strosp->os_shdr;
2242 dyn->d_tag = DT_STRTAB;
2243 dyn->d_un.d_ptr = shdr->sh_addr;
2244 dyn++;

2246 dyn->d_tag = DT_STRSZ;
2247 dyn->d_un.d_ptr = shdr->sh_size;
2248 dyn++;

2250 /*
2251 * Note, the shdr is set and used in the ofl->ofl_osldynsym case
2252 * that follows.
2253 */
2254 shdr = symosp->os_shdr;
2255 dyn->d_tag = DT_SYMTAB;
2256 dyn->d_un.d_ptr = shdr->sh_addr;
2257 dyn++;

2259 dyn->d_tag = DT_SYMENT;
2260 dyn->d_un.d_ptr = shdr->sh_entsize;
2261 dyn++;

2263 if (ofl->ofl_osldynsym) {
2264 Shdr *lshdr = ofl->ofl_osldynsym->os_shdr;

2266 /*
2267 * We have arranged for the .SUNW_ldynsym data to be
2268 * immediately in front of the .dynsym data.
2269 * This means that you could start at the top
2270 * of .SUNW_ldynsym and see the data for both tables
2271 * without a break. This is the view we want to
2272 * provide for DT_SUNW_SYMTAB, which is why we
2273 * add the lengths together.
2274 */
2275 dyn->d_tag = DT_SUNW_SYMTAB;
2276 dyn->d_un.d_ptr = lshdr->sh_addr;
2277 dyn++;

2279 dyn->d_tag = DT_SUNW_SYMSZ;
2280 dyn->d_un.d_val = lshdr->sh_size + shdr->sh_size;
2281 dyn++;
2282 }

2284 if (ofl->ofl_osdynsymsort || ofl->ofl_osdyntlssort) {
2285 dyn->d_tag = DT_SUNW_SORTENT;
2286 dyn->d_un.d_val = sizeof (Word);
2287 dyn++;
2288 }

2290 if (ofl->ofl_osdynsymsort) {
2291 shdr = ofl->ofl_osdynsymsort->os_shdr;

2293 dyn->d_tag = DT_SUNW_SYMSORT;
2294 dyn->d_un.d_ptr = shdr->sh_addr;
2295 dyn++;

2297 dyn->d_tag = DT_SUNW_SYMSORTSZ;
2298 dyn->d_un.d_val = shdr->sh_size;
2299 dyn++;
2300 }

new/usr/src/cmd/sgs/libld/common/update.c 34

2302 if (ofl->ofl_osdyntlssort) {
2303 shdr = ofl->ofl_osdyntlssort->os_shdr;

2305 dyn->d_tag = DT_SUNW_TLSSORT;
2306 dyn->d_un.d_ptr = shdr->sh_addr;
2307 dyn++;

2309 dyn->d_tag = DT_SUNW_TLSSORTSZ;
2310 dyn->d_un.d_val = shdr->sh_size;
2311 dyn++;
2312 }

2314 /*
2315 * Reserve the DT_CHECKSUM entry. Its value will be filled in
2316 * after the complete image is built.
2317 */
2318 dyn->d_tag = DT_CHECKSUM;
2319 ofl->ofl_checksum = &dyn->d_un.d_val;
2320 dyn++;

2322 /*
2323 * Versioning sections: DT_VERDEF and DT_VERNEED.
2324 *
2325 * The Solaris ld does not produce DT_VERSYM, but the GNU ld
2326 * does, in order to support their style of versioning, which
2327 * differs from ours:
2328 *
2329 * - The top bit of the 16-bit Versym index is
2330 * not part of the version, but is interpreted
2331 * as a "hidden bit".
2332 *
2333 * - External (SHN_UNDEF) symbols can have non-zero
2334 * Versym values, which specify versions in
2335 * referenced objects, via the Verneed section.
2336 *
2337 * - The vna_other field of the Vernaux structures
2338 * found in the Verneed section are not zero as
2339 * with Solaris, but instead contain the version
2340 * index to be used by Versym indices to reference
2341 * the given external version.
2342 *
2343 * The Solaris ld, rtld, and elfdump programs all interpret the
2344 * presence of DT_VERSYM as meaning that GNU versioning rules
2345 * apply to the given file. If DT_VERSYM is not present,
2346 * then Solaris versioning rules apply. If we should ever need
2347 * to change our ld so that it does issue DT_VERSYM, then
2348 * this rule for detecting GNU versioning will no longer work.
2349 * In that case, we will have to invent a way to explicitly
2350 * specify the style of versioning in use, perhaps via a
2351 * new dynamic entry named something like DT_SUNW_VERSIONSTYLE,
2352 * where the d_un.d_val value specifies which style is to be
2353 * used.
2354 */
2355 if ((flags & (FLG_OF_VERDEF | FLG_OF_NOVERSEC)) ==
2356 FLG_OF_VERDEF) {
2357 shdr = ofl->ofl_osverdef->os_shdr;

2359 dyn->d_tag = DT_VERDEF;
2360 dyn->d_un.d_ptr = shdr->sh_addr;
2361 dyn++;
2362 dyn->d_tag = DT_VERDEFNUM;
2363 dyn->d_un.d_ptr = shdr->sh_info;
2364 dyn++;
2365 }
2366 if ((flags & (FLG_OF_VERNEED | FLG_OF_NOVERSEC)) ==

new/usr/src/cmd/sgs/libld/common/update.c 35

2367 FLG_OF_VERNEED) {
2368 shdr = ofl->ofl_osverneed->os_shdr;

2370 dyn->d_tag = DT_VERNEED;
2371 dyn->d_un.d_ptr = shdr->sh_addr;
2372 dyn++;
2373 dyn->d_tag = DT_VERNEEDNUM;
2374 dyn->d_un.d_ptr = shdr->sh_info;
2375 dyn++;
2376 }

2378 if ((flags & FLG_OF_COMREL) && ofl->ofl_relocrelcnt) {
2379 dyn->d_tag = ld_targ.t_m.m_rel_dt_count;
2380 dyn->d_un.d_val = ofl->ofl_relocrelcnt;
2381 dyn++;
2382 }
2383 if (flags & FLG_OF_TEXTREL) {
2384 /*
2385 * Only the presence of this entry is used in this
2386 * implementation, not the value stored.
2387 */
2388 dyn->d_tag = DT_TEXTREL;
2389 dyn->d_un.d_val = 0;
2390 dyn++;
2391 }

2393 if (ofl->ofl_osfiniarray) {
2394 shdr = ofl->ofl_osfiniarray->os_shdr;

2396 dyn->d_tag = DT_FINI_ARRAY;
2397 dyn->d_un.d_ptr = shdr->sh_addr;
2398 dyn++;

2400 dyn->d_tag = DT_FINI_ARRAYSZ;
2401 dyn->d_un.d_val = shdr->sh_size;
2402 dyn++;
2403 }

2405 if (ofl->ofl_osinitarray) {
2406 shdr = ofl->ofl_osinitarray->os_shdr;

2408 dyn->d_tag = DT_INIT_ARRAY;
2409 dyn->d_un.d_ptr = shdr->sh_addr;
2410 dyn++;

2412 dyn->d_tag = DT_INIT_ARRAYSZ;
2413 dyn->d_un.d_val = shdr->sh_size;
2414 dyn++;
2415 }

2417 if (ofl->ofl_ospreinitarray) {
2418 shdr = ofl->ofl_ospreinitarray->os_shdr;

2420 dyn->d_tag = DT_PREINIT_ARRAY;
2421 dyn->d_un.d_ptr = shdr->sh_addr;
2422 dyn++;

2424 dyn->d_tag = DT_PREINIT_ARRAYSZ;
2425 dyn->d_un.d_val = shdr->sh_size;
2426 dyn++;
2427 }

2429 if (ofl->ofl_pltcnt) {
2430 shdr = ofl->ofl_osplt->os_relosdesc->os_shdr;

2432 dyn->d_tag = DT_PLTRELSZ;

new/usr/src/cmd/sgs/libld/common/update.c 36

2433 dyn->d_un.d_ptr = shdr->sh_size;
2434 dyn++;
2435 dyn->d_tag = DT_PLTREL;
2436 dyn->d_un.d_ptr = ld_targ.t_m.m_rel_dt_type;
2437 dyn++;
2438 dyn->d_tag = DT_JMPREL;
2439 dyn->d_un.d_ptr = shdr->sh_addr;
2440 dyn++;
2441 }
2442 if (ofl->ofl_pltpad) {
2443 shdr = ofl->ofl_osplt->os_shdr;

2445 dyn->d_tag = DT_PLTPAD;
2446 if (ofl->ofl_pltcnt) {
2447 dyn->d_un.d_ptr = shdr->sh_addr +
2448 ld_targ.t_m.m_plt_reservsz +
2449 ofl->ofl_pltcnt * ld_targ.t_m.m_plt_entsize;
2450 } else
2451 dyn->d_un.d_ptr = shdr->sh_addr;
2452 dyn++;
2453 dyn->d_tag = DT_PLTPADSZ;
2454 dyn->d_un.d_val = ofl->ofl_pltpad *
2455 ld_targ.t_m.m_plt_entsize;
2456 dyn++;
2457 }
2458 if (ofl->ofl_relocsz) {
2459 shdr = ofl->ofl_osrelhead->os_shdr;

2461 dyn->d_tag = ld_targ.t_m.m_rel_dt_type;
2462 dyn->d_un.d_ptr = shdr->sh_addr;
2463 dyn++;
2464 dyn->d_tag = ld_targ.t_m.m_rel_dt_size;
2465 dyn->d_un.d_ptr = ofl->ofl_relocsz;
2466 dyn++;
2467 dyn->d_tag = ld_targ.t_m.m_rel_dt_ent;
2468 if (shdr->sh_type == SHT_REL)
2469 dyn->d_un.d_ptr = sizeof (Rel);
2470 else
2471 dyn->d_un.d_ptr = sizeof (Rela);
2472 dyn++;
2473 }
2474 if (ofl->ofl_ossyminfo) {
2475 shdr = ofl->ofl_ossyminfo->os_shdr;

2477 dyn->d_tag = DT_SYMINFO;
2478 dyn->d_un.d_ptr = shdr->sh_addr;
2479 dyn++;
2480 dyn->d_tag = DT_SYMINSZ;
2481 dyn->d_un.d_val = shdr->sh_size;
2482 dyn++;
2483 dyn->d_tag = DT_SYMINENT;
2484 dyn->d_un.d_val = sizeof (Syminfo);
2485 dyn++;
2486 }
2487 if (ofl->ofl_osmove) {
2488 shdr = ofl->ofl_osmove->os_shdr;

2490 dyn->d_tag = DT_MOVETAB;
2491 dyn->d_un.d_val = shdr->sh_addr;
2492 dyn++;
2493 dyn->d_tag = DT_MOVESZ;
2494 dyn->d_un.d_val = shdr->sh_size;
2495 dyn++;
2496 dyn->d_tag = DT_MOVEENT;
2497 dyn->d_un.d_val = shdr->sh_entsize;
2498 dyn++;

new/usr/src/cmd/sgs/libld/common/update.c 37

2499 }
2500 if (ofl->ofl_regsymcnt) {
2501 int ndx;

2503 for (ndx = 0; ndx < ofl->ofl_regsymsno; ndx++) {
2504 if ((sdp = ofl->ofl_regsyms[ndx]) == NULL)
2505 continue;

2507 dyn->d_tag = ld_targ.t_m.m_dt_register;
2508 dyn->d_un.d_val = sdp->sd_symndx;
2509 dyn++;
2510 }
2511 }

2513 for (APLIST_TRAVERSE(ofl->ofl_rtldinfo, idx, sdp)) {
2514 dyn->d_tag = DT_SUNW_RTLDINF;
2515 dyn->d_un.d_ptr = sdp->sd_sym->st_value;
2516 dyn++;
2517 }

2519 if (((sgp = ofl->ofl_osdynamic->os_sgdesc) != NULL) &&
2520 (sgp->sg_phdr.p_flags & PF_W) && ofl->ofl_osinterp) {
2521 dyn->d_tag = DT_DEBUG;
2522 dyn->d_un.d_ptr = 0;
2523 dyn++;
2524 }

2526 if (ofl->ofl_oscap) {
2527 dyn->d_tag = DT_SUNW_CAP;
2528 dyn->d_un.d_val = ofl->ofl_oscap->os_shdr->sh_addr;
2529 dyn++;
2530 }
2531 if (ofl->ofl_oscapinfo) {
2532 dyn->d_tag = DT_SUNW_CAPINFO;
2533 dyn->d_un.d_val = ofl->ofl_oscapinfo->os_shdr->sh_addr;
2534 dyn++;
2535 }
2536 if (ofl->ofl_oscapchain) {
2537 shdr = ofl->ofl_oscapchain->os_shdr;

2539 dyn->d_tag = DT_SUNW_CAPCHAIN;
2540 dyn->d_un.d_val = shdr->sh_addr;
2541 dyn++;
2542 dyn->d_tag = DT_SUNW_CAPCHAINSZ;
2543 dyn->d_un.d_val = shdr->sh_size;
2544 dyn++;
2545 dyn->d_tag = DT_SUNW_CAPCHAINENT;
2546 dyn->d_un.d_val = shdr->sh_entsize;
2547 dyn++;
2548 }

2550 if (ofl->ofl_aslr != 0) {
2551 dyn->d_tag = DT_SUNW_ASLR;
2552 dyn->d_un.d_val = (ofl->ofl_aslr == 1);
2553 dyn++;
2554 }

2556 if (flags & FLG_OF_SYMBOLIC) {
2557 dyn->d_tag = DT_SYMBOLIC;
2558 dyn->d_un.d_val = 0;
2559 dyn++;
2560 }
2561 }

2563 dyn->d_tag = DT_FLAGS;
2564 dyn->d_un.d_val = ofl->ofl_dtflags;

new/usr/src/cmd/sgs/libld/common/update.c 38

2565 dyn++;

2567 /*
2568 * If -Bdirect was specified, but some NODIRECT symbols were specified
2569 * via a mapfile, or -znodirect was used on the command line, then
2570 * clear the DF_1_DIRECT flag. The resultant object will use per-symbol
2571 * direct bindings rather than be enabled for global direct bindings.
2572 *
2573 * If any no-direct bindings exist within this object, set the
2574 * DF_1_NODIRECT flag. ld(1) recognizes this flag when processing
2575 * dependencies, and performs extra work to ensure that no direct
2576 * bindings are established to the no-direct symbols that exist
2577 * within these dependencies.
2578 */
2579 if (ofl->ofl_flags1 & FLG_OF1_NGLBDIR)
2580 ofl->ofl_dtflags_1 &= ~DF_1_DIRECT;
2581 if (ofl->ofl_flags1 & FLG_OF1_NDIRECT)
2582 ofl->ofl_dtflags_1 |= DF_1_NODIRECT;

2584 dyn->d_tag = DT_FLAGS_1;
2585 dyn->d_un.d_val = ofl->ofl_dtflags_1;
2586 dyn++;

2588 dyn->d_tag = DT_SUNW_STRPAD;
2589 dyn->d_un.d_val = DYNSTR_EXTRA_PAD;
2590 dyn++;

2592 dyn->d_tag = DT_SUNW_LDMACH;
2593 dyn->d_un.d_val = ld_sunw_ldmach();
2594 dyn++;

2596 (*ld_targ.t_mr.mr_mach_update_odynamic)(ofl, &dyn);

2598 for (cnt = 1 + DYNAMIC_EXTRA_ELTS; cnt--; dyn++) {
2599 dyn->d_tag = DT_NULL;
2600 dyn->d_un.d_val = 0;
2601 }

2603 /*
2604 * Ensure that we wrote the right number of entries. If not, we either
2605 * miscounted in make_dynamic(), or we did something wrong in this
2606 * function.
2607 */
2608 assert((ofl->ofl_osdynamic->os_shdr->sh_size /
2609 ofl->ofl_osdynamic->os_shdr->sh_entsize) ==
2610 ((uintptr_t)dyn - (uintptr_t)_dyn) / sizeof (*dyn));

2612 return (1);
2613 }

2615 /*
2616 * Build the version definition section
2617 */
2618 static int
2619 update_overdef(Ofl_desc *ofl)
2620 {
2621 Aliste idx1;
2622 Ver_desc *vdp, *_vdp;
2623 Verdef *vdf, *_vdf;
2624 int num = 0;
2625 Os_desc *strosp;
2626 Str_tbl *strtbl;

2628 /*
2629 * Determine which string table to use.
2630 */

new/usr/src/cmd/sgs/libld/common/update.c 39

2631 if (OFL_IS_STATIC_OBJ(ofl)) {
2632 strtbl = ofl->ofl_strtab;
2633 strosp = ofl->ofl_osstrtab;
2634 } else {
2635 strtbl = ofl->ofl_dynstrtab;
2636 strosp = ofl->ofl_osdynstr;
2637 }

2639 /*
2640 * Traverse the version descriptors and update the version structures
2641 * to point to the dynstr name in preparation for building the version
2642 * section structure.
2643 */
2644 for (APLIST_TRAVERSE(ofl->ofl_verdesc, idx1, vdp)) {
2645 Sym_desc *sdp;

2647 if (vdp->vd_flags & VER_FLG_BASE) {
2648 const char *name = vdp->vd_name;
2649 size_t stoff;

2651 /*
2652 * Create a new string table entry to represent the base
2653 * version name (there is no corresponding symbol for
2654 * this).
2655 */
2656 (void) st_setstring(strtbl, name, &stoff);
2657 /* LINTED */
2658 vdp->vd_name = (const char *)stoff;
2659 } else {
2660 sdp = ld_sym_find(vdp->vd_name, vdp->vd_hash, 0, ofl);
2661 /* LINTED */
2662 vdp->vd_name = (const char *)
2663 (uintptr_t)sdp->sd_sym->st_name;
2664 }
2665 }

2667 _vdf = vdf = (Verdef *)ofl->ofl_osverdef->os_outdata->d_buf;

2669 /*
2670 * Traverse the version descriptors and update the version section to
2671 * reflect each version and its associated dependencies.
2672 */
2673 for (APLIST_TRAVERSE(ofl->ofl_verdesc, idx1, vdp)) {
2674 Aliste idx2;
2675 Half cnt = 1;
2676 Verdaux *vdap, *_vdap;

2678 _vdap = vdap = (Verdaux *)(vdf + 1);

2680 vdf->vd_version = VER_DEF_CURRENT;
2681 vdf->vd_flags = vdp->vd_flags & MSK_VER_USER;
2682 vdf->vd_ndx = vdp->vd_ndx;
2683 vdf->vd_hash = vdp->vd_hash;

2685 /* LINTED */
2686 vdap->vda_name = (uintptr_t)vdp->vd_name;
2687 vdap++;
2688 /* LINTED */
2689 _vdap->vda_next = (Word)((uintptr_t)vdap - (uintptr_t)_vdap);

2691 /*
2692 * Traverse this versions dependency list generating the
2693 * appropriate version dependency entries.
2694 */
2695 for (APLIST_TRAVERSE(vdp->vd_deps, idx2, _vdp)) {
2696 /* LINTED */

new/usr/src/cmd/sgs/libld/common/update.c 40

2697 vdap->vda_name = (uintptr_t)_vdp->vd_name;
2698 _vdap = vdap;
2699 vdap++, cnt++;
2700 /* LINTED */
2701 _vdap->vda_next = (Word)((uintptr_t)vdap -
2702 (uintptr_t)_vdap);
2703 }
2704 _vdap->vda_next = 0;

2706 /*
2707 * Record the versions auxiliary array offset and the associated
2708 * dependency count.
2709 */
2710 /* LINTED */
2711 vdf->vd_aux = (Word)((uintptr_t)(vdf + 1) - (uintptr_t)vdf);
2712 vdf->vd_cnt = cnt;

2714 /*
2715 * Record the next versions offset and update the version
2716 * pointer. Remember the previous version offset as the very
2717 * last structures next pointer should be null.
2718 */
2719 _vdf = vdf;
2720 vdf = (Verdef *)vdap, num++;
2721 /* LINTED */
2722 _vdf->vd_next = (Word)((uintptr_t)vdf - (uintptr_t)_vdf);
2723 }
2724 _vdf->vd_next = 0;

2726 /*
2727 * Record the string table association with the version definition
2728 * section, and the symbol table associated with the version symbol
2729 * table (the actual contents of the version symbol table are filled
2730 * in during symbol update).
2731 */
2732 /* LINTED */
2733 ofl->ofl_osverdef->os_shdr->sh_link = (Word)elf_ndxscn(strosp->os_scn);

2735 /*
2736 * The version definition sections ‘info’ field is used to indicate the
2737 * number of entries in this section.
2738 */
2739 ofl->ofl_osverdef->os_shdr->sh_info = num;

2741 return (1);
2742 }

2744 /*
2745 * Finish the version symbol index section
2746 */
2747 static void
2748 update_oversym(Ofl_desc *ofl)
2749 {
2750 Os_desc *osp;

2752 /*
2753 * Record the symbol table associated with the version symbol table.
2754 * The contents of the version symbol table are filled in during
2755 * symbol update.
2756 */
2757 if (OFL_IS_STATIC_OBJ(ofl))
2758 osp = ofl->ofl_ossymtab;
2759 else
2760 osp = ofl->ofl_osdynsym;

2762 /* LINTED */

new/usr/src/cmd/sgs/libld/common/update.c 41

2763 ofl->ofl_osversym->os_shdr->sh_link = (Word)elf_ndxscn(osp->os_scn);
2764 }

2766 /*
2767 * Build the version needed section
2768 */
2769 static int
2770 update_overneed(Ofl_desc *ofl)
2771 {
2772 Aliste idx1;
2773 Ifl_desc *ifl;
2774 Verneed *vnd, *_vnd;
2775 Os_desc *strosp;
2776 Str_tbl *strtbl;
2777 Word num = 0;

2779 _vnd = vnd = (Verneed *)ofl->ofl_osverneed->os_outdata->d_buf;

2781 /*
2782 * Determine which string table is appropriate.
2783 */
2784 if (OFL_IS_STATIC_OBJ(ofl)) {
2785 strosp = ofl->ofl_osstrtab;
2786 strtbl = ofl->ofl_strtab;
2787 } else {
2788 strosp = ofl->ofl_osdynstr;
2789 strtbl = ofl->ofl_dynstrtab;
2790 }

2792 /*
2793 * Traverse the shared object list looking for dependencies that have
2794 * versions defined within them.
2795 */
2796 for (APLIST_TRAVERSE(ofl->ofl_sos, idx1, ifl)) {
2797 Half _cnt;
2798 Word cnt = 0;
2799 Vernaux *_vnap, *vnap;
2800 size_t stoff;

2802 if (!(ifl->ifl_flags & FLG_IF_VERNEED))
2803 continue;

2805 vnd->vn_version = VER_NEED_CURRENT;

2807 (void) st_setstring(strtbl, ifl->ifl_soname, &stoff);
2808 vnd->vn_file = stoff;

2810 _vnap = vnap = (Vernaux *)(vnd + 1);

2812 /*
2813 * Traverse the version index list recording
2814 * each version as a needed dependency.
2815 */
2816 for (_cnt = 0; _cnt <= ifl->ifl_vercnt; _cnt++) {
2817 Ver_index *vip = &ifl->ifl_verndx[_cnt];

2819 if (vip->vi_flags & FLG_VER_REFER) {
2820 (void) st_setstring(strtbl, vip->vi_name,
2821 &stoff);
2822 vnap->vna_name = stoff;

2824 if (vip->vi_desc) {
2825 vnap->vna_hash = vip->vi_desc->vd_hash;
2826 vnap->vna_flags =
2827 vip->vi_desc->vd_flags;
2828 } else {

new/usr/src/cmd/sgs/libld/common/update.c 42

2829 vnap->vna_hash = 0;
2830 vnap->vna_flags = 0;
2831 }
2832 vnap->vna_other = vip->vi_overndx;

2834 /*
2835 * If version A inherits version B, then
2836 * B is implicit in A. It suffices for ld.so.1
2837 * to verify A at runtime and skip B. The
2838 * version normalization process sets the INFO
2839 * flag for the versions we want ld.so.1 to
2840 * skip.
2841 */
2842 if (vip->vi_flags & VER_FLG_INFO)
2843 vnap->vna_flags |= VER_FLG_INFO;

2845 _vnap = vnap;
2846 vnap++, cnt++;
2847 _vnap->vna_next =
2848 /* LINTED */
2849 (Word)((uintptr_t)vnap - (uintptr_t)_vnap);
2850 }
2851 }

2853 _vnap->vna_next = 0;

2855 /*
2856 * Record the versions auxiliary array offset and
2857 * the associated dependency count.
2858 */
2859 /* LINTED */
2860 vnd->vn_aux = (Word)((uintptr_t)(vnd + 1) - (uintptr_t)vnd);
2861 /* LINTED */
2862 vnd->vn_cnt = (Half)cnt;

2864 /*
2865 * Record the next versions offset and update the version
2866 * pointer. Remember the previous version offset as the very
2867 * last structures next pointer should be null.
2868 */
2869 _vnd = vnd;
2870 vnd = (Verneed *)vnap, num++;
2871 /* LINTED */
2872 _vnd->vn_next = (Word)((uintptr_t)vnd - (uintptr_t)_vnd);
2873 }
2874 _vnd->vn_next = 0;

2876 /*
2877 * Use sh_link to record the associated string table section, and
2878 * sh_info to indicate the number of entries contained in the section.
2879 */
2880 /* LINTED */
2881 ofl->ofl_osverneed->os_shdr->sh_link = (Word)elf_ndxscn(strosp->os_scn);
2882 ofl->ofl_osverneed->os_shdr->sh_info = num;

2884 return (1);
2885 }

2887 /*
2888 * Update syminfo section.
2889 */
2890 static uintptr_t
2891 update_osyminfo(Ofl_desc *ofl)
2892 {
2893 Os_desc *symosp, *infosp = ofl->ofl_ossyminfo;
2894 Syminfo *sip = infosp->os_outdata->d_buf;

new/usr/src/cmd/sgs/libld/common/update.c 43

2895 Shdr *shdr = infosp->os_shdr;
2896 char *strtab;
2897 Aliste idx;
2898 Sym_desc *sdp;
2899 Sfltr_desc *sftp;

2901 if (ofl->ofl_flags & FLG_OF_RELOBJ) {
2902 symosp = ofl->ofl_ossymtab;
2903 strtab = ofl->ofl_osstrtab->os_outdata->d_buf;
2904 } else {
2905 symosp = ofl->ofl_osdynsym;
2906 strtab = ofl->ofl_osdynstr->os_outdata->d_buf;
2907 }

