1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1988 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright 2014, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/sysmacros.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/cred_impl.h> 38 #include <sys/policy.h> 39 #include <sys/user.h> 40 #include <sys/errno.h> 41 #include <sys/file.h> 42 #include <sys/vfs.h> 43 #include <sys/vnode.h> 44 #include <sys/mman.h> 45 #include <sys/acct.h> 46 #include <sys/cpuvar.h> 47 #include <sys/proc.h> 48 #include <sys/cmn_err.h> 49 #include <sys/debug.h> 50 #include <sys/pathname.h> 51 #include <sys/vm.h> 52 #include <sys/lgrp.h> 53 #include <sys/vtrace.h> 54 #include <sys/exec.h> 55 #include <sys/exechdr.h> 56 #include <sys/kmem.h> 57 #include <sys/prsystm.h> 58 #include <sys/modctl.h> 59 #include <sys/vmparam.h> 60 #include <sys/door.h> 61 #include <sys/schedctl.h> 62 #include <sys/utrap.h> 63 #include <sys/systeminfo.h> 64 #include <sys/stack.h> 65 #include <sys/rctl.h> 66 #include <sys/dtrace.h> 67 #include <sys/lwpchan_impl.h> 68 #include <sys/pool.h> 69 #include <sys/sdt.h> 70 #include <sys/brand.h> 71 #include <sys/klpd.h> 72 #include <sys/random.h> 73 74 #include <c2/audit.h> 75 76 #include <vm/hat.h> 77 #include <vm/anon.h> 78 #include <vm/as.h> 79 #include <vm/seg.h> 80 #include <vm/seg_vn.h> 81 82 #define PRIV_RESET 0x01 /* needs to reset privs */ 83 #define PRIV_SETID 0x02 /* needs to change uids */ 84 #define PRIV_SETUGID 0x04 /* is setuid/setgid/forced privs */ 85 #define PRIV_INCREASE 0x08 /* child runs with more privs */ 86 #define MAC_FLAGS 0x10 /* need to adjust MAC flags */ 87 #define PRIV_FORCED 0x20 /* has forced privileges */ 88 89 static int execsetid(struct vnode *, struct vattr *, uid_t *, uid_t *, 90 priv_set_t *, cred_t *, const char *); 91 static int hold_execsw(struct execsw *); 92 93 uint_t auxv_hwcap = 0; /* auxv AT_SUN_HWCAP value; determined on the fly */ 94 uint_t auxv_hwcap_2 = 0; /* AT_SUN_HWCAP2 */ 95 #if defined(_SYSCALL32_IMPL) 96 uint_t auxv_hwcap32 = 0; /* 32-bit version of auxv_hwcap */ 97 uint_t auxv_hwcap32_2 = 0; /* 32-bit version of auxv_hwcap2 */ 98 #endif 99 100 #define PSUIDFLAGS (SNOCD|SUGID) 101 102 /* 103 * These are consumed within the specific exec modules, but are defined here because 104 * 105 * 1) The exec modules are unloadable, which would make this near useless. 106 * 107 * 2) We want them to be common across all of them, should more than ELF come 108 * to support them. 109 * 110 * All must be powers of 2. 111 */ 112 volatile size_t aslr_max_brk_skew = 16 * 1024 * 1024; /* 16MB */ 113 #pragma weak exec_stackgap = aslr_max_stack_skew /* Old, compatible name */ 114 volatile size_t aslr_max_stack_skew = 64 * 1024; /* 64KB */ 115 116 /* 117 * exece() - system call wrapper around exec_common() 118 */ 119 int 120 exece(const char *fname, const char **argp, const char **envp) 121 { 122 int error; 123 124 error = exec_common(fname, argp, envp, EBA_NONE); 125 return (error ? (set_errno(error)) : 0); 126 } 127 128 int 129 exec_common(const char *fname, const char **argp, const char **envp, 130 int brand_action) 131 { 132 vnode_t *vp = NULL, *dir = NULL, *tmpvp = NULL; 133 proc_t *p = ttoproc(curthread); 134 klwp_t *lwp = ttolwp(curthread); 135 struct user *up = PTOU(p); 136 long execsz; /* temporary count of exec size */ 137 int i; 138 int error; 139 char exec_file[MAXCOMLEN+1]; 140 struct pathname pn; 141 struct pathname resolvepn; 142 struct uarg args; 143 struct execa ua; 144 k_sigset_t savedmask; 145 lwpdir_t *lwpdir = NULL; 146 tidhash_t *tidhash; 147 lwpdir_t *old_lwpdir = NULL; 148 uint_t old_lwpdir_sz; 149 tidhash_t *old_tidhash; 150 uint_t old_tidhash_sz; 151 ret_tidhash_t *ret_tidhash; 152 lwpent_t *lep; 153 boolean_t brandme = B_FALSE; 154 155 /* 156 * exec() is not supported for the /proc agent lwp. 157 */ 158 if (curthread == p->p_agenttp) 159 return (ENOTSUP); 160 161 if (brand_action != EBA_NONE) { 162 /* 163 * Brand actions are not supported for processes that are not 164 * running in a branded zone. 165 */ 166 if (!ZONE_IS_BRANDED(p->p_zone)) 167 return (ENOTSUP); 168 169 if (brand_action == EBA_NATIVE) { 170 /* Only branded processes can be unbranded */ 171 if (!PROC_IS_BRANDED(p)) 172 return (ENOTSUP); 173 } else { 174 /* Only unbranded processes can be branded */ 175 if (PROC_IS_BRANDED(p)) 176 return (ENOTSUP); 177 brandme = B_TRUE; 178 } 179 } else { 180 /* 181 * If this is a native zone, or if the process is already 182 * branded, then we don't need to do anything. If this is 183 * a native process in a branded zone, we need to brand the 184 * process as it exec()s the new binary. 185 */ 186 if (ZONE_IS_BRANDED(p->p_zone) && !PROC_IS_BRANDED(p)) 187 brandme = B_TRUE; 188 } 189 190 /* 191 * Inform /proc that an exec() has started. 192 * Hold signals that are ignored by default so that we will 193 * not be interrupted by a signal that will be ignored after 194 * successful completion of gexec(). 195 */ 196 mutex_enter(&p->p_lock); 197 prexecstart(); 198 schedctl_finish_sigblock(curthread); 199 savedmask = curthread->t_hold; 200 sigorset(&curthread->t_hold, &ignoredefault); 201 mutex_exit(&p->p_lock); 202 203 /* 204 * Look up path name and remember last component for later. 205 * To help coreadm expand its %d token, we attempt to save 206 * the directory containing the executable in p_execdir. The 207 * first call to lookuppn() may fail and return EINVAL because 208 * dirvpp is non-NULL. In that case, we make a second call to 209 * lookuppn() with dirvpp set to NULL; p_execdir will be NULL, 210 * but coreadm is allowed to expand %d to the empty string and 211 * there are other cases in which that failure may occur. 212 */ 213 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 214 goto out; 215 pn_alloc(&resolvepn); 216 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, &dir, &vp)) != 0) { 217 pn_free(&resolvepn); 218 pn_free(&pn); 219 if (error != EINVAL) 220 goto out; 221 222 dir = NULL; 223 if ((error = pn_get((char *)fname, UIO_USERSPACE, &pn)) != 0) 224 goto out; 225 pn_alloc(&resolvepn); 226 if ((error = lookuppn(&pn, &resolvepn, FOLLOW, NULLVPP, 227 &vp)) != 0) { 228 pn_free(&resolvepn); 229 pn_free(&pn); 230 goto out; 231 } 232 } 233 if (vp == NULL) { 234 if (dir != NULL) 235 VN_RELE(dir); 236 error = ENOENT; 237 pn_free(&resolvepn); 238 pn_free(&pn); 239 goto out; 240 } 241 242 if ((error = secpolicy_basic_exec(CRED(), vp)) != 0) { 243 if (dir != NULL) 244 VN_RELE(dir); 245 pn_free(&resolvepn); 246 pn_free(&pn); 247 VN_RELE(vp); 248 goto out; 249 } 250 251 /* 252 * We do not allow executing files in attribute directories. 253 * We test this by determining whether the resolved path 254 * contains a "/" when we're in an attribute directory; 255 * only if the pathname does not contain a "/" the resolved path 256 * points to a file in the current working (attribute) directory. 257 */ 258 if ((p->p_user.u_cdir->v_flag & V_XATTRDIR) != 0 && 259 strchr(resolvepn.pn_path, '/') == NULL) { 260 if (dir != NULL) 261 VN_RELE(dir); 262 error = EACCES; 263 pn_free(&resolvepn); 264 pn_free(&pn); 265 VN_RELE(vp); 266 goto out; 267 } 268 269 bzero(exec_file, MAXCOMLEN+1); 270 (void) strncpy(exec_file, pn.pn_path, MAXCOMLEN); 271 bzero(&args, sizeof (args)); 272 args.pathname = resolvepn.pn_path; 273 /* don't free resolvepn until we are done with args */ 274 pn_free(&pn); 275 276 /* 277 * If we're running in a profile shell, then call pfexecd. 