1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/thread.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/vnode.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <sys/proc.h> 44 #include <sys/pathname.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/elf.h> 48 #include <sys/vmsystm.h> 49 #include <sys/debug.h> 50 #include <sys/auxv.h> 51 #include <sys/exec.h> 52 #include <sys/prsystm.h> 53 #include <vm/as.h> 54 #include <vm/rm.h> 55 #include <vm/seg.h> 56 #include <vm/seg_vn.h> 57 #include <sys/modctl.h> 58 #include <sys/systeminfo.h> 59 #include <sys/vmparam.h> 60 #include <sys/machelf.h> 61 #include <sys/shm_impl.h> 62 #include <sys/archsystm.h> 63 #include <sys/fasttrap.h> 64 #include <sys/brand.h> 65 #include "elf_impl.h" 66 #include <sys/sdt.h> 67 #include <sys/siginfo.h> 68 #include <sys/random.h> 69 70 extern int at_flags; 71 extern volatile size_t aslr_max_brk_skew; 72 73 #define ORIGIN_STR "ORIGIN" 74 #define ORIGIN_STR_SIZE 6 75 76 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 77 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 78 ssize_t *); 79 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 80 ssize_t *, caddr_t *, ssize_t *); 81 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 82 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 83 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 84 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 85 86 typedef enum { 87 STR_CTF, 88 STR_SYMTAB, 89 STR_DYNSYM, 90 STR_STRTAB, 91 STR_DYNSTR, 92 STR_SHSTRTAB, 93 STR_NUM 94 } shstrtype_t; 95 96 static const char *shstrtab_data[] = { 97 ".SUNW_ctf", 98 ".symtab", 99 ".dynsym", 100 ".strtab", 101 ".dynstr", 102 ".shstrtab" 103 }; 104 105 typedef struct shstrtab { 106 int sst_ndx[STR_NUM]; 107 int sst_cur; 108 } shstrtab_t; 109 110 static void 111 shstrtab_init(shstrtab_t *s) 112 { 113 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 114 s->sst_cur = 1; 115 } 116 117 static int 118 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 119 { 120 int ret; 121 122 if ((ret = s->sst_ndx[type]) != 0) 123 return (ret); 124 125 ret = s->sst_ndx[type] = s->sst_cur; 126 s->sst_cur += strlen(shstrtab_data[type]) + 1; 127 128 return (ret); 129 } 130 131 static size_t 132 shstrtab_size(const shstrtab_t *s) 133 { 134 return (s->sst_cur); 135 } 136 137 static void 138 shstrtab_dump(const shstrtab_t *s, char *buf) 139 { 140 int i, ndx; 141 142 *buf = '\0'; 143 for (i = 0; i < STR_NUM; i++) { 144 if ((ndx = s->sst_ndx[i]) != 0) 145 (void) strcpy(buf + ndx, shstrtab_data[i]); 146 } 147 } 148 149 static int 150 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 151 { 152 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 153 154 /* 155 * See the comment in fasttrap.h for information on how to safely 156 * update this program header. 157 */ 158 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 159 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 160 return (-1); 161 162 args->thrptr = phdrp->p_vaddr + base; 163 164 return (0); 165 } 166 167 /* 168 * Map in the executable pointed to by vp. Returns 0 on success. 169 */ 170 int 171 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 172 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 173 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 174 { 175 size_t len; 176 struct vattr vat; 177 caddr_t phdrbase = NULL; 178 ssize_t phdrsize; 179 int nshdrs, shstrndx, nphdrs; 180 int error = 0; 181 Phdr *uphdr = NULL; 182 Phdr *junk = NULL; 183 Phdr *dynphdr = NULL; 184 Phdr *dtrphdr = NULL; 185 uintptr_t lddata; 186 long execsz; 187 intptr_t minaddr; 188 189 if (lddatap != NULL) 190 *lddatap = NULL; 191 192 if (error = execpermissions(vp, &vat, args)) { 193 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 194 return (error); 195 } 196 197 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 198 &nphdrs)) != 0 || 199 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 200 &phdrsize)) != 0) { 201 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 202 return (error); 203 } 204 205 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 206 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 207 kmem_free(phdrbase, phdrsize); 208 return (ENOEXEC); 209 } 210 if (lddatap != NULL) 211 *lddatap = lddata; 212 213 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 214 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 215 len, &execsz, brksize)) { 216 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 217 kmem_free(phdrbase, phdrsize); 218 return (error); 219 } 220 221 /* 222 * Inform our caller if the executable needs an interpreter. 223 */ 224 *interp = (dynphdr == NULL) ? 0 : 1; 225 226 /* 227 * If this is a statically linked executable, voffset should indicate 228 * the address of the executable itself (it normally holds the address 229 * of the interpreter). 230 */ 231 if (ehdr->e_type == ET_EXEC && *interp == 0) 232 *voffset = minaddr; 233 234 if (uphdr != NULL) { 235 *uphdr_vaddr = uphdr->p_vaddr; 236 } else { 237 *uphdr_vaddr = (Addr)-1; 238 } 239 240 kmem_free(phdrbase, phdrsize); 241 return (error); 242 } 243 244 /*ARGSUSED*/ 245 int 246 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 247 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 248 int brand_action) 249 { 250 caddr_t phdrbase = NULL; 251 caddr_t bssbase = 0; 252 caddr_t brkbase = 0; 253 size_t brksize = 0; 254 ssize_t dlnsize; 255 aux_entry_t *aux; 256 int error; 257 ssize_t resid; 258 int fd = -1; 259 intptr_t voffset; 260 Phdr *intphdr = NULL; 261 Phdr *dynamicphdr = NULL; 262 Phdr *stphdr = NULL; 263 Phdr *uphdr = NULL; 264 Phdr *junk = NULL; 265 size_t len; 266 ssize_t phdrsize; 267 int postfixsize = 0; 268 int i, hsize; 269 Phdr *phdrp; 270 Phdr *dataphdrp = NULL; 271 Phdr *dtrphdr; 272 Phdr *capphdr = NULL; 273 Cap *cap = NULL; 274 ssize_t capsize; 275 Dyn *dyn = NULL; 276 ssize_t dynsize; 277 int hasu = 0; 278 int hasauxv = 0; 279 int hasintp = 0; 280 int branded = 0; 281 282 struct proc *p = ttoproc(curthread); 283 struct user *up = PTOU(p); 284 struct bigwad { 285 Ehdr ehdr; 286 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 287 char dl_name[MAXPATHLEN]; 288 char pathbuf[MAXPATHLEN]; 289 struct vattr vattr; 290 struct execenv exenv; 291 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 292 Ehdr *ehdrp; 293 int nshdrs, shstrndx, nphdrs; 294 char *dlnp; 295 char *pathbufp; 296 rlim64_t limit; 297 rlim64_t roundlimit; 298 299 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 300 301 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 302 ehdrp = &bigwad->ehdr; 303 dlnp = bigwad->dl_name; 304 pathbufp = bigwad->pathbuf; 305 306 /* 307 * Obtain ELF and program header information. 308 */ 309 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 310 &nphdrs)) != 0 || 311 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 312 &phdrsize)) != 0) 313 goto out; 314 315 /* 316 * Prevent executing an ELF file that has no entry point. 317 */ 318 if (ehdrp->e_entry == 0) { 319 uprintf("%s: Bad entry point\n", exec_file); 320 goto bad; 321 } 322 323 /* 324 * Put data model that we're exec-ing to into the args passed to 325 * exec_args(), so it will know what it is copying to on new stack. 326 * Now that we know whether we are exec-ing a 32-bit or 64-bit 327 * executable, we can set execsz with the appropriate NCARGS. 