2909 /* LINTED */
2910 infosp->os_shdr->sh_link = (Word)elf_ndxscn(symosp->os_scn);
2911 if (ofl->ofl_osdynamic)
2912 infosp->os_shdr->sh_info =
2913 /* LINTED */
2914 (Word)elf_ndxscn(ofl->ofl_osdynamic->os_scn);

2916 /*
2917 * Update any references with the index into the dynamic table.
2918 */
2919 for (APLIST_TRAVERSE(ofl->ofl_symdtent, idx, sdp))
2920 sip[sdp->sd_symndx].si_boundto = sdp->sd_file->ifl_neededndx;

2922 /*
2923 * Update any filtee references with the index into the dynamic table.
2924 */
2925 for (ALIST_TRAVERSE(ofl->ofl_symfltrs, idx, sftp)) {
2926 Dfltr_desc *dftp;

2928 dftp = alist_item(ofl->ofl_dtsfltrs, sftp->sft_idx);
2929 sip[sftp->sft_sdp->sd_symndx].si_boundto = dftp->dft_ndx;
2930 }

2932 /*
2933 * Display debugging information about section.
2934 */
2935 DBG_CALL(Dbg_syminfo_title(ofl->ofl_lml));
2936 if (DBG_ENABLED) {
2937 Word _cnt, cnt = shdr->sh_size / shdr->sh_entsize;
2938 Sym *symtab = symosp->os_outdata->d_buf;
2939 Dyn *dyn;

2941 if (ofl->ofl_osdynamic)
2942 dyn = ofl->ofl_osdynamic->os_outdata->d_buf;
2943 else
2944 dyn = NULL;

2946 for (_cnt = 1; _cnt < cnt; _cnt++) {
2947 if (sip[_cnt].si_flags || sip[_cnt].si_boundto)
2948 /* LINTED */
2949 DBG_CALL(Dbg_syminfo_entry(ofl->ofl_lml, _cnt,
2950 &sip[_cnt], &symtab[_cnt], strtab, dyn));
2951 }
2952 }
2953 return (1);
2954 }

2956 /*
2957 * Build the output elf header.
2958 */
2959 static uintptr_t
2960 update_oehdr(Ofl_desc * ofl)

new/usr/src/cmd/sgs/libld/common/update.c 44

2961 {
2962 Ehdr *ehdr = ofl->ofl_nehdr;

2964 /*
2965 * If an entry point symbol has already been established (refer
2966 * sym_validate()) simply update the elf header entry point with the
2967 * symbols value. If no entry point is defined it will have been filled
2968 * with the start address of the first section within the text segment
2969 * (refer update_outfile()).
2970 */
2971 if (ofl->ofl_entry)
2972 ehdr->e_entry =
2973 ((Sym_desc *)(ofl->ofl_entry))->sd_sym->st_value;

2975 ehdr->e_ident[EI_DATA] = ld_targ.t_m.m_data;
2976 ehdr->e_version = ofl->ofl_dehdr->e_version;

2978 /*
2979 * When generating a relocatable object under -z symbolcap, set the
2980 * e_machine to be generic, and remove any e_flags. Input relocatable
2981 * objects may identify alternative e_machine (m.machplus) and e_flags
2982 * values. However, the functions within the created output object
2983 * are selected at runtime using the capabilities mechanism, which
2984 * supersedes the e-machine and e_flags information. Therefore,
2985 * e_machine and e_flag values are not propagated to the output object,
2986 * as these values might prevent the kernel from loading the object
2987 * before the runtime linker gets control.
2988 */
2989 if (ofl->ofl_flags & FLG_OF_OTOSCAP) {
2990 ehdr->e_machine = ld_targ.t_m.m_mach;
2991 ehdr->e_flags = 0;
2992 } else {
2993 /*
2994 * Note. it may be necessary to update the e_flags field in the
2995 * machine dependent section.
2996 */
2997 ehdr->e_machine = ofl->ofl_dehdr->e_machine;
2998 ehdr->e_flags = ofl->ofl_dehdr->e_flags;

3000 if (ehdr->e_machine != ld_targ.t_m.m_mach) {
3001 if (ehdr->e_machine != ld_targ.t_m.m_machplus)
3002 return (S_ERROR);
3003 if ((ehdr->e_flags & ld_targ.t_m.m_flagsplus) == 0)
3004 return (S_ERROR);
3005 }
3006 }

3008 if (ofl->ofl_flags & FLG_OF_SHAROBJ)
3009 ehdr->e_type = ET_DYN;
3010 else if (ofl->ofl_flags & FLG_OF_RELOBJ)
3011 ehdr->e_type = ET_REL;
3012 else
3013 ehdr->e_type = ET_EXEC;

3015 return (1);
3016 }

3018 /*
3019 * Perform move table expansion.
3020 */
3021 static void
3022 expand_move(Ofl_desc *ofl, Sym_desc *sdp, Move *mvp)
3023 {
3024 Os_desc *osp;
3025 uchar_t *taddr, *taddr0;
3026 Sxword offset;

new/usr/src/cmd/sgs/libld/common/update.c 45

3027 Half cnt;
3028 uint_t stride;

3030 osp = ofl->ofl_isparexpn->is_osdesc;
3031 offset = sdp->sd_sym->st_value - osp->os_shdr->sh_addr;

3033 taddr0 = taddr = osp->os_outdata->d_buf;
3034 taddr += offset;
3035 taddr = taddr + mvp->m_poffset;

3037 for (cnt = 0; cnt < mvp->m_repeat; cnt++) {
3038 /* LINTED */
3039 DBG_CALL(Dbg_move_expand(ofl->ofl_lml, mvp,
3040 (Addr)(taddr - taddr0)));
3041 stride = (uint_t)mvp->m_stride + 1;

3043 /*
3044 * Update the target address based upon the move entry size.
3045 * This size was validated in ld_process_move().
3046 */
3047 /* LINTED */
3048 switch (ELF_M_SIZE(mvp->m_info)) {
3049 case 1:
3050 /* LINTED */
3051 *taddr = (uchar_t)mvp->m_value;
3052 taddr += stride;
3053 break;
3054 case 2:
3055 /* LINTED */
3056 *((Half *)taddr) = (Half)mvp->m_value;
3057 taddr += 2 * stride;
3058 break;
3059 case 4:
3060 /* LINTED */
3061 *((Word *)taddr) = (Word)mvp->m_value;
3062 taddr += 4 * stride;
3063 break;
3064 case 8:
3065 /* LINTED */
3066 *((u_longlong_t *)taddr) = mvp->m_value;
3067 taddr += 8 * stride;
3068 break;
3069 }
3070 }
3071 }

3073 /*
3074 * Update Move sections.
3075 */
3076 static void
3077 update_move(Ofl_desc *ofl)
3078 {
3079 Word ndx = 0;
3080 ofl_flag_t flags = ofl->ofl_flags;
3081 Move *omvp;
3082 Aliste idx1;
3083 Sym_desc *sdp;

3085 /*
3086 * Determine the index of the symbol table that will be referenced by
3087 * the Move section.
3088 */
3089 if (OFL_ALLOW_DYNSYM(ofl))
3090 /* LINTED */
3091 ndx = (Word) elf_ndxscn(ofl->ofl_osdynsym->os_scn);
3092 else if (!(flags & FLG_OF_STRIP) || (flags & FLG_OF_RELOBJ))

new/usr/src/cmd/sgs/libld/common/update.c 46

3093 /* LINTED */
3094 ndx = (Word) elf_ndxscn(ofl->ofl_ossymtab->os_scn);

3096 /*
3097 * Update sh_link of the Move section, and point to the new Move data.
3098 */
3099 if (ofl->ofl_osmove) {
3100 ofl->ofl_osmove->os_shdr->sh_link = ndx;
3101 omvp = (Move *)ofl->ofl_osmove->os_outdata->d_buf;
3102 }

3104 /*
3105 * Update symbol entry index
3106 */
3107 for (APLIST_TRAVERSE(ofl->ofl_parsyms, idx1, sdp)) {
3108 Aliste idx2;
3109 Mv_desc *mdp;

3111 /*
3112 * Expand move table
3113 */
3114 if (sdp->sd_flags & FLG_SY_PAREXPN) {
3115 const char *str;

3117 if (flags & FLG_OF_STATIC)
3118 str = MSG_INTL(MSG_PSYM_EXPREASON1);
3119 else if (ofl->ofl_flags1 & FLG_OF1_NOPARTI)
3120 str = MSG_INTL(MSG_PSYM_EXPREASON2);
3121 else
3122 str = MSG_INTL(MSG_PSYM_EXPREASON3);

3124 DBG_CALL(Dbg_move_parexpn(ofl->ofl_lml,
3125 sdp->sd_name, str));

3127 for (ALIST_TRAVERSE(sdp->sd_move, idx2, mdp)) {
3128 DBG_CALL(Dbg_move_entry1(ofl->ofl_lml, 0,
3129 mdp->md_move, sdp));
3130 expand_move(ofl, sdp, mdp->md_move);
3131 }
3132 continue;
3133 }

3135 /*
3136 * Process move table
3137 */
3138 DBG_CALL(Dbg_move_outmove(ofl->ofl_lml, sdp->sd_name));

3140 for (ALIST_TRAVERSE(sdp->sd_move, idx2, mdp)) {
3141 Move *imvp;
3142 int idx = 1;
3143 Sym *sym;

3145 imvp = mdp->md_move;
3146 sym = sdp->sd_sym;

3148 DBG_CALL(Dbg_move_entry1(ofl->ofl_lml, 1, imvp, sdp));

3150 *omvp = *imvp;
3151 if ((flags & FLG_OF_RELOBJ) == 0) {
3152 if (ELF_ST_BIND(sym->st_info) == STB_LOCAL) {
3153 Os_desc *osp = sdp->sd_isc->is_osdesc;
3154 Word ndx = osp->os_identndx;

3156 omvp->m_info =
3157 /* LINTED */
3158 ELF_M_INFO(ndx, imvp->m_info);

new/usr/src/cmd/sgs/libld/common/update.c 47

3160 if (ELF_ST_TYPE(sym->st_info) !=
3161 STT_SECTION) {
3162 omvp->m_poffset =
3163 sym->st_value -
3164 osp->os_shdr->sh_addr +
3165 imvp->m_poffset;
3166 }
3167 } else {
3168 omvp->m_info =
3169 /* LINTED */
3170 ELF_M_INFO(sdp->sd_symndx,
3171 imvp->m_info);
3172 }
3173 } else {
3174 Boolean isredloc = FALSE;

3176 if ((ELF_ST_BIND(sym->st_info) == STB_LOCAL) &&
3177 (ofl->ofl_flags & FLG_OF_REDLSYM))
3178 isredloc = TRUE;

3180 if (isredloc && !(sdp->sd_move)) {
3181 Os_desc *osp = sdp->sd_isc->is_osdesc;
3182 Word ndx = osp->os_identndx;

3184 omvp->m_info =
3185 /* LINTED */
3186 ELF_M_INFO(ndx, imvp->m_info);

3188 omvp->m_poffset += sym->st_value;
3189 } else {
3190 if (isredloc)
3191 DBG_CALL(Dbg_syms_reduce(ofl,
3192 DBG_SYM_REDUCE_RETAIN,
3193 sdp, idx,
3194 ofl->ofl_osmove->os_name));

3196 omvp->m_info =
3197 /* LINTED */
3198 ELF_M_INFO(sdp->sd_symndx,
3199 imvp->m_info);
3200 }
3201 }

3203 DBG_CALL(Dbg_move_entry1(ofl->ofl_lml, 0, omvp, sdp));
3204 omvp++;
3205 idx++;
3206 }
3207 }
3208 }

3210 /*
3211 * Scan through the SHT_GROUP output sections. Update their sh_link/sh_info
3212 * fields as well as the section contents.
3213 */
3214 static uintptr_t
3215 update_ogroup(Ofl_desc *ofl)
3216 {
3217 Aliste idx;
3218 Os_desc *osp;
3219 uintptr_t error = 0;

3221 for (APLIST_TRAVERSE(ofl->ofl_osgroups, idx, osp)) {
3222 Is_desc *isp;
3223 Ifl_desc *ifl;
3224 Shdr *shdr = osp->os_shdr;

new/usr/src/cmd/sgs/libld/common/update.c 48

3225 Sym_desc *sdp;
3226 Xword i, grpcnt;
3227 Word *gdata;

3229 /*
3230 * Since input GROUP sections always create unique
3231 * output GROUP sections - we know there is only one
3232 * item on the list.
3233 */
3234 isp = ld_os_first_isdesc(osp);

3236 ifl = isp->is_file;
3237 sdp = ifl->ifl_oldndx[isp->is_shdr->sh_info];
3238 shdr->sh_link = (Word)elf_ndxscn(ofl->ofl_ossymtab->os_scn);
3239 shdr->sh_info = sdp->sd_symndx;

3241 /*
3242 * Scan through the group data section and update
3243 * all of the links to new values.
3244 */
3245 grpcnt = shdr->sh_size / shdr->sh_entsize;
3246 gdata = (Word *)osp->os_outdata->d_buf;

3248 for (i = 1; i < grpcnt; i++) {
3249 Os_desc *_osp;
3250 Is_desc *_isp = ifl->ifl_isdesc[gdata[i]];

3252 /*
3253 * If the referenced section didn’t make it to the
3254 * output file - just zero out the entry.
3255 */
3256 if ((_osp = _isp->is_osdesc) == NULL)
3257 gdata[i] = 0;
3258 else
3259 gdata[i] = (Word)elf_ndxscn(_osp->os_scn);
3260 }
3261 }
3262 return (error);
3263 }

3265 static void
3266 update_ostrtab(Os_desc *osp, Str_tbl *stp, uint_t extra)
3267 {
3268 Elf_Data *data;

3270 if (osp == NULL)
3271 return;

3273 data = osp->os_outdata;
3274 assert(data->d_size == (st_getstrtab_sz(stp) + extra));
3275 (void) st_setstrbuf(stp, data->d_buf, data->d_size - extra);
3276 /* If leaving an extra hole at the end, zero it */
3277 if (extra > 0)
3278 (void) memset((char *)data->d_buf + data->d_size - extra,
3279 0x0, extra);
3280 }

3282 /*
3283 * Update capabilities information.
3284 *
3285 * If string table capabilities exist, then the associated string must be
3286 * translated into an offset into the string table.
3287 */
3288 static void
3289 update_oscap(Ofl_desc *ofl)
3290 {

new/usr/src/cmd/sgs/libld/common/update.c 49

3291 Os_desc *strosp, *cosp;
3292 Cap *cap;
3293 Str_tbl *strtbl;
3294 Capstr *capstr;
3295 size_t stoff;
3296 Aliste idx1;

3298 /*
3299 * Determine which symbol table or string table is appropriate.
3300 */
3301 if (OFL_IS_STATIC_OBJ(ofl)) {
3302 strosp = ofl->ofl_osstrtab;
3303 strtbl = ofl->ofl_strtab;
3304 } else {
3305 strosp = ofl->ofl_osdynstr;
3306 strtbl = ofl->ofl_dynstrtab;
3307 }

3309 /*
3310 * If symbol capabilities exist, set the sh_link field of the .SUNW_cap
3311 * section to the .SUNW_capinfo section.
3312 */
3313 if (ofl->ofl_oscapinfo) {
3314 cosp = ofl->ofl_oscap;
3315 cosp->os_shdr->sh_link =
3316 (Word)elf_ndxscn(ofl->ofl_oscapinfo->os_scn);
3317 }

3319 /*
3320 * If there are capability strings to process, set the sh_info
3321 * field of the .SUNW_cap section to the associated string table, and
3322 * proceed to process any CA_SUNW_PLAT entries.
3323 */
3324 if ((ofl->ofl_flags & FLG_OF_CAPSTRS) == 0)
3325 return;

3327 cosp = ofl->ofl_oscap;
3328 cosp->os_shdr->sh_info = (Word)elf_ndxscn(strosp->os_scn);

3330 cap = ofl->ofl_oscap->os_outdata->d_buf;

3332 /*
3333 * Determine whether an object capability identifier, or object
3334 * machine/platform capabilities exists.
3335 */
3336 capstr = &ofl->ofl_ocapset.oc_id;
3337 if (capstr->cs_str) {
3338 (void) st_setstring(strtbl, capstr->cs_str, &stoff);
3339 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3340 }
3341 for (ALIST_TRAVERSE(ofl->ofl_ocapset.oc_plat.cl_val, idx1, capstr)) {
3342 (void) st_setstring(strtbl, capstr->cs_str, &stoff);
3343 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3344 }
3345 for (ALIST_TRAVERSE(ofl->ofl_ocapset.oc_mach.cl_val, idx1, capstr)) {
3346 (void) st_setstring(strtbl, capstr->cs_str, &stoff);
3347 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3348 }

3350 /*
3351 * Determine any symbol capability identifiers, or machine/platform
3352 * capabilities.
3353 */
3354 if (ofl->ofl_capgroups) {
3355 Cap_group *cgp;

new/usr/src/cmd/sgs/libld/common/update.c 50

3357 for (APLIST_TRAVERSE(ofl->ofl_capgroups, idx1, cgp)) {
3358 Objcapset *ocapset = &cgp->cg_set;
3359 Aliste idx2;

3361 capstr = &ocapset->oc_id;
3362 if (capstr->cs_str) {
3363 (void) st_setstring(strtbl, capstr->cs_str,
3364 &stoff);
3365 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3366 }
3367 for (ALIST_TRAVERSE(ocapset->oc_plat.cl_val, idx2,
3368 capstr)) {
3369 (void) st_setstring(strtbl, capstr->cs_str,
3370 &stoff);
3371 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3372 }
3373 for (ALIST_TRAVERSE(ocapset->oc_mach.cl_val, idx2,
3374 capstr)) {
3375 (void) st_setstring(strtbl, capstr->cs_str,
3376 &stoff);
3377 cap[capstr->cs_ndx].c_un.c_ptr = stoff;
3378 }
3379 }
3380 }
3381 }

3383 /*
3384 * Update the .SUNW_capinfo, and possibly the .SUNW_capchain sections.
3385 */
3386 static void
3387 update_oscapinfo(Ofl_desc *ofl)
3388 {
3389 Os_desc *symosp, *ciosp, *ccosp = NULL;
3390 Capinfo *ocapinfo;
3391 Capchain *ocapchain;
3392 Cap_avlnode *cav;
3393 Word chainndx = 0;

3395 /*
3396 * Determine which symbol table is appropriate.
3397 */
3398 if (OFL_IS_STATIC_OBJ(ofl))
3399 symosp = ofl->ofl_ossymtab;
3400 else
3401 symosp = ofl->ofl_osdynsym;

3403 /*
3404 * Update the .SUNW_capinfo sh_link to point to the appropriate symbol
3405 * table section. If we’re creating a dynamic object, the
3406 * .SUNW_capinfo sh_info is updated to point to the .SUNW_capchain
3407 * section.
3408 */
3409 ciosp = ofl->ofl_oscapinfo;
3410 ciosp->os_shdr->sh_link = (Word)elf_ndxscn(symosp->os_scn);

3412 if (OFL_IS_STATIC_OBJ(ofl) == 0) {
3413 ccosp = ofl->ofl_oscapchain;
3414 ciosp->os_shdr->sh_info = (Word)elf_ndxscn(ccosp->os_scn);
3415 }

3417 /*
3418 * Establish the data for each section. The first element of each
3419 * section defines the section’s version number.
3420 */
3421 ocapinfo = ciosp->os_outdata->d_buf;
3422 ocapinfo[0] = CAPINFO_CURRENT;

new/usr/src/cmd/sgs/libld/common/update.c 51

3423 if (ccosp) {
3424 ocapchain = ccosp->os_outdata->d_buf;
3425 ocapchain[chainndx++] = CAPCHAIN_CURRENT;
3426 }

3428 /*
3429 * Traverse all capabilities families. Each member has a .SUNW_capinfo
3430 * assignment. The .SUNW_capinfo entry differs for relocatable objects
3431 * and dynamic objects.
3432 *
3433 * Relocatable objects:
3434 * ELF_C_GROUP ELF_C_SYM
3435 *
3436 * Family lead: CAPINFO_SUNW_GLOB lead symbol index
3437 * Family lead alias: CAPINFO_SUNW_GLOB lead symbol index
3438 * Family member: .SUNW_cap index lead symbol index
3439 *
3440 * Dynamic objects:
3441 * ELF_C_GROUP ELF_C_SYM
3442 *
3443 * Family lead: CAPINFO_SUNW_GLOB .SUNW_capchain index
3444 * Family lead alias: CAPINFO_SUNW_GLOB .SUNW_capchain index
3445 * Family member: .SUNW_cap index lead symbol index
3446 *
3447 * The ELF_C_GROUP field identifies a capabilities symbol. Lead
3448 * capability symbols, and lead capability aliases are identified by
3449 * a CAPINFO_SUNW_GLOB group identifier. For family members, the
3450 * ELF_C_GROUP provides an index to the associate capabilities group
3451 * (i.e, an index into the SUNW_cap section that defines a group).
3452 *
3453 * For relocatable objects, the ELF_C_SYM field identifies the lead
3454 * capability symbol. For the lead symbol itself, the .SUNW_capinfo
3455 * index is the same as the ELF_C_SYM value. For lead alias symbols,
3456 * the .SUNW_capinfo index differs from the ELF_C_SYM value. This
3457 * differentiation of CAPINFO_SUNW_GLOB symbols allows ld(1) to
3458 * identify, and propagate lead alias symbols. For example, the lead
3459 * capability symbol memcpy() would have the ELF_C_SYM for memcpy(),
3460 * and the lead alias _memcpy() would also have the ELF_C_SYM for
3461 * memcpy().
3462 *
3463 * For dynamic objects, both a lead capability symbol, and alias symbol
3464 * would have a ELF_C_SYM value that represents the same capability
3465 * chain index. The capability chain allows ld.so.1 to traverse a
3466 * family chain for a given lead symbol, and select the most appropriate
3467 * family member. The .SUNW_capchain array contains a series of symbol
3468 * indexes for each family member:
3469 *
3470 * chaincap[n] chaincap[n + 1] chaincap[n + 2] chaincap[n + x]
3471 * foo() ndx foo%x() ndx foo%y() ndx 0
3472 *
3473 * For family members, the ELF_C_SYM value associates the capability
3474 * members with their family lead symbol. This association, although
3475 * unused within a dynamic object, allows ld(1) to identify, and
3476 * propagate family members when processing relocatable objects.
3477 */
3478 for (cav = avl_first(ofl->ofl_capfamilies); cav;
3479 cav = AVL_NEXT(ofl->ofl_capfamilies, cav)) {
3480 Cap_sym *csp;
3481 Aliste idx;
3482 Sym_desc *asdp, *lsdp = cav->cn_symavlnode.sav_sdp;

3484 if (ccosp) {
3485 /*
3486 * For a dynamic object, identify this lead symbol, and
3487 * point it to the head of a capability chain. Set the
3488 * head of the capability chain to the same lead symbol.

new/usr/src/cmd/sgs/libld/common/update.c 52

3489 */
3490 ocapinfo[lsdp->sd_symndx] =
3491 ELF_C_INFO(chainndx, CAPINFO_SUNW_GLOB);
3492 ocapchain[chainndx] = lsdp->sd_symndx;
3493 } else {
3494 /*
3495 * For a relocatable object, identify this lead symbol,
3496 * and set the lead symbol index to itself.
3497 */
3498 ocapinfo[lsdp->sd_symndx] =
3499 ELF_C_INFO(lsdp->sd_symndx, CAPINFO_SUNW_GLOB);
3500 }

3502 /*
3503 * Gather any lead symbol aliases.
3504 */
3505 for (APLIST_TRAVERSE(cav->cn_aliases, idx, asdp)) {
3506 if (ccosp) {
3507 /*
3508 * For a dynamic object, identify this lead
3509 * alias symbol, and point it to the same
3510 * capability chain index as the lead symbol.
3511 */
3512 ocapinfo[asdp->sd_symndx] =
3513 ELF_C_INFO(chainndx, CAPINFO_SUNW_GLOB);
3514 } else {
3515 /*
3516 * For a relocatable object, identify this lead
3517 * alias symbol, and set the lead symbol index
3518 * to the lead symbol.
3519 */
3520 ocapinfo[asdp->sd_symndx] =
3521 ELF_C_INFO(lsdp->sd_symndx,
3522 CAPINFO_SUNW_GLOB);
3523 }
3524 }

3526 chainndx++;

3528 /*
3529 * Gather the family members.
3530 */
3531 for (APLIST_TRAVERSE(cav->cn_members, idx, csp)) {
3532 Sym_desc *msdp = csp->cs_sdp;

3534 /*
3535 * Identify the members capability group, and the lead
3536 * symbol of the family this symbol is a member of.
3537 */
3538 ocapinfo[msdp->sd_symndx] =
3539 ELF_C_INFO(lsdp->sd_symndx, csp->cs_group->cg_ndx);
3540 if (ccosp) {
3541 /*
3542 * For a dynamic object, set the next capability
3543 * chain to point to this family member.
3544 */
3545 ocapchain[chainndx++] = msdp->sd_symndx;
3546 }
3547 }

3549 /*
3550 * Any chain of family members is terminated with a 0 element.
3551 */
3552 if (ccosp)
3553 ocapchain[chainndx++] = 0;
3554 }

new/usr/src/cmd/sgs/libld/common/update.c 53

3555 }

3557 /*
3558 * Translate the shdr->sh_{link, info} from its input section value to that
3559 * of the corresponding shdr->sh_{link, info} output section value.
3560 */
3561 static Word
3562 translate_link(Ofl_desc *ofl, Os_desc *osp, Word link, const char *msg)
3563 {
3564 Is_desc *isp;
3565 Ifl_desc *ifl;

3567 /*
3568 * Don’t translate the special section numbers.
3569 */
3570 if (link >= SHN_LORESERVE)
3571 return (link);