278 */ 279 if ((CR_FLAGS(p->p_cred) & PRIV_PFEXEC) != 0) { 280 error = pfexec_call(p->p_cred, &resolvepn, &args.pfcred, 281 &args.scrubenv); 282 283 /* Returning errno in case we're not allowed to execute. */ 284 if (error > 0) { 285 if (dir != NULL) 286 VN_RELE(dir); 287 pn_free(&resolvepn); 288 VN_RELE(vp); 289 goto out; 290 } 291 292 /* Don't change the credentials when using old ptrace. */ 293 if (args.pfcred != NULL && 294 (p->p_proc_flag & P_PR_PTRACE) != 0) { 295 crfree(args.pfcred); 296 args.pfcred = NULL; 297 args.scrubenv = B_FALSE; 298 } 299 } 300 301 /* 302 * Specific exec handlers, or policies determined via 303 * /etc/system may override the historical default. 304 */ 305 args.stk_prot = PROT_ZFOD; 306 args.dat_prot = PROT_ZFOD; 307 308 CPU_STATS_ADD_K(sys, sysexec, 1); 309 DTRACE_PROC1(exec, char *, args.pathname); 310 311 ua.fname = fname; 312 ua.argp = argp; 313 ua.envp = envp; 314 315 /* If necessary, brand this process before we start the exec. */ 316 if (brandme) 317 brand_setbrand(p); 318 319 if ((error = gexec(&vp, &ua, &args, NULL, 0, &execsz, 320 exec_file, p->p_cred, brand_action)) != 0) { 321 if (brandme) 322 brand_clearbrand(p, B_FALSE); 323 VN_RELE(vp); 324 if (dir != NULL) 325 VN_RELE(dir); 326 pn_free(&resolvepn); 327 goto fail; 328 } 329 330 /* 331 * Free floating point registers (sun4u only) 332 */ 333 ASSERT(lwp != NULL); 334 lwp_freeregs(lwp, 1); 335 336 /* 337 * Free thread and process context ops. 338 */ 339 if (curthread->t_ctx) 340 freectx(curthread, 1); 341 if (p->p_pctx) 342 freepctx(p, 1); 343 344 /* 345 * Remember file name for accounting; clear any cached DTrace predicate. 346 */ 347 up->u_acflag &= ~AFORK; 348 bcopy(exec_file, up->u_comm, MAXCOMLEN+1); 349 curthread->t_predcache = NULL; 350 351 /* 352 * Clear contract template state 353 */ 354 lwp_ctmpl_clear(lwp); 355 356 /* 357 * Save the directory in which we found the executable for expanding 358 * the %d token used in core file patterns. 359 */ 360 mutex_enter(&p->p_lock); 361 tmpvp = p->p_execdir; 362 p->p_execdir = dir; 363 if (p->p_execdir != NULL) 364 VN_HOLD(p->p_execdir); 365 mutex_exit(&p->p_lock); 366 367 if (tmpvp != NULL) 368 VN_RELE(tmpvp); 369 370 /* 371 * Reset stack state to the user stack, clear set of signals 372 * caught on the signal stack, and reset list of signals that 373 * restart system calls; the new program's environment should 374 * not be affected by detritus from the old program. Any 375 * pending held signals remain held, so don't clear t_hold. 376 */ 377 mutex_enter(&p->p_lock); 378 lwp->lwp_oldcontext = 0; 379 lwp->lwp_ustack = 0; 380 lwp->lwp_old_stk_ctl = 0; 381 sigemptyset(&up->u_signodefer); 382 sigemptyset(&up->u_sigonstack); 383 sigemptyset(&up->u_sigresethand); 384 lwp->lwp_sigaltstack.ss_sp = 0; 385 lwp->lwp_sigaltstack.ss_size = 0; 386 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 387 388 /* 389 * Make saved resource limit == current resource limit. 390 */ 391 for (i = 0; i < RLIM_NLIMITS; i++) { 392 /*CONSTCOND*/ 393 if (RLIM_SAVED(i)) { 394 (void) rctl_rlimit_get(rctlproc_legacy[i], p, 395 &up->u_saved_rlimit[i]); 396 } 397 } 398 399 /* 400 * If the action was to catch the signal, then the action 401 * must be reset to SIG_DFL. 402 */ 403 sigdefault(p); 404 p->p_flag &= ~(SNOWAIT|SJCTL); 405 p->p_flag |= (SEXECED|SMSACCT|SMSFORK); 406 up->u_signal[SIGCLD - 1] = SIG_DFL; 407 408 /* 409 * Delete the dot4 sigqueues/signotifies. 410 */ 411 sigqfree(p); 412 413 mutex_exit(&p->p_lock); 414 415 mutex_enter(&p->p_pflock); 416 p->p_prof.pr_base = NULL; 417 p->p_prof.pr_size = 0; 418 p->p_prof.pr_off = 0; 419 p->p_prof.pr_scale = 0; 420 p->p_prof.pr_samples = 0; 421 mutex_exit(&p->p_pflock); 422 423 ASSERT(curthread->t_schedctl == NULL); 424 425 #if defined(__sparc) 426 if (p->p_utraps != NULL) 427 utrap_free(p); 428 #endif /* __sparc */ 429 430 /* 431 * Close all close-on-exec files. 432 */ 433 close_exec(P_FINFO(p)); 434 TRACE_2(TR_FAC_PROC, TR_PROC_EXEC, "proc_exec:p %p up %p", p, up); 435 436 /* Unbrand ourself if necessary. */ 437 if (PROC_IS_BRANDED(p) && (brand_action == EBA_NATIVE)) 438 brand_clearbrand(p, B_FALSE); 439 440 setregs(&args); 441 442 /* Mark this as an executable vnode */ 443 mutex_enter(&vp->v_lock); 444 vp->v_flag |= VVMEXEC; 445 mutex_exit(&vp->v_lock); 446 447 VN_RELE(vp); 448 if (dir != NULL) 449 VN_RELE(dir); 450 pn_free(&resolvepn); 451 452 /* 453 * Allocate a new lwp directory and lwpid hash table if necessary. 454 */ 455 if (curthread->t_tid != 1 || p->p_lwpdir_sz != 2) { 456 lwpdir = kmem_zalloc(2 * sizeof (lwpdir_t), KM_SLEEP); 457 lwpdir->ld_next = lwpdir + 1; 458 tidhash = kmem_zalloc(2 * sizeof (tidhash_t), KM_SLEEP); 459 if (p->p_lwpdir != NULL) 460 lep = p->p_lwpdir[curthread->t_dslot].ld_entry; 461 else 462 lep = kmem_zalloc(sizeof (*lep), KM_SLEEP); 463 } 464 465 if (PROC_IS_BRANDED(p)) 466 BROP(p)->b_exec(); 467 468 mutex_enter(&p->p_lock); 469 prbarrier(p); 470 471 /* 472 * Reset lwp id to the default value of 1. 473 * This is a single-threaded process now 474 * and lwp #1 is lwp_wait()able by default. 475 * The t_unpark flag should not be inherited. 476 */ 477 ASSERT(p->p_lwpcnt == 1 && p->p_zombcnt == 0); 478 curthread->t_tid = 1; 479 kpreempt_disable(); 480 ASSERT(curthread->t_lpl != NULL); 481 p->p_t1_lgrpid = curthread->t_lpl->lpl_lgrpid; 482 kpreempt_enable(); 483 if (p->p_tr_lgrpid != LGRP_NONE && p->p_tr_lgrpid != p->p_t1_lgrpid) { 484 lgrp_update_trthr_migrations(1); 485 } 486 curthread->t_unpark = 0; 487 curthread->t_proc_flag |= TP_TWAIT; 488 curthread->t_proc_flag &= ~TP_DAEMON; /* daemons shouldn't exec */ 489 p->p_lwpdaemon = 0; /* but oh well ... */ 490 p->p_lwpid = 1; 491 492 /* 493 * Install the newly-allocated lwp directory and lwpid hash table 494 * and insert the current thread into the new hash table. 495 */ 496 if (lwpdir != NULL) { 497 old_lwpdir = p->p_lwpdir; 498 old_lwpdir_sz = p->p_lwpdir_sz; 499 old_tidhash = p->p_tidhash; 500 old_tidhash_sz = p->p_tidhash_sz; 501 p->p_lwpdir = p->p_lwpfree = lwpdir; 502 p->p_lwpdir_sz = 2; 503 lep->le_thread = curthread; 504 lep->le_lwpid = curthread->t_tid; 505 lep->le_start = curthread->t_start; 506 lwp_hash_in(p, lep, tidhash, 2, 0); 507 p->p_tidhash = tidhash; 508 p->p_tidhash_sz = 2; 509 } 510 ret_tidhash = p->p_ret_tidhash; 511 p->p_ret_tidhash = NULL; 512 513 /* 514 * Restore the saved signal mask and 515 * inform /proc that the exec() has finished. 516 */ 517 curthread->t_hold = savedmask; 518 prexecend(); 519 mutex_exit(&p->p_lock); 520 if (old_lwpdir) { 521 kmem_free(old_lwpdir, old_lwpdir_sz * sizeof (lwpdir_t)); 522 kmem_free(old_tidhash, old_tidhash_sz * sizeof (tidhash_t)); 523 } 524 while (ret_tidhash != NULL) { 525 ret_tidhash_t *next = ret_tidhash->rth_next; 526 kmem_free(ret_tidhash->rth_tidhash, 527 ret_tidhash->rth_tidhash_sz * sizeof (tidhash_t)); 528 kmem_free(ret_tidhash, sizeof (*ret_tidhash)); 529 ret_tidhash = next; 530 } 531 532 ASSERT(error == 0); 533 DTRACE_PROC(exec__success); 534 return (0); 535 536 fail: 537 DTRACE_PROC1(exec__failure, int, error); 538 out: /* error return */ 539 mutex_enter(&p->p_lock); 540 curthread->t_hold = savedmask; 541 prexecend(); 542 mutex_exit(&p->p_lock); 543 ASSERT(error != 0); 544 return (error); 545 } 546 547 548 /* 549 * Perform generic exec duties and switchout to object-file specific 550 * handler. 