
new/usr/src/man/man3tecla/cpl_complete_word.3tecla 1

**
 17692 Sat Jan 18 13:36:57 2020
new/usr/src/man/man3tecla/cpl_complete_word.3tecla
12212 typos in some section 3tecla man pages
**

1 ’\" te
2 .\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd. All Rights
3 .\" Permission is hereby granted, free of charge, to any person obtaining a copy
4 .\" "Software"), to deal in the Software without restriction, including
5 .\" without limitation the rights to use, copy, modify, merge, publish,
6 .\" distribute, and/or sell copies of the Software, and to permit persons
7 .\" to whom the Software is furnished to do so, provided that the above
8 .\" copyright notice(s) and this permission notice appear in all copies of
9 .\" the Software and that both the above copyright notice(s) and this

10 .\" permission notice appear in supporting documentation.
11 .\"
12 .\" THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 .\" OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 .\" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
15 .\" OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
16 .\" HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
17 .\" INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
18 .\" FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
19 .\" NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
20 .\" WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 .\"
22 .\" Except as contained in this notice, the name of a copyright holder
23 .\" shall not be used in advertising or otherwise to promote the sale, use
24 .\" or other dealings in this Software without prior written authorization
25 .\" of the copyright holder.
26 .\" Portions Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
27 .TH CPL_COMPLETE_WORD 3TECLA "January 18, 2020"
27 .TH CPL_COMPLETE_WORD 3TECLA "Jun 1, 2004"
28 .SH NAME
29 cpl_complete_word, cfc_file_start, cfc_literal_escapes, cfc_set_check_fn,
30 cpl_add_completion, cpl_file_completions, cpl_last_error, cpl_list_completions,
31 cpl_recall_matches, cpl_record_error, del_CplFileConf, cpl_check_exe,
32 del_WordCompletion, new_CplFileConf, new_WordCompletion \- look up possible
33 completions for a word
34 .SH SYNOPSIS
35 .LP
35 .nf
36 cc [\fIflag\fR\&.\|.\|.] \fIfile\fR\&.\|.\|. \fB-ltecla\fR [\fIlibrary\fR\&.\
37 #include <stdio.h>
38 #include <libtecla.h>

40 \fBWordCompletion *\fR\fBnew_WordCompletion\fR(\fBvoid\fR);
41 .fi

43 .LP
44 .nf
45 \fBWordCompletion *\fR\fBdel_WordCompletion\fR(\fBWordCompletion *\fR\fIcpl\fR);
46 .fi

48 .LP
49 .nf
50 \fBCPL_MATCH_FN\fR(\fBcpl_file_completions\fR);
51 .fi

53 .LP
54 .nf
55 \fBCplFileConf *\fR\fBnew_CplFileConf\fR(\fBvoid\fR);
56 .fi

58 .LP
59 .nf

new/usr/src/man/man3tecla/cpl_complete_word.3tecla 2

60 \fBvoid\fR \fBcfc_file_start\fR(\fB(CplFileConf *\fR\fIcfc\fR, \fBint\fR \fIstar
61 .fi

63 .LP
64 .nf
65 \fBvoid\fR \fBcfc_literal_escapes\fR(\fBCplFileConf *\fR\fIcfc\fR, \fBint\fR \fI
66 .fi

68 .LP
69 .nf
70 \fBvoid\fR \fBcfc_set_check_fn\fR(\fBCplFileConf *\fR\fIcfc\fR, \fBCplCheckFn *\
71 \fBvoid *\fR\fIchk_data\fR);
72 .fi

74 .LP
75 .nf
76 \fBCPL_CHECK_FN\fR(\fBcpl_check_exe\fR);
77 .fi

79 .LP
80 .nf
81 \fBCplFileConf *\fR\fBdel_CplFileConf\fR(\fBCplFileConf *\fR\fIcfc\fR);
82 .fi

84 .LP
85 .nf
86 \fBCplMatches *\fR\fBcpl_complete_word\fR(\fBWordCompletion *\fR\fIcpl\fR, \fBco
87 \fBint\fR \fIword_end\fR, \fBvoid *\fR\fIdata\fR, \fBCplMatchFn *\fR\fImatc
88 .fi

90 .LP
91 .nf
92 \fBCplMatches *\fR\fBcpl_recall_matches\fR(\fBWordCompletion *\fR\fIcpl\fR);
93 .fi

95 .LP
96 .nf
97 \fBint\fR \fBcpl_list_completions\fR(\fBCplMatches *\fR\fIresult\fR, \fBFILE *\f
98 .fi

100 .LP
101 .nf
102 \fBint\fR \fBcpl_add_completion\fR(\fBWordCompletion *\fR\fIcpl\fR, \fBconst cha
103 \fBint\fR \fIword_start\fR, \fBint\fR \fIword_end\fR, \fBconst char *\fR\fI
104 \fBconst char *\fR\fItype_suffix\fR, \fBconst char *\fR\fIcont_suffix\fR);
105 .fi

107 .LP
108 .nf
109 \fBvoid\fR \fBcpl_record_error\fR(\fBWordCompletion *\fR\fIcpl\fR, \fBconst char
110 .fi

112 .LP
113 .nf
114 \fBconst char *\fR\fBcpl_last_error\fR(\fBWordCompletion *\fR\fIcpl\fR);
115 .fi

117 .SH DESCRIPTION
119 .sp
120 .LP
118 The \fBcpl_complete_word()\fR function is part of the \fBlibtecla\fR(3LIB)
119 library. It is usually called behind the scenes by \fBgl_get_line\fR(3TECLA),
120 but can also be called separately.
121 .sp
122 .LP
123 Given an input line containing an incomplete word to be completed, it calls a

new/usr/src/man/man3tecla/cpl_complete_word.3tecla 3

124 user-provided callback function (or the provided file-completion callback
125 function) to look up all possible completion suffixes for that word. The
126 callback function is expected to look backward in the line, starting from the
127 specified cursor position, to find the start of the word to be completed, then
128 to look up all possible completions of that word and record them, one at a
129 time, by calling \fBcpl_add_completion()\fR.
130 .sp
131 .LP
132 The \fBnew_WordCompletion()\fR function creates the resources used by the
133 \fBcpl_complete_word()\fR function. In particular, it maintains the memory that
134 is used to return the results of calling \fBcpl_complete_word()\fR.
135 .sp
136 .LP
137 The \fBdel_WordCompletion()\fR function deletes the resources that were
138 returned by a previous call to \fBnew_WordCompletion()\fR. It always returns
139 \fINULL\fR (that is, a deleted object). It takes no action if the \fIcpl\fR
140 argument is \fINULL\fR.
141 .sp
142 .LP
143 The callback functions that look up possible completions should be defined with
144 the \fBCPL_MATCH_FN()\fR macro, which is defined in <\fBlibtecla.h\fR>.
145 Functions of this type are called by \fBcpl_complete_word()\fR, and all of the
146 arguments of the callback are those that were passed to said function. In
147 particular, the \fIline\fR argument contains the input line containing the word
148 to be completed, and \fIword_end\fR is the index of the character that follows
149 the last character of the incomplete word within this string. The callback is
150 expected to look backwards from \fIword_end\fR for the start of the incomplete
151 word. What constitutes the start of a word clearly depends on the application,
152 so it makes sense for the callback to take on this responsibility. For example,
153 the builtin filename completion function looks backwards until it encounters an
154 unescaped space or the start of the line. Having found the start of the word,
155 the callback should then lookup all possible completions of this word, and
156 record each completion with separate calls to \fBcpl_add_completion()\fR. If
157 the callback needs access to an application-specific symbol table, it can pass
158 it and any other data that it needs using the \fIdata\fR argument. This removes
159 any need for global variables.
160 .sp
161 .LP
162 The callback function should return 0 if no errors occur. On failure it should
163 return 1 and register a terse description of the error by calling
164 \fBcpl_record_error()\fR.
165 .sp
166 .LP
167 The last error message recorded by calling \fBcpl_record_error()\fR can
168 subsequently be queried by calling \fBcpl_last_error()\fR.
169 .sp
170 .LP
171 The \fBcpl_add_completion()\fR function is called zero or more times by the
172 completion callback function to record each possible completion in the
173 specified \fBWordCompletion\fR object. These completions are subsequently
174 returned by \fBcpl_complete_word()\fR. The \fIcpl\fR, \fIline\fR, and
175 \fIword_end\fR arguments should be those that were passed to the callback
176 function. The \fIword_start\fR argument should be the index within the input
177 line string of the start of the word that is being completed. This should equal
178 \fIword_end\fR if a zero-length string is being completed. The \fIsuffix\fR
179 argument is the string that would have to be appended to the incomplete word to
180 complete it. If this needs any quoting (for example, the addition of
181 backslashes before special characters) to be valid within the displayed input
184 backslashes before special charaters) to be valid within the displayed input
182 line, this should be included. A copy of the suffix string is allocated
183 internally, so there is no need to maintain your copy of the string after
184 \fBcpl_add_completion()\fR returns.
185 .sp
186 .LP
187 In the array of possible completions that the \fBcpl_complete_word()\fR
188 function returns, the suffix recorded by \fBcpl_add_completion()\fR is listed

new/usr/src/man/man3tecla/cpl_complete_word.3tecla 4

189 along with the concatenation of this suffix with the word that lies between
192 along with the concatentation of this suffix with the word that lies between
190 \fIword_start\fR and \fIword_end\fR in the input line.
191 .sp
192 .LP
193 The \fItype_suffix\fR argument specifies an optional string to be appended to
194 the completion if it is displayed as part of a list of completions by
195 \fIcpl_list_completions\fR. The intention is that this indicates to the user the
198 \fIcpl_list_completions\fR. The intention is that this indicate to the user the
196 type of each completion. For example, the file completion function places a
197 directory separator after completions that are directories, to indicate their
198 nature to the user. Similarly, if the completion were a function, you could
201 nature to the user. Similary, if the completion were a function, you could
199 indicate this to the user by setting \fItype_suffix\fR to "()". Note that the
200 \fItype_suffix\fR string is not copied, so if the argument is not a literal
201 string between speech marks, be sure that the string remains valid for at least
202 as long as the results of \fBcpl_complete_word()\fR are needed.
203 .sp
204 .LP
205 The \fIcont_suffix\fR argument is a continuation suffix to append to the
206 completed word in the input line if this is the only completion. This is
207 something that is not part of the completion itself, but that gives the user an
208 indication about how they might continue to extend the token. For example, the
209 file-completion callback function adds a directory separator if the completed
210 word is a directory. If the completed word were a function name, you could
211 similarly aid the user by arranging for an open parenthesis to be appended.
212 .sp
213 .LP
214 The \fBcpl_complete_word()\fR function is normally called behind the scenes by
217 The \fBcpl_complete_word()\fR is normally called behind the scenes by
215 \fBgl_get_line\fR(3TECLA), but can also be called separately if you separately
216 allocate a \fBWordCompletion\fR object. It performs word completion, as
217 described at the beginning of this section. Its first argument is a resource
218 object previously returned by \fBnew_WordCompletion()\fR. The \fIline\fR
219 argument is the input line string, containing the word to be completed. The
220 \fIword_end\fR argument contains the index of the character in the input line,
221 that just follows the last character of the word to be completed. When called
222 by \fBgl_get_line()\fR, this is the character over which the user pressed TAB.
223 The \fImatch_fn\fR argument is the function pointer of the callback function
224 which will lookup possible completions of the word, as described above, and the
225 \fIdata\fR argument provides a way for the application to pass arbitrary data
226 to the callback function.
227 .sp
228 .LP
229 If no errors occur, the \fBcpl_complete_word()\fR function returns a pointer to
230 a \fBCplMatches\fR container, as defined below. This container is allocated as
231 part of the \fIcpl\fR object that was passed to \fBcpl_complete_word()\fR, and
232 will thus change on each call which uses the same \fIcpl\fR argument.
233 .sp
234 .in +2
235 .nf
236 typedef struct {
237 char *completion; /* A matching completion */
238 /* string */
239 char *suffix; /* The part of the */
240 /* completion string which */
241 /* would have to be */
242 /* appended to complete the */
243 /* original word. */
244 const char *type_suffix; /* A suffix to be added when */
245 /* listing completions, to */
246 /* indicate the type of the */
247 /* completion. */
248 } CplMatch;

______unchanged_portion_omitted_
266 .fi

new/usr/src/man/man3tecla/cpl_complete_word.3tecla 5

267 .in -2

269 .sp
270 .LP
271 If an error occurs during completion, \fBcpl_complete_word()\fR returns
272 \fINULL\fR. A description of the error can be acquired by calling the
273 \fBcpl_last_error()\fR function.
274 .sp
275 .LP
276 The \fBcpl_last_error()\fR function returns a terse description of the error
277 which occurred on the last call to \fBcpl_complete_word()\fR or
280 which occurred on the last call to \fBcpl_com plete_word()\fR or
278 \fBcpl_add_completion()\fR.
279 .sp
280 .LP
281 As a convenience, the return value of the last call to
282 \fBcpl_complete_word()\fR can be recalled at a later time by calling
283 \fBcpl_recall_matches()\fR. If \fBcpl_complete_word()\fR returned \fINULL\fR,
284 so will \fBcpl_recall_matches()\fR.
285 .sp
286 .LP
287 When the \fBcpl_complete_word()\fR function returns multiple possible
288 completions, the \fBcpl_list_completions()\fR function can be called upon to
289 list them, suitably arranged across the available width of the terminal. It
290 arranges for the displayed columns of completions to all have the same width,
291 set by the longest completion. It also appends the \fItype_suffix\fR strings
292 that were recorded with each completion, thus indicating their types to the
293 user.
294 .SS "Builtin Filename completion Callback"
295 By default the \fBgl_get_line()\fR function passes the
298 .sp
299 .LP
300 By default the \fBgl_get_line()\fR function, passes the
296 \fBCPL_MATCH_FN\fR(\fBcps_file_completions\fR) completion callback function to
297 \fBcpl_complete_word()\fR. This function can also be used separately, either by
298 sending it to \fBcpl_complete_word()\fR, or by calling it directly from your
299 own completion callback function.
300 .sp
301 .in +2
302 .nf
303 #define CPL_MATCH_FN(fn) int (fn)(WordCompletion *cpl, \e
304 void *data, const char *line, \e
305 int word_end)

307 typedef CPL_MATCH_FN(CplMatchFn);

309 CPL_MATCH_FN(cpl_file_completions);
310 .fi
311 .in -2

313 .sp
314 .LP
315 Certain aspects of the behavior of this callback can be changed via its
316 \fIdata\fR argument. If you are happy with its default behavior you can pass
317 \fINULL\fR in this argument. Otherwise it should be a pointer to a
318 \fBCplFileConf\fR object, previously allocated by calling
319 \fBnew_CplFileConf()\fR.
320 .sp
321 .LP
322 \fBCplFileConf\fR objects encapsulate the configuration parameters of
323 \fBcpl_file_completions()\fR. These parameters, which start out with default
324 values, can be changed by calling the accessor functions described below.
325 .sp
326 .LP
327 By default, the \fBcpl_file_completions()\fR callback function searches
328 backwards for the start of the filename being completed, looking for the first

new/usr/src/man/man3tecla/cpl_complete_word.3tecla 6

329 unescaped space or the start of the input line. If you wish to specify a
330 different location, call \fBcfc_file_start()\fR with the index at which the
331 filename starts in the input line. Passing \fIstart_index\fR=-1 reenables the
332 default behavior.
333 .sp
334 .LP
335 By default, when \fBcpl_file_completions()\fR looks at a filename in the input
336 line, each lone backslash in the input line is interpreted as being a special
337 character which removes any special significance of the character which follows
338 it, such as a space which should be taken as part of the filename rather than
339 delimiting the start of the filename. These backslashes are thus ignored while
340 looking for completions, and subsequently added before spaces, tabs and literal
341 backslashes in the list of completions. To have unescaped backslashes treated
346 back slashes in the list of completions. To have unescaped back slashes treated
342 as normal characters, call \fBcfc_literal_escapes()\fR with a non-zero value in
343 its \fIliteral\fR argument.
344 .sp
345 .LP
346 By default, \fBcpl_file_completions()\fR reports all files whose names start
347 with the prefix that is being completed. If you only want a selected subset of
348 these files to be reported in the list of completions, you can arrange this by
349 providing a callback function which takes the full pathname of a file, and
350 returns 0 if the file should be ignored, or 1 if the file should be included in
351 the list of completions. To register such a function for use by
352 \fBcpl_file_completions()\fR, call \fBcfc_set_check_fn()\fR, and pass it a
353 pointer to the function, together with a pointer to any data that you would
354 like passed to this callback whenever it is called. Your callback can make its
355 decisions based on any property of the file, such as the filename itself,
356 whether the file is readable, writable or executable, or even based on what the
357 file contains.
358 .sp
359 .in +2
360 .nf
361 #define CPL_CHECK_FN(fn) int (fn)(void *data, \e
362 const char *pathname)

364 typedef CPL_CHECK_FN(CplCheckFn);

366 void cfc_set_check_fn(CplFileConf *cfc, CplCheckFn *chk_fn, \e
367 void *chk_data);
368 .fi
369 .in -2

371 .sp
372 .LP
373 The \fBcpl_check_exe()\fR function is a provided callback of the above type,
374 for use with \fBcpl_file_completions()\fR. It returns non-zero if the filename
375 that it is given represents a normal file that the user has permission to
376 execute. You could use this to have \fBcpl_file_completions()\fR only list
380 that it is given represents a normal file that the user has execute permission
381 to. You could use this to have \fBcpl_file_completions()\fR only list
377 completions of executable files.
378 .sp
379 .LP
380 When you have finished with a \fBCplFileConf\fR variable, you can pass it to
381 the \fBdel_CplFileConf()\fR destructor function to reclaim its memory.
382 .SS "Thread Safety"
388 .sp
389 .LP
383 It is safe to use the facilities of this module in multiple threads, provided
384 that each thread uses a separately allocated \fBWordCompletion\fR object. In
385 other words, if two threads want to do word completion, they should each call
386 \fBnew_WordCompletion()\fR to allocate their own completion objects.
387 .SH ATTRIBUTES
395 .sp
396 .LP

new/usr/src/man/man3tecla/cpl_complete_word.3tecla 7

388 See \fBattributes\fR(5) for descriptions of the following attributes:
389 .sp

391 .sp
392 .TS
393 box;
394 c | c
395 l | l .
396 ATTRIBUTE TYPE ATTRIBUTE VALUE
397 _
398 Interface Stability Evolving
399 _
400 MT-Level MT-Safe
401 .TE

403 .SH SEE ALSO
413 .sp
414 .LP
404 \fBef_expand_file\fR(3TECLA), \fBgl_get_line\fR(3TECLA), \fBlibtecla\fR(3LIB),
405 \fBpca_lookup_file\fR(3TECLA), \fBattributes\fR(5)

new/usr/src/man/man3tecla/gl_get_line.3tecla 1

**
 85606 Sat Jan 18 13:36:57 2020
new/usr/src/man/man3tecla/gl_get_line.3tecla
12212 typos in some section 3tecla man pages
**

1 ’\" te
2 .\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd.
3 .\" All Rights Reserved.
4 .\" Permission is hereby granted, free of charge, to any person obtaining a copy
5 .\" "Software"), to deal in the Software without restriction, including
6 .\" without limitation the rights to use, copy, modify, merge, publish,
7 .\" distribute, and/or sell copies of the Software, and to permit persons
8 .\" to whom the Software is furnished to do so, provided that the above
9 .\" copyright notice(s) and this permission notice appear in all copies of

