Print this page
    
uts: Allow for address space randomisation.
Randomise the base addresses of shared objects, non-fixed mappings, the
stack and the heap.  Introduce a service, svc:/system/process-security,
and a tool psecflags(1) to control and observe it
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/sun4v/vm/mach_vm_dep.c
          +++ new/usr/src/uts/sun4v/vm/mach_vm_dep.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  /*
  22   22   * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
  23   23   * Use is subject to license terms.
  24   24   */
  25   25  
  26   26  /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
  27   27  /*      All Rights Reserved   */
  28   28  
  29   29  /*
  30   30   * Portions of this source code were derived from Berkeley 4.3 BSD
  31   31   * under license from the Regents of the University of California.
  32   32   */
  33   33  
  34   34  /*
  35   35   * UNIX machine dependent virtual memory support.
  36   36   */
  37   37  
  38   38  #include <sys/vm.h>
  39   39  #include <sys/exec.h>
  40   40  #include <sys/cmn_err.h>
  41   41  #include <sys/cpu_module.h>
  42   42  #include <sys/cpu.h>
  43   43  #include <sys/elf_SPARC.h>
  44   44  #include <sys/archsystm.h>
  
    | ↓ open down ↓ | 44 lines elided | ↑ open up ↑ | 
  45   45  #include <vm/hat_sfmmu.h>
  46   46  #include <sys/memnode.h>
  47   47  #include <sys/mem_cage.h>
  48   48  #include <vm/vm_dep.h>
  49   49  #include <sys/error.h>
  50   50  #include <sys/machsystm.h>
  51   51  #include <vm/seg_kmem.h>
  52   52  #include <sys/stack.h>
  53   53  #include <sys/atomic.h>
  54   54  #include <sys/promif.h>
       55 +#include <sys/random.h>
  55   56  
  56   57  uint_t page_colors = 0;
  57   58  uint_t page_colors_mask = 0;
  58   59  uint_t page_coloring_shift = 0;
  59   60  int consistent_coloring;
  60   61  int update_proc_pgcolorbase_after_fork = 1;
  61   62  
  62   63  uint_t mmu_page_sizes = MMU_PAGE_SIZES;
  63   64  uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
  64   65  uint_t mmu_hashcnt = MAX_HASHCNT;
  65   66  uint_t max_mmu_hashcnt = MAX_HASHCNT;
  66   67  size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
  67   68  
  68   69  /*
  69   70   * A bitmask of the page sizes supported by hardware based upon szc.
  70   71   * The base pagesize (p_szc == 0) must always be supported by the hardware.
  71   72   */
  72   73  int mmu_exported_pagesize_mask;
  73   74  uint_t mmu_exported_page_sizes;
  74   75  
  75   76  uint_t szc_2_userszc[MMU_PAGE_SIZES];
  76   77  uint_t userszc_2_szc[MMU_PAGE_SIZES];
  77   78  
  78   79  extern uint_t vac_colors_mask;
  79   80  extern int vac_shift;
  80   81  
  81   82  hw_pagesize_t hw_page_array[] = {
  82   83          {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT},
  83   84          {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0,
  84   85              MMU_PAGESIZE64K >> MMU_PAGESHIFT},
  85   86          {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0,
  86   87              MMU_PAGESIZE512K >> MMU_PAGESHIFT},
  87   88          {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
  88   89          {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0,
  89   90              MMU_PAGESIZE32M >> MMU_PAGESHIFT},
  90   91          {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0,
  91   92              MMU_PAGESIZE256M >> MMU_PAGESHIFT},
  92   93          {0, 0, 0, 0}
  93   94  };
  94   95  
  95   96  /*
  96   97   * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end
  97   98   */
  98   99  int     max_bootlp_tteszc = TTE256M;
  99  100  
 100  101  /*
 101  102   * Maximum and default segment size tunables for user heap, stack, private
 102  103   * and shared anonymous memory, and user text and initialized data.
 103  104   */
 104  105  size_t max_uheap_lpsize = MMU_PAGESIZE64K;
 105  106  size_t default_uheap_lpsize = MMU_PAGESIZE64K;
 106  107  size_t max_ustack_lpsize = MMU_PAGESIZE64K;
 107  108  size_t default_ustack_lpsize = MMU_PAGESIZE64K;
 108  109  size_t max_privmap_lpsize = MMU_PAGESIZE64K;
 109  110  size_t max_uidata_lpsize = MMU_PAGESIZE64K;
 110  111  size_t max_utext_lpsize = MMU_PAGESIZE4M;
 111  112  size_t max_shm_lpsize = MMU_PAGESIZE4M;
 112  113  
 113  114  /*
 114  115   * Contiguous memory allocator data structures and variables.