551 */ 552 int 553 gexec( 554 struct vnode **vpp, 555 struct execa *uap, 556 struct uarg *args, 557 struct intpdata *idatap, 558 int level, 559 long *execsz, 560 caddr_t exec_file, 561 struct cred *cred, 562 int brand_action) 563 { 564 struct vnode *vp, *execvp = NULL; 565 proc_t *pp = ttoproc(curthread); 566 struct execsw *eswp; 567 int error = 0; 568 int suidflags = 0; 569 ssize_t resid; 570 uid_t uid, gid; 571 struct vattr vattr; 572 char magbuf[MAGIC_BYTES]; 573 int setid; 574 cred_t *oldcred, *newcred = NULL; 575 int privflags = 0; 576 int setidfl; 577 priv_set_t fset; 578 579 /* 580 * If the SNOCD or SUGID flag is set, turn it off and remember the 581 * previous setting so we can restore it if we encounter an error. 582 */ 583 if (level == 0 && (pp->p_flag & PSUIDFLAGS)) { 584 mutex_enter(&pp->p_lock); 585 suidflags = pp->p_flag & PSUIDFLAGS; 586 pp->p_flag &= ~PSUIDFLAGS; 587 mutex_exit(&pp->p_lock); 588 } 589 590 if ((error = execpermissions(*vpp, &vattr, args)) != 0) 591 goto bad_noclose; 592 593 /* need to open vnode for stateful file systems */ 594 if ((error = VOP_OPEN(vpp, FREAD, CRED(), NULL)) != 0) 595 goto bad_noclose; 596 vp = *vpp; 597 598 /* 599 * Note: to support binary compatibility with SunOS a.out 600 * executables, we read in the first four bytes, as the 601 * magic number is in bytes 2-3. 602 */ 603 if (error = vn_rdwr(UIO_READ, vp, magbuf, sizeof (magbuf), 604 (offset_t)0, UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) 605 goto bad; 606 if (resid != 0) 607 goto bad; 608 609 if ((eswp = findexec_by_hdr(magbuf)) == NULL) 610 goto bad; 611 612 if (level == 0 && 613 (privflags = execsetid(vp, &vattr, &uid, &gid, &fset, 614 args->pfcred == NULL ? cred : args->pfcred, args->pathname)) != 0) { 615 616 /* Pfcred is a credential with a ref count of 1 */ 617 618 if (args->pfcred != NULL) { 619 privflags |= PRIV_INCREASE|PRIV_RESET; 620 newcred = cred = args->pfcred; 621 } else { 622 newcred = cred = crdup(cred); 623 } 624 625 /* If we can, drop the PA bit */ 626 if ((privflags & PRIV_RESET) != 0) 627 priv_adjust_PA(cred); 628 629 if (privflags & PRIV_SETID) { 630 cred->cr_uid = uid; 631 cred->cr_gid = gid; 632 cred->cr_suid = uid; 633 cred->cr_sgid = gid; 634 } 635 636 if (privflags & MAC_FLAGS) { 637 if (!(CR_FLAGS(cred) & NET_MAC_AWARE_INHERIT)) 638 CR_FLAGS(cred) &= ~NET_MAC_AWARE; 639 CR_FLAGS(cred) &= ~NET_MAC_AWARE_INHERIT; 640 } 641 642 /* 643 * Implement the privilege updates: 644 * 645 * Restrict with L: 646 * 647 * I' = I & L 648 * 649 * E' = P' = (I' + F) & A 650 * 651 * But if running under ptrace, we cap I and F with P. 652 */ 653 if ((privflags & (PRIV_RESET|PRIV_FORCED)) != 0) { 654 if ((privflags & PRIV_INCREASE) != 0 && 655 (pp->p_proc_flag & P_PR_PTRACE) != 0) { 656 priv_intersect(&CR_OPPRIV(cred), 657 &CR_IPRIV(cred)); 658 priv_intersect(&CR_OPPRIV(cred), &fset); 659 } 660 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 661 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 662 if (privflags & PRIV_FORCED) { 663 priv_set_PA(cred); 664 priv_union(&fset, &CR_EPRIV(cred)); 665 priv_union(&fset, &CR_PPRIV(cred)); 666 } 667 priv_adjust_PA(cred); 668 } 669 } else if (level == 0 && args->pfcred != NULL) { 670 newcred = cred = args->pfcred; 671 privflags |= PRIV_INCREASE; 672 /* pfcred is not forced to adhere to these settings */ 673 priv_intersect(&CR_LPRIV(cred), &CR_IPRIV(cred)); 674 CR_EPRIV(cred) = CR_PPRIV(cred) = CR_IPRIV(cred); 675 priv_adjust_PA(cred); 676 } 677 678 /* The new image gets the inheritable secflags as its secflags */ 679 /* XXX: This probably means we have the wrong secflags when exec fails */ 680 secflag_promote(pp); 681 682 /* SunOS 4.x buy-back */ 683 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) && 684 (vattr.va_mode & (VSUID|VSGID))) { 685 char path[MAXNAMELEN]; 686 refstr_t *mntpt = NULL; 687 int ret = -1; 688 689 bzero(path, sizeof (path)); 690 zone_hold(pp->p_zone); 691 692 ret = vnodetopath(pp->p_zone->zone_rootvp, vp, path, 693 sizeof (path), cred); 694 695 /* fallback to mountpoint if a path can't be found */ 696 if ((ret != 0) || (ret == 0 && path[0] == '\0')) 697 mntpt = vfs_getmntpoint(vp->v_vfsp); 698 699 if (mntpt == NULL) 700 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 701 "!uid %d: setuid execution not allowed, " 702 "file=%s", cred->cr_uid, path); 703 else 704 zcmn_err(pp->p_zone->zone_id, CE_NOTE, 705 "!uid %d: setuid execution not allowed, " 706 "fs=%s, file=%s", cred->cr_uid, 707 ZONE_PATH_TRANSLATE(refstr_value(mntpt), 708 pp->p_zone), exec_file); 709 710 if (!INGLOBALZONE(pp)) { 711 /* zone_rootpath always has trailing / */ 712 if (mntpt == NULL) 713 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 714 "setuid execution not allowed, file=%s%s", 715 pp->p_zone->zone_name, cred->cr_uid, 716 pp->p_zone->zone_rootpath, path + 1); 717 else 718 cmn_err(CE_NOTE, "!zone: %s, uid: %d " 719 "setuid execution not allowed, fs=%s, " 720 "file=%s", pp->p_zone->zone_name, 721 cred->cr_uid, refstr_value(mntpt), 722 exec_file); 723 } 724 725 if (mntpt != NULL) 726 refstr_rele(mntpt); 727 728 zone_rele(pp->p_zone); 729 } 730 731 /* 732 * execsetid() told us whether or not we had to change the 733 * credentials of the process. In privflags, it told us 734 * whether we gained any privileges or executed a set-uid executable. 735 */ 736 setid = (privflags & (PRIV_SETUGID|PRIV_INCREASE|PRIV_FORCED)); 737 738 /* 739 * Use /etc/system variable to determine if the stack 740 * should be marked as executable by default. 741 */ 742 if (noexec_user_stack) 743 args->stk_prot &= ~PROT_EXEC; 744 745 args->execswp = eswp; /* Save execsw pointer in uarg for exec_func */ 746 args->ex_vp = vp; 747 748 /* 749 * Traditionally, the setid flags told the sub processes whether 750 * the file just executed was set-uid or set-gid; this caused 751 * some confusion as the 'setid' flag did not match the SUGID 752 * process flag which is only set when the uids/gids do not match. 753 * A script set-gid/set-uid to the real uid/gid would start with 754 * /dev/fd/X but an executable would happily trust LD_LIBRARY_PATH. 755 * Now we flag those cases where the calling process cannot 756 * be trusted to influence the newly exec'ed process, either 757 * because it runs with more privileges or when the uids/gids 758 * do in fact not match. 759 * This also makes the runtime linker agree with the on exec 760 * values of SNOCD and SUGID. 761 */ 762 setidfl = 0; 763 if (cred->cr_uid != cred->cr_ruid || (cred->cr_rgid != cred->cr_gid && 764 !supgroupmember(cred->cr_gid, cred))) { 765 setidfl |= EXECSETID_UGIDS; 766 } 767 if (setid & PRIV_SETUGID) 768 setidfl |= EXECSETID_SETID; 769 if (setid & PRIV_FORCED) 770 setidfl |= EXECSETID_PRIVS; 771 772 execvp = pp->p_exec; 773 if (execvp) 774 VN_HOLD(execvp); 775 776 error = (*eswp->exec_func)(vp, uap, args, idatap, level, execsz, 777 setidfl, exec_file, cred, brand_action); 778 rw_exit(eswp->exec_lock); 779 if (error != 0) { 780 if (execvp) 781 VN_RELE(execvp); 782 /* 783 * If this process's p_exec has been set to the vp of 784 * the executable by exec_func, we will return without 785 * calling VOP_CLOSE because proc_exit will close it 786 * on exit. 787 */ 788 if (pp->p_exec == vp) 789 goto bad_noclose; 790 else 791 goto bad; 792 } 793 794 if (level == 0) { 795 uid_t oruid; 796 797 if (execvp != NULL) { 798 /* 799 * Close the previous executable only if we are 800 * at level 0. 