10 .\" the Software and that both the above copyright notice(s) and this
11 .\" permission notice appear in supporting documentation.
12 .\"
13 .\" THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
14 .\" OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
15 .\" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
16 .\" OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
17 .\" HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
18 .\" INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
19 .\" FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
20 .\" NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
21 .\" WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 .\"
23 .\" Except as contained in this notice, the name of a copyright holder
24 .\" shall not be used in advertising or otherwise to promote the sale, use
25 .\" or other dealings in this Software without prior written authorization
26 .\" of the copyright holder.
27 .\" Portions Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
28 .TH GL_GET_LINE 3TECLA "January 18, 2020"
28 .TH GL_GET_LINE 3TECLA "April 9, 2016"
29 .SH NAME
30 gl_get_line, new_GetLine, del_GetLine, gl_customize_completion,
31 gl_change_terminal, gl_configure_getline, gl_load_history, gl_save_history,
32 gl_group_history, gl_show_history, gl_watch_fd, gl_inactivity_timeout,
33 gl_terminal_size, gl_set_term_size, gl_resize_history, gl_limit_history,
34 gl_clear_history, gl_toggle_history, gl_lookup_history, gl_state_of_history,
35 gl_range_of_history, gl_size_of_history, gl_echo_mode, gl_replace_prompt,
36 gl_prompt_style, gl_ignore_signal, gl_trap_signal, gl_last_signal,
37 gl_completion_action, gl_register_action, gl_display_text, gl_return_status,
38 gl_error_message, gl_catch_blocked, gl_list_signals, gl_bind_keyseq,
39 gl_erase_terminal, gl_automatic_history, gl_append_history, gl_query_char,
40 gl_read_char \- allow the user to compose an input line
41 .SH SYNOPSIS
42 .LP
42 .nf
43 cc [\fIflag\fR\&.\|.\|.] \fIfile\fR\&.\|.\|. \fB-ltecla\fR [\fIlibrary\fR\&.\
44 #include <stdio.h>
45 #include <libtecla.h>

47 \fBGetLine *\fR\fBnew_GetLine\fR(\fBsize_t\fR \fIlinelen\fR, \fBsize_t\fR \fIhis
48 .fi

50 .LP
51 .nf
52 \fBGetLine *\fR\fBdel_GetLine\fR(\fBGetLine *\fR\fIgl\fR);
53 .fi

55 .LP
56 .nf
57 \fBchar *\fR\fBgl_get_line\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIprom
58 \fBconst char *\fR\fIstart_line\fR, \fBint\fR \fIstart_pos\fR);
59 .fi

new/usr/src/man/man3tecla/gl_get_line.3tecla 2

61 .LP
62 .nf
63 \fBint\fR \fBgl_query_char\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIprom
64 .fi

66 .LP
67 .nf
68 \fBint\fR \fBgl_read_char\fR(\fBGetLine *\fR\fIgl\fR);
69 .fi

71 .LP
72 .nf
73 \fBint\fR \fBgl_customize_completion\fR(\fBGetLine *\fR\fIgl\fR, \fBvoid *\fR\fI
74 \fBCplMatchFn *\fR\fImatch_fn\fR);
75 .fi

77 .LP
78 .nf
79 \fBint\fR \fBgl_change_terminal\fR(\fBGetLine *\fR\fIgl\fR, \fBFILE *\fR\fIinput
80 \fBFILE *\fR\fIoutput_fp\fR, \fBconst char *\fR\fIterm\fR);
81 .fi

83 .LP
84 .nf
85 \fBint\fR \fBgl_configure_getline\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR
86 \fBconst char *\fR\fIapp_file\fR,\ \fBconst char *\fR\fIuser_file\fR);
87 .fi

89 .LP
90 .nf
91 \fBint\fR \fBgl_bind_keyseq\fR(\fBGetLine *\fR\fIgl\fR, \fBGlKeyOrigin\fR \fIori
92 \fBconst char *\fR\fIkeyseq\fR, \fBconst char *\fR\fIaction\fR);
93 .fi

95 .LP
96 .nf
97 \fBint\fR \fBgl_save_history\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIfi
98 \fBconst char *\fR\fIcomment\fR, \fBint\fR \fImax_lines\fR);
99 .fi

101 .LP
102 .nf
103 \fBint\fR \fBgl_load_history\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIfi
104 \fBconst char *\fR\fIcomment\fR);
105 .fi

107 .LP
108 .nf
109 \fBint\fR \fBgl_watch_fd\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIfd\fR, \fBGlFd
110 \fBGlFdEventFn *\fR\fIcallback\fR, \fBvoid *\fR\fIdata\fR);
111 .fi

113 .LP
114 .nf
115 \fBint\fR \fBgl_inactivity_timeout\fR(\fBGetLine *\fR\fIgl\fR, \fBGlTimeoutFn *\
116 \fBvoid *\fR\fIdata\fR, \fBunsigned long\fR \fIsec\fR, \fBunsigned long\fR
117 .fi

119 .LP
120 .nf
121 \fBint\fR \fBgl_group_history\fR(\fBGetLine *\fR\fIgl\fR, \fBunsigned\fR \fIstre
122 .fi

124 .LP
125 .nf

new/usr/src/man/man3tecla/gl_get_line.3tecla 3

126 \fBint\fR \fBgl_show_history\fR(\fBGetLine *\fR\fIgl\fR, \fBFILE *\fR\fIfp\fR, \
127 \fBint\fR \fIall_groups\fR, \fBint\fR \fImax_lines\fR);
128 .fi

130 .LP
131 .nf
132 \fBint\fR \fBgl_resize_history\fR(\fBGetLine *\fR\fIgl\fR, \fBsize_t\fR \fIbufsi
133 .fi

135 .LP
136 .nf
137 \fBvoid\fR \fBgl_limit_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fImax_line
138 .fi

140 .LP
141 .nf
142 \fBvoid\fR \fBgl_clear_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIall_grou
143 .fi

145 .LP
146 .nf
147 \fBvoid\fR \fBgl_toggle_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIenable\
148 .fi

150 .LP
151 .nf
152 \fBGlTerminalSize\fR \fBgl_terminal_size\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \
153 \fBint\fR \fIdef_nline\fR);
154 .fi

156 .LP
157 .nf
158 \fBint\fR \fBgl_set_term_size\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIncolumn\f
159 .fi

161 .LP
162 .nf
163 \fBint\fR \fBgl_lookup_history\fR(\fBGetLine *\fR\fIgl\fR, \fBunsigned long\fR \
164 \fBGlHistoryLine *\fR\fIhline\fR);
165 .fi

167 .LP
168 .nf
169 \fBvoid\fR \fBgl_state_of_history\fR(\fBGetLine *\fR\fIgl\fR, \fBGlHistoryState
170 .fi

172 .LP
173 .nf
174 \fBvoid\fR \fBgl_range_of_history\fR(\fBGetLine *\fR\fIgl\fR, \fBGlHistoryRange
175 .fi

177 .LP
178 .nf
179 \fBvoid\fR \fBgl_size_of_history\fR(\fBGetLine *\fR\fIgl\fR, \fBGlHistorySize *\
180 .fi

182 .LP
183 .nf
184 \fBvoid\fR \fBgl_echo_mode\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIenable\fR);
185 .fi

187 .LP
188 .nf
189 \fBvoid\fR \fBgl_replace_prompt\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\f
190 .fi

new/usr/src/man/man3tecla/gl_get_line.3tecla 4

192 .LP
193 .nf
194 \fBvoid\fR \fBgl_prompt_style\fR(\fBGetLine *\fR\fIgl\fR, \fBGlPromptStyle\fR \f
195 .fi

197 .LP
198 .nf
199 \fBint\fR \fBgl_ignore_signal\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIsigno\fR)
200 .fi

202 .LP
203 .nf
204 \fBint\fR \fBgl_trap_signal\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIsigno\fR, \
205 \fBGlAfterSignal\fR \fIafter\fR, \fBint\fR \fIerrno_value\fR);
206 .fi

208 .LP
209 .nf
210 \fBint\fR \fBgl_last_signal\fR(\fBGetLine *\fR\fIgl\fR);
211 .fi

213 .LP
214 .nf
215 \fBint\fR \fBgl_completion_action\fR(\fBGetLine *\fR\fIgl\fR, \fBvoid *\fR\fIdat
216 \fBCplMatchFn *\fR\fImatch_fn\fR, \fBint\fR \fIlist_only\fR, \fBconst char
217 \fBconst char *\fR\fIkeyseq\fR);
218 .fi

220 .LP
221 .nf
222 \fBint\fR \fBgl_register_action\fR(\fBGetLine *\fR\fIgl\fR, \fBvoid *\fR\fIdata\
223 \fBconst char *\fR\fIname\fR, \fBconst char *\fR\fIkeyseq\fR);
224 .fi

226 .LP
227 .nf
228 \fBint\fR \fBgl_display_text\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIindentatio
229 \fBconst char *\fR\fIprefix\fR, \fBconst char *\fR\fIsuffix\fR, \fBint\fR \
230 \fBint\fR \fIdef_width\fR, \fBint\fR \fIstart\fR, \fBconst char *\fR\fIstri
231 .fi

233 .LP
234 .nf
235 \fBGlReturnStatus\fR \fBgl_return_status\fR(\fBGetLine *\fR\fIgl\fR);
236 .fi

238 .LP
239 .nf
240 \fBconst char *\fR\fBgl_error_message\fR(\fBGetLine *\fR\fIgl\fR, \fBchar *\fR\f
241 .fi

243 .LP
244 .nf
245 \fBvoid\fR \fBgl_catch_blocked\fR(\fBGetLine *\fR\fIgl\fR);
246 .fi

248 .LP
249 .nf
250 \fBint\fR \fBgl_list_signals\fR(\fBGetLine *\fR\fIgl\fR, \fBsigset_t *\fR\fIset\
251 .fi

253 .LP
254 .nf
255 \fBint\fR \fBgl_append_history\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fI
256 .fi

new/usr/src/man/man3tecla/gl_get_line.3tecla 5

258 .LP
259 .nf
260 \fBint\fR \fBgl_automatic_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIenabl
261 .fi

263 .LP
264 .nf
265 \fBint\fR \fBgl_erase_terminal\fR(\fBGetLine *\fR\fIgl\fR);
266 .fi

268 .SH DESCRIPTION
270 .LP
269 The \fBgl_get_line()\fR function is part of the \fBlibtecla\fR(3LIB) library.
270 If the user is typing at a terminal, each call prompts them for a line of
271 input, then provides interactive editing facilities, similar to those of the
272 UNIX \fBtcsh\fR shell. In addition to simple command-line editing, it supports
273 recall of previously entered command lines, TAB completion of file names, and
274 in-line wild-card expansion of filenames. Documentation of both the user-level
275 command-line editing features and all user configuration options can be found
276 on the \fBtecla\fR(5) manual page.
277 .SS "An Example"
280 .LP
278 The following shows a complete example of how to use the \fBgl_get_line()\fR
279 function to get input from the user:
280 .sp
281 .in +2
282 .nf
283 #include <stdio.h>
284 #include <locale.h>
285 #include <libtecla.h>

287 int main(int argc, char *argv[])
288 {
289 char *line; /* The line that the user typed */
290 GetLine *gl; /* The gl_get_line() resource object */

292 setlocale(LC_CTYPE, ""); /* Adopt the user’s choice */
293 /* of character set. */

295 gl = new_GetLine(1024, 2048);
296 if(!gl)
297 return 1;
298 while((line=gl_get_line(gl, "$ ", NULL, -1)) != NULL &&
299 strcmp(line, "exit\en") != 0)
300 printf("You typed: %s\en", line);

302 gl = del_GetLine(gl);
303 return 0;
304 }
305 .fi
306 .in -2

308 .sp
309 .LP
310 In the example, first the resources needed by the \fBgl_get_line()\fR function
311 are created by calling \fBnew_GetLine()\fR. This allocates the memory used in
312 subsequent calls to the \fBgl_get_line()\fR function, including the history
313 buffer for recording previously entered lines. Then one or more lines are read
314 from the user, until either an error occurs, or the user types exit. Then
315 finally the resources that were allocated by \fBnew_GetLine()\fR, are returned
316 to the system by calling \fBdel_GetLine()\fR. Note the use of the \fINULL\fR
317 return value of \fBdel_GetLine()\fR to make \fIgl\fR \fINULL\fR. This is a
318 safety precaution. If the program subsequently attempts to pass \fIgl\fR to
319 \fBgl_get_line()\fR, said function will complain, and return an error, instead
320 of attempting to use the deleted resource object.
321 .SS "The Functions Used In The Example"

new/usr/src/man/man3tecla/gl_get_line.3tecla 6

325 .LP
322 The \fBnew_GetLine()\fR function creates the resources used by the
323 \fBgl_get_line()\fR function and returns an opaque pointer to the object that
324 contains them. The maximum length of an input line is specified by the
325 \fIlinelen\fR argument, and the number of bytes to allocate for storing history
326 lines is set by the \fIhistlen\fR argument. History lines are stored
327 back-to-back in a single buffer of this size. Note that this means that the
328 number of history lines that can be stored at any given time, depends on the
329 lengths of the individual lines. If you want to place an upper limit on the
330 number of lines that can be stored, see the description of the
331 \fBgl_limit_history()\fR function. If you do not want history at all, specify
332 \fIhistlen\fR as zero, and no history buffer will be allocated.
333 .sp
334 .LP
335 On error, a message is printed to \fBstderr\fR and \fINULL\fR is returned.
336 .sp
337 .LP
338 The \fBdel_GetLine()\fR function deletes the resources that were returned by a
339 previous call to \fBnew_GetLine()\fR. It always returns \fINULL\fR (for
340 example, a deleted object). It does nothing if the \fIgl\fR argument is
341 \fINULL\fR.
342 .sp
343 .LP
344 The \fBgl_get_line()\fR function can be called any number of times to read
345 input from the user. The gl argument must have been previously returned by a
346 call to \fBnew_GetLine()\fR. The \fIprompt\fR argument should be a normal
347 null-terminated string, specifying the prompt to present the user with. By
348 default prompts are displayed literally, but if enabled with the
349 \fBgl_prompt_style()\fR function, prompts can contain directives to do
350 underlining, switch to and from bold fonts, or turn highlighting on and off.
351 .sp
352 .LP
353 If you want to specify the initial contents of the line for the user to edit,
354 pass the desired string with the \fIstart_line\fR argument. You can then
355 specify which character of this line the cursor is initially positioned over by
356 using the \fIstart_pos\fR argument. This should be -1 if you want the cursor to
357 follow the last character of the start line. If you do not want to preload the
358 line in this manner, send \fIstart_line\fR as \fINULL\fR, and set
359 \fIstart_pos\fR to -1.
360 .sp
361 .LP
362 The \fBgl_get_line()\fR function returns a pointer to the line entered by the
363 user, or \fINULL\fR on error or at the end of the input. The returned pointer
364 is part of the specified \fIgl\fR resource object, and thus should not be freed
365 by the caller, or assumed to be unchanging from one call to the next. When
366 reading from a user at a terminal, there will always be a newline character at
367 the end of the returned line. When standard input is being taken from a pipe or
368 a file, there will similarly be a newline unless the input line was too long to
369 store in the internal buffer. In the latter case you should call
370 \fBgl_get_line()\fR again to read the rest of the line. Note that this behavior
371 makes \fBgl_get_line()\fR similar to \fBfgets\fR(3C). When \fBstdin\fR is not
372 connected to a terminal, \fBgl_get_line()\fR simply calls \fBfgets()\fR.
373 .SS "The Return Status Of \fBgl_get_line()\fR"
378 .LP
374 The \fBgl_get_line()\fR function has two possible return values: a pointer to
375 the completed input line, or \fINULL\fR. Additional information about what
376 caused \fBgl_get_line()\fR to return is available both by inspecting
377 \fBerrno\fR and by calling the \fBgl_return_status()\fR function.
378 .sp
379 .LP
380 The following are the possible enumerated values returned by
381 \fBgl_return_status()\fR:
382 .sp
383 .ne 2
384 .na
385 \fB\fBGLR_NEWLINE\fR\fR

new/usr/src/man/man3tecla/gl_get_line.3tecla 7

386 .ad
387 .RS 15n
388 The last call to \fBgl_get_line()\fR successfully returned a completed input
389 line.
390 .RE

392 .sp
393 .ne 2
394 .na
395 \fB\fBGLR_BLOCKED\fR\fR
396 .ad
397 .RS 15n
398 The \fBgl_get_line()\fR function was in non-blocking server mode, and returned
399 early to avoid blocking the process while waiting for terminal I/O. The
400 \fBgl_pending_io()\fR function can be used to see what type of I/O
401 \fBgl_get_line()\fR was waiting for. See the \fBgl_io_mode\fR(3TECLA).
402 .RE

404 .sp
405 .ne 2
406 .na
407 \fB\fBGLR_SIGNAL\fR\fR
408 .ad
409 .RS 15n
410 A signal was caught by \fBgl_get_line()\fR that had an after-signal disposition
411 of \fBGLS_ABORT\fR. See \fBgl_trap_signal()\fR.
412 .RE

414 .sp
415 .ne 2
416 .na
417 \fB\fBGLR_TIMEOUT\fR\fR
418 .ad
419 .RS 15n
420 The inactivity timer expired while \fBgl_get_line()\fR was waiting for input,
421 and the timeout callback function returned \fBGLTO_ABORT\fR. See
422 \fBgl_inactivity_timeout()\fR for information about timeouts.
423 .RE

425 .sp
426 .ne 2
427 .na
428 \fB\fBGLR_FDABORT\fR\fR
429 .ad
430 .RS 15n
431 An application I/O callback returned \fBGLFD_ABORT\fR. See
436 An application I/O callback returned \fBGLFD_ABORT\fR. Ssee
432 \fBgl_watch_fd()\fR.
433 .RE

435 .sp
436 .ne 2
437 .na
438 \fB\fBGLR_EOF\fR\fR
439 .ad
440 .RS 15n
441 End of file reached. This can happen when input is coming from a file or a
442 pipe, instead of the terminal. It also occurs if the user invokes the
443 list-or-eof or del-char-or-list-or-eof actions at the start of a new line.
444 .RE

446 .sp
447 .ne 2
448 .na
449 \fB\fBGLR_ERROR\fR\fR
450 .ad

new/usr/src/man/man3tecla/gl_get_line.3tecla 8

451 .RS 15n
452 An unexpected error caused \fBgl_get_line()\fR to abort (consult \fBerrno\fR
453 and/or \fBgl_error_message()\fR for details.
454 .RE

456 .sp
457 .LP
458 When \fBgl_return_status()\fR returns \fBGLR_ERROR\fR and the value of
459 \fBerrno\fR is not sufficient to explain what happened, you can use the
460 \fBgl_error_message()\fR function to request a description of the last error
461 that occurred.
462 .sp
463 .LP
464 The return value of \fBgl_error_message()\fR is a pointer to the message that
465 occurred. If the \fIbuff\fR argument is \fINULL\fR, this will be a pointer to a
466 buffer within \fIgl\fR whose value will probably change on the next call to any
467 function associated with \fBgl_get_line()\fR. Otherwise, if a non-null
468 \fIbuff\fR argument is provided, the error message, including a ’\e0’
469 terminator, will be written within the first \fIn\fR elements of this buffer,
470 and the return value will be a pointer to the first element of this buffer. If
471 the message will not fit in the provided buffer, it will be truncated to fit.
472 .SS "Optional Prompt Formatting"
478 .LP
473 Whereas by default the prompt string that you specify is displayed literally
474 without any special interpretation of the characters within it, the
475 \fBgl_prompt_style()\fR function can be used to enable optional formatting
476 directives within the prompt.
477 .sp
478 .LP
479 The \fIstyle\fR argument, which specifies the formatting style, can take any of
480 the following values:
481 .sp
482 .ne 2
483 .na
484 \fB\fBGL_FORMAT_PROMPT\fR\fR
485 .ad
486 .RS 21n
487 In this style, the formatting directives described below, when included in
488 prompt strings, are interpreted as follows:
489 .sp
490 .ne 2
491 .na
492 \fB\fB%B\fR\fR
493 .ad
494 .RS 6n
495 Display subsequent characters with a bold font.
496 .RE

498 .sp
499 .ne 2
500 .na
501 \fB\fB%b\fR\fR
502 .ad
503 .RS 6n
504 Stop displaying characters with the bold font.
505 .RE

507 .sp
508 .ne 2
509 .na
510 \fB\fB%F\fR\fR
511 .ad
512 .RS 6n
513 Make subsequent characters flash.
514 .RE

new/usr/src/man/man3tecla/gl_get_line.3tecla 9

516 .sp
517 .ne 2
518 .na
519 \fB\fB%f\fR\fR
520 .ad
521 .RS 6n
522 Turn off flashing characters.
523 .RE