3573 /*
3574 * Does this output section translate back to an input file. If not
3575 * then there is no translation to do. In this case we will assume that
3576 * if sh_link has a value, it’s the right value.
3577 */
3578 isp = ld_os_first_isdesc(osp);
3579 if ((ifl = isp->is_file) == NULL)
3580 return (link);

3582 /*
3583 * Sanity check to make sure that the sh_{link, info} value
3584 * is within range for the input file.
3585 */
3586 if (link >= ifl->ifl_shnum) {
3587 ld_eprintf(ofl, ERR_WARNING, msg, ifl->ifl_name,
3588 EC_WORD(isp->is_scnndx), isp->is_name, EC_XWORD(link));
3589 return (link);
3590 }

3592 /*
3593 * Follow the link to the input section.
3594 */
3595 if ((isp = ifl->ifl_isdesc[link]) == NULL)
3596 return (0);
3597 if ((osp = isp->is_osdesc) == NULL)
3598 return (0);

3600 /* LINTED */
3601 return ((Word)elf_ndxscn(osp->os_scn));
3602 }

3604 /*
3605 * Having created all of the necessary sections, segments, and associated
3606 * headers, fill in the program headers and update any other data in the
3607 * output image. Some general rules:
3608 *
3609 * - If an interpreter is required always generate a PT_PHDR entry as
3610 * well. It is this entry that triggers the kernel into passing the
3611 * interpreter an aux vector instead of just a file descriptor.
3612 *
3613 * - When generating an image that will be interpreted (ie. a dynamic
3614 * executable, a shared object, or a static executable that has been
3615 * provided with an interpreter - weird, but possible), make the initial
3616 * loadable segment include both the ehdr and phdr[]. Both of these
3617 * tables are used by the interpreter therefore it seems more intuitive
3618 * to explicitly defined them as part of the mapped image rather than
3619 * relying on page rounding by the interpreter to allow their access.
3620 *

new/usr/src/cmd/sgs/libld/common/update.c 54

3621 * - When generating a static image that does not require an interpreter
3622 * have the first loadable segment indicate the address of the first
3623 * .section as the start address (things like /kernel/unix and ufsboot
3624 * expect this behavior).
3625 */
3626 uintptr_t
3627 ld_update_outfile(Ofl_desc *ofl)
3628 {
3629 Addr size, etext, vaddr;
3630 Sg_desc *sgp;
3631 Sg_desc *dtracesgp = NULL, *capsgp = NULL, *intpsgp = NULL;
3632 Os_desc *osp;
3633 int phdrndx = 0, segndx = -1, secndx, intppndx, intpsndx;
3634 int dtracepndx, dtracesndx, cappndx, capsndx;
3635 Ehdr *ehdr = ofl->ofl_nehdr;
3636 Shdr *hshdr;
3637 Phdr *_phdr = NULL;
3638 Word phdrsz = (ehdr->e_phnum * ehdr->e_phentsize), shscnndx;
3639 ofl_flag_t flags = ofl->ofl_flags;
3640 Word ehdrsz = ehdr->e_ehsize;
3641 Boolean nobits;
3642 Off offset;
3643 Aliste idx1;

3645 /*
3646 * Initialize the starting address for the first segment. Executables
3647 * have different starting addresses depending upon the target ABI,
3648 * where as shared objects have a starting address of 0. If this is
3649 * a 64-bit executable that is being constructed to run in a restricted
3650 * address space, use an alternative origin that will provide more free
3651 * address space for the the eventual process.
3652 */
3653 if (ofl->ofl_flags & FLG_OF_EXEC) {
3654 #if defined(_ELF64)
3655 if (ofl->ofl_ocapset.oc_sf_1.cm_val & SF1_SUNW_ADDR32)
3656 vaddr = ld_targ.t_m.m_segm_aorigin;
3657 else
3658 #endif
3659 vaddr = ld_targ.t_m.m_segm_origin;
3660 } else
3661 vaddr = 0;

3663 /*
3664 * Loop through the segment descriptors and pick out what we need.
3665 */
3666 DBG_CALL(Dbg_seg_title(ofl->ofl_lml));
3667 for (APLIST_TRAVERSE(ofl->ofl_segs, idx1, sgp)) {
3668 Phdr *phdr = &(sgp->sg_phdr);
3669 Xword p_align;
3670 Aliste idx2;
3671 Sym_desc *sdp;

3673 segndx++;

3675 /*
3676 * If an interpreter is required generate a PT_INTERP and
3677 * PT_PHDR program header entry. The PT_PHDR entry describes
3678 * the program header table itself. This information will be
3679 * passed via the aux vector to the interpreter (ld.so.1).
3680 * The program header array is actually part of the first
3681 * loadable segment (and the PT_PHDR entry is the first entry),
3682 * therefore its virtual address isn’t known until the first
3683 * loadable segment is processed.
3684 */
3685 if (phdr->p_type == PT_PHDR) {
3686 if (ofl->ofl_osinterp) {

new/usr/src/cmd/sgs/libld/common/update.c 55

3687 phdr->p_offset = ehdr->e_phoff;
3688 phdr->p_filesz = phdr->p_memsz = phdrsz;

3690 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3691 ofl->ofl_phdr[phdrndx++] = *phdr;
3692 }
3693 continue;
3694 }
3695 if (phdr->p_type == PT_INTERP) {
3696 if (ofl->ofl_osinterp) {
3697 intpsgp = sgp;
3698 intpsndx = segndx;
3699 intppndx = phdrndx++;
3700 }
3701 continue;
3702 }

3704 /*
3705 * If we are creating a PT_SUNWDTRACE segment, remember where
3706 * the program header is. The header values are assigned after
3707 * update_osym() has completed and the symbol table addresses
3708 * have been updated.
3709 */
3710 if (phdr->p_type == PT_SUNWDTRACE) {
3711 if (ofl->ofl_dtracesym &&
3712 ((flags & FLG_OF_RELOBJ) == 0)) {
3713 dtracesgp = sgp;
3714 dtracesndx = segndx;
3715 dtracepndx = phdrndx++;
3716 }
3717 continue;
3718 }

3720 /*
3721 * If a hardware/software capabilities section is required,
3722 * generate the PT_SUNWCAP header. Note, as this comes before
3723 * the first loadable segment, we don’t yet know its real
3724 * virtual address. This is updated later.
3725 */
3726 if (phdr->p_type == PT_SUNWCAP) {
3727 if (ofl->ofl_oscap && (ofl->ofl_flags & FLG_OF_PTCAP) &&
3728 ((flags & FLG_OF_RELOBJ) == 0)) {
3729 capsgp = sgp;
3730 capsndx = segndx;
3731 cappndx = phdrndx++;
3732 }
3733 continue;
3734 }

3736 /*
3737 * As the dynamic program header occurs after the loadable
3738 * headers in the segment descriptor table, all the address
3739 * information for the .dynamic output section will have been
3740 * figured out by now.
3741 */
3742 if (phdr->p_type == PT_DYNAMIC) {
3743 if (OFL_ALLOW_DYNSYM(ofl)) {
3744 Shdr *shdr = ofl->ofl_osdynamic->os_shdr;

3746 phdr->p_vaddr = shdr->sh_addr;
3747 phdr->p_offset = shdr->sh_offset;
3748 phdr->p_filesz = shdr->sh_size;
3749 phdr->p_flags = ld_targ.t_m.m_dataseg_perm;

3751 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3752 ofl->ofl_phdr[phdrndx++] = *phdr;

new/usr/src/cmd/sgs/libld/common/update.c 56

3753 }
3754 continue;
3755 }

3757 /*
3758 * As the unwind (.eh_frame_hdr) program header occurs after
3759 * the loadable headers in the segment descriptor table, all
3760 * the address information for the .eh_frame output section
3761 * will have been figured out by now.
3762 */
3763 if (phdr->p_type == PT_SUNW_UNWIND) {
3764 Shdr *shdr;

3766 if (ofl->ofl_unwindhdr == NULL)
3767 continue;

3769 shdr = ofl->ofl_unwindhdr->os_shdr;

3771 phdr->p_flags = PF_R;
3772 phdr->p_vaddr = shdr->sh_addr;
3773 phdr->p_memsz = shdr->sh_size;
3774 phdr->p_filesz = shdr->sh_size;
3775 phdr->p_offset = shdr->sh_offset;
3776 phdr->p_align = shdr->sh_addralign;
3777 phdr->p_paddr = 0;
3778 ofl->ofl_phdr[phdrndx++] = *phdr;
3779 continue;
3780 }

3782 /*
3783 * The sunwstack program is used to convey non-default
3784 * flags for the process stack. Only emit it if it would
3785 * change the default.
3786 */
3787 if (phdr->p_type == PT_SUNWSTACK) {
3788 if (((flags & FLG_OF_RELOBJ) == 0) &&
3789 ((sgp->sg_flags & FLG_SG_DISABLED) == 0))
3790 ofl->ofl_phdr[phdrndx++] = *phdr;
3791 continue;
3792 }

3794 /*
3795 * As the TLS program header occurs after the loadable
3796 * headers in the segment descriptor table, all the address
3797 * information for the .tls output section will have been
3798 * figured out by now.
3799 */
3800 if (phdr->p_type == PT_TLS) {
3801 Os_desc *tlsosp;
3802 Shdr *lastfileshdr = NULL;
3803 Shdr *firstshdr = NULL, *lastshdr;
3804 Aliste idx;

3806 if (ofl->ofl_ostlsseg == NULL)
3807 continue;

3809 /*
3810 * Scan the output sections that have contributed TLS.
3811 * Remember the first and last so as to determine the
3812 * TLS memory size requirement. Remember the last
3813 * progbits section to determine the TLS data
3814 * contribution, which determines the TLS program
3815 * header filesz.
3816 */
3817 for (APLIST_TRAVERSE(ofl->ofl_ostlsseg, idx, tlsosp)) {
3818 Shdr *tlsshdr = tlsosp->os_shdr;

new/usr/src/cmd/sgs/libld/common/update.c 57

3820 if (firstshdr == NULL)
3821 firstshdr = tlsshdr;
3822 if (tlsshdr->sh_type != SHT_NOBITS)
3823 lastfileshdr = tlsshdr;
3824 lastshdr = tlsshdr;
3825 }

3827 phdr->p_flags = PF_R | PF_W;
3828 phdr->p_vaddr = firstshdr->sh_addr;
3829 phdr->p_offset = firstshdr->sh_offset;
3830 phdr->p_align = firstshdr->sh_addralign;

3832 /*
3833 * Determine the initialized TLS data size. This
3834 * address range is from the start of the TLS segment
3835 * to the end of the last piece of initialized data.
3836 */
3837 if (lastfileshdr)
3838 phdr->p_filesz = lastfileshdr->sh_offset +
3839 lastfileshdr->sh_size - phdr->p_offset;
3840 else
3841 phdr->p_filesz = 0;

3843 /*
3844 * Determine the total TLS memory size. This includes
3845 * all TLS data and TLS uninitialized data. This
3846 * address range is from the start of the TLS segment
3847 * to the memory address of the last piece of
3848 * uninitialized data.
3849 */
3850 phdr->p_memsz = lastshdr->sh_addr +
3851 lastshdr->sh_size - phdr->p_vaddr;

3853 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3854 ofl->ofl_phdr[phdrndx] = *phdr;
3855 ofl->ofl_tlsphdr = &ofl->ofl_phdr[phdrndx++];
3856 continue;
3857 }

3859 /*
3860 * If this is an empty segment declaration, it will occur after
3861 * all other loadable segments. As empty segments can be
3862 * defined with fixed addresses, make sure that no loadable
3863 * segments overlap. This might occur as the object evolves
3864 * and the loadable segments grow, thus encroaching upon an
3865 * existing segment reservation.
3866 *
3867 * Segments are only created for dynamic objects, thus this
3868 * checking can be skipped when building a relocatable object.
3869 */
3870 if (!(flags & FLG_OF_RELOBJ) &&
3871 (sgp->sg_flags & FLG_SG_EMPTY)) {
3872 int i;
3873 Addr v_e;

3875 vaddr = phdr->p_vaddr;
3876 phdr->p_memsz = sgp->sg_length;
3877 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));
3878 ofl->ofl_phdr[phdrndx++] = *phdr;

3880 if (phdr->p_type != PT_LOAD)
3881 continue;

3883 v_e = vaddr + phdr->p_memsz;

new/usr/src/cmd/sgs/libld/common/update.c 58

3885 /*
3886 * Check overlaps
3887 */
3888 for (i = 0; i < phdrndx - 1; i++) {
3889 Addr p_s = (ofl->ofl_phdr[i]).p_vaddr;
3890 Addr p_e;

3892 if ((ofl->ofl_phdr[i]).p_type != PT_LOAD)
3893 continue;

3895 p_e = p_s + (ofl->ofl_phdr[i]).p_memsz;
3896 if (((p_s <= vaddr) && (p_e > vaddr)) ||
3897 ((vaddr <= p_s) && (v_e > p_s)))
3898 ld_eprintf(ofl, ERR_WARNING,
3899 MSG_INTL(MSG_UPD_SEGOVERLAP),
3900 ofl->ofl_name, EC_ADDR(p_e),
3901 sgp->sg_name, EC_ADDR(vaddr));
3902 }
3903 continue;
3904 }

3906 /*
3907 * Having processed any of the special program headers any
3908 * remaining headers will be built to express individual
3909 * segments. Segments are only built if they have output
3910 * section descriptors associated with them (ie. some form of
3911 * input section has been matched to this segment).
3912 */
3913 if (sgp->sg_osdescs == NULL)
3914 continue;

3916 /*
3917 * Determine the segments offset and size from the section
3918 * information provided from elf_update().
3919 * Allow for multiple NOBITS sections.
3920 */
3921 osp = sgp->sg_osdescs->apl_data[0];
3922 hshdr = osp->os_shdr;

3924 phdr->p_filesz = 0;
3925 phdr->p_memsz = 0;
3926 phdr->p_offset = offset = hshdr->sh_offset;

3928 nobits = ((hshdr->sh_type == SHT_NOBITS) &&
3929 ((sgp->sg_flags & FLG_SG_PHREQ) == 0));

3931 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
3932 Shdr *shdr = osp->os_shdr;

3934 p_align = 0;
3935 if (shdr->sh_addralign > p_align)
3936 p_align = shdr->sh_addralign;

3938 offset = (Off)S_ROUND(offset, shdr->sh_addralign);
3939 offset += shdr->sh_size;

3941 if (shdr->sh_type != SHT_NOBITS) {
3942 if (nobits) {
3943 ld_eprintf(ofl, ERR_FATAL,
3944 MSG_INTL(MSG_UPD_NOBITS));
3945 return (S_ERROR);
3946 }
3947 phdr->p_filesz = offset - phdr->p_offset;
3948 } else if ((sgp->sg_flags & FLG_SG_PHREQ) == 0)
3949 nobits = TRUE;
3950 }

new/usr/src/cmd/sgs/libld/common/update.c 59

3951 phdr->p_memsz = offset - hshdr->sh_offset;

3953 /*
3954 * If this is the first loadable segment of a dynamic object,
3955 * or an interpreter has been specified (a static object built
3956 * with an interpreter will still be given a PT_HDR entry), then
3957 * compensate for the elf header and program header array. Both
3958 * of these are actually part of the loadable segment as they
3959 * may be inspected by the interpreter. Adjust the segments
3960 * size and offset accordingly.
3961 */
3962 if ((_phdr == NULL) && (phdr->p_type == PT_LOAD) &&
3963 ((ofl->ofl_osinterp) || (flags & FLG_OF_DYNAMIC)) &&
3964 (!(ofl->ofl_dtflags_1 & DF_1_NOHDR))) {
3965 size = (Addr)S_ROUND((phdrsz + ehdrsz),
3966 hshdr->sh_addralign);
3967 phdr->p_offset -= size;
3968 phdr->p_filesz += size;
3969 phdr->p_memsz += size;
3970 }

3972 /*
3973 * If segment size symbols are required (specified via a
3974 * mapfile) update their value.
3975 */
3976 for (APLIST_TRAVERSE(sgp->sg_sizesym, idx2, sdp))
3977 sdp->sd_sym->st_value = phdr->p_memsz;

3979 /*
3980 * If no file content has been assigned to this segment (it
3981 * only contains no-bits sections), then reset the offset for
3982 * consistency.
3983 */
3984 if (phdr->p_filesz == 0)
3985 phdr->p_offset = 0;

3987 /*
3988 * If a virtual address has been specified for this segment
3989 * from a mapfile use it and make sure the previous segment
3990 * does not run into this segment.
3991 */
3992 if (phdr->p_type == PT_LOAD) {
3993 if ((sgp->sg_flags & FLG_SG_P_VADDR)) {
3994 if (_phdr && (vaddr > phdr->p_vaddr) &&
3995 (phdr->p_type == PT_LOAD))
3996 ld_eprintf(ofl, ERR_WARNING,
3997 MSG_INTL(MSG_UPD_SEGOVERLAP),
3998 ofl->ofl_name, EC_ADDR(vaddr),
3999 sgp->sg_name,
4000 EC_ADDR(phdr->p_vaddr));
4001 vaddr = phdr->p_vaddr;
4002 phdr->p_align = 0;
4003 } else {
4004 vaddr = phdr->p_vaddr =
4005 (Addr)S_ROUND(vaddr, phdr->p_align);
4006 }
4007 }

4009 /*
4010 * Adjust the address offset and p_align if needed.
4011 */
4012 if (((sgp->sg_flags & FLG_SG_P_VADDR) == 0) &&
4013 ((ofl->ofl_dtflags_1 & DF_1_NOHDR) == 0)) {
4014 if (phdr->p_align != 0)
4015 vaddr += phdr->p_offset % phdr->p_align;
4016 else

new/usr/src/cmd/sgs/libld/common/update.c 60

4017 vaddr += phdr->p_offset;
4018 phdr->p_vaddr = vaddr;
4019 }

4021 /*
4022 * If an interpreter is required set the virtual address of the
4023 * PT_PHDR program header now that we know the virtual address
4024 * of the loadable segment that contains it. Update the
4025 * PT_SUNWCAP header similarly.
4026 */
4027 if ((_phdr == NULL) && (phdr->p_type == PT_LOAD)) {
4028 _phdr = phdr;

4030 if ((ofl->ofl_dtflags_1 & DF_1_NOHDR) == 0) {
4031 if (ofl->ofl_osinterp)
4032 ofl->ofl_phdr[0].p_vaddr =
4033 vaddr + ehdrsz;

4035 /*
4036 * Finally, if we’re creating a dynamic object
4037 * (or a static object in which an interpreter
4038 * is specified) update the vaddr to reflect
4039 * the address of the first section within this
4040 * segment.
4041 */
4042 if ((ofl->ofl_osinterp) ||
4043 (flags & FLG_OF_DYNAMIC))
4044 vaddr += size;
4045 } else {
4046 /*
4047 * If the DF_1_NOHDR flag was set, and an
4048 * interpreter is being generated, the PT_PHDR
4049 * will not be part of any loadable segment.
4050 */
4051 if (ofl->ofl_osinterp) {
4052 ofl->ofl_phdr[0].p_vaddr = 0;
4053 ofl->ofl_phdr[0].p_memsz = 0;
4054 ofl->ofl_phdr[0].p_flags = 0;
4055 }
4056 }
4057 }

4059 /*
4060 * Ensure the ELF entry point defaults to zero. Typically, this
4061 * value is overridden in update_oehdr() to one of the standard
4062 * entry points. Historically, this default was set to the
4063 * address of first executable section, but this has since been
4064 * found to be more confusing than it is helpful.
4065 */
4066 ehdr->e_entry = 0;

4068 DBG_CALL(Dbg_seg_entry(ofl, segndx, sgp));

4070 /*
4071 * Traverse the output section descriptors for this segment so
4072 * that we can update the section headers addresses. We’ve
4073 * calculated the virtual address of the initial section within
4074 * this segment, so each successive section can be calculated
4075 * based on their offsets from each other.
4076 */
4077 secndx = 0;
4078 hshdr = 0;
4079 for (APLIST_TRAVERSE(sgp->sg_osdescs, idx2, osp)) {
4080 Shdr *shdr = osp->os_shdr;

4082 if (shdr->sh_link)

new/usr/src/cmd/sgs/libld/common/update.c 61

4083 shdr->sh_link = translate_link(ofl, osp,
4084 shdr->sh_link, MSG_INTL(MSG_FIL_INVSHLINK));

4086 if (shdr->sh_info && (shdr->sh_flags & SHF_INFO_LINK))
4087 shdr->sh_info = translate_link(ofl, osp,
4088 shdr->sh_info, MSG_INTL(MSG_FIL_INVSHINFO));

4090 if (!(flags & FLG_OF_RELOBJ) &&
4091 (phdr->p_type == PT_LOAD)) {
4092 if (hshdr)
4093 vaddr += (shdr->sh_offset -
4094 hshdr->sh_offset);

4096 shdr->sh_addr = vaddr;
4097 hshdr = shdr;
4098 }

4100 DBG_CALL(Dbg_seg_os(ofl, osp, secndx));
4101 secndx++;
4102 }

4104 /*
4105 * Establish the virtual address of the end of the last section
4106 * in this segment so that the next segments offset can be
4107 * calculated from this.
4108 */
4109 if (hshdr)
4110 vaddr += hshdr->sh_size;

4112 /*
4113 * Output sections for this segment complete. Adjust the
4114 * virtual offset for the last sections size, and make sure we
4115 * haven’t exceeded any maximum segment length specification.
4116 */
4117 if ((sgp->sg_length != 0) && (sgp->sg_length < phdr->p_memsz)) {
4118 ld_eprintf(ofl, ERR_FATAL, MSG_INTL(MSG_UPD_LARGSIZE),
4119 ofl->ofl_name, sgp->sg_name,
4120 EC_XWORD(phdr->p_memsz), EC_XWORD(sgp->sg_length));
4121 return (S_ERROR);
4122 }

4124 if (phdr->p_type == PT_NOTE) {
4125 phdr->p_vaddr = 0;
4126 phdr->p_paddr = 0;
4127 phdr->p_align = 0;
4128 phdr->p_memsz = 0;
4129 }

4131 if ((phdr->p_type != PT_NULL) && !(flags & FLG_OF_RELOBJ))
4132 ofl->ofl_phdr[phdrndx++] = *phdr;
4133 }

4135 /*
4136 * Update any new output sections. When building the initial output
4137 * image, a number of sections were created but left uninitialized (eg.
4138 * .dynsym, .dynstr, .symtab, .symtab, etc.). Here we update these
4139 * sections with the appropriate data. Other sections may still be
4140 * modified via reloc_process().
4141 *
4142 * Copy the interpreter name into the .interp section.
4143 */
4144 if (ofl->ofl_interp)
4145 (void) strcpy((char *)ofl->ofl_osinterp->os_outdata->d_buf,
4146 ofl->ofl_interp);

4148 /*

new/usr/src/cmd/sgs/libld/common/update.c 62

4149 * Update the .shstrtab, .strtab and .dynstr sections.
4150 */
4151 update_ostrtab(ofl->ofl_osshstrtab, ofl->ofl_shdrsttab, 0);
4152 update_ostrtab(ofl->ofl_osstrtab, ofl->ofl_strtab, 0);
4153 update_ostrtab(ofl->ofl_osdynstr, ofl->ofl_dynstrtab, DYNSTR_EXTRA_PAD);

4155 /*
4156 * Build any output symbol tables, the symbols information is copied
4157 * and updated into the new output image.
4158 */
4159 if ((etext = update_osym(ofl)) == (Addr)S_ERROR)
4160 return (S_ERROR);

4162 /*
4163 * If we have an PT_INTERP phdr, update it now from the associated
4164 * section information.
4165 */
4166 if (intpsgp) {
4167 Phdr *phdr = &(intpsgp->sg_phdr);
4168 Shdr *shdr = ofl->ofl_osinterp->os_shdr;

4170 phdr->p_vaddr = shdr->sh_addr;
4171 phdr->p_offset = shdr->sh_offset;
4172 phdr->p_memsz = phdr->p_filesz = shdr->sh_size;
4173 phdr->p_flags = PF_R;

4175 DBG_CALL(Dbg_seg_entry(ofl, intpsndx, intpsgp));
4176 ofl->ofl_phdr[intppndx] = *phdr;
4177 }

4179 /*
4180 * If we have a PT_SUNWDTRACE phdr, update it now with the address of
4181 * the symbol. It’s only now been updated via update_sym().
4182 */
4183 if (dtracesgp) {
4184 Phdr *aphdr, *phdr = &(dtracesgp->sg_phdr);
4185 Sym_desc *sdp = ofl->ofl_dtracesym;

4187 phdr->p_vaddr = sdp->sd_sym->st_value;
4188 phdr->p_memsz = sdp->sd_sym->st_size;

4190 /*
4191 * Take permissions from the segment that the symbol is
4192 * associated with.
4193 */
4194 aphdr = &sdp->sd_isc->is_osdesc->os_sgdesc->sg_phdr;
4195 assert(aphdr);
4196 phdr->p_flags = aphdr->p_flags;

4198 DBG_CALL(Dbg_seg_entry(ofl, dtracesndx, dtracesgp));
4199 ofl->ofl_phdr[dtracepndx] = *phdr;
4200 }

4202 /*
4203 * If we have a PT_SUNWCAP phdr, update it now from the associated
4204 * section information.
4205 */
4206 if (capsgp) {
4207 Phdr *phdr = &(capsgp->sg_phdr);
4208 Shdr *shdr = ofl->ofl_oscap->os_shdr;

4210 phdr->p_vaddr = shdr->sh_addr;
4211 phdr->p_offset = shdr->sh_offset;
4212 phdr->p_memsz = phdr->p_filesz = shdr->sh_size;
4213 phdr->p_flags = PF_R;

new/usr/src/cmd/sgs/libld/common/update.c 63

4215 DBG_CALL(Dbg_seg_entry(ofl, capsndx, capsgp));
4216 ofl->ofl_phdr[cappndx] = *phdr;
4217 }

4219 /*
4220 * Update the GROUP sections.
4221 */
4222 if (update_ogroup(ofl) == S_ERROR)
4223 return (S_ERROR);