328 */ 329 #ifdef _LP64 330 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 331 args->to_model = DATAMODEL_ILP32; 332 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 333 } else { 334 args->to_model = DATAMODEL_LP64; 335 args->stk_prot &= ~PROT_EXEC; 336 #if defined(__i386) || defined(__amd64) 337 args->dat_prot &= ~PROT_EXEC; 338 #endif 339 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 340 } 341 #else /* _LP64 */ 342 args->to_model = DATAMODEL_ILP32; 343 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 344 #endif /* _LP64 */ 345 346 /* 347 * We delay invoking the brand callback until we've figured out 348 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 349 * We do this because now the brand library can just check 350 * args->to_model to see if the target is 32-bit or 64-bit without 351 * having do duplicate all the code above. 352 */ 353 if ((level < 2) && 354 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 355 error = BROP(p)->b_elfexec(vp, uap, args, 356 idatap, level + 1, execsz, setid, exec_file, cred, 357 brand_action); 358 goto out; 359 } 360 361 /* 362 * Determine aux size now so that stack can be built 363 * in one shot (except actual copyout of aux image), 364 * determine any non-default stack protections, 365 * and still have this code be machine independent. 366 */ 367 hsize = ehdrp->e_phentsize; 368 phdrp = (Phdr *)phdrbase; 369 for (i = nphdrs; i > 0; i--) { 370 switch (phdrp->p_type) { 371 case PT_INTERP: 372 hasauxv = hasintp = 1; 373 break; 374 case PT_PHDR: 375 hasu = 1; 376 break; 377 case PT_SUNWSTACK: 378 args->stk_prot = PROT_USER; 379 if (phdrp->p_flags & PF_R) 380 args->stk_prot |= PROT_READ; 381 if (phdrp->p_flags & PF_W) 382 args->stk_prot |= PROT_WRITE; 383 if (phdrp->p_flags & PF_X) 384 args->stk_prot |= PROT_EXEC; 385 break; 386 case PT_LOAD: 387 dataphdrp = phdrp; 388 break; 389 case PT_SUNWCAP: 390 capphdr = phdrp; 391 break; 392 case PT_DYNAMIC: 393 dynamicphdr = phdrp; 394 break; 395 } 396 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 397 } 398 399 if (ehdrp->e_type != ET_EXEC) { 400 dataphdrp = NULL; 401 hasauxv = 1; 402 } 403 404 /* Copy BSS permissions to args->dat_prot */ 405 if (dataphdrp != NULL) { 406 args->dat_prot = PROT_USER; 407 if (dataphdrp->p_flags & PF_R) 408 args->dat_prot |= PROT_READ; 409 if (dataphdrp->p_flags & PF_W) 410 args->dat_prot |= PROT_WRITE; 411 if (dataphdrp->p_flags & PF_X) 412 args->dat_prot |= PROT_EXEC; 413 } 414 415 /* 416 * If a auxvector will be required - reserve the space for 417 * it now. This may be increased by exec_args if there are 418 * ISA-specific types (included in __KERN_NAUXV_IMPL). 419 */ 420 if (hasauxv) { 421 /* 422 * If a AUX vector is being built - the base AUX 423 * entries are: 424 * 425 * AT_BASE 426 * AT_FLAGS 427 * AT_PAGESZ 428 * AT_SUN_AUXFLAGS 429 * AT_SUN_HWCAP 430 * AT_SUN_HWCAP2 431 * AT_SUN_SECFLAGS 432 * AT_SUN_PLATFORM (added in stk_copyout) 433 * AT_SUN_EXECNAME (added in stk_copyout) 434 * AT_NULL 435 * 436 * total == 10 437 */ 438 if (hasintp && hasu) { 439 /* 440 * Has PT_INTERP & PT_PHDR - the auxvectors that 441 * will be built are: 442 * 443 * AT_PHDR 444 * AT_PHENT 445 * AT_PHNUM 446 * AT_ENTRY 447 * AT_LDDATA 448 * 449 * total = 5 450 */ 451 args->auxsize = (10 + 5) * sizeof (aux_entry_t); 452 } else if (hasintp) { 453 /* 454 * Has PT_INTERP but no PT_PHDR 455 * 456 * AT_EXECFD 457 * AT_LDDATA 458 * 459 * total = 2 460 */ 461 args->auxsize = (10 + 2) * sizeof (aux_entry_t); 462 } else { 463 args->auxsize = 10 * sizeof (aux_entry_t); 464 } 465 } else { 466 args->auxsize = 0; 467 } 468 469 /* 470 * If this binary is using an emulator, we need to add an 471 * AT_SUN_EMULATOR aux entry. 472 */ 473 if (args->emulator != NULL) 474 args->auxsize += sizeof (aux_entry_t); 475 476 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 477 branded = 1; 478 /* 479 * We will be adding 4 entries to the aux vectors. One for 480 * the the brandname and 3 for the brand specific aux vectors. 481 */ 482 args->auxsize += 4 * sizeof (aux_entry_t); 483 } 484 485 /* If the binary has an explicit ASLR flag, it must be honoured */ 486 if (dynamicphdr != NULL) { 487 Dyn *dp; 488 489 dynsize = dynamicphdr->p_filesz; 490 dyn = kmem_alloc(dynsize, KM_SLEEP); 491 492 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)dyn, dynsize, 493 (offset_t)dynamicphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 494 CRED(), &resid)) != 0) { 495 uprintf("%s: cannot read .dynamic section\n", 496 exec_file); 497 goto out; 498 } 499 500 if (resid != 0) 501 goto out; 502 503 dp = dyn; 504 while (dp->d_tag != DT_NULL) { 505 if (dp->d_tag == DT_SUNW_ASLR) { 506 if (dp->d_un.d_val != 0) { 507 curproc->p_secflags.psf_effective |= 508 PROC_SEC_ASLR; 509 curproc->p_secflags.psf_inherit |= 510 PROC_SEC_ASLR; 511 512 } else { 513 curproc->p_secflags.psf_effective &= 514 ~PROC_SEC_ASLR; 515 curproc->p_secflags.psf_inherit &= 516 ~PROC_SEC_ASLR; 517 } 518 } 519 dp++; 520 } 521 } 522 523 /* Hardware/Software capabilities */ 524 if (capphdr != NULL && 525 (capsize = capphdr->p_filesz) > 0 && 526 capsize <= 16 * sizeof (*cap)) { 527 int ncaps = capsize / sizeof (*cap); 528 Cap *cp; 529 530 cap = kmem_alloc(capsize, KM_SLEEP); 531 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, 532 capsize, (offset_t)capphdr->p_offset, 533 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 534 uprintf("%s: Cannot read capabilities section\n", 535 exec_file); 536 goto out; 537 } 538 for (cp = cap; cp < cap + ncaps; cp++) { 539 if (cp->c_tag == CA_SUNW_SF_1 && 540 (cp->c_un.c_val & SF1_SUNW_ADDR32)) { 541 if (args->to_model == DATAMODEL_LP64) 542 args->addr32 = 1; 543 break; 544 } 545 } 546 } 547 548 aux = bigwad->elfargs; 549 /* 550 * Move args to the user's stack. 551 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. 552 */ 553 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 554 if (error == -1) { 555 error = ENOEXEC; 556 goto bad; 557 } 558 goto out; 559 } 560 /* we're single threaded after this point */ 561 562 /* 563 * If this is an ET_DYN executable (shared object), 564 * determine its memory size so that mapelfexec() can load it. 565 */ 566 if (ehdrp->e_type == ET_DYN) 567 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 568 else 569 len = 0; 570 571 dtrphdr = NULL; 572 573 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &intphdr, 574 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 575 len, execsz, &brksize)) != 0) 576 goto bad; 577 578 if (uphdr != NULL && intphdr == NULL) 579 goto bad; 580 581 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 582 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 583 goto bad; 584 } 585 586 if (intphdr != NULL) { 587 size_t len; 588 uintptr_t lddata; 589 char *p; 590 struct vnode *nvp; 591 592 dlnsize = intphdr->p_filesz; 593 594 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 595 goto bad; 596 597 /* 598 * Read in "interpreter" pathname. 599 */ 600 if ((error = vn_rdwr(UIO_READ, vp, dlnp, intphdr->p_filesz, 601 (offset_t)intphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 602 CRED(), &resid)) != 0) { 603 uprintf("%s: Cannot obtain interpreter pathname\n", 604 exec_file); 605 goto bad; 606 } 607 608 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 609 goto bad; 610 611 /* 612 * Search for '$ORIGIN' token in interpreter path. 613 * If found, expand it. 614 */ 615 for (p = dlnp; p = strchr(p, '$'); ) { 616 uint_t len, curlen; 617 char *_ptr; 618 619 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 620 continue; 621 622 curlen = 0; 623 len = p - dlnp - 1; 624 if (len) { 625 bcopy(dlnp, pathbufp, len); 626 curlen += len; 627 } 628 if (_ptr = strrchr(args->pathname, '/')) { 629 len = _ptr - args->pathname; 630 if ((curlen + len) > MAXPATHLEN) 631 break; 632 633 bcopy(args->pathname, &pathbufp[curlen], len); 634 curlen += len; 635 } else { 636 /* 637 * executable is a basename found in the 638 * current directory. So - just substitue 639 * '.' for ORIGIN. 