525 .sp
526 .ne 2
527 .na
528 \fB\fB%U\fR\fR
529 .ad
530 .RS 6n
531 Underline subsequent characters.
532 .RE

534 .sp
535 .ne 2
536 .na
537 \fB\fB%u\fR\fR
538 .ad
539 .RS 6n
540 Stop underlining characters.
541 .RE

543 .sp
544 .ne 2
545 .na
546 \fB\fB%P\fR\fR
547 .ad
548 .RS 6n
549 Switch to a pale (half brightness) font.
550 .RE

552 .sp
553 .ne 2
554 .na
555 \fB\fB%p\fR\fR
556 .ad
557 .RS 6n
558 Stop using the pale font.
559 .RE

561 .sp
562 .ne 2
563 .na
564 \fB\fB%S\fR\fR
565 .ad
566 .RS 6n
567 Highlight subsequent characters (also known as standout mode).
568 .RE

570 .sp
571 .ne 2
572 .na
573 \fB\fB%s\fR\fR
574 .ad
575 .RS 6n
576 Stop highlighting characters.
577 .RE

579 .sp
580 .ne 2
581 .na

new/usr/src/man/man3tecla/gl_get_line.3tecla 10

582 \fB\fB%V\fR\fR
583 .ad
584 .RS 6n
585 Turn on reverse video.
586 .RE

588 .sp
589 .ne 2
590 .na
591 \fB\fB%v\fR\fR
592 .ad
593 .RS 6n
594 Turn off reverse video.
595 .RE

597 .sp
598 .ne 2
599 .na
600 \fB\fB%%\fR\fR
601 .ad
602 .RS 6n
603 Display a single % character.
604 .RE

606 For example, in this mode, a prompt string like "%UOK%u$" would display the
607 prompt "OK$", but with the OK part underlined.
608 .sp
609 Note that although a pair of characters that starts with a % character, but
610 does not match any of the above directives is displayed literally, if a new
611 directive is subsequently introduced which does match, the displayed prompt
612 will change, so it is better to always use %% to display a literal %.
613 .sp
614 Also note that not all terminals support all of these text attributes, and that
615 some substitute a different attribute for missing ones.
616 .RE

618 .sp
619 .ne 2
620 .na
621 \fB\fBGL_LITERAL_PROMPT\fR\fR
622 .ad
623 .RS 21n
624 In this style, the prompt string is printed literally. This is the default
625 style.
626 .RE

628 .SS "Alternate Configuration Sources"
635 .LP
629 By default users have the option of configuring the behavior of
630 \fBgl_get_line()\fR with a configuration file called \fB\&.teclarc\fR in their
631 home directories. The fact that all applications share this same configuration
632 file is both an advantage and a disadvantage. In most cases it is an advantage,
633 since it encourages uniformity, and frees the user from having to configure
634 each application separately. In some applications, however, this single means
635 of configuration is a problem. This is particularly true of embedded software,
636 where there’s no filesystem to read a configuration file from, and also in
637 applications where a radically different choice of keybindings is needed to
638 emulate a legacy keyboard interface. To cater for such cases, the
639 \fBgl_configure_getline()\fR function allows the application to control where
640 configuration information is read from.
641 .sp
642 .LP
643 The \fBgl_configure_getline()\fR function allows the configuration commands
644 that would normally be read from a user’s \fB~/.teclarc\fR file, to be read
645 from any or none of, a string, an application specific configuration file,
646 and/or a user-specific configuration file. If this function is called before

new/usr/src/man/man3tecla/gl_get_line.3tecla 11

647 the first call to \fBgl_get_line()\fR, the default behavior of reading
648 \fB~/.teclarc\fR on the first call to \fBgl_get_line()\fR is disabled, so all
649 configurations must be achieved using the configuration sources specified with
650 this function.
651 .sp
652 .LP
653 If \fIapp_string\fR != \fINULL\fR, then it is interpreted as a string
654 containing one or more configuration commands, separated from each other in the
655 string by embedded newline characters. If \fIapp_file\fR != \fINULL\fR then it
656 is interpreted as the full pathname of an application-specific configuration
657 file. If user_file != \fINULL\fR then it is interpreted as the full path name
658 of a user-specific configuration file, such as \fB~/.teclarc\fR. For example,
659 in the call
660 .sp
661 .in +2
662 .nf
663 gl_configure_getline(gl, "edit-mode vi \en nobeep",
664 "/usr/share/myapp/teclarc", "~/.teclarc");
665 .fi
666 .in -2

668 .sp
669 .LP
670 The \fIapp_string\fR argument causes the calling application to start in
671 \fBvi\fR(1) edit-mode, instead of the default \fBemacs\fR mode, and turns off
672 the use of the terminal bell by the library. It then attempts to read
673 system-wide configuration commands from an optional file called
674 \fB/usr/share/myapp/teclarc\fR, then finally reads user-specific configuration
675 commands from an optional \fB\&.teclarc\fR file in the user’s home directory.
676 Note that the arguments are listed in ascending order of priority, with the
677 contents of \fIapp_string\fR being potentially overridden by commands in
684 contents of \fIapp_string\fR being potentially over riden by commands in
678 \fIapp_file\fR, and commands in \fIapp_file\fR potentially being overridden by
679 commands in \fIuser_file\fR.
680 .sp
681 .LP
682 You can call this function as many times as needed, the results being
683 cumulative, but note that copies of any file names specified with the
684 \fIapp_file\fR and \fIuser_file\fR arguments are recorded internally for
685 subsequent use by the read-init-files key-binding function, so if you plan to
686 call this function multiple times, be sure that the last call specifies the
687 filenames that you want re-read when the user requests that the configuration
688 files be re-read.
689 .sp
690 .LP
691 Individual key sequences can also be bound and unbound using the
692 \fBgl_bind_keyseq()\fR function. The \fIorigin\fR argument specifies the
693 priority of the binding, according to whom it is being established for, and
694 must be one of the following two values.
695 .sp
696 .ne 2
697 .na
698 \fB\fBGL_USER_KEY\fR\fR
699 .ad
700 .RS 15n
701 The user requested this key-binding.
702 .RE

704 .sp
705 .ne 2
706 .na
707 \fB\fBGL_APP_KEY\fR\fR
708 .ad
709 .RS 15n
710 This is a default binding set by the application.
711 .RE

new/usr/src/man/man3tecla/gl_get_line.3tecla 12

713 .sp
714 .LP
715 When both user and application bindings for a given key sequence have been
716 specified, the user binding takes precedence. The application’s binding is
717 subsequently reinstated if the user’s binding is later unbound with either
718 another call to this function, or a call to \fBgl_configure_getline()\fR.
719 .sp
720 .LP
721 The \fIkeyseq\fR argument specifies the key sequence to be bound or unbound,
722 and is expressed in the same way as in a \fB~/.teclarc\fR configuration file.
723 The \fIaction\fR argument must either be a string containing the name of the
724 action to bind the key sequence to, or it must be \fINULL\fR or \fB""\fR to
725 unbind the key sequence.
726 .SS "Customized Word Completion"
734 .LP
727 If in your application you would like to have TAB completion complete other
728 things in addition to or instead of filenames, you can arrange this by
729 registering an alternate completion callback function with a call to the
730 \fBgl_customize_completion()\fR function.
731 .sp
732 .LP
733 The \fIdata\fR argument provides a way for your application to pass arbitrary,
734 application-specific information to the callback function. This is passed to
735 the callback every time that it is called. It might for example point to the
736 symbol table from which possible completions are to be sought. The
737 \fImatch_fn\fR argument specifies the callback function to be called. The
738 \fICplMatchFn\fR function type is defined in <\fBlibtecla.h\fR>, as is a
739 \fBCPL_MATCH_FN()\fR macro that you can use to declare and prototype callback
740 functions. The declaration and responsibilities of callback functions are
741 described in depth on the \fBcpl_complete_word\fR(3TECLA) manual page.
742 .sp
743 .LP
744 The callback function is responsible for looking backwards in the input line
745 from the point at which the user pressed TAB, to find the start of the word
746 being completed. It then must lookup possible completions of this word, and
747 record them one by one in the \fBWordCompletion\fR object that is passed to it
748 as an argument, by calling the \fBcpl_add_completion()\fR function. If the
749 callback function wants to provide filename completion in addition to its own
750 specific completions, it has the option of itself calling the builtin filename
751 completion callback. This is also documented in the
759 completion callback. This also is documented on the
752 \fBcpl_complete_word\fR(3TECLA) manual page.
753 .sp
754 .LP
755 If you would like \fBgl_get_line()\fR to return the current input line when a
756 successful completion has been made, you can arrange this when you call
764 successful completion is been made, you can arrange this when you call
757 \fBcpl_add_completion()\fR by making the last character of the continuation
758 suffix a newline character. The input line will be updated to display the
759 completion, together with any continuation suffix up to the newline character,
767 completion, together with any contiuation suffix up to the newline character,
760 and \fBgl_get_line()\fR will return this input line.
761 .sp
762 .LP
763 If your callback function needs to write something to the terminal, it must
764 call \fBgl_normal_io()\fR before doing so. This will start a new line after the
765 input line that is currently being edited, reinstate normal terminal I/O, and
766 notify \fBgl_get_line()\fR that the input line will need to be redrawn when the
767 callback returns.
768 .SS "Adding Completion Actions"
777 .LP
769 In the previous section the ability to customize the behavior of the only
770 default completion action, complete-word, was described. In this section the
771 ability to install additional action functions, so that different types of word
772 completion can be bound to different key sequences, is described. This is

new/usr/src/man/man3tecla/gl_get_line.3tecla 13

773 achieved by using the \fBgl_completion_action()\fR function.
774 .sp
775 .LP
776 The \fIdata\fR and \fImatch_fn\fR arguments are as described on the
777 \fBcpl_complete_word\fR(3TECLA) manual page, and specify the callback function
778 that should be invoked to identify possible completions. The \fIlist_only\fR
779 argument determines whether the action that is being defined should attempt to
780 complete the word as far as possible in the input line before displaying any
781 possible ambiguous completions, or whether it should simply display the list of
782 possible completions without touching the input line. The former option is
783 selected by specifying a value of 0, and the latter by specifying a value of 1.
784 The \fIname\fR argument specifies the name by which configuration files and
785 future invocations of this function should refer to the action. This must
786 either be the name of an existing completion action to be changed, or be a new
787 unused name for a new action. Finally, the \fIkeyseq\fR argument specifies the
788 default key sequence to bind the action to. If this is \fINULL\fR, no new key
789 sequence will be bound to the action.
790 .sp
791 .LP
792 Beware that in order for the user to be able to change the key sequence that is
793 bound to actions that are installed in this manner, you should call
802 bound to actions that are installed in this manner, you shouldcall
794 \fBgl_completion_action()\fR to install a given action for the first time
795 between calling \fBnew_GetLine()\fR and the first call to \fBgl_get_line()\fR.
796 Otherwise, when the user’s configuration file is read on the first call to
797 \fBgl_get_line()\fR, the name of the your additional action will not be known,
798 and any reference to it in the configuration file will generate an error.
799 .sp
800 .LP
801 As discussed for \fBgl_customize_completion()\fR, if your callback function
802 needs to write anything to the terminal, it must call \fBgl_normal_io()\fR
803 before doing so.
804 .SS "Defining Custom Actions"
814 .LP
805 Although the built-in key-binding actions are sufficient for the needs of most
806 applications, occasionally a specialized application may need to define one or
807 more custom actions, bound to application-specific key sequences. For example,
808 a sales application would benefit from having a key sequence that displayed the
809 part name that corresponded to a part number preceding the cursor. Such a
810 feature is clearly beyond the scope of the built-in action functions. So for
811 such special cases, the \fBgl_register_action()\fR function is provided.
812 .sp
813 .LP
814 The \fBgl_register_action()\fR function lets the application register an
815 external function, \fIfn\fR, that will thereafter be called whenever either the
816 specified key sequence, \fIkeyseq\fR, is entered by the user, or the user
817 enters any other key sequence that the user subsequently binds to the specified
818 action name, \fIname\fR, in their configuration file. The \fIdata\fR argument
819 can be a pointer to anything that the application wants to have passed to the
820 action function, \fIfn\fR, whenever that function is invoked.
821 .sp
822 .LP
823 The action function, \fIfn\fR, should be declared using the
824 \fBGL_ACTION_FN()\fR macro, which is defined in <\fBlibtecla.h\fR>.
825 .sp
826 .in +2
827 .nf
828 #define GL_ACTION_FN(fn) GlAfterAction (fn)(GetLine *gl, \e
829 void *data, int count, size_t curpos, \e
830 const char *line)
831 .fi
832 .in -2

834 .sp
835 .LP
836 The \fIgl\fR and \fIdata\fR arguments are those that were previously passed to

new/usr/src/man/man3tecla/gl_get_line.3tecla 14

837 \fBgl_register_action()\fR when the action function was registered. The
838 \fIcount\fR argument is a numeric argument which the user has the option of
839 entering using the digit-argument action, before invoking the action. If the
840 user does not enter a number, then the \fIcount\fR argument is set to 1.
841 Nominally this argument is interpreted as a repeat count, meaning that the
842 action should be repeated that many times. In practice however, for some
843 actions a repeat count makes little sense. In such cases, actions can either
844 simply ignore the \fIcount\fR argument, or use its value for a different
845 purpose.
846 .sp
847 .LP
848 A copy of the current input line is passed in the read-only \fIline\fR
849 argument. The current cursor position within this string is given by the index
850 contained in the \fIcurpos\fR argument. Note that direct manipulation of the
851 input line and the cursor position is not permitted because the rules dictated
852 by various modes (such as \fBvi\fR mode versus \fBemacs\fR mode, no-echo mode,
853 and insert mode versus overstrike mode) make it too complex for an application
854 writer to write a conforming editing action, as well as constrain future
855 changes to the internals of \fBgl_get_line()\fR. A potential solution to this
856 dilemma would be to allow the action function to edit the line using the
857 existing editing actions. This is currently under consideration.
858 .sp
859 .LP
860 If the action function wishes to write text to the terminal without this
861 getting mixed up with the displayed text of the input line, or read from the
862 terminal without having to handle raw terminal I/O, then before doing either of
863 these operations, it must temporarily suspend line editing by calling the
864 \fBgl_normal_io()\fR function. This function flushes any pending output to the
865 terminal, moves the cursor to the start of the line that follows the last
866 terminal line of the input line, then restores the terminal to a state that is
867 suitable for use with the C \fBstdio\fR facilities. The latter includes such
868 things as restoring the normal mapping of \en to \er\en, and, when in server
869 mode, restoring the normal blocking form of terminal I/O. Having called this
870 function, the action function can read from and write to the terminal without
871 the fear of creating a mess. It is not necessary for the action function to
872 restore the original editing environment before it returns. This is done
873 automatically by \fBgl_get_line()\fR after the action function returns. The
874 following is a simple example of an action function which writes the sentence
875 "Hello world" on a new terminal line after the line being edited. When this
876 function returns, the input line is redrawn on the line that follows the "Hello
877 world" line, and line editing resumes.
878 .sp
879 .in +2
880 .nf
881 static GL_ACTION_FN(say_hello_fn)
882 {
883 if(gl_normal_io(gl)) /* Temporarily suspend editing */
884 return GLA_ABORT;
885 printf("Hello world\en");
886 return GLA_CONTINUE;
887 }
888 .fi
889 .in -2

891 .sp
892 .LP
893 Action functions must return one of the following values, to tell
894 \fBgl_get_line()\fR how to proceed.
895 .sp
896 .ne 2
897 .na
898 \fB\fBGLA_ABORT\fR\fR
899 .ad
900 .RS 16n
901 Cause \fBgl_get_line()\fR to return \fINULL\fR.
902 .RE

new/usr/src/man/man3tecla/gl_get_line.3tecla 15

904 .sp
905 .ne 2
906 .na
907 \fB\fBGLA_RETURN\fR\fR
908 .ad
909 .RS 16n
910 Cause \fBgl_get_line()\fR to return the completed input line
911 .RE

913 .sp
914 .ne 2
915 .na
916 \fB\fBGLA_CONTINUE\fR\fR
917 .ad
918 .RS 16n
919 Resume command-line editing.
920 .RE

922 .sp
923 .LP
924 Note that the \fIname\fR argument of \fBgl_register_action()\fR specifies the
925 name by which a user can refer to the action in their configuration file. This
926 allows them to re-bind the action to an alternate key-sequence. In order for
927 this to work, it is necessary to call \fBgl_register_action()\fR between
928 calling \fBnew_GetLine()\fR and the first call to \fBgl_get_line()\fR.
929 .SS "History Files"
940 .LP
930 To save the contents of the history buffer before quitting your application and
931 subsequently restore them when you next start the application, the
932 \fBgl_save_history()\fR and \fBgl_load_history()\fR functions are provided.
933 .sp
934 .LP
935 The \fIfilename\fR argument specifies the name to give the history file when
936 saving, or the name of an existing history file, when loading. This may contain
937 home directory and environment variable expressions, such as
938 \fB~/.myapp_history\fR or \fB$HOME/.myapp_history\fR.
939 .sp
940 .LP
941 Along with each history line, additional information about it, such as its
942 nesting level and when it was entered by the user, is recorded as a comment
943 preceding the line in the history file. Writing this as a comment allows the
944 history file to double as a command file, just in case you wish to replay a
945 whole session using it. Since comment prefixes differ in different languages,
946 the comment argument is provided for specifying the comment prefix. For
947 example, if your application were a UNIX shell, such as the Bourne shell, you
948 would specify "#" here. Whatever you choose for the comment character, you must
949 specify the same prefix to \fBgl_load_history()\fR that you used when you
950 called \fBgl_save_history()\fR to write the history file.
951 .sp
952 .LP
953 The \fImax_lines\fR argument must be either -1 to specify that all lines in the
954 history list be saved, or a positive number specifying a ceiling on how many of
955 the most recent lines should be saved.
956 .sp
957 .LP
958 Both functions return non-zero on error, after writing an error message to
969 Both fuctions return non-zero on error, after writing an error message to
959 \fBstderr\fR. Note that \fBgl_load_history()\fR does not consider the
960 non-existence of a file to be an error.
961 .SS "Multiple History Lists"
973 .LP
962 If your application uses a single \fBGetLine\fR object for entering many
963 different types of input lines, you might want \fBgl_get_line()\fR to
964 distinguish the different types of lines in the history list, and only recall
965 lines that match the current type of line. To support this requirement,

new/usr/src/man/man3tecla/gl_get_line.3tecla 16

966 \fBgl_get_line()\fR marks lines being recorded in the history list with an
967 integer identifier chosen by the application. Initially this identifier is set
968 to 0 by \fBnew_GetLine()\fR, but it can be changed subsequently by calling
969 \fBgl_group_history()\fR.
970 .sp
971 .LP
972 The integer identifier ID can be any number chosen by the application, but note
973 that \fBgl_save_history()\fR and \fBgl_load_history()\fR preserve the
974 association between identifiers and historical input lines between program
975 invocations, so you should choose fixed identifiers for the different types of
976 input line used by your application.
977 .sp
978 .LP
979 Whenever \fBgl_get_line()\fR appends a new input line to the history list, the
980 current history identifier is recorded with it, and when it is asked to recall
981 a historical input line, it only recalls lines that are marked with the current
982 identifier.
983 .SS "Displaying History"
996 .LP
984 The history list can be displayed by calling \fBgl_show_history()\fR. This
985 function displays the current contents of the history list to the \fBstdio\fR
986 output stream \fIfp\fR. If the \fImax_lines\fR argument is greater than or
987 equal to zero, then no more than this number of the most recent lines will be
988 displayed. If the \fIall_groups\fR argument is non-zero, lines from all history
989 groups are displayed. Otherwise only those of the currently selected history
990 group are displayed. The format string argument, \fIfmt\fR, determines how the
991 line is displayed. This can contain arbitrary characters which are written
992 verbatim, interleaved with any of the following format directives:
993 .sp
994 .ne 2
995 .na
996 \fB\fB%D\fR\fR
997 .ad
998 .RS 6n
999 The date on which the line was originally entered, formatted like 2001-11-20.