 115  116   *
 116  117   * The sun4v kernel must provide a means to allocate physically
 117  118   * contiguous, non-relocatable memory. The contig_mem_arena
 118  119   * and contig_mem_slab_arena exist for this purpose. Allocations
 119  120   * that require physically contiguous non-relocatable memory should
 120  121   * be made using contig_mem_alloc() or contig_mem_alloc_align()
 121  122   * which return memory from contig_mem_arena or contig_mem_reloc_arena.
 122  123   * These arenas import memory from the contig_mem_slab_arena one
 123  124   * contiguous chunk at a time.
 124  125   *
 125  126   * When importing slabs, an attempt is made to allocate a large page
 126  127   * to use as backing. As a result of the non-relocatable requirement,
 127  128   * slabs are allocated from the kernel cage freelists. If the cage does
 128  129   * not contain any free contiguous chunks large enough to satisfy the
 129  130   * slab allocation, the slab size will be downsized and the operation
 130  131   * retried. Large slab sizes are tried first to minimize cage
 131  132   * fragmentation. If the slab allocation is unsuccessful still, the slab
 132  133   * is allocated from outside the kernel cage. This is undesirable because,
 133  134   * until slabs are freed, it results in non-relocatable chunks scattered
 134  135   * throughout physical memory.
 135  136   *
 136  137   * Allocations from the contig_mem_arena are backed by slabs from the
 137  138   * cage. Allocations from the contig_mem_reloc_arena are backed by
 138  139   * slabs allocated outside the cage. Slabs are left share locked while
 139  140   * in use to prevent non-cage slabs from being relocated.
 140  141   *
 141  142   * Since there is no guarantee that large pages will be available in
 142  143   * the kernel cage, contiguous memory is reserved and added to the
 143  144   * contig_mem_arena at boot time, making it available for later
 144  145   * contiguous memory allocations. This reserve will be used to satisfy
 145  146   * contig_mem allocations first and it is only when the reserve is
 146  147   * completely allocated that new slabs will need to be imported.
 147  148   */
 148  149  static  vmem_t          *contig_mem_slab_arena;
 149  150  static  vmem_t          *contig_mem_arena;
 150  151  static  vmem_t          *contig_mem_reloc_arena;
 151  152  static  kmutex_t        contig_mem_lock;
 152  153  #define CONTIG_MEM_ARENA_QUANTUM        64
 153  154  #define CONTIG_MEM_SLAB_ARENA_QUANTUM   MMU_PAGESIZE64K
 154  155  
 155  156  /* contig_mem_arena import slab sizes, in decreasing size order */
 156  157  static size_t contig_mem_import_sizes[] = {
 157  158          MMU_PAGESIZE4M,
 158  159          MMU_PAGESIZE512K,
 159  160          MMU_PAGESIZE64K
 160  161  };
  
    | ↓ open down ↓ | 96 lines elided | ↑ open up ↑ | 
 161  162  #define NUM_IMPORT_SIZES        \
 162  163          (sizeof (contig_mem_import_sizes) / sizeof (size_t))
 163  164  static size_t contig_mem_import_size_max        = MMU_PAGESIZE4M;
 164  165  size_t contig_mem_slab_size                     = MMU_PAGESIZE4M;
 165  166  
 166  167  /* Boot-time allocated buffer to pre-populate the contig_mem_arena */
 167  168  static size_t contig_mem_prealloc_size;
 168  169  static void *contig_mem_prealloc_buf;
 169  170  
 170  171  /*
      172 + * The maximum amount a randomized mapping will be slewed.  We should perhaps
      173 + * arrange things so these tunables can be separate for mmap, mmapobj, and
      174 + * ld.so
      175 + */
      176 +volatile size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
      177 +
      178 +/*
 171  179   * map_addr_proc() is the routine called when the system is to
 172  180   * choose an address for the user.  We will pick an address
 173  181   * range which is just below the current stack limit.  The
 174  182   * algorithm used for cache consistency on machines with virtual
 175  183   * address caches is such that offset 0 in the vnode is always
 176  184   * on a shm_alignment'ed aligned address.  Unfortunately, this
 177  185   * means that vnodes which are demand paged will not be mapped
 178  186   * cache consistently with the executable images.  When the
 179  187   * cache alignment for a given object is inconsistent, the
 180  188   * lower level code must manage the translations so that this
 181  189   * is not seen here (at the cost of efficiency, of course).
 182  190   *
 183  191   * Every mapping will have a redzone of a single page on either side of
 184  192   * the request. This is done to leave one page unmapped between segments.