640 */ 641 pathbufp[curlen] = '.'; 642 curlen++; 643 } 644 p += ORIGIN_STR_SIZE; 645 len = strlen(p); 646 647 if ((curlen + len) > MAXPATHLEN) 648 break; 649 bcopy(p, &pathbufp[curlen], len); 650 curlen += len; 651 pathbufp[curlen++] = '\0'; 652 bcopy(pathbufp, dlnp, curlen); 653 } 654 655 /* 656 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 657 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 658 * Just in case /usr is not mounted, change it now. 659 */ 660 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 661 dlnp += 4; 662 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 663 if (error && dlnp != bigwad->dl_name) { 664 /* new kernel, old user-level */ 665 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 666 NULLVPP, &nvp); 667 } 668 if (error) { 669 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 670 goto bad; 671 } 672 673 /* 674 * Setup the "aux" vector. 675 */ 676 if (uphdr) { 677 if (ehdrp->e_type == ET_DYN) { 678 /* don't use the first page */ 679 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 680 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 681 } else { 682 bigwad->exenv.ex_bssbase = bssbase; 683 bigwad->exenv.ex_brkbase = brkbase; 684 } 685 bigwad->exenv.ex_brksize = brksize; 686 bigwad->exenv.ex_magic = elfmagic; 687 bigwad->exenv.ex_vp = vp; 688 setexecenv(&bigwad->exenv); 689 690 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 691 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 692 ADDAUX(aux, AT_PHNUM, nphdrs) 693 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 694 } else { 695 if ((error = execopen(&vp, &fd)) != 0) { 696 VN_RELE(nvp); 697 goto bad; 698 } 699 700 ADDAUX(aux, AT_EXECFD, fd) 701 } 702 703 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 704 VN_RELE(nvp); 705 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 706 goto bad; 707 } 708 709 /* 710 * Now obtain the ELF header along with the entire program 711 * header contained in "nvp". 712 */ 713 kmem_free(phdrbase, phdrsize); 714 phdrbase = NULL; 715 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 716 &shstrndx, &nphdrs)) != 0 || 717 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 718 &phdrsize)) != 0) { 719 VN_RELE(nvp); 720 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 721 goto bad; 722 } 723 724 /* 725 * Determine memory size of the "interpreter's" loadable 726 * sections. This size is then used to obtain the virtual 727 * address of a hole, in the user's address space, large 728 * enough to map the "interpreter". 729 */ 730 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 731 VN_RELE(nvp); 732 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 733 goto bad; 734 } 735 736 dtrphdr = NULL; 737 738 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 739 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 740 execsz, NULL); 741 if (error || junk != NULL) { 742 VN_RELE(nvp); 743 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 744 goto bad; 745 } 746 747 /* 748 * We use the DTrace program header to initialize the 749 * architecture-specific user per-LWP location. The dtrace 750 * fasttrap provider requires ready access to per-LWP scratch 751 * space. We assume that there is only one such program header 752 * in the interpreter. 753 */ 754 if (dtrphdr != NULL && 755 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 756 VN_RELE(nvp); 757 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 758 goto bad; 759 } 760 761 VN_RELE(nvp); 762 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 763 } 764 765 if (hasauxv) { 766 int auxf = AF_SUN_HWCAPVERIFY; 767 /* 768 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via 769 * exec_args() 770 */ 771 ADDAUX(aux, AT_BASE, voffset) 772 ADDAUX(aux, AT_FLAGS, at_flags) 773 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 774 /* 775 * Linker flags. (security) 776 * p_flag not yet set at this time. 777 * We rely on gexec() to provide us with the information. 778 * If the application is set-uid but this is not reflected 779 * in a mismatch between real/effective uids/gids, then 780 * don't treat this as a set-uid exec. So we care about 781 * the EXECSETID_UGIDS flag but not the ...SETID flag. 782 */ 783 if ((setid &= ~EXECSETID_SETID) != 0) 784 auxf |= AF_SUN_SETUGID; 785 786 /* 787 * If we're running a native process from within a branded 788 * zone under pfexec then we clear the AF_SUN_SETUGID flag so 789 * that the native ld.so.1 is able to link with the native 790 * libraries instead of using the brand libraries that are 791 * installed in the zone. We only do this for processes 792 * which we trust because we see they are already running 793 * under pfexec (where uid != euid). This prevents a 794 * malicious user within the zone from crafting a wrapper to 795 * run native suid commands with unsecure libraries interposed. 796 */ 797 if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && 798 (setid &= ~EXECSETID_SETID) != 0)) 799 auxf &= ~AF_SUN_SETUGID; 800 801 /* 802 * Record the user addr of the auxflags aux vector entry 803 * since brands may optionally want to manipulate this field. 804 */ 805 args->auxp_auxflags = 806 (char *)((char *)args->stackend + 807 ((char *)&aux->a_type - 808 (char *)bigwad->elfargs)); 809 ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); 810 811 /* 812 * Put the effective security-flags into the aux vector, for 813 * the sake of flags that need partial (or complete) 814 * implementation in userland. 815 */ 816 ADDAUX(aux, AT_SUN_SECFLAGS, p->p_secflags.psf_effective); 817 /* 818 * Hardware capability flag word (performance hints) 819 * Used for choosing faster library routines. 820 * (Potentially different between 32-bit and 64-bit ABIs) 821 */ 822 #if defined(_LP64) 823 if (args->to_model == DATAMODEL_NATIVE) { 824 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 825 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 826 } else { 827 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 828 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) 829 } 830 #else 831 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 832 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 833 #endif 834 if (branded) { 835 /* 836 * Reserve space for the brand-private aux vectors, 837 * and record the user addr of that space. 838 */ 839 args->auxp_brand = 840 (char *)((char *)args->stackend + 841 ((char *)&aux->a_type - 842 (char *)bigwad->elfargs)); 843 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 844 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 845 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 846 } 847 848 ADDAUX(aux, AT_NULL, 0) 849 postfixsize = (char *)aux - (char *)bigwad->elfargs; 850 851 /* 852 * We make assumptions above when we determine how many aux 853 * vector entries we will be adding. However, if we have an 854 * invalid elf file, it is possible that mapelfexec might 855 * behave differently (but not return an error), in which case 856 * the number of aux entries we actually add will be different. 857 * We detect that now and error out. 858 */ 859 if (postfixsize != args->auxsize) { 860 DTRACE_PROBE2(elfexec_badaux, int, postfixsize, 861 int, args->auxsize); 862 goto bad; 863 } 864 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 865 } 866 867 /* 868 * For the 64-bit kernel, the limit is big enough that rounding it up 869 * to a page can overflow the 64-bit limit, so we check for btopr() 870 * overflowing here by comparing it with the unrounded limit in pages. 871 * If it hasn't overflowed, compare the exec size with the rounded up 872 * limit in pages. Otherwise, just compare with the unrounded limit. 