1000 .RE

1002 .sp
1003 .ne 2
1004 .na
1005 \fB\fB%T\fR\fR
1006 .ad
1007 .RS 6n
1008 The time of day when the line was entered, formatted like 23:59:59.
1009 .RE

1011 .sp
1012 .ne 2
1013 .na
1014 \fB\fB%N\fR\fR
1015 .ad
1016 .RS 6n
1017 The sequential entry number of the line in the history buffer.
1018 .RE

1020 .sp
1021 .ne 2
1022 .na
1023 \fB\fB%G\fR\fR
1024 .ad
1025 .RS 6n
1026 The number of the history group which the line belongs to.
1027 .RE

1029 .sp
1030 .ne 2

new/usr/src/man/man3tecla/gl_get_line.3tecla 17

1031 .na
1032 \fB\fB%%\fR\fR
1033 .ad
1034 .RS 6n
1035 A literal % character.
1036 .RE

1038 .sp
1039 .ne 2
1040 .na
1041 \fB\fB%H\fR\fR
1042 .ad
1043 .RS 6n
1044 The history line itself.
1045 .RE

1047 .sp
1048 .LP
1049 Thus a format string like "%D %T %H0" would output something like:
1050 .sp
1051 .in +2
1052 .nf
1053 2001-11-20 10:23:34 Hello world
1054 .fi
1055 .in -2

1057 .sp
1058 .LP
1059 Note the inclusion of an explicit newline character in the format string.
1060 .SS "Looking Up History"
1074 .LP
1061 The \fBgl_lookup_history()\fR function allows the calling application to look
1062 up lines in the history list.
1063 .sp
1064 .LP
1065 The \fIid\fR argument indicates which line to look up, where the first line
1066 that was entered in the history list after \fBnew_GetLine()\fR was called is
1067 denoted by 0, and subsequently entered lines are denoted with successively
1068 higher numbers. Note that the range of lines currently preserved in the history
1069 list can be queried by calling the \fBgl_range_of_history()\fR function. If the
1070 requested line is in the history list, the details of the line are recorded in
1071 the variable pointed to by the \fIhline\fR argument, and 1 is returned.
1072 Otherwise 0 is returned, and the variable pointed to by \fIhline\fR is left
1073 unchanged.
1074 .sp
1075 .LP
1076 Beware that the string returned in \fIhline\fR->\fIline\fR is part of the
1077 history buffer, so it must not be modified by the caller, and will be recycled
1078 on the next call to any function that takes \fIgl\fR as its argument. Therefore
1079 you should make a private copy of this string if you need to keep it.
1080 .SS "Manual History Archival"
1095 .LP
1081 By default, whenever a line is entered by the user, it is automatically
1082 appended to the history list, just before \fBgl_get_line()\fR returns the line
1083 to the caller. This is convenient for the majority of applications, but there
1084 are also applications that need finer-grained control over what gets added to
1085 the history list. In such cases, the automatic addition of entered lines to the
1086 history list can be turned off by calling the \fBgl_automatic_history()\fR
1087 function.
1088 .sp
1089 .LP
1090 If this function is called with its \fIenable\fR argument set to 0,
1091 \fBgl_get_line()\fR will not automatically archive subsequently entered lines.
1092 Automatic archiving can be reenabled at a later time by calling this function
1093 again, with its \fIenable\fR argument set to 1. While automatic history
1094 archiving is disabled, the calling application can use the

new/usr/src/man/man3tecla/gl_get_line.3tecla 18

1095 \fBgl_append_history()\fR to append lines to the history list as needed.
1096 .sp
1097 .LP
1098 The \fIline\fR argument specifies the line to be added to the history list.
1099 This must be a normal ’\e0 ’ terminated string. If this string contains any
1100 newline characters, the line that gets archived in the history list will be
1101 terminated by the first of these. Otherwise it will be terminated by the ’\e0 ’
1102 terminator. If the line is longer than the maximum input line length that was
1103 specified when \fBnew_GetLine()\fR was called, it will be truncated to the
1104 actual \fBgl_get_line()\fR line length when the line is recalled.
1105 .sp
1106 .LP
1107 If successful, \fBgl_append_history()\fR returns 0. Otherwise it returns
1108 non-zero and sets \fBerrno\fR to one of the following values.
1109 .sp
1110 .ne 2
1111 .na
1112 \fB\fBEINVAL\fR\fR
1113 .ad
1114 .RS 10n
1115 One of the arguments passed to \fBgl_append_history()\fR was \fINULL\fR.
1116 .RE

1118 .sp
1119 .ne 2
1120 .na
1121 \fB\fBENOMEM\fR\fR
1122 .ad
1123 .RS 10n
1124 The specified line was longer than the allocated size of the history buffer (as
1125 specified when \fBnew_GetLine()\fR was called), so it could not be archived.
1126 .RE

1128 .sp
1129 .LP
1130 A textual description of the error can optionally be obtained by calling
1131 \fBgl_error_message()\fR. Note that after such an error, the history list
1132 remains in a valid state to receive new history lines, so there is little harm
1133 in simply ignoring the return status of \fBgl_append_history()\fR.
1134 .SS "Miscellaneous History Configuration"
1150 .LP
1135 If you wish to change the size of the history buffer that was originally
1136 specified in the call to \fBnew_GetLine()\fR, you can do so with the
1137 \fBgl_resize_history()\fR function.
1138 .sp
1139 .LP
1140 The \fIhistlen\fR argument specifies the new size in bytes, and if you specify
1141 this as 0, the buffer will be deleted.
1142 .sp
1143 .LP
1144 As mentioned in the discussion of \fBnew_GetLine()\fR, the number of lines that
1145 can be stored in the history buffer, depends on the lengths of the individual
1146 lines. For example, a 1000 byte buffer could equally store 10 lines of average
1147 length 100 bytes, or 20 lines of average length 50 bytes. Although the buffer
1148 is never expanded when new lines are added, a list of pointers into the buffer
1149 does get expanded when needed to accommodate the number of lines currently
1150 stored in the buffer. To place an upper limit on the number of lines in the
1151 buffer, and thus a ceiling on the amount of memory used in this list, you can
1152 call the \fBgl_limit_history()\fR function.
1153 .sp
1154 .LP
1155 The \fImax_lines\fR should either be a positive number >= 0, specifying an
1156 upper limit on the number of lines in the buffer, or be -1 to cancel any
1157 previously specified limit. When a limit is in effect, only the \fImax_lines\fR
1158 most recently appended lines are kept in the buffer. Older lines are discarded.
1159 .sp

new/usr/src/man/man3tecla/gl_get_line.3tecla 19

1160 .LP
1161 To discard lines from the history buffer, use the \fBgl_clear_history()\fR
1162 function.
1163 .sp
1164 .LP
1165 The \fIall_groups\fR argument tells the function whether to delete just the
1166 lines associated with the current history group (see \fBgl_group_history()\fR)
1167 or all historical lines in the buffer.
1168 .sp
1169 .LP
1170 The \fBgl_toggle_history()\fR function allows you to toggle history on and off
1171 without losing the current contents of the history list.
1172 .sp
1173 .LP
1174 Setting the \fIenable\fR argument to 0 turns off the history mechanism, and
1175 setting it to 1 turns it back on. When history is turned off, no new lines will
1176 be added to the history list, and history lookup key-bindings will act as
1177 though there is nothing in the history buffer.
1178 .SS "Querying History Information"
1195 .LP
1179 The configured state of the history list can be queried with the
1180 \fBgl_history_state()\fR function. On return, the status information is
1181 recorded in the variable pointed to by the \fIstate\fR argument.
1182 .sp
1183 .LP
1184 The \fBgl_range_of_history()\fR function returns the number and range of lines
1185 in the history list. The return values are recorded in the variable pointed to
1186 by the range argument. If the \fInlines\fR member of this structure is greater
1187 than zero, then the oldest and newest members report the range of lines in the
1188 list, and \fInewest\fR=\fIoldest\fR+\fInlines\fR-1. Otherwise they are both
1189 zero.
1190 .sp
1191 .LP
1192 The \fBgl_size_of_history()\fR function returns the total size of the history
1193 buffer and the amount of the buffer that is currently occupied.
1194 .sp
1195 .LP
1196 On return, the size information is recorded in the variable pointed to by the
1197 \fIsize\fR argument.
1198 .SS "Changing Terminals"
1216 .LP
1199 The \fBnew_GetLine()\fR constructor function assumes that input is to be read
1200 from \fBstdin\fR and output written to \fBstdout\fR. The following function
1201 allows you to switch to different input and output streams.
1202 .sp
1203 .LP
1204 The \fIgl\fR argument is the object that was returned by \fBnew_GetLine()\fR.
1205 The \fIinput_fp\fR argument specifies the stream to read from, and
1206 \fIoutput_fp\fR specifies the stream to be written to. Only if both of these
1207 refer to a terminal, will interactive terminal input be enabled. Otherwise
1208 \fBgl_get_line()\fR will simply call \fBfgets()\fR to read command input. If
1209 both streams refer to a terminal, then they must refer to the same terminal,
1210 and the type of this terminal must be specified with the \fIterm\fR argument.
1211 The value of the \fIterm\fR argument is looked up in the terminal information
1212 database (\fBterminfo\fR or \fBtermcap\fR), in order to determine which special
1213 control sequences are needed to control various aspects of the terminal.
1214 \fBnew_GetLine()\fR for example, passes the return value of
1215 \fBgetenv\fR("TERM") in this argument. Note that if one or both of
1216 \fIinput_fp\fR and \fIoutput_fp\fR do not refer to a terminal, then it is legal
1217 to pass \fINULL\fR instead of a terminal type.
1218 .sp
1219 .LP
1220 Note that if you want to pass file descriptors to \fBgl_change_terminal()\fR,
1221 you can do this by creating \fBstdio\fR stream wrappers using the POSIX
1222 \fBfdopen\fR(3C) function.
1223 .SS "External Event Handling"

new/usr/src/man/man3tecla/gl_get_line.3tecla 20

1242 .LP
1224 By default, \fBgl_get_line()\fR does not return until either a complete input
1225 line has been entered by the user, or an error occurs. In programs that need to
1226 watch for I/O from other sources than the terminal, there are two options.
1227 .RS +4
1228 .TP
1229 .ie t \(bu
1230 .el o
1231 Use the functions described in the \fBgl_io_mode\fR(3TECLA) manual page to
1232 switch \fBgl_get_line()\fR into non-blocking server mode. In this mode,
1233 \fBgl_get_line()\fR becomes a non-blocking, incremental line-editing function
1234 that can safely be called from an external event loop. Although this is a very
1235 versatile method, it involves taking on some responsibilities that are normally
1236 performed behind the scenes by \fBgl_get_line()\fR.
1237 .RE
1238 .RS +4
1239 .TP
1240 .ie t \(bu
1241 .el o
1242 While \fBgl_get_line()\fR is waiting for keyboard input from the user, you can
1243 ask it to also watch for activity on arbitrary file descriptors, such as
1244 network sockets or pipes, and have it call functions of your choosing when
1245 activity is seen. This works on any system that has the select system call,
1246 which is most, if not all flavors of UNIX.
1247 .RE
1248 .sp
1249 .LP
1250 Registering a file descriptor to be watched by \fBgl_get_line()\fR involves
1251 calling the \fBgl_watch_fd()\fR function. If this returns non-zero, then it
1252 means that either your arguments are invalid, or that this facility is not
1253 supported on the host system.
1254 .sp
1255 .LP
1256 The \fIfd\fR argument is the file descriptor to be watched. The event argument
1257 specifies what type of activity is of interest, chosen from the following
1258 enumerated values:
1259 .sp
1260 .ne 2
1261 .na
1262 \fB\fBGLFD_READ\fR\fR
1263 .ad
1264 .RS 15n
1265 Watch for the arrival of data to be read.
1266 .RE

1268 .sp
1269 .ne 2
1270 .na
1271 \fB\fBGLFD_WRITE\fR\fR
1272 .ad
1273 .RS 15n
1274 Watch for the ability to write to the file descriptor without blocking.
1275 .RE

1277 .sp
1278 .ne 2
1279 .na
1280 \fB\fBGLFD_URGENT\fR\fR
1281 .ad
1282 .RS 15n
1283 Watch for the arrival of urgent out-of-band data on the file descriptor.
1284 .RE

1286 .sp
1287 .LP
1288 The \fIcallback\fR argument is the function to call when the selected activity

new/usr/src/man/man3tecla/gl_get_line.3tecla 21

1289 is seen. It should be defined with the following macro, which is defined in
1290 libtecla.h.
1291 .sp
1292 .in +2
1293 .nf
1294 #define GL_FD_EVENT_FN(fn) GlFdStatus (fn)(GetLine *gl, \
1295 void *data, int fd, GlFdEvent event)
1296 .fi
1297 .in -2

1299 .sp
1300 .LP
1301 The data argument of the \fBgl_watch_fd()\fR function is passed to the callback
1302 function for its own use, and can point to anything you like, including
1303 \fINULL\fR. The file descriptor and the event argument are also passed to the
1304 callback function, and this potentially allows the same callback function to be
1305 registered to more than one type of event and/or more than one file descriptor.
1306 The return value of the callback function should be one of the following
1307 values.
1308 .sp
1309 .ne 2
1310 .na
1311 \fB\fBGLFD_ABORT\fR\fR
1312 .ad
1313 .RS 17n
1314 Tell \fBgl_get_line()\fR to abort. When this happens, \fBgl_get_line()\fR
1315 returns \fINULL\fR, and a following call to \fBgl_return_status()\fR will
1316 return \fBGLR_FDABORT\fR. Note that if the application needs \fBerrno\fR always
1317 to have a meaningful value when \fBgl_get_line()\fR returns \fINULL\fR, the
1318 callback function should set \fBerrno\fR appropriately.
1319 .RE

1321 .sp
1322 .ne 2
1323 .na
1324 \fB\fBGLFD_REFRESH\fR\fR
1325 .ad
1326 .RS 17n
1327 Redraw the input line then continue waiting for input. Return this if your
1328 callback wrote to the terminal.
1329 .RE

1331 .sp
1332 .ne 2
1333 .na
1334 \fB\fBGLFD_CONTINUE\fR\fR
1335 .ad
1336 .RS 17n
1337 Continue to wait for input, without redrawing the line.
1338 .RE

1340 .sp
1341 .LP
1342 Note that before calling the callback, \fBgl_get_line()\fR blocks most signals
1343 and leaves its own signal handlers installed, so if you need to catch a
1344 particular signal you will need to both temporarily install your own signal
1345 handler, and unblock the signal. Be sure to re-block the signal (if it was
1346 originally blocked) and reinstate the original signal handler, if any, before
1347 returning.
1348 .sp
1349 .LP
1350 Your callback should not try to read from the terminal, which is left in raw
1351 mode as far as input is concerned. You can write to the terminal as usual,
1352 since features like conversion of newline to carriage-return/linefeed are
1353 re-enabled while the callback is running. If your callback function does write
1354 to the terminal, be sure to output a newline first, and when your callback

new/usr/src/man/man3tecla/gl_get_line.3tecla 22

1355 returns, tell \fBgl_get_line()\fR that the input line needs to be redrawn, by
1356 returning the \fBGLFD_REFRESH\fR status code.
1357 .sp
1358 .LP
1359 To remove a callback function that you previously registered for a given file
1360 descriptor and event, simply call \fBgl_watch_fd()\fR with the same \fIfd\fR
1361 and \fIevent\fR arguments, but with a \fIcallback\fR argument of 0. The
1362 \fIdata\fR argument is ignored in this case.
1363 .SS "Setting An Inactivity Timeout"
1383 .LP
1364 The \fBgl_inactivity_timeout()\fR function can be used to set or cancel an
1365 inactivity timeout. Inactivity in this case refers both to keyboard input, and
1366 to I/O on any file descriptors registered by prior and subsequent calls to
1367 \fBgl_watch_fd()\fR.
1368 .sp
1369 .LP
1370 The timeout is specified in the form of an integral number of seconds and an
1371 integral number of nanoseconds, specified by the \fIsec\fR and \fInsec\fR
1372 arguments, respectively. Subsequently, whenever no activity is seen for this
1373 time period, the function specified by the \fIcallback\fR argument is called.
1374 The \fIdata\fR argument of \fBgl_inactivity_timeout()\fR is passed to this
1375 callback function whenever it is invoked, and can thus be used to pass
1376 arbitrary application-specific information to the callback. The following macro
1377 is provided in <\fBlibtecla.h\fR> for applications to use to declare and
1378 prototype timeout callback functions.
1379 .sp
1380 .in +2
1381 .nf
1382 #define GL_TIMEOUT_FN(fn) GlAfterTimeout (fn)(GetLine *gl, void *data)
1383 .fi
1384 .in -2

1386 .sp
1387 .LP
1388 On returning, the application’s callback is expected to return one of the
1389 following enumerators to tell \fBgl_get_line()\fR how to proceed after the
1390 timeout has been handled by the callback.
1391 .sp
1392 .ne 2
1393 .na
1394 \fB\fBGLTO_ABORT\fR\fR
1395 .ad
1396 .RS 17n
1397 Tell \fBgl_get_line()\fR to abort. When this happens, \fBgl_get_line()\fR will
1398 return \fINULL\fR, and a following call to \fBgl_return_status()\fR will return
1399 \fBGLR_TIMEOUT\fR. Note that if the application needs \fBerrno\fR always to
1400 have a meaningful value when \fBgl_get_line()\fR returns \fINULL\fR, the
1401 callback function should set \fBerrno\fR appropriately.
1402 .RE

1404 .sp
1405 .ne 2
1406 .na
1407 \fB\fBGLTO_REFRESH\fR\fR
1408 .ad
1409 .RS 17n
1410 Redraw the input line, then continue waiting for input. You should return this
1411 value if your callback wrote to the terminal.
1412 .RE

1414 .sp
1415 .ne 2
1416 .na
1417 \fB\fBGLTO_CONTINUE\fR\fR
1418 .ad
1419 .RS 17n

new/usr/src/man/man3tecla/gl_get_line.3tecla 23

1420 In normal blocking-I/O mode, continue to wait for input, without redrawing the
1421 user’s input line. In non-blocking server I/O mode (see
1422 \fBgl_io_mode\fR(3TECLA)), \fBgl_get_line()\fR acts as though I/O blocked. This
1423 means that \fBgl_get_line()\fR will immediately return \fINULL\fR, and a
1424 following call to \fBgl_return_status()\fR will return \fBGLR_BLOCKED\fR.
1425 .RE

1427 .sp
1428 .LP
1429 Note that before calling the callback, \fBgl_get_line()\fR blocks most signals
1430 and leaves its own signal handlers installed, so if you need to catch a
1431 particular signal you will need to both temporarily install your own signal
1432 handler and unblock the signal. Be sure to re-block the signal (if it was
1433 originally blocked) and reinstate the original signal handler, if any, before
1434 returning.
1435 .sp
1436 .LP
1437 Your callback should not try to read from the terminal, which is left in raw
1438 mode as far as input is concerned. You can however write to the terminal as
1439 usual, since features like conversion of newline to carriage-return/linefeed
1440 are re-enabled while the callback is running. If your callback function does
1441 write to the terminal, be sure to output a newline first, and when your
1442 callback returns, tell \fBgl_get_line()\fR that the input line needs to be
1443 redrawn, by returning the \fBGLTO_REFRESH\fR status code.
1444 .sp
1445 .LP
1446 Finally, note that although the timeout arguments include a nanosecond
1447 component, few computer clocks presently have resolutions that are finer than a
1448 few milliseconds, so asking for less than a few milliseconds is equivalent to
1449 requesting zero seconds on many systems. If this would be a problem, you should
1450 base your timeout selection on the actual resolution of the host clock (for
1451 example, by calling \fBsysconf\fR(\fB_SC_CLK_TCK\fR)).
1452 .sp
1453 .LP
1454 To turn off timeouts, simply call \fBgl_inactivity_timeout()\fR with a
1455 \fIcallback\fR argument of 0. The \fIdata\fR argument is ignored in this case.
1456 .SS "Signal Handling Defaults"
1477 .LP
1457 By default, the \fBgl_get_line()\fR function intercepts a number of signals.
1458 This is particularly important for signals that would by default terminate the
1459 process, since the terminal needs to be restored to a usable state before this
1460 happens. This section describes the signals that are trapped by default and how
1461 \fBgl_get_line()\fR responds to them. Changing these defaults is the topic of
1462 the following section.
1463 .sp
1464 .LP
1465 When the following subset of signals are caught, \fBgl_get_line()\fR first
1466 restores the terminal settings and signal handling to how they were before
1467 \fBgl_get_line()\fR was called, resends the signal to allow the calling
1468 application’s signal handlers to handle it, then, if the process still exists,
1469 returns \fINULL\fR and sets \fBerrno\fR as specified below.
1470 .sp
1471 .ne 2
1472 .na
1473 \fB\fBSIGINT\fR\fR
1474 .ad
1475 .RS 11n
1476 This signal is generated both by the keyboard interrupt key (usually \fB^C\fR),
1477 and the keyboard break key. The \fBerrno\fR value is \fBEINTR\fR.
1478 .RE