4225 /*
4226 * Update Move Table.
4227 */
4228 if (ofl->ofl_osmove || ofl->ofl_isparexpn)
4229 update_move(ofl);

4231 /*
4232 * Build any output headers, version information, dynamic structure and
4233 * syminfo structure.
4234 */
4235 if (update_oehdr(ofl) == S_ERROR)
4236 return (S_ERROR);
4237 if (!(flags & FLG_OF_NOVERSEC)) {
4238 if ((flags & FLG_OF_VERDEF) &&
4239 (update_overdef(ofl) == S_ERROR))
4240 return (S_ERROR);
4241 if ((flags & FLG_OF_VERNEED) &&
4242 (update_overneed(ofl) == S_ERROR))
4243 return (S_ERROR);
4244 if (flags & (FLG_OF_VERNEED | FLG_OF_VERDEF))
4245 update_oversym(ofl);
4246 }
4247 if (flags & FLG_OF_DYNAMIC) {
4248 if (update_odynamic(ofl) == S_ERROR)
4249 return (S_ERROR);
4250 }
4251 if (ofl->ofl_ossyminfo) {
4252 if (update_osyminfo(ofl) == S_ERROR)
4253 return (S_ERROR);
4254 }

4256 /*
4257 * Update capabilities information if required.
4258 */
4259 if (ofl->ofl_oscap)
4260 update_oscap(ofl);
4261 if (ofl->ofl_oscapinfo)
4262 update_oscapinfo(ofl);

4264 /*
4265 * Sanity test: the first and last data byte of a string table
4266 * must be NULL.
4267 */
4268 assert((ofl->ofl_osshstrtab == NULL) ||
4269 (*((char *)ofl->ofl_osshstrtab->os_outdata->d_buf) == ’\0’));
4270 assert((ofl->ofl_osshstrtab == NULL) ||
4271 (*(((char *)ofl->ofl_osshstrtab->os_outdata->d_buf) +
4272 ofl->ofl_osshstrtab->os_outdata->d_size - 1) == ’\0’));

4274 assert((ofl->ofl_osstrtab == NULL) ||
4275 (*((char *)ofl->ofl_osstrtab->os_outdata->d_buf) == ’\0’));
4276 assert((ofl->ofl_osstrtab == NULL) ||
4277 (*(((char *)ofl->ofl_osstrtab->os_outdata->d_buf) +
4278 ofl->ofl_osstrtab->os_outdata->d_size - 1) == ’\0’));

4280 assert((ofl->ofl_osdynstr == NULL) ||

new/usr/src/cmd/sgs/libld/common/update.c 64

4281 (*((char *)ofl->ofl_osdynstr->os_outdata->d_buf) == ’\0’));
4282 assert((ofl->ofl_osdynstr == NULL) ||
4283 (*(((char *)ofl->ofl_osdynstr->os_outdata->d_buf) +
4284 ofl->ofl_osdynstr->os_outdata->d_size - DYNSTR_EXTRA_PAD - 1) ==
4285 ’\0’));

4287 /*
4288 * Emit Strtab diagnostics.
4289 */
4290 DBG_CALL(Dbg_sec_strtab(ofl->ofl_lml, ofl->ofl_osshstrtab,
4291 ofl->ofl_shdrsttab));
4292 DBG_CALL(Dbg_sec_strtab(ofl->ofl_lml, ofl->ofl_osstrtab,
4293 ofl->ofl_strtab));
4294 DBG_CALL(Dbg_sec_strtab(ofl->ofl_lml, ofl->ofl_osdynstr,
4295 ofl->ofl_dynstrtab));

4297 /*
4298 * Initialize the section headers string table index within the elf
4299 * header.
4300 */
4301 /* LINTED */
4302 if ((shscnndx = elf_ndxscn(ofl->ofl_osshstrtab->os_scn)) <
4303 SHN_LORESERVE) {
4304 ofl->ofl_nehdr->e_shstrndx =
4305 /* LINTED */
4306 (Half)shscnndx;
4307 } else {
4308 /*
4309 * If the STRTAB section index doesn’t fit into
4310 * e_shstrndx, then we store it in ’shdr[0].st_link’.
4311 */
4312 Elf_Scn *scn;
4313 Shdr *shdr0;

4315 if ((scn = elf_getscn(ofl->ofl_elf, 0)) == NULL) {
4316 ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSCN),
4317 ofl->ofl_name);
4318 return (S_ERROR);
4319 }
4320 if ((shdr0 = elf_getshdr(scn)) == NULL) {
4321 ld_eprintf(ofl, ERR_ELF, MSG_INTL(MSG_ELF_GETSHDR),
4322 ofl->ofl_name);
4323 return (S_ERROR);
4324 }
4325 ofl->ofl_nehdr->e_shstrndx = SHN_XINDEX;
4326 shdr0->sh_link = shscnndx;
4327 }

4329 return ((uintptr_t)etext);
4330 }

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 1

**
 88729 Mon Feb 11 00:23:20 2019
new/usr/src/cmd/sgs/packages/common/SUNWonld-README
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # Copyright (c) 1996, 2010, Oracle and/or its affiliates. All rights reserved.
3 #
4 # CDDL HEADER START
5 #
6 # The contents of this file are subject to the terms of the
7 # Common Development and Distribution License (the "License").
8 # You may not use this file except in compliance with the License.
9 #

10 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11 # or http://www.opensolaris.org/os/licensing.
12 # See the License for the specific language governing permissions
13 # and limitations under the License.
14 #
15 # When distributing Covered Code, include this CDDL HEADER in each
16 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17 # If applicable, add the following below this CDDL HEADER, with the
18 # fields enclosed by brackets "[]" replaced with your own identifying
19 # information: Portions Copyright [yyyy] [name of copyright owner]
20 #
21 # CDDL HEADER END
22 #
23 # Note: The contents of this file are used to determine the versioning
24 # information for the SGS toolset. The number of CRs listed in
25 # this file must grow monotonically, or the SGS version will
26 # move backwards, causing a great deal of confusion. As such,
27 # CRs must never be removed from this file. See
28 # libconv/common/bld_vernote.ksh, and bug#4519569 for more
29 # details on SGS versioning.
30 #
31 --
32 SUNWonld - link-editors development package.
33 --

35 The SUNWonld package is an internal development package containing the
36 link-editors and some related tools. All components live in the OSNET
37 source base, but not all components are delivered as part of the normal
38 OSNET consolidation. The intent of this package is to provide access
39 to new features/bugfixes before they become generally available.

41 General link-editor information can be found:

43 http://linkers.central/
44 http://linkers.sfbay/ (also known as linkers.eng)

46 Comments and Questions:

48 Contact Rod Evans, Ali Bahrami, and/or Seizo Sakurai.

50 Warnings:

52 The postremove script for this package employs /usr/sbin/static/mv,
53 and thus, besides the common core dependencies, this package also
54 has a dependency on the SUNWsutl package.

56 Patches:

58 If the patch has been made official, you’ll find it in:

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 2

60 http://sunsolve.east/cgi/show.pl?target=patches/os-patches

62 If it hasn’t been released, the patch will be in:

64 /net/sunsoftpatch/patches/temporary

66 Note, any patches logged here refer to the temporary ("T") name, as we
67 never know when they’re made official, and although we try to keep all
68 patch information up-to-date the real status of any patch can be
69 determined from:

71 http://sunsoftpatch.eng

73 If it has been obsoleted, the patch will be in:

75 /net/on${RELEASE}-patch/on${RELEASE}/patches/${MACH}/obsolete

78 History:

80 Note, starting after Solaris 10, letter codes in parenthesis may
81 be found following the bug synopsis. Their meanings are as follows:

83 (D) A documentation change accompanies the implementation change.
84 (P) A packaging change accompanies the implementation change.

86 In all cases, see the implementation bug report for details.

88 The following bug fixes exist in the OSNET consolidation workspace
89 from which this package is created:

91 ---------
92 Solaris 8
93 ---------
94 Bugid Risk Synopsis
95 ==
96 4225937 i386 linker emits sparc specific warning messages
97 4215164 shf_order flag handling broken by fix for 4194028.
98 4215587 using ld and the -r option on solaris 7 with compiler option -xarch=v9
99 causes link errors.
100 4234657 103627-08 breaks purify 4.2 (plt padding should not be enabled for
101 32-bit)
102 4235241 dbx no longer gets dlclose notification.
103 --
104 All the above changes are incorporated in the following patches:
105 Solaris/SunOS 5.7_sparc patch 106950-05 (never released)
106 Solaris/SunOS 5.7_x86 patch 106951-05 (never released)
107 Solaris/SunOS 5.6_sparc patch 107733-02 (never released)
108 Solaris/SunOS 5.6_x86 patch 107734-02
109 --
110 4248290 inetd dumps core upon bootup - failure in dlclose() logic.
111 4238071 dlopen() leaks while descriptors under low memory conditions
112 --
113 All the above changes are incorporated in the following patches:
114 Solaris/SunOS 5.7_sparc patch 106950-06
115 Solaris/SunOS 5.7_x86 patch 106951-06
116 Solaris/SunOS 5.6_sparc patch 107733-03 (never released)
117 Solaris/SunOS 5.6_x86 patch 107734-03
118 --
119 4267980 INITFIRST flag of the shard object could be ignored.
120 --
121 All the above changes plus:
122 4238973 fix for 4121152 affects linking of Ada objects
123 4158744 patch 103627-02 causes core when RPATH has blank entry and
124 dlopen/dlclose is used
125 are incorporated in the following patches:

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 3

126 Solaris/SunOS 5.5.1_sparc patch 103627-12 (never released)
127 Solaris/SunOS 5.5.1_x86 patch 103628-11
128 --
129 4256518 miscalculated calloc() during dlclose/tsorting can result in segv
130 4254171 DT_SPARC_REGISTER has invalid value associated with it.
131 --
132 All the above changes are incorporated in the following patches:
133 Solaris/SunOS 5.7_sparc patch 106950-07
134 Solaris/SunOS 5.7_x86 patch 106951-07
135 Solaris/SunOS 5.6_sparc patch 107733-04 (never released)
136 Solaris/SunOS 5.6_x86 patch 107734-04
137 --
138 4293159 ld needs to combine sections with and without SHF_ORDERED flag(comdat)
139 4292238 linking a library which has a static char ptr invokes mprotect() call
140 --
141 All the above changes except for:
142 4256518 miscalculated calloc() during dlclose/tsorting can result in segv
143 4254171 DT_SPARC_REGISTER has invalid value associated with it.
144 plus:
145 4238973 fix for 4121152 affects linking of Ada objects
146 4158744 patch 103627-02 causes core when RPATH has blank entry and
147 dlopen/dlclose is used
148 are incorporated in the following patches:
149 Solaris/SunOS 5.5.1_sparc patch 103627-13
150 Solaris/SunOS 5.5.1_x86 patch 103628-12
151 --
152 All the above changes are incorporated in the following patches:
153 Solaris/SunOS 5.7_sparc patch 106950-08
154 Solaris/SunOS 5.7_x86 patch 106951-08
155 Solaris/SunOS 5.6_sparc patch 107733-05
156 Solaris/SunOS 5.6_x86 patch 107734-05
157 --
158 4295613 COMMON symbol resolution can be incorrect
159 --
160 All the above changes plus:
161 4238973 fix for 4121152 affects linking of Ada objects
162 4158744 patch 103627-02 causes core when RPATH has blank entry and
163 dlopen/dlclose is used
164 are incorporated in the following patches:
165 Solaris/SunOS 5.5.1_sparc patch 103627-14
166 Solaris/SunOS 5.5.1_x86 patch 103628-13
167 --
168 All the above changes plus:
169 4351197 nfs performance problem by 103627-13
170 are incorporated in the following patches:
171 Solaris/SunOS 5.5.1_sparc patch 103627-15
172 Solaris/SunOS 5.5.1_x86 patch 103628-14
173 --
174 All the above changes are incorporated in the following patches:
175 Solaris/SunOS 5.7_sparc patch 106950-09
176 Solaris/SunOS 5.7_x86 patch 106951-09
177 Solaris/SunOS 5.6_sparc patch 107733-06
178 Solaris/SunOS 5.6_x86 patch 107734-06
179 --
180 4158971 increase the default segment alignment for i386 to 64k
181 4064994 Add an $ISALIST token to those understood by the dynamic linker
182 xxxxxxx ia64 common code putback
183 4239308 LD_DEBUG busted for sparc machines
184 4239008 Support MAP_ANON
185 4238494 link-auditing extensions required
186 4232239 R_SPARC_LOX10 truncates field
187 4231722 R_SPARC_UA* relocations are busted
188 4235514 R_SPARC_OLO10 relocation fails
189 4244025 sgsmsg update
190 4239281 need to support SECREL relocations for ia64
191 4253751 ia64 linker must support PT_IA_64_UNWIND tables

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 4

192 4259254 dlmopen mistakenly closes fd 0 (stdin) under certain error conditions
193 4260872 libelf hangs when libthread present
194 4224569 linker core dumping when profiling specified
195 4270937 need mechanism to suppress ld.so.1’s use of a default search path.
196 1050476 ld.so to permit configuration of search path
197 4273654 filtee processing using $ISALIST could be optimized
198 4271860 get MERCED cruft out of elf.h
199 4248991 Dynamic loader (via PLT) corrupts register G4
200 4275754 cannot mmap file: Resource temporarily unavailable
201 4277689 The linker can not handle relocation against MOVE tabl
202 4270766 atexit processing required on dlclose().
203 4279229 Add a "release" token to those understood by the dynamic linker
204 4215433 ld can bus error when insufficient disc space exists for output file
205 4285571 Pssst, want some free disk space? ld’s miscalculating.
206 4286236 ar gives confusing "bad format" error with a null .stab section
207 4286838 ld.so.1 can’t handle a no-bits segment
208 4287364 ld.so.1 runtime configuration cleanup
209 4289573 disable linking of ia64 binaries for Solaris8
210 4293966 crle(1)’s default directories should be supplied
211 --

213 ------------------------------------
214 Solaris 8 600 (1st Q-update - s28u1)
215 ------------------------------------
216 Bugid Risk Synopsis
217 ==
218 4309212 dlsym can’t find symbol
219 4311226 rejection of preloading in secure apps is inconsistent
220 4312449 dlclose: invalid deletion of dependency can occur using RTLD_GLOBAL
221 --
222 All the above changes are incorporated in the following patches:
223 Solaris/SunOS 5.8_sparc patch 109147-01
224 Solaris/SunOS 5.8_x86 patch 109148-01
225 Solaris/SunOS 5.7_sparc patch 106950-10
226 Solaris/SunOS 5.7_x86 patch 106951-10
227 Solaris/SunOS 5.6_sparc patch 107733-07
228 Solaris/SunOS 5.6_x86 patch 107734-07
229 --

231 ------------------------------------
232 Solaris 8 900 (2nd Q-update - s28u2)
233 ------------------------------------
234 Bugid Risk Synopsis
235 ==
236 4324775 non-PIC code & -zcombreloc don’t mix very well...
237 4327653 run-time linker should preload tables it will process (madvise)
238 4324324 shared object code can be referenced before .init has fired
239 4321634 .init firing of multiple INITFIRST objects can fail
240 --
241 All the above changes are incorporated in the following patches:
242 Solaris/SunOS 5.8_sparc patch 109147-03
243 Solaris/SunOS 5.8_x86 patch 109148-03
244 Solaris/SunOS 5.7_sparc patch 106950-11
245 Solaris/SunOS 5.7_x86 patch 106951-11
246 Solaris/SunOS 5.6_sparc patch 107733-08
247 Solaris/SunOS 5.6_x86 patch 107734-08
248 --
249 4338812 crle(1) omits entries in the directory cache
250 4341496 RFE: provide a static version of /usr/bin/crle
251 4340878 rtld should treat $ORIGIN like LD_LIBRARY_PATH in security issues
252 --
253 All the above changes are incorporated in the following patches:
254 Solaris/SunOS 5.8_sparc patch 109147-04
255 Solaris/SunOS 5.8_x86 patch 109148-04
256 Solaris/SunOS 5.7_sparc patch 106950-12
257 Solaris/SunOS 5.7_x86 patch 106951-12

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 5

258 --
259 4349563 auxiliary filter error handling regression introduced in 4165487
260 4355795 ldd -r now gives "displacement relocated" warnings
261 --
262 All the above changes are incorporated in the following patches:
263 Solaris/SunOS 5.7_sparc patch 106950-13
264 Solaris/SunOS 5.7_x86 patch 106951-13
265 Solaris/SunOS 5.6_sparc patch 107733-09
266 Solaris/SunOS 5.6_x86 patch 107734-09
267 --
268 4210412 versioning a static executable causes ld to core dump
269 4219652 Linker gives misleading error about not finding main (xarch=v9)
270 4103449 ld command needs a command line flag to force 64-bits
271 4187211 problem with RDISP32 linking in copy-relocated objects
272 4287274 dladdr, dlinfo do not provide the full path name of a shared object
273 4297563 dlclose still does not remove all objects.
274 4250694 rtld_db needs a new auxvec entry
275 4235315 new features for rtld_db (DT_CHECKSUM, dynamic linked .o files
276 4303609 64bit libelf.so.1 does not properly implement elf_hash()
277 4310901 su.static fails when OSNet build with lazy-loading
278 4310324 elf_errno() causes Bus Error(coredump) in 64-bit multithreaded programs
279 4306415 ld core dump
280 4316531 BCP: possible failure with dlclose/_preexec_exit_handlers
281 4313765 LD_BREADTH should be shot
282 4318162 crle uses automatic strings in putenv.
283 4255943 Description of -t option incomplete.
284 4322528 sgs message test infrastucture needs improvement
285 4239213 Want an API to obtain linker’s search path
286 4324134 use of extern mapfile directives can contribute unused symbols
287 4322581 ELF data structures could be layed out more efficiently...
288 4040628 Unnecessary section header symbols should be removed from .dynsym
289 4300018 rtld: bindlock should be freed before calling call_fini()
290 4336102 dlclose with non-deletable objects can mishandle dependencies
291 4329785 mixing of SHT_SUNW_COMDAT & SHF_ORDERED causes ld to seg fault
292 4334617 COPY relocations should be produces for references to .bss symbols
293 4248250 relcoation of local ABS symbols incorrect
294 4335801 For complimentary alignments eliminate ld: warning: symbol ‘ll’
295 has differing a
296 4336980 ld.so.1 relative path processing revisited
297 4243097 dlerror(3DL) is not affected by setlocale(3C).
298 4344528 dump should remove -D and -l usage message
299 xxxxxxx enable LD_ALTEXEC to access alternate link-editor
300 --
301 All the above changes are incorporated in the following patches:
302 Solaris/SunOS 5.8_sparc patch 109147-06
303 Solaris/SunOS 5.8_x86 patch 109148-06
304 --

306 ------------------------------------
307 Solaris 8 101 (3rd Q-update - s28u3)
308 ------------------------------------
309 Bugid Risk Synopsis
310 ==
311 4346144 link-auditing: plt_tracing fails if LA_SYMB_NOPLTENTER given after
312 being bound
313 4346001 The ld should support mapfile syntax to generate PT_SUNWSTACK segment
314 4349137 rtld_db: A third fallback method for locating the linkmap
315 4343417 dladdr interface information inadequate
316 4343801 RFE: crle(1): provide option for updating configuration files
317 4346615 ld.so.1 attempting to open a directory gives: No such device
318 4352233 crle should not honor umask
319 4352330 LD_PRELOAD cannot use absolute path for privileged program
320 4357805 RFE: man page for ld(1) does not document all -z or -B options in
321 Solaris 8 9/00
322 4358751 ld.so.1: LD_XXX environ variables and LD_FLAGS should be synchronized.
323 4358862 link editors should reference "64" symlinks instead of sparcv9 (ia64).

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 6

324 4356879 PLTs could use faster code sequences in some cases
325 4367118 new fast baplt’s fail when traversed twice in threaded application
326 4366905 Need a way to determine path to a shared library
327 4351197 nfs performance problem by 103627-13
328 4367405 LD_LIBRARY_PATH_64 not being used
329 4354500 SHF_ORDERED ordered scections does not properly sort sections
330 4369068 ld(1)’s weak symbol processing is inefficient (slow and doesn’t scale).
331 --
332 All the above changes are incorporated in the following patches:
333 Solaris/SunOS 5.8_sparc patch 109147-07
334 Solaris/SunOS 5.8_x86 patch 109148-07
335 Solaris/SunOS 5.7_sparc patch 106950-14
336 Solaris/SunOS 5.7_x86 patch 106951-14
337 --

339 ------------------------------------
340 Solaris 8 701 (5th Q-update - s28u5)
341 ------------------------------------
342 Bugid Risk Synopsis
343 ==
344 4368846 ld(1) fails to version some interfaces given in a mapfile
345 4077245 dump core dump on null pointer.
346 4372554 elfdump should demangle symbols (like nm, dump)
347 4371114 dlclose may unmap a promiscuous object while it’s still in use.
348 4204447 elfdump should understand SHN_AFTER/SHN_BEGIN macro
349 4377941 initialization of interposers may not occur
350 4381116 ldd/ld.so.1 could aid in detecting unused dependencies
351 4381783 dlopen/dlclose of a libCrun+libthread can dump core
352 4385402 linker & run-time linker must support gABI ELF updates
353 4394698 ld.so.1 does not process DF_SYMBOLIC - not gABI conforming
354 4394212 the link editor quietly ignores missing support libraries
355 4390308 ld.so.1 should provide more flexibility LD_PRELOAD’ing 32-bit/64-bit
356 objects
357 4401232 crle(1) could provide better flexibility for alternatives
358 4401815 fix misc nits in debugging output...
359 4402861 cleanup /usr/demo/link_audit & /usr/tmp/librtld_db demo source code...
360 4393044 elfdump should allow raw dumping of sections
361 4413168 SHF_ORDERED bit causes linker to generate a separate section
362 --
363 All the above changes are incorporated in the following patches:
364 Solaris/SunOS 5.8_sparc patch 109147-08
365 Solaris/SunOS 5.8_x86 patch 109148-08
366 --
367 4452202 Typos in <sys/link.h>
368 4452220 dump doesn’t support RUNPATH
369 --
370 All the above changes are incorporated in the following patches:
371 Solaris/SunOS 5.8_sparc patch 109147-09
372 Solaris/SunOS 5.8_x86 patch 109148-09
373 --

375 -------------------------------------
376 Solaris 8 1001 (6th Q-update - s28u6)
377 -------------------------------------
378 Bugid Risk Synopsis
379 ==
380 4421842 fixups in SHT_GROUP processing required...
381 4450433 problem with liblddbg output on -Dsection,detail when
382 processing SHF_LINK_ORDER
383 --
384 All the above changes are incorporated in the following patches:
385 Solaris/SunOS 5.8_sparc patch 109147-10
386 Solaris/SunOS 5.8_x86 patch 109148-10
387 Solaris/SunOS 5.7_sparc patch 106950-15
388 Solaris/SunOS 5.7_x86 patch 106951-15
389 --

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 7

390 4463473 pldd showing wrong output
391 --
392 All the above changes are incorporated in the following patches:
393 Solaris/SunOS 5.8_sparc patch 109147-11
394 Solaris/SunOS 5.8_x86 patch 109148-11
395 --

397 ------------------------------------
398 Solaris 8 202 (7th Q-update - s28u7)
399 ------------------------------------
400 Bugid Risk Synopsis
401 ==
402 4488954 ld.so.1 reuses same buffer to send ummapping range to
403 _preexec_exit_handlers()
404 --
405 All the above changes are incorporated in the following patches:
406 Solaris/SunOS 5.8_sparc patch 109147-12
407 Solaris/SunOS 5.8_x86 patch 109148-12
408 --

410 ---------
411 Solaris 9
412 ---------
413 Bugid Risk Synopsis
414 ==
415 4505289 incorrect handling of _START_ and _END_
416 4506164 mcs does not recognize #linkbefore or #linkafter qualifiers
417 4447560 strip is creating unexecutable files...
418 4513842 library names not in ld.so string pool cause corefile bugs
419 --
420 All the above changes are incorporated in the following patches:
421 Solaris/SunOS 5.8_sparc patch 109147-13
422 Solaris/SunOS 5.8_x86 patch 109148-13
423 Solaris/SunOS 5.7_sparc patch 106950-16
424 Solaris/SunOS 5.7_x86 patch 106951-16
425 --
426 4291384 ld -M with a mapfile does not properly align Fortran REAL*8 data
427 4413322 SunOS 5.9 librtld_db doesn’t show dlopened ".o" files anymore?
428 4429371 librtld_db busted on ia32 with SC6.x compilers...
429 4418274 elfdump dumps core on invalid input
430 4432224 libelf xlate routines are out of date
431 4433643 Memory leak using dlopen()/dlclose() in Solaris 8
432 4446564 ldd/lddstub - core dump conditions
433 4446115 translating SUNW_move sections is broken
434 4450225 The rdb command can fall into an infinite loop
435 4448531 Linker Causes Segmentation Fault
436 4453241 Regression in 4291384 can result in empty symbol table.
437 4453398 invalid runpath token can cause ld to spin.
438 4460230 ld (for OS 5.8 and 5.9) loses error message
439 4462245 ld.so.1 core dumps when executed directly...
440 4455802 need more flexibility in establishing a support library for ld
441 4467068 dyn_plt_entsize not properly initialized in ld.so.1
442 4468779 elf_plt_trace_write() broken on i386 (link-auditing)
443 4465871 -zld32 and -zld64 does not work the way it should
444 4461890 bad shared object created with -zredlocsym
445 4469400 ld.so.1: is_so_loaded isn’t as efficient as we thought...
446 4469566 lazy loading fallback can reference un-relocated objects
447 4470493 libelf incorectly translates NOTE sections accross architectures...
448 4469684 rtld leaks dl_handles and permits on dlopen/dlclose
449 4475174 ld.so.1 prematurly reports the failure to load a object...
450 4475514 ld.so.1 can core dump in memory allocation fails (no swap)
451 4481851 Setting ld.so.1 environment variables globally would be useful
452 4482035 setting LD_PROFILE & LD_AUDIT causes ping command to issue warnings
453 on 5.8
454 4377735 segment reservations cause sbrk() to fail
455 4491434 ld.so.1 can leak file-descriptors when loading same named objects

