1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 /* 29 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/thread.h> 35 #include <sys/sysmacros.h> 36 #include <sys/signal.h> 37 #include <sys/cred.h> 38 #include <sys/user.h> 39 #include <sys/errno.h> 40 #include <sys/vnode.h> 41 #include <sys/mman.h> 42 #include <sys/kmem.h> 43 #include <sys/proc.h> 44 #include <sys/pathname.h> 45 #include <sys/cmn_err.h> 46 #include <sys/systm.h> 47 #include <sys/elf.h> 48 #include <sys/vmsystm.h> 49 #include <sys/debug.h> 50 #include <sys/auxv.h> 51 #include <sys/exec.h> 52 #include <sys/prsystm.h> 53 #include <vm/as.h> 54 #include <vm/rm.h> 55 #include <vm/seg.h> 56 #include <vm/seg_vn.h> 57 #include <sys/modctl.h> 58 #include <sys/systeminfo.h> 59 #include <sys/vmparam.h> 60 #include <sys/machelf.h> 61 #include <sys/shm_impl.h> 62 #include <sys/archsystm.h> 63 #include <sys/fasttrap.h> 64 #include <sys/brand.h> 65 #include "elf_impl.h" 66 #include <sys/sdt.h> 67 #include <sys/siginfo.h> 68 69 extern int at_flags; 70 71 #define ORIGIN_STR "ORIGIN" 72 #define ORIGIN_STR_SIZE 6 73 74 static int getelfhead(vnode_t *, cred_t *, Ehdr *, int *, int *, int *); 75 static int getelfphdr(vnode_t *, cred_t *, const Ehdr *, int, caddr_t *, 76 ssize_t *); 77 static int getelfshdr(vnode_t *, cred_t *, const Ehdr *, int, int, caddr_t *, 78 ssize_t *, caddr_t *, ssize_t *); 79 static size_t elfsize(Ehdr *, int, caddr_t, uintptr_t *); 80 static int mapelfexec(vnode_t *, Ehdr *, int, caddr_t, 81 Phdr **, Phdr **, Phdr **, Phdr **, Phdr *, 82 caddr_t *, caddr_t *, intptr_t *, intptr_t *, size_t, long *, size_t *); 83 84 typedef enum { 85 STR_CTF, 86 STR_SYMTAB, 87 STR_DYNSYM, 88 STR_STRTAB, 89 STR_DYNSTR, 90 STR_SHSTRTAB, 91 STR_NUM 92 } shstrtype_t; 93 94 static const char *shstrtab_data[] = { 95 ".SUNW_ctf", 96 ".symtab", 97 ".dynsym", 98 ".strtab", 99 ".dynstr", 100 ".shstrtab" 101 }; 102 103 typedef struct shstrtab { 104 int sst_ndx[STR_NUM]; 105 int sst_cur; 106 } shstrtab_t; 107 108 static void 109 shstrtab_init(shstrtab_t *s) 110 { 111 bzero(&s->sst_ndx, sizeof (s->sst_ndx)); 112 s->sst_cur = 1; 113 } 114 115 static int 116 shstrtab_ndx(shstrtab_t *s, shstrtype_t type) 117 { 118 int ret; 119 120 if ((ret = s->sst_ndx[type]) != 0) 121 return (ret); 122 123 ret = s->sst_ndx[type] = s->sst_cur; 124 s->sst_cur += strlen(shstrtab_data[type]) + 1; 125 126 return (ret); 127 } 128 129 static size_t 130 shstrtab_size(const shstrtab_t *s) 131 { 132 return (s->sst_cur); 133 } 134 135 static void 136 shstrtab_dump(const shstrtab_t *s, char *buf) 137 { 138 int i, ndx; 139 140 *buf = '\0'; 141 for (i = 0; i < STR_NUM; i++) { 142 if ((ndx = s->sst_ndx[i]) != 0) 143 (void) strcpy(buf + ndx, shstrtab_data[i]); 144 } 145 } 146 147 static int 148 dtrace_safe_phdr(Phdr *phdrp, struct uarg *args, uintptr_t base) 149 { 150 ASSERT(phdrp->p_type == PT_SUNWDTRACE); 151 152 /* 153 * See the comment in fasttrap.h for information on how to safely 154 * update this program header. 155 */ 156 if (phdrp->p_memsz < PT_SUNWDTRACE_SIZE || 157 (phdrp->p_flags & (PF_R | PF_W | PF_X)) != (PF_R | PF_W | PF_X)) 158 return (-1); 159 160 args->thrptr = phdrp->p_vaddr + base; 161 162 return (0); 163 } 164 165 /* 166 * Map in the executable pointed to by vp. Returns 0 on success. 167 */ 168 int 169 mapexec_brand(vnode_t *vp, uarg_t *args, Ehdr *ehdr, Addr *uphdr_vaddr, 170 intptr_t *voffset, caddr_t exec_file, int *interp, caddr_t *bssbase, 171 caddr_t *brkbase, size_t *brksize, uintptr_t *lddatap) 172 { 173 size_t len; 174 struct vattr vat; 175 caddr_t phdrbase = NULL; 176 ssize_t phdrsize; 177 int nshdrs, shstrndx, nphdrs; 178 int error = 0; 179 Phdr *uphdr = NULL; 180 Phdr *junk = NULL; 181 Phdr *dynphdr = NULL; 182 Phdr *dtrphdr = NULL; 183 uintptr_t lddata; 184 long execsz; 185 intptr_t minaddr; 186 187 if (lddatap != NULL) 188 *lddatap = NULL; 189 190 if (error = execpermissions(vp, &vat, args)) { 191 uprintf("%s: Cannot execute %s\n", exec_file, args->pathname); 192 return (error); 193 } 194 195 if ((error = getelfhead(vp, CRED(), ehdr, &nshdrs, &shstrndx, 196 &nphdrs)) != 0 || 197 (error = getelfphdr(vp, CRED(), ehdr, nphdrs, &phdrbase, 198 &phdrsize)) != 0) { 199 uprintf("%s: Cannot read %s\n", exec_file, args->pathname); 200 return (error); 201 } 202 203 if ((len = elfsize(ehdr, nphdrs, phdrbase, &lddata)) == 0) { 204 uprintf("%s: Nothing to load in %s", exec_file, args->pathname); 205 kmem_free(phdrbase, phdrsize); 206 return (ENOEXEC); 207 } 208 if (lddatap != NULL) 209 *lddatap = lddata; 210 211 if (error = mapelfexec(vp, ehdr, nphdrs, phdrbase, &uphdr, &dynphdr, 212 &junk, &dtrphdr, NULL, bssbase, brkbase, voffset, &minaddr, 213 len, &execsz, brksize)) { 214 uprintf("%s: Cannot map %s\n", exec_file, args->pathname); 215 kmem_free(phdrbase, phdrsize); 216 return (error); 217 } 218 219 /* 220 * Inform our caller if the executable needs an interpreter. 221 */ 222 *interp = (dynphdr == NULL) ? 0 : 1; 223 224 /* 225 * If this is a statically linked executable, voffset should indicate 226 * the address of the executable itself (it normally holds the address 227 * of the interpreter). 228 */ 229 if (ehdr->e_type == ET_EXEC && *interp == 0) 230 *voffset = minaddr; 231 232 if (uphdr != NULL) { 233 *uphdr_vaddr = uphdr->p_vaddr; 234 } else { 235 *uphdr_vaddr = (Addr)-1; 236 } 237 238 kmem_free(phdrbase, phdrsize); 239 return (error); 240 } 241 242 /*ARGSUSED*/ 243 int 244 elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap, 245 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred, 246 int brand_action) 247 { 248 caddr_t phdrbase = NULL; 249 caddr_t bssbase = 0; 250 caddr_t brkbase = 0; 251 size_t brksize = 0; 252 ssize_t dlnsize; 253 aux_entry_t *aux; 254 int error; 255 ssize_t resid; 256 int fd = -1; 257 intptr_t voffset; 258 Phdr *dyphdr = NULL; 259 Phdr *stphdr = NULL; 260 Phdr *uphdr = NULL; 261 Phdr *junk = NULL; 262 size_t len; 263 ssize_t phdrsize; 264 int postfixsize = 0; 265 int i, hsize; 266 Phdr *phdrp; 267 Phdr *dataphdrp = NULL; 268 Phdr *dtrphdr; 269 Phdr *capphdr = NULL; 270 Cap *cap = NULL; 271 ssize_t capsize; 272 int hasu = 0; 273 int hasauxv = 0; 274 int hasdy = 0; 275 int branded = 0; 276 277 struct proc *p = ttoproc(curthread); 278 struct user *up = PTOU(p); 279 struct bigwad { 280 Ehdr ehdr; 281 aux_entry_t elfargs[__KERN_NAUXV_IMPL]; 282 char dl_name[MAXPATHLEN]; 283 char pathbuf[MAXPATHLEN]; 284 struct vattr vattr; 285 struct execenv exenv; 286 } *bigwad; /* kmem_alloc this behemoth so we don't blow stack */ 287 Ehdr *ehdrp; 288 int nshdrs, shstrndx, nphdrs; 289 char *dlnp; 290 char *pathbufp; 291 rlim64_t limit; 292 rlim64_t roundlimit; 293 294 ASSERT(p->p_model == DATAMODEL_ILP32 || p->p_model == DATAMODEL_LP64); 295 296 bigwad = kmem_alloc(sizeof (struct bigwad), KM_SLEEP); 297 ehdrp = &bigwad->ehdr; 298 dlnp = bigwad->dl_name; 299 pathbufp = bigwad->pathbuf; 300 301 /* 302 * Obtain ELF and program header information. 303 */ 304 if ((error = getelfhead(vp, CRED(), ehdrp, &nshdrs, &shstrndx, 305 &nphdrs)) != 0 || 306 (error = getelfphdr(vp, CRED(), ehdrp, nphdrs, &phdrbase, 307 &phdrsize)) != 0) 308 goto out; 309 310 /* 311 * Prevent executing an ELF file that has no entry point. 312 */ 313 if (ehdrp->e_entry == 0) { 314 uprintf("%s: Bad entry point\n", exec_file); 315 goto bad; 316 } 317 318 /* 319 * Put data model that we're exec-ing to into the args passed to 320 * exec_args(), so it will know what it is copying to on new stack. 