1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1988 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright 2014, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/cred_impl.h> 38 #include <sys/policy.h> 39 #include <sys/user.h> 40 #include <sys/errno.h> 41 #include <sys/file.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/mman.h> 45 #include <sys/acct.h> 46 #include <sys/cpuvar.h> 47 #include <sys/proc.h> 48 #include <sys/cmn_err.h> 49 #include <sys/debug.h> 50 #include <sys/pathname.h> 51 #include <sys/vm.h> 52 #include <sys/lgrp.h> 53 #include <sys/vtrace.h> 54 #include <sys/exec.h> 55 #include <sys/exechdr.h> 56 #include <sys/kmem.h> 57 #include <sys/prsystm.h> 58 #include <sys/modctl.h> 59 #include <sys/vmparam.h> 60 #include <sys/door.h> 61 #include <sys/schedctl.h> 62 #include <sys/utrap.h> 63 #include <sys/systeminfo.h> 64 #include <sys/stack.h> 65 #include <sys/rctl.h> 66 #include <sys/dtrace.h> 67 #include <sys/lwpchan_impl.h> 68 #include <sys/pool.h> 69 #include <sys/sdt.h> 70 #include <sys/brand.h> 71 #include <sys/klpd.h> 72 73 #include <c2/audit.h> 74 75 #include <vm/hat.h> 76 #include <vm/anon.h> 77 #include <vm/as.h> 78 #include <vm/seg.h> 79 #include <vm/seg_vn.h> 80 81 #define PRIV_RESET 0x01 /* needs to reset privs */ 82 #define PRIV_SETID 0x02 /* needs to change uids */ 83 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 84 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 85 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 86 #define PRIV_FORCED 0x20 /* has forced privileges */ 87 88 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *, 89 priv_set_t *, cred_t *, const char *); 90 static int hold_execsw(struct execsw *); 91 92 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 93 uint_t auxv_hwcap_2 = 0; /* AT_SUN_HWCAP2 */ 94 #if defined(_SYSCALL32_IMPL) 95 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 96 uint_t auxv_hwcap32_2 = 0; /* 32-bit version of auxv_hwcap2 */ 97 #endif 98 99 #define PSUIDFLAGS (SNOCD|SUGID) 100 101 /* 102 * exece() - system call wrapper around exec_common() 103 */ 104 int 105 exece(const char *fname, const char **argp, const char **envp) 106 { 107 int error; 108 109 error = exec_common(fname, argp, envp, EBA_NONE); 110 return (error ? (set_errno(error)) : 0); 111 } 112 113 int 114 exec_common(const char *fname, const char **argp, const char **envp, 115 int brand_action) 116 { 117 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 118 proc_t *p = ttoproc(curthread); 119 klwp_t *lwp = ttolwp(curthread); 120 struct user *up = PTOU(p); 121 long execsz; /* temporary count of exec size */ 122 int i; 123 int error; 124 char exec_file[MAXCOMLEN+1]; 125 struct pathname pn; 126 struct pathname resolvepn; 127 struct uarg args; 128 struct execa ua; 129 k_sigset_t savedmask; 130 lwpdir_t *lwpdir = NULL; 131 tidhash_t *tidhash; 132 lwpdir_t *old_lwpdir = NULL; 133 uint_t old_lwpdir_sz; 134 tidhash_t *old_tidhash; 135 uint_t old_tidhash_sz; 136 ret_tidhash_t *ret_tidhash; 137 lwpent_t *lep; 138 boolean_t brandme = B_FALSE; 139 140 /* 141 * exec() is not supported for the /proc agent lwp. 142 */ 143 if (curthread == p->p_agenttp) 144 return (ENOTSUP); 145 146 if (brand_action != EBA_NONE) { 147 /* 148 * Brand actions are not supported for processes that are not 149 * running in a branded zone. 150 */ 151 if (!ZONE_IS_BRANDED(p->p_zone)) 152 return (ENOTSUP); 153 154 if (brand_action == EBA_NATIVE) { 155 /* Only branded processes can be unbranded */ 156 if (!PROC_IS_BRANDED(p)) 157 return (ENOTSUP); 158 } else { 159 /* Only unbranded processes can be branded */ 160 if (PROC_IS_BRANDED(p)) 161 return (ENOTSUP); 162 brandme = B_TRUE; 163 } 164 } else { 165 /* 166 * If this is a native zone, or if the process is already 167 * branded, then we don't need to do anything. If this is 168 * a native process in a branded zone, we need to brand the 169 * process as it exec()s the new binary. 170 */ 171 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 172 brandme = B_TRUE; 173 } 174 175 /* 176 * Inform /proc that an exec() has started. 177 * Hold signals that are ignored by default so that we will 178 * not be interrupted by a signal that will be ignored after 179 * successful completion of gexec(). 180 */ 181 mutex_enter(&p->p_lock); 182 prexecstart(); 183 schedctl_finish_sigblock(curthread); 184 savedmask = curthread->t_hold; 185 sigorset(&curthread->t_hold, &ignoredefault); 186 mutex_exit(&p->p_lock); 187 188 /* 189 * Look up path name and remember last component for later. 190 * To help coreadm expand its %d token, we attempt to save 191 * the directory containing the executable in p_execdir. The 192 * first call to lookuppn() may fail and return EINVAL because 193 * dirvpp is non-NULL. In that case, we make a second call to 194 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 195 * but coreadm is allowed to expand %d to the empty string and 196 * there are other cases in which that failure may occur. 197 */ 198 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 199 goto out; 200 pn_alloc(&resolvepn); 201 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 202 pn_free(&resolvepn); 203 pn_free(&pn); 204 if (error != EINVAL) 205 goto out; 206 207 dir = NULL; 208 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 209 goto out; 210 pn_alloc(&resolvepn); 211 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 212 &vp)) != 0) { 213 pn_free(&resolvepn); 214 pn_free(&pn); 215 goto out; 216 } 217 } 218 if (vp == NULL) { 219 if (dir != NULL) 220 VN_RELE(dir); 221 error = ENOENT; 222 pn_free(&resolvepn); 223 pn_free(&pn); 224 goto out; 225 } 226 227 if ((error = secpolicy_basic_exec(CRED(), vp)) != 0) { 228 if (dir != NULL) 229 VN_RELE(dir); 230 pn_free(&resolvepn); 231 pn_free(&pn); 232 VN_RELE(vp); 233 goto out; 234 } 235 236 /* 237 * We do not allow executing files in attribute directories. 238 * We test this by determining whether the resolved path 239 * contains a "/" when we're in an attribute directory; 240 * only if the pathname does not contain a "/" the resolved path 241 * points to a file in the current working (attribute) directory. 242 */ 243 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 244 strchr(resolvepn.pn_path, '/') == NULL) { 245 if (dir != NULL) 246 VN_RELE(dir); 247 error = EACCES; 248 pn_free(&resolvepn); 249 pn_free(&pn); 250 VN_RELE(vp); 251 goto out; 252 } 253 254 bzero(exec_file, MAXCOMLEN+1); 255 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 256 bzero(&args, sizeof (args)); 257 args.pathname = resolvepn.pn_path; 258 /* don't free resolvepn until we are done with args */ 259 pn_free(&pn); 260 261 /* 262 * If we're running in a profile shell, then call pfexecd. 