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 8

456 4289232 some of warning/error/debugging messages from libld.so can be revised
457 4462748 Linker Portion of TLS Support
458 4496718 run-time linkers mutex_locks not working with ld_libc interface
459 4497270 The -zredlocsym option should not eliminate partially initialized local
460 symbols
461 4496963 dumping an object with crle(1) that uses $ORIGIN can loose its
462 dependencies
463 4499413 Sun linker orders of magnitude slower than gnu linker
464 4461760 lazy loading libXm and libXt can fail.
465 4469031 The partial initialized (local) symbols for intel platform is not
466 working.
467 4492883 Add link-editor option to multi-pass archives to resolve unsatisfied
468 symbols
469 4503731 linker-related commands misspell "argument"
470 4503768 whocalls(1) should output messages to stderr, not stdout
471 4503748 whocalls(1) usage message and manpage could be improved
472 4503625 nm should be taught about TLS symbols - that they aren’t allowed that is
473 4300120 segment address validation is too simplistic to handle segment
474 reservations
475 4404547 krtld/reloc.h could have better error message, has typos
476 4270931 R_SPARC_HIX22 relocation is not handled properly
477 4485320 ld needs to support more the 32768 PLTs
478 4516434 sotruss can not watch libc_psr.so.1
479 4213100 sotruss could use more flexible pattern matching
480 4503457 ld seg fault with comdat
481 4510264 sections with SHF_TLS can come in different orders...
482 4518079 link-editor support library unable to modify section header flags
483 4515913 ld.so.1 can incorrectly decrement external reference counts on dlclose()
484 4519569 ld -V does not return a interesting value...
485 4524512 ld.so.1 should allow alternate termination signals
486 4524767 elfdump dies on bogus sh_name fields...
487 4524735 ld getopt processing of ’-’ changed
488 4521931 subroutine in a shared object as LOCL instead of GLOB
489 --
490 All the above changes are incorporated in the following patches:
491 Solaris/SunOS 5.8_sparc patch 109147-14
492 Solaris/SunOS 5.8_x86 patch 109148-14
493 Solaris/SunOS 5.7_sparc patch 106950-17
494 Solaris/SunOS 5.7_x86 patch 106951-17
495 --
496 4532729 tentative definition of TLS variable causes linker to dump core
497 4526745 fixup ld error message about duplicate dependencies/needed names
498 4522999 Solaris linker one order of magnitude slower than GNU linker
499 4518966 dldump undoes existing relocations with no thought of alignment or size.
500 4587441 Certain libraries have race conditions when setting error codes
501 4523798 linker option to align bss to large pagesize alignments.
502 4524008 ld can improperly set st_size of symbols named "_init" or "_fini"
503 4619282 ld cannot link a program with the option -sb
504 4620846 Perl Configure probing broken by ld changes
505 4621122 multiple ld ’-zinitarray=’ on a commandline fails
506 --
507 Solaris/SunOS 5.8_sparc patch 109147-15
508 Solaris/SunOS 5.8_x86 patch 109148-15
509 Solaris/SunOS 5.7_sparc patch 106950-18
510 Solaris/SunOS 5.7_x86 patch 106951-18
511 Solaris/SunOS 5.6_sparc patch 107733-10
512 Solaris/SunOS 5.6_x86 patch 107734-10
513 --
514 All the above changes plus:
515 4616944 ar seg faults when order of object file is reversed.
516 are incorporated in the following patches:
517 Solaris/SunOS 5.8_sparc patch 109147-16
518 Solaris/SunOS 5.8_x86 patch 109148-16
519 --
520 All the above changes plus:
521 4872634 Large LD_PRELOAD values can cause SEGV of process

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 9

522 are incorporated in the following patches:
523 Solaris/SunOS 5.6_sparc patch T107733-11
524 Solaris/SunOS 5.6_x86 patch T107734-11
525 --

527 ------------------------------------
528 Solaris 9 1202 (2nd Q-update - s9u2)
529 ------------------------------------
530 Bugid Risk Synopsis
531 ==
532 4546416 add help messages to ld.so mdbmodule
533 4526752 we should build and ship ld.so’s mdb module
534 4624658 update 386 TLS relocation values
535 4622472 LA_SYMB_DLSYM not set for la_symbind() invocations
536 4638070 ldd/ld.so.1 could aid in detecting unreferenced dependencies
537 PSARC/2002/096 Detecting unreferenced dependencies with ldd(1)
538 4633860 Optimization for unused static global variables
539 PSARC/2002/113 ld -zignore - section elimination
540 4642829 ld.so.1 mprotect()’s text segment for weak relocations (it shouldn’t)
541 4621479 ’make’ in $SRC/cmd/sgs/tools tries to install things in the proto area
542 4529912 purge ia64 source from sgs
543 4651709 dlopen(RTLD_NOLOAD) can disable lazy loading
544 4655066 crle: -u with nonexistent config file doesn’t work
545 4654406 string tables created by the link-editor could be smaller...
546 PSARC/2002/160 ld -znocompstrtab - disable string-table compression
547 4651493 RTLD_NOW can result in binding to an object prior to its init being run.
548 4662575 linker displacement relocation checking introduces significant
549 linker overhead
550 4533195 ld interposes on malloc()/free() preventing support library from freeing
551 memory
552 4630224 crle get’s confused about memory layout of objects...
553 4664855 crle on application failed with ld.so.1 encountering mmap() returning
554 ENOMEM err
555 4669582 latest dynamic linker causes libthread _init to get skipped
556 4671493 ld.so.1 inconsistantly assigns PATHNAME() on primary objects
557 4668517 compile with map.bssalign doesn’t copy _iob to bss
558 --
559 All the above changes are incorporated in the following patches:
560 Solaris/SunOS 5.9_sparc patch T112963-01
561 Solaris/SunOS 5.8_sparc patch T109147-17
562 Solaris/SunOS 5.8_x86 patch T109148-17
563 --
564 4701749 On Solaris 8 + 109147-16 ld crashes when building a dynamic library.
565 4707808 The ldd command is broken in the latest 2.8 linker patch.
566 --
567 All the above changes are incorporated in the following patches:
568 Solaris/SunOS 5.9_sparc patch T112963-02
569 Solaris/SunOS 5.8_sparc patch T109147-18
570 Solaris/SunOS 5.8_x86 patch T109148-18
571 --
572 4696204 enable extended section indexes in relocatable objects
573 PSARC/2001/332 ELF gABI updates - round II
574 PSARC/2002/369 libelf interfaces to support ELF Extended Sections
575 4706503 linkers need to cope with EF_SPARCV9_PSO/EF_SPARCV9_RMO
576 4716929 updating of local register symbols in dynamic symtab busted...
577 4710814 add "official" support for the "symbolic" keyword in linker map-file
578 PSARC/2002/439 linker mapfile visibility declarations
579 --
580 All the above changes are incorporated in the following patches:
581 Solaris/SunOS 5.9_sparc patch T112963-03
582 Solaris/SunOS 5.8_sparc patch T109147-19
583 Solaris/SunOS 5.8_x86 patch T109148-19
584 Solaris/SunOS 5.7_sparc patch T106950-19
585 Solaris/SunOS 5.7_x86 patch T106951-19
586 --

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 10

588 -----------------------------------
589 Solaris 9 403 (3nd Q-update - s9u3)
590 -----------------------------------
591 Bugid Risk Synopsis
592 ==
593 4731174 strip(1) does not fixup SHT_GROUP data
594 4733697 -zignore with gcc may exclude C++ exception sections
595 4733317 R_SPARC_*_HIX22 calculations are wrong with 32bit LD building
596 ELF64 binaries
597 4735165 fatal linker error when compiling C++ programs with -xlinkopt
598 4736951 The mcs broken when the target file is an archive file
599 --
600 All the above changes are incorporated in the following patches:
601 Solaris/SunOS 5.8_sparc patch T109147-20
602 Solaris/SunOS 5.8_x86 patch T109148-20
603 Solaris/SunOS 5.7_sparc patch T106950-20
604 Solaris/SunOS 5.7_x86 patch T106951-20
605 --
606 4739660 Threads deadlock in schedlock and dynamic linker lock.
607 4653148 ld.so.1/libc should unregister its dlclose() exit handler via a fini.
608 4743413 ld.so.1 doesn’t terminate argv with NULL pointer when invoked directly
609 4746231 linker core-dumps when SECTION relocations are made against discarded
610 sections
611 4730433 ld.so.1 wastes time repeatedly opening dependencies
612 4744337 missing RD_CONSISTENT event with dlmopen(LD_ID_NEWLM, ...)
613 4670835 rd_load_objiter can ignore callback’s return value
614 4745932 strip utility doesn’t strip out Dwarf2 debug section
615 4754751 "strip" command doesn’t remove comdat stab sections.
616 4755674 Patch 109147-18 results in coredump.
617 --
618 All the above changes are incorporated in the following patches:
619 Solaris/SunOS 5.9_sparc patch T112963-04
620 Solaris/SunOS 5.7_sparc patch T106950-21
621 Solaris/SunOS 5.7_x86 patch T106951-21
622 --
623 4772927 strip core dumps on an archive library
624 4774727 direct-bindings can fail against copy-reloc symbols
625 --
626 All the above changes are incorporated in the following patches:
627 Solaris/SunOS 5.9_sparc patch T112963-05
628 Solaris/SunOS 5.9_x86 patch T113986-01
629 Solaris/SunOS 5.8_sparc patch T109147-21
630 Solaris/SunOS 5.8_x86 patch T109148-21
631 Solaris/SunOS 5.7_sparc patch T106950-22
632 Solaris/SunOS 5.7_x86 patch T106951-22
633 --

635 -----------------------------------
636 Solaris 9 803 (4th Q-update - s9u4)
637 -----------------------------------
638 Bugid Risk Synopsis
639 ==
640 4730110 ld.so.1 list implementation could scale better
641 4728822 restrict the objects dlsym() searches.
642 PSARC/2002/478 New dlopen(3dl) flag - RTLD_FIRST
643 4714146 crle: 64-bit secure pathname is incorrect.
644 4504895 dlclose() does not remove all objects
645 4698800 Wrong comments in /usr/lib/ld/sparcv9/map.*
646 4745129 dldump is inconsistent with .dynamic processing errors.
647 4753066 LD_SIGNAL isn’t very useful in a threaded environment
648 PSARC/2002/569 New dlinfo(3dl) flag - RTLD_DI_SIGNAL
649 4765536 crle: symbolic links can confuse alternative object configuration info
650 4766815 ld -r of object the TLS data fails
651 4770484 elfdump can not handle stripped archive file
652 4770494 The ld command gives improper error message handling broken archive
653 4775738 overwriting output relocation table when ’ld -zignore’ is used

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 11

654 4778247 elfdump -e of core files fails
655 4779976 elfdump dies on bad relocation entries
656 4787579 invalid SHT_GROUP entries can cause linker to seg fault
657 4783869 dlclose: filter closure exhibits hang/failure - introduced with 4504895
658 4778418 ld.so.1: there be nits out there
659 4792461 Thread-Local Storage - x86 instruction sequence updates
660 PSARC/2002/746 Thread-Local Storage - x86 instruction sequence updates
661 4461340 sgs: ugly build output while suppressing ia64 (64-bit) build on Intel
662 4790194 dlopen(..., RTLD_GROUP) has an odd interaction with interposition
663 4804328 auditing of threaded applications results in deadlock
664 4806476 building relocatable objects with SHF_EXCLUDE loses relocation
665 information
666 --
667 All the above changes are incorporated in the following patches:
668 Solaris/SunOS 5.9_sparc patch T112963-06
669 Solaris/SunOS 5.9_x86 patch T113986-02
670 Solaris/SunOS 5.8_sparc patch T109147-22
671 Solaris/SunOS 5.8_x86 patch T109148-22
672 --
673 4731183 compiler creates .tlsbss section instead of .tbss as documented
674 4816378 TLS: a tls test case dumps core with C and C++ compilers
675 4817314 TLS_GD relocations against local symbols do not reference symbol...
676 4811951 non-default symbol visibility overriden by definition in shared object
677 4802194 relocation error of mozilla built by K2 compiler
678 4715815 ld should allow linking with no output file (or /dev/null)
679 4793721 Need a way to null all code in ISV objects enabling ld performance
680 tuning
681 --
682 All the above changes plus:
683 4796237 RFE: link-editor became extremely slow with patch 109147-20 and
684 static libraries
685 are incorporated in the following patches:
686 Solaris/SunOS 5.9_sparc patch T112963-07
687 Solaris/SunOS 5.9_x86 patch T113986-03
688 Solaris/SunOS 5.8_sparc patch T109147-23
689 Solaris/SunOS 5.8_x86 patch T109148-23
690 --

692 ------------------------------------
693 Solaris 9 1203 (5th Q-update - s9u5)
694 ------------------------------------
695 Bugid Risk Synopsis
696 ==
697 4830584 mmap for the padding region doesn’t get freed after dlclose
698 4831650 ld.so.1 can walk off the end of it’s call_init() array...
699 4831544 ldd using .so modules compiled with FD7 compiler caused a core dump
700 4834784 Accessing members in a TLS structure causes a core dump in Oracle
701 4824026 segv when -z combreloc is used with -xlinkopt
702 4825296 typo in elfdump
703 --
704 All the above changes are incorporated in the following patches:
705 Solaris/SunOS 5.9_sparc patch T112963-08
706 Solaris/SunOS 5.9_x86 patch T113986-04
707 Solaris/SunOS 5.8_sparc patch T109147-24
708 Solaris/SunOS 5.8_x86 patch T109148-24
709 --
710 4470917 Solaris Process Model Unification (link-editor components only)
711 PSARC/2002/117 Solaris Process Model Unification
712 4744411 Bloomberg wants a faster linker.
713 4811969 64-bit links can be much slower than 32-bit.
714 4825065 ld(1) should ignore consecutive empty sections.
715 4838226 unrelocated shared objects may be erroneously collected for init firing
716 4830889 TLS: testcase coredumps with -xarch=v9 and -g
717 4845764 filter removal can leave dangling filtee pointer
718 4811093 apptrace -F libc date core dumps
719 4826315 Link editors need to be pre- and post- Unified Process Model aware

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 12

720 4868300 interposing on direct bindings can fail
721 4872634 Large LD_PRELOAD values can cause SEGV of process
722 --
723 All the above changes are incorporated in the following patches:
724 Solaris/SunOS 5.9_sparc patch T112963-09
725 Solaris/SunOS 5.9_x86 patch T113986-05
726 Solaris/SunOS 5.8_sparc patch T109147-25
727 Solaris/SunOS 5.8_x86 patch T109148-25
728 --

730 ------------------------------------
731 Solaris 9 404 (6th Q-update - s9u6)
732 ------------------------------------
733 Bugid Risk Synopsis
734 ==
735 4870260 The elfdump command should produce more warning message on invalid move
736 entries.
737 4865418 empty PT_TLS program headers cause problems in TLS enabled applications
738 4825151 compiler core dumped with a -mt -xF=%all test
739 4845829 The runtime linker fails to dlopen() long path name.
740 4900684 shared libraries with more then 32768 plt’s fail for sparc ELF64
741 4906062 Makefiles under usr/src/cmd/sgs needs to be updated
742 --
743 All the above changes are incorporated in the following patches:
744 Solaris/SunOS 5.9_sparc patch T112963-10
745 Solaris/SunOS 5.9_x86 patch T113986-06
746 Solaris/SunOS 5.8_sparc patch T109147-26
747 Solaris/SunOS 5.8_x86 patch T109148-26
748 Solaris/SunOS 5.7_sparc patch T106950-24
749 Solaris/SunOS 5.7_x86 patch T106951-24
750 --
751 4900320 rtld library mapping could be faster
752 4911775 implement GOTDATA proposal in ld
753 PSARC/2003/477 SPARC GOTDATA instruction sequences
754 4904565 Functionality to ignore relocations against external symbols
755 4764817 add section types SHT_DEBUG and SHT_DEBUGSTR
756 PSARC/2003/510 New ELF DEBUG and ANNOTATE sections
757 4850703 enable per-symbol direct bindings
758 4716275 Help required in the link analysis of runtime interfaces
759 PSARC/2003/519 Link-editors: Direct Binding Updates
760 4904573 elfdump may hang when processing archive files
761 4918310 direct binding from an executable can’t be interposed on
762 4918938 ld.so.1 has become SPARC32PLUS - breaks 4.x binary compatibility
763 4911796 S1S8 C++: ld dump core when compiled and linked with xlinkopt=1.
764 4889914 ld crashes with SEGV using -M mapfile under certain conditions
765 4911936 exception are not catch from shared library with -zignore
766 --
767 All the above changes are incorporated in the following patches:
768 Solaris/SunOS 5.9_sparc patch T112963-11
769 Solaris/SunOS 5.9_x86 patch T113986-07
770 Solaris/SunOS 5.8_sparc patch T109147-27
771 Solaris/SunOS 5.8_x86 patch T109148-27
772 Solaris/SunOS 5.7_sparc patch T106950-25
773 Solaris/SunOS 5.7_x86 patch T106951-25
774 --
775 4946992 ld crashes due to huge number of sections (>65,000)
776 4951840 mcs -c goes into a loop on executable program
777 4939869 Need additional relocation types for abs34 code model
778 PSARC/2003/684 abs34 ELF relocations
779 --
780 All the above changes are incorporated in the following patches:
781 Solaris/SunOS 5.9_sparc patch T112963-12
782 Solaris/SunOS 5.9_x86 patch T113986-08
783 Solaris/SunOS 5.8_sparc patch T109147-28
784 Solaris/SunOS 5.8_x86 patch T109148-28
785 --

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 13

787 ------------------------------------
788 Solaris 9 904 (7th Q-update - s9u7)
789 ------------------------------------
790 Bugid Risk Synopsis
791 ==
792 4912214 Having multiple of libc.so.1 in a link map causes malloc() to fail
793 4526878 ld.so.1 should pass MAP_ALIGN flag to give kernel more flexibility
794 4930997 sgs bld_vernote.ksh script needs to be hardend...
795 4796286 ld.so.1: scenario for trouble?
796 4930985 clean up cruft under usr/src/cmd/sgs/tools
797 4933300 remove references to Ultra-1 in librtld_db demo
798 4936305 string table compression is much too slow...
799 4939626 SUNWonld internal package must be updated...
800 4939565 per-symbol filtering required
801 4948119 ld(1) -z loadfltr fails with per-symbol filtering
802 4948427 ld.so.1 gives fatal error when multiple RTLDINFO objects are loaded
803 4940894 ld core dumps using "-xldscope=symbolic
804 4955373 per-symbol filtering refinements
805 4878827 crle(1M) - display post-UPM search paths, and compensate for pre-UPM.
806 4955802 /usr/ccs/bin/ld dumps core in process_reld()
807 4964415 elfdump issues wrong relocation error message
808 4966465 LD_NOAUXFLTR fails when object is both a standard and auxiliary filter
809 4973865 the link-editor does not scale properly when linking objects with
810 lots of syms
811 4975598 SHT_SUNW_ANNOTATE section relocation not resolved
812 4974828 nss_files nss_compat r_mt tests randomly segfaulting
813 --
814 All the above changes are incorporated in the following patches:
815 Solaris/SunOS 5.9_sparc patch T112963-13
816 Solaris/SunOS 5.9_x86 patch T113986-09
817 --
818 4860508 link-editors should create/promote/verify hardware capabilities
819 5002160 crle: reservation for dumped objects gets confused by mmaped object
820 4967869 linking stripped library causes segv in linker
821 5006657 link-editor doesn’t always handle nodirect binding syminfo information
822 4915901 no way to see ELF information
823 5021773 ld.so.1 has trouble with objects having more than 2 segments.
824 --
825 All the above changes are incorporated in the following patches:
826 Solaris/SunOS 5.9_sparc patch T112963-14
827 Solaris/SunOS 5.9_x86 patch T113986-10
828 Solaris/SunOS 5.8_sparc patch T109147-29
829 Solaris/SunOS 5.8_x86 patch T109148-29
830 --
831 All the above changes plus:
832 6850124 dlopen reports "No such file or directory" in spite of ENOMEM
833 when mmap fails in anon_map()
834 are incorporated in the following patches:
835 Solaris/SunOS 5.9_sparc patch TXXXXXX-XX
836 Solaris/SunOS 5.9_x86 patch TXXXXXX-XX
837 --

839 ----------
840 Solaris 10
841 ----------
842 Bugid Risk Synopsis
843 ==
844 5044797 ld.so.1: secure directory testing is being skipped during filtee
845 processing
846 4963676 Remove remaining static libraries
847 5021541 unnecessary PT_SUNWBSS segment may be created
848 5031495 elfdump complains about bad symbol entries in core files
849 5012172 Need error when creating shared object with .o compiled
850 -xarch=v9 -xcode=abs44
851 4994738 rd_plt_resolution() resolves ebx-relative PLT entries incorrectly

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 14

852 5023493 ld -m output with patch 109147-25 missing .o information
853 --
854 All the above changes are incorporated in the following patches:
855 Solaris/SunOS 5.9_sparc patch T112963-15
856 Solaris/SunOS 5.9_x86 patch T113986-11
857 Solaris/SunOS 5.8_sparc patch T109147-30
858 Solaris/SunOS 5.8_x86 patch T109148-30
859 --
860 5071614 109147-29 & -30 break the build of on28-patch on Solaris 8 2/04
861 5029830 crle: provide for optional alternative dependencies.
862 5034652 ld.so.1 should save, and print, more error messages
863 5036561 ld.so.1 outputs non-fatal fatal message about auxiliary filter libraries
864 5042713 4866170 broke ld.so’s ::setenv
865 5047082 ld can core dump on bad gcc objects
866 5047612 ld.so.1: secure pathname verification is flawed with filter use
867 5047235 elfdump can core dump printing PT_INTERP section
868 4798376 nits in demo code
869 5041446 gelf_update_*() functions inconsistently return NULL or 0
870 5032364 M_ID_TLSBSS and M_ID_UNKNOWN have the same value
871 4707030 Empty LD_PRELOAD_64 doesn’t override LD_PRELOAD
872 4968618 symbolic linkage causes core dump
873 5062313 dladdr() can cause deadlock in MT apps.
874 5056867 $ISALIST/$HWCAP expansion should be more flexible.
875 4918303 0@0.so.1 should not use compiler-supplied crt*.o files
876 5058415 whocalls cannot take more than 10 arguments
877 5067518 The fix for 4918303 breaks the build if a new work space is used.
878 --
879 All the above changes are incorporated in the following patches:
880 Solaris/SunOS 5.9_sparc patch T112963-16
881 Solaris/SunOS 5.9_x86 patch T113986-12
882 Solaris/SunOS 5.8_sparc patch T109147-31
883 Solaris/SunOS 5.8_x86 patch T109148-31
884 --
885 5013759 *file* should report hardware/software capabilities (link-editor
886 components only)
887 5063580 libldstab: file /tmp/posto..: .stab[.index|.sbfocus] found with no
888 matching stri
889 5076838 elfdump(1) is built with a CTF section (the wrong one)
890 5080344 Hardware capabilities are not enforced for a.out
891 5079061 RTLD_DEFAULT can be expensive
892 PSARC/2004/747 New dlsym(3c) Handle - RTLD_PROBE
893 5064973 allow normal relocs against TLS symbols for some sections
894 5085792 LD_XXXX_64 should override LD_XXXX
895 5096272 every executable or library has a .SUNW_dof section
896 5094135 Bloomberg wants a faster ldd.
897 5086352 libld.so.3 should be built with a .SUNW_ctf ELF section, ready for CR
898 5098205 elfdump gives wrong section name for the global offset table
899 5092414 Linker patch 109147-29 makes Broadvison One-To-One server v4.1
900 installation fail
901 5080256 dump(1) doesn’t list ELF hardware capabilities
902 5097347 recursive read lock in gelf_getsym()
903 --
904 All the above changes are incorporated in the following patches:
905 Solaris/SunOS 5.9_sparc patch T112963-17
906 Solaris/SunOS 5.9_x86 patch T113986-13
907 Solaris/SunOS 5.8_sparc patch T109147-32
908 Solaris/SunOS 5.8_x86 patch T109148-32
909 --
910 5106206 ld.so.1 fail to run a Solaris9 program that has libc linked with
911 -z lazyload
912 5102601 ON should deliver a 64-bit operating system for Opteron systems
913 (link-editor components only)
914 6173852 enable link_auditing technology for amd64
915 6174599 linker does not create .eh_frame_hdr sections for eh_frame sections
916 with SHF_LINK_ORDER
917 6175609 amd64 run-time linker has a corrupted note section

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 15

918 6175843 amd64 rdb_demo files not installed
919 6182293 ld.so.1 can repeatedly relocate object .plts (RTLD_NOW).
920 6183645 ld core dumps when automounter fails
921 6178667 ldd list unexpected (file not found) in x86 environment.
922 6181928 Need new reloc types R_AMD64_GOTOFF64 and R_AMD64_GOTPC32
923 6182884 AMD64: ld coredumps when building a shared library
924 6173559 The ld may set incorrect value for sh_addralign under some conditions.
925 5105601 ld.so.1 gets a little too enthusiastic with interposition
926 6189384 ld.so.1 should accommodate a files dev/inode change (libc loopback mnt)
927 6177838 AMD64: linker cannot resolve PLT for 32-bit a.out(s) on amd64-S2 kernel
928 6190863 sparc disassembly code should be removed from rdb_demo
929 6191488 unwind eh_frame_hdr needs corrected encoding value
930 6192490 moe(1) returns /lib/libc.so.1 for optimal expansion of libc HWCAP
931 libraries
932 6192164 AMD64: introduce dlamd64getunwind interface
933 PSARC/2004/747 libc::dlamd64getunwind()
934 6195030 libdl has bad version name
935 6195521 64-bit moe(1) missed the train
936 6198358 AMD64: bad eh_frame_hdr data when C and C++ mixed in a.out
937 6204123 ld.so.1: symbol lookup fails even after lazy loading fallback
938 6207495 UNIX98/UNIX03 vsx namespace violation DYNL.hdr/misc/dlfcn/T.dlfcn
939 14 Failed
940 6217285 ctfmerge crashed during full onnv build
941 --

