1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 /* 35 * UNIX machine dependent virtual memory support. 36 */ 37 38 #include <sys/vm.h> 39 #include <sys/exec.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cpu_module.h> 42 #include <sys/cpu.h> 43 #include <sys/elf_SPARC.h> 44 #include <sys/archsystm.h> 45 #include <vm/hat_sfmmu.h> 46 #include <sys/memnode.h> 47 #include <sys/mem_cage.h> 48 #include <vm/vm_dep.h> 49 #include <sys/error.h> 50 #include <sys/machsystm.h> 51 #include <vm/seg_kmem.h> 52 #include <sys/stack.h> 53 #include <sys/atomic.h> 54 #include <sys/promif.h> 55 #include <sys/random.h> 56 57 uint_t page_colors = 0; 58 uint_t page_colors_mask = 0; 59 uint_t page_coloring_shift = 0; 60 int consistent_coloring; 61 int update_proc_pgcolorbase_after_fork = 1; 62 63 uint_t mmu_page_sizes = MMU_PAGE_SIZES; 64 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES; 65 uint_t mmu_hashcnt = MAX_HASHCNT; 66 uint_t max_mmu_hashcnt = MAX_HASHCNT; 67 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE; 68 69 /* 70 * A bitmask of the page sizes supported by hardware based upon szc. 71 * The base pagesize (p_szc == 0) must always be supported by the hardware. 72 */ 73 int mmu_exported_pagesize_mask; 74 uint_t mmu_exported_page_sizes; 75 76 uint_t szc_2_userszc[MMU_PAGE_SIZES]; 77 uint_t userszc_2_szc[MMU_PAGE_SIZES]; 78 79 extern uint_t vac_colors_mask; 80 extern int vac_shift; 81 82 hw_pagesize_t hw_page_array[] = { 83 {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT}, 84 {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0, 85 MMU_PAGESIZE64K >> MMU_PAGESHIFT}, 86 {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0, 87 MMU_PAGESIZE512K >> MMU_PAGESHIFT}, 88 {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT}, 89 {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0, 90 MMU_PAGESIZE32M >> MMU_PAGESHIFT}, 91 {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0, 92 MMU_PAGESIZE256M >> MMU_PAGESHIFT}, 93 {0, 0, 0, 0} 94 }; 95 96 /* 97 * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end 98 */ 99 int max_bootlp_tteszc = TTE256M; 100 101 /* 102 * Maximum and default segment size tunables for user heap, stack, private 103 * and shared anonymous memory, and user text and initialized data. 104 */ 105 size_t max_uheap_lpsize = MMU_PAGESIZE64K; 106 size_t default_uheap_lpsize = MMU_PAGESIZE64K; 107 size_t max_ustack_lpsize = MMU_PAGESIZE64K; 108 size_t default_ustack_lpsize = MMU_PAGESIZE64K; 109 size_t max_privmap_lpsize = MMU_PAGESIZE64K; 110 size_t max_uidata_lpsize = MMU_PAGESIZE64K; 111 size_t max_utext_lpsize = MMU_PAGESIZE4M; 112 size_t max_shm_lpsize = MMU_PAGESIZE4M; 113 114 /* 115 * Contiguous memory allocator data structures and variables. 116 * 117 * The sun4v kernel must provide a means to allocate physically 118 * contiguous, non-relocatable memory. The contig_mem_arena 119 * and contig_mem_slab_arena exist for this purpose. Allocations 120 * that require physically contiguous non-relocatable memory should 121 * be made using contig_mem_alloc() or contig_mem_alloc_align() 122 * which return memory from contig_mem_arena or contig_mem_reloc_arena. 123 * These arenas import memory from the contig_mem_slab_arena one 124 * contiguous chunk at a time. 125 * 126 * When importing slabs, an attempt is made to allocate a large page 127 * to use as backing. As a result of the non-relocatable requirement, 128 * slabs are allocated from the kernel cage freelists. If the cage does 129 * not contain any free contiguous chunks large enough to satisfy the 130 * slab allocation, the slab size will be downsized and the operation 131 * retried. Large slab sizes are tried first to minimize cage 132 * fragmentation. If the slab allocation is unsuccessful still, the slab 133 * is allocated from outside the kernel cage. This is undesirable because, 134 * until slabs are freed, it results in non-relocatable chunks scattered 135 * throughout physical memory. 