263 */ 264 if ((CR_FLAGS(p->p_cred) & PRIV_PFEXEC) != 0) { 265 error = pfexec_call(p->p_cred, &resolvepn, &args.pfcred, 266 &args.scrubenv); 267 268 /* Returning errno in case we're not allowed to execute. */ 269 if (error > 0) { 270 if (dir != NULL) 271 VN_RELE(dir); 272 pn_free(&resolvepn); 273 VN_RELE(vp); 274 goto out; 275 } 276 277 /* Don't change the credentials when using old ptrace. */ 278 if (args.pfcred != NULL && 279 (p->p_proc_flag & P_PR_PTRACE) != 0) { 280 crfree(args.pfcred); 281 args.pfcred = NULL; 282 args.scrubenv = B_FALSE; 283 } 284 } 285 286 /* 287 * Specific exec handlers, or policies determined via 288 * /etc/system may override the historical default. 289 */ 290 args.stk_prot = PROT_ZFOD; 291 args.dat_prot = PROT_ZFOD; 292 293 CPU_STATS_ADD_K(sys, sysexec, 1); 294 DTRACE_PROC1(exec, char *, args.pathname); 295 296 ua.fname = fname; 297 ua.argp = argp; 298 ua.envp = envp; 299 300 /* If necessary, brand this process before we start the exec. */ 301 if (brandme) 302 brand_setbrand(p); 303 304 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 305 exec_file, p->p_cred, brand_action)) != 0) { 306 if (brandme) 307 brand_clearbrand(p, B_FALSE); 308 VN_RELE(vp); 309 if (dir != NULL) 310 VN_RELE(dir); 311 pn_free(&resolvepn); 312 goto fail; 313 } 314 315 /* 316 * Free floating point registers (sun4u only) 317 */ 318 ASSERT(lwp != NULL); 319 lwp_freeregs(lwp, 1); 320 321 /* 322 * Free thread and process context ops. 323 */ 324 if (curthread->t_ctx) 325 freectx(curthread, 1); 326 if (p->p_pctx) 327 freepctx(p, 1); 328 329 /* 330 * Remember file name for accounting; clear any cached DTrace predicate. 331 */ 332 up->u_acflag &= ~AFORK; 333 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 334 curthread->t_predcache = NULL; 335 336 /* 337 * Clear contract template state 338 */ 339 lwp_ctmpl_clear(lwp); 340 341 /* 342 * Save the directory in which we found the executable for expanding 343 * the %d token used in core file patterns. 344 */ 345 mutex_enter(&p->p_lock); 346 tmpvp = p->p_execdir; 347 p->p_execdir = dir; 348 if (p->p_execdir != NULL) 349 VN_HOLD(p->p_execdir); 350 mutex_exit(&p->p_lock); 351 352 if (tmpvp != NULL) 353 VN_RELE(tmpvp); 354 355 /* 356 * Reset stack state to the user stack, clear set of signals 357 * caught on the signal stack, and reset list of signals that 358 * restart system calls; the new program's environment should 359 * not be affected by detritus from the old program. Any 360 * pending held signals remain held, so don't clear t_hold. 361 */ 362 mutex_enter(&p->p_lock); 363 lwp->lwp_oldcontext = 0; 364 lwp->lwp_ustack = 0; 365 lwp->lwp_old_stk_ctl = 0; 366 sigemptyset(&up->u_signodefer); 367 sigemptyset(&up->u_sigonstack); 368 sigemptyset(&up->u_sigresethand); 369 lwp->lwp_sigaltstack.ss_sp = 0; 370 lwp->lwp_sigaltstack.ss_size = 0; 371 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 372 373 /* 374 * Make saved resource limit == current resource limit. 375 */ 376 for (i = 0; i < RLIM_NLIMITS; i++) { 377 /*CONSTCOND*/ 378 if (RLIM_SAVED(i)) { 379 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 380 &up->u_saved_rlimit[i]); 381 } 382 } 383 384 /* 385 * If the action was to catch the signal, then the action 386 * must be reset to SIG_DFL. 387 */ 388 sigdefault(p); 389 p->p_flag &= ~(SNOWAIT|SJCTL); 390 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 391 up->u_signal[SIGCLD - 1] = SIG_DFL; 392 393 /* 394 * Delete the dot4 sigqueues/signotifies. 395 */ 396 sigqfree(p); 397 398 mutex_exit(&p->p_lock); 399 400 mutex_enter(&p->p_pflock); 401 p->p_prof.pr_base = NULL; 402 p->p_prof.pr_size = 0; 403 p->p_prof.pr_off = 0; 404 p->p_prof.pr_scale = 0; 405 p->p_prof.pr_samples = 0; 406 mutex_exit(&p->p_pflock); 407 408 ASSERT(curthread->t_schedctl == NULL); 409 410 #if defined(__sparc) 411 if (p->p_utraps != NULL) 412 utrap_free(p); 413 #endif /* __sparc */ 414 415 /* 416 * Close all close-on-exec files. 417 */ 418 close_exec(P_FINFO(p)); 419 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 420 421 /* Unbrand ourself if necessary. */ 422 if (PROC_IS_BRANDED(p) && (brand_action == EBA_NATIVE)) 423 brand_clearbrand(p, B_FALSE); 424 425 setregs(&args); 426 427 /* Mark this as an executable vnode */ 428 mutex_enter(&vp->v_lock); 429 vp->v_flag |= VVMEXEC; 430 mutex_exit(&vp->v_lock); 431 432 VN_RELE(vp); 433 if (dir != NULL) 434 VN_RELE(dir); 435 pn_free(&resolvepn); 436 437 /* 438 * Allocate a new lwp directory and lwpid hash table if necessary. 439 */ 440 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 441 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 442 lwpdir->ld_next = lwpdir + 1; 443 tidhash = kmem_zalloc(2 * sizeof (tidhash_t), KM_SLEEP); 444 if (p->p_lwpdir != NULL) 445 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 446 else 447 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 448 } 449 450 if (PROC_IS_BRANDED(p)) 451 BROP(p)->b_exec(); 452 453 mutex_enter(&p->p_lock); 454 prbarrier(p); 455 456 /* 457 * Reset lwp id to the default value of 1. 458 * This is a single-threaded process now 459 * and lwp #1 is lwp_wait()able by default. 460 * The t_unpark flag should not be inherited. 461 */ 462 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 463 curthread->t_tid = 1; 464 kpreempt_disable(); 465 ASSERT(curthread->t_lpl != NULL); 466 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid; 467 kpreempt_enable(); 468 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) { 469 lgrp_update_trthr_migrations(1); 470 } 471 curthread->t_unpark = 0; 472 curthread->t_proc_flag |= TP_TWAIT; 473 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 474 p->p_lwpdaemon = 0; /* but oh well ... */ 475 p->p_lwpid = 1; 476 477 /* 478 * Install the newly-allocated lwp directory and lwpid hash table 479 * and insert the current thread into the new hash table. 480 */ 481 if (lwpdir != NULL) { 482 old_lwpdir = p->p_lwpdir; 483 old_lwpdir_sz = p->p_lwpdir_sz; 484 old_tidhash = p->p_tidhash; 485 old_tidhash_sz = p->p_tidhash_sz; 486 p->p_lwpdir = p->p_lwpfree = lwpdir; 487 p->p_lwpdir_sz = 2; 488 lep->le_thread = curthread; 489 lep->le_lwpid = curthread->t_tid; 490 lep->le_start = curthread->t_start; 491 lwp_hash_in(p, lep, tidhash, 2, 0); 492 p->p_tidhash = tidhash; 493 p->p_tidhash_sz = 2; 494 } 495 ret_tidhash = p->p_ret_tidhash; 496 p->p_ret_tidhash = NULL; 497 498 /* 499 * Restore the saved signal mask and 500 * inform /proc that the exec() has finished. 501 */ 502 curthread->t_hold = savedmask; 503 prexecend(); 504 mutex_exit(&p->p_lock); 505 if (old_lwpdir) { 506 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 507 kmem_free(old_tidhash, old_tidhash_sz * sizeof (tidhash_t)); 508 } 509 while (ret_tidhash != NULL) { 510 ret_tidhash_t *next = ret_tidhash->rth_next; 511 kmem_free(ret_tidhash->rth_tidhash, 512 ret_tidhash->rth_tidhash_sz * sizeof (tidhash_t)); 513 kmem_free(ret_tidhash, sizeof (*ret_tidhash)); 514 ret_tidhash = next; 515 } 516 517 ASSERT(error == 0); 518 DTRACE_PROC(exec__success); 519 return (0); 520 521 fail: 522 DTRACE_PROC1(exec__failure, int, error); 523 out: /* error return */ 524 mutex_enter(&p->p_lock); 525 curthread->t_hold = savedmask; 526 prexecend(); 527 mutex_exit(&p->p_lock); 528 ASSERT(error != 0); 529 return (error); 530 } 531 532 533 /* 534 * Perform generic exec duties and switchout to object-file specific 535 * handler. 