1480 .sp
1481 .ne 2
1482 .na
1483 \fB\fBSIGHUP\fR\fR
1484 .ad

new/usr/src/man/man3tecla/gl_get_line.3tecla 24

1485 .RS 11n
1486 This signal is generated when the controlling terminal exits. The \fBerrno\fR
1487 value is \fBENOTTY\fR.
1488 .RE

1490 .sp
1491 .ne 2
1492 .na
1493 \fB\fBSIGPIPE\fR\fR
1494 .ad
1495 .RS 11n
1496 This signal is generated when a program attempts to write to a pipe whose
1497 remote end is not being read by any process. This can happen for example if you
1498 have called \fBgl_change_terminal()\fR to redirect output to a pipe hidden
1499 under a pseudo terminal. The \fBerrno\fR value is \fBEPIPE\fR.
1500 .RE

1502 .sp
1503 .ne 2
1504 .na
1505 \fB\fBSIGQUIT\fR\fR
1506 .ad
1507 .RS 11n
1508 This signal is generated by the keyboard quit key (usually \fB^\e\fR). The
1509 \fBerrno\fR value is \fBEINTR\fR.
1510 .RE

1512 .sp
1513 .ne 2
1514 .na
1515 \fB\fBSIGABRT\fR\fR
1516 .ad
1517 .RS 11n
1518 This signal is generated by the standard C, abort function. By default it both
1519 terminates the process and generates a core dump. The \fBerrno\fR value is
1520 \fBEINTR\fR.
1521 .RE

1523 .sp
1524 .ne 2
1525 .na
1526 \fB\fBSIGTERM\fR\fR
1527 .ad
1528 .RS 11n
1529 This is the default signal that the UNIX kill command sends to processes. The
1530 \fBerrno\fR value is \fBEINTR\fR.
1531 .RE

1533 .sp
1534 .LP
1535 Note that in the case of all of the above signals, POSIX mandates that by
1536 default the process is terminated, with the addition of a core dump in the case
1537 of the \fBSIGQUIT\fR signal. In other words, if the calling application does
1538 not override the default handler by supplying its own signal handler, receipt
1539 of the corresponding signal will terminate the application before
1540 \fBgl_get_line()\fR returns.
1541 .sp
1542 .LP
1543 If \fBgl_get_line()\fR aborts with \fBerrno\fR set to \fBEINTR\fR, you can find
1544 out what signal caused it to abort, by calling the \fBgl_last_signal()\fR
1545 function. This returns the numeric code (for example, \fBSIGINT\fR) of the last
1546 signal that was received during the most recent call to \fBgl_get_line()\fR, or
1547 -1 if no signals were received.
1548 .sp
1549 .LP
1550 On systems that support it, when a \fBSIGWINCH\fR (window change) signal is

new/usr/src/man/man3tecla/gl_get_line.3tecla 25

1551 received, \fBgl_get_line()\fR queries the terminal to find out its new size,
1552 redraws the current input line to accommodate the new size, then returns to
1553 waiting for keyboard input from the user. Unlike other signals, this signal is
1554 not resent to the application.
1555 .sp
1556 .LP
1557 Finally, the following signals cause \fBgl_get_line()\fR to first restore the
1558 terminal and signal environment to that which prevailed before
1559 \fBgl_get_line()\fR was called, then resend the signal to the application. If
1560 the process still exists after the signal has been delivered, then
1561 \fBgl_get_line()\fR then re-establishes its own signal handlers, switches the
1562 terminal back to raw mode, redisplays the input line, and goes back to awaiting
1563 terminal input from the user.
1564 .sp
1565 .ne 2
1566 .na
1567 \fB\fBSIGCONT\fR\fR
1568 .ad
1569 .RS 13n
1570 This signal is generated when a suspended process is resumed.
1571 .RE

1573 .sp
1574 .ne 2
1575 .na
1576 \fB\fBSIGPOLL\fR\fR
1577 .ad
1578 .RS 13n
1579 On SVR4 systems, this signal notifies the process of an asynchronous I/O event.
1580 Note that under 4.3+BSD, \fBSIGIO\fR and \fBSIGPOLL\fR are the same. On other
1581 systems, \fBSIGIO\fR is ignored by default, so \fBgl_get_line()\fR does not
1582 trap it by default.
1583 .RE

1585 .sp
1586 .ne 2
1587 .na
1588 \fB\fBSIGPWR\fR\fR
1589 .ad
1590 .RS 13n
1591 This signal is generated when a power failure occurs (presumably when the
1592 system is on a UPS).
1593 .RE

1595 .sp
1596 .ne 2
1597 .na
1598 \fB\fBSIGALRM\fR\fR
1599 .ad
1600 .RS 13n
1601 This signal is generated when a timer expires.
1602 .RE

1604 .sp
1605 .ne 2
1606 .na
1607 \fB\fBSIGUSR1\fR\fR
1608 .ad
1609 .RS 13n
1610 An application specific signal.
1611 .RE

1613 .sp
1614 .ne 2
1615 .na
1616 \fB\fBSIGUSR2\fR\fR

new/usr/src/man/man3tecla/gl_get_line.3tecla 26

1617 .ad
1618 .RS 13n
1619 Another application specific signal.
1620 .RE

1622 .sp
1623 .ne 2
1624 .na
1625 \fB\fBSIGVTALRM\fR\fR
1626 .ad
1627 .RS 13n
1628 This signal is generated when a virtual timer expires. See \fBsetitimer\fR(2).
1629 .RE

1631 .sp
1632 .ne 2
1633 .na
1634 \fB\fBSIGXCPU\fR\fR
1635 .ad
1636 .RS 13n
1637 This signal is generated when a process exceeds its soft CPU time limit.
1638 .RE

1640 .sp
1641 .ne 2
1642 .na
1643 \fB\fBSIGXFSZ\fR\fR
1644 .ad
1645 .RS 13n
1646 This signal is generated when a process exceeds its soft file-size limit.
1647 .RE

1649 .sp
1650 .ne 2
1651 .na
1652 \fB\fBSIGTSTP\fR\fR
1653 .ad
1654 .RS 13n
1655 This signal is generated by the terminal suspend key, which is usually
1656 \fB^Z\fR, or the delayed terminal suspend key, which is usually \fB^Y\fR.
1657 .RE

1659 .sp
1660 .ne 2
1661 .na
1662 \fB\fBSIGTTIN\fR\fR
1663 .ad
1664 .RS 13n
1665 This signal is generated if the program attempts to read from the terminal
1666 while the program is running in the background.
1667 .RE

1669 .sp
1670 .ne 2
1671 .na
1672 \fB\fBSIGTTOU\fR\fR
1673 .ad
1674 .RS 13n
1675 This signal is generated if the program attempts to write to the terminal while
1676 the program is running in the background.
1677 .RE

1679 .sp
1680 .LP
1681 Obviously not all of the above signals are supported on all systems, so code to
1682 support them is conditionally compiled into the tecla library.

new/usr/src/man/man3tecla/gl_get_line.3tecla 27

1683 .sp
1684 .LP
1685 Note that if \fBSIGKILL\fR or \fBSIGPOLL\fR, which by definition cannot be
1686 caught, or any of the hardware generated exception signals, such as
1687 \fBSIGSEGV\fR, \fBSIGBUS\fR, and \fBSIGFPE\fR, are received and unhandled while
1688 \fBgl_get_line()\fR has the terminal in raw mode, the program will be
1689 terminated without the terminal having been restored to a usable state. In
1690 practice, job-control shells usually reset the terminal settings when a process
1691 relinquishes the controlling terminal, so this is only a problem with older
1692 shells.
1693 .SS "Customized Signal Handling"
1715 .LP
1694 The previous section listed the signals that \fBgl_get_line()\fR traps by
1695 default, and described how it responds to them. This section describes how to
1696 both add and remove signals from the list of trapped signals, and how to
1697 specify how \fBgl_get_line()\fR should respond to a given signal.
1698 .sp
1699 .LP
1700 If you do not need \fBgl_get_line()\fR to do anything in response to a signal
1701 that it normally traps, you can tell to \fBgl_get_line()\fR to ignore that
1702 signal by calling \fBgl_ignore_signal()\fR.
1703 .sp
1704 .LP
1705 The \fIsigno\fR argument is the number of the signal (for example,
1706 \fBSIGINT\fR) that you want to have ignored. If the specified signal is not
1707 currently one of those being trapped, this function does nothing.
1708 .sp
1709 .LP
1710 The \fBgl_trap_signal()\fR function allows you to either add a new signal to
1711 the list that \fBgl_get_line()\fR traps or modify how it responds to a signal
1712 that it already traps.
1713 .sp
1714 .LP
1715 The \fIsigno\fR argument is the number of the signal that you want to have
1716 trapped. The \fIflags\fR argument is a set of flags that determine the
1717 environment in which the application’s signal handler is invoked. The
1718 \fIafter\fR argument tells \fBgl_get_line()\fR what to do after the
1719 application’s signal handler returns. The \fIerrno_value\fR tells
1720 \fBgl_get_line()\fR what to set \fBerrno\fR to if told to abort.
1721 .sp
1722 .LP
1723 The \fIflags\fR argument is a bitwise OR of zero or more of the following
1724 enumerators:
1725 .sp
1726 .ne 2
1727 .na
1728 \fB\fBGLS_RESTORE_SIG\fR\fR
1729 .ad
1730 .RS 20n
1731 Restore the caller’s signal environment while handling the signal.
1732 .RE

1734 .sp
1735 .ne 2
1736 .na
1737 \fB\fBGLS_RESTORE_TTY\fR\fR
1738 .ad
1739 .RS 20n
1740 Restore the caller’s terminal settings while handling the signal.
1741 .RE

1743 .sp
1744 .ne 2
1745 .na
1746 \fB\fBGLS_RESTORE_LINE\fR\fR
1747 .ad

new/usr/src/man/man3tecla/gl_get_line.3tecla 28

1748 .RS 20n
1749 Move the cursor to the start of the line following the input line before
1750 invoking the application’s signal handler.
1751 .RE

1753 .sp
1754 .ne 2
1755 .na
1756 \fB\fBGLS_REDRAW_LINE\fR\fR
1757 .ad
1758 .RS 20n
1759 Redraw the input line when the application’s signal handler returns.
1760 .RE

1762 .sp
1763 .ne 2
1764 .na
1765 \fB\fBGLS_UNBLOCK_SIG\fR\fR
1766 .ad
1767 .RS 20n
1768 Normally, if the calling program has a signal blocked (see
1769 \fBsigprocmask\fR(2)), \fBgl_get_line()\fR does not trap that signal. This flag
1770 tells \fBgl_get_line()\fR to trap the signal and unblock it for the duration of
1771 the call to \fBgl_get_line()\fR.
1772 .RE

1774 .sp
1775 .ne 2
1776 .na
1777 \fB\fBGLS_DONT_FORWARD\fR\fR
1778 .ad
1779 .RS 20n
1780 If this flag is included, the signal will not be forwarded to the signal
1781 handler of the calling program.
1782 .RE

1784 .sp
1785 .LP
1786 Two commonly useful flag combinations are also enumerated as follows:
1787 .sp
1788 .ne 2
1789 .na
1790 \fB\fBGLS_RESTORE_ENV\fR\fR
1791 .ad
1792 .RS 21n
1793 \fBGLS_RESTORE_SIG\fR | \fBGLS_RESTORE_TTY\fR |\fBGLS_REDRAW_LINE\fR
1794 .RE

1796 .sp
1797 .ne 2
1798 .na
1799 \fB\fBGLS_SUSPEND_INPUT\fR\fR
1800 .ad
1801 .RS 21n
1802 \fBGLS_RESTORE_ENV\fR | \fBGLS_RESTORE_LINE\fR
1803 .RE

1805 .sp
1806 .LP
1807 If your signal handler, or the default system signal handler for this signal,
1808 if you have not overridden it, never either writes to the terminal, nor
1809 suspends or terminates the calling program, then you can safely set the
1810 \fIflags\fR argument to 0.
1811 .RS +4
1812 .TP
1813 .ie t \(bu

new/usr/src/man/man3tecla/gl_get_line.3tecla 29

1814 .el o
1815 The cursor does not get left in the middle of the input line.
1816 .RE
1817 .RS +4
1818 .TP
1819 .ie t \(bu
1820 .el o
1821 So that the user can type in input and have it echoed.
1822 .RE
1823 .RS +4
1824 .TP
1825 .ie t \(bu
1826 .el o
1827 So that you do not need to end each output line with \er\en, instead of just
1828 \en.
1829 .RE
1830 .sp
1831 .LP
1832 The \fBGL_RESTORE_ENV\fR combination is the same as \fBGL_SUSPEND_INPUT\fR,
1833 except that it does not move the cursor. If your signal handler does not read
1834 or write anything to the terminal, the user will not see any visible indication
1835 that a signal was caught. This can be useful if you have a signal handler that
1836 only occasionally writes to the terminal, where using \fBGL_SUSPEND_LINE\fR
1837 would cause the input line to be unnecessarily duplicated when nothing had been
1838 written to the terminal. Such a signal handler, when it does write to the
1839 terminal, should be sure to start a new line at the start of its first write,
1840 by writing a new line before returning. If the signal arrives while the user is
1841 entering a line that only occupies a signal terminal line, or if the cursor is
1842 on the last terminal line of a longer input line, this will have the same
1843 effect as \fBGL_SUSPEND_INPUT\fR. Otherwise it will start writing on a line
1844 that already contains part of the displayed input line. This does not do any
1845 harm, but it looks a bit ugly, which is why the \fBGL_SUSPEND_INPUT\fR
1846 combination is better if you know that you are always going to be writing to
1868 combination is better if you know that you are always going to be writting to
1847 the terminal.
1848 .sp
1849 .LP
1850 The \fIafter\fR argument, which determines what \fBgl_get_line()\fR does after
1851 the application’s signal handler returns (if it returns), can take any one of
1852 the following values:
1853 .sp
1854 .ne 2
1855 .na
1856 \fB\fBGLS_RETURN\fR\fR
1857 .ad
1858 .RS 16n
1859 Return the completed input line, just as though the user had pressed the return
1860 key.
1861 .RE

1863 .sp
1864 .ne 2
1865 .na
1866 \fB\fBGLS_ABORT\fR\fR
1867 .ad
1868 .RS 16n
1869 Cause \fBgl_get_line()\fR to abort. When this happens, \fBgl_get_line()\fR
1870 returns \fINULL\fR, and a following call to \fBgl_return_status()\fR will
1871 return \fBGLR_SIGNAL\fR. Note that if the application needs \fBerrno\fR always
1872 to have a meaningful value when \fBgl_get_line()\fR returns \fINULL\fR, the
1873 callback function should set \fBerrno\fR appropriately.
1874 .RE

1876 .sp
1877 .ne 2
1878 .na

new/usr/src/man/man3tecla/gl_get_line.3tecla 30

1879 \fB\fBGLS_CONTINUE\fR\fR
1880 .ad
1881 .RS 16n
1882 Resume command line editing.
1883 .RE

1885 .sp
1886 .LP
1887 The \fIerrno_value\fR argument is intended to be combined with the
1888 \fBGLS_ABORT\fR option, telling \fBgl_get_line()\fR what to set the standard
1889 \fBerrno\fR variable to before returning \fINULL\fR to the calling program. It
1890 can also, however, be used with the \fBGL_RETURN\fR option, in case you want to
1891 have a way to distinguish between an input line that was entered using the
1892 return key, and one that was entered by the receipt of a signal.
1893 .SS "Reliable Signal Handling"
1916 .LP
1894 Signal handling is surprisingly hard to do reliably without race conditions. In
1895 \fBgl_get_line()\fR a lot of care has been taken to allow applications to
1896 perform reliable signal handling around \fBgl_get_line()\fR. This section
1897 explains how to make use of this.
1898 .sp
1899 .LP
1900 As an example of the problems that can arise if the application is not written
1901 correctly, imagine that one’s application has a \fBSIGINT\fR signal handler
1902 that sets a global flag. Now suppose that the application tests this flag just
1903 before invoking \fBgl_get_line()\fR. If a \fBSIGINT\fR signal happens to be
1904 received in the small window of time between the statement that tests the value
1905 of this flag, and the statement that calls \fBgl_get_line()\fR, then
1906 \fBgl_get_line()\fR will not see the signal, and will not be interrupted. As a
1907 result, the application will not be able to respond to the signal until the
1908 user gets around to finishing entering the input line and \fBgl_get_line()\fR
1909 returns. Depending on the application, this might or might not be a disaster,
1910 but at the very least it would puzzle the user.
1911 .sp
1912 .LP
1913 The way to avoid such problems is to do the following.
1914 .RS +4
1915 .TP
1916 1.
1917 If needed, use the \fBgl_trap_signal()\fR function to configure
1918 \fBgl_get_line()\fR to abort when important signals are caught.
1919 .RE
1920 .RS +4
1921 .TP
1922 2.
1923 Configure \fBgl_get_line()\fR such that if any of the signals that it
1924 catches are blocked when \fBgl_get_line()\fR is called, they will be unblocked
1925 automatically during times when \fBgl_get_line()\fR is waiting for I/O. This
1926 can be done either on a per signal basis, by calling the \fBgl_trap_signal()\fR
1927 function, and specifying the \fBGLS_UNBLOCK\fR attribute of the signal, or
1928 globally by calling the \fBgl_catch_blocked()\fR function. This function simply
1929 adds the \fBGLS_UNBLOCK\fR attribute to all of the signals that it is currently
1930 configured to trap.
1931 .RE
1932 .RS +4
1933 .TP
1934 3.
1935 Just before calling \fBgl_get_line()\fR, block delivery of all of the
1936 signals that \fBgl_get_line()\fR is configured to trap. This can be done using
1937 the POSIX sigprocmask function in conjunction with the \fBgl_list_signals()\fR
1938 function. This function returns the set of signals that it is currently
1939 configured to catch in the set argument, which is in the form required by
1940 \fBsigprocmask\fR(2).
1941 .RE
1942 .RS +4
1943 .TP