321 * Now that we know whether we are exec-ing a 32-bit or 64-bit 322 * executable, we can set execsz with the appropriate NCARGS. 323 */ 324 #ifdef _LP64 325 if (ehdrp->e_ident[EI_CLASS] == ELFCLASS32) { 326 args->to_model = DATAMODEL_ILP32; 327 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS32-1); 328 } else { 329 args->to_model = DATAMODEL_LP64; 330 args->stk_prot &= ~PROT_EXEC; 331 #if defined(__i386) || defined(__amd64) 332 args->dat_prot &= ~PROT_EXEC; 333 #endif 334 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS64-1); 335 } 336 #else /* _LP64 */ 337 args->to_model = DATAMODEL_ILP32; 338 *execsz = btopr(SINCR) + btopr(SSIZE) + btopr(NCARGS-1); 339 #endif /* _LP64 */ 340 341 /* 342 * We delay invoking the brand callback until we've figured out 343 * what kind of elf binary we're trying to run, 32-bit or 64-bit. 344 * We do this because now the brand library can just check 345 * args->to_model to see if the target is 32-bit or 64-bit without 346 * having do duplicate all the code above. 347 */ 348 if ((level < 2) && 349 (brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 350 error = BROP(p)->b_elfexec(vp, uap, args, 351 idatap, level + 1, execsz, setid, exec_file, cred, 352 brand_action); 353 goto out; 354 } 355 356 /* 357 * Determine aux size now so that stack can be built 358 * in one shot (except actual copyout of aux image), 359 * determine any non-default stack protections, 360 * and still have this code be machine independent. 361 */ 362 hsize = ehdrp->e_phentsize; 363 phdrp = (Phdr *)phdrbase; 364 for (i = nphdrs; i > 0; i--) { 365 switch (phdrp->p_type) { 366 case PT_INTERP: 367 hasauxv = hasdy = 1; 368 break; 369 case PT_PHDR: 370 hasu = 1; 371 break; 372 case PT_SUNWSTACK: 373 args->stk_prot = PROT_USER; 374 if (phdrp->p_flags & PF_R) 375 args->stk_prot |= PROT_READ; 376 if (phdrp->p_flags & PF_W) 377 args->stk_prot |= PROT_WRITE; 378 if (phdrp->p_flags & PF_X) 379 args->stk_prot |= PROT_EXEC; 380 break; 381 case PT_LOAD: 382 dataphdrp = phdrp; 383 break; 384 case PT_SUNWCAP: 385 capphdr = phdrp; 386 break; 387 } 388 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 389 } 390 391 if (ehdrp->e_type != ET_EXEC) { 392 dataphdrp = NULL; 393 hasauxv = 1; 394 } 395 396 /* Copy BSS permissions to args->dat_prot */ 397 if (dataphdrp != NULL) { 398 args->dat_prot = PROT_USER; 399 if (dataphdrp->p_flags & PF_R) 400 args->dat_prot |= PROT_READ; 401 if (dataphdrp->p_flags & PF_W) 402 args->dat_prot |= PROT_WRITE; 403 if (dataphdrp->p_flags & PF_X) 404 args->dat_prot |= PROT_EXEC; 405 } 406 407 /* 408 * If a auxvector will be required - reserve the space for 409 * it now. This may be increased by exec_args if there are 410 * ISA-specific types (included in __KERN_NAUXV_IMPL). 411 */ 412 if (hasauxv) { 413 /* 414 * If a AUX vector is being built - the base AUX 415 * entries are: 416 * 417 * AT_BASE 418 * AT_FLAGS 419 * AT_PAGESZ 420 * AT_SUN_AUXFLAGS 421 * AT_SUN_HWCAP 422 * AT_SUN_HWCAP2 423 * AT_SUN_PLATFORM (added in stk_copyout) 424 * AT_SUN_EXECNAME (added in stk_copyout) 425 * AT_NULL 426 * 427 * total == 9 428 */ 429 if (hasdy && hasu) { 430 /* 431 * Has PT_INTERP & PT_PHDR - the auxvectors that 432 * will be built are: 433 * 434 * AT_PHDR 435 * AT_PHENT 436 * AT_PHNUM 437 * AT_ENTRY 438 * AT_LDDATA 439 * 440 * total = 5 441 */ 442 args->auxsize = (9 + 5) * sizeof (aux_entry_t); 443 } else if (hasdy) { 444 /* 445 * Has PT_INTERP but no PT_PHDR 446 * 447 * AT_EXECFD 448 * AT_LDDATA 449 * 450 * total = 2 451 */ 452 args->auxsize = (9 + 2) * sizeof (aux_entry_t); 453 } else { 454 args->auxsize = 9 * sizeof (aux_entry_t); 455 } 456 } else { 457 args->auxsize = 0; 458 } 459 460 /* 461 * If this binary is using an emulator, we need to add an 462 * AT_SUN_EMULATOR aux entry. 463 */ 464 if (args->emulator != NULL) 465 args->auxsize += sizeof (aux_entry_t); 466 467 if ((brand_action != EBA_NATIVE) && (PROC_IS_BRANDED(p))) { 468 branded = 1; 469 /* 470 * We will be adding 4 entries to the aux vectors. One for 471 * the the brandname and 3 for the brand specific aux vectors. 472 */ 473 args->auxsize += 4 * sizeof (aux_entry_t); 474 } 475 476 /* Hardware/Software capabilities */ 477 if (capphdr != NULL && 478 (capsize = capphdr->p_filesz) > 0 && 479 capsize <= 16 * sizeof (*cap)) { 480 int ncaps = capsize / sizeof (*cap); 481 Cap *cp; 482 483 cap = kmem_alloc(capsize, KM_SLEEP); 484 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)cap, 485 capsize, (offset_t)capphdr->p_offset, 486 UIO_SYSSPACE, 0, (rlim64_t)0, CRED(), &resid)) != 0) { 487 uprintf("%s: Cannot read capabilities section\n", 488 exec_file); 489 goto out; 490 } 491 for (cp = cap; cp < cap + ncaps; cp++) { 492 if (cp->c_tag == CA_SUNW_SF_1 && 493 (cp->c_un.c_val & SF1_SUNW_ADDR32)) { 494 if (args->to_model == DATAMODEL_LP64) 495 args->addr32 = 1; 496 break; 497 } 498 } 499 } 500 501 aux = bigwad->elfargs; 502 /* 503 * Move args to the user's stack. 504 * This can fill in the AT_SUN_PLATFORM and AT_SUN_EXECNAME aux entries. 505 */ 506 if ((error = exec_args(uap, args, idatap, (void **)&aux)) != 0) { 507 if (error == -1) { 508 error = ENOEXEC; 509 goto bad; 510 } 511 goto out; 512 } 513 /* we're single threaded after this point */ 514 515 /* 516 * If this is an ET_DYN executable (shared object), 517 * determine its memory size so that mapelfexec() can load it. 518 */ 519 if (ehdrp->e_type == ET_DYN) 520 len = elfsize(ehdrp, nphdrs, phdrbase, NULL); 521 else 522 len = 0; 523 524 dtrphdr = NULL; 525 526 if ((error = mapelfexec(vp, ehdrp, nphdrs, phdrbase, &uphdr, &dyphdr, 527 &stphdr, &dtrphdr, dataphdrp, &bssbase, &brkbase, &voffset, NULL, 528 len, execsz, &brksize)) != 0) 529 goto bad; 530 531 if (uphdr != NULL && dyphdr == NULL) 532 goto bad; 533 534 if (dtrphdr != NULL && dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 535 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, exec_file); 536 goto bad; 537 } 538 539 if (dyphdr != NULL) { 540 size_t len; 541 uintptr_t lddata; 542 char *p; 543 struct vnode *nvp; 544 545 dlnsize = dyphdr->p_filesz; 546 547 if (dlnsize > MAXPATHLEN || dlnsize <= 0) 548 goto bad; 549 550 /* 551 * Read in "interpreter" pathname. 552 */ 553 if ((error = vn_rdwr(UIO_READ, vp, dlnp, dyphdr->p_filesz, 554 (offset_t)dyphdr->p_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 555 CRED(), &resid)) != 0) { 556 uprintf("%s: Cannot obtain interpreter pathname\n", 557 exec_file); 558 goto bad; 559 } 560 561 if (resid != 0 || dlnp[dlnsize - 1] != '\0') 562 goto bad; 563 564 /* 565 * Search for '$ORIGIN' token in interpreter path. 566 * If found, expand it. 567 */ 568 for (p = dlnp; p = strchr(p, '$'); ) { 569 uint_t len, curlen; 570 char *_ptr; 571 572 if (strncmp(++p, ORIGIN_STR, ORIGIN_STR_SIZE)) 573 continue; 574 575 curlen = 0; 576 len = p - dlnp - 1; 577 if (len) { 578 bcopy(dlnp, pathbufp, len); 579 curlen += len; 580 } 581 if (_ptr = strrchr(args->pathname, '/')) { 582 len = _ptr - args->pathname; 583 if ((curlen + len) > MAXPATHLEN) 584 break; 585 586 bcopy(args->pathname, &pathbufp[curlen], len); 587 curlen += len; 588 } else { 589 /* 590 * executable is a basename found in the 591 * current directory. So - just substitue 592 * '.' for ORIGIN. 593 */ 594 pathbufp[curlen] = '.'; 595 curlen++; 596 } 597 p += ORIGIN_STR_SIZE; 598 len = strlen(p); 599 600 if ((curlen + len) > MAXPATHLEN) 601 break; 602 bcopy(p, &pathbufp[curlen], len); 603 curlen += len; 604 pathbufp[curlen++] = '\0'; 605 bcopy(pathbufp, dlnp, curlen); 606 } 607 608 /* 609 * /usr/lib/ld.so.1 is known to be a symlink to /lib/ld.so.1 610 * (and /usr/lib/64/ld.so.1 is a symlink to /lib/64/ld.so.1). 