536 */ 537 int 538 gexec( 539 struct vnode **vpp, 540 struct execa *uap, 541 struct uarg *args, 542 struct intpdata *idatap, 543 int level, 544 long *execsz, 545 caddr_t exec_file, 546 struct cred *cred, 547 int brand_action) 548 { 549 struct vnode *vp, *execvp = NULL; 550 proc_t *pp = ttoproc(curthread); 551 struct execsw *eswp; 552 int error = 0; 553 int suidflags = 0; 554 ssize_t resid; 555 uid_t uid, gid; 556 struct vattr vattr; 557 char magbuf[MAGIC_BYTES]; 558 int setid; 559 cred_t *oldcred, *newcred = NULL; 560 int privflags = 0; 561 int setidfl; 562 priv_set_t fset; 563 564 /* 565 * If the SNOCD or SUGID flag is set, turn it off and remember the 566 * previous setting so we can restore it if we encounter an error. 567 */ 568 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 569 mutex_enter(&pp->p_lock); 570 suidflags = pp->p_flag & PSUIDFLAGS; 571 pp->p_flag &= ~PSUIDFLAGS; 572 mutex_exit(&pp->p_lock); 573 } 574 575 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 576 goto bad_noclose; 577 578 /* need to open vnode for stateful file systems */ 579 if ((error = VOP_OPEN(vpp, FREAD, CRED(), NULL)) != 0) 580 goto bad_noclose; 581 vp = *vpp; 582 583 /* 584 * Note: to support binary compatibility with SunOS a.out 585 * executables, we read in the first four bytes, as the 586 * magic number is in bytes 2-3. 587 */ 588 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 589 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 590 goto bad; 591 if (resid != 0) 592 goto bad; 593 594 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 595 goto bad; 596 597 if (level == 0 && 598 (privflags = execsetid(vp, &vattr, &uid, &gid, &fset, 599 args->pfcred == NULL ? cred : args->pfcred, args->pathname)) != 0) { 600 601 /* Pfcred is a credential with a ref count of 1 */ 602 603 if (args->pfcred != NULL) { 604 privflags |= PRIV_INCREASE|PRIV_RESET; 605 newcred = cred = args->pfcred; 606 } else { 607 newcred = cred = crdup(cred); 608 } 609 610 /* If we can, drop the PA bit */ 611 if ((privflags & PRIV_RESET) != 0) 612 priv_adjust_PA(cred); 613 614 if (privflags & PRIV_SETID) { 615 cred->cr_uid = uid; 616 cred->cr_gid = gid; 617 cred->cr_suid = uid; 618 cred->cr_sgid = gid; 619 } 620 621 if (privflags & MAC_FLAGS) { 622 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 623 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 624 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 625 } 626 627 /* 628 * Implement the privilege updates: 629 * 630 * Restrict with L: 631 * 632 * I' = I & L 633 * 634 * E' = P' = (I' + F) & A 635 * 636 * But if running under ptrace, we cap I and F with P. 637 */ 638 if ((privflags & (PRIV_RESET|PRIV_FORCED)) != 0) { 639 if ((privflags & PRIV_INCREASE) != 0 && 640 (pp->p_proc_flag & P_PR_PTRACE) != 0) { 641 priv_intersect(&CR_OPPRIV(cred), 642 &CR_IPRIV(cred)); 643 priv_intersect(&CR_OPPRIV(cred), &fset); 644 } 645 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 646 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 647 if (privflags & PRIV_FORCED) { 648 priv_set_PA(cred); 649 priv_union(&fset, &CR_EPRIV(cred)); 650 priv_union(&fset, &CR_PPRIV(cred)); 651 } 652 priv_adjust_PA(cred); 653 } 654 } else if (level == 0 && args->pfcred != NULL) { 655 newcred = cred = args->pfcred; 656 privflags |= PRIV_INCREASE; 657 /* pfcred is not forced to adhere to these settings */ 658 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 659 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 660 priv_adjust_PA(cred); 661 } 662 663 /* SunOS 4.x buy-back */ 664 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 665 (vattr.va_mode & (VSUID|VSGID))) { 666 char path[MAXNAMELEN]; 667 refstr_t *mntpt = NULL; 668 int ret = -1; 669 670 bzero(path, sizeof (path)); 671 zone_hold(pp->p_zone); 672 673 ret = vnodetopath(pp->p_zone->zone_rootvp, vp, path, 674 sizeof (path), cred); 675 676 /* fallback to mountpoint if a path can't be found */ 677 if ((ret != 0) || (ret == 0 && path[0] == '\0')) 678 mntpt = vfs_getmntpoint(vp->v_vfsp); 679 680 if (mntpt == NULL) 681 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 682 "!uid %d: setuid execution not allowed, " 683 "file=%s", cred->cr_uid, path); 684 else 685 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 686 "!uid %d: setuid execution not allowed, " 687 "fs=%s, file=%s", cred->cr_uid, 688 ZONE_PATH_TRANSLATE(refstr_value(mntpt), 689 pp->p_zone), exec_file); 690 691 if (!INGLOBALZONE(pp)) { 692 /* zone_rootpath always has trailing / */ 693 if (mntpt == NULL) 694 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 695 "setuid execution not allowed, file=%s%s", 696 pp->p_zone->zone_name, cred->cr_uid, 697 pp->p_zone->zone_rootpath, path + 1); 698 else 699 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 700 "setuid execution not allowed, fs=%s, " 701 "file=%s", pp->p_zone->zone_name, 702 cred->cr_uid, refstr_value(mntpt), 703 exec_file); 704 } 705 706 if (mntpt != NULL) 707 refstr_rele(mntpt); 708 709 zone_rele(pp->p_zone); 710 } 711 712 /* 713 * execsetid() told us whether or not we had to change the 714 * credentials of the process. In privflags, it told us 715 * whether we gained any privileges or executed a set-uid executable. 716 */ 717 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE|PRIV_FORCED)); 718 719 /* 720 * Use /etc/system variable to determine if the stack 721 * should be marked as executable by default. 722 */ 723 if (noexec_user_stack) 724 args->stk_prot &= ~PROT_EXEC; 725 726 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 727 args->ex_vp = vp; 728 729 /* 730 * Traditionally, the setid flags told the sub processes whether 731 * the file just executed was set-uid or set-gid; this caused 732 * some confusion as the 'setid' flag did not match the SUGID 733 * process flag which is only set when the uids/gids do not match. 734 * A script set-gid/set-uid to the real uid/gid would start with 735 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 736 * Now we flag those cases where the calling process cannot 737 * be trusted to influence the newly exec'ed process, either 738 * because it runs with more privileges or when the uids/gids 739 * do in fact not match. 740 * This also makes the runtime linker agree with the on exec 741 * values of SNOCD and SUGID. 742 */ 743 setidfl = 0; 744 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 745 !supgroupmember(cred->cr_gid, cred))) { 746 setidfl |= EXECSETID_UGIDS; 747 } 748 if (setid & PRIV_SETUGID) 749 setidfl |= EXECSETID_SETID; 750 if (setid & PRIV_FORCED) 751 setidfl |= EXECSETID_PRIVS; 752 753 execvp = pp->p_exec; 754 if (execvp) 755 VN_HOLD(execvp); 756 757 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 758 setidfl, exec_file, cred, brand_action); 759 rw_exit(eswp->exec_lock); 760 if (error != 0) { 761 if (execvp) 762 VN_RELE(execvp); 763 /* 764 * If this process's p_exec has been set to the vp of 765 * the executable by exec_func, we will return without 766 * calling VOP_CLOSE because proc_exit will close it 767 * on exit. 768 */ 769 if (pp->p_exec == vp) 770 goto bad_noclose; 771 else 772 goto bad; 773 } 774 775 if (level == 0) { 776 uid_t oruid; 777 778 if (execvp != NULL) { 779 /* 780 * Close the previous executable only if we are 781 * at level 0. 