 185  193   * This is not required, but it's useful for the user because if their
 186  194   * program strays across a segment boundary, it will catch a fault
 187  195   * immediately making debugging a little easier.  Currently the redzone
 188  196   * is mandatory.
 189  197   *
 190  198   * addrp is a value/result parameter.
 191  199   *      On input it is a hint from the user to be used in a completely
 192  200   *      machine dependent fashion.  For MAP_ALIGN, addrp contains the
 193  201   *      minimal alignment, which must be some "power of two" multiple of
 194  202   *      pagesize.
 195  203   *
 196  204   *      On output it is NULL if no address can be found in the current
 197  205   *      processes address space or else an address that is currently
 198  206   *      not mapped for len bytes with a page of red zone on either side.
 199  207   *      If vacalign is true, then the selected address will obey the alignment
 200  208   *      constraints of a vac machine based on the given off value.
 201  209   */
 202  210  /*ARGSUSED3*/
 203  211  void
 204  212  map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
 205  213      caddr_t userlimit, struct proc *p, uint_t flags)
 206  214  {
 207  215          struct as *as = p->p_as;
 208  216          caddr_t addr;
 209  217          caddr_t base;
 210  218          size_t slen;
 211  219          uintptr_t align_amount;
 212  220          int allow_largepage_alignment = 1;
 213  221  
 214  222          base = p->p_brkbase;
 215  223          if (userlimit < as->a_userlimit) {
 216  224                  /*
 217  225                   * This happens when a program wants to map something in
 218  226                   * a range that's accessible to a program in a smaller
 219  227                   * address space.  For example, a 64-bit program might
 220  228                   * be calling mmap32(2) to guarantee that the returned
 221  229                   * address is below 4Gbytes.
 222  230                   */
 223  231                  ASSERT(userlimit > base);
 224  232                  slen = userlimit - base;
 225  233          } else {
 226  234                  slen = p->p_usrstack - base -
 227  235                      ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
 228  236          }
 229  237          /* Make len be a multiple of PAGESIZE */
 230  238          len = (len + PAGEOFFSET) & PAGEMASK;
 231  239  
 232  240          /*
 233  241           *  If the request is larger than the size of a particular
 234  242           *  mmu level, then we use that level to map the request.
 235  243           *  But this requires that both the virtual and the physical
 236  244           *  addresses be aligned with respect to that level, so we
 237  245           *  do the virtual bit of nastiness here.
 238  246           *
 239  247           *  For 32-bit processes, only those which have specified
 240  248           *  MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
 241  249           *  we can potentially waste up to 256MB of the 4G process address
 242  250           *  space just for alignment.
 243  251           *
 244  252           * XXXQ Should iterate trough hw_page_array here to catch
 245  253           * all supported pagesizes
 246  254           */
 247  255          if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
 248  256              ((uintptr_t)*addrp) != 0)) {
 249  257                  allow_largepage_alignment = 0;
 250  258          }
 251  259          if ((mmu_page_sizes == max_mmu_page_sizes) &&
 252  260              allow_largepage_alignment &&
 253  261              (len >= MMU_PAGESIZE256M)) {        /* 256MB mappings */
 254  262                  align_amount = MMU_PAGESIZE256M;
 255  263          } else if ((mmu_page_sizes == max_mmu_page_sizes) &&
 256  264              allow_largepage_alignment &&
 257  265              (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */
 258  266                  align_amount = MMU_PAGESIZE32M;
 259  267          } else if (len >= MMU_PAGESIZE4M) {  /* 4MB mappings */
 260  268                  align_amount = MMU_PAGESIZE4M;
 261  269          } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
 262  270                  align_amount = MMU_PAGESIZE512K;
 263  271          } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
 264  272                  align_amount = MMU_PAGESIZE64K;
 265  273          } else  {
 266  274                  /*
 267  275                   * Align virtual addresses on a 64K boundary to ensure
 268  276                   * that ELF shared libraries are mapped with the appropriate
 269  277                   * alignment constraints by the run-time linker.
 270  278                   */
 271  279                  align_amount = ELF_SPARC_MAXPGSZ;
 272  280                  if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
 273  281                      ((uintptr_t)*addrp < align_amount))
 274  282                          align_amount = (uintptr_t)*addrp;
 275  283          }
 276  284  
 277  285          /*
 278  286           * 64-bit processes require 1024K alignment of ELF shared libraries.
 279  287           */
 280  288          if (p->p_model == DATAMODEL_LP64)
 281  289                  align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
 282  290  #ifdef VAC
 283  291          if (vac && vacalign && (align_amount < shm_alignment))
 284  292                  align_amount = shm_alignment;
 285  293  #endif
 286  294  
 287  295          if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
 288  296                  align_amount = (uintptr_t)*addrp;
 289  297          }
 290  298  
 291  299          ASSERT(ISP2(align_amount));
 292  300          ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
 293  301  
 294  302          /*
 295  303           * Look for a large enough hole starting below the stack limit.