611 * Just in case /usr is not mounted, change it now. 612 */ 613 if (strcmp(dlnp, USR_LIB_RTLD) == 0) 614 dlnp += 4; 615 error = lookupname(dlnp, UIO_SYSSPACE, FOLLOW, NULLVPP, &nvp); 616 if (error && dlnp != bigwad->dl_name) { 617 /* new kernel, old user-level */ 618 error = lookupname(dlnp -= 4, UIO_SYSSPACE, FOLLOW, 619 NULLVPP, &nvp); 620 } 621 if (error) { 622 uprintf("%s: Cannot find %s\n", exec_file, dlnp); 623 goto bad; 624 } 625 626 /* 627 * Setup the "aux" vector. 628 */ 629 if (uphdr) { 630 if (ehdrp->e_type == ET_DYN) { 631 /* don't use the first page */ 632 bigwad->exenv.ex_brkbase = (caddr_t)PAGESIZE; 633 bigwad->exenv.ex_bssbase = (caddr_t)PAGESIZE; 634 } else { 635 bigwad->exenv.ex_bssbase = bssbase; 636 bigwad->exenv.ex_brkbase = brkbase; 637 } 638 bigwad->exenv.ex_brksize = brksize; 639 bigwad->exenv.ex_magic = elfmagic; 640 bigwad->exenv.ex_vp = vp; 641 setexecenv(&bigwad->exenv); 642 643 ADDAUX(aux, AT_PHDR, uphdr->p_vaddr + voffset) 644 ADDAUX(aux, AT_PHENT, ehdrp->e_phentsize) 645 ADDAUX(aux, AT_PHNUM, nphdrs) 646 ADDAUX(aux, AT_ENTRY, ehdrp->e_entry + voffset) 647 } else { 648 if ((error = execopen(&vp, &fd)) != 0) { 649 VN_RELE(nvp); 650 goto bad; 651 } 652 653 ADDAUX(aux, AT_EXECFD, fd) 654 } 655 656 if ((error = execpermissions(nvp, &bigwad->vattr, args)) != 0) { 657 VN_RELE(nvp); 658 uprintf("%s: Cannot execute %s\n", exec_file, dlnp); 659 goto bad; 660 } 661 662 /* 663 * Now obtain the ELF header along with the entire program 664 * header contained in "nvp". 665 */ 666 kmem_free(phdrbase, phdrsize); 667 phdrbase = NULL; 668 if ((error = getelfhead(nvp, CRED(), ehdrp, &nshdrs, 669 &shstrndx, &nphdrs)) != 0 || 670 (error = getelfphdr(nvp, CRED(), ehdrp, nphdrs, &phdrbase, 671 &phdrsize)) != 0) { 672 VN_RELE(nvp); 673 uprintf("%s: Cannot read %s\n", exec_file, dlnp); 674 goto bad; 675 } 676 677 /* 678 * Determine memory size of the "interpreter's" loadable 679 * sections. This size is then used to obtain the virtual 680 * address of a hole, in the user's address space, large 681 * enough to map the "interpreter". 682 */ 683 if ((len = elfsize(ehdrp, nphdrs, phdrbase, &lddata)) == 0) { 684 VN_RELE(nvp); 685 uprintf("%s: Nothing to load in %s\n", exec_file, dlnp); 686 goto bad; 687 } 688 689 dtrphdr = NULL; 690 691 error = mapelfexec(nvp, ehdrp, nphdrs, phdrbase, &junk, &junk, 692 &junk, &dtrphdr, NULL, NULL, NULL, &voffset, NULL, len, 693 execsz, NULL); 694 if (error || junk != NULL) { 695 VN_RELE(nvp); 696 uprintf("%s: Cannot map %s\n", exec_file, dlnp); 697 goto bad; 698 } 699 700 /* 701 * We use the DTrace program header to initialize the 702 * architecture-specific user per-LWP location. The dtrace 703 * fasttrap provider requires ready access to per-LWP scratch 704 * space. We assume that there is only one such program header 705 * in the interpreter. 706 */ 707 if (dtrphdr != NULL && 708 dtrace_safe_phdr(dtrphdr, args, voffset) != 0) { 709 VN_RELE(nvp); 710 uprintf("%s: Bad DTrace phdr in %s\n", exec_file, dlnp); 711 goto bad; 712 } 713 714 VN_RELE(nvp); 715 ADDAUX(aux, AT_SUN_LDDATA, voffset + lddata) 716 } 717 718 if (hasauxv) { 719 int auxf = AF_SUN_HWCAPVERIFY; 720 /* 721 * Note: AT_SUN_PLATFORM and AT_SUN_EXECNAME were filled in via 722 * exec_args() 723 */ 724 ADDAUX(aux, AT_BASE, voffset) 725 ADDAUX(aux, AT_FLAGS, at_flags) 726 ADDAUX(aux, AT_PAGESZ, PAGESIZE) 727 /* 728 * Linker flags. (security) 729 * p_flag not yet set at this time. 730 * We rely on gexec() to provide us with the information. 731 * If the application is set-uid but this is not reflected 732 * in a mismatch between real/effective uids/gids, then 733 * don't treat this as a set-uid exec. So we care about 734 * the EXECSETID_UGIDS flag but not the ...SETID flag. 735 */ 736 if ((setid &= ~EXECSETID_SETID) != 0) 737 auxf |= AF_SUN_SETUGID; 738 739 /* 740 * If we're running a native process from within a branded 741 * zone under pfexec then we clear the AF_SUN_SETUGID flag so 742 * that the native ld.so.1 is able to link with the native 743 * libraries instead of using the brand libraries that are 744 * installed in the zone. We only do this for processes 745 * which we trust because we see they are already running 746 * under pfexec (where uid != euid). This prevents a 747 * malicious user within the zone from crafting a wrapper to 748 * run native suid commands with unsecure libraries interposed. 749 */ 750 if ((brand_action == EBA_NATIVE) && (PROC_IS_BRANDED(p) && 751 (setid &= ~EXECSETID_SETID) != 0)) 752 auxf &= ~AF_SUN_SETUGID; 753 754 /* 755 * Record the user addr of the auxflags aux vector entry 756 * since brands may optionally want to manipulate this field. 757 */ 758 args->auxp_auxflags = 759 (char *)((char *)args->stackend + 760 ((char *)&aux->a_type - 761 (char *)bigwad->elfargs)); 762 ADDAUX(aux, AT_SUN_AUXFLAGS, auxf); 763 /* 764 * Hardware capability flag word (performance hints) 765 * Used for choosing faster library routines. 766 * (Potentially different between 32-bit and 64-bit ABIs) 767 */ 768 #if defined(_LP64) 769 if (args->to_model == DATAMODEL_NATIVE) { 770 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 771 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 772 } else { 773 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap32) 774 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap32_2) 775 } 776 #else 777 ADDAUX(aux, AT_SUN_HWCAP, auxv_hwcap) 778 ADDAUX(aux, AT_SUN_HWCAP2, auxv_hwcap_2) 779 #endif 780 if (branded) { 781 /* 782 * Reserve space for the brand-private aux vectors, 783 * and record the user addr of that space. 784 */ 785 args->auxp_brand = 786 (char *)((char *)args->stackend + 787 ((char *)&aux->a_type - 788 (char *)bigwad->elfargs)); 789 ADDAUX(aux, AT_SUN_BRAND_AUX1, 0) 790 ADDAUX(aux, AT_SUN_BRAND_AUX2, 0) 791 ADDAUX(aux, AT_SUN_BRAND_AUX3, 0) 792 } 793 794 ADDAUX(aux, AT_NULL, 0) 795 postfixsize = (char *)aux - (char *)bigwad->elfargs; 796 797 /* 798 * We make assumptions above when we determine how many aux 799 * vector entries we will be adding. However, if we have an 800 * invalid elf file, it is possible that mapelfexec might 801 * behave differently (but not return an error), in which case 802 * the number of aux entries we actually add will be different. 803 * We detect that now and error out. 804 */ 805 if (postfixsize != args->auxsize) { 806 DTRACE_PROBE2(elfexec_badaux, int, postfixsize, 807 int, args->auxsize); 808 goto bad; 809 } 810 ASSERT(postfixsize <= __KERN_NAUXV_IMPL * sizeof (aux_entry_t)); 811 } 812 813 /* 814 * For the 64-bit kernel, the limit is big enough that rounding it up 815 * to a page can overflow the 64-bit limit, so we check for btopr() 816 * overflowing here by comparing it with the unrounded limit in pages. 817 * If it hasn't overflowed, compare the exec size with the rounded up 818 * limit in pages. Otherwise, just compare with the unrounded limit. 819 */ 820 limit = btop(p->p_vmem_ctl); 821 roundlimit = btopr(p->p_vmem_ctl); 822 if ((roundlimit > limit && *execsz > roundlimit) || 823 (roundlimit < limit && *execsz > limit)) { 824 mutex_enter(&p->p_lock); 825 (void) rctl_action(rctlproc_legacy[RLIMIT_VMEM], p->p_rctls, p, 826 RCA_SAFE); 827 mutex_exit(&p->p_lock); 828 error = ENOMEM; 829 goto bad; 830 } 831 832 bzero(up->u_auxv, sizeof (up->u_auxv)); 833 if (postfixsize) { 834 int num_auxv; 835 836 /* 837 * Copy the aux vector to the user stack. 