new/usr/src/man/man3tecla/gl_get_line.3tecla 31

1944 4.
1945 In the example, one would now test the global flag that the signal handler
1946 sets, knowing that there is now no danger of this flag being set again until
1947 \fBgl_get_line()\fR unblocks its signals while performing I/O.
1948 .RE
1949 .RS +4
1950 .TP
1951 5.
1952 Eventually \fBgl_get_line()\fR returns, either because a signal was caught,
1953 an error occurred, or the user finished entering their input line.
1954 .RE
1955 .RS +4
1956 .TP
1957 6.
1958 Now one would check the global signal flag again, and if it is set, respond
1959 to it, and zero the flag.
1960 .RE
1961 .RS +4
1962 .TP
1963 7.
1964 Use \fBsigprocmask()\fR to unblock the signals that were blocked in step 3.
1965 .RE
1966 .sp
1967 .LP
1968 The same technique can be used around certain POSIX signal-aware functions,
1969 such as \fBsigsetjmp\fR(3C) and \fBsigsuspend\fR(2), and in particular, the
1970 former of these two functions can be used in conjunction with
1971 \fBsiglongjmp\fR(3C) to implement race-condition free signal handling around
1972 other long-running system calls. The \fBgl_get_line()\fR function manages to
1973 reliably trap signals around calls to functions like \fBread\fR(2) and
1974 \fBselect\fR(3C) without race conditions.
1975 .sp
1976 .LP
1977 The \fBgl_get_line()\fR function first uses the POSIX \fBsigprocmask()\fR
1978 function to block the delivery of all of the signals that it is currently
1979 configured to catch. This is redundant if the application has already blocked
1980 them, but it does no harm. It undoes this step just before returning.
1981 .sp
1982 .LP
1983 Whenever \fBgl_get_line()\fR needs to call read or select to wait for input
1984 from the user, it first calls the POSIX \fBsigsetjmp()\fR function, being sure
1985 to specify a non-zero value for its \fIsavemask\fR argument.
1986 .sp
1987 .LP
1988 If \fBsigsetjmp()\fR returns zero, \fBgl_get_line()\fR then does the following.
1989 .RS +4
1990 .TP
1991 1.
1992 It uses the POSIX \fBsigaction\fR(2) function to register a temporary signal
1993 handler to all of the signals that it is configured to catch. This signal
1994 handler does two things.
1995 .RS +4
1996 .TP
1997 a.
1998 It records the number of the signal that was received in a file-scope
1999 variable.
2000 .RE
2001 .RS +4
2002 .TP
2003 b.
2004 It then calls the POSIX \fBsiglongjmp()\fR function using the buffer that
2005 was passed to \fBsigsetjmp()\fR for its first argument and a non-zero value for
2006 its second argument.
2007 .RE
2008 When this signal handler is registered, the \fIsa_mask\fR member of the
2009 \fBstruct sigaction\fR \fIact\fR argument of the call to \fBsigaction()\fR is

new/usr/src/man/man3tecla/gl_get_line.3tecla 32

2010 configured to contain all of the signals that \fBgl_get_line()\fR is catching.
2011 This ensures that only one signal will be caught at once by our signal handler,
2012 which in turn ensures that multiple instances of our signal handler do not
2013 tread on each other’s toes.
2014 .RE
2015 .RS +4
2016 .TP
2017 2.
2018 Now that the signal handler has been set up, \fBgl_get_line()\fR unblocks
2019 all of the signals that it is configured to catch.
2020 .RE
2021 .RS +4
2022 .TP
2023 3.
2024 It then calls the \fBread()\fR or \fBselect()\fR function to wait for
2025 keyboard input.
2026 .RE
2027 .RS +4
2028 .TP
2029 4.
2030 If this function returns (that is, no signal is received),
2031 \fBgl_get_line()\fR blocks delivery of the signals of interest again.
2032 .RE
2033 .RS +4
2034 .TP
2035 5.
2036 It then reinstates the signal handlers that were displaced by the one that
2037 was just installed.
2038 .RE
2039 .sp
2040 .LP
2041 Alternatively, if \fBsigsetjmp()\fR returns non-zero, this means that one of
2042 the signals being trapped was caught while the above steps were executing. When
2043 this happens, \fBgl_get_line()\fR does the following.
2044 .sp
2045 .LP
2046 First, note that when a call to \fBsiglongjmp()\fR causes \fBsigsetjmp()\fR to
2047 return, provided that the \fIsavemask\fR argument of \fBsigsetjmp()\fR was
2048 non-zero, the signal process mask is restored to how it was when
2049 \fBsigsetjmp()\fR was called. This is the important difference between
2050 \fBsigsetjmp()\fR and the older problematic \fBsetjmp\fR(3C), and is the
2051 essential ingredient that makes it possible to avoid signal handling race
2052 conditions. Because of this we are guaranteed that all of the signals that we
2053 blocked before calling \fBsigsetjmp()\fR are blocked again as soon as any
2054 signal is caught. The following statements, which are then executed, are thus
2055 guaranteed to be executed without any further signals being caught.
2056 .RS +4
2057 .TP
2058 1.
2059 If so instructed by the \fBgl_get_line()\fR configuration attributes of the
2060 signal that was caught, \fBgl_get_line()\fR restores the terminal attributes to
2061 the state that they had when \fBgl_get_line()\fR was called. This is
2062 particularly important for signals that suspend or terminate the process, since
2063 otherwise the terminal would be left in an unusable state.
2064 .RE
2065 .RS +4
2066 .TP
2067 2.
2068 It then reinstates the application’s signal handlers.
2069 .RE
2070 .RS +4
2071 .TP
2072 3.
2073 Then it uses the C standard-library \fBraise\fR(3C) function to re-send the
2074 application the signal that was caught.
2075 .RE

new/usr/src/man/man3tecla/gl_get_line.3tecla 33

2076 .RS +4
2077 .TP
2078 4.
2079 Next it unblocks delivery of the signal that we just sent. This results in
2080 the signal that was just sent by \fBraise()\fR being caught by the
2081 application’s original signal handler, which can now handle it as it sees fit.
2082 .RE
2083 .RS +4
2084 .TP
2085 5.
2086 If the signal handler returns (that is, it does not terminate the process),
2087 \fBgl_get_line()\fR blocks delivery of the above signal again.
2088 .RE
2089 .RS +4
2090 .TP
2091 6.
2092 It then undoes any actions performed in the first of the above steps and
2093 redisplays the line, if the signal configuration calls for this.
2094 .RE
2095 .RS +4
2096 .TP
2097 7.
2098 \fBgl_get_line()\fR then either resumes trying to read a character, or
2099 aborts, depending on the configuration of the signal that was caught.
2100 .RE
2101 .sp
2102 .LP
2103 What the above steps do in essence is to take asynchronously delivered signals
2104 and handle them synchronously, one at a time, at a point in the code where
2105 \fBgl_get_line()\fR has complete control over its environment.
2106 .SS "The Terminal Size"
2130 .LP
2107 On most systems the combination of the \fBTIOCGWINSZ\fR ioctl and the
2108 \fBSIGWINCH\fR signal is used to maintain an accurate idea of the terminal
2109 size. The terminal size is newly queried every time that \fBgl_get_line()\fR is
2110 called and whenever a \fBSIGWINCH\fR signal is received.
2111 .sp
2112 .LP
2113 On the few systems where this mechanism is not available, at startup
2114 \fBnew_GetLine()\fR first looks for the \fBLINES\fR and \fBCOLUMNS\fR
2115 environment variables. If these are not found, or they contain unusable values,
2116 then if a terminal information database like \fBterminfo\fR or \fBtermcap\fR is
2117 available, the default size of the terminal is looked up in this database. If
2118 this too fails to provide the terminal size, a default size of 80 columns by 24
2119 lines is used.
2120 .sp
2121 .LP
2122 Even on systems that do support ioctl(\fBTIOCGWINSZ\fR), if the terminal is on
2123 the other end of a serial line, the terminal driver generally has no way of
2124 detecting when a resize occurs or of querying what the current size is. In such
2125 cases no \fBSIGWINCH\fR is sent to the process, and the dimensions returned by
2126 ioctl(\fBTIOCGWINSZ\fR) are not correct. The only way to handle such instances
2127 is to provide a way for the user to enter a command that tells the remote
2128 system what the new size is. This command would then call the
2129 \fBgl_set_term_size()\fR function to tell \fBgl_get_line()\fR about the change
2130 in size.
2131 .sp
2132 .LP
2133 The \fIncolumn\fR and \fInline\fR arguments are used to specify the new
2134 dimensions of the terminal, and must not be less than 1. On systems that do
2135 support ioctl(\fBTIOCGWINSZ\fR), this function first calls
2136 ioctl(\fBTIOCSWINSZ\fR) to tell the terminal driver about the change in size.
2137 In non-blocking server-I/O mode, if a line is currently being input, the input
2138 line is then redrawn to accommodate the changed size. Finally the new values are
2139 recorded in \fIgl\fR for future use by \fBgl_get_line()\fR.
2140 .sp

new/usr/src/man/man3tecla/gl_get_line.3tecla 34

2141 .LP
2142 The \fBgl_terminal_size()\fR function allows you to query the current size of
2143 the terminal, and install an alternate fallback size for cases where the size
2144 is not available. Beware that the terminal size will not be available if
2145 reading from a pipe or a file, so the default values can be important even on
2146 systems that do support ways of finding out the terminal size.
2147 .sp
2148 .LP
2149 This function first updates \fBgl_get_line()\fR’s fallback terminal dimensions,
2150 then records its findings in the return value.
2151 .sp
2152 .LP
2153 The \fIdef_ncolumn\fR and \fIdef_nline\fR arguments specify the default number
2154 of terminal columns and lines to use if the terminal size cannot be determined
2155 by ioctl(\fBTIOCGWINSZ\fR) or environment variables.
2156 .SS "Hiding What You Type"
2181 .LP
2157 When entering sensitive information, such as passwords, it is best not to have
2158 the text that you are entering echoed on the terminal. Furthermore, such text
2159 should not be recorded in the history list, since somebody finding your
2160 terminal unattended could then recall it, or somebody snooping through your
2161 directories could see it in your history file. With this in mind, the
2162 \fBgl_echo_mode()\fR function allows you to toggle on and off the display and
2163 archival of any text that is subsequently entered in calls to
2164 \fBgl_get_line()\fR.
2165 .sp
2166 .LP
2167 The \fIenable\fR argument specifies whether entered text should be visible or
2168 not. If it is 0, then subsequently entered lines will not be visible on the
2169 terminal, and will not be recorded in the history list. If it is 1, then
2170 subsequent input lines will be displayed as they are entered, and provided that
2171 history has not been turned off with a call to \fBgl_toggle_history()\fR, then
2172 they will also be archived in the history list. Finally, if the enable argument
2173 is -1, then the echoing mode is left unchanged, which allows you to
2174 non-destructively query the current setting through the return value. In all
2175 cases, the return value of the function is 0 if echoing was disabled before the
2176 function was called, and 1 if it was enabled.
2177 .sp
2178 .LP
2179 When echoing is turned off, note that although tab completion will invisibly
2180 complete your prefix as far as possible, ambiguous completions will not be
2181 displayed.
2182 .SS "Single Character Queries"
2208 .LP
2183 Using \fBgl_get_line()\fR to query the user for a single character reply, is
2184 inconvenient for the user, since they must hit the enter or return key before
2185 the character that they typed is returned to the program. Thus the
2186 \fBgl_query_char()\fR function has been provided for single character queries
2187 like this.
2188 .sp
2189 .LP
2190 This function displays the specified prompt at the start of a new line, and
2191 waits for the user to type a character. When the user types a character,
2192 \fBgl_query_char()\fR displays it to the right of the prompt, starts a newline,
2193 then returns the character to the calling program. The return value of the
2194 function is the character that was typed. If the read had to be aborted for
2195 some reason, EOF is returned instead. In the latter case, the application can
2196 call the previously documented \fBgl_return_status()\fR, to find out what went
2197 wrong. This could, for example, have been the reception of a signal, or the
2198 optional inactivity timer going off.
2199 .sp
2200 .LP
2201 If the user simply hits enter, the value of the \fIdefchar\fR argument is
2202 substituted. This means that when the user hits either newline or return, the
2203 character specified in \fIdefchar\fR, is displayed after the prompt, as though
2204 the user had typed it, as well as being returned to the calling application. If

new/usr/src/man/man3tecla/gl_get_line.3tecla 35

2205 such a replacement is not important, simply pass ’\en’ as the value of
2206 \fIdefchar\fR.
2207 .sp
2208 .LP
2209 If the entered character is an unprintable character, it is displayed
2210 symbolically. For example, control-A is displayed as \fB^A\fR, and characters
2211 beyond 127 are displayed in octal, preceded by a backslash.
2212 .sp
2213 .LP
2214 As with \fBgl_get_line()\fR, echoing of the entered character can be disabled
2215 using the \fBgl_echo_mode()\fR function.
2216 .sp
2217 .LP
2218 If the calling process is suspended while waiting for the user to type their
2219 response, the cursor is moved to the line following the prompt line, then when
2220 the process resumes, the prompt is redisplayed, and \fBgl_query_char()\fR
2221 resumes waiting for the user to type a character.
2222 .sp
2223 .LP
2224 Note that in non-blocking server mode, if an incomplete input line is in the
2225 process of being read when \fBgl_query_char()\fR is called, the partial input
2226 line is discarded, and erased from the terminal, before the new prompt is
2227 displayed. The next call to \fBgl_get_line()\fR will thus start editing a new
2228 line.
2229 .SS "Reading Raw Characters"
2256 .LP
2230 Whereas the \fBgl_query_char()\fR function visibly prompts the user for a
2231 character, and displays what they typed, the \fBgl_read_char()\fR function
2232 reads a signal character from the user, without writing anything to the
2233 terminal, or perturbing any incompletely entered input line. This means that it
2234 can be called not only from between calls to \fBgl_get_line()\fR, but also from
2235 callback functions that the application has registered to be called by
2236 \fBgl_get_line()\fR.
2237 .sp
2238 .LP
2239 On success, the return value of \fBgl_read_char()\fR is the character that was
2240 read. On failure, EOF is returned, and the \fBgl_return_status()\fR function
2241 can be called to find out what went wrong. Possibilities include the optional
2242 inactivity timer going off, the receipt of a signal that is configured to abort
2243 \fBgl_get_line()\fR, or terminal I/O blocking, when in non-blocking server-I/O
2244 mode.
2245 .sp
2246 .LP
2247 Beware that certain keyboard keys, such as function keys, and cursor keys,
2248 usually generate at least three characters each, so a single call to
2249 \fBgl_read_char()\fR will not be enough to identify such keystrokes.
2250 .SS "Clearing The Terminal"
2278 .LP
2251 The calling program can clear the terminal by calling
2252 \fBgl_erase_terminal()\fR. In non-blocking server-I/O mode, this function also
2253 arranges for the current input line to be redrawn from scratch when
2254 \fBgl_get_line()\fR is next called.
2255 .SS "Displaying Text Dynamically"
2284 .LP
2256 Between calls to \fBgl_get_line()\fR, the \fBgl_display_text()\fR function
2257 provides a convenient way to display paragraphs of text, left-justified and
2258 split over one or more terminal lines according to the constraints of the
2259 current width of the terminal. Examples of the use of this function may be
2260 found in the demo programs, where it is used to display introductions. In those
2261 examples the advanced use of optional prefixes, suffixes and filled lines to
2262 draw a box around the text is also illustrated.
2263 .sp
2264 .LP
2265 If \fIgl\fR is not currently connected to a terminal, for example if the output
2266 of a program that uses \fBgl_get_line()\fR is being piped to another program or
2267 redirected to a file, then the value of the \fIdef_width\fR parameter is used

new/usr/src/man/man3tecla/gl_get_line.3tecla 36

2268 as the terminal width.
2269 .sp
2270 .LP
2271 The \fIindentation\fR argument specifies the number of characters to use to
2272 indent each line of output. The \fIfill_char\fR argument specifies the character
2273 that will be used to perform this indentation.
2274 .sp
2275 .LP
2276 The \fIprefix\fR argument can be either \fINULL\fR or a string to place at the
2277 beginning of each new line (after any indentation). Similarly, the \fIsuffix\fR
2278 argument can be either \fINULL\fR or a string to place at the end of each line.
2279 The suffix is placed flush against the right edge of the terminal, and any
2280 space between its first character and the last word on that line is filled with
2281 the character specified by the \fIfill_char\fR argument. Normally the
2282 fill-character is a space.
2283 .sp
2284 .LP
2285 The \fIstart\fR argument tells \fBgl_display_text()\fR how many characters have
2286 already been written to the current terminal line, and thus tells it the
2287 starting column index of the cursor. Since the return value of
2288 \fBgl_display_text()\fR is the ending column index of the cursor, by passing
2289 the return value of one call to the start argument of the next call, a
2290 paragraph that is broken between more than one string can be composed by
2291 calling \fBgl_display_text()\fR for each successive portion of the paragraph.
2292 Note that literal newline characters are necessary at the end of each paragraph
2293 to force a new line to be started.
2294 .sp
2295 .LP
2296 On error, \fBgl_display_text()\fR returns -1.
2297 .SS "Callback Function Facilities"
2327 .LP
2298 Unless otherwise stated, callback functions such as tab completion callbacks
2299 and event callbacks should not call any functions in this module. The following
2300 functions, however, are designed specifically to be used by callback functions.
2301 .sp
2302 .LP
2303 Calling the \fBgl_replace_prompt()\fR function from a callback tells
2304 \fBgl_get_line()\fR to display a different prompt when the callback returns.
2305 Except in non-blocking server mode, it has no effect if used between calls to
2306 \fBgl_get_line()\fR. In non-blocking server mode, when used between two calls
2307 to \fBgl_get_line()\fR that are operating on the same input line, the current
2308 input line will be re-drawn with the new prompt on the following call to
2309 \fBgl_get_line()\fR.
2310 .SS "International Character Sets"
2341 .LP
2311 Since \fBlibtecla\fR(3LIB) version 1.4.0, \fBgl_get_line()\fR has been 8-bit
2312 clean. This means that all 8-bit characters that are printable in the user’s
2313 current locale are now displayed verbatim and included in the returned input
2314 line. Assuming that the calling program correctly contains a call like the
2315 following,
2316 .sp
2317 .in +2
2318 .nf
2319 setlocale(LC_CTYPE, "")
2320 .fi
2321 .in -2

2323 .sp
2324 .LP
2325 then the current locale is determined by the first of the environment variables
2326 \fBLC_CTYPE\fR, \fBLC_ALL\fR, and \fBLANG\fR that is found to contain a valid
2327 locale name. If none of these variables are defined, or the program neglects to
2328 call \fBsetlocale\fR(3C), then the default C locale is used, which is US 7-bit
2329 ASCII. On most UNIX-like platforms, you can get a list of valid locales by
2330 typing the command:
2331 .sp

new/usr/src/man/man3tecla/gl_get_line.3tecla 37

2332 .in +2
2333 .nf
2334 locale -a
2335 .fi
2336 .in -2
2337 .sp

2339 .sp
2340 .LP
2341 at the shell prompt. Further documentation on how the user can make use of this
2342 to enter international characters can be found in the \fBtecla\fR(5) man page.
2343 .SS "Thread Safety"
2375 .LP
2344 Unfortunately neither \fBterminfo\fR nor \fBtermcap\fR were designed to be
2345 reentrant, so you cannot safely use the functions of the getline module in
2346 multiple threads (you can use the separate file-expansion and word-completion
2347 modules in multiple threads, see the corresponding man pages for details).
2348 However due to the use of POSIX reentrant functions for looking up home
2349 directories, it is safe to use this module from a single thread of a
2350 multi-threaded program, provided that your other threads do not use any
2351 \fBtermcap\fR or \fBterminfo\fR functions.
2352 .SH ATTRIBUTES
2385 .LP
2353 See \fBattributes\fR(5) for descriptions of the following attributes:
2354 .sp

2356 .sp
2357 .TS
2358 box;
2359 c | c
2360 l | l .
2361 ATTRIBUTE TYPE ATTRIBUTE VALUE
2362 _
2363 Interface Stability Committed
2364 _
2365 MT-Level MT-Safe
2366 .TE

2368 .SH SEE ALSO
2402 .LP
2369 \fBcpl_complete_word\fR(3TECLA), \fBef_expand_file\fR(3TECLA),
2370 \fBgl_io_mode\fR(3TECLA), \fBlibtecla\fR(3LIB), \fBpca_lookup_file\fR(3TECLA),
2371 \fBattributes\fR(5), \fBtecla\fR(5)

new/usr/src/man/man3tecla/gl_io_mode.3tecla 1

**
 22180 Sat Jan 18 13:36:58 2020
new/usr/src/man/man3tecla/gl_io_mode.3tecla
12212 typos in some section 3tecla man pages
**

1 ’\" te
2 .\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd.
3 .\" All Rights Reserved.
4 .\" Permission is hereby granted, free of charge, to any person obtaining a copy
5 .\" "Software"), to deal in the Software without restriction, including
6 .\" without limitation the rights to use, copy, modify, merge, publish,
7 .\" distribute, and/or sell copies of the Software, and to permit persons
8 .\" to whom the Software is furnished to do so, provided that the above
9 .\" copyright notice(s) and this permission notice appear in all copies of

10 .\" the Software and that both the above copyright notice(s) and this
11 .\" permission notice appear in supporting documentation.
12 .\"
13 .\" THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
14 .\" OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
15 .\" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
16 .\" OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
17 .\" HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
18 .\" INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
19 .\" FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
20 .\" NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
21 .\" WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 .\"
23 .\" Except as contained in this notice, the name of a copyright holder
24 .\" shall not be used in advertising or otherwise to promote the sale, use
25 .\" or other dealings in this Software without prior written authorization
26 .\" of the copyright holder.
27 .\" Portions Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
28 .TH GL_IO_MODE 3TECLA "January 18, 2020"
28 .TH GL_IO_MODE 3TECLA "Jun 1, 2004"
29 .SH NAME
30 gl_io_mode, gl_raw_io, gl_normal_io, gl_tty_signals, gl_abandon_line,
31 gl_handle_signal, gl_pending_io \- use \fBgl_get_line()\fR from an external
32 event loop
33 .SH SYNOPSIS
34 .LP
34 .nf
35 cc [\fIflag\fR\&.\|.\|.] \fIfile\fR\&.\|.\|. \fB-ltecla\fR [\fIlibrary\fR\&.\
36 #include <libtecla.h>

38 \fBint\fR \fBgl_io_mode\fR(\fBGetLine *\fR\fIgl\fR, \fBGlIOMode\fR \fImode\fR);
39 .fi

41 .LP
42 .nf
43 \fBint\fR \fBgl_raw_io\fR(\fBGetLine *\fR\fIgl\fR);
44 .fi

46 .LP
47 .nf
48 \fBint\fR \fBgl_normal_io\fR(\fBGetLine *\fR\fIgl\fR);
49 .fi

51 .LP
52 .nf
53 \fBint\fR \fBgl_tty_signals\fR(\fBvoid (*\fR\fIterm_handler\fR)(int), \fBvoid (*
54 \fBvoid (*\fR\fIcont_handler\fR)(int), \fBvoid (*\fR\fIsize_handler\fR)(int
55 .fi

57 .LP
58 .nf
59 \fBvoid\fR \fBgl_abandon_line\fR(\fBGetLine *\fR\fIgl\fR);

new/usr/src/man/man3tecla/gl_io_mode.3tecla 2

60 .fi

62 .LP
63 .nf
64 \fBvoid\fR \fBgl_handle_signal\fR(\fBint\fR \fIsigno\fR, \fBGetLine *\fR\fIgl\fR
65 .fi

67 .LP
68 .nf
69 \fBGlPendingIO\fR \fBgl_pending_io\fR(\fBGetLine *\fR\fIgl\fR);
70 .fi

72 .SH DESCRIPTION
74 .sp
75 .LP
73 The \fBgl_get_line\fR(3TECLA) function supports two different I/O modes. These
74 are selected by calling the \fBgl_io_mode()\fR function. The \fImode\fR
75 argument of \fBgl_io_mode()\fR specifies the new I/O mode and must be one of
76 the following.
77 .sp
78 .ne 2
79 .na
80 \fB\fBGL_NORMAL_MODE\fR\fR
81 .ad
82 .RS 18n
83 Select the normal blocking-I/O mode. In this mode \fBgl_get_line()\fR does not
84 return until either an error occurs of the user finishes entering a new line.
85 .RE

87 .sp
88 .ne 2
89 .na
90 \fB\fBGL_SERVER_MODE\fR\fR
91 .ad
92 .RS 18n
93 Select non-blocking server I/O mode. In this mode, since non-blocking terminal
94 I/O is used, the entry of each new input line typically requires many calls to
95 \fBgl_get_line()\fR from an external I/O-driven event loop.
96 .RE

98 .sp
99 .LP
100 Newly created GetLine objects start in normal I/O mode, so to switch to
101 non-blocking server mode requires an initial call to \fBgl_io_mode()\fR.
102 .SS "Server I/O Mode"
106 .sp
107 .LP
103 In non-blocking server I/O mode, the application is required to have an event
104 loop that calls \fBgl_get_line()\fR whenever the terminal file descriptor can
105 perform the type of I/O that \fBgl_get_line()\fR is waiting for. To determine
110 perform the type I/O that \fBgl_get_line()\fR is waiting for. To determine
106 which type of I/O \fBgl_get_line()\fR is waiting for, the application calls the
107 \fBgl_pending_io()\fR function. The return value is one of the following two
108 enumerated values.
109 .sp
110 .ne 2
111 .na
112 \fB\fBGLP_READ\fR\fR
113 .ad
114 .RS 13n
115 \fBgl_get_line()\fR is waiting to write a character to the terminal.
116 .RE

118 .sp
119 .ne 2
120 .na

new/usr/src/man/man3tecla/gl_io_mode.3tecla 3

121 \fB\fBGLP_WRITE\fR\fR
122 .ad
123 .RS 13n
124 \fBgl_get_line()\fR is waiting to read a character from the keyboard.
129 \fBgl_get_line()\fR is waiting to read a character from the keyboad.
125 .RE

127 .sp
128 .LP
129 If the application is using either the \fBselect\fR(3C) or \fBpoll\fR(2)
130 function to watch for I/O on a group of file descriptors, then it should call
131 the \fBgl_pending_io()\fR function before each call to these functions to
132 determine which direction of I/O it should tell them to watch for, and
133 configure their arguments accordingly. In the case of the \fBselect()\fR
134 function, this means using the \fBFD_SET()\fR macro to add the terminal file
135 descriptor either to the set of file descriptors to be watched for readability
136 or the set to be watched for writability.
137 .sp
138 .LP
139 As in normal I/O mode, the return value of \fBgl_get_line()\fR is either a
140 pointer to a completed input line or \fINULL\fR. However, whereas in normal I/O
141 mode a \fINULL\fR return value always means that an error occurred, in
142 non-blocking server mode, \fINULL\fR is also returned when \fBgl_get_line()\fR
143 cannot read or write to the terminal without blocking. Thus in non-blocking
144 server mode, in order to determine when a \fINULL\fR return value signifies
145 that an error occurred or not, it is necessary to call the
146 \fBgl_return_status()\fR function. If this function returns the enumerated
147 value \fBGLR_BLOCKED\fR, \fBgl_get_line()\fR is waiting for I/O and no error
148 has occurred.
149 .sp
150 .LP
151 When \fBgl_get_line()\fR returns \fINULL\fR and \fBgl_return_status()\fR
152 indicates that this is due to blocked terminal I/O, the application should call
153 \fBgl_get_line()\fR again when the type of I/O reported by
154 \fBgl_pending_io()\fR becomes possible. The \fIprompt\fR, \fIstart_line\fR and
155 \fIstart_pos\fR arguments of \fBgl_get_line()\fR will be ignored on these
156 calls. If you need to change the prompt of the line that is currently being
157 edited, you can call the \fBgl_replace_prompt\fR(3TECLA) function between calls
158 to \fBgl_get_line()\fR.
159 .SS "Giving Up The Terminal"
165 .sp
166 .LP
160 A complication that is unique to non-blocking server mode is that it requires
161 that the terminal be left in raw mode between calls to \fBgl_get_line()\fR. If
162 this were not the case, the external event loop would not be able to detect
163 individual key-presses, and the basic line editing implemented by the terminal
164 driver would clash with the editing provided by \fBgl_get_line()\fR. When the
165 terminal needs to be used for purposes other than entering a new input line
166 with \fBgl_get_line()\fR, it needs to be restored to a usable state. In
167 particular, whenever the process is suspended or terminated, the terminal must
168 be returned to a normal state. If this is not done, then depending on the
169 characteristics of the shell that was used to invoke the program, the user
170 could end up with a hung terminal. To this end, the \fBgl_normal_io()\fR
171 function is provided for switching the terminal back to the state that it was
172 in when raw mode was last established.
173 .sp
174 .LP
175 The \fBgl_normal_io()\fR function first flushes any pending output to the
176 terminal, then moves the cursor to the start of the terminal line which follows
177 the end of the incompletely entered input line. At this point it is safe to
178 suspend or terminate the process, and it is safe for the application to read
179 and write to the terminal. To resume entry of the input line, the application
180 should call the \fBgl_raw_io()\fR function.
181 .sp
182 .LP
183 The \fBgl_normal_io()\fR function starts a new line, redisplays the partially

new/usr/src/man/man3tecla/gl_io_mode.3tecla 4

184 completed input line (if any), restores the cursor position within this line to
185 where it was when \fBgl_normal_io()\fR was called, then switches back to raw,
186 non-blocking terminal mode ready to continue entry of the input line when
187 \fBgl_get_line()\fR is next called.
188 .sp
189 .LP
190 Note that in non-blocking server mode, if \fBgl_get_line()\fR is called after a
191 call to \fBgl_normal_io()\fR, without an intervening call to \fBgl_raw_io()\fR,
192 \fBgl_get_line()\fR will call \fBgl_raw_mode()\fR itself, and the terminal will
193 remain in this mode when \fBgl_get_line()\fR returns.
194 .SS "Signal Handling"
202 .sp
203 .LP
195 In the previous section it was pointed out that in non-blocking server mode,
196 the terminal must be restored to a sane state whenever a signal is received
197 that either suspends or terminates the process. In normal I/O mode, this is
198 done for you by \fBgl_get_line()\fR, but in non-blocking server mode, since the
199 terminal is left in raw mode between calls to \fBgl_get_line()\fR, this signal
200 handling has to be done by the application. Since there are many signals that
201 can suspend or terminate a process, as well as other signals that are important
202 to \fBgl_get_line()\fR, such as the \fBSIGWINCH\fR signal, which tells it when
203 the terminal size has changed, the \fBgl_tty_signals()\fR function is provided
204 for installing signal handlers for all pertinent signals.
205 .sp
206 .LP
207 The \fBgl_tty_signals()\fR function uses \fBgl_get_line()\fR’s internal list of
208 signals to assign specified signal handlers to groups of signals. The arguments
209 of this function are as follows.
210 .sp
211 .ne 2
212 .na
213 \fB\fIterm_handler\fR\fR
214 .ad
215 .RS 16n
216 This is the signal handler that is used to trap signals that by default
217 terminate any process that receives them (for example, \fBSIGINT\fR or
218 \fBSIGTERM\fR).
219 .RE

221 .sp
222 .ne 2
223 .na
224 \fB\fIsusp_handler\fR\fR
225 .ad
226 .RS 16n
227 This is the signal handler that is used to trap signals that by default suspend
228 any process that receives them, (for example, \fBSIGTSTP\fR or \fBSIGTTOU\fR).
229 .RE

231 .sp
232 .ne 2
233 .na
234 \fB\fIcont_handler\fR\fR
235 .ad
236 .RS 16n
237 This is the signal handler that is used to trap signals that are usually sent
238 when a process resumes after being suspended (usually \fBSIGCONT\fR). Beware
239 that there is nothing to stop a user from sending one of these signals at other
240 times.
241 .RE

243 .sp
244 .ne 2
245 .na
246 \fB\fIsize_handler\fR\fR
247 .ad

new/usr/src/man/man3tecla/gl_io_mode.3tecla 5

248 .RS 16n
249 This signal handler is used to trap signals that are sent to processes when
250 their controlling terminals are resized by the user (for example,
251 \fBSIGWINCH\fR).
252 .RE

254 .sp
255 .LP
256 These arguments can all be the same, if so desired, and \fBSIG_IGN\fR (ignore
257 this signal) or \fBSIG_DFL\fR (use the system-provided default signal handler)
258 can be specified instead of a function where pertinent. In particular, it is
259 rarely useful to trap \fBSIGCONT\fR, so the \fIcont_handler\fR argument will
260 usually be \fBSIG_DFL\fR or \fBSIG_IGN\fR.
261 .sp
262 .LP
263 The \fBgl_tty_signals()\fR function uses the POSIX \fBsigaction\fR(2) function
264 to install these signal handlers, and it is careful to use the \fIsa_mask\fR
265 member of each \fBsigaction\fR structure to ensure that only one of these
266 signals is ever delivered at a time. This guards against different instances of
267 these signal handlers from simultaneously trying to write to common global
268 data, such as a shared \fBsigsetjmp\fR(3C) buffer or a signal-received flag.
269 The signal handlers installed by this function should call the
270 \fBgl_handle_signal()\fR.
271 .sp
272 .LP
273 The \fIsigno\fR argument tells this function which signal it is being asked to
274 respond to, and the \fIgl\fR argument should be a pointer to the first element
275 of an array of \fIngl\fR \fBGetLine\fR objects. If your application has only
276 one of these objects, pass its pointer as the \fIgl\fR argument and specify
277 \fIngl\fR as 1.
278 .sp
279 .LP
280 Depending on the signal that is being handled, this function does different
281 things.
282 .SS "Process termination signals"
292 .sp
293 .LP
283 If the signal that was caught is one of those that by default terminates any
284 process that receives it, then \fBgl_handle_signal()\fR does the following
285 steps.
286 .RS +4
287 .TP
288 1.
289 First it blocks the delivery of all signals that can be blocked (ie.
290 \fBSIGKILL\fR and \fBSIGSTOP\fR cannot be blocked).
291 .RE
292 .RS +4
293 .TP
294 2.
295 Next it calls \fBgl_normal_io()\fR for each of the ngl GetLine objects. Note
296 that this does nothing to any of the GetLine objects that are not currently in
297 raw mode.
298 .RE
299 .RS +4
300 .TP
301 3.
302 Next it sets the signal handler of the signal to its default,
303 process-termination disposition.
304 .RE
305 .RS +4
306 .TP
307 4.
308 Next it re-sends the process the signal that was caught.
309 .RE
310 .RS +4
311 .TP

new/usr/src/man/man3tecla/gl_io_mode.3tecla 6

312 5.
313 Finally it unblocks delivery of this signal, which results in the process
314 being terminated.
315 .RE
316 .SS "Process suspension signals"
328 .sp
329 .LP
317 If the default disposition of the signal is to suspend the process, the same
318 steps are executed as for process termination signals, except that when the
319 process is later resumed, \fBgl_handle_signal()\fR continues, and does the
320 following steps.
321 .RS +4
322 .TP
323 1.
324 It re-blocks delivery of the signal.
325 .RE
326 .RS +4
327 .TP
328 2.
329 It reinstates the signal handler of the signal to the one that was displaced
330 when its default disposition was substituted.
331 .RE
332 .RS +4
333 .TP
334 3.
335 For any of the GetLine objects that were in raw mode when
336 \fBgl_handle_signal()\fR was called, \fBgl_handle_signal()\fR then calls
337 \fBgl_raw_io()\fR, to resume entry of the input lines on those terminals.
338 .RE
339 .RS +4
340 .TP
341 4.
342 Finally, it restores the signal process mask to how it was when
343 \fBgl_handle_signal()\fR was called.
344 .RE
345 .sp
346 .LP
347 Note that the process is suspended or terminated using the original signal that
348 was caught, rather than using the uncatchable \fBSIGSTOP\fR and \fBSIGKILL\fR
349 signals. This is important, because when a process is suspended or terminated,
350 the parent of the process may wish to use the status value returned by the wait
351 system call to figure out which signal was responsible. In particular, most
352 shells use this information to print a corresponding message to the terminal.
353 Users would be rightly confused if when their process received a \fBSIGPIPE\fR
354 signal, the program responded by sending itself a \fBSIGKILL\fR signal, and the
355 shell then printed out the provocative statement, "Killed!".
356 .SS "Interrupting The Event Loop"
370 .sp
371 .LP
357 If a signal is caught and handled when the application’s event loop is waiting
358 in \fBselect()\fR or \fBpoll()\fR, these functions will be aborted with
359 \fBerrno\fR set to \fBEINTR\fR. When this happens the event loop should call
360 \fBgl_pending_io()\fR before calling \fBselect()\fR or \fBpoll()\fR again. It
361 should then arrange for \fBselect()\fR or \fBpoll()\fR to wait for the type of
362 I/O that \fBgl_pending_io()\fR reports. This is necessary because any signal
363 handler that calls \fBgl_handle_signal()\fR will frequently change the type of
364 I/O that \fBgl_get_line()\fR is waiting for.
365 .sp
366 .LP
367 If a signal arrives between the statements that configure the arguments of
368 \fBselect()\fR or \fBpoll()\fR and the calls to these functions, the signal
369 will not be seen by these functions, which will then not be aborted. If these
370 functions are waiting for keyboard input from the user when the signal is
371 received, and the signal handler arranges to redraw the input line to
372 accommodate a terminal resize or the resumption of the process. This redisplay
373 will be delayed until the user presses the next key. Apart from puzzling the

new/usr/src/man/man3tecla/gl_io_mode.3tecla 7

374 user, this clearly is not a serious problem. However there is a way, albeit
375 complicated, to completely avoid this race condition. The following steps
376 illustrate this.
377 .RS +4
378 .TP
379 1.
380 Block all of the signals that \fBgl_get_line()\fR catches, by passing the
381 signal set returned by \fBgl_list_signals()\fR to \fBsigprocmask\fR(2).
382 .RE
383 .RS +4
384 .TP
385 2.
386 Call \fBgl_pending_io()\fR and set up the arguments of \fBselect()\fR or
387 \fBpoll()\fR accordingly.
388 .RE
389 .RS +4
390 .TP
391 3.
392 Call \fBsigsetjmp\fR(3C) with a non-zero \fIsavemask\fR argument.
393 .RE
394 .RS +4
395 .TP
396 4.
397 Initially this \fBsigsetjmp()\fR statement will return zero, indicating that
398 control is not resuming there after a matching call to \fBsiglongjmp\fR(3C).
399 .RE
400 .RS +4
401 .TP
402 5.
403 Replace all of the handlers of the signals that \fBgl_get_line()\fR is
404 configured to catch, with a signal handler that first records the number of the
405 signal that was caught, in a file-scope variable, then calls \fBsiglongjmp()\fR
406 with a non-zero \fIval\fR argument, to return execution to the above
407 \fBsigsetjmp()\fR statement. Registering these signal handlers can conveniently
408 be done using the \fBgl_tty_signals()\fR function.
409 .RE
410 .RS +4
411 .TP
412 6.
413 Set the file-scope variable that the above signal handler uses to record any
414 signal that is caught to -1, so that we can check whether a signal was caught
415 by seeing if it contains a valid signal number.
416 .RE
417 .RS +4
418 .TP
419 7.
420 Now unblock the signals that were blocked in step 1. Any signal that was
421 received by the process in between step 1 and now will now be delivered, and
422 trigger our signal handler, as will any signal that is received until we block
423 these signals again.
424 .RE
425 .RS +4
426 .TP
427 8.
428 Now call \fBselect()\fR or \fBpoll()\fR.
429 .RE
430 .RS +4
431 .TP
432 9.
433 When select returns, again block the signals that were unblocked in step 7.
434 .sp
435 If a signal is arrived any time during the above steps, our signal handler will
436 be triggered and cause control to return to the \fBsigsetjmp()\fR statement,
437 where this time, \fBsigsetjmp()\fR will return non-zero, indicating that a
438 signal was caught. When this happens we simply skip the above block of
439 statements, and continue with the following statements, which are executed

new/usr/src/man/man3tecla/gl_io_mode.3tecla 8

440 regardless of whether or not a signal is caught. Note that when
441 \fBsigsetjmp()\fR returns, regardless of why it returned, the process signal
442 mask is returned to how it was when \fBsigsetjmp()\fR was called. Thus the
443 following statements are always executed with all of our signals blocked.
444 .RE
445 .RS +4
446 .TP
447 10.
448 Reinstate the signal handlers that were displaced in step 5.
449 .RE
450 .RS +4
451 .TP
452 11.
453 Check whether a signal was caught, by checking the file-scope variable that
468 Check wether a signal was caught, by checking the file-scope variable that
454 the signal handler records signal numbers in.
455 .RE
456 .RS +4
457 .TP
458 12.
459 If a signal was caught, send this signal to the application again and
460 unblock only this signal so that it invokes the signal handler which was just
461 reinstated in step 10.
462 .RE
463 .RS +4
464 .TP
465 13.
466 Unblock all of the signals that were blocked in step 7.
467 .RE
468 .SS "Signals Caught By \fBgl_get_line()\fR"
484 .sp
485 .LP
469 Since the application is expected to handle signals in non-blocking server
470 mode, \fBgl_get_line()\fR does not attempt to duplicate this when it is being
471 called. If one of the signals that it is configured to catch is sent to the
472 application while \fBgl_get_line()\fR is being called, \fBgl_get_line()\fR
473 reinstates the caller’s signal handlers, then immediately before returning,
474 re-sends the signal to the process to let the application’s signal handler
475 handle it. If the process is not terminated by this signal, \fBgl_get_line()\fR
476 returns \fINULL\fR, and a following call to \fBgl_return_status()\fR returns
477 the enumerated value \fBGLR_SIGNAL\fR.
478 .SS "Aborting Line Input"
496 .sp
497 .LP
479 Often, rather than letting it terminate the process, applications respond to
480 the \fBSIGINT\fR user-interrupt signal by aborting the current input line. This
481 can be accomplished in non-blocking server-I/O mode by not calling
482 \fBgl_handle_signal()\fR when this signal is caught, but by calling instead the
483 \fBgl_abandon_line()\fR function. This function arranges that when
484 \fBgl_get_line()\fR is next called, it first flushes any pending output to the
485 terminal, discards the current input line, outputs a new prompt on the next
504 terminal, discardes the current input line, outputs a new prompt on the next
486 line, and finally starts accepting input of a new input line from the user.
487 .SS "Signal Safe Functions"
507 .sp
508 .LP
488 Provided that certain rules are followed, the \fBgl_normal_io()\fR,
489 \fBgl_raw_io()\fR, \fBgl_handle_signal()\fR, and \fBgl_abandon_line()\fR
490 functions can be written to be safely callable from signal handlers. Other
491 functions in this library should not be called from signal handlers. For this
492 to be true, all signal handlers that call these functions must be registered in
493 such a way that only one instance of any one of them can be running at one
494 time. The way to do this is to use the POSIX \fBsigaction()\fR function to
495 register all signal handlers, and when doing this, use the \fIsa_mask\fR member
496 of the corresponding \fBsigaction\fR structure to indicate that all of the
497 signals whose handlers invoke the above functions should be blocked when the

new/usr/src/man/man3tecla/gl_io_mode.3tecla 9

498 current signal is being handled. This prevents two signal handlers from
499 operating on a \fBGetLine\fR object at the same time.
500 .sp
501 .LP
502 To prevent signal handlers from accessing a \fBGetLine\fR object while
503 \fBgl_get_line()\fR or any of its associated public functions are operating on
504 it, all public functions associated with \fBgl_get_line()\fR, including
505 \fBgl_get_line()\fR itself, temporarily block the delivery of signals when they
506 are accessing \fBGetLine\fR objects. Beware that the only signals that they
507 block are the signals that \fBgl_get_line()\fR is currently configured to
508 catch, so be sure that if you call any of the above functions from signal
509 handlers, that the signals that these handlers are assigned to are configured
510 to be caught by \fBgl_get_line()\fR. See \fBgl_trap_signal\fR(3TECLA).
511 .SS "Using Timeouts To Poll"
533 .sp
534 .LP
512 If instead of using \fBselect()\fR or \fBpoll()\fR to wait for I/O your
513 application needs only to get out of \fBgl_get_line()\fR periodically to
514 briefly do something else before returning to accept input from the user, use
515 the \fBgl_inactivity_timeout\fR(3TECLA) function in non-blocking server mode to
516 specify that a callback function that returns \fBGLTO_CONTINUE\fR should be
517 called whenever \fBgl_get_line()\fR has been waiting for I/O for more than a
518 specified amount of time. When this callback is triggered, \fBgl_get_line()\fR
519 will return \fINULL\fR and a following call to \fBgl_return_status()\fR will
520 return \fBGLR_BLOCKED\fR.
521 .sp
522 .LP
523 The \fBgl_get_line()\fR function will not return until the user has not typed a
524 key for the specified interval, so if the interval is long and the user keeps
525 typing, \fBgl_get_line()\fR might not return for a while. There is no guarantee
526 that it will return in the time specified.
527 .SH ATTRIBUTES
551 .sp
552 .LP
528 See \fBattributes\fR(5) for descriptions of the following attributes:
529 .sp

531 .sp
532 .TS
533 box;
534 c | c
535 l | l .
536 ATTRIBUTE TYPE ATTRIBUTE VALUE
537 _
538 Interface Stability Evolving
539 _
540 MT-Level MT-Safe
541 .TE

543 .SH SEE ALSO
569 .sp
570 .LP
544 \fBcpl_complete_word\fR(3TECLA), \fBef_expand_file\fR(3TECLA),
545 \fBgl_get_line\fR(3TECLA), \fBlibtecla\fR(3LIB), \fBpca_lookup_file\fR(3TECLA),
546 \fBattributes\fR(5), \fBtecla\fR(5)

new/usr/src/man/man3tecla/pca_lookup_file.3tecla 1

**
 13780 Sat Jan 18 13:36:58 2020
new/usr/src/man/man3tecla/pca_lookup_file.3tecla
12212 typos in some section 3tecla man pages
**

1 ’\" te
2 .\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd. All Rights
3 .\" Permission is hereby granted, free of charge, to any person obtaining a copy
4 .\" "Software"), to deal in the Software without restriction, including
5 .\" without limitation the rights to use, copy, modify, merge, publish,
6 .\" distribute, and/or sell copies of the Software, and to permit persons
7 .\" to whom the Software is furnished to do so, provided that the above
8 .\" copyright notice(s) and this permission notice appear in all copies of
9 .\" the Software and that both the above copyright notice(s) and this

10 .\" permission notice appear in supporting documentation.
11 .\"
12 .\" THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 .\" OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 .\" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
15 .\" OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
16 .\" HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
17 .\" INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
18 .\" FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
19 .\" NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
20 .\" WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 .\"
22 .\" Except as contained in this notice, the name of a copyright holder
23 .\" shall not be used in advertising or otherwise to promote the sale, use
24 .\" or other dealings in this Software without prior written authorization
25 .\" of the copyright holder.
26 .\" Portions Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
27 .TH PCA_LOOKUP_FILE 3TECLA "January 18, 2020"
27 .TH PCA_LOOKUP_FILE 3TECLA "Aug 13, 2007"
28 .SH NAME
29 pca_lookup_file, del_PathCache, del_PcaPathConf, new_PathCache,
30 new_PcaPathConf, pca_last_error, pca_path_completions, pca_scan_path,
31 pca_set_check_fn, ppc_file_start, ppc_literal_escapes \- lookup a file in a
32 list of directories
33 .SH SYNOPSIS
34 .LP
34 .nf
35 cc [\fIflag\fR\&.\|.\|.] \fIfile\fR\&.\|.\|. \fB-ltecla\fR [\fIlibrary\fR\&.\
36 #include <libtecla.h>

38 \fBchar *\fR\fBpca_lookup_file\fR(\fBPathCache *\fR\fIpc\fR, \fBconst char *\fR\
39 \fBint\fR \fIname_len\fR, \fBint\fR \fIliteral\fR);
40 .fi

42 .LP
43 .nf
44 \fBPathCache *\fR\fBdel_PathCache\fR(\fBPathCache *\fR\fIpc\fR);
45 .fi

47 .LP
48 .nf
49 \fBPcaPathConf *\fR\fBdel_PcaPathConf\fR(\fBPcaPathConf *\fR\fIppc\fR);
50 .fi

52 .LP
53 .nf
54 \fBPathCache *\fR\fBnew_PathCache\fR(\fBvoid\fR);
55 .fi

57 .LP
58 .nf
59 \fBPcaPathConf *\fR\fBnew_PcaPathConf\fR(\fBPathCache *\fR\fIpc\fR);

new/usr/src/man/man3tecla/pca_lookup_file.3tecla 2

60 .fi

62 .LP
63 .nf
64 \fBconst char *\fR\fBpca_last_error\fR(\fBPathCache *\fR\fIpc\fR);
65 .fi

67 .LP
68 .nf
69 \fBCPL_MATCH_FN\fR(\fBpca_path_completions\fR);
70 .fi

72 .LP
73 .nf
74 \fBint\fR \fBpca_scan_path\fR(\fBPathCache *\fR\fIpc\fR, \fBconst char *\fR\fIpa
75 .fi

77 .LP
78 .nf
79 \fBvoid\fR \fBpca_set_check_fn\fR(\fBPathCache *\fR\fIpc\fR, \fBCplCheckFn *\fR\
80 \fBvoid *\fR\fIdata\fR);
81 .fi

83 .LP
84 .nf
85 \fBvoid\fR \fBppc_file_start\fR(\fBPcaPathConf *\fR\fIppc\fR, \fBint\fR \fIstart
86 .fi

88 .LP
89 .nf
90 \fBvoid\fR \fBppc_literal_escapes\fR(\fBPcaPathConf *\fR\fIppc\fR, \fBint\fR \fI
91 .fi

93 .SH DESCRIPTION
95 .sp
96 .LP
94 The \fBPathCache\fR object is part of the \fBlibtecla\fR(3LIB) library.
95 \fBPathCache\fR objects allow an application to search for files in any colon
96 separated list of directories, such as the UNIX execution \fBPATH\fR
97 environment variable. Files in absolute directories are cached in a
98 \fBPathCache\fR object, whereas relative directories are scanned as needed.
99 Using a \fBPathCache\fR object, you can look up the full pathname of a simple
100 filename, or you can obtain a list of the possible completions of a given
101 filename prefix. By default all files in the list of directories are targets
102 for lookup and completion, but a versatile mechanism is provided for only
103 selecting specific types of files. The obvious application of this facility is
104 to provide Tab-completion and lookup of executable commands in the UNIX
105 \fBPATH\fR, so an optional callback which rejects all but executable files is
108 \fBPATH\fR, so an optional callback which rejects all but executable files, is
106 provided.
107 .SS "An Example"
111 .sp
112 .LP
108 Under UNIX, the following example program looks up and displays the full
109 pathnames of each of the command names on the command line.
110 .sp
111 .in +2
112 .nf
113 #include <stdio.h>
114 #include <stdlib.h>
115 #include <libtecla.h>

117 int main(int argc, char *argv[])
118 {
119 int i;
120 /*

new/usr/src/man/man3tecla/pca_lookup_file.3tecla 3

121 * Create a cache for executable files.
122 */
123 PathCache *pc = new_PathCache();
124 if(!pc)
125 exit(1);
126 /*
127 * Scan the user’s PATH for executables.
128 */
129 if(pca_scan_path(pc, getenv("PATH"))) {
130 fprintf(stderr, "%s\en", pca_last_error(pc));
131 exit(1);
132 }
133 /*
134 * Arrange to only report executable files.
135 */
136 pca_set_check_fn(pc, cpl_check_exe, NULL);
137 /*
138 * Lookup and display the full pathname of each of the
139 * commands listed on the command line.
140 */
141 for(i=1; i<argc; i++) {
142 char *cmd = pca_lookup_file(pc, argv[i], -1, 0);
143 printf("The full pathname of ’%s’ is %s\e\en", argv[i],
144 cmd ? cmd : "unknown");
145 }
146 pc = del_PathCache(pc); /* Clean up */
147 return 0;
148 }
149 .fi
150 .in -2

152 .sp
153 .LP
154 The following is an example of what this does on a laptop under LINUX:
155 .sp
156 .in +2
157 .nf
158 $./example less more blob
159 The full pathname of ’less’ is /usr/bin/less
160 The full pathname of ’more’ is /bin/more
161 The full pathname of ’blob’ is unknown
162 $
163 .fi
164 .in -2

166 .SS "Function Descriptions"
172 .sp
173 .LP
167 To use the facilities of this module, you must first allocate a \fBPathCache\fR
168 object by calling the \fBnew_PathCache()\fR constructor function. This function
169 creates the resources needed to cache and lookup files in a list of
170 directories. It returns \fINULL\fR on error.
171 .SS "Populating The Cache"
179 .sp
180 .LP
172 Once you have created a cache, it needs to be populated with files. To do this,
173 call the \fBpca_scan_path()\fR function. Whenever this function is called, it
174 discards the current contents of the cache, then scans the list of directories
175 specified in its path argument for files. The path argument must be a string
176 containing a colon-separated list of directories, such as
177 "\fB/usr/bin\fR:\fB/home/mcs/bin\fR:". This can include directories specified
178 by absolute pathnames such as "\fB/usr/bin\fR", as well as sub-directories
179 specified by relative pathnames such as "." or "\fBbin\fR". Files in the
180 absolute directories are immediately cached in the specified \fBPathCache\fR
181 object, whereas subdirectories, whose identities obviously change whenever the
182 current working directory is changed, are marked to be scanned on the fly

new/usr/src/man/man3tecla/pca_lookup_file.3tecla 4

183 whenever a file is looked up.
184 .sp
185 .LP
186 On success this function return 0. On error it returns 1, and a description of
187 the error can be obtained by calling \fBpca_last_error\fR(\fIpc\fR).
188 .SS "Looking Up Files"
198 .sp
199 .LP
189 Once the cache has been populated with files, you can look up the full pathname
190 of a file, simply by specifying its filename to \fBpca_lookup_file()\fR.
191 .sp
192 .LP
193 To make it possible to pass this function a filename which is actually part of
194 a longer string, the \fIname_len\fR argument can be used to specify the length
195 of the filename at the start of the \fIname\fR[] argument. If you pass -1 for
196 this length, the length of the string will be determined with \fIstrlen\fR. If
197 the \fIname\fR[] string might contain backslashes that escape the special
198 meanings of spaces and tabs within the filename, give the \fIliteral\fR
199 argument the value 0. Otherwise, if backslashes should be treated as normal
200 characters, pass 1 for the value of the \fIliteral\fR argument.
201 .SS "Filename Completion"
213 .sp
214 .LP
202 Looking up the potential completions of a filename-prefix in the filename cache
203 is achieved by passing the provided \fBpca_path_completions()\fR callback
204 function to the \fBcpl_complete_word\fR(3TECLA) function.
205 .sp
206 .LP
207 This callback requires that its data argument be a pointer to a PcaPathConf
208 object. Configuration objects of this type are allocated by calling
209 \fBnew_PcaPathConf()\fR.
210 .sp
211 .LP
212 This function returns an object initialized with default configuration
213 parameters, which determine how the \fBcpl_path_completions()\fR callback
214 function behaves. The functions which allow you to individually change these
215 parameters are discussed below.
216 .sp
217 .LP
218 By default, the \fBpca_path_completions()\fR callback function searches
219 backwards for the start of the filename being completed, looking for the first
220 un-escaped space or the start of the input line. If you wish to specify a
221 different location, call \fBppc_file_start()\fR with the index at which the
222 filename starts in the input line. Passing \fIstart_index\fR=-1 re-enables the
223 default behavior.
224 .sp
225 .LP
226 By default, when \fBpca_path_completions()\fR looks at a filename in the input
227 line, each lone backslash in the input line is interpreted as being a special
228 character which removes any special significance of the character which follows
229 it, such as a space which should be taken as part of the filename rather than
230 delimiting the start of the filename. These backslashes are thus ignored while
231 looking for completions, and subsequently added before spaces, tabs and literal
232 backslashes in the list of completions. To have unescaped backslashes treated
233 as normal characters, call \fBppc_literal_escapes()\fR with a non-zero value in
234 its literal argument.
235 .sp
236 .LP
237 When you have finished with a \fBPcaPathConf\fR variable, you can pass it to
238 the \fBdel_PcaPathConf()\fR destructor function to reclaim its memory.
239 .SS "Being Selective"
253 .sp
254 .LP
240 If you are only interested in certain types or files, such as, for example,
241 executable files, or files whose names end in a particular suffix, you can
242 arrange for the file completion and lookup functions to be selective in the

new/usr/src/man/man3tecla/pca_lookup_file.3tecla 5

243 filenames that they return. This is done by registering a callback function
244 with your \fBPathCache\fR object. Thereafter, whenever a filename is found
245 which either matches a filename being looked up or matches a prefix which is
246 being completed, your callback function will be called with the full pathname
247 of the file, plus any application-specific data that you provide. If the
248 callback returns 1 the filename will be reported as a match. If it returns 0,
249 it will be ignored. Suitable callback functions and their prototypes should be
250 declared with the following macro. The \fBCplCheckFn\fR typedef is also
251 provided in case you wish to declare pointers to such functions.
266 provided in case you wish to declare pointers to such functions
252 .sp
253 .in +2
254 .nf
255 #define CPL_CHECK_FN(fn) int (fn)(void *data, const char *pathname)
256 typedef CPL_CHECK_FN(CplCheckFn);
257 .fi
258 .in -2

260 .sp
261 .LP
262 Registering one of these functions involves calling the
263 \fBpca_set_check_fn()\fR function. In addition to the callback function passed
264 with the \fIcheck_fn\fR argument, you can pass a pointer to anything with the
265 \fIdata\fR argument. This pointer will be passed on to your callback function
266 by its own \fIdata\fR argument whenever it is called, providing a way to pass
267 application-specific data to your callback. Note that these callbacks are
268 passed the full pathname of each matching file, so the decision about whether a
269 file is of interest can be based on any property of the file, not just its
270 filename. As an example, the provided \fBcpl_check_exe()\fR callback function
271 looks at the executable permissions of the file and the permissions of its
272 parent directories, and only returns 1 if the user has execute permission to
273 the file. This callback function can thus be used to lookup or complete command
274 names found in the directories listed in the user’s \fBPATH\fR environment
275 variable. The example program above provides a demonstration of this.
276 .sp
277 .LP
278 Beware that if somebody tries to complete an empty string, your callback will
279 get called once for every file in the cache, which could number in the
280 thousands. If your callback does anything time consuming, this could result in
281 an unacceptable delay for the user, so callbacks should be kept short.
282 .sp
283 .LP
284 To improve performance, whenever one of these callbacks is called, the choice
285 that it makes is cached, and the next time the corresponding file is looked up,
286 instead of calling the callback again, the cached record of whether it was
287 accepted or rejected is used. Thus if somebody tries to complete an empty
288 string, and hits tab a second time when nothing appears to happen, there will
289 only be one long delay, since the second pass will operate entirely from the
290 cached dispositions of the files. These cached dispositions are discarded
305 cached dispositions of the files. These cached dipositions are discarded
291 whenever \fBpca_scan_path()\fR is called, and whenever \fBpca_set_check_fn()\fR
292 is called with changed callback function or \fIdata\fR arguments.
293 .SS "Error Handling"
309 .sp
310 .LP
294 If \fBpca_scan_path()\fR reports that an error occurred by returning 1, you can
295 obtain a terse description of the error by calling
296 \fBpca_last_error\fR(\fIpc\fR). This returns an internal string containing an
297 error message.
298 .SS "Cleaning Up"
316 .sp
317 .LP
299 Once you have finished using a \fBPathCache\fR object, you can reclaim its
300 resources by passing it to the \fBdel_PathCache()\fR destructor function. This
301 takes a pointer to one of these objects, and always returns \fINULL\fR.
302 .SS "Thread Safety"

new/usr/src/man/man3tecla/pca_lookup_file.3tecla 6

322 .sp
323 .LP
303 It is safe to use the facilities of this module in multiple threads, provided
304 that each thread uses a separately allocated \fBPathCache\fR object. In other
305 words, if two threads want to do path searching, they should each call
306 \fBnew_PathCache()\fR to allocate their own caches.
307 .SH ATTRIBUTES
329 .sp
330 .LP
308 See \fBattributes\fR(5) for descriptions of the following attributes:
309 .sp

311 .sp
312 .TS
313 box;
314 c | c
315 l | l .
316 ATTRIBUTE TYPE ATTRIBUTE VALUE
317 _
318 Interface Stability Evolving
319 _
320 MT-Level MT-Safe
321 .TE

323 .SH SEE ALSO
347 .sp
348 .LP
324 \fBcpl_complete_word\fR(3TECLA), \fBef_expand_file\fR(3TECLA),
325 \fBgl_get_line\fR(3TECLA), \fBlibtecla\fR(3LIB), \fBattributes\fR(5)