136 * 137 * Allocations from the contig_mem_arena are backed by slabs from the 138 * cage. Allocations from the contig_mem_reloc_arena are backed by 139 * slabs allocated outside the cage. Slabs are left share locked while 140 * in use to prevent non-cage slabs from being relocated. 141 * 142 * Since there is no guarantee that large pages will be available in 143 * the kernel cage, contiguous memory is reserved and added to the 144 * contig_mem_arena at boot time, making it available for later 145 * contiguous memory allocations. This reserve will be used to satisfy 146 * contig_mem allocations first and it is only when the reserve is 147 * completely allocated that new slabs will need to be imported. 148 */ 149 static vmem_t *contig_mem_slab_arena; 150 static vmem_t *contig_mem_arena; 151 static vmem_t *contig_mem_reloc_arena; 152 static kmutex_t contig_mem_lock; 153 #define CONTIG_MEM_ARENA_QUANTUM 64 154 #define CONTIG_MEM_SLAB_ARENA_QUANTUM MMU_PAGESIZE64K 155 156 /* contig_mem_arena import slab sizes, in decreasing size order */ 157 static size_t contig_mem_import_sizes[] = { 158 MMU_PAGESIZE4M, 159 MMU_PAGESIZE512K, 160 MMU_PAGESIZE64K 161 }; 162 #define NUM_IMPORT_SIZES \ 163 (sizeof (contig_mem_import_sizes) / sizeof (size_t)) 164 static size_t contig_mem_import_size_max = MMU_PAGESIZE4M; 165 size_t contig_mem_slab_size = MMU_PAGESIZE4M; 166 167 /* Boot-time allocated buffer to pre-populate the contig_mem_arena */ 168 static size_t contig_mem_prealloc_size; 169 static void *contig_mem_prealloc_buf; 170 171 /* 172 * The maximum amount a randomized mapping will be slewed. We should perhaps 173 * arrange things so these tunables can be separate for mmap, mmapobj, and 174 * ld.so 175 */ 176 volatile size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */ 177 178 /* 179 * map_addr_proc() is the routine called when the system is to 180 * choose an address for the user. We will pick an address 181 * range which is just below the current stack limit. The 182 * algorithm used for cache consistency on machines with virtual 183 * address caches is such that offset 0 in the vnode is always 184 * on a shm_alignment'ed aligned address. Unfortunately, this 185 * means that vnodes which are demand paged will not be mapped 186 * cache consistently with the executable images. When the 187 * cache alignment for a given object is inconsistent, the 188 * lower level code must manage the translations so that this 189 * is not seen here (at the cost of efficiency, of course). 190 * 191 * Every mapping will have a redzone of a single page on either side of 192 * the request. This is done to leave one page unmapped between segments. 193 * This is not required, but it's useful for the user because if their 194 * program strays across a segment boundary, it will catch a fault 195 * immediately making debugging a little easier. Currently the redzone 196 * is mandatory. 197 * 198 * addrp is a value/result parameter. 199 * On input it is a hint from the user to be used in a completely 200 * machine dependent fashion. For MAP_ALIGN, addrp contains the 201 * minimal alignment, which must be some "power of two" multiple of 202 * pagesize. 203 * 204 * On output it is NULL if no address can be found in the current 205 * processes address space or else an address that is currently 206 * not mapped for len bytes with a page of red zone on either side. 207 * If vacalign is true, then the selected address will obey the alignment 208 * constraints of a vac machine based on the given off value. 