838 */ 839 error = execpoststack(args, bigwad->elfargs, postfixsize); 840 if (error) 841 goto bad; 842 843 /* 844 * Copy auxv to the process's user structure for use by /proc. 845 * If this is a branded process, the brand's exec routine will 846 * copy it's private entries to the user structure later. It 847 * relies on the fact that the blank entries are at the end. 848 */ 849 num_auxv = postfixsize / sizeof (aux_entry_t); 850 ASSERT(num_auxv <= sizeof (up->u_auxv) / sizeof (auxv_t)); 851 aux = bigwad->elfargs; 852 for (i = 0; i < num_auxv; i++) { 853 up->u_auxv[i].a_type = aux[i].a_type; 854 up->u_auxv[i].a_un.a_val = (aux_val_t)aux[i].a_un.a_val; 855 } 856 } 857 858 /* 859 * Pass back the starting address so we can set the program counter. 860 */ 861 args->entry = (uintptr_t)(ehdrp->e_entry + voffset); 862 863 if (!uphdr) { 864 if (ehdrp->e_type == ET_DYN) { 865 /* 866 * If we are executing a shared library which doesn't 867 * have a interpreter (probably ld.so.1) then 868 * we don't set the brkbase now. Instead we 869 * delay it's setting until the first call 870 * via grow.c::brk(). This permits ld.so.1 to 871 * initialize brkbase to the tail of the executable it 872 * loads (which is where it needs to be). 873 */ 874 bigwad->exenv.ex_brkbase = (caddr_t)0; 875 bigwad->exenv.ex_bssbase = (caddr_t)0; 876 bigwad->exenv.ex_brksize = 0; 877 } else { 878 bigwad->exenv.ex_brkbase = brkbase; 879 bigwad->exenv.ex_bssbase = bssbase; 880 bigwad->exenv.ex_brksize = brksize; 881 } 882 bigwad->exenv.ex_magic = elfmagic; 883 bigwad->exenv.ex_vp = vp; 884 setexecenv(&bigwad->exenv); 885 } 886 887 ASSERT(error == 0); 888 goto out; 889 890 bad: 891 if (fd != -1) /* did we open the a.out yet */ 892 (void) execclose(fd); 893 894 psignal(p, SIGKILL); 895 896 if (error == 0) 897 error = ENOEXEC; 898 out: 899 if (phdrbase != NULL) 900 kmem_free(phdrbase, phdrsize); 901 if (cap != NULL) 902 kmem_free(cap, capsize); 903 kmem_free(bigwad, sizeof (struct bigwad)); 904 return (error); 905 } 906 907 /* 908 * Compute the memory size requirement for the ELF file. 909 */ 910 static size_t 911 elfsize(Ehdr *ehdrp, int nphdrs, caddr_t phdrbase, uintptr_t *lddata) 912 { 913 size_t len; 914 Phdr *phdrp = (Phdr *)phdrbase; 915 int hsize = ehdrp->e_phentsize; 916 int first = 1; 917 int dfirst = 1; /* first data segment */ 918 uintptr_t loaddr = 0; 919 uintptr_t hiaddr = 0; 920 uintptr_t lo, hi; 921 int i; 922 923 for (i = nphdrs; i > 0; i--) { 924 if (phdrp->p_type == PT_LOAD) { 925 lo = phdrp->p_vaddr; 926 hi = lo + phdrp->p_memsz; 927 if (first) { 928 loaddr = lo; 929 hiaddr = hi; 930 first = 0; 931 } else { 932 if (loaddr > lo) 933 loaddr = lo; 934 if (hiaddr < hi) 935 hiaddr = hi; 936 } 937 938 /* 939 * save the address of the first data segment 940 * of a object - used for the AT_SUNW_LDDATA 941 * aux entry. 942 */ 943 if ((lddata != NULL) && dfirst && 944 (phdrp->p_flags & PF_W)) { 945 *lddata = lo; 946 dfirst = 0; 947 } 948 } 949 phdrp = (Phdr *)((caddr_t)phdrp + hsize); 950 } 951 952 len = hiaddr - (loaddr & PAGEMASK); 953 len = roundup(len, PAGESIZE); 954 955 return (len); 956 } 957 958 /* 959 * Read in the ELF header and program header table. 960 * SUSV3 requires: 961 * ENOEXEC File format is not recognized 962 * EINVAL Format recognized but execution not supported 963 */ 964 static int 965 getelfhead(vnode_t *vp, cred_t *credp, Ehdr *ehdr, int *nshdrs, int *shstrndx, 966 int *nphdrs) 967 { 968 int error; 969 ssize_t resid; 970 971 /* 972 * We got here by the first two bytes in ident, 973 * now read the entire ELF header. 974 */ 975 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)ehdr, 976 sizeof (Ehdr), (offset_t)0, UIO_SYSSPACE, 0, 977 (rlim64_t)0, credp, &resid)) != 0) 978 return (error); 979 980 /* 981 * Since a separate version is compiled for handling 32-bit and 982 * 64-bit ELF executables on a 64-bit kernel, the 64-bit version 983 * doesn't need to be able to deal with 32-bit ELF files. 984 */ 985 if (resid != 0 || 986 ehdr->e_ident[EI_MAG2] != ELFMAG2 || 987 ehdr->e_ident[EI_MAG3] != ELFMAG3) 988 return (ENOEXEC); 989 990 if ((ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) || 991 #if defined(_ILP32) || defined(_ELF32_COMPAT) 992 ehdr->e_ident[EI_CLASS] != ELFCLASS32 || 993 #else 994 ehdr->e_ident[EI_CLASS] != ELFCLASS64 || 995 #endif 996 !elfheadcheck(ehdr->e_ident[EI_DATA], ehdr->e_machine, 997 ehdr->e_flags)) 998 return (EINVAL); 999 1000 *nshdrs = ehdr->e_shnum; 1001 *shstrndx = ehdr->e_shstrndx; 1002 *nphdrs = ehdr->e_phnum; 1003 1004 /* 1005 * If e_shnum, e_shstrndx, or e_phnum is its sentinel value, we need 1006 * to read in the section header at index zero to acces the true 1007 * values for those fields. 1008 */ 1009 if ((*nshdrs == 0 && ehdr->e_shoff != 0) || 1010 *shstrndx == SHN_XINDEX || *nphdrs == PN_XNUM) { 1011 Shdr shdr; 1012 1013 if (ehdr->e_shoff == 0) 1014 return (EINVAL); 1015 1016 if ((error = vn_rdwr(UIO_READ, vp, (caddr_t)&shdr, 1017 sizeof (shdr), (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, 1018 (rlim64_t)0, credp, &resid)) != 0) 1019 return (error); 1020 1021 if (*nshdrs == 0) 1022 *nshdrs = shdr.sh_size; 1023 if (*shstrndx == SHN_XINDEX) 1024 *shstrndx = shdr.sh_link; 1025 if (*nphdrs == PN_XNUM && shdr.sh_info != 0) 1026 *nphdrs = shdr.sh_info; 1027 } 1028 1029 return (0); 1030 } 1031 1032 #ifdef _ELF32_COMPAT 1033 extern size_t elf_nphdr_max; 1034 #else 1035 size_t elf_nphdr_max = 1000; 1036 #endif 1037 1038 static int 1039 getelfphdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, int nphdrs, 1040 caddr_t *phbasep, ssize_t *phsizep) 1041 { 1042 ssize_t resid, minsize; 1043 int err; 1044 1045 /* 1046 * Since we're going to be using e_phentsize to iterate down the 1047 * array of program headers, it must be 8-byte aligned or else 1048 * a we might cause a misaligned access. We use all members through 1049 * p_flags on 32-bit ELF files and p_memsz on 64-bit ELF files so 1050 * e_phentsize must be at least large enough to include those 1051 * members. 1052 */ 1053 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1054 minsize = offsetof(Phdr, p_flags) + sizeof (((Phdr *)NULL)->p_flags); 1055 #else 1056 minsize = offsetof(Phdr, p_memsz) + sizeof (((Phdr *)NULL)->p_memsz); 1057 #endif 1058 if (ehdr->e_phentsize < minsize || (ehdr->e_phentsize & 3)) 1059 return (EINVAL); 1060 1061 *phsizep = nphdrs * ehdr->e_phentsize; 1062 1063 if (*phsizep > sizeof (Phdr) * elf_nphdr_max) { 1064 if ((*phbasep = kmem_alloc(*phsizep, KM_NOSLEEP)) == NULL) 1065 return (ENOMEM); 1066 } else { 1067 *phbasep = kmem_alloc(*phsizep, KM_SLEEP); 1068 } 1069 1070 if ((err = vn_rdwr(UIO_READ, vp, *phbasep, *phsizep, 1071 (offset_t)ehdr->e_phoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1072 credp, &resid)) != 0) { 1073 kmem_free(*phbasep, *phsizep); 1074 *phbasep = NULL; 1075 return (err); 1076 } 1077 1078 return (0); 1079 } 1080 1081 #ifdef _ELF32_COMPAT 1082 extern size_t elf_nshdr_max; 1083 extern size_t elf_shstrtab_max; 1084 #else 1085 size_t elf_nshdr_max = 10000; 1086 size_t elf_shstrtab_max = 100 * 1024; 1087 #endif 1088 1089 1090 static int 1091 getelfshdr(vnode_t *vp, cred_t *credp, const Ehdr *ehdr, 1092 int nshdrs, int shstrndx, caddr_t *shbasep, ssize_t *shsizep, 1093 char **shstrbasep, ssize_t *shstrsizep) 1094 { 1095 ssize_t resid, minsize; 1096 int err; 1097 Shdr *shdr; 1098 1099 /* 1100 * Since we're going to be using e_shentsize to iterate down the 1101 * array of section headers, it must be 8-byte aligned or else 1102 * a we might cause a misaligned access. We use all members through 1103 * sh_entsize (on both 32- and 64-bit ELF files) so e_shentsize 1104 * must be at least large enough to include that member. The index 1105 * of the string table section must also be valid. 