782 */ 783 (void) VOP_CLOSE(execvp, FREAD, 1, (offset_t)0, 784 cred, NULL); 785 } 786 787 mutex_enter(&pp->p_crlock); 788 789 oruid = pp->p_cred->cr_ruid; 790 791 if (newcred != NULL) { 792 /* 793 * Free the old credentials, and set the new ones. 794 * Do this for both the process and the (single) thread. 795 */ 796 crfree(pp->p_cred); 797 pp->p_cred = cred; /* cred already held for proc */ 798 crhold(cred); /* hold new cred for thread */ 799 /* 800 * DTrace accesses t_cred in probe context. t_cred 801 * must always be either NULL, or point to a valid, 802 * allocated cred structure. 803 */ 804 oldcred = curthread->t_cred; 805 curthread->t_cred = cred; 806 crfree(oldcred); 807 808 if (priv_basic_test >= 0 && 809 !PRIV_ISMEMBER(&CR_IPRIV(newcred), 810 priv_basic_test)) { 811 pid_t pid = pp->p_pid; 812 char *fn = PTOU(pp)->u_comm; 813 814 cmn_err(CE_WARN, "%s[%d]: exec: basic_test " 815 "privilege removed from E/I", fn, pid); 816 } 817 } 818 /* 819 * On emerging from a successful exec(), the saved 820 * uid and gid equal the effective uid and gid. 821 */ 822 cred->cr_suid = cred->cr_uid; 823 cred->cr_sgid = cred->cr_gid; 824 825 /* 826 * If the real and effective ids do not match, this 827 * is a setuid process that should not dump core. 828 * The group comparison is tricky; we prevent the code 829 * from flagging SNOCD when executing with an effective gid 830 * which is a supplementary group. 831 */ 832 if (cred->cr_ruid != cred->cr_uid || 833 (cred->cr_rgid != cred->cr_gid && 834 !supgroupmember(cred->cr_gid, cred)) || 835 (privflags & PRIV_INCREASE) != 0) 836 suidflags = PSUIDFLAGS; 837 else 838 suidflags = 0; 839 840 mutex_exit(&pp->p_crlock); 841 if (newcred != NULL && oruid != newcred->cr_ruid) { 842 /* Note that the process remains in the same zone. */ 843 mutex_enter(&pidlock); 844 upcount_dec(oruid, crgetzoneid(newcred)); 845 upcount_inc(newcred->cr_ruid, crgetzoneid(newcred)); 846 mutex_exit(&pidlock); 847 } 848 if (suidflags) { 849 mutex_enter(&pp->p_lock); 850 pp->p_flag |= suidflags; 851 mutex_exit(&pp->p_lock); 852 } 853 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 854 /* 855 * If process is traced via /proc, arrange to 856 * invalidate the associated /proc vnode. 857 */ 858 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 859 args->traceinval = 1; 860 } 861 if (pp->p_proc_flag & P_PR_PTRACE) 862 psignal(pp, SIGTRAP); 863 if (args->traceinval) 864 prinvalidate(&pp->p_user); 865 } 866 if (execvp) 867 VN_RELE(execvp); 868 return (0); 869 870 bad: 871 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, cred, NULL); 872 873 bad_noclose: 874 if (newcred != NULL) 875 crfree(newcred); 876 if (error == 0) 877 error = ENOEXEC; 878 879 if (suidflags) { 880 mutex_enter(&pp->p_lock); 881 pp->p_flag |= suidflags; 882 mutex_exit(&pp->p_lock); 883 } 884 return (error); 885 } 886 887 extern char *execswnames[]; 888 889 struct execsw * 890 allocate_execsw(char *name, char *magic, size_t magic_size) 891 { 892 int i, j; 893 char *ename; 894 char *magicp; 895 896 mutex_enter(&execsw_lock); 897 for (i = 0; i < nexectype; i++) { 898 if (execswnames[i] == NULL) { 899 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 900 (void) strcpy(ename, name); 901 execswnames[i] = ename; 902 /* 903 * Set the magic number last so that we 904 * don't need to hold the execsw_lock in 905 * findexectype(). 906 */ 907 magicp = kmem_alloc(magic_size, KM_SLEEP); 908 for (j = 0; j < magic_size; j++) 909 magicp[j] = magic[j]; 910 execsw[i].exec_magic = magicp; 911 mutex_exit(&execsw_lock); 912 return (&execsw[i]); 913 } 914 } 915 mutex_exit(&execsw_lock); 916 return (NULL); 917 } 918 919 /* 920 * Find the exec switch table entry with the corresponding magic string. 921 */ 922 struct execsw * 923 findexecsw(char *magic) 924 { 925 struct execsw *eswp; 926 927 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 928 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 929 if (magic && eswp->exec_maglen != 0 && 930 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 931 return (eswp); 932 } 933 return (NULL); 934 } 935 936 /* 937 * Find the execsw[] index for the given exec header string by looking for the 938 * magic string at a specified offset and length for each kind of executable 939 * file format until one matches. If no execsw[] entry is found, try to 940 * autoload a module for this magic string. 941 */ 942 struct execsw * 943 findexec_by_hdr(char *header) 944 { 945 struct execsw *eswp; 946 947 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 948 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 949 if (header && eswp->exec_maglen != 0 && 950 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 951 eswp->exec_maglen) == 0) { 952 if (hold_execsw(eswp) != 0) 953 return (NULL); 954 return (eswp); 955 } 956 } 957 return (NULL); /* couldn't find the type */ 958 } 959 960 /* 961 * Find the execsw[] index for the given magic string. If no execsw[] entry 962 * is found, try to autoload a module for this magic string. 963 */ 964 struct execsw * 965 findexec_by_magic(char *magic) 966 { 967 struct execsw *eswp; 968 969 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 970 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 971 if (magic && eswp->exec_maglen != 0 && 972 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 973 if (hold_execsw(eswp) != 0) 974 return (NULL); 975 return (eswp); 976 } 977 } 978 return (NULL); /* couldn't find the type */ 979 } 980 981 static int 982 hold_execsw(struct execsw *eswp) 983 { 984 char *name; 985 986 rw_enter(eswp->exec_lock, RW_READER); 987 while (!LOADED_EXEC(eswp)) { 988 rw_exit(eswp->exec_lock); 989 name = execswnames[eswp-execsw]; 990 ASSERT(name); 991 if (modload("exec", name) == -1) 992 return (-1); 993 rw_enter(eswp->exec_lock, RW_READER); 994 } 995 return (0); 996 } 997 998 static int 999 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp, 1000 priv_set_t *fset, cred_t *cr, const char *pathname) 1001 { 1002 proc_t *pp = ttoproc(curthread); 1003 uid_t uid, gid; 1004 int privflags = 0; 1005 1006 /* 1007 * Remember credentials. 1008 */ 1009 uid = cr->cr_uid; 1010 gid = cr->cr_gid; 1011 1012 /* Will try to reset the PRIV_AWARE bit later. */ 1013 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 1014 privflags |= PRIV_RESET; 1015 1016 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 1017 /* 1018 * If it's a set-uid root program we perform the 1019 * forced privilege look-aside. This has three possible 1020 * outcomes: 1021 * no look aside information -> treat as before 1022 * look aside in Limit set -> apply forced privs 1023 * look aside not in Limit set -> ignore set-uid root 1024 * 1025 * Ordinary set-uid root execution only allowed if the limit 1026 * set holds all unsafe privileges. 