1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * Portions of this source code were derived from Berkeley 4.3 BSD 31 * under license from the Regents of the University of California. 32 */ 33 34 /* 35 * UNIX machine dependent virtual memory support. 36 */ 37 38 #include <sys/vm.h> 39 #include <sys/exec.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cpu_module.h> 42 #include <sys/cpu.h> 43 #include <sys/elf_SPARC.h> 44 #include <sys/archsystm.h> 45 #include <vm/hat_sfmmu.h> 46 #include <sys/memnode.h> 47 #include <sys/mem_cage.h> 48 #include <vm/vm_dep.h> 49 #include <sys/random.h> 50 51 #if defined(__sparcv9) && defined(SF_ERRATA_57) 52 caddr_t errata57_limit; 53 #endif 54 55 uint_t page_colors = 0; 56 uint_t page_colors_mask = 0; 57 uint_t page_coloring_shift = 0; 58 int consistent_coloring; 59 int update_proc_pgcolorbase_after_fork = 0; 60 61 uint_t mmu_page_sizes = DEFAULT_MMU_PAGE_SIZES; 62 uint_t max_mmu_page_sizes = MMU_PAGE_SIZES; 63 uint_t mmu_hashcnt = DEFAULT_MAX_HASHCNT; 64 uint_t max_mmu_hashcnt = MAX_HASHCNT; 65 size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE; 66 67 /* 68 * The sun4u hardware mapping sizes which will always be supported are 69 * 8K, 64K, 512K and 4M. If sun4u based machines need to support other 70 * page sizes, platform or cpu specific routines need to modify the value. 71 * The base pagesize (p_szc == 0) must always be supported by the hardware. 72 */ 73 int mmu_exported_pagesize_mask = (1 << TTE8K) | (1 << TTE64K) | 74 (1 << TTE512K) | (1 << TTE4M); 75 uint_t mmu_exported_page_sizes; 76 77 uint_t szc_2_userszc[MMU_PAGE_SIZES]; 78 uint_t userszc_2_szc[MMU_PAGE_SIZES]; 79 80 extern uint_t vac_colors_mask; 81 extern int vac_shift; 82 83 hw_pagesize_t hw_page_array[] = { 84 {MMU_PAGESIZE, MMU_PAGESHIFT, 0, MMU_PAGESIZE >> MMU_PAGESHIFT}, 85 {MMU_PAGESIZE64K, MMU_PAGESHIFT64K, 0, 86 MMU_PAGESIZE64K >> MMU_PAGESHIFT}, 87 {MMU_PAGESIZE512K, MMU_PAGESHIFT512K, 0, 88 MMU_PAGESIZE512K >> MMU_PAGESHIFT}, 89 {MMU_PAGESIZE4M, MMU_PAGESHIFT4M, 0, MMU_PAGESIZE4M >> MMU_PAGESHIFT}, 90 {MMU_PAGESIZE32M, MMU_PAGESHIFT32M, 0, 91 MMU_PAGESIZE32M >> MMU_PAGESHIFT}, 92 {MMU_PAGESIZE256M, MMU_PAGESHIFT256M, 0, 93 MMU_PAGESIZE256M >> MMU_PAGESHIFT}, 94 {0, 0, 0, 0} 95 }; 96 97 /* 98 * Maximum page size used to map 64-bit memory segment kmem64_base..kmem64_end 99 */ 100 int max_bootlp_tteszc = TTE4M; 101 102 /* 103 * use_text_pgsz64k and use_text_pgsz512k allow the user to turn on these 104 * additional text page sizes for USIII-IV+ and OPL by changing the default 105 * values via /etc/system. 106 */ 107 int use_text_pgsz64K = 0; 108 int use_text_pgsz512K = 0; 109 110 /* 111 * Maximum and default segment size tunables for user heap, stack, private 112 * and shared anonymous memory, and user text and initialized data. 113 */ 114 size_t max_uheap_lpsize = MMU_PAGESIZE4M; 115 size_t default_uheap_lpsize = MMU_PAGESIZE; 116 size_t max_ustack_lpsize = MMU_PAGESIZE4M; 117 size_t default_ustack_lpsize = MMU_PAGESIZE; 118 size_t max_privmap_lpsize = MMU_PAGESIZE4M; 119 size_t max_uidata_lpsize = MMU_PAGESIZE; 120 size_t max_utext_lpsize = MMU_PAGESIZE4M; 121 size_t max_shm_lpsize = MMU_PAGESIZE4M; 122 123 void 124 adjust_data_maxlpsize(size_t ismpagesize) 125 { 126 if (max_uheap_lpsize == MMU_PAGESIZE4M) { 127 max_uheap_lpsize = ismpagesize; 128 } 129 if (max_ustack_lpsize == MMU_PAGESIZE4M) { 130 max_ustack_lpsize = ismpagesize; 131 } 132 if (max_privmap_lpsize == MMU_PAGESIZE4M) { 133 max_privmap_lpsize = ismpagesize; 134 } 135 if (max_shm_lpsize == MMU_PAGESIZE4M) { 136 max_shm_lpsize = ismpagesize; 137 } 138 } 139 140 /* 141 * The maximum amount a randomized mapping will be slewed. We should perhaps 142 * arrange things so these tunables can be separate for mmap, mmapobj, and 143 * ld.so 144 */ 145 volatile size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */ 146 147 /* 148 * map_addr_proc() is the routine called when the system is to 149 * choose an address for the user. We will pick an address 150 * range which is just below the current stack limit. The 151 * algorithm used for cache consistency on machines with virtual 152 * address caches is such that offset 0 in the vnode is always 153 * on a shm_alignment'ed aligned address. Unfortunately, this 154 * means that vnodes which are demand paged will not be mapped 155 * cache consistently with the executable images. When the 156 * cache alignment for a given object is inconsistent, the 157 * lower level code must manage the translations so that this 158 * is not seen here (at the cost of efficiency, of course). 159 * 160 * Every mapping will have a redzone of a single page on either side of 161 * the request. This is done to leave one page unmapped between segments. 162 * This is not required, but it's useful for the user because if their 163 * program strays across a segment boundary, it will catch a fault 164 * immediately making debugging a little easier. Currently the redzone 165 * is mandatory. 166 * 167 * 168 * addrp is a value/result parameter. 169 * On input it is a hint from the user to be used in a completely 170 * machine dependent fashion. For MAP_ALIGN, addrp contains the 171 * minimal alignment, which must be some "power of two" multiple of 172 * pagesize. 173 * 174 * On output it is NULL if no address can be found in the current 175 * processes address space or else an address that is currently 176 * not mapped for len bytes with a page of red zone on either side. 177 * If vacalign is true, then the selected address will obey the alignment 178 * constraints of a vac machine based on the given off value. 179 */ 180 /*ARGSUSED4*/ 181 void 182 map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign, 183 caddr_t userlimit, struct proc *p, uint_t flags) 184 { 185 struct as *as = p->p_as; 186 caddr_t addr; 187 caddr_t base; 188 size_t slen; 189 uintptr_t align_amount; 190 int allow_largepage_alignment = 1; 191 192 base = p->p_brkbase; 193 if (userlimit < as->a_userlimit) { 194 /* 195 * This happens when a program wants to map something in 196 * a range that's accessible to a program in a smaller 197 * address space. For example, a 64-bit program might 198 * be calling mmap32(2) to guarantee that the returned 199 * address is below 4Gbytes. 200 */ 201 ASSERT(userlimit > base); 202 slen = userlimit - base; 203 } else { 204 slen = p->p_usrstack - base - 205 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 206 } 207 208 /* Make len be a multiple of PAGESIZE */ 209 len = (len + PAGEOFFSET) & PAGEMASK; 210 211 /* 212 * If the request is larger than the size of a particular 213 * mmu level, then we use that level to map the request. 214 * But this requires that both the virtual and the physical 215 * addresses be aligned with respect to that level, so we 216 * do the virtual bit of nastiness here. 217 * 218 * For 32-bit processes, only those which have specified 219 * MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise 220 * we can potentially waste up to 256MB of the 4G process address 221 * space just for alignment. 222 */ 223 if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 || 224 ((uintptr_t)*addrp) != 0)) { 225 allow_largepage_alignment = 0; 226 } 227 if ((mmu_page_sizes == max_mmu_page_sizes) && 228 allow_largepage_alignment && 229 (len >= MMU_PAGESIZE256M)) { /* 256MB mappings */ 230 align_amount = MMU_PAGESIZE256M; 231 } else if ((mmu_page_sizes == max_mmu_page_sizes) && 232 allow_largepage_alignment && 233 (len >= MMU_PAGESIZE32M)) { /* 32MB mappings */ 234 align_amount = MMU_PAGESIZE32M; 235 } else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */ 236 align_amount = MMU_PAGESIZE4M; 237 } else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */ 238 align_amount = MMU_PAGESIZE512K; 239 } else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */ 240 align_amount = MMU_PAGESIZE64K; 241 } else { 242 /* 243 * Align virtual addresses on a 64K boundary to ensure 244 * that ELF shared libraries are mapped with the appropriate 245 * alignment constraints by the run-time linker. 