943 -------------------------------------
944 Solaris 10 106 (1st Q-update - s10u1)
945 -------------------------------------
946 Bugid Risk Synopsis
947 ==
948 6209350 Do not include signature section from dynamic dependency library into
949 relocatable object
950 6212797 The binary compiled on SunOS4.x doesn’t run on Solaris8 with Patch
951 109147-31
952 --
953 All the above changes are incorporated in the following patches:
954 Solaris/SunOS 5.9_sparc patch T112963-18
955 Solaris/SunOS 5.9_x86 patch T113986-14
956 Solaris/SunOS 5.8_sparc patch T109147-33
957 Solaris/SunOS 5.8_x86 patch T109148-33
958 --
959 6219538 112963-17: linker patch causes binary to dump core
960 --
961 All the above changes are incorporated in the following patches:
962 Solaris/SunOS 5.10_sparc patch T117461-01
963 Solaris/SunOS 5.10_x86 patch T118345-01
964 Solaris/SunOS 5.9_sparc patch T112963-19
965 Solaris/SunOS 5.9_x86 patch T113986-15
966 Solaris/SunOS 5.8_sparc patch T109147-34
967 Solaris/SunOS 5.8_x86 patch T109148-34
968 --
969 6257177 incremental builds of usr/src/cmd/sgs can fail...
970 6219651 AMD64: Linker does not issue error for out of range R_AMD64_PC32
971 --
972 All the above changes are incorporated in the following patches:
973 Solaris/SunOS 5.10_sparc patch T117461-02
974 Solaris/SunOS 5.10_x86 patch T118345-02
975 Solaris/SunOS 5.9_sparc patch T112963-20
976 Solaris/SunOS 5.9_x86 patch T113986-16
977 Solaris/SunOS 5.8_sparc patch T109147-35
978 Solaris/SunOS 5.8_x86 patch T109148-35
979 NOTE: The fix for 6219651 is only applicable for 5.10_x86 platform.
980 --
981 5080443 lazy loading failure doesn’t clean up after itself (D)
982 6226206 ld.so.1 failure when processing single segment hwcap filtee
983 6228472 ld.so.1: link-map control list stacking can loose objects

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 16

984 6235000 random packages not getting installed in snv_09 and snv_10 -
985 rtld/common/malloc.c Assertion
986 6219317 Large page support is needed for mapping executables, libraries and
987 files (link-editor components only)
988 6244897 ld.so.1 can’t run apps from commandline
989 6251798 moe(1) returns an internal assertion failure message in some
990 circumstances
991 6251722 ld fails silently with exit 1 status when -z ignore passed
992 6254364 ld won’t build libgenunix.so with absolute relocations
993 6215444 ld.so.1 caches "not there" lazy libraries, foils svc.startd(1M)’s logic
994 6222525 dlsym(3C) trusts caller(), which may return wrong results with tail call
995 optimization
996 6241995 warnings in sgs should be fixed (link-editor components only)
997 6258834 direct binding availability should be verified at runtime
998 6260361 lari shouldn’t count a.out non-zero undefined entries as interesting
999 6260780 ldd doesn’t recognize LD_NOAUXFLTR

1000 6266261 Add ld(1) -Bnodirect support (D)
1001 6261990 invalid e_flags error could be a little more friendly
1002 6261803 lari(1) should find more events uninteresting (D)
1003 6267352 libld_malloc provides inadequate alignment
1004 6268693 SHN_SUNW_IGNORE symbols should be allowed to be mulitiply defined
1005 6262789 Infosys wants a faster linker
1006 --
1007 All the above changes are incorporated in the following patches:
1008 Solaris/SunOS 5.10_sparc patch T117461-03
1009 Solaris/SunOS 5.10_x86 patch T118345-03
1010 Solaris/SunOS 5.9_sparc patch T112963-21
1011 Solaris/SunOS 5.9_x86 patch T113986-17
1012 Solaris/SunOS 5.8_sparc patch T109147-36
1013 Solaris/SunOS 5.8_x86 patch T109148-36
1014 --
1015 6283601 The usr/src/cmd/sgs/packages/common/copyright contains old information
1016 legally problematic
1017 6276905 dlinfo gives inconsistent results (relative vs absolute linkname) (D)
1018 PSARC/2005/357 dlinfo(3c) RTLD_DI_ARGSINFO
1019 6284941 excessive link times with many groups/sections
1020 6280467 dlclose() unmaps shared library before library’s _fini() has finished
1021 6291547 ld.so mishandles LD_AUDIT causing security problems.
1022 --
1023 All the above changes are incorporated in the following patches:
1024 Solaris/SunOS 5.10_sparc patch T117461-04
1025 Solaris/SunOS 5.10_x86 patch T118345-04
1026 Solaris/SunOS 5.9_sparc patch T112963-22
1027 Solaris/SunOS 5.9_x86 patch T113986-18
1028 Solaris/SunOS 5.8_sparc patch T109147-37
1029 Solaris/SunOS 5.8_x86 patch T109148-37
1030 --
1031 6295971 UNIX98/UNIX03 *vsx* DYNL.hdr/misc/dlfcn/T.dlfcn 14 fails, auxv.h syntax
1032 error
1033 6299525 .init order failure when processing cycles
1034 6273855 gcc and sgs/crle don’t get along
1035 6273864 gcc and sgs/libld don’t get along
1036 6273875 gcc and sgs/rtld don’t get along
1037 6272563 gcc and amd64/krtld/doreloc.c don’t get along
1038 6290157 gcc and sgs/librtld_db/rdb_demo don’t get along
1039 6301218 Matlab dumps core on startup when running on 112963-22 (D)
1040 --
1041 All the above changes are incorporated in the following patches:
1042 Solaris/SunOS 5.10_sparc patch T117461-06
1043 Solaris/SunOS 5.10_x86 patch T118345-08
1044 Solaris/SunOS 5.9_sparc patch T112963-23
1045 Solaris/SunOS 5.9_x86 patch T113986-19
1046 Solaris/SunOS 5.8_sparc patch T109147-38
1047 Solaris/SunOS 5.8_x86 patch T109148-38
1048 --
1049 6314115 Checkpoint refuses to start, crashes on start, after application of

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 17

1050 linker patch 112963-22
1051 --
1052 All the above changes are incorporated in the following patches:
1053 Solaris/SunOS 5.9_sparc patch T112963-24
1054 Solaris/SunOS 5.9_x86 patch T113986-20
1055 Solaris/SunOS 5.8_sparc patch T109147-39
1056 Solaris/SunOS 5.8_x86 patch T109148-39
1057 --
1058 6318306 a dlsym() from a filter should be redirected to an associated filtee
1059 6318401 mis-aligned TLS variable
1060 6324019 ld.so.1: malloc alignment is insufficient for new compilers
1061 6324589 psh coredumps on x86 machines on snv_23
1062 6236594 AMD64: Linker needs to handle the new .lbss section (D)
1063 PSARC 2005/514 AMD64 - large section support
1064 6314743 Linker: incorrect resolution for R_AMD64_GOTPC32
1065 6311865 Linker: x86 medium model; invalid ELF program header
1066 --
1067 All the above changes are incorporated in the following patches:
1068 Solaris/SunOS 5.10_sparc patch T117461-07
1069 Solaris/SunOS 5.10_x86 patch T118345-12
1070 --
1071 6309061 link_audit should use __asm__ with gcc
1072 6310736 gcc and sgs/libld don’t get along on SPARC
1073 6329796 Memory leak with iconv_open/iconv_close with patch 109147-33
1074 6332983 s9 linker patches 112963-24/113986-20 causing cluster machines not
1075 to boot
1076 --
1077 All the above changes are incorporated in the following patches:
1078 Solaris/SunOS 5.10_sparc patch T117461-08
1079 Solaris/SunOS 5.10_x86 patch T121208-02
1080 Solaris/SunOS 5.9_sparc patch T112963-25
1081 Solaris/SunOS 5.9_x86 patch T113986-21
1082 Solaris/SunOS 5.8_sparc patch T109147-40
1083 Solaris/SunOS 5.8_x86 patch T109148-40
1084 --
1085 6445311 The sparc S8/S9/S10 linker patches which include the fix for the
1086 CR6222525 are hit by the CR6439613.
1087 --
1088 All the above changes are incorporated in the following patches:
1089 Solaris/SunOS 5.9_sparc patch T112963-26
1090 Solaris/SunOS 5.8_sparc patch T109147-41
1091 --

1093 -------------------------------------
1094 Solaris 10 807 (4th Q-update - s10u4)
1095 -------------------------------------
1096 Bugid Risk Synopsis
1097 ==
1098 6487273 ld.so.1 may open arbitrary locale files when relative path is built
1099 from locale environment vars
1100 6487284 ld.so.1: buffer overflow in doprf() function
1101 --
1102 All the above changes are incorporated in the following patches:
1103 Solaris/SunOS 5.10_sparc patch T124922-01
1104 Solaris/SunOS 5.10_x86 patch T124923-01
1105 Solaris/SunOS 5.9_sparc patch T112963-27
1106 Solaris/SunOS 5.9_x86 patch T113986-22
1107 Solaris/SunOS 5.8_sparc patch T109147-42
1108 Solaris/SunOS 5.8_x86 patch T109148-41
1109 --
1110 6477132 ld.so.1: memory leak when running set*id application
1111 --
1112 All the above changes are incorporated in the following patches:
1113 Solaris/SunOS 5.10_sparc patch T124922-02
1114 Solaris/SunOS 5.10_x86 patch T124923-02
1115 Solaris/SunOS 5.9_sparc patch T112963-30

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 18

1116 Solaris/SunOS 5.9_x86 patch T113986-24
1117 --
1118 6340814 ld.so.1 core dump with HWCAP relocatable object + updated statistics
1119 6307274 crle bug with LD_LIBRARY_PATH
1120 6317969 elfheader limited to 65535 segments (link-editor components only)
1121 6350027 ld.so.1 aborts with assertion failed on amd64
1122 6362044 ld(1) inconsistencies with LD_DEBUG=-Dunused and -zignore
1123 6362047 ld.so.1 dumps core when combining HWCAP and LD_PROFILE
1124 6304206 runtime linker may respect LANG and LC_MESSAGE more than LC_ALL
1125 6363495 Catchup required with Intel relocations
1126 6326497 ld.so not properly processing LD_LIBRARY_PATH ending in :
1127 6307146 mcs dumps core when appending null string to comment section
1128 6371877 LD_PROFILE_64 with gprof does not produce correct results on amd64
1129 6372082 ld -r erroneously creates .got section on i386
1130 6201866 amd64: linker symbol elimination is broken
1131 6372620 printstack() segfaults when called from static function (D)
1132 6380470 32-bit ld(1) incorrectly builds 64-bit relocatable objects
1133 6391407 Insufficient alignment of 32-bit object in archive makes ld segfault
1134 (libelf component only) (D)
1135 6316708 LD_DEBUG should provide a means of identifying/isolating individual
1136 link-map lists (P)
1137 6280209 elfdump cores on memory model 0x3
1138 6197234 elfdump and dump don’t handle 64-bit symbols correctly
1139 6398893 Extended section processing needs some work
1140 6397256 ldd dumps core in elf_fix_name
1141 6327926 ld does not set etext symbol correctly for AMD64 medium model (D)
1142 6390410 64-bit LD_PROFILE can fail: relocation error when binding profile plt
1143 6382945 AMD64-GCC: dbx: internal error: dwarf reference attribute out of bounds
1144 6262333 init section of .so dlopened from audit interface not being called
1145 6409613 elf_outsync() should fsync()
1146 6426048 C++ exceptions broken in Nevada for amd64
1147 6429418 ld.so.1: need work-around for Nvidia drivers use of static TLS
1148 6429504 crle(1) shows wrong defaults for non-existent 64-bit config file
1149 6431835 data corruption on x64 in 64-bit mode while LD_PROFILE is in effect
1150 6423051 static TLS support within the link-editors needs a major face lift (D)
1151 6388946 attempting to dlopen a .o file mislabeled as .so fails
1152 6446740 allow mapfile symbol definitions to create backing storage (D)
1153 4986360 linker crash on exec of .so (as opposed to a.out) -- error preferred
1154 instead
1155 6229145 ld: initarray/finiarray processing occurs after got size is determined
1156 6324924 the linker should warn if there’s a .init section but not _init
1157 6424132 elfdump inserts extra whitespace in bitmap value display
1158 6449485 ld(1) creates misaligned TLS in binary compiled with -xpg
1159 6424550 Write to unallocated (wua) errors when libraries are built with
1160 -z lazyload
1161 6464235 executing the 64-bit ld(1) should be easy (D)
1162 6465623 need a way of building unix without an interpreter
1163 6467925 ld: section deletion (-z ignore) requires improvement
1164 6357230 specfiles should be nuked (link-editor components only)
1165 --
1166 All the above changes are incorporated in the following patches:
1167 Solaris/SunOS 5.10_sparc patch T124922-03
1168 Solaris/SunOS 5.10_x86 patch T124923-03

1170 These patches also include the framework changes for the following bug fixes.
1171 However, the associated feature has not been enabled in Solaris 10 or earlier
1172 releases:

1174 6174390 crle configuration files are inconsistent across platforms (D, P)
1175 6432984 ld(1) output file removal - change default behavior (D)
1176 PSARC/2006/353 ld(1) output file removal - change default behavior
1177 --

1179 -------------------------------------
1180 Solaris 10 508 (5th Q-update - s10u5)
1181 -------------------------------------

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 19

1182 Bugid Risk Synopsis
1183 ==
1184 6561987 data vac_conflict faults on lipthread libthread libs in s10.
1185 --
1186 All the above changes are incorporated in the following patches:
1187 Solaris/SunOS 5.10_sparc patch T127111-01
1188 Solaris/SunOS 5.10_x86 patch T127112-01
1189 --
1190 6501793 GOTOP relocation transition (optimization) fails with offsets > 2^32
1191 6532924 AMD64: Solaris 5.11 55b: SEGV after whocatches
1192 6551627 OGL: SIGSEGV when trying to use OpenGL pipeline with splash screen,
1193 Solaris/Nvidia only
1194 --
1195 All the above changes are incorporated in the following patches:
1196 Solaris/SunOS 5.10_sparc patch T127111-04
1197 Solaris/SunOS 5.10_x86 patch T127112-04
1198 --
1199 6479848 Enhancements to the linker support interface needed. (D)
1200 PSARC/2006/595 link-editor support library interface - ld_open()
1201 6521608 assertion failure in runtime linker related to auditing
1202 6494228 pclose() error when an audit library calls popen() and the main target
1203 is being run under ldd (D)
1204 6568745 segfault when using LD_DEBUG with bit_audit library when instrumenting
1205 mozilla (D)
1206 PSARC/2007/413 Add -zglobalaudit option to ld
1207 6602294 ps_pbrandname breaks apps linked directly against librtld_db
1208 --
1209 All the above changes are incorporated in the following patches:
1210 Solaris/SunOS 5.10_sparc patch T127111-07
1211 Solaris/SunOS 5.10_x86 patch T127112-07
1212 --

1214 -------------------------------------
1215 Solaris 10 908 (6th Q-update - s10u6)
1216 -------------------------------------
1217 Bugid Risk Synopsis
1218 ==
1219 6672544 elf_rtbndr must support non-ABI aligned stacks on amd64
1220 6668050 First trip through PLT does not preserve args in xmm registers
1221 --
1222 All the above changes are incorporated in the following patch:
1223 Solaris/SunOS 5.10_x86 patch T137138-01
1224 --

1226 -------------------------------------
1227 Solaris 10 409 (7th Q-update - s10u7)
1228 -------------------------------------
1229 Bugid Risk Synopsis
1230 ==
1231 6629404 ld with -z ignore doesn’t scale
1232 6606203 link editor ought to allow creation of >2gb sized objects (P)
1233 --
1234 All the above changes are incorporated in the following patches:
1235 Solaris/SunOS 5.10_sparc patch T139574-01
1236 Solaris/SunOS 5.10_x86 patch T139575-01
1237 --
1238 6746674 setuid applications do not find libraries any more because trusted
1239 directories behavior changed (D)
1240 --
1241 All the above changes are incorporated in the following patches:
1242 Solaris/SunOS 5.10_sparc patch T139574-02
1243 Solaris/SunOS 5.10_x86 patch T139575-02
1244 --
1245 6703683 Can’t build VirtualBox on Build 88 or 89
1246 6737579 process_req_lib() in libld consumes file descriptors
1247 6685125 ld/elfdump do not handle ZERO terminator .eh_frame amd64 unwind entry

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 20

1248 --
1249 All the above changes are incorporated in the following patches:
1250 Solaris/SunOS 5.10_sparc patch T139574-03
1251 Solaris/SunOS 5.10_x86 patch T139575-03
1252 --

1254 -------------------------------------
1255 Solaris 10 1009 (8th Q-update - s10u8)
1256 -------------------------------------
1257 Bugid Risk Synopsis
1258 ==
1259 6782597 32-bit ld.so.1 needs to accept objects with large inode number
1260 6805502 The addition of "inline" keywords to sgs code broke the lint
1261 verification in S10
1262 6807864 ld.so.1 is susceptible to a fatal dlsym()/setlocale() race
1263 --
1264 All the above changes are incorporated in the following patches:
1265 Solaris/SunOS 5.10_sparc patch T141692-01
1266 Solaris/SunOS 5.10_x86 patch T141693-01
1267 NOTE: The fix for 6805502 is only applicable to s10.
1268 --
1269 6826410 ld needs to sort sections using 32-bit sort keys
1270 --
1271 All the above changes are incorporated in the following patches:
1272 Solaris/SunOS 5.10_sparc patch T141771-01
1273 Solaris/SunOS 5.10_x86 patch T141772-01
1274 NOTE: The fix for 6826410 is also available for s9 in the following patches:
1275 Solaris/SunOS 5.9_sparc patch T112963-33
1276 Solaris/SunOS 5.9_x86 patch T113986-27
1277 --
1278 6568447 bcp is broken by 6551627
1279 6599700 librtld_db needs better plugin support
1280 6713830 mdb dumped core reading a gcore
1281 6756048 rd_loadobj_iter() should always invoke brand plugin callback
1282 6786744 32-bit dbx failed with unknown rtld_db.so error on snv_104
1283 --
1284 All the above changes are incorporated in the following patches:
1285 Solaris/SunOS 5.10_sparc patch T141444-06
1286 Solaris/SunOS 5.10_x86 patch T141445-06
1287 --

1289 --------------------------------------
1290 Solaris 10 1005 (9th Q-update - s10u9)
1291 --------------------------------------
1292 Bugid Risk Synopsis
1293 ==
1294 6850124 dlopen reports "No such file or directory" in spite of ENOMEM
1295 when mmap fails in anon_map()
1296 6826513 ldd gets confused by a crle(1) LD_PRELOAD setting
1297 6684577 ld should propagate SHF_LINK_ORDER flag to ET_REL objects
1298 6524709 executables using /usr/lib/libc.so.1 as the ELF interpreter dump core
1299 (link-editor components only)
1300 --
1301 All the above changes are incorporated in the following patches:
1302 Solaris/SunOS 5.10_sparc patch T143895-01
1303 Solaris/SunOS 5.10_x86 patch T143896-01
1304 --

1306 --
1307 Solaris 10 XXXX (10th Q-update - s10u10)
1308 --
1309 Bugid Risk Synopsis
1310 ==
1311 6478684 isainfo/cpuid reports pause instruction not supported on amd64
1312 PSARC/2010/089 Removal of AV_386_PAUSE and AV_386_MON
1313 --

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 21

1314 All the above changes are incorporated in the following patches:
1315 Solaris/SunOS 5.10_sparc patch TXXXXXX-XX
1316 Solaris/SunOS 5.10_x86 patch TXXXXXX-XX
1317 --

1319 --
1320 Solaris Nevada (OpenSolaris 2008.05, snv_86)
1321 --
1322 Bugid Risk Synopsis
1323 ==
1324 6409350 BrandZ project integration into Solaris (link-editor components only)
1325 6459189 UNIX03: *VSC* c99 compiler overwrites non-writable file
1326 6423746 add an option to relax the resolution of COMDAT relocs (D)
1327 4934427 runtime linker should load up static symbol names visible to
1328 dladdr() (D)
1329 PSARC 2006/526 SHT_SUNW_LDYNSYM - default local symbol addition
1330 6448719 sys/elf.h could be updated with additional machine and ABI types
1331 6336605 link-editors need to support R_*_SIZE relocations
1332 PSARC/2006/558 R_*_SIZE relocation support
1333 6475375 symbol search optimization to reduce rescans
1334 6475497 elfdump(1) is misreporting sh_link
1335 6482058 lari(1) could be faster, and handle per-symbol filters better
1336 6482974 defining virtual address of text segment can result in an invalid data
1337 segment
1338 6476734 crle(1m) "-l" as described fails system, crle cores trying to fix
1339 /a/var/ld/ld.config in failsafe
1340 6487499 link_audit "make clobber" creates and populates proto area
1341 6488141 ld(1) should detect attempt to reference 0-length .bss section
1342 6496718 restricted visibility symbol references should trigger archive
1343 extraction
1344 6515970 HWCAP processing doesn’t clean up fmap structure - browser fails to
1345 run java applet
1346 6494214 Refinements to symbolic binding, symbol declarations and
1347 interposition (D)
1348 PSARC/2006/714 ld(1) mapfile: symbol interpose definition
1349 6475344 DTrace needs ELF function and data symbols sorted by address (D)
1350 PSARC/2007/026 ELF symbol sort sections
1351 6518480 ld -melf_i386 doesn’t complain (D)
1352 6519951 bfu is just another word for exit today (RPATH -> RUNPATH conversion
1353 bites us) (D)
1354 6521504 ld: hardware capabilities processing from relocatables objects needs
1355 hardening.
1356 6518322 Some ELF utilities need updating for .SUNW_ldynsym section (D)
1357 PSARC/2007/074 -L option for nm(1) to display SHT_SUNW_LDYNSYM symbols
1358 6523787 dlopen() handle gets mistakenly orphaned - results in access to freed
1359 memory
1360 6531189 SEGV in dladdr()
1361 6527318 dlopen(name, RTLD_NOLOAD) returns handle for unloaded library
1362 6518359 extern mapfiles references to _init/_fini can create INIT/FINI
1363 addresses of 0
1364 6533587 ld.so.1: init/fini processing needs to compensate for interposer
1365 expectations
1366 6516118 Reserved space needed in ELF dynamic section and string table (D)
1367 PSARC/2007/127 Reserved space for editing ELF dynamic sections
1368 6535688 elfdump could be more robust in the face of Purify (D)
1369 6516665 The link-editors should be more resilient against gcc’s symbol
1370 versioning
1371 6541004 hwcap filter processing can leak memory
1372 5108874 elfdump SEGVs on bad object file
1373 6547441 Uninitialized variable causes ld.so.1 to crash on object cleanup
1374 6341667 elfdump should check alignments of ELF header elements
1375 6387860 elfdump cores, when processing linux built ELF file
1376 6198202 mcs -d dumps core
1377 6246083 elfdump should allow section index specification
1378 (numeric -N equivalent) (D)
1379 PSARC/2007/247 Add -I option to elfdump

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 22

1380 6556563 elfdump section overlap checking is too slow for large files
1381 5006034 need ?E mapfile feature extension (D)
1382 6565476 rtld symbol version check prevents GNU ld binary from running
1383 6567670 ld(1) symbol size/section size verification uncovers Haskell
1384 compiler inconsistency
1385 6530249 elfdump should handle ELF files with no section header table (D)
1386 PSARC/2007/395 Add -P option to elfdump
1387 6573641 ld.so.1 does not maintain parent relationship to a dlopen() caller.
1388 6577462 Additional improvements needed to handling of gcc’s symbol versioning
1389 6583742 ELF string conversion library needs to lose static writable buffers
1390 6589819 ld generated reference to __tls_get_addr() fails when resolving to a
1391 shared object reference
1392 6595139 various applications should export yy* global variables for libl
1393 PSARC/2007/474 new ldd(1) -w option
1394 6597841 gelf_getdyn() reads one too many dynamic entries
1395 6603313 dlclose() can fail to unload objects after fix for 6573641
1396 6234471 need a way to edit ELF objects (D)
1397 PSARC/2007/509 elfedit
1398 5035454 mixing -Kpic and -KPIC may cause SIGSEGV with -xarch=v9
1399 6473571 strip and mcs get confused and corrupt files when passed
1400 non-ELF arguments
1401 6253589 mcs has problems handling multiple SHT_NOTE sections
1402 6610591 do_reloc() should not require unused arguments
1403 6602451 new symbol visibilities required: EXPORTED, SINGLETON and ELIMINATE (D)
1404 PSARC/2007/559 new symbol visibilities - EXPORTED, SINGLETON, and
1405 ELIMINATE
1406 6570616 elfdump should display incorrectly aligned note section
1407 6614968 elfedit needs string table module (D)
1408 6620533 HWCAP filtering can leave uninitialized data behind - results in
1409 "rejected: Invalid argument"
1410 6617855 nodirect tag can be ignored when other syminfo tags are available
1411 (link-editor components only)
1412 6621066 Reduce need for new elfdump options with every section type (D)
1413 PSARC/2007/620 elfdump -T, and simplified matching
1414 6627765 soffice failure after integration of 6603313 - dangling GROUP pointer.
1415 6319025 SUNWbtool packaging issues in Nevada and S10u1.
1416 6626135 elfedit capabilities str->value mapping should come from
1417 usr/src/common/elfcap
1418 6642769 ld(1) -z combreloc should become default behavior (D)
1419 PSARC/2008/006 make ld(1) -z combreloc become default behavior
1420 6634436 XFFLAG should be updated. (link-editor components only)
1421 6492726 Merge SHF_MERGE|SHF_STRINGS input sections (D)
1422 4947191 OSNet should use direct bindings (link-editor components only)
1423 6654381 lazy loading fall-back needs optimizing
1424 6658385 ld core dumps when building Xorg on nv_82
1425 6516808 ld.so.1’s token expansion provides no escape for platforms that don’t
1426 report HWCAP
1427 6668534 Direct bindings can compromise function address comparisons from
1428 executables
1429 6667661 Direct bindings can compromise executables with insufficient copy
1430 relocation information
1431 6357282 ldd should recognize PARENT and EXTERN symbols (D)
1432 PSARC/2008/148 new ldd(1) -p option
1433 6672394 ldd(1) unused dependency processing is tricked by relocations errors
1434 --