 296  304           * After finding it, use the upper part.
 297  305           */
 298  306          as_purge(as);
 299  307          off = off & (align_amount - 1);
 300  308          if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
 301  309              PAGESIZE, off) == 0) {
 302  310                  caddr_t as_addr;
 303  311  
 304  312                  /*
 305  313                   * addr is the highest possible address to use since we have
 306  314                   * a PAGESIZE redzone at the beginning and end.
 307  315                   */
 308  316                  addr = base + slen - (PAGESIZE + len);
 309  317                  as_addr = addr;
 310  318                  /*
 311  319                   * Round address DOWN to the alignment amount and
 312  320                   * add the offset in.
  
    | ↓ open down ↓ | 132 lines elided | ↑ open up ↑ | 
 313  321                   * If addr is greater than as_addr, len would not be large
 314  322                   * enough to include the redzone, so we must adjust down
 315  323                   * by the alignment amount.
 316  324                   */
 317  325                  addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
 318  326                  addr += (long)off;
 319  327                  if (addr > as_addr) {
 320  328                          addr -= align_amount;
 321  329                  }
 322  330  
      331 +                /*
      332 +                 * If randomization is requested, slew the allocation
      333 +                 * backwards, within the same gap, by a random amount.
      334 +                 *
      335 +                 * XXX: This will fall over in processes like Java, which
      336 +                 * commonly have a great many small mappings.
      337 +                 */
      338 +                if (flags & _MAP_RANDOMIZE) {
      339 +                        uint32_t slew;
      340 +
      341 +                        (void) random_get_pseudo_bytes((uint8_t *)&slew,
      342 +                            sizeof (slew));
      343 +
      344 +                        slew = slew % MIN(aslr_max_map_skew, (addr - base));
      345 +                        addr -= P2ALIGN(slew, align_amount);
      346 +                }
      347 +
 323  348                  ASSERT(addr > base);
 324  349                  ASSERT(addr + len < base + slen);
 325  350                  ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
 326  351                      ((uintptr_t)(off)));
 327  352                  *addrp = addr;
 328  353  
 329  354          } else {
 330  355                  *addrp = NULL;  /* no more virtual space */
 331  356          }
 332  357  }
 333  358  
 334  359  /*
 335  360   * Platform-dependent page scrub call.
 336  361   * We call hypervisor to scrub the page.
 337  362   */
 338  363  void
 339  364  pagescrub(page_t *pp, uint_t off, uint_t len)
 340  365  {
 341  366          uint64_t pa, length;
 342  367  
 343  368          pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off);
 344  369          length = (uint64_t)len;
 345  370  
 346  371          (void) mem_scrub(pa, length);
 347  372  }
 348  373  
 349  374  void
 350  375  sync_data_memory(caddr_t va, size_t len)
 351  376  {
 352  377          /* Call memory sync function */
 353  378          (void) mem_sync(va, len);
 354  379  }
 355  380  
 356  381  size_t
 357  382  mmu_get_kernel_lpsize(size_t lpsize)
 358  383  {
 359  384          extern int mmu_exported_pagesize_mask;
 360  385          uint_t tte;
 361  386  
 362  387          if (lpsize == 0) {
 363  388                  /* no setting for segkmem_lpsize in /etc/system: use default */
 364  389                  if (mmu_exported_pagesize_mask & (1 << TTE256M)) {
 365  390                          lpsize = MMU_PAGESIZE256M;
 366  391                  } else if (mmu_exported_pagesize_mask & (1 << TTE4M)) {
 367  392                          lpsize = MMU_PAGESIZE4M;
 368  393                  } else if (mmu_exported_pagesize_mask & (1 << TTE64K)) {
 369  394                          lpsize = MMU_PAGESIZE64K;
 370  395                  } else {
 371  396                          lpsize = MMU_PAGESIZE;
 372  397                  }
 373  398  
 374  399                  return (lpsize);
 375  400          }
 376  401  
 377  402          for (tte = TTE8K; tte <= TTE256M; tte++) {
 378  403  
 379  404                  if ((mmu_exported_pagesize_mask & (1 << tte)) == 0)
 380  405                          continue;
 381  406  
 382  407                  if (lpsize == TTEBYTES(tte))
 383  408                          return (lpsize);
 384  409          }
 385  410  
 386  411          lpsize = TTEBYTES(TTE8K);
 387  412          return (lpsize);
 388  413  }
 389  414  
 390  415  void
 391  416  mmu_init_kcontext()
 392  417  {