1106 */ 1107 minsize = offsetof(Shdr, sh_entsize) + sizeof (shdr->sh_entsize); 1108 if (ehdr->e_shentsize < minsize || (ehdr->e_shentsize & 3) || 1109 shstrndx >= nshdrs) 1110 return (EINVAL); 1111 1112 *shsizep = nshdrs * ehdr->e_shentsize; 1113 1114 if (*shsizep > sizeof (Shdr) * elf_nshdr_max) { 1115 if ((*shbasep = kmem_alloc(*shsizep, KM_NOSLEEP)) == NULL) 1116 return (ENOMEM); 1117 } else { 1118 *shbasep = kmem_alloc(*shsizep, KM_SLEEP); 1119 } 1120 1121 if ((err = vn_rdwr(UIO_READ, vp, *shbasep, *shsizep, 1122 (offset_t)ehdr->e_shoff, UIO_SYSSPACE, 0, (rlim64_t)0, 1123 credp, &resid)) != 0) { 1124 kmem_free(*shbasep, *shsizep); 1125 return (err); 1126 } 1127 1128 /* 1129 * Pull the section string table out of the vnode; fail if the size 1130 * is zero. 1131 */ 1132 shdr = (Shdr *)(*shbasep + shstrndx * ehdr->e_shentsize); 1133 if ((*shstrsizep = shdr->sh_size) == 0) { 1134 kmem_free(*shbasep, *shsizep); 1135 return (EINVAL); 1136 } 1137 1138 if (*shstrsizep > elf_shstrtab_max) { 1139 if ((*shstrbasep = kmem_alloc(*shstrsizep, 1140 KM_NOSLEEP)) == NULL) { 1141 kmem_free(*shbasep, *shsizep); 1142 return (ENOMEM); 1143 } 1144 } else { 1145 *shstrbasep = kmem_alloc(*shstrsizep, KM_SLEEP); 1146 } 1147 1148 if ((err = vn_rdwr(UIO_READ, vp, *shstrbasep, *shstrsizep, 1149 (offset_t)shdr->sh_offset, UIO_SYSSPACE, 0, (rlim64_t)0, 1150 credp, &resid)) != 0) { 1151 kmem_free(*shbasep, *shsizep); 1152 kmem_free(*shstrbasep, *shstrsizep); 1153 return (err); 1154 } 1155 1156 /* 1157 * Make sure the strtab is null-terminated to make sure we 1158 * don't run off the end of the table. 1159 */ 1160 (*shstrbasep)[*shstrsizep - 1] = '\0'; 1161 1162 return (0); 1163 } 1164 1165 static int 1166 mapelfexec( 1167 vnode_t *vp, 1168 Ehdr *ehdr, 1169 int nphdrs, 1170 caddr_t phdrbase, 1171 Phdr **uphdr, 1172 Phdr **dyphdr, 1173 Phdr **stphdr, 1174 Phdr **dtphdr, 1175 Phdr *dataphdrp, 1176 caddr_t *bssbase, 1177 caddr_t *brkbase, 1178 intptr_t *voffset, 1179 intptr_t *minaddr, 1180 size_t len, 1181 long *execsz, 1182 size_t *brksize) 1183 { 1184 Phdr *phdr; 1185 int i, prot, error; 1186 caddr_t addr = NULL; 1187 size_t zfodsz; 1188 int ptload = 0; 1189 int page; 1190 off_t offset; 1191 int hsize = ehdr->e_phentsize; 1192 caddr_t mintmp = (caddr_t)-1; 1193 extern int use_brk_lpg; 1194 1195 if (ehdr->e_type == ET_DYN) { 1196 /* 1197 * Obtain the virtual address of a hole in the 1198 * address space to map the "interpreter". 1199 */ 1200 map_addr(&addr, len, (offset_t)0, 1, 0); 1201 if (addr == NULL) 1202 return (ENOMEM); 1203 *voffset = (intptr_t)addr; 1204 1205 /* 1206 * Calculate the minimum vaddr so it can be subtracted out. 1207 * According to the ELF specification, since PT_LOAD sections 1208 * must be sorted by increasing p_vaddr values, this is 1209 * guaranteed to be the first PT_LOAD section. 1210 */ 1211 phdr = (Phdr *)phdrbase; 1212 for (i = nphdrs; i > 0; i--) { 1213 if (phdr->p_type == PT_LOAD) { 1214 *voffset -= (uintptr_t)phdr->p_vaddr; 1215 break; 1216 } 1217 phdr = (Phdr *)((caddr_t)phdr + hsize); 1218 } 1219 1220 } else { 1221 *voffset = 0; 1222 } 1223 phdr = (Phdr *)phdrbase; 1224 for (i = nphdrs; i > 0; i--) { 1225 switch (phdr->p_type) { 1226 case PT_LOAD: 1227 if ((*dyphdr != NULL) && (*uphdr == NULL)) 1228 return (0); 1229 1230 ptload = 1; 1231 prot = PROT_USER; 1232 if (phdr->p_flags & PF_R) 1233 prot |= PROT_READ; 1234 if (phdr->p_flags & PF_W) 1235 prot |= PROT_WRITE; 1236 if (phdr->p_flags & PF_X) 1237 prot |= PROT_EXEC; 1238 1239 addr = (caddr_t)((uintptr_t)phdr->p_vaddr + *voffset); 1240 1241 /* 1242 * Keep track of the segment with the lowest starting 1243 * address. 1244 */ 1245 if (addr < mintmp) 1246 mintmp = addr; 1247 1248 zfodsz = (size_t)phdr->p_memsz - phdr->p_filesz; 1249 1250 offset = phdr->p_offset; 1251 if (((uintptr_t)offset & PAGEOFFSET) == 1252 ((uintptr_t)addr & PAGEOFFSET) && 1253 (!(vp->v_flag & VNOMAP))) { 1254 page = 1; 1255 } else { 1256 page = 0; 1257 } 1258 1259 /* 1260 * Set the heap pagesize for OOB when the bss size 1261 * is known and use_brk_lpg is not 0. 1262 */ 1263 if (brksize != NULL && use_brk_lpg && 1264 zfodsz != 0 && phdr == dataphdrp && 1265 (prot & PROT_WRITE)) { 1266 size_t tlen = P2NPHASE((uintptr_t)addr + 1267 phdr->p_filesz, PAGESIZE); 1268 1269 if (zfodsz > tlen) { 1270 curproc->p_brkpageszc = 1271 page_szc(map_pgsz(MAPPGSZ_HEAP, 1272 curproc, addr + phdr->p_filesz + 1273 tlen, zfodsz - tlen, 0)); 1274 } 1275 } 1276 1277 if (curproc->p_brkpageszc != 0 && phdr == dataphdrp && 1278 (prot & PROT_WRITE)) { 1279 uint_t szc = curproc->p_brkpageszc; 1280 size_t pgsz = page_get_pagesize(szc); 1281 caddr_t ebss = addr + phdr->p_memsz; 1282 size_t extra_zfodsz; 1283 1284 ASSERT(pgsz > PAGESIZE); 1285 1286 extra_zfodsz = P2NPHASE((uintptr_t)ebss, pgsz); 1287 1288 if (error = execmap(vp, addr, phdr->p_filesz, 1289 zfodsz + extra_zfodsz, phdr->p_offset, 1290 prot, page, szc)) 1291 goto bad; 1292 if (brksize != NULL) 1293 *brksize = extra_zfodsz; 1294 } else { 1295 if (error = execmap(vp, addr, phdr->p_filesz, 1296 zfodsz, phdr->p_offset, prot, page, 0)) 1297 goto bad; 1298 } 1299 1300 if (bssbase != NULL && addr >= *bssbase && 1301 phdr == dataphdrp) { 1302 *bssbase = addr + phdr->p_filesz; 1303 } 1304 if (brkbase != NULL && addr >= *brkbase) { 1305 *brkbase = addr + phdr->p_memsz; 1306 } 1307 1308 *execsz += btopr(phdr->p_memsz); 1309 break; 1310 1311 case PT_INTERP: 1312 if (ptload) 1313 goto bad; 1314 *dyphdr = phdr; 1315 break; 1316 1317 case PT_SHLIB: 1318 *stphdr = phdr; 1319 break; 1320 1321 case PT_PHDR: 1322 if (ptload) 1323 goto bad; 1324 *uphdr = phdr; 1325 break; 1326 1327 case PT_NULL: 1328 case PT_DYNAMIC: 1329 case PT_NOTE: 1330 break; 1331 1332 case PT_SUNWDTRACE: 1333 if (dtphdr != NULL) 1334 *dtphdr = phdr; 1335 break; 1336 1337 default: 1338 break; 1339 } 1340 phdr = (Phdr *)((caddr_t)phdr + hsize); 1341 } 1342 1343 if (minaddr != NULL) { 1344 ASSERT(mintmp != (caddr_t)-1); 1345 *minaddr = (intptr_t)mintmp; 1346 } 1347 1348 return (0); 1349 bad: 1350 if (error == 0) 1351 error = EINVAL; 1352 return (error); 1353 } 1354 1355 int 1356 elfnote(vnode_t *vp, offset_t *offsetp, int type, int descsz, void *desc, 1357 rlim64_t rlimit, cred_t *credp) 1358 { 1359 Note note; 1360 int error; 1361 1362 bzero(¬e, sizeof (note)); 1363 bcopy("CORE", note.name, 4); 1364 note.nhdr.n_type = type; 1365 /* 1366 * The System V ABI states that n_namesz must be the length of the 1367 * string that follows the Nhdr structure including the terminating 1368 * null. The ABI also specifies that sufficient padding should be 1369 * included so that the description that follows the name string 1370 * begins on a 4- or 8-byte boundary for 32- and 64-bit binaries 1371 * respectively. However, since this change was not made correctly 1372 * at the time of the 64-bit port, both 32- and 64-bit binaries 1373 * descriptions are only guaranteed to begin on a 4-byte boundary. 