209 */ 210 /*ARGSUSED3*/ 211 void 212 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign, 213 caddr_t userlimit, struct proc *p, uint_t flags) 214 { 215 struct as *as = p->p_as; 216 caddr_t addr; 217 caddr_t base; 218 size_t slen; 219 uintptr_t align_amount; 220 int allow_largepage_alignment = 1; 221 222 base = p->p_brkbase; 223 if (userlimit < as->a_userlimit) { 224 /* 225 * This happens when a program wants to map something in 226 * a range that's accessible to a program in a smaller 227 * address space. For example, a 64-bit program might 228 * be calling mmap32(2) to guarantee that the returned 229 * address is below 4Gbytes. 230 */ 231 ASSERT(userlimit > base); 232 slen = userlimit - base; 233 } else { 234 slen = p->p_usrstack - base - 235 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 236 } 237 /* Make len be a multiple of PAGESIZE */ 238 len = (len + PAGEOFFSET) & PAGEMASK; 239 240 /* 241 * If the request is larger than the size of a particular 242 * mmu level, then we use that level to map the request. 243 * But this requires that both the virtual and the physical 244 * addresses be aligned with respect to that level, so we 245 * do the virtual bit of nastiness here. 246 * 247 * For 32-bit processes, only those which have specified 248 * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise 249 * we can potentially waste up to 256MB of the 4G process address 250 * space just for alignment. 251 * 252 * XXXQ Should iterate trough hw_page_array here to catch 253 * all supported pagesizes 254 */ 255 if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 || 256 ((uintptr_t)*addrp) != 0)) { 257 allow_largepage_alignment = 0; 258 } 259 if ((mmu_page_sizes == max_mmu_page_sizes) && 260 allow_largepage_alignment && 261 (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */ 262 align_amount = MMU_PAGESIZE256M; 263 } else if ((mmu_page_sizes == max_mmu_page_sizes) && 264 allow_largepage_alignment && 265 (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */ 266 align_amount = MMU_PAGESIZE32M; 267 } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */ 268 align_amount = MMU_PAGESIZE4M; 269 } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */ 270 align_amount = MMU_PAGESIZE512K; 271 } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */ 272 align_amount = MMU_PAGESIZE64K; 273 } else { 274 /* 275 * Align virtual addresses on a 64K boundary to ensure 276 * that ELF shared libraries are mapped with the appropriate 277 * alignment constraints by the run-time linker. 278 */ 279 align_amount = ELF_SPARC_MAXPGSZ; 280 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) && 281 ((uintptr_t)*addrp < align_amount)) 282 align_amount = (uintptr_t)*addrp; 283 } 284 285 /* 286 * 64-bit processes require 1024K alignment of ELF shared libraries. 287 */ 288 if (p->p_model == DATAMODEL_LP64) 289 align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ); 290 #ifdef VAC 291 if (vac && vacalign && (align_amount < shm_alignment)) 292 align_amount = shm_alignment; 293 #endif 294 295 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) { 296 align_amount = (uintptr_t)*addrp; 297 } 298 299 ASSERT(ISP2(align_amount)); 300 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 301 302 /* 303 * Look for a large enough hole starting below the stack limit. 304 * After finding it, use the upper part. 305 */ 306 as_purge(as); 307 off = off & (align_amount - 1); 308 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 309 PAGESIZE, off) == 0) { 310 caddr_t as_addr; 311 312 /* 313 * addr is the highest possible address to use since we have 314 * a PAGESIZE redzone at the beginning and end. 315 */ 316 addr = base + slen - (PAGESIZE + len); 317 as_addr = addr; 318 /* 319 * Round address DOWN to the alignment amount and 320 * add the offset in. 321 * If addr is greater than as_addr, len would not be large 322 * enough to include the redzone, so we must adjust down 323 * by the alignment amount. 