1436 ---
1437 Solaris Nevada (OpenSolaris 2008.11, snv_101)
1438 ---
1439 Bugid Risk Synopsis
1440 ==
1441 6671255 link-editor should support cross linking (D)
1442 PSARC/2008/179 cross link-editor
1443 6674666 elfedit dyn:posflag1 needs option to locate element via NEEDED item
1444 6675591 elfwrap - wrap data in an ELF file (D,P)
1445 PSARC/2008/198 elfwrap - wrap data in an ELF file

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 23

1446 6678244 elfdump dynamic section sanity checking needs refinement
1447 6679212 sgs use of SCCS id for versioning is obstacle to mercurial migration
1448 6681761 lies, darn lies, and linker README files
1449 6509323 Need to disable the Multiple Files loading - same name, different
1450 directories (or its stat() use)
1451 6686889 ld.so.1 regression - bad pointer created with 6509323 integration
1452 6695681 ldd(1) crashes when run from a chrooted environment
1453 6516212 usr/src/cmd/sgs/libelf warlock targets should be fixed or abandoned
1454 6678310 using LD_AUDIT, ld.so.1 calls shared library’s .init before library is
1455 fully relocated (link-editor components only)
1456 6699594 The ld command has a problem handling ’protected’ mapfile keyword.
1457 6699131 elfdump should display core file notes (D)
1458 6702260 single threading .init/.fini sections breaks staroffice
1459 6703919 boot hangs intermittently on x86 with onnv daily.0430 and on
1460 6701798 ld can enter infinite loop processing bad mapfile
1461 6706401 direct binding copy relocation fallback is insufficient for ild
1462 generated objects
1463 6705846 multithreaded C++ application seems to get deadlocked in the dynamic
1464 linker code
1465 6686343 ldd(1) - unused search path diagnosis should be enabled
1466 6712292 ld.so.1 should fall back to an interposer for failed direct bindings
1467 6716350 usr/src/cmd/sgs should be linted by nightly builds
1468 6720509 usr/src/cmd/sgs/sgsdemangler should be removed
1469 6617475 gas creates erroneous FILE symbols [was: ld.so.1 is reported as
1470 false positive by wsdiff]
1471 6724311 dldump() mishandles R_AMD64_JUMP_SLOT relocations
1472 6724774 elfdump -n doesn’t print siginfo structure
1473 6728555 Fix for amd64 aw (6617475) breaks pure gcc builds
1474 6734598 ld(1) archive processing failure due to mismatched file descriptors (D)
1475 6735939 ld(1) discarded symbol relocations errors (Studio and GNU).
1476 6354160 Solaris linker includes more than one copy of code in binary when
1477 linking gnu object code
1478 6744003 ld(1) could provide better argument processing diagnostics (D)
1479 PSARC 2008/583 add gld options to ld(1)
1480 6749055 ld should generate GNU style VERSYM indexes for VERNEED records (D)
1481 PSARC/2008/603 ELF objects to adopt GNU-style Versym indexes
1482 6752728 link-editor can enter UNDEF symbols in symbol sort sections
1483 6756472 AOUT search path pruning (D)
1484 --

1486 ---
1487 Solaris Nevada (OpenSolaris 2009.06, snv_111)
1488 ---
1489 Bugid Risk Synopsis
1490 ==

1492 6754965 introduce the SF1_SUNW_ADDR32 bit in software capabilities (D)
1493 (link-editor components only)
1494 PSARC/2008/622 32-bit Address Restriction Software Capabilities Flag
1495 6756953 customer requests that DT_CONFIG strings be honored for secure apps (D)
1496 6765299 ld --version-script option not compatible with GNU ld (D)
1497 6748160 problem with -zrescan (D)
1498 PSARC/2008/651 New ld archive rescan options
1499 6763342 sloppy relocations need to get sloppier
1500 6736890 PT_SUNWBSS should be disabled (D)
1501 PSARC/2008/715 PT_SUNWBSS removal
1502 6772661 ldd/lddstub/ld.so.1 dump core in current nightly while processing
1503 libsoftcrypto_hwcap.so.1
1504 6765931 mcs generates unlink(NULL) system calls
1505 6775062 remove /usr/lib/libldstab.so (D)
1506 6782977 ld segfaults after support lib version error sends bad args to vprintf()
1507 6773695 ld -z nopartial can break non-pic objects
1508 6778453 RTLD_GROUP prevents use of application defined malloc
1509 6789925 64-bit applications with SF1_SUNW_ADDR32 require non-default starting
1510 address
1511 6792906 ld -z nopartial fix breaks TLS

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 24

1512 6686372 ld.so.1 should use mmapobj(2)
1513 6726108 dlopen() performance could be improved.
1514 6792836 ld is slow when processing GNU linkonce sections
1515 6797468 ld.so.1: orphaned handles aren’t processed correctly
1516 6798676 ld.so.1: enters infinite loop with realloc/defragmentation logic
1517 6237063 request extension to dl* family to provide segment bounds
1518 information (D)
1519 PSARC/2009/054 dlinfo(3c) - segment mapping retrieval
1520 6800388 shstrtab can be sized incorrectly when -z ignore is used
1521 6805009 ld.so.1: link map control list tear down leaves dangling pointer -
1522 pfinstall does it again.
1523 6807050 GNU linkonce sections can create duplicate and incompatible
1524 eh_frame FDE entries
1525 --

1527 --------------
1528 Solaris Nevada
1529 --------------
1530 Bugid Risk Synopsis
1531 ==
1532 6813909 generalize eh_frame support to non-amd64 platforms
1533 6801536 ld: mapfile processing oddities unveiled through mmapobj(2) observations
1534 6802452 libelf shouldn’t use MS_SYNC
1535 6818012 nm tries to modify readonly segment and dumps core
1536 6821646 xVM dom0 doesn’t boot on daily.0324 and beyond
1537 6822828 librtld_db can return RD_ERR before RD_NOMAPS, which compromises dbx
1538 expectations.
1539 6821619 Solaris linkers need systematic approach to ELF OSABI (D)
1540 PSARC/2009/196 ELF objects to set OSABI / elfdump -O option
1541 6827468 6801536 breaks ’ld -s’ if there are weak/strong symbol pairs
1542 6715578 AOUT (BCP) symbol lookup can be compromised with lazy loading.
1543 6752883 ld.so.1 error message should be buffered (not sent to stderr).
1544 6577982 ld.so.1 calls getpid() before it should when any LD_* are set
1545 6831285 linker LD_DEBUG support needs improvements (D)
1546 6806791 filter builds could be optimized (link-editor components only)
1547 6823371 calloc() uses suboptimal memset() causing 15% regression in SpecCPU2006
1548 gcc code (link-editor components only)
1549 6831308 ld.so.1: symbol rescanning does a little too much work
1550 6837777 ld ordered section code uses too much memory and works too hard
1551 6841199 Undo 10 year old workaround and use 64-bit ld on 32-bit objects
1552 6784790 ld should examine archives to determine output object class/machine (D)
1553 PSARC/2009/305 ld -32 option
1554 6849998 remove undocumented mapfile $SPECVERS and $NEED options
1555 6851224 elf_getshnum() and elf_getshstrndx() incompatible with 2002 ELF gABI
1556 agreement (D)
1557 PSARC/2009/363 replace elf_getphnum, elf_getshnum, and elf_getshstrndx
1558 6853809 ld.so.1: rescan fallback optimization is invalid
1559 6854158 ld.so.1: interposition can be skipped because of incorrect
1560 caller/destination validation
1561 6862967 rd_loadobj_iter() failing for core files
1562 6856173 streams core dumps when compiled in 64bit with a very large static
1563 array size
1564 6834197 ld pukes when given an empty plate
1565 6516644 per-symbol filtering shouldn’t be allowed in executables
1566 6878605 ld should accept ’%’ syntax when matching input SHT_PROGBITS sections
1567 6850768 ld option to autogenerate wrappers/interposers similar to GNU ld
1568 --wrap (D)
1569 PSARC/2009/493 ld -z wrap option
1570 6888489 Null environment variables are not overriding crle(1) replaceable
1571 environment variables.
1572 6885456 Need to implement GNU-ld behavior in construction of .init/.fini
1573 sections
1574 6900241 ld should track SHT_GROUP sections by symbol name, not section name
1575 6901773 Special handling of STT_SECTION group signature symbol for GNU objects
1576 6901895 Failing asserts in ld update_osym() trying to build gcc 4.5 develpment
1577 head

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 25

1578 6909523 core dump when run "LD_DEBUG=help ls" in non-English locale
1579 6903688 mdb(1) can’t resolve certain symbols in solaris10-branded processes
1580 from the global zone
1581 6923449 elfdump misinterprets _init/_fini symbols in dynamic section test
1582 6914728 Add dl_iterate_phdr() function to ld.so.1 (D)
1583 PSARC/2010/015 dl_iterate_phdr
1584 6916788 ld version 2 mapfile syntax (D)
1585 PSARC/2009/688 Human readable and extensible ld mapfile syntax
1586 6929607 ld generates incorrect VERDEF entries for ET_REL output objects
1587 6924224 linker should ignore SUNW_dof when calculating the elf checksum
1588 6918143 symbol capabilities (D)
1589 PSARC/2010/022 Linker-editors: Symbol Capabilities
1590 6910387 .tdata and .tbss separation invalidates TLS program header information
1591 6934123 elfdump -d coredumps on PA-RISC elf
1592 6931044 ld should not allow SHT_PROGBITS .eh_frame sections on amd64 (D)
1593 6931056 pvs -r output can include empty versions in output
1594 6938628 ld.so.1 should produce diagnostics for all dl*() entry points
1595 6938111 nm ‘No symbol table data’ message goes to stdout
1596 6941727 ld relocation cache memory use is excessive
1597 6932220 ld -z allextract skips objects that lack global symbols
1598 6943772 Testing for a symbols existence with RTLD_PROBE is compromised by
1599 RTLD_BIND_NOW
1600 PSARC/2010/XXX Deferred symbol references
1601 6943432 dlsym(RTLD_PROBE) should only bind to symbol definitions
1602 6668759 an external method for determining whether an ELF dependency is optional
1603 6954032 Support library with ld_open and -z allextract in snv_139 do not mix
1604 6949596 wrong section alignment generated in joint compilation with shared
1605 library
1606 6961755 ld.so.1’s -e arguments should take precedence over environment
1607 variables. (D)
1608 6748925 moe returns wrong hwcap library in some circumstances
1609 6916796 OSnet mapfiles should use version 2 link-editor syntax
1610 6964517 OSnet mapfiles should use version 2 link-editor syntax (2nd pass)
1611 6948720 SHT_INIT_ARRAY etc. section names don’t follow ELF gABI (D)
1612 6962343 sgsmsg should use mkstemp() for temporary file creation
1613 6965723 libsoftcrypto symbol capabilities rely on compiler generated
1614 capabilities - gcc failure (link-editor components only)
1615 6952219 ld support for archives larger than 2 GB (D, P)
1616 PSARC/2010/224 Support for archives larger than 2 GB
1617 6956152 dlclose() from an auditor can be fatal. Preinit/activity events should
1618 be more flexible. (D)
1619 6971440 moe can core dump while processing libc.
1620 6972234 sgs demo’s could use some cleanup
1621 6935867 .dynamic could be readonly in sharable objects
1622 6975290 ld mishandles GOT relocation against local ABS symbol
1623 6972860 ld should provide user guidance to improve objects (D)
1624 PSARC/2010/312 Link-editor guidance
1625 --

1627 --------------
1628 Illumos
1629 --------------
1630 Bugid Risk Synopsis
1631 ==

1633 308 ld may misalign sections only preceded by empty sections
1634 1301 ld crashes with ’-z ignore’ due to a null data descriptor
1635 1626 libld may accidentally return success while failing
1636 2413 %ymm* need to be preserved on way through PLT
1637 3210 ld should tolerate SHT_PROGBITS for .eh_frame sections on amd64
1638 3228 Want -zassert-deflib for ld
1639 3230 ld.so.1 should check default paths for DT_DEPAUDIT
1640 3260 linker is insufficiently careful with strtok
1641 3261 linker should ignore unknown hardware capabilities
1642 3265 link-editor builds bogus .eh_frame_hdr on ia32
1643 3453 GNU comdat redirection does exactly the wrong thing

new/usr/src/cmd/sgs/packages/common/SUNWonld-README 26

1644 3439 discarded sections shouldn’t end up on output lists
1645 3436 relocatable objects also need sloppy relocation
1646 3451 archive libraries with no symbols shouldn’t require a string table
1647 3616 SHF_GROUP sections should not be discarded via other COMDAT mechanisms
1648 3709 need sloppy relocation for GNU .debug_macro
1649 3722 link-editor is over restrictive of R_AMD64_32 addends
1650 3926 multiple extern map file definitions corrupt symbol table entry
1651 3999 libld extended section handling is broken
1652 4003 dldump() can’t deal with extended sections
1653 4227 ld --library-path is translated to -l-path, not -L
1654 4270 ld(1) argument error reporting is still pretty bad
1655 4383 libelf can’t write extended sections when ELF_F_LAYOUT
1656 4959 completely discarded merged string sections will corrupt output objects
1657 4996 rtld _init race leads to incorrect symbol values
1658 5688 ELF tools need to be more careful with dwarf data
1659 6098 ld(1) should not require symbols which identify group sections be global
1660 6252 ld should merge function/data-sections in the same manner as GNU ld
1661 7323 ld(1) -zignore can erroneously discard init and fini arrays as unreferen
1662 7594 ld -zaslr should accept Solaris-compatible values
1663 8616 ld has trouble parsing -z options specified with -Wl
1664 10267 ld and GCC disagree about i386 local dynamic TLS
1665 10366 ld(1) should support GNU-style linker sets
1666 #endif /* ! codereview */

new/usr/src/pkg/manifests/system-test-elftest.mf 1

**
 2618 Mon Feb 11 00:23:21 2019
new/usr/src/pkg/manifests/system-test-elftest.mf
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2018, Richard Lowe.
14 #

16 set name=pkg.fmri value=pkg:/system/test/elftest@$(PKGVERS)
17 set name=pkg.description value="ELF Unit Tests"
18 set name=pkg.summary value="ELF Test Suite"
19 set name=info.classification \
20 value=org.opensolaris.category.2008:Development/System
21 set name=variant.arch value=$(ARCH)
22 dir path=opt/elf-tests
23 dir path=opt/elf-tests/bin
24 dir path=opt/elf-tests/runfiles
25 dir path=opt/elf-tests/tests
26 dir path=opt/elf-tests/tests/assert-deflib
27 dir path=opt/elf-tests/tests/linker-sets
28 dir path=opt/elf-tests/tests/tls
29 dir path=opt/elf-tests/tests/tls/x64
30 dir path=opt/elf-tests/tests/tls/x64/ie
31 dir path=opt/elf-tests/tests/tls/x86
32 dir path=opt/elf-tests/tests/tls/x86/ld
33 file path=opt/elf-tests/bin/elftest mode=0555
34 file path=opt/elf-tests/runfiles/default.run mode=0444
35 file path=opt/elf-tests/tests/assert-deflib/link.c mode=0444
36 file path=opt/elf-tests/tests/assert-deflib/test-deflib mode=0555
37 file path=opt/elf-tests/tests/linker-sets/in-use-check mode=0555
38 file path=opt/elf-tests/tests/linker-sets/simple mode=0555
39 file path=opt/elf-tests/tests/linker-sets/simple-src.c mode=0444
40 file path=opt/elf-tests/tests/linker-sets/simple.out mode=0444
41 file path=opt/elf-tests/tests/tls/x64/ie/Makefile.test mode=0444
42 file path=opt/elf-tests/tests/tls/x64/ie/style1-func-with-r12.s mode=0444
43 file path=opt/elf-tests/tests/tls/x64/ie/style1-func-with-r13.s mode=0444
44 file path=opt/elf-tests/tests/tls/x64/ie/style1-func.s mode=0444
45 file path=opt/elf-tests/tests/tls/x64/ie/style1-main.s mode=0444
46 file path=opt/elf-tests/tests/tls/x64/ie/style2-with-badness.s mode=0444
47 file path=opt/elf-tests/tests/tls/x64/ie/style2-with-r12.s mode=0444
48 file path=opt/elf-tests/tests/tls/x64/ie/style2-with-r13.s mode=0444
49 file path=opt/elf-tests/tests/tls/x64/ie/style2.s mode=0444
50 file path=opt/elf-tests/tests/tls/x64/ie/x64-ie-test mode=0555
51 file path=opt/elf-tests/tests/tls/x86/ld/Makefile.test mode=0444
52 file path=opt/elf-tests/tests/tls/x86/ld/half-ldm.s mode=0444
53 file path=opt/elf-tests/tests/tls/x86/ld/x86-ld-test mode=0555
54 license lic_CDDL license=lic_CDDL
55 depend fmri=developer/linker type=require
56 depend fmri=developer/object-file type=require
57 depend fmri=system/test/testrunner type=require
58 #endif /* ! codereview */

new/usr/src/test/Makefile 1

**
 687 Mon Feb 11 00:23:21 2019
new/usr/src/test/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
15 #

17 .PARALLEL: $(SUBDIRS)

19 SUBDIRS = \
20 crypto-tests \
21 elf-tests \
22 libc-tests \
23 os-tests \
24 smbclient-tests \
25 test-runner \
26 util-tests \
27 zfs-tests
19 SUBDIRS = libc-tests crypto-tests os-tests test-runner util-tests zfs-tests \
20 smbclient-tests

29 include Makefile.com

new/usr/src/test/elf-tests/Makefile 1

**
 559 Mon Feb 11 00:23:21 2019
new/usr/src/test/elf-tests/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
14 #

16 .PARALLEL: $(SUBDIRS)

18 SUBDIRS = cmd doc runfiles tests

20 include $(SRC)/test/Makefile.com
21 #endif /* ! codereview */

new/usr/src/test/elf-tests/cmd/Makefile 1

**
 544 Mon Feb 11 00:23:22 2019
new/usr/src/test/elf-tests/cmd/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
14 #

16 .PARALLEL: $(SUBDIRS)

18 SUBDIRS = scripts

20 include $(SRC)/test/Makefile.com
21 #endif /* ! codereview */

new/usr/src/test/elf-tests/cmd/scripts/Makefile 1

**
 852 Mon Feb 11 00:23:22 2019
new/usr/src/test/elf-tests/cmd/scripts/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
15 #

17 include $(SRC)/Makefile.master
18 include $(SRC)/test/Makefile.com

20 ROOTOPTPKG = $(ROOT)/opt/elf-tests
21 ROOTBIN = $(ROOTOPTPKG)/bin

23 PROGS = elftest

25 CMDS = $(PROGS:%=$(ROOTBIN)/%)
26 $(CMDS) := FILEMODE = 0555

28 all lint clean clobber:

30 install: $(CMDS)

32 $(CMDS): $(ROOTBIN)

34 $(ROOTBIN):
35 $(INS.dir)

37 $(ROOTBIN)/%: %.ksh
38 $(INS.rename)
39 #endif /* ! codereview */

new/usr/src/test/elf-tests/cmd/scripts/elftest.ksh 1

**
 990 Mon Feb 11 00:23:22 2019
new/usr/src/test/elf-tests/cmd/scripts/elftest.ksh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/usr/bin/ksh

3 #
4 # This file and its contents are supplied under the terms of the
5 # Common Development and Distribution License ("CDDL"), version 1.0.
6 # You may only use this file in accordance with the terms of version
7 # 1.0 of the CDDL.
8 #
9 # A full copy of the text of the CDDL should have accompanied this

10 # source. A copy of the CDDL is also available via the Internet at
11 # http://www.illumos.org/license/CDDL.
12 #

14 #
15 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
16 #

18 export ELF_TESTS="/opt/elf-tests"
19 runner="/opt/test-runner/bin/run"

21 function fail
22 {
23 echo $1
24 exit ${2:-1}
25 }

27 function find_runfile
28 {
29 typeset distro=default

31 [[-n $distro]] && echo $ELF_TESTS/runfiles/$distro.run
32 }

34 while getopts c: c; do
35 case $c in
36 ’c’)
37 runfile=$OPTARG
38 [[-f $runfile]] || fail "Cannot read file: $runfile"
39 ;;
40 esac
41 done
42 shift $((OPTIND - 1))

44 [[-z $runfile]] && runfile=$(find_runfile)
45 [[-z $runfile]] && fail "Couldn’t determine distro"

47 $runner -c $runfile

49 exit $?
50 #endif /* ! codereview */

new/usr/src/test/elf-tests/doc/README 1

**
 2003 Mon Feb 11 00:23:22 2019
new/usr/src/test/elf-tests/doc/README
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2015 Nexenta Systems, Inc. All rights reserved.
15 #

17 ELF Software Generation Utilities Unit Test Suite README

19 1. Building and installing the ELF/SGS Unit Test Suite
20 2. Running the ELF/SGS Unit Test Suite
21 3. Test results

23 --

25 1. Building and installing the ELF/SGS Unit Test Suite

27 The ELF/SGS Unit Test Suite runs under the testrunner framework (which can be
28 installed as pkg:/system/test/testrunner). To build both the ELF/SGS Unit Test S
29 and the testrunner without running a full nightly:

31 build_machine$ bldenv [-d] <your_env_file>
32 build_machine$ cd $SRC/test
33 build_machine$ dmake install
34 build_machine$ cd $SRC/pkg
35 build_machine$ dmake install

37 Then set the publisher on the test machine to point to your repository and
38 install the ELF/SGS Unit Test Suite.

40 test_machine# pkg install pkg:/system/test/elftest

42 Note, the framework will be installed automatically, as the ELF/SGS Unit Test Su
43 depends on it.

45 2. Running the ELF/SGS Unit Test Suite

47 The pre-requisites for running the ELF/SGS Unit Test Suite are:
48 None

50 Once the pre-requisites are satisfied, simply run the elftest script:

52 test_machine$ /opt/elf-tests/bin/elftest

54 3. Test results

56 While the ELF/SGS Unit Test Suite is running, one informational line is printed
57 the end of each test, and a results summary is printed at the end of the run.
58 The results summary includes the location of the complete logs, which is of the
59 form /var/tmp/test_results/<ISO 8601 date>.

new/usr/src/test/elf-tests/doc/README 2

60 #endif /* ! codereview */

new/usr/src/test/elf-tests/runfiles/Makefile 1

**
 908 Mon Feb 11 00:23:23 2019
new/usr/src/test/elf-tests/runfiles/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012 by Delphix. All rights reserved.
14 # Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved.
15 # Copyright 2014 Garrett D’Amore <garrett@damore.org>
16 #

18 include $(SRC)/Makefile.master

20 SRCS = default.run

22 ROOTOPTPKG = $(ROOT)/opt/elf-tests
23 RUNFILES = $(ROOTOPTPKG)/runfiles

25 CMDS = $(SRCS:%=$(RUNFILES)/%)
26 $(CMDS) := FILEMODE = 0444

28 all: $(SRCS)

30 install: $(CMDS)

32 clean lint clobber:

34 $(CMDS): $(RUNFILES) $(SRCS)

36 $(RUNFILES):
37 $(INS.dir)

39 $(RUNFILES)/%: %
40 $(INS.file)
41 #endif /* ! codereview */

new/usr/src/test/elf-tests/runfiles/default.run 1

**
 815 Mon Feb 11 00:23:23 2019
new/usr/src/test/elf-tests/runfiles/default.run
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 # Copyright 2018, Richard Lowe.