801 */ 802 (void) VOP_CLOSE(execvp, FREAD, 1, (offset_t)0, 803 cred, NULL); 804 } 805 806 mutex_enter(&pp->p_crlock); 807 808 oruid = pp->p_cred->cr_ruid; 809 810 if (newcred != NULL) { 811 /* 812 * Free the old credentials, and set the new ones. 813 * Do this for both the process and the (single) thread. 814 */ 815 crfree(pp->p_cred); 816 pp->p_cred = cred; /* cred already held for proc */ 817 crhold(cred); /* hold new cred for thread */ 818 /* 819 * DTrace accesses t_cred in probe context. t_cred 820 * must always be either NULL, or point to a valid, 821 * allocated cred structure. 822 */ 823 oldcred = curthread->t_cred; 824 curthread->t_cred = cred; 825 crfree(oldcred); 826 827 if (priv_basic_test >= 0 && 828 !PRIV_ISASSERT(&CR_IPRIV(newcred), 829 priv_basic_test)) { 830 pid_t pid = pp->p_pid; 831 char *fn = PTOU(pp)->u_comm; 832 833 cmn_err(CE_WARN, "%s[%d]: exec: basic_test " 834 "privilege removed from E/I", fn, pid); 835 } 836 } 837 /* 838 * On emerging from a successful exec(), the saved 839 * uid and gid equal the effective uid and gid. 840 */ 841 cred->cr_suid = cred->cr_uid; 842 cred->cr_sgid = cred->cr_gid; 843 844 /* 845 * If the real and effective ids do not match, this 846 * is a setuid process that should not dump core. 847 * The group comparison is tricky; we prevent the code 848 * from flagging SNOCD when executing with an effective gid 849 * which is a supplementary group. 850 */ 851 if (cred->cr_ruid != cred->cr_uid || 852 (cred->cr_rgid != cred->cr_gid && 853 !supgroupmember(cred->cr_gid, cred)) || 854 (privflags & PRIV_INCREASE) != 0) 855 suidflags = PSUIDFLAGS; 856 else 857 suidflags = 0; 858 859 mutex_exit(&pp->p_crlock); 860 if (newcred != NULL && oruid != newcred->cr_ruid) { 861 /* Note that the process remains in the same zone. */ 862 mutex_enter(&pidlock); 863 upcount_dec(oruid, crgetzoneid(newcred)); 864 upcount_inc(newcred->cr_ruid, crgetzoneid(newcred)); 865 mutex_exit(&pidlock); 866 } 867 if (suidflags) { 868 mutex_enter(&pp->p_lock); 869 pp->p_flag |= suidflags; 870 mutex_exit(&pp->p_lock); 871 } 872 if (setid && (pp->p_proc_flag & P_PR_PTRACE) == 0) { 873 /* 874 * If process is traced via /proc, arrange to 875 * invalidate the associated /proc vnode. 876 */ 877 if (pp->p_plist || (pp->p_proc_flag & P_PR_TRACE)) 878 args->traceinval = 1; 879 } 880 if (pp->p_proc_flag & P_PR_PTRACE) 881 psignal(pp, SIGTRAP); 882 if (args->traceinval) 883 prinvalidate(&pp->p_user); 884 } 885 if (execvp) 886 VN_RELE(execvp); 887 return (0); 888 889 bad: 890 (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, cred, NULL); 891 892 bad_noclose: 893 if (newcred != NULL) 894 crfree(newcred); 895 if (error == 0) 896 error = ENOEXEC; 897 898 if (suidflags) { 899 mutex_enter(&pp->p_lock); 900 pp->p_flag |= suidflags; 901 mutex_exit(&pp->p_lock); 902 } 903 return (error); 904 } 905 906 extern char *execswnames[]; 907 908 struct execsw * 909 allocate_execsw(char *name, char *magic, size_t magic_size) 910 { 911 int i, j; 912 char *ename; 913 char *magicp; 914 915 mutex_enter(&execsw_lock); 916 for (i = 0; i < nexectype; i++) { 917 if (execswnames[i] == NULL) { 918 ename = kmem_alloc(strlen(name) + 1, KM_SLEEP); 919 (void) strcpy(ename, name); 920 execswnames[i] = ename; 921 /* 922 * Set the magic number last so that we 923 * don't need to hold the execsw_lock in 924 * findexectype(). 925 */ 926 magicp = kmem_alloc(magic_size, KM_SLEEP); 927 for (j = 0; j < magic_size; j++) 928 magicp[j] = magic[j]; 929 execsw[i].exec_magic = magicp; 930 mutex_exit(&execsw_lock); 931 return (&execsw[i]); 932 } 933 } 934 mutex_exit(&execsw_lock); 935 return (NULL); 936 } 937 938 /* 939 * Find the exec switch table entry with the corresponding magic string. 940 */ 941 struct execsw * 942 findexecsw(char *magic) 943 { 944 struct execsw *eswp; 945 946 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 947 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 948 if (magic && eswp->exec_maglen != 0 && 949 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) 950 return (eswp); 951 } 952 return (NULL); 953 } 954 955 /* 956 * Find the execsw[] index for the given exec header string by looking for the 957 * magic string at a specified offset and length for each kind of executable 958 * file format until one matches. If no execsw[] entry is found, try to 959 * autoload a module for this magic string. 960 */ 961 struct execsw * 962 findexec_by_hdr(char *header) 963 { 964 struct execsw *eswp; 965 966 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 967 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 968 if (header && eswp->exec_maglen != 0 && 969 bcmp(&header[eswp->exec_magoff], eswp->exec_magic, 970 eswp->exec_maglen) == 0) { 971 if (hold_execsw(eswp) != 0) 972 return (NULL); 973 return (eswp); 974 } 975 } 976 return (NULL); /* couldn't find the type */ 977 } 978 979 /* 980 * Find the execsw[] index for the given magic string. If no execsw[] entry 981 * is found, try to autoload a module for this magic string. 982 */ 983 struct execsw * 984 findexec_by_magic(char *magic) 985 { 986 struct execsw *eswp; 987 988 for (eswp = execsw; eswp < &execsw[nexectype]; eswp++) { 989 ASSERT(eswp->exec_maglen <= MAGIC_BYTES); 990 if (magic && eswp->exec_maglen != 0 && 991 bcmp(magic, eswp->exec_magic, eswp->exec_maglen) == 0) { 992 if (hold_execsw(eswp) != 0) 993 return (NULL); 994 return (eswp); 995 } 996 } 997 return (NULL); /* couldn't find the type */ 998 } 999 1000 static int 1001 hold_execsw(struct execsw *eswp) 1002 { 1003 char *name; 1004 1005 rw_enter(eswp->exec_lock, RW_READER); 1006 while (!LOADED_EXEC(eswp)) { 1007 rw_exit(eswp->exec_lock); 1008 name = execswnames[eswp-execsw]; 1009 ASSERT(name); 1010 if (modload("exec", name) == -1) 1011 return (-1); 1012 rw_enter(eswp->exec_lock, RW_READER); 1013 } 1014 return (0); 1015 } 1016 1017 static int 1018 execsetid(struct vnode *vp, struct vattr *vattrp, uid_t *uidp, uid_t *gidp, 1019 priv_set_t *fset, cred_t *cr, const char *pathname) 1020 { 1021 proc_t *pp = ttoproc(curthread); 1022 uid_t uid, gid; 1023 int privflags = 0; 1024 1025 /* 1026 * Remember credentials. 1027 */ 1028 uid = cr->cr_uid; 1029 gid = cr->cr_gid; 1030 1031 /* Will try to reset the PRIV_AWARE bit later. */ 1032 if ((CR_FLAGS(cr) & (PRIV_AWARE|PRIV_AWARE_INHERIT)) == PRIV_AWARE) 1033 privflags |= PRIV_RESET; 1034 1035 if ((vp->v_vfsp->vfs_flag & VFS_NOSETUID) == 0) { 1036 /* 1037 * If it's a set-uid root program we perform the 1038 * forced privilege look-aside. This has three possible 1039 * outcomes: 1040 * no look aside information -> treat as before 1041 * look aside in Limit set -> apply forced privs 1042 * look aside not in Limit set -> ignore set-uid root 1043 * 1044 * Ordinary set-uid root execution only allowed if the limit 1045 * set holds all unsafe privileges. 