324 */ 325 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l))); 326 addr += (long)off; 327 if (addr > as_addr) { 328 addr -= align_amount; 329 } 330 331 /* 332 * If randomization is requested, slew the allocation 333 * backwards, within the same gap, by a random amount. 334 * 335 * XXX: This will fall over in processes like Java, which 336 * commonly have a great many small mappings. 337 */ 338 if (flags & _MAP_RANDOMIZE) { 339 uint32_t slew; 340 341 (void) random_get_pseudo_bytes((uint8_t *)&slew, 342 sizeof (slew)); 343 344 slew = slew % MIN(aslr_max_map_skew, (addr - base)); 345 addr -= P2ALIGN(slew, align_amount); 346 } 347 348 ASSERT(addr > base); 349 ASSERT(addr + len < base + slen); 350 ASSERT(((uintptr_t)addr & (align_amount - 1l)) == 351 ((uintptr_t)(off))); 352 *addrp = addr; 353 354 } else { 355 *addrp = NULL; /* no more virtual space */ 356 } 357 } 358 359 /* 360 * Platform-dependent page scrub call. 361 * We call hypervisor to scrub the page. 362 */ 363 void 364 pagescrub(page_t *pp, uint_t off, uint_t len) 365 { 366 uint64_t pa, length; 367 368 pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off); 369 length = (uint64_t)len; 370 371 (void) mem_scrub(pa, length); 372 } 373 374 void 375 sync_data_memory(caddr_t va, size_t len) 376 { 377 /* Call memory sync function */ 378 (void) mem_sync(va, len); 379 } 380 381 size_t 382 mmu_get_kernel_lpsize(size_t lpsize) 383 { 384 extern int mmu_exported_pagesize_mask; 385 uint_t tte; 386 387 if (lpsize == 0) { 388 /* no setting for segkmem_lpsize in /etc/system: use default */ 389 if (mmu_exported_pagesize_mask & (1 << TTE256M)) { 390 lpsize = MMU_PAGESIZE256M; 391 } else if (mmu_exported_pagesize_mask & (1 << TTE4M)) { 392 lpsize = MMU_PAGESIZE4M; 393 } else if (mmu_exported_pagesize_mask & (1 << TTE64K)) { 394 lpsize = MMU_PAGESIZE64K; 395 } else { 396 lpsize = MMU_PAGESIZE; 397 } 398 399 return (lpsize); 400 } 401 402 for (tte = TTE8K; tte <= TTE256M; tte++) { 403 404 if ((mmu_exported_pagesize_mask & (1 << tte)) == 0) 405 continue; 406 407 if (lpsize == TTEBYTES(tte)) 408 return (lpsize); 409 } 410 411 lpsize = TTEBYTES(TTE8K); 412 return (lpsize); 413 } 414 415 void 416 mmu_init_kcontext() 417 { 418 } 419 420 /*ARGSUSED*/ 421 void 422 mmu_init_kernel_pgsz(struct hat *hat) 423 { 424 } 425 426 static void * 427 contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag) 428 { 429 page_t *ppl; 430 page_t *rootpp; 431 caddr_t addr = NULL; 432 pgcnt_t npages = btopr(size); 433 page_t **ppa; 434 int pgflags; 435 spgcnt_t i = 0; 436 437 438 ASSERT(size <= contig_mem_import_size_max); 439 ASSERT((size & (size - 1)) == 0); 440 441 if ((addr = vmem_xalloc(vmp, size, size, 0, 0, 442 NULL, NULL, vmflag)) == NULL) { 443 return (NULL); 444 } 445 446 /* The address should be slab-size aligned. */ 447 ASSERT(((uintptr_t)addr & (size - 1)) == 0); 448 449 if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) { 450 vmem_xfree(vmp, addr, size); 451 return (NULL); 452 } 453 454 pgflags = PG_EXCL; 455 if (vmflag & VM_NORELOC) 456 pgflags |= PG_NORELOC; 457 458 ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size, 459 pgflags, &kvseg, addr, NULL); 460 461 if (ppl == NULL) { 462 vmem_xfree(vmp, addr, size); 463 page_unresv(npages); 464 return (NULL); 465 } 466 467 rootpp = ppl; 468 ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP); 469 while (ppl != NULL) { 470 page_t *pp = ppl; 471 ppa[i++] = pp; 472 page_sub(&ppl, pp); 473 ASSERT(page_iolock_assert(pp)); 474 ASSERT(PAGE_EXCL(pp)); 475 page_io_unlock(pp); 476 } 477 478 /* 479 * Load the locked entry. It's OK to preload the entry into 480 * the TSB since we now support large mappings in the kernel TSB. 481 */ 482 hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size, 483 ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK); 484 485 ASSERT(i == page_get_pagecnt(ppa[0]->p_szc)); 486 for (--i; i >= 0; --i) { 487 ASSERT(ppa[i]->p_szc == ppa[0]->p_szc); 488 ASSERT(page_pptonum(ppa[i]) == page_pptonum(ppa[0]) + i); 489 (void) page_pp_lock(ppa[i], 0, 1); 490 /* 491 * Leave the page share locked. For non-cage pages, 492 * this would prevent memory DR if it were supported 493 * on sun4v. 494 */ 495 page_downgrade(ppa[i]); 496 } 497 498 kmem_free(ppa, npages * sizeof (page_t *)); 499 return (addr); 500 } 501 502 /* 503 * Allocates a slab by first trying to use the largest slab size 504 * in contig_mem_import_sizes and then falling back to smaller slab 505 * sizes still large enough for the allocation. The sizep argument 506 * is a pointer to the requested size. When a slab is successfully 507 * allocated, the slab size, which must be >= *sizep and <= 508 * contig_mem_import_size_max, is returned in the *sizep argument. 509 * Returns the virtual address of the new slab. 510 */ 511 static void * 512 span_alloc_downsize(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 513 { 514 int i; 515 516 ASSERT(*sizep <= contig_mem_import_size_max); 517 518 for (i = 0; i < NUM_IMPORT_SIZES; i++) { 519 size_t page_size = contig_mem_import_sizes[i]; 520 521 /* 522 * Check that the alignment is also less than the 523 * import (large page) size. In the case where the 524 * alignment is larger than the size, a large page 525 * large enough for the allocation is not necessarily 526 * physical-address aligned to satisfy the requested 527 * alignment. Since alignment is required to be a 528 * power-of-2, any large page >= size && >= align will 529 * suffice. 530 */ 531 if (*sizep <= page_size && align <= page_size) { 532 void *addr; 533 addr = contig_mem_span_alloc(vmp, page_size, vmflag); 534 if (addr == NULL) 535 continue; 536 *sizep = page_size; 537 return (addr); 538 } 539 return (NULL); 540 } 541 542 return (NULL); 543 } 544 545 static void * 546 contig_mem_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, int vmflag) 547 { 548 return (span_alloc_downsize(vmp, sizep, align, vmflag | VM_NORELOC)); 549 } 550 551 static void * 552 contig_mem_reloc_span_xalloc(vmem_t *vmp, size_t *sizep, size_t align, 553 int vmflag) 554 { 555 ASSERT((vmflag & VM_NORELOC) == 0); 556 return (span_alloc_downsize(vmp, sizep, align, vmflag)); 557 } 558 559 /* 560 * Free a span, which is always exactly one large page. 561 */ 562 static void 563 contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size) 564 { 565 page_t *pp; 566 caddr_t addr = inaddr; 567 caddr_t eaddr; 568 pgcnt_t npages = btopr(size); 569 page_t *rootpp = NULL; 570 571 ASSERT(size <= contig_mem_import_size_max); 572 /* All slabs should be size aligned */ 573 ASSERT(((uintptr_t)addr & (size - 1)) == 0); 574 575 hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK); 576 577 for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) { 578 pp = page_find(&kvp, (u_offset_t)(uintptr_t)addr); 579 if (pp == NULL) { 580 panic("contig_mem_span_free: page not found"); 581 } 582 if (!page_tryupgrade(pp)) { 583 page_unlock(pp); 584 pp = page_lookup(&kvp, 585 (u_offset_t)(uintptr_t)addr, SE_EXCL); 586 if (pp == NULL) 587 panic("contig_mem_span_free: page not found"); 588 } 589 590 ASSERT(PAGE_EXCL(pp)); 591 ASSERT(size == page_get_pagesize(pp->p_szc)); 592 ASSERT(rootpp == NULL || rootpp->p_szc == pp->p_szc); 593 ASSERT(rootpp == NULL || (page_pptonum(rootpp) + 594 (pgcnt_t)btop(addr - (caddr_t)inaddr) == page_pptonum(pp))); 595 596 page_pp_unlock(pp, 0, 1); 597 598 if (rootpp == NULL) 599 rootpp = pp; 600 } 601 page_destroy_pages(rootpp); 602 page_unresv(npages); 603 604 if (vmp != NULL) 605 vmem_xfree(vmp, inaddr, size); 606 } 607 608 static void * 609 contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t *sizep, size_t align, 610 int vmflag) 611 { 612 ASSERT((align & (align - 1)) == 0); 613 return (vmem_xalloc(vmp, *sizep, align, 0, 0, NULL, NULL, vmflag)); 614 } 615 616 /* 617 * contig_mem_alloc, contig_mem_alloc_align 618 * 619 * Caution: contig_mem_alloc and contig_mem_alloc_align should be 620 * used only when physically contiguous non-relocatable memory is 621 * required. Furthermore, use of these allocation routines should be 622 * minimized as well as should the allocation size. As described in the 623 * contig_mem_arena comment block above, slab allocations fall back to 624 * being outside of the cage. Therefore, overuse of these allocation 625 * routines can lead to non-relocatable large pages being allocated 626 * outside the cage. Such pages prevent the allocation of a larger page 627 * occupying overlapping pages. This can impact performance for 628 * applications that utilize e.g. 256M large pages. 629 */ 630 631 /* 632 * Allocates size aligned contiguous memory up to contig_mem_import_size_max. 633 * Size must be a power of 2. 634 */ 635 void * 636 contig_mem_alloc(size_t size) 637 { 638 ASSERT((size & (size - 1)) == 0); 639 return (contig_mem_alloc_align(size, size)); 640 } 641 642 /* 643 * contig_mem_alloc_align allocates real contiguous memory with the 644 * specified alignment up to contig_mem_import_size_max. The alignment must 645 * be a power of 2 and no greater than contig_mem_import_size_max. We assert 646 * the aligment is a power of 2. For non-debug, vmem_xalloc will panic 647 * for non power of 2 alignments. 648 */ 649 void * 650 contig_mem_alloc_align(size_t size, size_t align) 651 { 652 void *buf; 653 654 ASSERT(size <= contig_mem_import_size_max); 655 ASSERT(align <= contig_mem_import_size_max); 656 ASSERT((align & (align - 1)) == 0); 657 658 if (align < CONTIG_MEM_ARENA_QUANTUM) 659 align = CONTIG_MEM_ARENA_QUANTUM; 660 661 /* 662 * We take the lock here to serialize span allocations. 663 * We do not lose concurrency for the common case, since 664 * allocations that don't require new span allocations 665 * are serialized by vmem_xalloc. Serializing span 666 * allocations also prevents us from trying to allocate 667 * more spans than necessary. 668 */ 669 mutex_enter(&contig_mem_lock); 670 671 buf = vmem_xalloc(contig_mem_arena, size, align, 0, 0, 672 NULL, NULL, VM_NOSLEEP | VM_NORELOC); 673 674 if ((buf == NULL) && (size <= MMU_PAGESIZE)) { 675 mutex_exit(&contig_mem_lock); 676 return (vmem_xalloc(static_alloc_arena, size, align, 0, 0, 677 NULL, NULL, VM_NOSLEEP)); 678 } 679 680 if (buf == NULL) { 681 buf = vmem_xalloc(contig_mem_reloc_arena, size, align, 0, 0, 682 NULL, NULL, VM_NOSLEEP); 683 } 684 685 mutex_exit(&contig_mem_lock); 686 687 return (buf); 688 } 689 690 void 691 contig_mem_free(void *vaddr, size_t size) 692 { 693 if (vmem_contains(contig_mem_arena, vaddr, size)) { 694 vmem_xfree(contig_mem_arena, vaddr, size); 695 } else if (size > MMU_PAGESIZE) { 696 vmem_xfree(contig_mem_reloc_arena, vaddr, size); 697 } else { 698 vmem_xfree(static_alloc_arena, vaddr, size); 699 } 700 } 701 702 /* 703 * We create a set of stacked vmem arenas to enable us to 704 * allocate large >PAGESIZE chucks of contiguous Real Address space. 