 393  418  }
 394  419  
 395  420  /*ARGSUSED*/
 396  421  void
 397  422  mmu_init_kernel_pgsz(struct hat *hat)
 398  423  {
 399  424  }
 400  425  
 401  426  static void *
 402  427  contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag)
 403  428  {
 404  429          page_t *ppl;
 405  430          page_t *rootpp;
 406  431          caddr_t addr = NULL;
 407  432          pgcnt_t npages = btopr(size);
 408  433          page_t **ppa;
 409  434          int pgflags;
 410  435          spgcnt_t i = 0;
 411  436  
 412  437  
 413  438          ASSERT(size <= contig_mem_import_size_max);
 414  439          ASSERT((size & (size - 1)) == 0);
 415  440  
 416  441          if ((addr = vmem_xalloc(vmp, size, size, 0, 0,
 417  442              NULL, NULL, vmflag)) == NULL) {
 418  443                  return (NULL);
 419  444          }
 420  445  
 421  446          /* The address should be slab-size aligned. */
 422  447          ASSERT(((uintptr_t)addr & (size - 1)) == 0);
 423  448  
 424  449          if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
 425  450                  vmem_xfree(vmp, addr, size);
 426  451                  return (NULL);
 427  452          }
 428  453  
 429  454          pgflags = PG_EXCL;
 430  455          if (vmflag & VM_NORELOC)
 431  456                  pgflags |= PG_NORELOC;
 432  457  
 433  458          ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
 434  459              pgflags, &kvseg, addr, NULL);
 435  460  
 436  461          if (ppl == NULL) {
 437  462                  vmem_xfree(vmp, addr, size);
 438  463                  page_unresv(npages);
 439  464                  return (NULL);
 440  465          }
 441  466  
 442  467          rootpp = ppl;
 443  468          ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
 444  469          while (ppl != NULL) {
 445  470                  page_t *pp = ppl;
 446  471                  ppa[i++] = pp;
 447  472                  page_sub(&ppl, pp);
 448  473                  ASSERT(page_iolock_assert(pp));
 449  474                  ASSERT(PAGE_EXCL(pp));
 450  475                  page_io_unlock(pp);
 451  476          }
 452  477  
 453  478          /*
 454  479           * Load the locked entry.  It's OK to preload the entry into
 455  480           * the TSB since we now support large mappings in the kernel TSB.
 456  481           */
 457  482          hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
 458  483              ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK);
 459  484  
 460  485          ASSERT(i == page_get_pagecnt(ppa[0]->p_szc));
 461  486          for (--i; i >= 0; --i) {
 462  487                  ASSERT(ppa[i]->p_szc == ppa[0]->p_szc);
 463  488                  ASSERT(page_pptonum(ppa[i]) == page_pptonum(ppa[0]) + i);
 464  489                  (void) page_pp_lock(ppa[i], 0, 1);
 465  490                  /*
 466  491                   * Leave the page share locked. For non-cage pages,
 467  492                   * this would prevent memory DR if it were supported
 468  493                   * on sun4v.
 469  494                   */
 470  495                  page_downgrade(ppa[i]);
 471  496          }
 472  497  
 473  498          kmem_free(ppa, npages * sizeof (page_t *));
 474  499          return (addr);
 475  500  }
 476  501  
 477  502  /*
 478  503   * Allocates a slab by first trying to use the largest slab size
 479  504   * in contig_mem_import_sizes and then falling back to smaller slab
 480  505   * sizes still large enough for the allocation. The sizep argument
 481  506   * is a pointer to the requested size. When a slab is successfully
 482  507   * allocated, the slab size, which must be >= *sizep and <=
 483  508   * contig_mem_import_size_max, is returned in the *sizep argument.
 484  509   * Returns the virtual address of the new slab.
 485  510   */
 486  511  static void *
 487  512  span_alloc_downsize(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
 488  513  {
 489  514          int i;
 490  515  
 491  516          ASSERT(*sizep <= contig_mem_import_size_max);
 492  517  
 493  518          for (i = 0; i < NUM_IMPORT_SIZES; i++) {
 494  519                  size_t page_size = contig_mem_import_sizes[i];
 495  520  
 496  521                  /*
 497  522                   * Check that the alignment is also less than the
 498  523                   * import (large page) size. In the case where the
 499  524                   * alignment is larger than the size, a large page
 500  525                   * large enough for the allocation is not necessarily
 501  526                   * physical-address aligned to satisfy the requested
 502  527                   * alignment. Since alignment is required to be a
 503  528                   * power-of-2, any large page >= size && >= align will
 504  529                   * suffice.