873 */ 874 limit = btop(p->p_vmem_ctl); 875 roundlimit = btopr(p->p_vmem_ctl); 876 if ((roundlimit > limit && *execsz > roundlimit) || 877 (roundlimit < limit && *execsz > limit)) { 878 mutex_enter(&p->p_lock); 879 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 880 RCA_SAFE); 881 mutex_exit(&p->p_lock); 882 error = ENOMEM; 883 goto bad; 884 } 885 886 bzero(up->u_auxv, sizeof (up->u_auxv)); 887 if (postfixsize) { 888 int num_auxv; 889 890 /* 891 * Copy the aux vector to the user stack. 892 */ 893 error = execpoststack(args, bigwad->elfargs, postfixsize); 894 if (error) 895 goto bad; 896 897 /* 898 * Copy auxv to the process's user structure for use by /proc. 899 * If this is a branded process, the brand's exec routine will 900 * copy it's private entries to the user structure later. It 901 * relies on the fact that the blank entries are at the end. 902 */ 903 num_auxv = postfixsize / sizeof (aux_entry_t); 904 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 905 aux = bigwad->elfargs; 906 for (i = 0; i < num_auxv; i++) { 907 up->u_auxv[i].a_type = aux[i].a_type; 908 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 909 } 910 } 911 912 /* 913 * Pass back the starting address so we can set the program counter. 914 */ 915 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 916 917 if (!uphdr) { 918 if (ehdrp->e_type == ET_DYN) { 919 /* 920 * If we are executing a shared library which doesn't 921 * have a interpreter (probably ld.so.1) then 922 * we don't set the brkbase now. Instead we 923 * delay it's setting until the first call 924 * via grow.c::brk(). This permits ld.so.1 to 925 * initialize brkbase to the tail of the executable it 926 * loads (which is where it needs to be). 927 */ 928 bigwad->exenv.ex_brkbase = (caddr_t)0; 929 bigwad->exenv.ex_bssbase = (caddr_t)0; 930 bigwad->exenv.ex_brksize = 0; 931 } else { 932 bigwad->exenv.ex_brkbase = brkbase; 933 bigwad->exenv.ex_bssbase = bssbase; 934 bigwad->exenv.ex_brksize = brksize; 935 } 936 bigwad->exenv.ex_magic = elfmagic; 937 bigwad->exenv.ex_vp = vp; 938 setexecenv(&bigwad->exenv); 939 } 940 941 ASSERT(error == 0); 942 goto out; 943 944 bad: 945 if (fd != -1) /* did we open the a.out yet */ 946 (void) execclose(fd); 947 948 psignal(p, SIGKILL); 949 950 if (error == 0) 951 error = ENOEXEC; 952 out: 953 if (phdrbase != NULL) 954 kmem_free(phdrbase, phdrsize); 955 if (cap != NULL) 956 kmem_free(cap, capsize); 957 if (dyn != NULL) 958 kmem_free(dyn, dynsize); 959 kmem_free(bigwad, sizeof (struct bigwad)); 960 return (error); 961 } 962 963 /* 964 * Compute the memory size requirement for the ELF file. 965 */ 966 static size_t 967 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 968 { 969 size_t len; 970 Phdr *phdrp = (Phdr *)phdrbase; 971 int hsize = ehdrp->e_phentsize; 972 int first = 1; 973 int dfirst = 1; /* first data segment */ 974 uintptr_t loaddr = 0; 975 uintptr_t hiaddr = 0; 976 uintptr_t lo, hi; 977 int i; 978 979 for (i = nphdrs; i > 0; i--) { 980 if (phdrp->p_type == PT_LOAD) { 981 lo = phdrp->p_vaddr; 982 hi = lo + phdrp->p_memsz; 983 if (first) { 984 loaddr = lo; 985 hiaddr = hi; 986 first = 0; 987 } else { 988 if (loaddr > lo) 989 loaddr = lo; 990 if (hiaddr < hi) 991 hiaddr = hi; 992 } 993 994 /* 995 * save the address of the first data segment 996 * of a object - used for the AT_SUNW_LDDATA 997 * aux entry. 998 */ 999 if ((lddata != NULL) && dfirst && 1000 (phdrp->p_flags & PF_W)) { 1001 *lddata = lo; 1002 dfirst = 0; 1003 } 1004 } 1005 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 1006 } 1007 1008 len = hiaddr - (loaddr & PAGEMASK); 1009 len = roundup(len, PAGESIZE); 1010 1011 return (len); 1012 } 1013 1014 /* 1015 * Read in the ELF header and program header table. 1016 * SUSV3 requires: 1017 * ENOEXEC File format is not recognized 1018 * EINVAL Format recognized but execution not supported 1019 */ 1020 static int 1021 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 1022 int *nphdrs) 1023 { 1024 int error; 1025 ssize_t resid; 1026 1027 /* 1028 * We got here by the first two bytes in ident, 1029 * now read the entire ELF header. 1030 */ 1031 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 1032 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 1033 (rlim64_t)0, credp, &resid)) != 0) 1034 return (error); 1035 1036 /* 1037 * Since a separate version is compiled for handling 32-bit and 1038 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 1039 * doesn't need to be able to deal with 32-bit ELF files. 1040 */ 1041 if (resid != 0 || 1042 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 1043 ehdr->e_ident[EI_MAG3] != ELFMAG3) 1044 return (ENOEXEC); 1045 1046 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 1047 #if defined(_ILP32) || defined(_ELF32_COMPAT) 1048 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 1049 #else 1050 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 1051 #endif 1052 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 1053 ehdr->e_flags)) 1054 return (EINVAL); 1055 1056 *nshdrs = ehdr->e_shnum; 1057 *shstrndx = ehdr->e_shstrndx; 1058 *nphdrs = ehdr->e_phnum; 1059 1060 /* 1061 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 1062 * to read in the section header at index zero to acces the true 1063 * values for those fields. 1064 */ 1065 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 1066 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 1067 Shdr shdr; 1068 1069 if (ehdr->e_shoff == 0) 1070 return (EINVAL); 1071 1072 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 1073 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 1074 (rlim64_t)0, credp, &resid)) != 0) 1075 return (error); 1076 1077 if (*nshdrs == 0) 1078 *nshdrs = shdr.sh_size; 1079 if (*shstrndx == SHN_XINDEX) 1080 *shstrndx = shdr.sh_link; 1081 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 1082 *nphdrs = shdr.sh_info; 1083 } 1084 1085 return (0); 1086 } 1087 1088 #ifdef _ELF32_COMPAT 1089 extern size_t elf_nphdr_max; 1090 #else 1091 size_t elf_nphdr_max = 1000; 1092 #endif 1093 1094 static int 1095 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 1096 caddr_t *phbasep, ssize_t *phsizep) 1097 { 1098 ssize_t resid, minsize; 1099 int err; 1100 1101 /* 1102 * Since we're going to be using e_phentsize to iterate down the 1103 * array of program headers, it must be 8-byte aligned or else 1104 * a we might cause a misaligned access. We use all members through 1105 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 1106 * e_phentsize must be at least large enough to include those 1107 * members. 1108 */ 1109 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1110 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 1111 #else 1112 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 1113 #endif 1114 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 1115 return (EINVAL); 1116 1117 *phsizep = nphdrs * ehdr->e_phentsize; 1118 1119 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 1120 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 1121 return (ENOMEM); 1122 } else { 1123 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 1124 } 1125 1126 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 1127 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1128 credp, &resid)) != 0) { 1129 kmem_free(*phbasep, *phsizep); 1130 *phbasep = NULL; 1131 return (err); 1132 } 1133 1134 return (0); 1135 } 1136 1137 #ifdef _ELF32_COMPAT 1138 extern size_t elf_nshdr_max; 1139 extern size_t elf_shstrtab_max; 1140 #else 1141 size_t elf_nshdr_max = 10000; 1142 size_t elf_shstrtab_max = 100 * 1024; 1143 #endif 1144 1145 1146 static int 1147 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1148 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1149 char **shstrbasep, ssize_t *shstrsizep) 1150 { 1151 ssize_t resid, minsize; 1152 int err; 1153 Shdr *shdr; 1154 1155 /* 1156 * Since we're going to be using e_shentsize to iterate down the 1157 * array of section headers, it must be 8-byte aligned or else 1158 * a we might cause a misaligned access. We use all members through 1159 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1160 * must be at least large enough to include that member. The index 1161 * of the string table section must also be valid. 