1046 */ 1047 if (vattrp->va_mode & VSUID) { 1048 if (vattrp->va_uid == 0) { 1049 int res = get_forced_privs(cr, pathname, fset); 1050 1051 switch (res) { 1052 case -1: 1053 if (priv_issubset(&priv_unsafe, 1054 &CR_LPRIV(cr))) { 1055 uid = vattrp->va_uid; 1056 privflags |= PRIV_SETUGID; 1057 } 1058 break; 1059 case 0: 1060 privflags |= PRIV_FORCED|PRIV_INCREASE; 1061 break; 1062 default: 1063 break; 1064 } 1065 } else { 1066 uid = vattrp->va_uid; 1067 privflags |= PRIV_SETUGID; 1068 } 1069 } 1070 if (vattrp->va_mode & VSGID) { 1071 gid = vattrp->va_gid; 1072 privflags |= PRIV_SETUGID; 1073 } 1074 } 1075 1076 /* 1077 * Do we need to change our credential anyway? 1078 * This is the case when E != I or P != I, as 1079 * we need to do the assignments (with F empty and A full) 1080 * Or when I is not a subset of L; in that case we need to 1081 * enforce L. 1082 * 1083 * I' = L & I 1084 * 1085 * E' = P' = (I' + F) & A 1086 * or 1087 * E' = P' = I' 1088 */ 1089 if (!priv_isequalset(&CR_EPRIV(cr), &CR_IPRIV(cr)) || 1090 !priv_issubset(&CR_IPRIV(cr), &CR_LPRIV(cr)) || 1091 !priv_isequalset(&CR_PPRIV(cr), &CR_IPRIV(cr))) 1092 privflags |= PRIV_RESET; 1093 1094 /* Child has more privileges than parent */ 1095 if (!priv_issubset(&CR_IPRIV(cr), &CR_PPRIV(cr))) 1096 privflags |= PRIV_INCREASE; 1097 1098 /* If MAC-aware flag(s) are on, need to update cred to remove. */ 1099 if ((CR_FLAGS(cr) & NET_MAC_AWARE) || 1100 (CR_FLAGS(cr) & NET_MAC_AWARE_INHERIT)) 1101 privflags |= MAC_FLAGS; 1102 /* 1103 * Set setuid/setgid protections if no ptrace() compatibility. 1104 * For privileged processes, honor setuid/setgid even in 1105 * the presence of ptrace() compatibility. 1106 */ 1107 if (((pp->p_proc_flag & P_PR_PTRACE) == 0 || 1108 PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, (uid == 0))) && 1109 (cr->cr_uid != uid || 1110 cr->cr_gid != gid || 1111 cr->cr_suid != uid || 1112 cr->cr_sgid != gid)) { 1113 *uidp = uid; 1114 *gidp = gid; 1115 privflags |= PRIV_SETID; 1116 } 1117 return (privflags); 1118 } 1119 1120 int 1121 execpermissions(struct vnode *vp, struct vattr *vattrp, struct uarg *args) 1122 { 1123 int error; 1124 proc_t *p = ttoproc(curthread); 1125 1126 vattrp->va_mask = AT_MODE | AT_UID | AT_GID | AT_SIZE; 1127 if (error = VOP_GETATTR(vp, vattrp, ATTR_EXEC, p->p_cred, NULL)) 1128 return (error); 1129 /* 1130 * Check the access mode. 1131 * If VPROC, ask /proc if the file is an object file. 1132 */ 1133 if ((error = VOP_ACCESS(vp, VEXEC, 0, p->p_cred, NULL)) != 0 || 1134 !(vp->v_type == VREG || (vp->v_type == VPROC && pr_isobject(vp))) || 1135 (vp->v_vfsp->vfs_flag & VFS_NOEXEC) != 0 || 1136 (vattrp->va_mode & (VEXEC|(VEXEC>>3)|(VEXEC>>6))) == 0) { 1137 if (error == 0) 1138 error = EACCES; 1139 return (error); 1140 } 1141 1142 if ((p->p_plist || (p->p_proc_flag & (P_PR_PTRACE|P_PR_TRACE))) && 1143 (error = VOP_ACCESS(vp, VREAD, 0, p->p_cred, NULL))) { 1144 /* 1145 * If process is under ptrace(2) compatibility, 1146 * fail the exec(2). 1147 */ 1148 if (p->p_proc_flag & P_PR_PTRACE) 1149 goto bad; 1150 /* 1151 * Process is traced via /proc. 1152 * Arrange to invalidate the /proc vnode. 1153 */ 1154 args->traceinval = 1; 1155 } 1156 return (0); 1157 bad: 1158 if (error == 0) 1159 error = ENOEXEC; 1160 return (error); 1161 } 1162 1163 /* 1164 * Map a section of an executable file into the user's 1165 * address space. 1166 */ 1167 int 1168 execmap(struct vnode *vp, caddr_t addr, size_t len, size_t zfodlen, 1169 off_t offset, int prot, int page, uint_t szc) 1170 { 1171 int error = 0; 1172 off_t oldoffset; 1173 caddr_t zfodbase, oldaddr; 1174 size_t end, oldlen; 1175 size_t zfoddiff; 1176 label_t ljb; 1177 proc_t *p = ttoproc(curthread); 1178 1179 oldaddr = addr; 1180 addr = (caddr_t)((uintptr_t)addr & (uintptr_t)PAGEMASK); 1181 if (len) { 1182 oldlen = len; 1183 len += ((size_t)oldaddr - (size_t)addr); 1184 oldoffset = offset; 1185 offset = (off_t)((uintptr_t)offset & PAGEMASK); 1186 if (page) { 1187 spgcnt_t prefltmem, availm, npages; 1188 int preread; 1189 uint_t mflag = MAP_PRIVATE | MAP_FIXED; 1190 1191 if ((prot & (PROT_WRITE | PROT_EXEC)) == PROT_EXEC) { 1192 mflag |= MAP_TEXT; 1193 } else { 1194 mflag |= MAP_INITDATA; 1195 } 1196 1197 if (valid_usr_range(addr, len, prot, p->p_as, 1198 p->p_as->a_userlimit) != RANGE_OKAY) { 1199 error = ENOMEM; 1200 goto bad; 1201 } 1202 if (error = VOP_MAP(vp, (offset_t)offset, 1203 p->p_as, &addr, len, prot, PROT_ALL, 1204 mflag, CRED(), NULL)) 1205 goto bad; 1206 1207 /* 1208 * If the segment can fit, then we prefault 1209 * the entire segment in. This is based on the 1210 * model that says the best working set of a 1211 * small program is all of its pages. 1212 */ 1213 npages = (spgcnt_t)btopr(len); 1214 prefltmem = freemem - desfree; 1215 preread = 1216 (npages < prefltmem && len < PGTHRESH) ? 1 : 0; 1217 1218 /* 1219 * If we aren't prefaulting the segment, 1220 * increment "deficit", if necessary to ensure 1221 * that pages will become available when this 1222 * process starts executing. 1223 */ 1224 availm = freemem - lotsfree; 1225 if (preread == 0 && npages > availm && 1226 deficit < lotsfree) { 1227 deficit += MIN((pgcnt_t)(npages - availm), 1228 lotsfree - deficit); 1229 } 1230 1231 if (preread) { 1232 TRACE_2(TR_FAC_PROC, TR_EXECMAP_PREREAD, 1233 "execmap preread:freemem %d size %lu", 1234 freemem, len); 1235 (void) as_fault(p->p_as->a_hat, p->p_as, 1236 (caddr_t)addr, len, F_INVAL, S_READ); 1237 } 1238 } else { 1239 if (valid_usr_range(addr, len, prot, p->p_as, 1240 p->p_as->a_userlimit) != RANGE_OKAY) { 1241 error = ENOMEM; 1242 goto bad; 1243 } 1244 1245 if (error = as_map(p->p_as, addr, len, 1246 segvn_create, zfod_argsp)) 1247 goto bad; 1248 /* 1249 * Read in the segment in one big chunk. 1250 */ 1251 if (error = vn_rdwr(UIO_READ, vp, (caddr_t)oldaddr, 1252 oldlen, (offset_t)oldoffset, UIO_USERSPACE, 0, 1253 (rlim64_t)0, CRED(), (ssize_t *)0)) 1254 goto bad; 1255 /* 1256 * Now set protections. 1257 */ 1258 if (prot != PROT_ZFOD) { 1259 (void) as_setprot(p->p_as, (caddr_t)addr, 1260 len, prot); 1261 } 1262 } 1263 } 1264 1265 if (zfodlen) { 1266 struct as *as = curproc->p_as; 1267 struct seg *seg; 1268 uint_t zprot = 0; 1269 1270 end = (size_t)addr + len; 1271 zfodbase = (caddr_t)roundup(end, PAGESIZE); 1272 zfoddiff = (uintptr_t)zfodbase - end; 1273 if (zfoddiff) { 1274 /* 1275 * Before we go to zero the remaining space on the last 1276 * page, make sure we have write permission. 1277 * 1278 * Normal illumos binaries don't even hit the case 1279 * where we have to change permission on the last page 1280 * since their protection is typically either 1281 * PROT_USER | PROT_WRITE | PROT_READ 1282 * or 1283 * PROT_ZFOD (same as PROT_ALL). 1284 * 1285 * We need to be careful how we zero-fill the last page 1286 * if the segment protection does not include 1287 * PROT_WRITE. Using as_setprot() can cause the VM 1288 * segment code to call segvn_vpage(), which must 1289 * allocate a page struct for each page in the segment. 1290 * If we have a very large segment, this may fail, so 1291 * we have to check for that, even though we ignore 1292 * other return values from as_setprot. 