15 [DEFAULT]
16 pre =
17 verbose = False
18 quiet = False
19 timeout = 60
20 post =
21 outputdir = /var/tmp/test_results

23 [/opt/elf-tests/tests/linker-sets]
24 tests = [’simple’, ’in-use-check’]

26 [/opt/elf-tests/tests/assert-deflib]
27 tests = [’test-deflib’]

30 [/opt/elf-tests/tests/tls/x64/ie]
31 arch = i86pc
32 tests = [’x64-ie-test’]

34 [/opt/elf-tests/tests/tls/x86/ld]
35 arch = i86pc
36 tests = [’x86-ld-test’]
37 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/Makefile 1

**
 582 Mon Feb 11 00:23:23 2019
new/usr/src/test/elf-tests/tests/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = \
18 assert-deflib \
19 linker-sets \
20 tls

22 include $(SRC)/test/Makefile.com
23 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/assert-deflib/Makefile 1

**
 940 Mon Feb 11 00:23:23 2019
new/usr/src/test/elf-tests/tests/assert-deflib/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = test-deflib

19 DATAFILES = link.c

21 ROOTOPTPKG = $(ROOT)/opt/elf-tests
22 TESTDIR = $(ROOTOPTPKG)/tests/assert-deflib

24 CMDS = $(PROG:%=$(TESTDIR)/%)
25 $(CMDS) := FILEMODE = 0555

28 DATA = $(DATAFILES:%=$(TESTDIR)/%)
29 $(DATA) := FILEMODE = 0444

31 all: $(PROG)

33 install: all $(CMDS) $(DATA)

35 lint:

37 clobber: clean
38 -$(RM) $(PROG)

40 clean:
41 -$(RM) $(CLEANFILES)

43 $(CMDS): $(TESTDIR) $(PROG)

45 $(TESTDIR):
46 $(INS.dir)

48 $(TESTDIR)/%: %
49 $(INS.file)
50 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh 1

**
 3870 Mon Feb 11 00:23:24 2019
new/usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/bin/bash
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 #
14 # Copyright (c) 2012, Joyent, Inc.
15 #

17 #
18 # This test validates that the -zassert-deflib option of ld(1) works correctly.
19 # It requires that some cc is in your path and that you have passed in the path
20 # to the proto area with the new version of libld.so.4. One thing that we have
21 # to do is be careful with using LD_LIBRARY_PATH. Setting LD_LIBRARY_PATH does
22 # not change the default search path so we want to make sure that we use a
23 # different ISA (e.g. 32-bit vs 64-bit) from the binary we’re generating.
24 #
25 unalias -a

27 if [[-z $ELF_TESTS]]; then
28 print -u2 "Don’t know where the test data is rooted";
29 exit 1;
30 fi

32 #endif /* ! codereview */
33 sh_path=
34 sh_lib="lib"
35 sh_lib64="$sh_lib/64"
36 sh_soname="libld.so.4"
37 sh_cc="gcc"
27 sh_cc="cc"
38 sh_cflags="-m32"
39 sh_file="${ELF_TESTS}/tests/assert-deflib/link.c"
29 sh_file="link.c"
40 sh_arg0=$(basename $0)

42 function fatal
43 {
44 local msg="$*"
45 [[-z "$msg"]] && msg="failed"
46 echo "$sh_arg0: $msg" >&2
47 exit 1
48 }

______unchanged_portion_omitted_

82 sh_path=${1:-/}
72 sh_path=$1
73 [[-z "$1"]] && fatal "<proto root>"
83 validate

85 run "-Wl,-zassert-deflib" 0 \
86 "Testing basic compilation succeeds with warnings..." \

new/usr/src/test/elf-tests/tests/assert-deflib/test-deflib.sh 2

87 "failed to compile with warnings"

89 run "-Wl,-zassert-deflib -Wl,-zfatal-warnings" 1 \
90 "Testing basic compilation fails if warning are fatal..." \
91 "linking succeeeded, expected failure"

93 run "-Wl,-zassert-deflib=libc.so -Wl,-zfatal-warnings" 0 \
94 "Testing basic exception with fatal warnings..." \
95 "linking failed despite exception"

97 run "-Wl,-zassert-deflib=libc.so -Wl,-zfatal-warnings" 0 \
98 "Testing basic exception with fatal warnings..." \
99 "linking failed despite exception"

102 run "-Wl,-zassert-deflib=lib.so -Wl,-zfatal-warnings" 1 \
103 "Testing invalid library name..." \
104 "ld should not allow invalid library name"

106 run "-Wl,-zassert-deflib=libf -Wl,-zfatal-warnings" 1 \
107 "Testing invalid library name..." \
108 "ld should not allow invalid library name"

110 run "-Wl,-zassert-deflib=libf.s -Wl,-zfatal-warnings" 1 \
111 "Testing invalid library name..." \
112 "ld should not allow invalid library name"

114 run "-Wl,-zassert-deflib=libc.so -Wl,-zfatal-warnings -lelf" 1 \
115 "Errors even if one library is under exception path..." \
116 "one exception shouldn’t stop another"

118 args="-Wl,-zassert-deflib=libc.so -Wl,-zassert-deflib=libelf.so"
119 args="$args -Wl,-zfatal-warnings -lelf"

121 run "$args" 0 \
122 "Multiple exceptions work..." \
123 "multiple exceptions don’t work"

125 args="-Wl,-zassert-deflib=libc.so -Wl,-zassert-deflib=libelfe.so"
126 args="$args -Wl,-zfatal-warnings -lelf"

128 run "$args" 1 \
129 "Exceptions only catch the specific library" \
130 "exceptions caught the wrong library"

132 args="-Wl,-zassert-deflib=libc.so -Wl,-zassert-deflib=libel.so"
133 args="$args -Wl,-zfatal-warnings -lelf"

135 run "$args" 1 \
136 "Exceptions only catch the specific library" \
137 "exceptions caught the wrong library"

139 echo "Tests passed."
140 exit 0

new/usr/src/test/elf-tests/tests/linker-sets/Makefile 1

**
 967 Mon Feb 11 00:23:24 2019
new/usr/src/test/elf-tests/tests/linker-sets/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = simple in-use-check

19 DATAFILES = simple-src.c \
20 simple.out

22 ROOTOPTPKG = $(ROOT)/opt/elf-tests
23 TESTDIR = $(ROOTOPTPKG)/tests/linker-sets

25 CMDS = $(PROG:%=$(TESTDIR)/%)
26 $(CMDS) := FILEMODE = 0555

29 DATA = $(DATAFILES:%=$(TESTDIR)/%)
30 $(DATA) := FILEMODE = 0444

32 all: $(PROG)

34 install: all $(CMDS) $(DATA)

36 lint:

38 clobber: clean
39 -$(RM) $(PROG)

41 clean:
42 -$(RM) $(CLEANFILES)

44 $(CMDS): $(TESTDIR) $(PROG)

46 $(TESTDIR):
47 $(INS.dir)

49 $(TESTDIR)/%: %
50 $(INS.file)
51 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh 1

**
 1217 Mon Feb 11 00:23:24 2019
new/usr/src/test/elf-tests/tests/linker-sets/in-use-check.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/usr/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 #
14 # Copyright 2018, Richard Lowe.
15 #

17 # Test that a simple use of linker-sets, tat is, automatically generated start
18 # and end symbols for sections can be generated and used.

20 tmpdir=/tmp/test.$$
21 mkdir $tmpdir
22 cd $tmpdir

24 cleanup() {
25 cd /
26 rm -fr $tmpdir
27 }

29 trap ’cleanup’ EXIT

31 cat > broken.c <<EOF
32 void *__start_text;

34 int
35 main()
36 {
37 return (0);
38 }
39 EOF

41 # We expect any alternate linker to be in LD_ALTEXEC for us already
42 gcc -o broken broken.c -Wall -Wextra -Wl,-zfatal-warnings > in-use.$$.out 2>&1
43 if (($? == 0)); then
44 print -u2 "use of a reserved symbol didn’t fail"
45 exit 1;
46 fi

48 grep -q "^ld: warning: reserved symbol ’__start_text’ already defined in file" i
49 if (($? != 0)); then
50 print -u2 "use of a reserved symbol failed for the wrong reason"
51 exit 1;
52 fi
53 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/simple-src.c 1

**
 3415 Mon Feb 11 00:23:25 2019
new/usr/src/test/elf-tests/tests/linker-sets/simple-src.c
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 /* The meat of this file is a copy of the FreeBSD sys/link_set.h */
2 /*
3 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
4 *
5 * Copyright (c) 1999 John D. Polstra
6 * Copyright (c) 1999,2001 Peter Wemm <peter@FreeBSD.org>
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without

10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ‘‘AS IS’’ AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * $FreeBSD$
31 */

33 #include <stdio.h>

35 #define MAKE_SET(set, sym) \
36 __asm__(".globl __start_set_" #set); \
37 __asm__(".globl __stop_set_" #set); \
38 static __attribute__((section(".set_" #set), used)) \
39 void const *__set_##set##_sym_##sym = &(sym)

41 /*
42 * Initialize before referring to a given linker set.
43 */
44 #define SET_DECLARE(set, ptype) \
45 extern __attribute__((weak)) ptype *__start_set_ ## set; \
46 extern __attribute__((weak)) ptype *__stop_set_ ## set

48 #define SET_BEGIN(set) (&__start_set_ ## set)
49 #define SET_LIMIT(set) (&__stop_set_ ## set)

51 /*
52 * Iterate over all the elements of a set.
53 *
54 * Sets always contain addresses of things, and "pvar" points to words
55 * containing those addresses. Thus is must be declared as "type **pvar",
56 * and the address of each set item is obtained inside the loop by "*pvar".
57 */
58 #define SET_FOREACH(pvar, set) \
59 for (pvar = SET_BEGIN(set); pvar < SET_LIMIT(set); pvar++)

new/usr/src/test/elf-tests/tests/linker-sets/simple-src.c 2

61 #define SET_ITEM(set, i) \
62 ((SET_BEGIN(set))[i])

64 /*
65 * Provide a count of the items in a set.
66 */
67 #define SET_COUNT(set) \
68 (SET_LIMIT(set) - SET_BEGIN(set))

70 struct foo {
71 char buf[128];
72 };

74 SET_DECLARE(foo, struct foo);

76 struct foo a = { "foo" };
77 struct foo b = { "bar" };
78 struct foo c = { "baz" };

80 MAKE_SET(foo, a);
81 MAKE_SET(foo, b);
82 MAKE_SET(foo, c);

84 int
85 main(int __attribute__((unused)) argc, char __attribute__((unused)) **argv)
86 {
87 struct foo **c;
88 int i = 0;

90 printf("Set count: %d\n", SET_COUNT(foo));

93 printf("a: %s\n", ((struct foo *)__set_foo_sym_a)->buf);
94 printf("b: %s\n", ((struct foo *)__set_foo_sym_b)->buf);
95 printf("c: %s\n", ((struct foo *)__set_foo_sym_c)->buf);

97 printf("item(foo, 0): %s\n", SET_ITEM(foo, 0)->buf);
98 printf("item(foo, 1): %s\n", SET_ITEM(foo, 1)->buf);
99 printf("item(foo, 2): %s\n", SET_ITEM(foo, 2)->buf);

101 SET_FOREACH(c, foo) {
102 printf("foo[%d]: %s\n", i, (*c)->buf);
103 i++;
104 }
105 }
106 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/simple.out 1

**
 124 Mon Feb 11 00:23:25 2019
new/usr/src/test/elf-tests/tests/linker-sets/simple.out
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 Set count: 3
2 a: foo
3 b: bar
4 c: baz
5 item(foo, 0): foo
6 item(foo, 1): bar
7 item(foo, 2): baz
8 foo[0]: foo
9 foo[1]: bar

10 foo[2]: baz
11 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/linker-sets/simple.sh 1

**
 1397 Mon Feb 11 00:23:25 2019
new/usr/src/test/elf-tests/tests/linker-sets/simple.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/usr/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 #
14 # Copyright 2018, Richard Lowe.
15 #

17 # Test that a simple use of linker-sets, tat is, automatically generated start
18 # and end symbols for sections can be generated and used.

20 if [[-z $ELF_TESTS]]; then
21 print -u2 "Don’t know where the test data is rooted";
22 exit 1;
23 fi

25 tmpdir=/tmp/test.$$
26 mkdir $tmpdir
27 cd $tmpdir

29 cleanup() {
30 cd /
31 rm -fr $tmpdir
32 }

34 trap ’cleanup’ EXIT

36 # We expect any alternate linker to be in LD_ALTEXEC for us already
37 gcc -o simple ${ELF_TESTS}/tests/linker-sets/simple-src.c -Wall -Wextra
38 if (($? != 0)); then
39 print -u2 "compilation of ${ELF_TESTS}/tests/linker-sets/simple-src.c failed
40 exit 1;
41 fi

43 ./simple > simple.$$.out 2>&1

45 if (($? != 0)); then
46 print -u2 "execution of ${ELF_TESTS}/tests/linker-sets/simple-src.c failed";
47 exit 1;
48 fi

50 diff -u ${ELF_TESTS}/tests/linker-sets/simple.out simple.$$.out
51 if (($? != 0)); then
52 print -u2 "${ELF_TESTS}/tests/linker-sets/simple-src.c output mismatch"
53 exit 1;
54 fi
55 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/Makefile 1

**
 550 Mon Feb 11 00:23:25 2019
new/usr/src/test/elf-tests/tests/tls/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = x64 x86

19 include $(SRC)/test/Makefile.com
20 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x64/Makefile 1

**
 545 Mon Feb 11 00:23:26 2019
new/usr/src/test/elf-tests/tests/tls/x64/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = ie

19 include $(SRC)/test/Makefile.com
20 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile 1

**
 1117 Mon Feb 11 00:23:26 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = x64-ie-test

19 DATAFILES = \
20 Makefile.test \
21 style1-func-with-r12.s \
22 style1-func-with-r13.s \
23 style1-func.s \
24 style1-main.s \
25 style2-with-badness.s \
26 style2-with-r12.s \
27 style2-with-r13.s \
28 style2.s

30 ROOTOPTPKG = $(ROOT)/opt/elf-tests
31 TESTDIR = $(ROOTOPTPKG)/tests/tls/x64/ie

33 CMDS = $(PROG:%=$(TESTDIR)/%)
34 $(CMDS) := FILEMODE = 0555

37 DATA = $(DATAFILES:%=$(TESTDIR)/%)
38 $(DATA) := FILEMODE = 0444

40 all: $(PROG)

42 install: all $(CMDS) $(DATA)

44 lint:

46 clobber: clean
47 -$(RM) $(PROG)

49 clean:
50 -$(RM) $(CLEANFILES)

52 $(CMDS): $(TESTDIR) $(PROG)

54 $(TESTDIR):
55 $(INS.dir)

57 $(TESTDIR)/%: %
58 $(INS.file)
59 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile.test 1

**
 2363 Mon Feb 11 00:23:26 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile.test
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2012, Richard Lowe.

14 CC = gcc
14 include $(SRC)/Makefile.master

16 # We have to use GCC, and only GCC. The best way is to ask cw(1) which GCC to u
17 CC_CMD = $(ONBLD_TOOLS)/bin/$(MACH)/cw -_gcc -_compiler
18 CC = $(CC_CMD:sh)
15 CFLAGS = -O1 -m64

17 LINK.c = $(CC) $(CFLAGS) -o $@ $^
21 LINK.c = env LD_ALTEXEC=$(PROTO)/usr/bin/amd64/ld $(CC) $(CFLAGS) -o $@ $^
18 COMPILE.c = $(CC) $(CFLAGS) -c -o $@ $^
19 COMPILE.s = $(CC) $(CFLAGS) -c -o $@ $^

21 .KEEP_STATE:

23 install default: all

25 %.o: $(ELF_TESTS)/tests/tls/x64/ie/%.c
29 .c.o:
26 $(COMPILE.c)
27 %.o: $(ELF_TESTS)/tests/tls/x64/ie/%.s

32 .s.o:
28 $(COMPILE.s)

30 # A basic use of TLS that uses the movq m/r --> movq i/r variant
31 PROGS += style2
32 STYLE2OBJS = style2.o
33 style2: $(STYLE2OBJS)
34 $(LINK.c)

36 # A copy of style2 that uses %r13 in the TLS sequence, and thus excercises the
37 # REX transitions of the movq mem,reg -> movq imm,reg variant.
38 PROGS += style2-with-r13
39 STYLE2R13OBJS = style2-with-r13.o
40 style2-with-r13: $(STYLE2R13OBJS)
41 $(LINK.c)

43 # A copy of style2 that uses %r12 in the TLS sequence, so we can verify that
44 # it is _not_ special to this variant
45 PROGS += style2-with-r12
46 STYLE2R12OBJS = style2-with-r12.o
47 style2-with-r12: $(STYLE2R12OBJS)
48 $(LINK.c)

50 # A copy of style2 that has a R_AMD64_GOTTPOFF relocation with a bad insn sequen

new/usr/src/test/elf-tests/tests/tls/x64/ie/Makefile.test 2

51 STYLE2BADNESSOBJS = style2-with-badness.o
52 style2-with-badness: $(STYLE2BADNESSOBJS)
53 -$(LINK.c)

55 # A basic use of TLS that uses the addq mem/reg --> leaq mem,reg variant
56 PROGS += style1
57 STYLE1OBJS = style1-main.o style1-func.o
58 style1: $(STYLE1OBJS)
59 $(LINK.c)

61 # A copy of style1-func that uses %r13 in the TLS sequence and thus excercises
62 # the REX transitions. of the addq mem,reg --> leaq mem,reg variant
63 PROGS += style1-with-r13
64 STYLE1R13OBJS = style1-main.o style1-func-with-r13.o
65 style1-with-r13: $(STYLE1R13OBJS)
66 $(LINK.c)

68 # A copy of style1-func that uses %r12 to test the addq mem,reg --> addq imm,reg
69 PROGS += style1-with-r12
70 STYLE1R12OBJS = style1-main.o style1-func-with-r12.o
71 style1-with-r12: $(STYLE1R12OBJS)
72 $(LINK.c)

74 all: $(PROGS)

76 clobber clean:
77 rm -f $(PROGS) $(STYLE1OBJS) $(STYLE1R13OBJS) $(STYLE1R12OBJS) \
78 $(STYLE2OBJS) $(STYLE2R13OBJS) $(STYLE2R12OBJS) $(STYLE2BADNESSOBJS)

80 fail: style2-with-badness FRC

82 FRC:

new/usr/src/test/elf-tests/tests/tls/x64/ie/style1-func-with-r12.s 1

**
 842 Mon Feb 11 00:23:27 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style1-func-with-r12.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-badness.s 1

**
 925 Mon Feb 11 00:23:29 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-badness.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r12.s 1

**
 953 Mon Feb 11 00:23:29 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r12.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2012, Richard Lowe.
14 */

16 .section .rodata.str1.1,"aMS",@progbits,1
17 .LC0:
18 .string "foo: %p\n"
19 .text
20 .globl main
21 .type main, @function
22 main:
23 .LFB0:
24 pushq %rbp
25 .LCFI0:
26 movq %rsp, %rbp
27 .LCFI1:
28 movq foo@GOTTPOFF(%rip), %r12
29 addq %fs:0, %r12
30 movq %r12, %rsi
31 movl $.LC0, %edi
32 movl $0, %eax
33 call printf
34 movl $0, %eax
35 leave
36 ret
37 .LFE0:
38 .size main, .-main
39 .globl foo
40 .section .rodata.str1.1
41 .LC1:
42 .string "foo"

44 #endif /* ! codereview */
45 .section .tdata,"awT",@progbits
46 .align 8
47 .type foo, @object
48 .size foo, 8
49 foo:
50 .quad .LC1

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r13.s 1

**
 952 Mon Feb 11 00:23:30 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2-with-r13.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/style2.s 1

**
 925 Mon Feb 11 00:23:30 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/style2.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**
______unchanged_portion_omitted_

new/usr/src/test/elf-tests/tests/tls/x64/ie/x64-ie-test.sh 1

**
 2251 Mon Feb 11 00:23:31 2019
new/usr/src/test/elf-tests/tests/tls/x64/ie/x64-ie-test.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {
16 name=$1
17 pattern=$2

19 if /usr/bin/fgrep -q "${pattern}"; then
20 print -u2 "pass: $name"
21 else
22 print -u2 "FAIL: $name"
23 exit 1
24 #endif /* ! codereview */
25 fi
26 }

28 function dis_test {
29 name=${1}
30 func=${2}
31 file=${3}
32 pattern=${4}

34 dis -F${func} ${file} | grep_test "${name}" "${pattern}"
35 }

37 if [[-z $ELF_TESTS]]; then
38 print -u2 "Don’t know where the test data is rooted";
39 exit 1;
40 fi

42 make -f ${ELF_TESTS}/tests/tls/x64/ie/Makefile.test
23 make PROTO="${1}"

44 dis_test "addq-->leaq 1" func style1 \
45 ’func+0x10: 48 8d 92 f8 ff ff leaq -0x8(%rdx),%rdx’
46 dis_test "addq-->leaq 2" func style1 \
47 ’func+0x17: 48 8d b6 f0 ff ff leaq -0x10(%rsi),%rsi’

49 dis_test "addq-->leaq w/REX 1" func style1-with-r13 \
50 ’func+0x10: 48 8d 92 f8 ff ff leaq -0x8(%rdx),%rdx’
51 dis_test "addq-->leaq w/REX 2" func style1-with-r13 \
52 ’func+0x17: 4d 8d ad f0 ff ff leaq -0x10(%r13),%r13’

54 dis_test "addq-->addq for SIB 1" func style1-with-r12 \
55 ’func+0x10: 48 8d 92 f8 ff ff leaq -0x8(%rdx),%rdx’
56 dis_test "addq-->addq for SIB 2" func style1-with-r12 \
57 ’func+0x17: 49 81 c4 f0 ff ff addq $-0x10,%r12 <0xfffffffffffffff0>’

new/usr/src/test/elf-tests/tests/tls/x64/ie/x64-ie-test.sh 2

59 dis_test "movq-->movq" main style2 \
60 ’main+0x4: 48 c7 c6 f0 ff ff movq $-0x10,%rsi <0xfffffffffffffff0>’

62 dis_test "movq-->movq w/REX" main style2-with-r13 \
63 ’main+0x4: 49 c7 c5 f0 ff ff movq $-0x10,%r13 <0xfffffffffffffff0>’

65 dis_test "movq-->movq incase of SIB" main style2-with-r12 \
66 ’main+0x4: 49 c7 c4 f0 ff ff movq $-0x10,%r12 <0xfffffffffffffff0>’

68 make -f ${ELF_TESTS}/tests/tls/x64/ie/Makefile.test fail 2>&1 | grep_test "bad i
49 make PROTO="${1}" fail 2>&1 | grep_test "bad insn sequence" \
69 ’ld: fatal: relocation error: R_AMD64_TPOFF32: file style2-with-badness.o: sy

new/usr/src/test/elf-tests/tests/tls/x86/Makefile 1

**
 545 Mon Feb 11 00:23:31 2019
new/usr/src/test/elf-tests/tests/tls/x86/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright (c) 2012, 2016 by Delphix. All rights reserved.
14 # Copyright 2018 Joyent, Inc.
15 #

17 SUBDIRS = ld

19 include $(SRC)/test/Makefile.com
20 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile 1

**
 964 Mon Feb 11 00:23:31 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2018, Richard Lowe.

14 include $(SRC)/cmd/Makefile.cmd
15 include $(SRC)/test/Makefile.com

17 PROG = x86-ld-test

19 DATAFILES = \
20 Makefile.test \
21 half-ldm.s \

23 ROOTOPTPKG = $(ROOT)/opt/elf-tests
24 TESTDIR = $(ROOTOPTPKG)/tests/tls/x86/ld

26 CMDS = $(PROG:%=$(TESTDIR)/%)
27 $(CMDS) := FILEMODE = 0555

30 DATA = $(DATAFILES:%=$(TESTDIR)/%)
31 $(DATA) := FILEMODE = 0444

33 all: $(PROG)

35 install: all $(CMDS) $(DATA)

37 lint:

39 clobber: clean
40 -$(RM) $(PROG)

42 clean:
43 -$(RM) $(CLEANFILES)

45 $(CMDS): $(TESTDIR) $(PROG)

47 $(TESTDIR):
48 $(INS.dir)

50 $(TESTDIR)/%: %
51 $(INS.file)
52 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile.test 1

**
 1053 Mon Feb 11 00:23:31 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/Makefile.test
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet at
9 # http://www.illumos.org/license/CDDL.

10 #

12 # Copyright 2012, Richard Lowe.

14 CC = gcc
15 CFLAGS = -O1 -m32

17 LINK.c = $(CC) $(CFLAGS) -o $@ $^
18 COMPILE.c = $(CC) $(CFLAGS) -c -o $@ $^
19 COMPILE.s = $(CC) $(CFLAGS) -c -o $@ $^

21 .KEEP_STATE:

23 install default: all

25 %.o: $(ELF_TESTS)/tests/tls/x86/ld/%.c
26 $(COMPILE.c)
27 %.o: $(ELF_TESTS)/tests/tls/x86/ld/%.s
28 $(COMPILE.s)

30 # an R_386_TLS_LDM with a regular R_386_PLT32 not a R_386_TLS_LDM_PLT
31 PROGS += half-ldm

33 half-ldm: half-ldm.o
34 $(LINK.c)

36 all: $(PROGS)

38 clobber clean:
39 rm -f $(PROGS) $(STYLE1OBJS) $(STYLE1R13OBJS) $(STYLE1R12OBJS) \
40 $(STYLE2OBJS) $(STYLE2R13OBJS) $(STYLE2R12OBJS) $(STYLE2BADNESSOBJS)

42 fail: style2-with-badness FRC

44 FRC:
45 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/half-ldm.s 1

**
 1355 Mon Feb 11 00:23:32 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/half-ldm.s
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.u

10 */

12 /*
13 * Copyright 2019, Richard Lowe.
14 */

16 .section .rodata.str1.1,"aMS",@progbits,1
17 .LC0:
18 .string "foo: %s (%p)\n"
19 .section .tdata,"awT",@progbits
20 .align 4
21 .type foo, @object
22 .size foo,4
23 .local foo
24 foo:
25 .string "foo"
26 .text
27 .globl main
28 .type main, @function
29 main:
30 pushl %ebp
31 movl %esp, %ebp
32 /*
33 * an R_386_TLS_LDM relocation without a following
34 * followed by an R_386_PLT32 relocation, rather than an
35 * R_386_TLS_LDM_PLT the call should be removed, and _not_
36 * left alone unrelocated as it was prior to:
37 * 10267 ld and GCC disagree about i386 local dynamic TLS
38 */
39 leal foo@TLSLDM(%ebx), %eax
40 call ___tls_get_addr@PLT
41 leal foo@DTPOFF(%eax), %edx
42 pushl %edx
43 pushl %edx
44 pushl $.LC0
45 call printf@PLT
46 movl $0x0,%eax
47 leave
48 ret
49 .size main, .-main
50 #endif /* ! codereview */

new/usr/src/test/elf-tests/tests/tls/x86/ld/x86-ld-test.sh 1

**
 1107 Mon Feb 11 00:23:32 2019
new/usr/src/test/elf-tests/tests/tls/x86/ld/x86-ld-test.sh
10366 ld(1) should support GNU-style linker sets
10367 ld(1) tests should be a real test suite
10368 want an ld(1) regression test for i386 LD tls transition (10267)
**

1 #!/bin/ksh
2 #
3 # This file and its contents are supplied under the terms of the
4 # Common Development and Distribution License ("CDDL"), version 1.0.
5 # You may only use this file in accordance with the terms of version
6 # 1.0 of the CDDL.
7 #
8 # A full copy of the text of the CDDL should have accompanied this
9 # source. A copy of the CDDL is also available via the Internet at

10 # http://www.illumos.org/license/CDDL.
11 #

13 # Copyright 2012, Richard Lowe.

15 function grep_test {
16 name=$1
17 pattern=$2

19 if /usr/bin/grep -q "${pattern}"; then
20 print -u2 "pass: $name"
21 else
22 print -u2 "FAIL: $name"
23 exit 1
24 fi
25 }

27 function dis_test {
28 name=${1}
29 func=${2}
30 file=${3}
31 pattern=${4}

33 dis -F${func} ${file} | grep_test "${name}" "${pattern}"
34 }

36 if [[-z $ELF_TESTS]]; then
37 print -u2 "Don’t know where the test data is rooted";
38 exit 1;
39 fi

41 make -f ${ELF_TESTS}/tests/tls/x86/ld/Makefile.test

43 dis_test "call-->nop" main half-ldm \
44 ’main\+0x9: 0f 1f 44 00 00 nopl 0x0(%eax,%eax)’

46 ./half-ldm | grep_test ’half-ldm execution’ \
47 ’^foo: foo ([a-f0-9]*)$’
48 #endif /* ! codereview */