1162 */ 1163 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1164 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1165 shstrndx >= nshdrs) 1166 return (EINVAL); 1167 1168 *shsizep = nshdrs * ehdr->e_shentsize; 1169 1170 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1171 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1172 return (ENOMEM); 1173 } else { 1174 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1175 } 1176 1177 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1178 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1179 credp, &resid)) != 0) { 1180 kmem_free(*shbasep, *shsizep); 1181 return (err); 1182 } 1183 1184 /* 1185 * Pull the section string table out of the vnode; fail if the size 1186 * is zero. 1187 */ 1188 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1189 if ((*shstrsizep = shdr->sh_size) == 0) { 1190 kmem_free(*shbasep, *shsizep); 1191 return (EINVAL); 1192 } 1193 1194 if (*shstrsizep > elf_shstrtab_max) { 1195 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1196 KM_NOSLEEP)) == NULL) { 1197 kmem_free(*shbasep, *shsizep); 1198 return (ENOMEM); 1199 } 1200 } else { 1201 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1202 } 1203 1204 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1205 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1206 credp, &resid)) != 0) { 1207 kmem_free(*shbasep, *shsizep); 1208 kmem_free(*shstrbasep, *shstrsizep); 1209 return (err); 1210 } 1211 1212 /* 1213 * Make sure the strtab is null-terminated to make sure we 1214 * don't run off the end of the table. 1215 */ 1216 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1217 1218 return (0); 1219 } 1220 1221 static int 1222 mapelfexec( 1223 vnode_t *vp, 1224 Ehdr *ehdr, 1225 int nphdrs, 1226 caddr_t phdrbase, 1227 Phdr **uphdr, 1228 Phdr **intphdr, 1229 Phdr **stphdr, 1230 Phdr **dtphdr, 1231 Phdr *dataphdrp, 1232 caddr_t *bssbase, 1233 caddr_t *brkbase, 1234 intptr_t *voffset, 1235 intptr_t *minaddr, 1236 size_t len, 1237 long *execsz, 1238 size_t *brksize) 1239 { 1240 Phdr *phdr; 1241 int i, prot, error; 1242 caddr_t addr = NULL; 1243 size_t zfodsz; 1244 int ptload = 0; 1245 int page; 1246 off_t offset; 1247 int hsize = ehdr->e_phentsize; 1248 caddr_t mintmp = (caddr_t)-1; 1249 extern int use_brk_lpg; 1250 1251 if (ehdr->e_type == ET_DYN) { 1252 uint_t flags = 0; 1253 /* 1254 * Obtain the virtual address of a hole in the 1255 * address space to map the "interpreter". 1256 */ 1257 if (secflag_enabled(curproc, PROC_SEC_ASLR)) 1258 flags |= _MAP_RANDOMIZE; 1259 1260 map_addr(&addr, len, (offset_t)0, 1, flags); 1261 if (addr == NULL) 1262 return (ENOMEM); 1263 *voffset = (intptr_t)addr; 1264 1265 /* 1266 * Calculate the minimum vaddr so it can be subtracted out. 1267 * According to the ELF specification, since PT_LOAD sections 1268 * must be sorted by increasing p_vaddr values, this is 1269 * guaranteed to be the first PT_LOAD section. 1270 */ 1271 phdr = (Phdr *)phdrbase; 1272 for (i = nphdrs; i > 0; i--) { 1273 if (phdr->p_type == PT_LOAD) { 1274 *voffset -= (uintptr_t)phdr->p_vaddr; 1275 break; 1276 } 1277 phdr = (Phdr *)((caddr_t)phdr + hsize); 1278 } 1279 1280 } else { 1281 *voffset = 0; 1282 } 1283 phdr = (Phdr *)phdrbase; 1284 for (i = nphdrs; i > 0; i--) { 1285 switch (phdr->p_type) { 1286 case PT_LOAD: 1287 if ((*intphdr != NULL) && (*uphdr == NULL)) 1288 return (0); 1289 1290 ptload = 1; 1291 prot = PROT_USER; 1292 if (phdr->p_flags & PF_R) 1293 prot |= PROT_READ; 1294 if (phdr->p_flags & PF_W) 1295 prot |= PROT_WRITE; 1296 if (phdr->p_flags & PF_X) 1297 prot |= PROT_EXEC; 1298 1299 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1300 1301 /* 1302 * Keep track of the segment with the lowest starting 1303 * address. 1304 */ 1305 if (addr < mintmp) 1306 mintmp = addr; 1307 1308 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1309 1310 offset = phdr->p_offset; 1311 if (((uintptr_t)offset & PAGEOFFSET) == 1312 ((uintptr_t)addr & PAGEOFFSET) && 1313 (!(vp->v_flag & VNOMAP))) { 1314 page = 1; 1315 } else { 1316 page = 0; 1317 } 1318 1319 /* 1320 * Set the heap pagesize for OOB when the bss size 1321 * is known and use_brk_lpg is not 0. 1322 */ 1323 if (brksize != NULL && use_brk_lpg && 1324 zfodsz != 0 && phdr == dataphdrp && 1325 (prot & PROT_WRITE)) { 1326 size_t tlen = P2NPHASE((uintptr_t)addr + 1327 phdr->p_filesz, PAGESIZE); 1328 1329 if (zfodsz > tlen) { 1330 curproc->p_brkpageszc = 1331 page_szc(map_pgsz(MAPPGSZ_HEAP, 1332 curproc, addr + phdr->p_filesz + 1333 tlen, zfodsz - tlen, 0)); 1334 } 1335 } 1336 1337 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1338 (prot & PROT_WRITE)) { 1339 uint_t szc = curproc->p_brkpageszc; 1340 size_t pgsz = page_get_pagesize(szc); 1341 caddr_t ebss = addr + phdr->p_memsz; 1342 /* 1343 * If we need extra space to keep the BSS an 1344 * integral number of pages in size, some of 1345 * that space may fall beyond p_brkbase, so we 1346 * need to set p_brksize to account for it 1347 * being (logically) part of the brk. 1348 */ 1349 size_t extra_zfodsz; 1350 1351 ASSERT(pgsz > PAGESIZE); 1352 1353 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1354 1355 if (error = execmap(vp, addr, phdr->p_filesz, 1356 zfodsz + extra_zfodsz, phdr->p_offset, 1357 prot, page, szc)) 1358 goto bad; 1359 if (brksize != NULL) 1360 *brksize = extra_zfodsz; 1361 } else { 1362 if (error = execmap(vp, addr, phdr->p_filesz, 1363 zfodsz, phdr->p_offset, prot, page, 0)) 1364 goto bad; 1365 } 1366 1367 if (bssbase != NULL && addr >= *bssbase && 1368 phdr == dataphdrp) { 1369 *bssbase = addr + phdr->p_filesz; 1370 } 1371 if (brkbase != NULL && addr >= *brkbase) { 1372 *brkbase = addr + phdr->p_memsz; 1373 } 1374 1375 *execsz += btopr(phdr->p_memsz); 1376 break; 1377 1378 case PT_INTERP: 1379 if (ptload) 1380 goto bad; 1381 *intphdr = phdr; 1382 break; 1383 1384 case PT_SHLIB: 1385 *stphdr = phdr; 1386 break; 1387 1388 case PT_PHDR: 1389 if (ptload) 1390 goto bad; 1391 *uphdr = phdr; 1392 break; 1393 1394 case PT_NULL: 1395 case PT_DYNAMIC: 1396 case PT_NOTE: 1397 break; 1398 1399 case PT_SUNWDTRACE: 1400 if (dtphdr != NULL) 1401 *dtphdr = phdr; 1402 break; 1403 1404 default: 1405 break; 1406 } 1407 phdr = (Phdr *)((caddr_t)phdr + hsize); 1408 } 1409 1410 if (minaddr != NULL) { 1411 ASSERT(mintmp != (caddr_t)-1); 1412 *minaddr = (intptr_t)mintmp; 1413 } 1414 1415 if (brkbase != NULL && secflag_enabled(curproc, PROC_SEC_ASLR)) { 1416 size_t off; 1417 uintptr_t base = (uintptr_t)*brkbase; 1418 uintptr_t oend = base + *brksize; 1419 1420 ASSERT(ISP2(aslr_max_brk_skew)); 1421 1422 (void) random_get_pseudo_bytes((uint8_t *)&off, sizeof (off)); 1423 base += P2PHASE(off, aslr_max_brk_skew); 1424 base = P2ROUNDUP(base, PAGESIZE); 1425 *brkbase = (caddr_t)base; 1426 /* 1427 * Above, we set *brksize to account for the possibility we 1428 * had to grow the 'brk' in padding out the BSS to a page 1429 * boundary. 