1374 */ 1375 note.nhdr.n_namesz = 5; 1376 note.nhdr.n_descsz = roundup(descsz, sizeof (Word)); 1377 1378 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, ¬e, 1379 sizeof (note), rlimit, credp)) 1380 return (error); 1381 1382 *offsetp += sizeof (note); 1383 1384 if (error = core_write(vp, UIO_SYSSPACE, *offsetp, desc, 1385 note.nhdr.n_descsz, rlimit, credp)) 1386 return (error); 1387 1388 *offsetp += note.nhdr.n_descsz; 1389 return (0); 1390 } 1391 1392 /* 1393 * Copy the section data from one vnode to the section of another vnode. 1394 */ 1395 static void 1396 copy_scn(Shdr *src, vnode_t *src_vp, Shdr *dst, vnode_t *dst_vp, Off *doffset, 1397 void *buf, size_t size, cred_t *credp, rlim64_t rlimit) 1398 { 1399 ssize_t resid; 1400 size_t len, n = src->sh_size; 1401 offset_t off = 0; 1402 1403 while (n != 0) { 1404 len = MIN(size, n); 1405 if (vn_rdwr(UIO_READ, src_vp, buf, len, src->sh_offset + off, 1406 UIO_SYSSPACE, 0, (rlim64_t)0, credp, &resid) != 0 || 1407 resid >= len || 1408 core_write(dst_vp, UIO_SYSSPACE, *doffset + off, 1409 buf, len - resid, rlimit, credp) != 0) { 1410 dst->sh_size = 0; 1411 dst->sh_offset = 0; 1412 return; 1413 } 1414 1415 ASSERT(n >= len - resid); 1416 1417 n -= len - resid; 1418 off += len - resid; 1419 } 1420 1421 *doffset += src->sh_size; 1422 } 1423 1424 #ifdef _ELF32_COMPAT 1425 extern size_t elf_datasz_max; 1426 #else 1427 size_t elf_datasz_max = 1 * 1024 * 1024; 1428 #endif 1429 1430 /* 1431 * This function processes mappings that correspond to load objects to 1432 * examine their respective sections for elfcore(). It's called once with 1433 * v set to NULL to count the number of sections that we're going to need 1434 * and then again with v set to some allocated buffer that we fill in with 1435 * all the section data. 1436 */ 1437 static int 1438 process_scns(core_content_t content, proc_t *p, cred_t *credp, vnode_t *vp, 1439 Shdr *v, int nv, rlim64_t rlimit, Off *doffsetp, int *nshdrsp) 1440 { 1441 vnode_t *lastvp = NULL; 1442 struct seg *seg; 1443 int i, j; 1444 void *data = NULL; 1445 size_t datasz = 0; 1446 shstrtab_t shstrtab; 1447 struct as *as = p->p_as; 1448 int error = 0; 1449 1450 if (v != NULL) 1451 shstrtab_init(&shstrtab); 1452 1453 i = 1; 1454 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1455 uint_t prot; 1456 vnode_t *mvp; 1457 void *tmp = NULL; 1458 caddr_t saddr = seg->s_base; 1459 caddr_t naddr; 1460 caddr_t eaddr; 1461 size_t segsize; 1462 1463 Ehdr ehdr; 1464 int nshdrs, shstrndx, nphdrs; 1465 caddr_t shbase; 1466 ssize_t shsize; 1467 char *shstrbase; 1468 ssize_t shstrsize; 1469 1470 Shdr *shdr; 1471 const char *name; 1472 size_t sz; 1473 uintptr_t off; 1474 1475 int ctf_ndx = 0; 1476 int symtab_ndx = 0; 1477 1478 /* 1479 * Since we're just looking for text segments of load 1480 * objects, we only care about the protection bits; we don't 1481 * care about the actual size of the segment so we use the 1482 * reserved size. If the segment's size is zero, there's 1483 * something fishy going on so we ignore this segment. 1484 */ 1485 if (seg->s_ops != &segvn_ops || 1486 SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1487 mvp == lastvp || mvp == NULL || mvp->v_type != VREG || 1488 (segsize = pr_getsegsize(seg, 1)) == 0) 1489 continue; 1490 1491 eaddr = saddr + segsize; 1492 prot = pr_getprot(seg, 1, &tmp, &saddr, &naddr, eaddr); 1493 pr_getprot_done(&tmp); 1494 1495 /* 1496 * Skip this segment unless the protection bits look like 1497 * what we'd expect for a text segment. 1498 */ 1499 if ((prot & (PROT_WRITE | PROT_EXEC)) != PROT_EXEC) 1500 continue; 1501 1502 if (getelfhead(mvp, credp, &ehdr, &nshdrs, &shstrndx, 1503 &nphdrs) != 0 || 1504 getelfshdr(mvp, credp, &ehdr, nshdrs, shstrndx, 1505 &shbase, &shsize, &shstrbase, &shstrsize) != 0) 1506 continue; 1507 1508 off = ehdr.e_shentsize; 1509 for (j = 1; j < nshdrs; j++, off += ehdr.e_shentsize) { 1510 Shdr *symtab = NULL, *strtab; 1511 1512 shdr = (Shdr *)(shbase + off); 1513 1514 if (shdr->sh_name >= shstrsize) 1515 continue; 1516 1517 name = shstrbase + shdr->sh_name; 1518 1519 if (strcmp(name, shstrtab_data[STR_CTF]) == 0) { 1520 if ((content & CC_CONTENT_CTF) == 0 || 1521 ctf_ndx != 0) 1522 continue; 1523 1524 if (shdr->sh_link > 0 && 1525 shdr->sh_link < nshdrs) { 1526 symtab = (Shdr *)(shbase + 1527 shdr->sh_link * ehdr.e_shentsize); 1528 } 1529 1530 if (v != NULL && i < nv - 1) { 1531 if (shdr->sh_size > datasz && 1532 shdr->sh_size <= elf_datasz_max) { 1533 if (data != NULL) 1534 kmem_free(data, datasz); 1535 1536 datasz = shdr->sh_size; 1537 data = kmem_alloc(datasz, 1538 KM_SLEEP); 1539 } 1540 1541 v[i].sh_name = shstrtab_ndx(&shstrtab, 1542 STR_CTF); 1543 v[i].sh_addr = (Addr)(uintptr_t)saddr; 1544 v[i].sh_type = SHT_PROGBITS; 1545 v[i].sh_addralign = 4; 1546 *doffsetp = roundup(*doffsetp, 1547 v[i].sh_addralign); 1548 v[i].sh_offset = *doffsetp; 1549 v[i].sh_size = shdr->sh_size; 1550 if (symtab == NULL) { 1551 v[i].sh_link = 0; 1552 } else if (symtab->sh_type == 1553 SHT_SYMTAB && 1554 symtab_ndx != 0) { 1555 v[i].sh_link = 1556 symtab_ndx; 1557 } else { 1558 v[i].sh_link = i + 1; 1559 } 1560 1561 copy_scn(shdr, mvp, &v[i], vp, 1562 doffsetp, data, datasz, credp, 1563 rlimit); 1564 } 1565 1566 ctf_ndx = i++; 1567 1568 /* 1569 * We've already dumped the symtab. 1570 */ 1571 if (symtab != NULL && 1572 symtab->sh_type == SHT_SYMTAB && 1573 symtab_ndx != 0) 1574 continue; 1575 1576 } else if (strcmp(name, 1577 shstrtab_data[STR_SYMTAB]) == 0) { 1578 if ((content & CC_CONTENT_SYMTAB) == 0 || 1579 symtab != 0) 1580 continue; 1581 1582 symtab = shdr; 1583 } 1584 1585 if (symtab != NULL) { 1586 if ((symtab->sh_type != SHT_DYNSYM && 1587 symtab->sh_type != SHT_SYMTAB) || 1588 symtab->sh_link == 0 || 1589 symtab->sh_link >= nshdrs) 1590 continue; 1591 1592 strtab = (Shdr *)(shbase + 1593 symtab->sh_link * ehdr.e_shentsize); 1594 1595 if (strtab->sh_type != SHT_STRTAB) 1596 continue; 1597 1598 if (v != NULL && i < nv - 2) { 1599 sz = MAX(symtab->sh_size, 1600 strtab->sh_size); 1601 if (sz > datasz && 1602 sz <= elf_datasz_max) { 1603 if (data != NULL) 1604 kmem_free(data, datasz); 1605 1606 datasz = sz; 1607 data = kmem_alloc(datasz, 1608 KM_SLEEP); 1609 } 1610 1611 if (symtab->sh_type == SHT_DYNSYM) { 1612 v[i].sh_name = shstrtab_ndx( 1613 &shstrtab, STR_DYNSYM); 1614 v[i + 1].sh_name = shstrtab_ndx( 1615 &shstrtab, STR_DYNSTR); 1616 } else { 1617 v[i].sh_name = shstrtab_ndx( 1618 &shstrtab, STR_SYMTAB); 1619 v[i + 1].sh_name = shstrtab_ndx( 1620 &shstrtab, STR_STRTAB); 1621 } 1622 1623 v[i].sh_type = symtab->sh_type; 1624 v[i].sh_addr = symtab->sh_addr; 1625 if (ehdr.e_type == ET_DYN || 1626 v[i].sh_addr == 0) 1627 v[i].sh_addr += 1628 (Addr)(uintptr_t)saddr; 1629 v[i].sh_addralign = 1630 symtab->sh_addralign; 1631 *doffsetp = roundup(*doffsetp, 1632 v[i].sh_addralign); 1633 v[i].sh_offset = *doffsetp; 1634 v[i].sh_size = symtab->sh_size; 1635 v[i].sh_link = i + 1; 1636 v[i].sh_entsize = symtab->sh_entsize; 1637 v[i].sh_info = symtab->sh_info; 1638 1639 copy_scn(symtab, mvp, &v[i], vp, 1640 doffsetp, data, datasz, credp, 1641 rlimit); 1642 1643 v[i + 1].sh_type = SHT_STRTAB; 1644 v[i + 1].sh_flags = SHF_STRINGS; 1645 v[i + 1].sh_addr = symtab->sh_addr; 1646 if (ehdr.e_type == ET_DYN || 1647 v[i + 1].sh_addr == 0) 1648 v[i + 1].sh_addr += 1649 (Addr)(uintptr_t)saddr; 1650 v[i + 1].sh_addralign = 1651 strtab->sh_addralign; 1652 *doffsetp = roundup(*doffsetp, 1653 v[i + 1].sh_addralign); 1654 v[i + 1].sh_offset = *doffsetp; 1655 v[i + 1].sh_size = strtab->sh_size; 1656 1657 copy_scn(strtab, mvp, &v[i + 1], vp, 1658 doffsetp, data, datasz, credp, 1659 rlimit); 1660 } 1661 1662 if (symtab->sh_type == SHT_SYMTAB) 