1027 */ 1028 if (vattrp->va_mode & VSUID) { 1029 if (vattrp->va_uid == 0) { 1030 int res = get_forced_privs(cr, pathname, fset); 1031 1032 switch (res) { 1033 case -1: 1034 if (priv_issubset(&priv_unsafe, 1035 &CR_LPRIV(cr))) { 1036 uid = vattrp->va_uid; 1037 privflags |= PRIV_SETUGID; 1038 } 1039 break; 1040 case 0: 1041 privflags |= PRIV_FORCED|PRIV_INCREASE; 1042 break; 1043 default: 1044 break; 1045 } 1046 } else { 1047 uid = vattrp->va_uid; 1048 privflags |= PRIV_SETUGID; 1049 } 1050 } 1051 if (vattrp->va_mode & VSGID) { 1052 gid = vattrp->va_gid; 1053 privflags |= PRIV_SETUGID; 1054 } 1055 } 1056 1057 /* 1058 * Do we need to change our credential anyway? 1059 * This is the case when E != I or P != I, as 1060 * we need to do the assignments (with F empty and A full) 1061 * Or when I is not a subset of L; in that case we need to 1062 * enforce L. 1063 * 1064 * I' = L & I 1065 * 1066 * E' = P' = (I' + F) & A 1067 * or 1068 * E' = P' = I' 1069 */ 1070 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 1071 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 1072 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 1073 privflags |= PRIV_RESET; 1074 1075 /* Child has more privileges than parent */ 1076 if (!priv_issubset(&CR_IPRIV(cr), &CR_PPRIV(cr))) 1077 privflags |= PRIV_INCREASE; 1078 1079 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 1080 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 1081 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 1082 privflags |= MAC_FLAGS; 1083 /* 1084 * Set setuid/setgid protections if no ptrace() compatibility. 1085 * For privileged processes, honor setuid/setgid even in 1086 * the presence of ptrace() compatibility. 1087 */ 1088 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 1089 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 1090 (cr->cr_uid != uid || 1091 cr->cr_gid != gid || 1092 cr->cr_suid != uid || 1093 cr->cr_sgid != gid)) { 1094 *uidp = uid; 1095 *gidp = gid; 1096 privflags |= PRIV_SETID; 1097 } 1098 return (privflags); 1099 } 1100 1101 int 1102 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 1103 { 1104 int error; 1105 proc_t *p = ttoproc(curthread); 1106 1107 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 1108 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred, NULL)) 1109 return (error); 1110 /* 1111 * Check the access mode. 1112 * If VPROC, ask /proc if the file is an object file. 1113 */ 1114 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred, NULL)) != 0 || 1115 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 1116 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 1117 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 1118 if (error == 0) 1119 error = EACCES; 1120 return (error); 1121 } 1122 1123 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 1124 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred, NULL))) { 1125 /* 1126 * If process is under ptrace(2) compatibility, 1127 * fail the exec(2). 1128 */ 1129 if (p->p_proc_flag & P_PR_PTRACE) 1130 goto bad; 1131 /* 1132 * Process is traced via /proc. 1133 * Arrange to invalidate the /proc vnode. 1134 */ 1135 args->traceinval = 1; 1136 } 1137 return (0); 1138 bad: 1139 if (error == 0) 1140 error = ENOEXEC; 1141 return (error); 1142 } 1143 1144 /* 1145 * Map a section of an executable file into the user's 1146 * address space. 1147 */ 1148 int 1149 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 1150 off_t offset, int prot, int page, uint_t szc) 1151 { 1152 int error = 0; 1153 off_t oldoffset; 1154 caddr_t zfodbase, oldaddr; 1155 size_t end, oldlen; 1156 size_t zfoddiff; 1157 label_t ljb; 1158 proc_t *p = ttoproc(curthread); 1159 1160 oldaddr = addr; 1161 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1162 if (len) { 1163 oldlen = len; 1164 len += ((size_t)oldaddr - (size_t)addr); 1165 oldoffset = offset; 1166 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1167 if (page) { 1168 spgcnt_t prefltmem, availm, npages; 1169 int preread; 1170 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1171 1172 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1173 mflag |= MAP_TEXT; 1174 } else { 1175 mflag |= MAP_INITDATA; 1176 } 1177 1178 if (valid_usr_range(addr, len, prot, p->p_as, 1179 p->p_as->a_userlimit) != RANGE_OKAY) { 1180 error = ENOMEM; 1181 goto bad; 1182 } 1183 if (error = VOP_MAP(vp, (offset_t)offset, 1184 p->p_as, &addr, len, prot, PROT_ALL, 1185 mflag, CRED(), NULL)) 1186 goto bad; 1187 1188 /* 1189 * If the segment can fit, then we prefault 1190 * the entire segment in. This is based on the 1191 * model that says the best working set of a 1192 * small program is all of its pages. 1193 */ 1194 npages = (spgcnt_t)btopr(len); 1195 prefltmem = freemem - desfree; 1196 preread = 1197 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1198 1199 /* 1200 * If we aren't prefaulting the segment, 1201 * increment "deficit", if necessary to ensure 1202 * that pages will become available when this 1203 * process starts executing. 1204 */ 1205 availm = freemem - lotsfree; 1206 if (preread == 0 && npages > availm && 1207 deficit < lotsfree) { 1208 deficit += MIN((pgcnt_t)(npages - availm), 1209 lotsfree - deficit); 1210 } 1211 1212 if (preread) { 1213 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1214 "execmap preread:freemem %d size %lu", 1215 freemem, len); 1216 (void) as_fault(p->p_as->a_hat, p->p_as, 1217 (caddr_t)addr, len, F_INVAL, S_READ); 1218 } 1219 } else { 1220 if (valid_usr_range(addr, len, prot, p->p_as, 1221 p->p_as->a_userlimit) != RANGE_OKAY) { 1222 error = ENOMEM; 1223 goto bad; 1224 } 1225 1226 if (error = as_map(p->p_as, addr, len, 1227 segvn_create, zfod_argsp)) 1228 goto bad; 1229 /* 1230 * Read in the segment in one big chunk. 1231 */ 1232 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1233 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1234 (rlim64_t)0, CRED(), (ssize_t *)0)) 1235 goto bad; 1236 /* 1237 * Now set protections. 1238 */ 1239 if (prot != PROT_ZFOD) { 1240 (void) as_setprot(p->p_as, (caddr_t)addr, 1241 len, prot); 1242 } 1243 } 1244 } 1245 1246 if (zfodlen) { 1247 struct as *as = curproc->p_as; 1248 struct seg *seg; 1249 uint_t zprot = 0; 1250 1251 end = (size_t)addr + len; 1252 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1253 zfoddiff = (uintptr_t)zfodbase - end; 1254 if (zfoddiff) { 1255 /* 1256 * Before we go to zero the remaining space on the last 1257 * page, make sure we have write permission. 1258 * 1259 * Normal illumos binaries don't even hit the case 1260 * where we have to change permission on the last page 1261 * since their protection is typically either 1262 * PROT_USER | PROT_WRITE | PROT_READ 1263 * or 1264 * PROT_ZFOD (same as PROT_ALL). 1265 * 1266 * We need to be careful how we zero-fill the last page 1267 * if the segment protection does not include 1268 * PROT_WRITE. Using as_setprot() can cause the VM 1269 * segment code to call segvn_vpage(), which must 1270 * allocate a page struct for each page in the segment. 1271 * If we have a very large segment, this may fail, so 1272 * we have to check for that, even though we ignore 1273 * other return values from as_setprot. 1274 */ 1275 1276 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1277 seg = as_segat(curproc->p_as, (caddr_t)end); 1278 if (seg != NULL) 1279 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1280 &zprot); 1281 AS_LOCK_EXIT(as, &as->a_lock); 1282 1283 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1284 if (as_setprot(as, (caddr_t)end, zfoddiff - 1, 1285 zprot | PROT_WRITE) == ENOMEM) { 1286 error = ENOMEM; 1287 goto bad; 1288 } 1289 } 1290 1291 if (on_fault(&ljb)) { 1292 no_fault(); 1293 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1294 (void) as_setprot(as, (caddr_t)end, 1295 zfoddiff - 1, zprot); 1296 error = EFAULT; 1297 goto bad; 1298 } 1299 uzero((void *)end, zfoddiff); 1300 no_fault(); 1301 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1302 (void) as_setprot(as, (caddr_t)end, 1303 zfoddiff - 1, zprot); 1304 } 1305 if (zfodlen > zfoddiff) { 1306 struct segvn_crargs crargs = 1307 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1308 1309 zfodlen -= zfoddiff; 1310 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1311 p->p_as->a_userlimit) != RANGE_OKAY) { 1312 error = ENOMEM; 1313 goto bad; 1314 } 1315 if (szc > 0) { 1316 /* 1317 * ASSERT alignment because the mapelfexec() 1318 * caller for the szc > 0 case extended zfod 1319 * so it's end is pgsz aligned. 1320 */ 1321 size_t pgsz = page_get_pagesize(szc); 1322 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz)); 1323 1324 if (IS_P2ALIGNED(zfodbase, pgsz)) { 1325 crargs.szc = szc; 1326 } else { 1327 crargs.szc = AS_MAP_HEAP; 1328 } 1329 } else { 1330 crargs.szc = AS_MAP_NO_LPOOB; 1331 } 1332 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1333 zfodlen, segvn_create, &crargs)) 1334 goto bad; 1335 if (prot != PROT_ZFOD) { 1336 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1337 zfodlen, prot); 1338 } 1339 } 1340 } 1341 return (0); 1342 bad: 1343 return (error); 1344 } 1345 1346 void 1347 setexecenv(struct execenv *ep) 1348 { 1349 proc_t *p = ttoproc(curthread); 1350 klwp_t *lwp = ttolwp(curthread); 1351 struct vnode *vp; 1352 1353 p->p_bssbase = ep->ex_bssbase; 1354 p->p_brkbase = ep->ex_brkbase; 1355 p->p_brksize = ep->ex_brksize; 1356 if (p->p_exec) 1357 VN_RELE(p->p_exec); /* out with the old */ 1358 vp = p->p_exec = ep->ex_vp; 1359 if (vp != NULL) 1360 VN_HOLD(vp); /* in with the new */ 1361 1362 lwp->lwp_sigaltstack.ss_sp = 0; 1363 lwp->lwp_sigaltstack.ss_size = 0; 1364 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1365 } 1366 1367 int 1368 execopen(struct vnode **vpp, int *fdp) 1369 { 1370 struct vnode *vp = *vpp; 1371 file_t *fp; 1372 int error = 0; 1373 int filemode = FREAD; 1374 1375 VN_HOLD(vp); /* open reference */ 1376 if (error = falloc(NULL, filemode, &fp, fdp)) { 1377 VN_RELE(vp); 1378 *fdp = -1; /* just in case falloc changed value */ 1379 return (error); 1380 } 1381 if (error = VOP_OPEN(&vp, filemode, CRED(), NULL)) { 1382 VN_RELE(vp); 1383 setf(*fdp, NULL); 1384 unfalloc(fp); 1385 *fdp = -1; 1386 return (error); 1387 } 1388 *vpp = vp; /* vnode should not have changed */ 1389 fp->f_vnode = vp; 1390 mutex_exit(&fp->f_tlock); 1391 setf(*fdp, fp); 1392 return (0); 1393 } 1394 1395 int 1396 execclose(int fd) 1397 { 1398 return (closeandsetf(fd, NULL)); 1399 } 1400 1401 1402 /* 1403 * noexec stub function. 1404 */ 1405 /*ARGSUSED*/ 1406 int 1407 noexec( 1408 struct vnode *vp, 1409 struct execa *uap, 1410 struct uarg *args, 1411 struct intpdata *idatap, 1412 int level, 1413 long *execsz, 1414 int setid, 1415 caddr_t exec_file, 1416 struct cred *cred) 1417 { 1418 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1419 return (ENOEXEC); 1420 } 1421 1422 /* 1423 * Support routines for building a user stack. 1424 * 1425 * execve(path, argv, envp) must construct a new stack with the specified 1426 * arguments and environment variables (see exec_args() for a description 1427 * of the user stack layout). To do this, we copy the arguments and 1428 * environment variables from the old user address space into the kernel, 1429 * free the old as, create the new as, and copy our buffered information 1430 * to the new stack. Our kernel buffer has the following structure: 1431 * 1432 * +-----------------------+ <--- stk_base + stk_size 1433 * | string offsets | 1434 * +-----------------------+ <--- stk_offp 1435 * | | 1436 * | STK_AVAIL() space | 1437 * | | 1438 * +-----------------------+ <--- stk_strp 1439 * | strings | 1440 * +-----------------------+ <--- stk_base 1441 * 1442 * When we add a string, we store the string's contents (including the null 1443 * terminator) at stk_strp, and we store the offset of the string relative to 1444 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1445 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1446 * the difference between these pointers. If we run out of space, we return 1447 * an error and exec_args() starts all over again with a buffer twice as large. 1448 * When we're all done, the kernel buffer looks like this: 1449 * 1450 * +-----------------------+ <--- stk_base + stk_size 1451 * | argv[0] offset | 1452 * +-----------------------+ 1453 * | ... | 1454 * +-----------------------+ 1455 * | argv[argc-1] offset | 1456 * +-----------------------+ 1457 * | envp[0] offset | 1458 * +-----------------------+ 1459 * | ... | 1460 * +-----------------------+ 1461 * | envp[envc-1] offset | 1462 * +-----------------------+ 1463 * | AT_SUN_PLATFORM offset| 1464 * +-----------------------+ 1465 * | AT_SUN_EXECNAME offset| 1466 * +-----------------------+ <--- stk_offp 1467 * | | 1468 * | STK_AVAIL() space | 1469 * | | 1470 * +-----------------------+ <--- stk_strp 1471 * | AT_SUN_EXECNAME offset| 1472 * +-----------------------+ 1473 * | AT_SUN_PLATFORM offset| 1474 * +-----------------------+ 1475 * | envp[envc-1] string | 1476 * +-----------------------+ 1477 * | ... | 1478 * +-----------------------+ 1479 * | envp[0] string | 1480 * +-----------------------+ 1481 * | argv[argc-1] string | 1482 * +-----------------------+ 1483 * | ... | 1484 * +-----------------------+ 1485 * | argv[0] string | 1486 * +-----------------------+ <--- stk_base 1487 */ 1488 1489 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1490 1491 /* 1492 * Add a string to the stack. 1493 */ 1494 static int 1495 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1496 { 1497 int error; 1498 size_t len; 1499 1500 if (STK_AVAIL(args) < sizeof (int)) 1501 return (E2BIG); 1502 *--args->stk_offp = args->stk_strp - args->stk_base; 1503 1504 if (segflg == UIO_USERSPACE) { 1505 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1506 if (error != 0) 1507 return (error); 1508 } else { 1509 len = strlen(sp) + 1; 1510 if (len > STK_AVAIL(args)) 1511 return (E2BIG); 1512 bcopy(sp, args->stk_strp, len); 1513 } 1514 1515 args->stk_strp += len; 1516 1517 return (0); 1518 } 1519 1520 static int 1521 stk_getptr(uarg_t *args, char *src, char **dst) 1522 { 1523 int error; 1524 1525 if (args->from_model == DATAMODEL_NATIVE) { 1526 ulong_t ptr; 1527 error = fulword(src, &ptr); 1528 *dst = (caddr_t)ptr; 1529 } else { 1530 uint32_t ptr; 1531 error = fuword32(src, &ptr); 1532 *dst = (caddr_t)(uintptr_t)ptr; 1533 } 1534 return (error); 1535 } 1536 1537 static int 1538 stk_putptr(uarg_t *args, char *addr, char *value) 1539 { 1540 if (args->to_model == DATAMODEL_NATIVE) 1541 return (sulword(addr, (ulong_t)value)); 1542 else 1543 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1544 } 1545 1546 static int 1547 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1548 { 1549 char *sp; 1550 int argc, error; 1551 int argv_empty = 0; 1552 size_t ptrsize = args->from_ptrsize; 1553 size_t size, pad; 1554 char *argv = (char *)uap->argp; 1555 char *envp = (char *)uap->envp; 1556 1557 /* 1558 * Copy interpreter's name and argument to argv[0] and argv[1]. 1559 */ 1560 if (intp != NULL && intp->intp_name != NULL) { 1561 if ((error = stk_add(args, intp->intp_name, UIO_SYSSPACE)) != 0) 1562 return (error); 1563 if (intp->intp_arg != NULL && 1564 (error = stk_add(args, intp->intp_arg, UIO_SYSSPACE)) != 0) 1565 return (error); 1566 if (args->fname != NULL) 1567 error = stk_add(args, args->fname, UIO_SYSSPACE); 1568 else 1569 error = stk_add(args, uap->fname, UIO_USERSPACE); 1570 if (error) 1571 return (error); 1572 1573 /* 1574 * Check for an empty argv[]. 1575 */ 1576 if (stk_getptr(args, argv, &sp)) 1577 return (EFAULT); 1578 if (sp == NULL) 1579 argv_empty = 1; 1580 1581 argv += ptrsize; /* ignore original argv[0] */ 1582 } 1583 1584 if (argv_empty == 0) { 1585 /* 1586 * Add argv[] strings to the stack. 1587 */ 1588 for (;;) { 1589 if (stk_getptr(args, argv, &sp)) 1590 return (EFAULT); 1591 if (sp == NULL) 1592 break; 1593 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1594 return (error); 1595 argv += ptrsize; 1596 } 1597 } 1598 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1599 args->arglen = args->stk_strp - args->stk_base; 1600 1601 /* 1602 * Add environ[] strings to the stack. 1603 */ 1604 if (envp != NULL) { 1605 for (;;) { 1606 char *tmp = args->stk_strp; 1607 if (stk_getptr(args, envp, &sp)) 1608 return (EFAULT); 1609 if (sp == NULL) 1610 break; 1611 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1612 return (error); 1613 if (args->scrubenv && strncmp(tmp, "LD_", 3) == 0) { 1614 /* Undo the copied string */ 1615 args->stk_strp = tmp; 1616 *(args->stk_offp++) = NULL; 1617 } 1618 envp += ptrsize; 1619 } 1620 } 1621 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1622 args->ne = args->na - argc; 1623 1624 /* 1625 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1626 * AT_SUN_EMULATOR strings to the stack. 1627 */ 1628 if (auxvpp != NULL && *auxvpp != NULL) { 1629 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1630 return (error); 1631 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1632 return (error); 1633 if (args->brandname != NULL && 1634 (error = stk_add(args, args->brandname, UIO_SYSSPACE)) != 0) 1635 return (error); 1636 if (args->emulator != NULL && 1637 (error = stk_add(args, args->emulator, UIO_SYSSPACE)) != 0) 1638 return (error); 1639 } 1640 1641 /* 1642 * Compute the size of the stack. This includes all the pointers, 1643 * the space reserved for the aux vector, and all the strings. 1644 * The total number of pointers is args->na (which is argc + envc) 1645 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1646 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1647 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1648 * all the strings, at the very top of the stack. 1649 */ 1650 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1651 (args->stk_strp - args->stk_base); 1652 1653 /* 1654 * Pad the string section with zeroes to align the stack size. 1655 */ 1656 pad = P2NPHASE(size, args->stk_align); 1657 1658 if (STK_AVAIL(args) < pad) 1659 return (E2BIG); 1660 1661 args->usrstack_size = size + pad; 1662 1663 while (pad-- != 0) 1664 *args->stk_strp++ = 0; 1665 1666 args->nc = args->stk_strp - args->stk_base; 1667 1668 return (0); 1669 } 1670 1671 static int 1672 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1673 { 1674 size_t ptrsize = args->to_ptrsize; 1675 ssize_t pslen; 1676 char *kstrp = args->stk_base; 1677 char *ustrp = usrstack - args->nc - ptrsize; 1678 char *usp = usrstack - args->usrstack_size; 1679 int *offp = (int *)(args->stk_base + args->stk_size); 1680 int envc = args->ne; 1681 int argc = args->na - envc; 1682 int i; 1683 1684 /* 1685 * Record argc for /proc. 1686 */ 1687 up->u_argc = argc; 1688 1689 /* 1690 * Put argc on the stack. Note that even though it's an int, 1691 * it always consumes ptrsize bytes (for alignment). 1692 */ 1693 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1694 return (-1); 1695 1696 /* 1697 * Add argc space (ptrsize) to usp and record argv for /proc. 1698 */ 1699 up->u_argv = (uintptr_t)(usp += ptrsize); 1700 1701 /* 1702 * Put the argv[] pointers on the stack. 1703 */ 1704 for (i = 0; i < argc; i++, usp += ptrsize) 1705 if (stk_putptr(args, usp, &ustrp[*--offp])) 1706 return (-1); 1707 1708 /* 1709 * Copy arguments to u_psargs. 1710 */ 1711 pslen = MIN(args->arglen, PSARGSZ) - 1; 1712 for (i = 0; i < pslen; i++) 1713 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1714 while (i < PSARGSZ) 1715 up->u_psargs[i++] = '\0'; 1716 1717 /* 1718 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1719 * record envp for /proc. 1720 */ 1721 up->u_envp = (uintptr_t)(usp += ptrsize); 1722 1723 /* 1724 * Put the envp[] pointers on the stack. 1725 */ 1726 for (i = 0; i < envc; i++, usp += ptrsize) 1727 if (stk_putptr(args, usp, &ustrp[*--offp])) 1728 return (-1); 1729 1730 /* 1731 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1732 * remember where the stack ends, which is also where auxv begins. 1733 */ 1734 args->stackend = usp += ptrsize; 1735 1736 /* 1737 * Put all the argv[], envp[], and auxv strings on the stack. 1738 */ 1739 if (copyout(args->stk_base, ustrp, args->nc)) 1740 return (-1); 1741 1742 /* 1743 * Fill in the aux vector now that we know the user stack addresses 1744 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1745 * AT_SUN_EMULATOR strings. 1746 */ 1747 if (auxvpp != NULL && *auxvpp != NULL) { 1748 if (args->to_model == DATAMODEL_NATIVE) { 1749 auxv_t **a = (auxv_t **)auxvpp; 1750 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1751 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1752 if (args->brandname != NULL) 1753 ADDAUX(*a, 1754 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1755 if (args->emulator != NULL) 1756 ADDAUX(*a, 1757 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1758 } else { 1759 auxv32_t **a = (auxv32_t **)auxvpp; 1760 ADDAUX(*a, 1761 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1762 ADDAUX(*a, 1763 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1764 if (args->brandname != NULL) 1765 ADDAUX(*a, AT_SUN_BRANDNAME, 1766 (int)(uintptr_t)&ustrp[*--offp]) 1767 if (args->emulator != NULL) 1768 ADDAUX(*a, AT_SUN_EMULATOR, 1769 (int)(uintptr_t)&ustrp[*--offp]) 1770 } 1771 } 1772 1773 return (0); 1774 } 1775 1776 /* 1777 * Initialize a new user stack with the specified arguments and environment. 1778 * The initial user stack layout is as follows: 1779 * 1780 * User Stack 1781 * +---------------+ <--- curproc->p_usrstack 1782 * | | 1783 * | slew | 1784 * | | 1785 * +---------------+ 1786 * | NULL | 1787 * +---------------+ 1788 * | | 1789 * | auxv strings | 1790 * | | 1791 * +---------------+ 1792 * | | 1793 * | envp strings | 1794 * | | 1795 * +---------------+ 1796 * | | 1797 * | argv strings | 1798 * | | 1799 * +---------------+ <--- ustrp 1800 * | | 1801 * | aux vector | 1802 * | | 1803 * +---------------+ <--- auxv 1804 * | NULL | 1805 * +---------------+ 1806 * | envp[envc-1] | 1807 * +---------------+ 1808 * | ... | 1809 * +---------------+ 1810 * | envp[0] | 1811 * +---------------+ <--- envp[] 1812 * | NULL | 1813 * +---------------+ 1814 * | argv[argc-1] | 1815 * +---------------+ 1816 * | ... | 1817 * +---------------+ 1818 * | argv[0] | 1819 * +---------------+ <--- argv[] 1820 * | argc | 1821 * +---------------+ <--- stack base 1822 */ 1823 int 1824 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1825 { 1826 size_t size; 1827 int error; 1828 proc_t *p = ttoproc(curthread); 1829 user_t *up = PTOU(p); 1830 char *usrstack; 1831 rctl_entity_p_t e; 1832 struct as *as; 1833 extern int use_stk_lpg; 1834 size_t sp_slew; 1835 1836 args->from_model = p->p_model; 1837 if (p->p_model == DATAMODEL_NATIVE) { 1838 args->from_ptrsize = sizeof (long); 1839 } else { 1840 args->from_ptrsize = sizeof (int32_t); 1841 } 1842 1843 if (args->to_model == DATAMODEL_NATIVE) { 1844 args->to_ptrsize = sizeof (long); 1845 args->ncargs = NCARGS; 1846 args->stk_align = STACK_ALIGN; 1847 if (args->addr32) 1848 usrstack = (char *)USRSTACK64_32; 1849 else 1850 usrstack = (char *)USRSTACK; 1851 } else { 1852 args->to_ptrsize = sizeof (int32_t); 1853 args->ncargs = NCARGS32; 1854 args->stk_align = STACK_ALIGN32; 1855 usrstack = (char *)USRSTACK32; 1856 } 1857 1858 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1859 1860 #if defined(__sparc) 1861 /* 1862 * Make sure user register windows are empty before 1863 * attempting to make a new stack. 1864 */ 1865 (void) flush_user_windows_to_stack(NULL); 1866 #endif 1867 1868 for (size = PAGESIZE; ; size *= 2) { 1869 args->stk_size = size; 1870 args->stk_base = kmem_alloc(size, KM_SLEEP); 1871 args->stk_strp = args->stk_base; 1872 args->stk_offp = (int *)(args->stk_base + size); 1873 error = stk_copyin(uap, args, intp, auxvpp); 1874 if (error == 0) 1875 break; 1876 kmem_free(args->stk_base, size); 1877 if (error != E2BIG && error != ENAMETOOLONG) 1878 return (error); 1879 if (size >= args->ncargs) 1880 return (E2BIG); 1881 } 1882 1883 size = args->usrstack_size; 1884 1885 ASSERT(error == 0); 1886 ASSERT(P2PHASE(size, args->stk_align) == 0); 1887 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1888 1889 if (size > args->ncargs) { 1890 kmem_free(args->stk_base, args->stk_size); 1891 return (E2BIG); 1892 } 1893 1894 /* 1895 * Leave only the current lwp and force the other lwps to exit. 1896 * If another lwp beat us to the punch by calling exit(), bail out. 1897 */ 1898 if ((error = exitlwps(0)) != 0) { 1899 kmem_free(args->stk_base, args->stk_size); 1900 return (error); 1901 } 1902 1903 /* 1904 * Revoke any doors created by the process. 1905 */ 1906 if (p->p_door_list) 1907 door_exit(); 1908 1909 /* 1910 * Release schedctl data structures. 1911 */ 1912 if (p->p_pagep) 1913 schedctl_proc_cleanup(); 1914 1915 /* 1916 * Clean up any DTrace helpers for the process. 1917 */ 1918 if (p->p_dtrace_helpers != NULL) { 1919 ASSERT(dtrace_helpers_cleanup != NULL); 1920 (*dtrace_helpers_cleanup)(); 1921 } 1922 1923 mutex_enter(&p->p_lock); 1924 /* 1925 * Cleanup the DTrace provider associated with this process. 1926 */ 1927 if (p->p_dtrace_probes) { 1928 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 1929 dtrace_fasttrap_exec_ptr(p); 1930 } 1931 mutex_exit(&p->p_lock); 1932 1933 /* 1934 * discard the lwpchan cache. 1935 */ 1936 if (p->p_lcp != NULL) 1937 lwpchan_destroy_cache(1); 1938 1939 /* 1940 * Delete the POSIX timers. 1941 */ 1942 if (p->p_itimer != NULL) 1943 timer_exit(); 1944 1945 /* 1946 * Delete the ITIMER_REALPROF interval timer. 1947 * The other ITIMER_* interval timers are specified 1948 * to be inherited across exec(). 1949 */ 1950 delete_itimer_realprof(); 1951 1952 if (AU_AUDITING()) 1953 audit_exec(args->stk_base, args->stk_base + args->arglen, 1954 args->na - args->ne, args->ne, args->pfcred); 1955 1956 /* 1957 * Ensure that we don't change resource associations while we 1958 * change address spaces. 1959 */ 1960 mutex_enter(&p->p_lock); 1961 pool_barrier_enter(); 1962 mutex_exit(&p->p_lock); 1963 1964 /* 1965 * Destroy the old address space and create a new one. 1966 * From here on, any errors are fatal to the exec()ing process. 1967 * On error we return -1, which means the caller must SIGKILL 1968 * the process. 1969 */ 1970 relvm(); 1971 1972 mutex_enter(&p->p_lock); 1973 pool_barrier_exit(); 1974 mutex_exit(&p->p_lock); 1975 1976 up->u_execsw = args->execswp; 1977 1978 p->p_brkbase = NULL; 1979 p->p_brksize = 0; 1980 p->p_brkpageszc = 0; 1981 p->p_stksize = 0; 1982 p->p_stkpageszc = 0; 1983 p->p_model = args->to_model; 1984 p->p_usrstack = usrstack; 1985 p->p_stkprot = args->stk_prot; 1986 p->p_datprot = args->dat_prot; 1987 1988 /* 1989 * Reset resource controls such that all controls are again active as 1990 * well as appropriate to the potentially new address model for the 1991 * process. 1992 */ 1993 e.rcep_p.proc = p; 1994 e.rcep_t = RCENTITY_PROCESS; 1995 rctl_set_reset(p->p_rctls, p, &e); 1996 1997 /* Too early to call map_pgsz for the heap */ 1998 if (use_stk_lpg) { 1999 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0)); 2000 } 2001 2002 mutex_enter(&p->p_lock); 2003 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 2004 mutex_exit(&p->p_lock); 2005 2006 /* 2007 * Some platforms may choose to randomize real stack start by adding a 2008 * small slew (not more than a few hundred bytes) to the top of the 2009 * stack. This helps avoid cache thrashing when identical processes 2010 * simultaneously share caches that don't provide enough associativity 2011 * (e.g. sun4v systems). In this case stack slewing makes the same hot 2012 * stack variables in different processes to live in different cache 2013 * sets increasing effective associativity. 2014 */ 2015 sp_slew = exec_get_spslew(); 2016 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0); 2017 exec_set_sp(size + sp_slew); 2018 2019 as = as_alloc(); 2020 p->p_as = as; 2021 as->a_proc = p; 2022 if (p->p_model == DATAMODEL_ILP32 || args->addr32) 2023 as->a_userlimit = (caddr_t)USERLIMIT32; 2024 (void) hat_setup(as->a_hat, HAT_ALLOC); 2025 hat_join_srd(as->a_hat, args->ex_vp); 2026 2027 /* 2028 * Finally, write out the contents of the new stack. 2029 */ 2030 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up); 2031 kmem_free(args->stk_base, args->stk_size); 2032 return (error); 2033 }