1430 * 1431 * We now need to adjust that based on where we now are 1432 * actually putting the brk. 1433 */ 1434 if (oend > base) 1435 *brksize = oend - base; 1436 else 1437 *brksize = 0; 1438 } 1439 1440 return (0); 1441 bad: 1442 if (error == 0) 1443 error = EINVAL; 1444 return (error); 1445 } 1446 1447 int 1448 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1449 rlim64_t rlimit, cred_t *credp) 1450 { 1451 Note note; 1452 int error; 1453 1454 bzero(¬e, sizeof (note)); 1455 bcopy("CORE", note.name, 4); 1456 note.nhdr.n_type = type; 1457 /* 1458 * The System V ABI states that n_namesz must be the length of the 1459 * string that follows the Nhdr structure including the terminating 1460 * null. The ABI also specifies that sufficient padding should be 1461 * included so that the description that follows the name string 1462 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1463 * respectively. However, since this change was not made correctly 1464 * at the time of the 64-bit port, both 32- and 64-bit binaries 1465 * descriptions are only guaranteed to begin on a 4-byte boundary. 1466 */ 1467 note.nhdr.n_namesz = 5; 1468 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1469 1470 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1471 sizeof (note), rlimit, credp)) 1472 return (error); 1473 1474 *offsetp += sizeof (note); 1475 1476 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1477 note.nhdr.n_descsz, rlimit, credp)) 1478 return (error); 1479 1480 *offsetp += note.nhdr.n_descsz; 1481 return (0); 1482 } 1483 1484 /* 1485 * Copy the section data from one vnode to the section of another vnode. 1486 */ 1487 static void 1488 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1489 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1490 { 1491 ssize_t resid; 1492 size_t len, n = src->sh_size; 1493 offset_t off = 0; 1494 1495 while (n != 0) { 1496 len = MIN(size, n); 1497 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1498 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1499 resid >= len || 1500 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1501 buf, len - resid, rlimit, credp) != 0) { 1502 dst->sh_size = 0; 1503 dst->sh_offset = 0; 1504 return; 1505 } 1506 1507 ASSERT(n >= len - resid); 1508 1509 n -= len - resid; 1510 off += len - resid; 1511 } 1512 1513 *doffset += src->sh_size; 1514 } 1515 1516 #ifdef _ELF32_COMPAT 1517 extern size_t elf_datasz_max; 1518 #else 1519 size_t elf_datasz_max = 1 * 1024 * 1024; 1520 #endif 1521 1522 /* 1523 * This function processes mappings that correspond to load objects to 1524 * examine their respective sections for elfcore(). It's called once with 1525 * v set to NULL to count the number of sections that we're going to need 1526 * and then again with v set to some allocated buffer that we fill in with 1527 * all the section data. 1528 */ 1529 static int 1530 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1531 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1532 { 1533 vnode_t *lastvp = NULL; 1534 struct seg *seg; 1535 int i, j; 1536 void *data = NULL; 1537 size_t datasz = 0; 1538 shstrtab_t shstrtab; 1539 struct as *as = p->p_as; 1540 int error = 0; 1541 1542 if (v != NULL) 1543 shstrtab_init(&shstrtab); 1544 1545 i = 1; 1546 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1547 uint_t prot; 1548 vnode_t *mvp; 1549 void *tmp = NULL; 1550 caddr_t saddr = seg->s_base; 1551 caddr_t naddr; 1552 caddr_t eaddr; 1553 size_t segsize; 1554 1555 Ehdr ehdr; 1556 int nshdrs, shstrndx, nphdrs; 1557 caddr_t shbase; 1558 ssize_t shsize; 1559 char *shstrbase; 1560 ssize_t shstrsize; 1561 1562 Shdr *shdr; 1563 const char *name; 1564 size_t sz; 1565 uintptr_t off; 1566 1567 int ctf_ndx = 0; 1568 int symtab_ndx = 0; 1569 1570 /* 1571 * Since we're just looking for text segments of load 1572 * objects, we only care about the protection bits; we don't 1573 * care about the actual size of the segment so we use the 1574 * reserved size. If the segment's size is zero, there's 1575 * something fishy going on so we ignore this segment. 1576 */ 1577 if (seg->s_ops != &segvn_ops || 1578 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1579 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1580 (segsize = pr_getsegsize(seg, 1)) == 0) 1581 continue; 1582 1583 eaddr = saddr + segsize; 1584 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1585 pr_getprot_done(&tmp); 1586 1587 /* 1588 * Skip this segment unless the protection bits look like 1589 * what we'd expect for a text segment. 1590 */ 1591 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1592 continue; 1593 1594 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1595 &nphdrs) != 0 || 1596 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1597 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1598 continue; 1599 1600 off = ehdr.e_shentsize; 1601 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1602 Shdr *symtab = NULL, *strtab; 1603 1604 shdr = (Shdr *)(shbase + off); 1605 1606 if (shdr->sh_name >= shstrsize) 1607 continue; 1608 1609 name = shstrbase + shdr->sh_name; 1610 1611 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1612 if ((content & CC_CONTENT_CTF) == 0 || 1613 ctf_ndx != 0) 1614 continue; 1615 1616 if (shdr->sh_link > 0 && 1617 shdr->sh_link < nshdrs) { 1618 symtab = (Shdr *)(shbase + 1619 shdr->sh_link * ehdr.e_shentsize); 1620 } 1621 1622 if (v != NULL && i < nv - 1) { 1623 if (shdr->sh_size > datasz && 1624 shdr->sh_size <= elf_datasz_max) { 1625 if (data != NULL) 1626 kmem_free(data, datasz); 1627 1628 datasz = shdr->sh_size; 1629 data = kmem_alloc(datasz, 1630 KM_SLEEP); 1631 } 1632 1633 v[i].sh_name = shstrtab_ndx(&shstrtab, 1634 STR_CTF); 1635 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1636 v[i].sh_type = SHT_PROGBITS; 1637 v[i].sh_addralign = 4; 1638 *doffsetp = roundup(*doffsetp, 1639 v[i].sh_addralign); 1640 v[i].sh_offset = *doffsetp; 1641 v[i].sh_size = shdr->sh_size; 1642 if (symtab == NULL) { 1643 v[i].sh_link = 0; 1644 } else if (symtab->sh_type == 1645 SHT_SYMTAB && 1646 symtab_ndx != 0) { 1647 v[i].sh_link = 1648 symtab_ndx; 1649 } else { 1650 v[i].sh_link = i + 1; 1651 } 1652 1653 copy_scn(shdr, mvp, &v[i], vp, 1654 doffsetp, data, datasz, credp, 1655 rlimit); 1656 } 1657 1658 ctf_ndx = i++; 1659 1660 /* 1661 * We've already dumped the symtab. 1662 */ 1663 if (symtab != NULL && 1664 symtab->sh_type == SHT_SYMTAB && 1665 symtab_ndx != 0) 1666 continue; 1667 1668 } else if (strcmp(name, 1669 shstrtab_data[STR_SYMTAB]) == 0) { 1670 if ((content & CC_CONTENT_SYMTAB) == 0 || 1671 symtab != 0) 1672 continue; 1673 1674 symtab = shdr; 1675 } 1676 1677 if (symtab != NULL) { 1678 if ((symtab->sh_type != SHT_DYNSYM && 1679 symtab->sh_type != SHT_SYMTAB) || 1680 symtab->sh_link == 0 || 1681 symtab->sh_link >= nshdrs) 1682 continue; 1683 1684 strtab = (Shdr *)(shbase + 1685 symtab->sh_link * ehdr.e_shentsize); 1686 1687 if (strtab->sh_type != SHT_STRTAB) 1688 continue; 1689 1690 if (v != NULL && i < nv - 2) { 1691 sz = MAX(symtab->sh_size, 1692 strtab->sh_size); 1693 if (sz > datasz && 1694 sz <= elf_datasz_max) { 1695 if (data != NULL) 1696 kmem_free(data, datasz); 1697 1698 datasz = sz; 1699 data = kmem_alloc(datasz, 1700 KM_SLEEP); 1701 } 1702 1703 if (symtab->sh_type == SHT_DYNSYM) { 1704 v[i].sh_name = shstrtab_ndx( 1705 &shstrtab, STR_DYNSYM); 1706 v[i + 1].sh_name = shstrtab_ndx( 1707 &shstrtab, STR_DYNSTR); 1708 } else { 1709 v[i].sh_name = shstrtab_ndx( 1710 &shstrtab, STR_SYMTAB); 1711 v[i + 1].sh_name = shstrtab_ndx( 1712 &shstrtab, STR_STRTAB); 1713 } 1714 1715 v[i].sh_type = symtab->sh_type; 1716 v[i].sh_addr = symtab->sh_addr; 1717 if (ehdr.e_type == ET_DYN || 1718 v[i].sh_addr == 0) 1719 v[i].sh_addr += 1720 (Addr)(uintptr_t)saddr; 1721 v[i].sh_addralign = 1722 symtab->sh_addralign; 1723 *doffsetp = roundup(*doffsetp, 1724 v[i].sh_addralign); 1725 v[i].sh_offset = *doffsetp; 1726 v[i].sh_size = symtab->sh_size; 1727 v[i].sh_link = i + 1; 1728 v[i].sh_entsize = symtab->sh_entsize; 1729 v[i].sh_info = symtab->sh_info; 1730 1731 copy_scn(symtab, mvp, &v[i], vp, 1732 doffsetp, data, datasz, credp, 1733 rlimit); 1734 1735 v[i + 1].sh_type = SHT_STRTAB; 1736 v[i + 1].sh_flags = SHF_STRINGS; 1737 v[i + 1].sh_addr = symtab->sh_addr; 1738 if (ehdr.e_type == ET_DYN || 1739 v[i + 1].sh_addr == 0) 1740 v[i + 1].sh_addr += 1741 (Addr)(uintptr_t)saddr; 1742 v[i + 1].sh_addralign = 1743 strtab->sh_addralign; 1744 *doffsetp = roundup(*doffsetp, 1745 v[i + 1].sh_addralign); 1746 v[i + 1].sh_offset = *doffsetp; 1747 v[i + 1].sh_size = strtab->sh_size; 1748 1749 copy_scn(strtab, mvp, &v[i + 1], vp, 1750 doffsetp, data, datasz, credp, 1751 rlimit); 1752 } 1753 1754 if (symtab->sh_type == SHT_SYMTAB) 1755 symtab_ndx = i; 1756 i += 2; 1757 } 1758 } 1759 1760 kmem_free(shstrbase, shstrsize); 1761 kmem_free(shbase, shsize); 1762 1763 lastvp = mvp; 1764 } 1765 1766 if (v == NULL) { 1767 if (i == 1) 1768 *nshdrsp = 0; 1769 else 1770 *nshdrsp = i + 1; 1771 goto done; 1772 } 1773 1774 if (i != nv - 1) { 1775 cmn_err(CE_WARN, "elfcore: core dump failed for " 1776 "process %d; address space is changing", p->p_pid); 1777 error = EIO; 1778 goto done; 1779 } 1780 1781 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1782 v[i].sh_size = shstrtab_size(&shstrtab); 1783 v[i].sh_addralign = 1; 1784 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1785 v[i].sh_offset = *doffsetp; 1786 v[i].sh_flags = SHF_STRINGS; 1787 v[i].sh_type = SHT_STRTAB; 1788 1789 if (v[i].sh_size > datasz) { 1790 if (data != NULL) 1791 kmem_free(data, datasz); 1792 1793 datasz = v[i].sh_size; 1794 data = kmem_alloc(datasz, 1795 KM_SLEEP); 1796 } 1797 1798 shstrtab_dump(&shstrtab, data); 1799 1800 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1801 data, v[i].sh_size, rlimit, credp)) != 0) 1802 goto done; 1803 1804 *doffsetp += v[i].sh_size; 1805 1806 done: 1807 if (data != NULL) 1808 kmem_free(data, datasz); 1809 1810 return (error); 1811 } 1812 1813 int 1814 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1815 core_content_t content) 1816 { 1817 offset_t poffset, soffset; 1818 Off doffset; 1819 int error, i, nphdrs, nshdrs; 1820 int overflow = 0; 1821 struct seg *seg; 1822 struct as *as = p->p_as; 1823 union { 1824 Ehdr ehdr; 1825 Phdr phdr[1]; 1826 Shdr shdr[1]; 1827 } *bigwad; 1828 size_t bigsize; 1829 size_t phdrsz, shdrsz; 1830 Ehdr *ehdr; 1831 Phdr *v; 1832 caddr_t brkbase; 1833 size_t brksize; 1834 caddr_t stkbase; 1835 size_t stksize; 1836 int ntries = 0; 1837 klwp_t *lwp = ttolwp(curthread); 1838 1839 top: 1840 /* 1841 * Make sure we have everything we need (registers, etc.). 1842 * All other lwps have already stopped and are in an orderly state. 1843 */ 1844 ASSERT(p == ttoproc(curthread)); 1845 prstop(0, 0); 1846 1847 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1848 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1849 1850 /* 1851 * Count the number of section headers we're going to need. 1852 */ 1853 nshdrs = 0; 1854 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1855 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1856 NULL, &nshdrs); 1857 } 1858 AS_LOCK_EXIT(as, &as->a_lock); 1859 1860 ASSERT(nshdrs == 0 || nshdrs > 1); 1861 1862 /* 1863 * The core file contents may required zero section headers, but if 1864 * we overflow the 16 bits allotted to the program header count in 1865 * the ELF header, we'll need that program header at index zero. 1866 */ 1867 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1868 nshdrs = 1; 1869 1870 phdrsz = nphdrs * sizeof (Phdr); 1871 shdrsz = nshdrs * sizeof (Shdr); 1872 1873 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1874 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1875 1876 ehdr = &bigwad->ehdr; 1877 bzero(ehdr, sizeof (*ehdr)); 1878 1879 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1880 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1881 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1882 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1883 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1884 ehdr->e_type = ET_CORE; 1885 1886 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1887 1888 #if defined(__sparc) 1889 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1890 ehdr->e_machine = EM_SPARC; 1891 #elif defined(__i386) || defined(__i386_COMPAT) 1892 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1893 ehdr->e_machine = EM_386; 1894 #else 1895 #error "no recognized machine type is defined" 1896 #endif 1897 1898 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1899 1900 #if defined(__sparc) 1901 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1902 ehdr->e_machine = EM_SPARCV9; 1903 #elif defined(__amd64) 1904 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1905 ehdr->e_machine = EM_AMD64; 1906 #else 1907 #error "no recognized 64-bit machine type is defined" 1908 #endif 1909 1910 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1911 1912 /* 1913 * If the count of program headers or section headers or the index 1914 * of the section string table can't fit in the mere 16 bits 1915 * shortsightedly allotted to them in the ELF header, we use the 1916 * extended formats and put the real values in the section header 1917 * as index 0. 1918 */ 1919 ehdr->e_version = EV_CURRENT; 1920 ehdr->e_ehsize = sizeof (Ehdr); 1921 1922 if (nphdrs >= PN_XNUM) 1923 ehdr->e_phnum = PN_XNUM; 1924 else 1925 ehdr->e_phnum = (unsigned short)nphdrs; 1926 1927 ehdr->e_phoff = sizeof (Ehdr); 1928 ehdr->e_phentsize = sizeof (Phdr); 1929 1930 if (nshdrs > 0) { 1931 if (nshdrs >= SHN_LORESERVE) 1932 ehdr->e_shnum = 0; 1933 else 1934 ehdr->e_shnum = (unsigned short)nshdrs; 1935 1936 if (nshdrs - 1 >= SHN_LORESERVE) 1937 ehdr->e_shstrndx = SHN_XINDEX; 1938 else 1939 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 1940 1941 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 1942 ehdr->e_shentsize = sizeof (Shdr); 1943 } 1944 1945 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 1946 sizeof (Ehdr), rlimit, credp)) 1947 goto done; 1948 1949 poffset = sizeof (Ehdr); 1950 soffset = sizeof (Ehdr) + phdrsz; 1951 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 1952 1953 v = &bigwad->phdr[0]; 1954 bzero(v, phdrsz); 1955 1956 setup_old_note_header(&v[0], p); 1957 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 1958 doffset += v[0].p_filesz; 1959 1960 setup_note_header(&v[1], p); 1961 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 1962 doffset += v[1].p_filesz; 1963 1964 mutex_enter(&p->p_lock); 1965 1966 brkbase = p->p_brkbase; 1967 brksize = p->p_brksize; 1968 1969 stkbase = p->p_usrstack - p->p_stksize; 1970 stksize = p->p_stksize; 1971 1972 mutex_exit(&p->p_lock); 1973 1974 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1975 i = 2; 1976 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1977 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1978 caddr_t saddr, naddr; 1979 void *tmp = NULL; 1980 extern struct seg_ops segspt_shmops; 1981 1982 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1983 uint_t prot; 1984 size_t size; 1985 int type; 1986 vnode_t *mvp; 1987 1988 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1989 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 1990 if ((size = (size_t)(naddr - saddr)) == 0) 1991 continue; 1992 if (i == nphdrs) { 1993 overflow++; 1994 continue; 1995 } 1996 v[i].p_type = PT_LOAD; 1997 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 1998 v[i].p_memsz = size; 1999 if (prot & PROT_READ) 2000 v[i].p_flags |= PF_R; 2001 if (prot & PROT_WRITE) 2002 v[i].p_flags |= PF_W; 2003 if (prot & PROT_EXEC) 2004 v[i].p_flags |= PF_X; 2005 2006 /* 2007 * Figure out which mappings to include in the core. 2008 */ 2009 type = SEGOP_GETTYPE(seg, saddr); 2010 2011 if (saddr == stkbase && size == stksize) { 2012 if (!(content & CC_CONTENT_STACK)) 2013 goto exclude; 2014 2015 } else if (saddr == brkbase && size == brksize) { 2016 if (!