1663 symtab_ndx = i; 1664 i += 2; 1665 } 1666 } 1667 1668 kmem_free(shstrbase, shstrsize); 1669 kmem_free(shbase, shsize); 1670 1671 lastvp = mvp; 1672 } 1673 1674 if (v == NULL) { 1675 if (i == 1) 1676 *nshdrsp = 0; 1677 else 1678 *nshdrsp = i + 1; 1679 goto done; 1680 } 1681 1682 if (i != nv - 1) { 1683 cmn_err(CE_WARN, "elfcore: core dump failed for " 1684 "process %d; address space is changing", p->p_pid); 1685 error = EIO; 1686 goto done; 1687 } 1688 1689 v[i].sh_name = shstrtab_ndx(&shstrtab, STR_SHSTRTAB); 1690 v[i].sh_size = shstrtab_size(&shstrtab); 1691 v[i].sh_addralign = 1; 1692 *doffsetp = roundup(*doffsetp, v[i].sh_addralign); 1693 v[i].sh_offset = *doffsetp; 1694 v[i].sh_flags = SHF_STRINGS; 1695 v[i].sh_type = SHT_STRTAB; 1696 1697 if (v[i].sh_size > datasz) { 1698 if (data != NULL) 1699 kmem_free(data, datasz); 1700 1701 datasz = v[i].sh_size; 1702 data = kmem_alloc(datasz, 1703 KM_SLEEP); 1704 } 1705 1706 shstrtab_dump(&shstrtab, data); 1707 1708 if ((error = core_write(vp, UIO_SYSSPACE, *doffsetp, 1709 data, v[i].sh_size, rlimit, credp)) != 0) 1710 goto done; 1711 1712 *doffsetp += v[i].sh_size; 1713 1714 done: 1715 if (data != NULL) 1716 kmem_free(data, datasz); 1717 1718 return (error); 1719 } 1720 1721 int 1722 elfcore(vnode_t *vp, proc_t *p, cred_t *credp, rlim64_t rlimit, int sig, 1723 core_content_t content) 1724 { 1725 offset_t poffset, soffset; 1726 Off doffset; 1727 int error, i, nphdrs, nshdrs; 1728 int overflow = 0; 1729 struct seg *seg; 1730 struct as *as = p->p_as; 1731 union { 1732 Ehdr ehdr; 1733 Phdr phdr[1]; 1734 Shdr shdr[1]; 1735 } *bigwad; 1736 size_t bigsize; 1737 size_t phdrsz, shdrsz; 1738 Ehdr *ehdr; 1739 Phdr *v; 1740 caddr_t brkbase; 1741 size_t brksize; 1742 caddr_t stkbase; 1743 size_t stksize; 1744 int ntries = 0; 1745 klwp_t *lwp = ttolwp(curthread); 1746 1747 top: 1748 /* 1749 * Make sure we have everything we need (registers, etc.). 1750 * All other lwps have already stopped and are in an orderly state. 1751 */ 1752 ASSERT(p == ttoproc(curthread)); 1753 prstop(0, 0); 1754 1755 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1756 nphdrs = prnsegs(as, 0) + 2; /* two CORE note sections */ 1757 1758 /* 1759 * Count the number of section headers we're going to need. 1760 */ 1761 nshdrs = 0; 1762 if (content & (CC_CONTENT_CTF | CC_CONTENT_SYMTAB)) { 1763 (void) process_scns(content, p, credp, NULL, NULL, NULL, 0, 1764 NULL, &nshdrs); 1765 } 1766 AS_LOCK_EXIT(as, &as->a_lock); 1767 1768 ASSERT(nshdrs == 0 || nshdrs > 1); 1769 1770 /* 1771 * The core file contents may required zero section headers, but if 1772 * we overflow the 16 bits allotted to the program header count in 1773 * the ELF header, we'll need that program header at index zero. 1774 */ 1775 if (nshdrs == 0 && nphdrs >= PN_XNUM) 1776 nshdrs = 1; 1777 1778 phdrsz = nphdrs * sizeof (Phdr); 1779 shdrsz = nshdrs * sizeof (Shdr); 1780 1781 bigsize = MAX(sizeof (*bigwad), MAX(phdrsz, shdrsz)); 1782 bigwad = kmem_alloc(bigsize, KM_SLEEP); 1783 1784 ehdr = &bigwad->ehdr; 1785 bzero(ehdr, sizeof (*ehdr)); 1786 1787 ehdr->e_ident[EI_MAG0] = ELFMAG0; 1788 ehdr->e_ident[EI_MAG1] = ELFMAG1; 1789 ehdr->e_ident[EI_MAG2] = ELFMAG2; 1790 ehdr->e_ident[EI_MAG3] = ELFMAG3; 1791 ehdr->e_ident[EI_CLASS] = ELFCLASS; 1792 ehdr->e_type = ET_CORE; 1793 1794 #if !defined(_LP64) || defined(_ELF32_COMPAT) 1795 1796 #if defined(__sparc) 1797 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1798 ehdr->e_machine = EM_SPARC; 1799 #elif defined(__i386) || defined(__i386_COMPAT) 1800 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1801 ehdr->e_machine = EM_386; 1802 #else 1803 #error "no recognized machine type is defined" 1804 #endif 1805 1806 #else /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1807 1808 #if defined(__sparc) 1809 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 1810 ehdr->e_machine = EM_SPARCV9; 1811 #elif defined(__amd64) 1812 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1813 ehdr->e_machine = EM_AMD64; 1814 #else 1815 #error "no recognized 64-bit machine type is defined" 1816 #endif 1817 1818 #endif /* !defined(_LP64) || defined(_ELF32_COMPAT) */ 1819 1820 /* 1821 * If the count of program headers or section headers or the index 1822 * of the section string table can't fit in the mere 16 bits 1823 * shortsightedly allotted to them in the ELF header, we use the 1824 * extended formats and put the real values in the section header 1825 * as index 0. 1826 */ 1827 ehdr->e_version = EV_CURRENT; 1828 ehdr->e_ehsize = sizeof (Ehdr); 1829 1830 if (nphdrs >= PN_XNUM) 1831 ehdr->e_phnum = PN_XNUM; 1832 else 1833 ehdr->e_phnum = (unsigned short)nphdrs; 1834 1835 ehdr->e_phoff = sizeof (Ehdr); 1836 ehdr->e_phentsize = sizeof (Phdr); 1837 1838 if (nshdrs > 0) { 1839 if (nshdrs >= SHN_LORESERVE) 1840 ehdr->e_shnum = 0; 1841 else 1842 ehdr->e_shnum = (unsigned short)nshdrs; 1843 1844 if (nshdrs - 1 >= SHN_LORESERVE) 1845 ehdr->e_shstrndx = SHN_XINDEX; 1846 else 1847 ehdr->e_shstrndx = (unsigned short)(nshdrs - 1); 1848 1849 ehdr->e_shoff = ehdr->e_phoff + ehdr->e_phentsize * nphdrs; 1850 ehdr->e_shentsize = sizeof (Shdr); 1851 } 1852 1853 if (error = core_write(vp, UIO_SYSSPACE, (offset_t)0, ehdr, 1854 sizeof (Ehdr), rlimit, credp)) 1855 goto done; 1856 1857 poffset = sizeof (Ehdr); 1858 soffset = sizeof (Ehdr) + phdrsz; 1859 doffset = sizeof (Ehdr) + phdrsz + shdrsz; 1860 1861 v = &bigwad->phdr[0]; 1862 bzero(v, phdrsz); 1863 1864 setup_old_note_header(&v[0], p); 1865 v[0].p_offset = doffset = roundup(doffset, sizeof (Word)); 1866 doffset += v[0].p_filesz; 1867 1868 setup_note_header(&v[1], p); 1869 v[1].p_offset = doffset = roundup(doffset, sizeof (Word)); 1870 doffset += v[1].p_filesz; 1871 1872 mutex_enter(&p->p_lock); 1873 1874 brkbase = p->p_brkbase; 1875 brksize = p->p_brksize; 1876 1877 stkbase = p->p_usrstack - p->p_stksize; 1878 stksize = p->p_stksize; 1879 1880 mutex_exit(&p->p_lock); 1881 1882 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 1883 i = 2; 1884 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 1885 caddr_t eaddr = seg->s_base + pr_getsegsize(seg, 0); 1886 caddr_t saddr, naddr; 1887 void *tmp = NULL; 1888 extern struct seg_ops segspt_shmops; 1889 1890 for (saddr = seg->s_base; saddr < eaddr; saddr = naddr) { 1891 uint_t prot; 1892 size_t size; 1893 int type; 1894 vnode_t *mvp; 1895 1896 prot = pr_getprot(seg, 0, &tmp, &saddr, &naddr, eaddr); 1897 prot &= PROT_READ | PROT_WRITE | PROT_EXEC; 1898 if ((size = (size_t)(naddr - saddr)) == 0) 1899 continue; 1900 if (i == nphdrs) { 1901 overflow++; 1902 continue; 1903 } 1904 v[i].p_type = PT_LOAD; 1905 v[i].p_vaddr = (Addr)(uintptr_t)saddr; 1906 v[i].p_memsz = size; 1907 if (prot & PROT_READ) 1908 v[i].p_flags |= PF_R; 1909 if (prot & PROT_WRITE) 1910 v[i].p_flags |= PF_W; 1911 if (prot & PROT_EXEC) 1912 v[i].p_flags |= PF_X; 1913 1914 /* 1915 * Figure out which mappings to include in the core. 1916 */ 1917 type = SEGOP_GETTYPE(seg, saddr); 1918 1919 if (saddr == stkbase && size == stksize) { 1920 if (!(content & CC_CONTENT_STACK)) 1921 goto exclude; 1922 1923 } else if (saddr == brkbase && size == brksize) { 1924 if (!(content & CC_CONTENT_HEAP)) 1925 goto exclude; 1926 1927 } else if (seg->s_ops == &segspt_shmops) { 1928 if (type & MAP_NORESERVE) { 1929 if (!(content & CC_CONTENT_DISM)) 1930 goto exclude; 1931 } else { 1932 if (!(content & CC_CONTENT_ISM)) 1933 goto exclude; 1934 } 1935 1936 } else if (seg->s_ops != &segvn_ops) { 1937 goto exclude; 1938 1939 } else if (type & MAP_SHARED) { 1940 if (shmgetid(p, saddr) != SHMID_NONE) { 1941 if (!