705 * The vmem_xcreate interface is used to create the contig_mem_arena 706 * allowing the import routine to downsize the requested slab size 707 * and return a smaller slab. 708 */ 709 void 710 contig_mem_init(void) 711 { 712 mutex_init(&contig_mem_lock, NULL, MUTEX_DEFAULT, NULL); 713 714 contig_mem_slab_arena = vmem_xcreate("contig_mem_slab_arena", NULL, 0, 715 CONTIG_MEM_SLAB_ARENA_QUANTUM, contig_vmem_xalloc_aligned_wrapper, 716 vmem_xfree, heap_arena, 0, VM_SLEEP | VMC_XALIGN); 717 718 contig_mem_arena = vmem_xcreate("contig_mem_arena", NULL, 0, 719 CONTIG_MEM_ARENA_QUANTUM, contig_mem_span_xalloc, 720 contig_mem_span_free, contig_mem_slab_arena, 0, 721 VM_SLEEP | VM_BESTFIT | VMC_XALIGN); 722 723 contig_mem_reloc_arena = vmem_xcreate("contig_mem_reloc_arena", NULL, 0, 724 CONTIG_MEM_ARENA_QUANTUM, contig_mem_reloc_span_xalloc, 725 contig_mem_span_free, contig_mem_slab_arena, 0, 726 VM_SLEEP | VM_BESTFIT | VMC_XALIGN); 727 728 if (contig_mem_prealloc_buf == NULL || vmem_add(contig_mem_arena, 729 contig_mem_prealloc_buf, contig_mem_prealloc_size, VM_SLEEP) 730 == NULL) { 731 cmn_err(CE_WARN, "Failed to pre-populate contig_mem_arena"); 732 } 733 } 734 735 /* 736 * In calculating how much memory to pre-allocate, we include a small 737 * amount per-CPU to account for per-CPU buffers in line with measured 738 * values for different size systems. contig_mem_prealloc_base_size is 739 * a cpu specific amount to be pre-allocated before considering per-CPU 740 * requirements and memory size. We always pre-allocate a minimum amount 741 * of memory determined by PREALLOC_MIN. Beyond that, we take the minimum 742 * of contig_mem_prealloc_base_size and a small percentage of physical 743 * memory to prevent allocating too much on smaller systems. 744 * contig_mem_prealloc_base_size is global, allowing for the CPU module 745 * to increase its value if necessary. 746 */ 747 #define PREALLOC_PER_CPU (256 * 1024) /* 256K */ 748 #define PREALLOC_PERCENT (4) /* 4% */ 749 #define PREALLOC_MIN (16 * 1024 * 1024) /* 16M */ 750 size_t contig_mem_prealloc_base_size = 0; 751 752 /* 753 * Called at boot-time allowing pre-allocation of contiguous memory. 754 * The argument 'alloc_base' is the requested base address for the 755 * allocation and originates in startup_memlist. 756 */ 757 caddr_t 758 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages) 759 { 760 caddr_t chunkp; 761 762 contig_mem_prealloc_size = MIN((PREALLOC_PER_CPU * ncpu_guest_max) + 763 contig_mem_prealloc_base_size, 764 (ptob(npages) * PREALLOC_PERCENT) / 100); 765 contig_mem_prealloc_size = MAX(contig_mem_prealloc_size, PREALLOC_MIN); 766 contig_mem_prealloc_size = P2ROUNDUP(contig_mem_prealloc_size, 767 MMU_PAGESIZE4M); 768 769 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, MMU_PAGESIZE4M); 770 if (prom_alloc(alloc_base, contig_mem_prealloc_size, 771 MMU_PAGESIZE4M) != alloc_base) { 772 773 /* 774 * Failed. This may mean the physical memory has holes in it 775 * and it will be more difficult to get large contiguous 776 * pieces of memory. Since we only guarantee contiguous 777 * pieces of memory contig_mem_import_size_max or smaller, 778 * loop, getting contig_mem_import_size_max at a time, until 779 * failure or contig_mem_prealloc_size is reached. 780 */ 781 for (chunkp = alloc_base; 782 (chunkp - alloc_base) < contig_mem_prealloc_size; 783 chunkp += contig_mem_import_size_max) { 784 785 if (prom_alloc(chunkp, contig_mem_import_size_max, 786 MMU_PAGESIZE4M) != chunkp) { 787 break; 788 } 789 } 790 contig_mem_prealloc_size = chunkp - alloc_base; 791 ASSERT(contig_mem_prealloc_size != 0); 792 } 793 794 if (contig_mem_prealloc_size != 0) { 795 contig_mem_prealloc_buf = alloc_base; 796 } else { 797 contig_mem_prealloc_buf = NULL; 798 } 799 alloc_base += contig_mem_prealloc_size; 800 801 return (alloc_base); 802 }