(content & CC_CONTENT_HEAP)) 2017 goto exclude; 2018 2019 } else if (seg->s_ops == &segspt_shmops) { 2020 if (type & MAP_NORESERVE) { 2021 if (!(content & CC_CONTENT_DISM)) 2022 goto exclude; 2023 } else { 2024 if (!(content & CC_CONTENT_ISM)) 2025 goto exclude; 2026 } 2027 2028 } else if (seg->s_ops != &segvn_ops) { 2029 goto exclude; 2030 2031 } else if (type & MAP_SHARED) { 2032 if (shmgetid(p, saddr) != SHMID_NONE) { 2033 if (!(content & CC_CONTENT_SHM)) 2034 goto exclude; 2035 2036 } else if (SEGOP_GETVP(seg, seg->s_base, 2037 &mvp) != 0 || mvp == NULL || 2038 mvp->v_type != VREG) { 2039 if (!(content & CC_CONTENT_SHANON)) 2040 goto exclude; 2041 2042 } else { 2043 if (!(content & CC_CONTENT_SHFILE)) 2044 goto exclude; 2045 } 2046 2047 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 2048 mvp == NULL || mvp->v_type != VREG) { 2049 if (!(content & CC_CONTENT_ANON)) 2050 goto exclude; 2051 2052 } else if (prot == (PROT_READ | PROT_EXEC)) { 2053 if (!(content & CC_CONTENT_TEXT)) 2054 goto exclude; 2055 2056 } else if (prot == PROT_READ) { 2057 if (!(content & CC_CONTENT_RODATA)) 2058 goto exclude; 2059 2060 } else { 2061 if (!(content & CC_CONTENT_DATA)) 2062 goto exclude; 2063 } 2064 2065 doffset = roundup(doffset, sizeof (Word)); 2066 v[i].p_offset = doffset; 2067 v[i].p_filesz = size; 2068 doffset += size; 2069 exclude: 2070 i++; 2071 } 2072 ASSERT(tmp == NULL); 2073 } 2074 AS_LOCK_EXIT(as, &as->a_lock); 2075 2076 if (overflow || i != nphdrs) { 2077 if (ntries++ == 0) { 2078 kmem_free(bigwad, bigsize); 2079 overflow = 0; 2080 goto top; 2081 } 2082 cmn_err(CE_WARN, "elfcore: core dump failed for " 2083 "process %d; address space is changing", p->p_pid); 2084 error = EIO; 2085 goto done; 2086 } 2087 2088 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 2089 v, phdrsz, rlimit, credp)) != 0) 2090 goto done; 2091 2092 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 2093 credp)) != 0) 2094 goto done; 2095 2096 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 2097 credp, content)) != 0) 2098 goto done; 2099 2100 for (i = 2; i < nphdrs; i++) { 2101 prkillinfo_t killinfo; 2102 sigqueue_t *sq; 2103 int sig, j; 2104 2105 if (v[i].p_filesz == 0) 2106 continue; 2107 2108 /* 2109 * If dumping out this segment fails, rather than failing 2110 * the core dump entirely, we reset the size of the mapping 2111 * to zero to indicate that the data is absent from the core 2112 * file and or in the PF_SUNW_FAILURE flag to differentiate 2113 * this from mappings that were excluded due to the core file 2114 * content settings. 2115 */ 2116 if ((error = core_seg(p, vp, v[i].p_offset, 2117 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 2118 rlimit, credp)) == 0) { 2119 continue; 2120 } 2121 2122 if ((sig = lwp->lwp_cursig) == 0) { 2123 /* 2124 * We failed due to something other than a signal. 2125 * Since the space reserved for the segment is now 2126 * unused, we stash the errno in the first four 2127 * bytes. This undocumented interface will let us 2128 * understand the nature of the failure. 2129 */ 2130 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2131 &error, sizeof (error), rlimit, credp); 2132 2133 v[i].p_filesz = 0; 2134 v[i].p_flags |= PF_SUNW_FAILURE; 2135 if ((error = core_write(vp, UIO_SYSSPACE, 2136 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 2137 rlimit, credp)) != 0) 2138 goto done; 2139 2140 continue; 2141 } 2142 2143 /* 2144 * We took a signal. We want to abort the dump entirely, but 2145 * we also want to indicate what failed and why. We therefore 2146 * use the space reserved for the first failing segment to 2147 * write our error (which, for purposes of compatability with 2148 * older core dump readers, we set to EINTR) followed by any 2149 * siginfo associated with the signal. 2150 */ 2151 bzero(&killinfo, sizeof (killinfo)); 2152 killinfo.prk_error = EINTR; 2153 2154 sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; 2155 2156 if (sq != NULL) { 2157 bcopy(&sq->sq_info, &killinfo.prk_info, 2158 sizeof (sq->sq_info)); 2159 } else { 2160 killinfo.prk_info.si_signo = lwp->lwp_cursig; 2161 killinfo.prk_info.si_code = SI_NOINFO; 2162 } 2163 2164 #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) 2165 /* 2166 * If this is a 32-bit process, we need to translate from the 2167 * native siginfo to the 32-bit variant. (Core readers must 2168 * always have the same data model as their target or must 2169 * be aware of -- and compensate for -- data model differences.) 2170 */ 2171 if (curproc->p_model == DATAMODEL_ILP32) { 2172 siginfo32_t si32; 2173 2174 siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); 2175 bcopy(&si32, &killinfo.prk_info, sizeof (si32)); 2176 } 2177 #endif 2178 2179 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2180 &killinfo, sizeof (killinfo), rlimit, credp); 2181 2182 /* 2183 * For the segment on which we took the signal, indicate that 2184 * its data now refers to a siginfo. 2185 */ 2186 v[i].p_filesz = 0; 2187 v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | 2188 PF_SUNW_SIGINFO; 2189 2190 /* 2191 * And for every other segment, indicate that its absence 2192 * is due to a signal. 2193 */ 2194 for (j = i + 1; j < nphdrs; j++) { 2195 v[j].p_filesz = 0; 2196 v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; 2197 } 2198 2199 /* 2200 * Finally, write out our modified program headers. 2201 */ 2202 if ((error = core_write(vp, UIO_SYSSPACE, 2203 poffset + sizeof (v[i]) * i, &v[i], 2204 sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) 2205 goto done; 2206 2207 break; 2208 } 2209 2210 if (nshdrs > 0) { 2211 bzero(&bigwad->shdr[0], shdrsz); 2212 2213 if (nshdrs >= SHN_LORESERVE) 2214 bigwad->shdr[0].sh_size = nshdrs; 2215 2216 if (nshdrs - 1 >= SHN_LORESERVE) 2217 bigwad->shdr[0].sh_link = nshdrs - 1; 2218 2219 if (nphdrs >= PN_XNUM) 2220 bigwad->shdr[0].sh_info = nphdrs; 2221 2222 if (nshdrs > 1) { 2223 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2224 if ((error = process_scns(content, p, credp, vp, 2225 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 2226 NULL)) != 0) { 2227 AS_LOCK_EXIT(as, &as->a_lock); 2228 goto done; 2229 } 2230 AS_LOCK_EXIT(as, &as->a_lock); 2231 } 2232 2233 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 2234 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 2235 goto done; 2236 } 2237 2238 done: 2239 kmem_free(bigwad, bigsize); 2240 return (error); 2241 } 2242 2243 #ifndef _ELF32_COMPAT 2244 2245 static struct execsw esw = { 2246 #ifdef _LP64 2247 elf64magicstr, 2248 #else /* _LP64 */ 2249 elf32magicstr, 2250 #endif /* _LP64 */ 2251 0, 2252 5, 2253 elfexec, 2254 elfcore 2255 }; 2256 2257 static struct modlexec modlexec = { 2258 &mod_execops, "exec module for elf", &esw 2259 }; 2260 2261 #ifdef _LP64 2262 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2263 intpdata_t *idatap, int level, long *execsz, 2264 int setid, caddr_t exec_file, cred_t *cred, 2265 int brand_action); 2266 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2267 rlim64_t rlimit, int sig, core_content_t content); 2268 2269 static struct execsw esw32 = { 2270 elf32magicstr, 2271 0, 2272 5, 2273 elf32exec, 2274 elf32core 2275 }; 2276 2277 static struct modlexec modlexec32 = { 2278 &mod_execops, "32-bit exec module for elf", &esw32 2279 }; 2280 #endif /* _LP64 */ 2281 2282 static struct modlinkage modlinkage = { 2283 MODREV_1, 2284 (void *)&modlexec, 2285 #ifdef _LP64 2286 (void *)&modlexec32, 2287 #endif /* _LP64 */ 2288 NULL 2289 }; 2290 2291 int 2292 _init(void) 2293 { 2294 return (mod_install(&modlinkage)); 2295 } 2296 2297 int 2298 _fini(void) 2299 { 2300 return (mod_remove(&modlinkage)); 2301 } 2302 2303 int 2304 _info(struct modinfo *modinfop) 2305 { 2306 return (mod_info(&modlinkage, modinfop)); 2307 } 2308 2309 #endif /* !_ELF32_COMPAT */