1293 */ 1294 1295 AS_LOCK_ENTER(as, &as->a_lock, RW_READER); 1296 seg = as_segat(curproc->p_as, (caddr_t)end); 1297 if (seg != NULL) 1298 SEGOP_GETPROT(seg, (caddr_t)end, zfoddiff - 1, 1299 &zprot); 1300 AS_LOCK_EXIT(as, &as->a_lock); 1301 1302 if (seg != NULL && (zprot & PROT_WRITE) == 0) { 1303 if (as_setprot(as, (caddr_t)end, zfoddiff - 1, 1304 zprot | PROT_WRITE) == ENOMEM) { 1305 error = ENOMEM; 1306 goto bad; 1307 } 1308 } 1309 1310 if (on_fault(&ljb)) { 1311 no_fault(); 1312 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1313 (void) as_setprot(as, (caddr_t)end, 1314 zfoddiff - 1, zprot); 1315 error = EFAULT; 1316 goto bad; 1317 } 1318 uzero((void *)end, zfoddiff); 1319 no_fault(); 1320 if (seg != NULL && (zprot & PROT_WRITE) == 0) 1321 (void) as_setprot(as, (caddr_t)end, 1322 zfoddiff - 1, zprot); 1323 } 1324 if (zfodlen > zfoddiff) { 1325 struct segvn_crargs crargs = 1326 SEGVN_ZFOD_ARGS(PROT_ZFOD, PROT_ALL); 1327 1328 zfodlen -= zfoddiff; 1329 if (valid_usr_range(zfodbase, zfodlen, prot, p->p_as, 1330 p->p_as->a_userlimit) != RANGE_OKAY) { 1331 error = ENOMEM; 1332 goto bad; 1333 } 1334 if (szc > 0) { 1335 /* 1336 * ASSERT alignment because the mapelfexec() 1337 * caller for the szc > 0 case extended zfod 1338 * so it's end is pgsz aligned. 1339 */ 1340 size_t pgsz = page_get_pagesize(szc); 1341 ASSERT(IS_P2ALIGNED(zfodbase + zfodlen, pgsz)); 1342 1343 if (IS_P2ALIGNED(zfodbase, pgsz)) { 1344 crargs.szc = szc; 1345 } else { 1346 crargs.szc = AS_MAP_HEAP; 1347 } 1348 } else { 1349 crargs.szc = AS_MAP_NO_LPOOB; 1350 } 1351 if (error = as_map(p->p_as, (caddr_t)zfodbase, 1352 zfodlen, segvn_create, &crargs)) 1353 goto bad; 1354 if (prot != PROT_ZFOD) { 1355 (void) as_setprot(p->p_as, (caddr_t)zfodbase, 1356 zfodlen, prot); 1357 } 1358 } 1359 } 1360 return (0); 1361 bad: 1362 return (error); 1363 } 1364 1365 void 1366 setexecenv(struct execenv *ep) 1367 { 1368 proc_t *p = ttoproc(curthread); 1369 klwp_t *lwp = ttolwp(curthread); 1370 struct vnode *vp; 1371 1372 p->p_bssbase = ep->ex_bssbase; 1373 p->p_brkbase = ep->ex_brkbase; 1374 p->p_brksize = ep->ex_brksize; 1375 if (p->p_exec) 1376 VN_RELE(p->p_exec); /* out with the old */ 1377 vp = p->p_exec = ep->ex_vp; 1378 if (vp != NULL) 1379 VN_HOLD(vp); /* in with the new */ 1380 1381 lwp->lwp_sigaltstack.ss_sp = 0; 1382 lwp->lwp_sigaltstack.ss_size = 0; 1383 lwp->lwp_sigaltstack.ss_flags = SS_DISABLE; 1384 } 1385 1386 int 1387 execopen(struct vnode **vpp, int *fdp) 1388 { 1389 struct vnode *vp = *vpp; 1390 file_t *fp; 1391 int error = 0; 1392 int filemode = FREAD; 1393 1394 VN_HOLD(vp); /* open reference */ 1395 if (error = falloc(NULL, filemode, &fp, fdp)) { 1396 VN_RELE(vp); 1397 *fdp = -1; /* just in case falloc changed value */ 1398 return (error); 1399 } 1400 if (error = VOP_OPEN(&vp, filemode, CRED(), NULL)) { 1401 VN_RELE(vp); 1402 setf(*fdp, NULL); 1403 unfalloc(fp); 1404 *fdp = -1; 1405 return (error); 1406 } 1407 *vpp = vp; /* vnode should not have changed */ 1408 fp->f_vnode = vp; 1409 mutex_exit(&fp->f_tlock); 1410 setf(*fdp, fp); 1411 return (0); 1412 } 1413 1414 int 1415 execclose(int fd) 1416 { 1417 return (closeandsetf(fd, NULL)); 1418 } 1419 1420 1421 /* 1422 * noexec stub function. 1423 */ 1424 /*ARGSUSED*/ 1425 int 1426 noexec( 1427 struct vnode *vp, 1428 struct execa *uap, 1429 struct uarg *args, 1430 struct intpdata *idatap, 1431 int level, 1432 long *execsz, 1433 int setid, 1434 caddr_t exec_file, 1435 struct cred *cred) 1436 { 1437 cmn_err(CE_WARN, "missing exec capability for %s", uap->fname); 1438 return (ENOEXEC); 1439 } 1440 1441 /* 1442 * Support routines for building a user stack. 1443 * 1444 * execve(path, argv, envp) must construct a new stack with the specified 1445 * arguments and environment variables (see exec_args() for a description 1446 * of the user stack layout). To do this, we copy the arguments and 1447 * environment variables from the old user address space into the kernel, 1448 * free the old as, create the new as, and copy our buffered information 1449 * to the new stack. Our kernel buffer has the following structure: 1450 * 1451 * +-----------------------+ <--- stk_base + stk_size 1452 * | string offsets | 1453 * +-----------------------+ <--- stk_offp 1454 * | | 1455 * | STK_AVAIL() space | 1456 * | | 1457 * +-----------------------+ <--- stk_strp 1458 * | strings | 1459 * +-----------------------+ <--- stk_base 1460 * 1461 * When we add a string, we store the string's contents (including the null 1462 * terminator) at stk_strp, and we store the offset of the string relative to 1463 * stk_base at --stk_offp. At strings are added, stk_strp increases and 1464 * stk_offp decreases. The amount of space remaining, STK_AVAIL(), is just 1465 * the difference between these pointers. If we run out of space, we return 1466 * an error and exec_args() starts all over again with a buffer twice as large. 1467 * When we're all done, the kernel buffer looks like this: 1468 * 1469 * +-----------------------+ <--- stk_base + stk_size 1470 * | argv[0] offset | 1471 * +-----------------------+ 1472 * | ... | 1473 * +-----------------------+ 1474 * | argv[argc-1] offset | 1475 * +-----------------------+ 1476 * | envp[0] offset | 1477 * +-----------------------+ 1478 * | ... | 1479 * +-----------------------+ 1480 * | envp[envc-1] offset | 1481 * +-----------------------+ 1482 * | AT_SUN_PLATFORM offset| 1483 * +-----------------------+ 1484 * | AT_SUN_EXECNAME offset| 1485 * +-----------------------+ <--- stk_offp 1486 * | | 1487 * | STK_AVAIL() space | 1488 * | | 1489 * +-----------------------+ <--- stk_strp 1490 * | AT_SUN_EXECNAME offset| 1491 * +-----------------------+ 1492 * | AT_SUN_PLATFORM offset| 1493 * +-----------------------+ 1494 * | envp[envc-1] string | 1495 * +-----------------------+ 1496 * | ... | 1497 * +-----------------------+ 1498 * | envp[0] string | 1499 * +-----------------------+ 1500 * | argv[argc-1] string | 1501 * +-----------------------+ 1502 * | ... | 1503 * +-----------------------+ 1504 * | argv[0] string | 1505 * +-----------------------+ <--- stk_base 1506 */ 1507 1508 #define STK_AVAIL(args) ((char *)(args)->stk_offp - (args)->stk_strp) 1509 1510 /* 1511 * Add a string to the stack. 1512 */ 1513 static int 1514 stk_add(uarg_t *args, const char *sp, enum uio_seg segflg) 1515 { 1516 int error; 1517 size_t len; 1518 1519 if (STK_AVAIL(args) < sizeof (int)) 1520 return (E2BIG); 1521 *--args->stk_offp = args->stk_strp - args->stk_base; 1522 1523 if (segflg == UIO_USERSPACE) { 1524 error = copyinstr(sp, args->stk_strp, STK_AVAIL(args), &len); 1525 if (error != 0) 1526 return (error); 1527 } else { 1528 len = strlen(sp) + 1; 1529 if (len > STK_AVAIL(args)) 1530 return (E2BIG); 1531 bcopy(sp, args->stk_strp, len); 1532 } 1533 1534 args->stk_strp += len; 1535 1536 return (0); 1537 } 1538 1539 static int 1540 stk_getptr(uarg_t *args, char *src, char **dst) 1541 { 1542 int error; 1543 1544 if (args->from_model == DATAMODEL_NATIVE) { 1545 ulong_t ptr; 1546 error = fulword(src, &ptr); 1547 *dst = (caddr_t)ptr; 1548 } else { 1549 uint32_t ptr; 1550 error = fuword32(src, &ptr); 1551 *dst = (caddr_t)(uintptr_t)ptr; 1552 } 1553 return (error); 1554 } 1555 1556 static int 1557 stk_putptr(uarg_t *args, char *addr, char *value) 1558 { 1559 if (args->to_model == DATAMODEL_NATIVE) 1560 return (sulword(addr, (ulong_t)value)); 1561 else 1562 return (suword32(addr, (uint32_t)(uintptr_t)value)); 1563 } 1564 1565 static int 1566 stk_copyin(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1567 { 1568 char *sp; 1569 int argc, error; 1570 int argv_empty = 0; 1571 size_t ptrsize = args->from_ptrsize; 1572 size_t size, pad; 1573 char *argv = (char *)uap->argp; 1574 char *envp = (char *)uap->envp; 1575 1576 /* 1577 * Copy interpreter's name and argument to argv[0] and argv[1]. 