 505  530                   */
 506  531                  if (*sizep <= page_size && align <= page_size) {
 507  532                          void *addr;
 508  533                          addr = contig_mem_span_alloc(vmp, page_size, vmflag);
 509  534                          if (addr == NULL)
 510  535                                  continue;
 511  536                          *sizep = page_size;
 512  537                          return (addr);
 513  538                  }
 514  539                  return (NULL);
 515  540          }
 516  541  
 517  542          return (NULL);
 518  543  }
 519  544  
 520  545  static void *
 521  546  contig_mem_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, int vmflag)
 522  547  {
 523  548          return (span_alloc_downsize(vmp, sizep, align, vmflag | VM_NORELOC));
 524  549  }
 525  550  
 526  551  static void *
 527  552  contig_mem_reloc_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align,
 528  553      int vmflag)
 529  554  {
 530  555          ASSERT((vmflag & VM_NORELOC) == 0);
 531  556          return (span_alloc_downsize(vmp, sizep, align, vmflag));
 532  557  }
 533  558  
 534  559  /*
 535  560   * Free a span, which is always exactly one large page.
 536  561   */
 537  562  static void
 538  563  contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size)
 539  564  {
 540  565          page_t *pp;
 541  566          caddr_t addr = inaddr;
 542  567          caddr_t eaddr;
 543  568          pgcnt_t npages = btopr(size);
 544  569          page_t *rootpp = NULL;
 545  570  
 546  571          ASSERT(size <= contig_mem_import_size_max);
 547  572          /* All slabs should be size aligned */
 548  573          ASSERT(((uintptr_t)addr & (size - 1)) == 0);
 549  574  
 550  575          hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
 551  576  
 552  577          for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
 553  578                  pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr);
 554  579                  if (pp == NULL) {
 555  580                          panic("contig_mem_span_free: page not found");
 556  581                  }
 557  582                  if (!page_tryupgrade(pp)) {
 558  583                          page_unlock(pp);
 559  584                          pp = page_lookup(&kvp,
 560  585                              (u_offset_t)(uintptr_t)addr, SE_EXCL);
 561  586                          if (pp == NULL)
 562  587                                  panic("contig_mem_span_free: page not found");
 563  588                  }
 564  589  
 565  590                  ASSERT(PAGE_EXCL(pp));
 566  591                  ASSERT(size == page_get_pagesize(pp->p_szc));
 567  592                  ASSERT(rootpp == NULL || rootpp->p_szc == pp->p_szc);
 568  593                  ASSERT(rootpp == NULL || (page_pptonum(rootpp) +
 569  594                      (pgcnt_t)btop(addr - (caddr_t)inaddr) == page_pptonum(pp)));
 570  595  
 571  596                  page_pp_unlock(pp, 0, 1);
 572  597  
 573  598                  if (rootpp == NULL)
 574  599                          rootpp = pp;
 575  600          }
 576  601          page_destroy_pages(rootpp);
 577  602          page_unresv(npages);
 578  603  
 579  604          if (vmp != NULL)
 580  605                  vmem_xfree(vmp, inaddr, size);
 581  606  }
 582  607  
 583  608  static void *
 584  609  contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t *sizep, size_t align,
 585  610      int vmflag)
 586  611  {
 587  612          ASSERT((align & (align - 1)) == 0);
 588  613          return (vmem_xalloc(vmp, *sizep, align, 0, 0, NULL, NULL, vmflag));
 589  614  }
 590  615  
 591  616  /*
 592  617   * contig_mem_alloc, contig_mem_alloc_align
 593  618   *
 594  619   * Caution: contig_mem_alloc and contig_mem_alloc_align should be
 595  620   * used only when physically contiguous non-relocatable memory is
 596  621   * required. Furthermore, use of these allocation routines should be
 597  622   * minimized as well as should the allocation size. As described in the
 598  623   * contig_mem_arena comment block above, slab allocations fall back to
 599  624   * being outside of the cage. Therefore, overuse of these allocation
 600  625   * routines can lead to non-relocatable large pages being allocated
 601  626   * outside the cage. Such pages prevent the allocation of a larger page
 602  627   * occupying overlapping pages. This can impact performance for
 603  628   * applications that utilize e.g. 256M large pages.
 604  629   */
 605  630  
 606  631  /*
 607  632   * Allocates size aligned contiguous memory up to contig_mem_import_size_max.
 608  633   * Size must be a power of 2.