(content & CC_CONTENT_SHM)) 1942 goto exclude; 1943 1944 } else if (SEGOP_GETVP(seg, seg->s_base, 1945 &mvp) != 0 || mvp == NULL || 1946 mvp->v_type != VREG) { 1947 if (!(content & CC_CONTENT_SHANON)) 1948 goto exclude; 1949 1950 } else { 1951 if (!(content & CC_CONTENT_SHFILE)) 1952 goto exclude; 1953 } 1954 1955 } else if (SEGOP_GETVP(seg, seg->s_base, &mvp) != 0 || 1956 mvp == NULL || mvp->v_type != VREG) { 1957 if (!(content & CC_CONTENT_ANON)) 1958 goto exclude; 1959 1960 } else if (prot == (PROT_READ | PROT_EXEC)) { 1961 if (!(content & CC_CONTENT_TEXT)) 1962 goto exclude; 1963 1964 } else if (prot == PROT_READ) { 1965 if (!(content & CC_CONTENT_RODATA)) 1966 goto exclude; 1967 1968 } else { 1969 if (!(content & CC_CONTENT_DATA)) 1970 goto exclude; 1971 } 1972 1973 doffset = roundup(doffset, sizeof (Word)); 1974 v[i].p_offset = doffset; 1975 v[i].p_filesz = size; 1976 doffset += size; 1977 exclude: 1978 i++; 1979 } 1980 ASSERT(tmp == NULL); 1981 } 1982 AS_LOCK_EXIT(as, &as->a_lock); 1983 1984 if (overflow || i != nphdrs) { 1985 if (ntries++ == 0) { 1986 kmem_free(bigwad, bigsize); 1987 overflow = 0; 1988 goto top; 1989 } 1990 cmn_err(CE_WARN, "elfcore: core dump failed for " 1991 "process %d; address space is changing", p->p_pid); 1992 error = EIO; 1993 goto done; 1994 } 1995 1996 if ((error = core_write(vp, UIO_SYSSPACE, poffset, 1997 v, phdrsz, rlimit, credp)) != 0) 1998 goto done; 1999 2000 if ((error = write_old_elfnotes(p, sig, vp, v[0].p_offset, rlimit, 2001 credp)) != 0) 2002 goto done; 2003 2004 if ((error = write_elfnotes(p, sig, vp, v[1].p_offset, rlimit, 2005 credp, content)) != 0) 2006 goto done; 2007 2008 for (i = 2; i < nphdrs; i++) { 2009 prkillinfo_t killinfo; 2010 sigqueue_t *sq; 2011 int sig, j; 2012 2013 if (v[i].p_filesz == 0) 2014 continue; 2015 2016 /* 2017 * If dumping out this segment fails, rather than failing 2018 * the core dump entirely, we reset the size of the mapping 2019 * to zero to indicate that the data is absent from the core 2020 * file and or in the PF_SUNW_FAILURE flag to differentiate 2021 * this from mappings that were excluded due to the core file 2022 * content settings. 2023 */ 2024 if ((error = core_seg(p, vp, v[i].p_offset, 2025 (caddr_t)(uintptr_t)v[i].p_vaddr, v[i].p_filesz, 2026 rlimit, credp)) == 0) { 2027 continue; 2028 } 2029 2030 if ((sig = lwp->lwp_cursig) == 0) { 2031 /* 2032 * We failed due to something other than a signal. 2033 * Since the space reserved for the segment is now 2034 * unused, we stash the errno in the first four 2035 * bytes. This undocumented interface will let us 2036 * understand the nature of the failure. 2037 */ 2038 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2039 &error, sizeof (error), rlimit, credp); 2040 2041 v[i].p_filesz = 0; 2042 v[i].p_flags |= PF_SUNW_FAILURE; 2043 if ((error = core_write(vp, UIO_SYSSPACE, 2044 poffset + sizeof (v[i]) * i, &v[i], sizeof (v[i]), 2045 rlimit, credp)) != 0) 2046 goto done; 2047 2048 continue; 2049 } 2050 2051 /* 2052 * We took a signal. We want to abort the dump entirely, but 2053 * we also want to indicate what failed and why. We therefore 2054 * use the space reserved for the first failing segment to 2055 * write our error (which, for purposes of compatability with 2056 * older core dump readers, we set to EINTR) followed by any 2057 * siginfo associated with the signal. 2058 */ 2059 bzero(&killinfo, sizeof (killinfo)); 2060 killinfo.prk_error = EINTR; 2061 2062 sq = sig == SIGKILL ? curproc->p_killsqp : lwp->lwp_curinfo; 2063 2064 if (sq != NULL) { 2065 bcopy(&sq->sq_info, &killinfo.prk_info, 2066 sizeof (sq->sq_info)); 2067 } else { 2068 killinfo.prk_info.si_signo = lwp->lwp_cursig; 2069 killinfo.prk_info.si_code = SI_NOINFO; 2070 } 2071 2072 #if (defined(_SYSCALL32_IMPL) || defined(_LP64)) 2073 /* 2074 * If this is a 32-bit process, we need to translate from the 2075 * native siginfo to the 32-bit variant. (Core readers must 2076 * always have the same data model as their target or must 2077 * be aware of -- and compensate for -- data model differences.) 2078 */ 2079 if (curproc->p_model == DATAMODEL_ILP32) { 2080 siginfo32_t si32; 2081 2082 siginfo_kto32((k_siginfo_t *)&killinfo.prk_info, &si32); 2083 bcopy(&si32, &killinfo.prk_info, sizeof (si32)); 2084 } 2085 #endif 2086 2087 (void) core_write(vp, UIO_SYSSPACE, v[i].p_offset, 2088 &killinfo, sizeof (killinfo), rlimit, credp); 2089 2090 /* 2091 * For the segment on which we took the signal, indicate that 2092 * its data now refers to a siginfo. 2093 */ 2094 v[i].p_filesz = 0; 2095 v[i].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED | 2096 PF_SUNW_SIGINFO; 2097 2098 /* 2099 * And for every other segment, indicate that its absence 2100 * is due to a signal. 2101 */ 2102 for (j = i + 1; j < nphdrs; j++) { 2103 v[j].p_filesz = 0; 2104 v[j].p_flags |= PF_SUNW_FAILURE | PF_SUNW_KILLED; 2105 } 2106 2107 /* 2108 * Finally, write out our modified program headers. 2109 */ 2110 if ((error = core_write(vp, UIO_SYSSPACE, 2111 poffset + sizeof (v[i]) * i, &v[i], 2112 sizeof (v[i]) * (nphdrs - i), rlimit, credp)) != 0) 2113 goto done; 2114 2115 break; 2116 } 2117 2118 if (nshdrs > 0) { 2119 bzero(&bigwad->shdr[0], shdrsz); 2120 2121 if (nshdrs >= SHN_LORESERVE) 2122 bigwad->shdr[0].sh_size = nshdrs; 2123 2124 if (nshdrs - 1 >= SHN_LORESERVE) 2125 bigwad->shdr[0].sh_link = nshdrs - 1; 2126 2127 if (nphdrs >= PN_XNUM) 2128 bigwad->shdr[0].sh_info = nphdrs; 2129 2130 if (nshdrs > 1) { 2131 AS_LOCK_ENTER(as, &as->a_lock, RW_WRITER); 2132 if ((error = process_scns(content, p, credp, vp, 2133 &bigwad->shdr[0], nshdrs, rlimit, &doffset, 2134 NULL)) != 0) { 2135 AS_LOCK_EXIT(as, &as->a_lock); 2136 goto done; 2137 } 2138 AS_LOCK_EXIT(as, &as->a_lock); 2139 } 2140 2141 if ((error = core_write(vp, UIO_SYSSPACE, soffset, 2142 &bigwad->shdr[0], shdrsz, rlimit, credp)) != 0) 2143 goto done; 2144 } 2145 2146 done: 2147 kmem_free(bigwad, bigsize); 2148 return (error); 2149 } 2150 2151 #ifndef _ELF32_COMPAT 2152 2153 static struct execsw esw = { 2154 #ifdef _LP64 2155 elf64magicstr, 2156 #else /* _LP64 */ 2157 elf32magicstr, 2158 #endif /* _LP64 */ 2159 0, 2160 5, 2161 elfexec, 2162 elfcore 2163 }; 2164 2165 static struct modlexec modlexec = { 2166 &mod_execops, "exec module for elf", &esw 2167 }; 2168 2169 #ifdef _LP64 2170 extern int elf32exec(vnode_t *vp, execa_t *uap, uarg_t *args, 2171 intpdata_t *idatap, int level, long *execsz, 2172 int setid, caddr_t exec_file, cred_t *cred, 2173 int brand_action); 2174 extern int elf32core(vnode_t *vp, proc_t *p, cred_t *credp, 2175 rlim64_t rlimit, int sig, core_content_t content); 2176 2177 static struct execsw esw32 = { 2178 elf32magicstr, 2179 0, 2180 5, 2181 elf32exec, 2182 elf32core 2183 }; 2184 2185 static struct modlexec modlexec32 = { 2186 &mod_execops, "32-bit exec module for elf", &esw32 2187 }; 2188 #endif /* _LP64 */ 2189 2190 static struct modlinkage modlinkage = { 2191 MODREV_1, 2192 (void *)&modlexec, 2193 #ifdef _LP64 2194 (void *)&modlexec32, 2195 #endif /* _LP64 */ 2196 NULL 2197 }; 2198 2199 int 2200 _init(void) 2201 { 2202 return (mod_install(&modlinkage)); 2203 } 2204 2205 int 2206 _fini(void) 2207 { 2208 return (mod_remove(&modlinkage)); 2209 } 2210 2211 int 2212 _info(struct modinfo *modinfop) 2213 { 2214 return (mod_info(&modlinkage, modinfop)); 2215 } 2216 2217 #endif /* !_ELF32_COMPAT */