1578 */ 1579 if (intp != NULL && intp->intp_name != NULL) { 1580 if ((error = stk_add(args, intp->intp_name, UIO_SYSSPACE)) != 0) 1581 return (error); 1582 if (intp->intp_arg != NULL && 1583 (error = stk_add(args, intp->intp_arg, UIO_SYSSPACE)) != 0) 1584 return (error); 1585 if (args->fname != NULL) 1586 error = stk_add(args, args->fname, UIO_SYSSPACE); 1587 else 1588 error = stk_add(args, uap->fname, UIO_USERSPACE); 1589 if (error) 1590 return (error); 1591 1592 /* 1593 * Check for an empty argv[]. 1594 */ 1595 if (stk_getptr(args, argv, &sp)) 1596 return (EFAULT); 1597 if (sp == NULL) 1598 argv_empty = 1; 1599 1600 argv += ptrsize; /* ignore original argv[0] */ 1601 } 1602 1603 if (argv_empty == 0) { 1604 /* 1605 * Add argv[] strings to the stack. 1606 */ 1607 for (;;) { 1608 if (stk_getptr(args, argv, &sp)) 1609 return (EFAULT); 1610 if (sp == NULL) 1611 break; 1612 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1613 return (error); 1614 argv += ptrsize; 1615 } 1616 } 1617 argc = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1618 args->arglen = args->stk_strp - args->stk_base; 1619 1620 /* 1621 * Add environ[] strings to the stack. 1622 */ 1623 if (envp != NULL) { 1624 for (;;) { 1625 char *tmp = args->stk_strp; 1626 if (stk_getptr(args, envp, &sp)) 1627 return (EFAULT); 1628 if (sp == NULL) 1629 break; 1630 if ((error = stk_add(args, sp, UIO_USERSPACE)) != 0) 1631 return (error); 1632 if (args->scrubenv && strncmp(tmp, "LD_", 3) == 0) { 1633 /* Undo the copied string */ 1634 args->stk_strp = tmp; 1635 *(args->stk_offp++) = NULL; 1636 } 1637 envp += ptrsize; 1638 } 1639 } 1640 args->na = (int *)(args->stk_base + args->stk_size) - args->stk_offp; 1641 args->ne = args->na - argc; 1642 1643 /* 1644 * Add AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME, and 1645 * AT_SUN_EMULATOR strings to the stack. 1646 */ 1647 if (auxvpp != NULL && *auxvpp != NULL) { 1648 if ((error = stk_add(args, platform, UIO_SYSSPACE)) != 0) 1649 return (error); 1650 if ((error = stk_add(args, args->pathname, UIO_SYSSPACE)) != 0) 1651 return (error); 1652 if (args->brandname != NULL && 1653 (error = stk_add(args, args->brandname, UIO_SYSSPACE)) != 0) 1654 return (error); 1655 if (args->emulator != NULL && 1656 (error = stk_add(args, args->emulator, UIO_SYSSPACE)) != 0) 1657 return (error); 1658 } 1659 1660 /* 1661 * Compute the size of the stack. This includes all the pointers, 1662 * the space reserved for the aux vector, and all the strings. 1663 * The total number of pointers is args->na (which is argc + envc) 1664 * plus 4 more: (1) a pointer's worth of space for argc; (2) the NULL 1665 * after the last argument (i.e. argv[argc]); (3) the NULL after the 1666 * last environment variable (i.e. envp[envc]); and (4) the NULL after 1667 * all the strings, at the very top of the stack. 1668 */ 1669 size = (args->na + 4) * args->to_ptrsize + args->auxsize + 1670 (args->stk_strp - args->stk_base); 1671 1672 /* 1673 * Pad the string section with zeroes to align the stack size. 1674 */ 1675 pad = P2NPHASE(size, args->stk_align); 1676 1677 if (STK_AVAIL(args) < pad) 1678 return (E2BIG); 1679 1680 args->usrstack_size = size + pad; 1681 1682 while (pad-- != 0) 1683 *args->stk_strp++ = 0; 1684 1685 args->nc = args->stk_strp - args->stk_base; 1686 1687 return (0); 1688 } 1689 1690 static int 1691 stk_copyout(uarg_t *args, char *usrstack, void **auxvpp, user_t *up) 1692 { 1693 size_t ptrsize = args->to_ptrsize; 1694 ssize_t pslen; 1695 char *kstrp = args->stk_base; 1696 char *ustrp = usrstack - args->nc - ptrsize; 1697 char *usp = usrstack - args->usrstack_size; 1698 int *offp = (int *)(args->stk_base + args->stk_size); 1699 int envc = args->ne; 1700 int argc = args->na - envc; 1701 int i; 1702 1703 /* 1704 * Record argc for /proc. 1705 */ 1706 up->u_argc = argc; 1707 1708 /* 1709 * Put argc on the stack. Note that even though it's an int, 1710 * it always consumes ptrsize bytes (for alignment). 1711 */ 1712 if (stk_putptr(args, usp, (char *)(uintptr_t)argc)) 1713 return (-1); 1714 1715 /* 1716 * Add argc space (ptrsize) to usp and record argv for /proc. 1717 */ 1718 up->u_argv = (uintptr_t)(usp += ptrsize); 1719 1720 /* 1721 * Put the argv[] pointers on the stack. 1722 */ 1723 for (i = 0; i < argc; i++, usp += ptrsize) 1724 if (stk_putptr(args, usp, &ustrp[*--offp])) 1725 return (-1); 1726 1727 /* 1728 * Copy arguments to u_psargs. 1729 */ 1730 pslen = MIN(args->arglen, PSARGSZ) - 1; 1731 for (i = 0; i < pslen; i++) 1732 up->u_psargs[i] = (kstrp[i] == '\0' ? ' ' : kstrp[i]); 1733 while (i < PSARGSZ) 1734 up->u_psargs[i++] = '\0'; 1735 1736 /* 1737 * Add space for argv[]'s NULL terminator (ptrsize) to usp and 1738 * record envp for /proc. 1739 */ 1740 up->u_envp = (uintptr_t)(usp += ptrsize); 1741 1742 /* 1743 * Put the envp[] pointers on the stack. 1744 */ 1745 for (i = 0; i < envc; i++, usp += ptrsize) 1746 if (stk_putptr(args, usp, &ustrp[*--offp])) 1747 return (-1); 1748 1749 /* 1750 * Add space for envp[]'s NULL terminator (ptrsize) to usp and 1751 * remember where the stack ends, which is also where auxv begins. 1752 */ 1753 args->stackend = usp += ptrsize; 1754 1755 /* 1756 * Put all the argv[], envp[], and auxv strings on the stack. 1757 */ 1758 if (copyout(args->stk_base, ustrp, args->nc)) 1759 return (-1); 1760 1761 /* 1762 * Fill in the aux vector now that we know the user stack addresses 1763 * for the AT_SUN_PLATFORM, AT_SUN_EXECNAME, AT_SUN_BRANDNAME and 1764 * AT_SUN_EMULATOR strings. 1765 */ 1766 if (auxvpp != NULL && *auxvpp != NULL) { 1767 if (args->to_model == DATAMODEL_NATIVE) { 1768 auxv_t **a = (auxv_t **)auxvpp; 1769 ADDAUX(*a, AT_SUN_PLATFORM, (long)&ustrp[*--offp]) 1770 ADDAUX(*a, AT_SUN_EXECNAME, (long)&ustrp[*--offp]) 1771 if (args->brandname != NULL) 1772 ADDAUX(*a, 1773 AT_SUN_BRANDNAME, (long)&ustrp[*--offp]) 1774 if (args->emulator != NULL) 1775 ADDAUX(*a, 1776 AT_SUN_EMULATOR, (long)&ustrp[*--offp]) 1777 } else { 1778 auxv32_t **a = (auxv32_t **)auxvpp; 1779 ADDAUX(*a, 1780 AT_SUN_PLATFORM, (int)(uintptr_t)&ustrp[*--offp]) 1781 ADDAUX(*a, 1782 AT_SUN_EXECNAME, (int)(uintptr_t)&ustrp[*--offp]) 1783 if (args->brandname != NULL) 1784 ADDAUX(*a, AT_SUN_BRANDNAME, 1785 (int)(uintptr_t)&ustrp[*--offp]) 1786 if (args->emulator != NULL) 1787 ADDAUX(*a, AT_SUN_EMULATOR, 1788 (int)(uintptr_t)&ustrp[*--offp]) 1789 } 1790 } 1791 1792 return (0); 1793 } 1794 1795 /* 1796 * Though the actual stack base is constant, slew the %sp by a random aligned 1797 * amount in [0,aslr_max_stack_skew). Mostly, this makes life slightly more 1798 * complicated for buffer overflows hoping to overwrite the return address. 1799 * 1800 * On some platforms this helps avoid cache thrashing when identical processes 1801 * simultaneously share caches that don't provide enough associativity 1802 * (e.g. sun4v systems). In this case stack slewing makes the same hot stack 1803 * variables in different processes live in different cache sets increasing 1804 * effective associativity. 1805 */ 1806 size_t 1807 exec_get_spslew(void) 1808 { 1809 #ifdef sun4v 1810 static uint_t sp_color_stride = 16; 1811 static uint_t sp_color_mask = 0x1f; 1812 static uint_t sp_current_color = (uint_t)-1; 1813 #endif 1814 size_t off; 1815 1816 ASSERT(ISP2(aslr_max_stack_skew)); 1817 1818 if ((aslr_max_stack_skew == 0) || 1819 !secflag_enabled(curproc, PROC_SEC_ASLR)) { 1820 #ifdef sun4v 1821 uint_t spcolor = atomic_inc_32_nv(&sp_current_color); 1822 return ((size_t)((spcolor & sp_color_mask) * SA(sp_color_stride))); 1823 #else 1824 return (0); 1825 #endif 1826 } 1827 1828 (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off)); 1829 return SA(P2PHASE(off, aslr_max_stack_skew)); 1830 } 1831 1832 /* 1833 * Initialize a new user stack with the specified arguments and environment. 1834 * The initial user stack layout is as follows: 1835 * 1836 * User Stack 1837 * +---------------+ <--- curproc->p_usrstack 1838 * | | 1839 * | slew | 1840 * | | 1841 * +---------------+ 1842 * | NULL | 1843 * +---------------+ 1844 * | | 1845 * | auxv strings | 1846 * | | 1847 * +---------------+ 1848 * | | 1849 * | envp strings | 1850 * | | 1851 * +---------------+ 1852 * | | 1853 * | argv strings | 1854 * | | 1855 * +---------------+ <--- ustrp 1856 * | | 1857 * | aux vector | 1858 * | | 1859 * +---------------+ <--- auxv 1860 * | NULL | 1861 * +---------------+ 1862 * | envp[envc-1] | 1863 * +---------------+ 1864 * | ... | 1865 * +---------------+ 1866 * | envp[0] | 1867 * +---------------+ <--- envp[] 1868 * | NULL | 1869 * +---------------+ 1870 * | argv[argc-1] | 1871 * +---------------+ 1872 * | ... | 1873 * +---------------+ 1874 * | argv[0] | 1875 * +---------------+ <--- argv[] 1876 * | argc | 1877 * +---------------+ <--- stack base 1878 */ 1879 int 1880 exec_args(execa_t *uap, uarg_t *args, intpdata_t *intp, void **auxvpp) 1881 { 1882 size_t size; 1883 int error; 1884 proc_t *p = ttoproc(curthread); 1885 user_t *up = PTOU(p); 1886 char *usrstack; 1887 rctl_entity_p_t e; 1888 struct as *as; 1889 extern int use_stk_lpg; 1890 size_t sp_slew; 1891 1892 args->from_model = p->p_model; 1893 if (p->p_model == DATAMODEL_NATIVE) { 1894 args->from_ptrsize = sizeof (long); 1895 } else { 1896 args->from_ptrsize = sizeof (int32_t); 1897 } 1898 1899 if (args->to_model == DATAMODEL_NATIVE) { 1900 args->to_ptrsize = sizeof (long); 1901 args->ncargs = NCARGS; 1902 args->stk_align = STACK_ALIGN; 1903 if (args->addr32) 1904 usrstack = (char *)USRSTACK64_32; 1905 else 1906 usrstack = (char *)USRSTACK; 1907 } else { 1908 args->to_ptrsize = sizeof (int32_t); 1909 args->ncargs = NCARGS32; 1910 args->stk_align = STACK_ALIGN32; 1911 usrstack = (char *)USRSTACK32; 1912 } 1913 1914 ASSERT(P2PHASE((uintptr_t)usrstack, args->stk_align) == 0); 1915 1916 #if defined(__sparc) 1917 /* 1918 * Make sure user register windows are empty before 1919 * attempting to make a new stack. 1920 */ 1921 (void) flush_user_windows_to_stack(NULL); 1922 #endif 1923 1924 for (size = PAGESIZE; ; size *= 2) { 1925 args->stk_size = size; 1926 args->stk_base = kmem_alloc(size, KM_SLEEP); 1927 args->stk_strp = args->stk_base; 1928 args->stk_offp = (int *)(args->stk_base + size); 1929 error = stk_copyin(uap, args, intp, auxvpp); 1930 if (error == 0) 1931 break; 1932 kmem_free(args->stk_base, size); 1933 if (error != E2BIG && error != ENAMETOOLONG) 1934 return (error); 1935 if (size >= args->ncargs) 1936 return (E2BIG); 1937 } 1938 1939 size = args->usrstack_size; 1940 1941 ASSERT(error == 0); 1942 ASSERT(P2PHASE(size, args->stk_align) == 0); 1943 ASSERT((ssize_t)STK_AVAIL(args) >= 0); 1944 1945 if (size > args->ncargs) { 1946 kmem_free(args->stk_base, args->stk_size); 1947 return (E2BIG); 1948 } 1949 1950 /* 1951 * Leave only the current lwp and force the other lwps to exit. 1952 * If another lwp beat us to the punch by calling exit(), bail out. 1953 */ 1954 if ((error = exitlwps(0)) != 0) { 1955 kmem_free(args->stk_base, args->stk_size); 1956 return (error); 1957 } 1958 1959 /* 1960 * Revoke any doors created by the process. 1961 */ 1962 if (p->p_door_list) 1963 door_exit(); 1964 1965 /* 1966 * Release schedctl data structures. 1967 */ 1968 if (p->p_pagep) 1969 schedctl_proc_cleanup(); 1970 1971 /* 1972 * Clean up any DTrace helpers for the process. 1973 */ 1974 if (p->p_dtrace_helpers != NULL) { 1975 ASSERT(dtrace_helpers_cleanup != NULL); 1976 (*dtrace_helpers_cleanup)(); 1977 } 1978 1979 mutex_enter(&p->p_lock); 1980 /* 1981 * Cleanup the DTrace provider associated with this process. 1982 */ 1983 if (p->p_dtrace_probes) { 1984 ASSERT(dtrace_fasttrap_exec_ptr != NULL); 1985 dtrace_fasttrap_exec_ptr(p); 1986 } 1987 mutex_exit(&p->p_lock); 1988 1989 /* 1990 * discard the lwpchan cache. 1991 */ 1992 if (p->p_lcp != NULL) 1993 lwpchan_destroy_cache(1); 1994 1995 /* 1996 * Delete the POSIX timers. 1997 */ 1998 if (p->p_itimer != NULL) 1999 timer_exit(); 2000 2001 /* 2002 * Delete the ITIMER_REALPROF interval timer. 2003 * The other ITIMER_* interval timers are specified 2004 * to be inherited across exec(). 2005 */ 2006 delete_itimer_realprof(); 2007 2008 if (AU_AUDITING()) 2009 audit_exec(args->stk_base, args->stk_base + args->arglen, 2010 args->na - args->ne, args->ne, args->pfcred); 2011 2012 /* 2013 * Ensure that we don't change resource associations while we 2014 * change address spaces. 2015 */ 2016 mutex_enter(&p->p_lock); 2017 pool_barrier_enter(); 2018 mutex_exit(&p->p_lock); 2019 2020 /* 2021 * Destroy the old address space and create a new one. 2022 * From here on, any errors are fatal to the exec()ing process. 2023 * On error we return -1, which means the caller must SIGKILL 2024 * the process. 2025 */ 2026 relvm(); 2027 2028 mutex_enter(&p->p_lock); 2029 pool_barrier_exit(); 2030 mutex_exit(&p->p_lock); 2031 2032 up->u_execsw = args->execswp; 2033 2034 p->p_brkbase = NULL; 2035 p->p_brksize = 0; 2036 p->p_brkpageszc = 0; 2037 p->p_stksize = 0; 2038 p->p_stkpageszc = 0; 2039 p->p_model = args->to_model; 2040 p->p_usrstack = usrstack; 2041 p->p_stkprot = args->stk_prot; 2042 p->p_datprot = args->dat_prot; 2043 2044 /* 2045 * Reset resource controls such that all controls are again active as 2046 * well as appropriate to the potentially new address model for the 2047 * process. 2048 */ 2049 e.rcep_p.proc = p; 2050 e.rcep_t = RCENTITY_PROCESS; 2051 rctl_set_reset(p->p_rctls, p, &e); 2052 2053 /* Too early to call map_pgsz for the heap */ 2054 if (use_stk_lpg) { 2055 p->p_stkpageszc = page_szc(map_pgsz(MAPPGSZ_STK, p, 0, 0, 0)); 2056 } 2057 2058 mutex_enter(&p->p_lock); 2059 p->p_flag |= SAUTOLPG; /* kernel controls page sizes */ 2060 mutex_exit(&p->p_lock); 2061 2062 sp_slew = exec_get_spslew(); 2063 ASSERT(P2PHASE(sp_slew, args->stk_align) == 0); 2064 /* Be certain we don't underflow */ 2065 VERIFY((curproc->p_usrstack - (size + sp_slew)) < curproc->p_usrstack); 2066 exec_set_sp(size + sp_slew); 2067 2068 as = as_alloc(); 2069 p->p_as = as; 2070 as->a_proc = p; 2071 if (p->p_model == DATAMODEL_ILP32 || args->addr32) 2072 as->a_userlimit = (caddr_t)USERLIMIT32; 2073 (void) hat_setup(as->a_hat, HAT_ALLOC); 2074 hat_join_srd(as->a_hat, args->ex_vp); 2075 2076 /* 2077 * Finally, write out the contents of the new stack. 2078 */ 2079 error = stk_copyout(args, usrstack - sp_slew, auxvpp, up); 2080 kmem_free(args->stk_base, args->stk_size); 2081 return (error); 2082 }