 609  634   */
 610  635  void *
 611  636  contig_mem_alloc(size_t size)
 612  637  {
 613  638          ASSERT((size & (size - 1)) == 0);
 614  639          return (contig_mem_alloc_align(size, size));
 615  640  }
 616  641  
 617  642  /*
 618  643   * contig_mem_alloc_align allocates real contiguous memory with the
 619  644   * specified alignment up to contig_mem_import_size_max. The alignment must
 620  645   * be a power of 2 and no greater than contig_mem_import_size_max. We assert
 621  646   * the aligment is a power of 2. For non-debug, vmem_xalloc will panic
 622  647   * for non power of 2 alignments.
 623  648   */
 624  649  void *
 625  650  contig_mem_alloc_align(size_t size, size_t align)
 626  651  {
 627  652          void *buf;
 628  653  
 629  654          ASSERT(size <= contig_mem_import_size_max);
 630  655          ASSERT(align <= contig_mem_import_size_max);
 631  656          ASSERT((align & (align - 1)) == 0);
 632  657  
 633  658          if (align < CONTIG_MEM_ARENA_QUANTUM)
 634  659                  align = CONTIG_MEM_ARENA_QUANTUM;
 635  660  
 636  661          /*
 637  662           * We take the lock here to serialize span allocations.
 638  663           * We do not lose concurrency for the common case, since
 639  664           * allocations that don't require new span allocations
 640  665           * are serialized by vmem_xalloc. Serializing span
 641  666           * allocations also prevents us from trying to allocate
 642  667           * more spans than necessary.
 643  668           */
 644  669          mutex_enter(&contig_mem_lock);
 645  670  
 646  671          buf = vmem_xalloc(contig_mem_arena, size, align, 0, 0,
 647  672              NULL, NULL, VM_NOSLEEP | VM_NORELOC);
 648  673  
 649  674          if ((buf == NULL) && (size <= MMU_PAGESIZE)) {
 650  675                  mutex_exit(&contig_mem_lock);
 651  676                  return (vmem_xalloc(static_alloc_arena, size, align, 0, 0,
 652  677                      NULL, NULL, VM_NOSLEEP));
 653  678          }
 654  679  
 655  680          if (buf == NULL) {
 656  681                  buf = vmem_xalloc(contig_mem_reloc_arena, size, align, 0, 0,
 657  682                      NULL, NULL, VM_NOSLEEP);
 658  683          }
 659  684  
 660  685          mutex_exit(&contig_mem_lock);
 661  686  
 662  687          return (buf);
 663  688  }
 664  689  
 665  690  void
 666  691  contig_mem_free(void *vaddr, size_t size)
 667  692  {
 668  693          if (vmem_contains(contig_mem_arena, vaddr, size)) {
 669  694                  vmem_xfree(contig_mem_arena, vaddr, size);
 670  695          } else if (size > MMU_PAGESIZE) {
 671  696                  vmem_xfree(contig_mem_reloc_arena, vaddr, size);
 672  697          } else {
 673  698                  vmem_xfree(static_alloc_arena, vaddr, size);
 674  699          }
 675  700  }
 676  701  
 677  702  /*
 678  703   * We create a set of stacked vmem arenas to enable us to
 679  704   * allocate large >PAGESIZE chucks of contiguous Real Address space.
 680  705   * The vmem_xcreate interface is used to create the contig_mem_arena
 681  706   * allowing the import routine to downsize the requested slab size
 682  707   * and return a smaller slab.
 683  708   */
 684  709  void
 685  710  contig_mem_init(void)
 686  711  {
 687  712          mutex_init(&contig_mem_lock, NULL, MUTEX_DEFAULT, NULL);
 688  713  
 689  714          contig_mem_slab_arena = vmem_xcreate("contig_mem_slab_arena", NULL, 0,
 690  715              CONTIG_MEM_SLAB_ARENA_QUANTUM, contig_vmem_xalloc_aligned_wrapper,
 691  716              vmem_xfree, heap_arena, 0, VM_SLEEP | VMC_XALIGN);
 692  717  
 693  718          contig_mem_arena = vmem_xcreate("contig_mem_arena", NULL, 0,
 694  719              CONTIG_MEM_ARENA_QUANTUM, contig_mem_span_xalloc,
 695  720              contig_mem_span_free, contig_mem_slab_arena, 0,
 696  721              VM_SLEEP | VM_BESTFIT | VMC_XALIGN);
 697  722  
 698  723          contig_mem_reloc_arena = vmem_xcreate("contig_mem_reloc_arena", NULL, 0,
 699  724              CONTIG_MEM_ARENA_QUANTUM, contig_mem_reloc_span_xalloc,
 700  725              contig_mem_span_free, contig_mem_slab_arena, 0,
 701  726              VM_SLEEP | VM_BESTFIT | VMC_XALIGN);
 702  727  
 703  728          if (contig_mem_prealloc_buf == NULL || vmem_add(contig_mem_arena,
 704  729              contig_mem_prealloc_buf, contig_mem_prealloc_size, VM_SLEEP)
 705  730              == NULL) {
 706  731                  cmn_err(CE_WARN, "Failed to pre-populate contig_mem_arena");
 707  732          }
 708  733  }
 709  734  
 710  735  /*
 711  736   * In calculating how much memory to pre-allocate, we include a small
 712  737   * amount per-CPU to account for per-CPU buffers in line with measured
 713  738   * values for different size systems. contig_mem_prealloc_base_size is
 714  739   * a cpu specific amount to be pre-allocated before considering per-CPU
 715  740   * requirements and memory size. We always pre-allocate a minimum amount
 716  741   * of memory determined by PREALLOC_MIN. Beyond that, we take the minimum
 717  742   * of contig_mem_prealloc_base_size and a small percentage of physical
 718  743   * memory to prevent allocating too much on smaller systems.