246 */ 247 align_amount = ELF_SPARC_MAXPGSZ; 248 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) && 249 ((uintptr_t)*addrp < align_amount)) 250 align_amount = (uintptr_t)*addrp; 251 } 252 253 /* 254 * 64-bit processes require 1024K alignment of ELF shared libraries. 255 */ 256 if (p->p_model == DATAMODEL_LP64) 257 align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ); 258 #ifdef VAC 259 if (vac && vacalign && (align_amount < shm_alignment)) 260 align_amount = shm_alignment; 261 #endif 262 263 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) { 264 align_amount = (uintptr_t)*addrp; 265 } 266 267 ASSERT(ISP2(align_amount)); 268 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 269 270 /* 271 * Look for a large enough hole starting below the stack limit. 272 * After finding it, use the upper part. 273 */ 274 as_purge(as); 275 off = off & (align_amount - 1); 276 277 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 278 PAGESIZE, off) == 0) { 279 caddr_t as_addr; 280 281 /* 282 * addr is the highest possible address to use since we have 283 * a PAGESIZE redzone at the beginning and end. 284 */ 285 addr = base + slen - (PAGESIZE + len); 286 as_addr = addr; 287 /* 288 * Round address DOWN to the alignment amount and 289 * add the offset in. 290 * If addr is greater than as_addr, len would not be large 291 * enough to include the redzone, so we must adjust down 292 * by the alignment amount. 293 */ 294 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l))); 295 addr += (long)off; 296 if (addr > as_addr) { 297 addr -= align_amount; 298 } 299 300 /* 301 * If randomization is requested, slew the allocation 302 * backwards, within the same gap, by a random amount. 303 * 304 * XXX: This will fall over in processes like Java, which 305 * commonly have a great many small mappings. 306 */ 307 if (flags & _MAP_RANDOMIZE) { 308 uint32_t slew; 309 uint32_t maxslew; 310 311 (void) random_get_pseudo_bytes((uint8_t *)&slew, 312 sizeof (slew)); 313 314 maxslew = MIN(aslr_max_map_skew, (addr - base)); 315 /* 316 * Don't allow ASLR to cause mappings to fail below 317 * because of SF erratum #57 318 */ 319 maxslew = MIN(maxslew, (addr - errata57_limit)); 320 321 slew = slew % MIN(MIN(aslr_max_map_skew, (addr - base)), 322 addr - errata57_limit); 323 addr -= P2ALIGN(slew, align_amount); 324 } 325 326 ASSERT(addr > base); 327 ASSERT(addr + len < base + slen); 328 ASSERT(((uintptr_t)addr & (align_amount - 1l)) == 329 ((uintptr_t)(off))); 330 *addrp = addr; 331 332 #if defined(SF_ERRATA_57) 333 if (AS_TYPE_64BIT(as) && addr < errata57_limit) { 334 *addrp = NULL; 335 } 336 #endif 337 } else { 338 *addrp = NULL; /* no more virtual space */ 339 } 340 } 341 342 /* 343 * Platform-dependent page scrub call. 344 */ 345 void 346 pagescrub(page_t *pp, uint_t off, uint_t len) 347 { 348 /* 349 * For now, we rely on the fact that pagezero() will 350 * always clear UEs. 351 */ 352 pagezero(pp, off, len); 353 } 354 355 /*ARGSUSED*/ 356 void 357 sync_data_memory(caddr_t va, size_t len) 358 { 359 cpu_flush_ecache(); 360 } 361 362 /* 363 * platform specific large pages for kernel heap support 364 */ 365 void 366 mmu_init_kcontext() 367 { 368 extern void set_kcontextreg(); 369 370 if (kcontextreg) 371 set_kcontextreg(); 372 } 373 374 void 375 contig_mem_init(void) 376 { 377 /* not applicable to sun4u */ 378 } 379 380 /*ARGSUSED*/ 381 caddr_t 382 contig_mem_prealloc(caddr_t alloc_base, pgcnt_t npages) 383 { 384 /* not applicable to sun4u */ 385 return (alloc_base); 386 }