 719  744   * contig_mem_prealloc_base_size is global, allowing for the CPU module
 720  745   * to increase its value if necessary.
 721  746   */
 722  747  #define PREALLOC_PER_CPU        (256 * 1024)            /* 256K */
 723  748  #define PREALLOC_PERCENT        (4)                     /* 4% */
 724  749  #define PREALLOC_MIN            (16 * 1024 * 1024)      /* 16M */
 725  750  size_t contig_mem_prealloc_base_size = 0;
 726  751  
 727  752  /*
 728  753   * Called at boot-time allowing pre-allocation of contiguous memory.
 729  754   * The argument 'alloc_base' is the requested base address for the
 730  755   * allocation and originates in startup_memlist.
 731  756   */
 732  757  caddr_t
 733  758  contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages)
 734  759  {
 735  760          caddr_t chunkp;
 736  761  
 737  762          contig_mem_prealloc_size = MIN((PREALLOC_PER_CPU * ncpu_guest_max) +
 738  763              contig_mem_prealloc_base_size,
 739  764              (ptob(npages) * PREALLOC_PERCENT) / 100);
 740  765          contig_mem_prealloc_size = MAX(contig_mem_prealloc_size, PREALLOC_MIN);
 741  766          contig_mem_prealloc_size = P2ROUNDUP(contig_mem_prealloc_size,
 742  767              MMU_PAGESIZE4M);
 743  768  
 744  769          alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, MMU_PAGESIZE4M);
 745  770          if (prom_alloc(alloc_base, contig_mem_prealloc_size,
 746  771              MMU_PAGESIZE4M) != alloc_base) {
 747  772  
 748  773                  /*
 749  774                   * Failed.  This may mean the physical memory has holes in it
 750  775                   * and it will be more difficult to get large contiguous
 751  776                   * pieces of memory.  Since we only guarantee contiguous
 752  777                   * pieces of memory contig_mem_import_size_max or smaller,
 753  778                   * loop, getting contig_mem_import_size_max at a time, until
 754  779                   * failure or contig_mem_prealloc_size is reached.
 755  780                   */
 756  781                  for (chunkp = alloc_base;
 757  782                      (chunkp - alloc_base) < contig_mem_prealloc_size;
 758  783                      chunkp += contig_mem_import_size_max) {
 759  784  
 760  785                          if (prom_alloc(chunkp, contig_mem_import_size_max,
 761  786                              MMU_PAGESIZE4M) != chunkp) {
 762  787                                  break;
 763  788                          }
 764  789                  }
 765  790                  contig_mem_prealloc_size = chunkp - alloc_base;
 766  791                  ASSERT(contig_mem_prealloc_size != 0);
 767  792          }
  
    | ↓ open down ↓ | 435 lines elided | ↑ open up ↑ | 
 768  793  
 769  794          if (contig_mem_prealloc_size != 0) {
 770  795                  contig_mem_prealloc_buf = alloc_base;
 771  796          } else {
 772  797                  contig_mem_prealloc_buf = NULL;
 773  798          }
 774  799          alloc_base += contig_mem_prealloc_size;
 775  800  
 776  801          return (alloc_base);
 777  802  }
 778      -
 779      -static uint_t sp_color_stride = 16;
 780      -static uint_t sp_color_mask = 0x1f;
 781      -static uint_t sp_current_color = (uint_t)-1;
 782      -
 783      -size_t
 784      -exec_get_spslew(void)
 785      -{
 786      -        uint_t spcolor = atomic_inc_32_nv(&sp_current_color);
 787      -        return ((size_t)((spcolor & sp_color_mask) * SA(sp_color_stride)));
 788      -}
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX