new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a 1

R R R R

17692 Sat Jan 18 13:36:57 2020
new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a
12212 typos in some section 3tecla nman pages

R R R R

"\ te

.\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd. All Rights
.\" Permission is hereby granted, free of charge, to any person obtaining a copy
\" "Software"), to deal in the Software wi thout restriction, including

\" without limtation the rights to use, copy, nodify, nerge, publish,
distribute, and/or sell copies of the Software, and to permt persons

to whomthe Software is furnished to do so, provided that the above
copyright notice(s) and this perm ssion notice appear in all copies of

the Software and that both the above copyright notice(s) and this

permni ssion notice appear in supporting docunentation.

S\
A\
A\
S\
S\
S\
.\" THE SOFTWARE |'S PROVIDED "AS | S", W THOUT WARRANTY OF ANY KIND, EXPRESS
.\" OR I MPLIED, | NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF

.\" MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPGCSE AND NONI NFRI NGEMENT
.\" OF THIRD PARTY RIGHTS. I N NO EVENT SHALL THE COPYRI GHT HOLDER OR

" HOLDERS INCLUDED IN THI' S NOTI CE BE LI ABLE FOR ANY CLAIM OR ANY SPECI AL
| NDI RECT OR CONSEQUENTI AL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTI NG
FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN ACTI ON OF CONTRACT,

NEGLI GENCE OR OTHER TORTI QUS ACTION, ARI SING QUT OF OR I N CONNECTI ON
" WTH THE USE OR PERFORVANCE OF THI S SOFTWARE.

Except as contained in this notice, the nane of a copyright hol der

shal |l not be used in advertising or otherwise to pronpte the sale, use
or other dealings in this Software without prior witten authorization
of the copyright hol der.

. Portions Copyright (c) 2007, Sun Mcrosystens, Inc. Al Rights Reserved.
. TH CPL_COVPLETE_WORD 3TECLA "January 18, 2020"

. TH CPL_COWPLETE_WORD 3TECLA "Jun 1, 2004"

. SH NAME
cpl _conplete_word, cfc_file_start, cfc_literal escapes, cfc_set_check_fn,
cpl _add_conpl etion, cpl _file_conpletions, cpl_last_error, cpl_list_conpletions,

cpl _recal |l _matches, cpl_record_error, del _Cpl FileConf, cpl_check_exe,

del _Wor dConpl etion, new Cpl Fi |l eConf, new WordConpl etion \- |ook up possible
conpl etions for a word

. SH SYNOPSI S

. LP

. nf

cc [\fiflag\fR&\|.\|.] \fIfile\fR&\|.\|[. \fB-ltecla\fR [\fllibrary\fR &\
#i ncl ude <stdio. h>

#i nclude <libtecla.h>

\ f BWrdConpl eti on *\fR\ fBnew WrdConpl eti on\f R(\fBvoi d\fR);

fi

.LP

. nf

\ f BWor dConpl etion *\fR\ fBdel _WordConpl eti on\fR(\fBWrdConpletion *\fRflcpl\fR);
i

.LP

. nf
\ f BCPL_MATCH _FN\ f R(\ f Bcpl _file_conpletions\fR);
fi

.LP
. nf
\ f BCpl Fi |l eConf *\fR\ fBnew Cpl FileConf\fR(\fBvoid\ fR);
fi

.LP
. nf

new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a 2

60

61 .f

110 .

112
113
114
115

117
119
120
118
119
120
121
122
123

\fBvoid\fR \fBcfc_file_start\fR(\fB(Cpl FileConf *\fRflcfc\fR \fBint\fR \flstar
i

.LP

. nf
\fBvoid\fR \fBcfc_literal _escapes\fR(\fBCpl Fil eConf *\fR flcfc\fR \fBint\fR \fl
i

.LP

. nf

\fBvoid\fR \fBcfc_set_check_fn\fR(\fBCpl Fil eConf *\fR flcfc\fR, \fBCpl CheckFn *\
\fBvoid *\fR flchk_data\fR);

fi

.LP
. nf
\ f BCPL_CHECK_FN\ f R(\ f Bcpl _check_exe\fR);
i

.LP
. nf
\ fBCpl Fi I eConf *\fR\ fBdel _Cpl FileConf\fR(\fBCpl FileConf *\fRflcfc\fR);
Cfi

.LP

. nf

\ f BCpl Mat ches *\f R\ f Bcpl _conpl et e_wor d\ f R(\ f BWordConpl etion *\fR flcpl\fR, \fBco
\fBint\fR\flword_end\fR \fBvoid *\fR fldata\fR, \fBCpl MatchFn *\fR flnatc

fi

.LP
. nf
\f BCpl Mat ches *\fR\fBcpl _recal | _mat ches\ f R(\ f BWrdConpl etion *\fRflcpl\fR);
Cfi

.LP

. nf
\fBint\fR \fBcpl _Ilist_conpletions\fR(\fBCpl Matches *\fR flresult\fR \fBFILE *\f
fi

.LP
. nf
\fBin pl\fR, \fBconst cha
Bconst char *\fR\fl
f

lcont_suffix\fR);

t\fR \fBcpl _add_conpl eti on\ f R(\ f BWr dConpl etion *\fR\fl
\fBint\fR\flword_start\fR \fBint\fR\flword_end\fR, \
\fBconst char *\fR fltype_suffix\fR \fBconst char *\fR\

c
f
Cfi

.LP

. nf
\?Bvoi d\f R \fBcpl _record_error\fR(\fBWrdConpletion *\fR flcpl\fR \fBconst char
i

.LP
. nf
\fBconst char *\fR fBcpl _|ast_error\fR(\fBWrdConpletion *\fRflcpl\fR);
fi

. SH DESCRI PTI ON
.sp

.LP

The \fBcpl _conplete_word()\fR function is part of the \fBlibtecla\l
library. It is usually called behind the scenes by \fBgl _get_Iine\
but can al so be called separately.

.sp

.LP

G ven an input line containing an inconplete word to be conpleted, it calls a

R(3LI B)
R(3TECLA),

— =

new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a

124 user-provided cal | back function (or the provided file-conpletion callback

125 function) to look up all possible conpletion suffixes for that word. The

126 cal | back function is expected to | ook backward in the line, starting fromthe
127 specified cursor position, to find the start of the word to be conpleted, then
128 to | ook up all possible conpletions of that word and record them one at a

129 time, by calling \fBcpl_add_conpletion()\fR

130 sp

131 . LP

132 The \fBnew, / Wor dConpl etion()\fR function creates the resources used by the

133 \fBcpl _conpl ete_word()\fR function. In particular, it maintains the nenory that
134 is used to return the results of calling \fBcpl _conpl ete_word()\fR

135 .sp

136 . LP

137 The \fBdel _WordConpl etion()\fR function del etes the resources that were

138 returned by a previous call to \fBnew WrdConpletion()\fR 1t always returns
139 \fINULL\fR (that is, a deleted object). It takes no action if the \flcpl\fR
140 argunent is \fINULL\fR

141 .sp

142 . LP

143 The cal |l back functions that | ook up possible conpletions should be defined with
144 the \fBCPL_MATCH FN()\fR macro, which is defined in <\fBlibtecla.h\fR>.

145 Functions of this type are called by \fBcpl _conplete_word()\fR, and all of the
146 argunents of the callback are those that were passed to said function. In

147 particular, the \flline\fR argunment contains the input line containing the word
148 to be conpleted, and \flword_end\fR is the index of the character that follows
149 the last character of the inconplete word within this string. The callback is
150 expected to | ook backwards from\flword_end\fR for the start of the inconplete
151 word. What constitutes the start of a word clearly depends on the application,
152 so it makes sense for the callback to take on this responsibility. For exanple,
153 the builtin filename conpletion function | ooks backwards until it encounters an
154 unescaped space or the start of the line. Having found the start of the word,
155 the cal |l back should then | ookup all possible conpletions of this word, and

156 record each conpletion with separate calls to \fBcpl_add_conpletion()\fR If
157 the cal |l back needs access to an application-specific synbol table, it can pass
158 it and any other data that it needs using the \fldata\fR argument. This renoves
159 any need for gl obal variables.

160 .sp

161 . LP

162 The cal | back function should return O if no errors occur. On failure it should
163 return 1 and register a terse description of the error by calling

164 \fBcpl _record_error()\fR

165 .sp

166 .LP

167 The |l ast error nmessage recorded by calling \fBcpl _record_error()\fR can

168 subsequently be queried by calling \fBcpl _|ast_error()\fR

169 .sp

170 . LP

171 The \fBcpl _add_conpletion()\fR function is called zero or nore times by the
172 conpl etion callback function to record each possible conpletion in the

173 specified \fBWrdConpl eti on\fR object. These conpl etions are subsequently

174 returned by \fBcpl _conplete_word()\fR The \flcpl\fR \flline\fR and

175 \flword_end\fR argunments shoul d be those that were passed to the call back

176 function. The \flword_start\fR argunent shoul d be the index w thin the input
177 line string of the start of the word that is being conpleted. This shoul d equal
178 \flword_end\fR if a zero-length string is being conpleted. The \flsuffix\fR
179 argunent is the string that would have to be appended to the inconplete word to
180 conplete it. If this needs any quoting (for exanple, the addition of

181 backsl ashes before special characters) to be valid within the displayed input
184 backsl ashes before special charaters) to be valid within the displayed input
182 line, this should be included. A copy of the suffix string is allocated

183 internally, so there is no need to naintain your copy of the string after

184 \fBcpl _add_conpl etion()\fR returns.

185 .sp

186 .LP

187 In the array of possible conpletions that the \fBcpl _conplete_word()\fR

188 function returns, the suffix recorded by \fBcpl_add_conpletion()\fRis |isted

new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a 4

189
192
190
191
192
193
194
195
198
196
197
198
201
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
217
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

233 .
234 i

235
236
237
238
239
240
241
242
243
244
245
246
247
248

266

along with the concatenation of this suffix with the word that |ies between
along with the concatentation of this suffix with the word that |ies between
\flword_start\fR and \flword_end\fR in the input Iine.

.sp

.LP

The \fltype_suffix\fR argument specifies an optional string to be appended to
the conpletion if it is displayed as part of a list of conpletions by

\flcpl _|ist_conpletions\fR The intention is that this indicates to the user the
\flcpl _list_conpletions\fR The intention is that this indicate to the user the
type of each conpletion. For exanple, the file conpletion function places a
directory separator after conpletions that are directories, to indicate their
nature to the user. Simlarly, if the conpletion were a function, you could
nature to the user. Simlary, if the conpletion were a function, you could
indicate this to the user by setting \fltype_suffixX\fRto “()". Note that the
\fltype_suffix\fR string is not copied, so if the argument is not a literal
string between speech nmarks, be sure that the string remains valid for at |east
as long as the results of \fBcpl_conplete_word()\fR are needed.

.sp

.LP

The \flcont_suffix\fR argunent is a continuation suffix to append to the
conpleted word in the input line if this is the only conpletion. This is
something that is not part of the conpletion itself, but that gives the user an
i ndi cation about how they m ght continue to extend the token. For exanpl e, the
file-conpletion callback function adds a directory separator if the conpleted
word is a directory. If the conpleted word were a function name, you coul d
simlarly aid the user by arranging for an open parenthesis to be appended.

.sp

.LP

The \fBcpl _conplete_word()\fR function is nornally called behind the scenes by
The \fBcpl _conplete_word()\fR is normally called behind the scenes by

\fBgl _get _I'ine\fR(3TECLA), but can also be called separately if you separately
all ocate a \fBWrdConpl etion\ fR object. It perforns word conpletion, as
described at the beginning of this section. Its first argunment is a resource
obj ect previously returned by \fBnew WrdConpletion()\fR The \flline\fR
argurment is the input line string, containing the word to be conpl eted. The
\flword_end\fR argunent contains the index of the character in the input I|ine,
that just follows the last character of the word to be conpleted. Wen called
by \fBgl _get_line()\fR this is the character over which the user pressed TAB.
The \fImatch_fn\fR argunment is the function pointer of the callback function
which will |ookup possible conpletions of the word, as descri bed above, and the
\fldata\fR argunent provides a way for the application to pass arbitrary data
to the callback function.

.sp

.LP

If no errors occur, the \fBcpl _conplete_word()\fR function returns a pointer to
a \fBCpl Mat ches\fR contai ner, as defined below. This container is allocated as
part of the \flcpl\fR object that was passed to \fBcpl _conplete_word()\fR and
wi Il thus change on each call which uses the same \flcpl\fR argunent.

t ypedef struct {

char *conpl eti on; /* A matching conpletion */
[* string */
char *suffix; /* The part of the */
/* conpletion string which */
/* woul d have to be */
/* appended to conpl ete the */
/* original word. */
const char *type_suffix; /* A suffix to be added when */
/* listing conpletions, to */
/* indicate the type of the */
/* conpletion. */
} Cpl Mat ch;
unchanged_portion_om tted_
fi

new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a

267 .in -2

269 .sp

270 . LP

271 If an error occurs during conpletion, \fBcpl_conplete_word()\fR returns

272 \fINULL\fR. A description of the error can be acquired by calling the

273 \fBcpl _last_error()\fR function.

274 .sp

275 . LP

276 The \fBcpl _last_error()\fR function returns a terse description of the error
277 which occurred on the last call to \fBcpl_conplete_word()\fR or

280 which occurred on the last call to \fBcpl _complete word()\fR or

278 \fBcpl _add_conpl etion()\fR

279 .sp

280 . LP

281 As a convenience, the return value of the last call to

282 \fBcpl _conpl ete_word()\fR can be recalled at a later time by calling

283 \fBcpl _recal | _matches()\fR If \fBcpl _conplete_word()\fR returned \fINULL\fR,
284 so w1l \fBcpl_recall _matches()\fR

285 .sp

286 .LP

287 When the \fBcpl _conpl ete_word()\fR function returns multiple possible

288 conpl etions, the \fBcpl _list_conpletions()\fR function can be called upon to
289 list them swtably arranged across the available width of the termnal. It
290 arranges for the displayed colunms of conpletions to all have the same width,
291 set by the | ongest conpletion. It also appends the \fltype_suffix\fR strings
292 that were recorded with each conpletion, thus indicating their types to the
293 user.

294 .SS "Builtin Filenane cor'rpl tion Call back"

295 By default the \fBgl_get_line()\fR function passes the

298 .sp

299 .LP

300 By default the \fBgl get _line()\fR function, passes the

296 \fBCPL_MATCH FN\f R(\ fBcps_fil e_conpl etions\fR) conpletion callback function to
297 \fBcpl _conplete_word()\fR This function can al so be used separately, either by
298 sending it to \fBcpl _conplete_word()\fR, or by calling it directly fromyour
299 own conpl etion call back function.

300 .sp

301 .in +2

302 . nf

303 #define CPL_MATCH FN(fn) int (fn)(WrdConpletion *cpl, \e

304 void *data, const char *line, \e

305 int word_end)

307 typedef CPL_MATCH FN(Cpl Mat chFn);

309 CPL_MATCH FN(cpl _fil e_conpletions);

310 .fi

311 .in -2

313 .sp

314 . LP

315 Certain aspects of the behavior of this callback can be changed via its

316 \fldata\fR argunment. |f you are happy with its default behavior you can pass
317 \fINULL\fR in this argunment. Qtherw se it should be a pointer to a

318 \fBCpl Fi | eConf\fR object, previously allocated by calling

319 \fBnew_Cpl Fil eConf ()\fR

320 .sp

321 .LP

322 \fBCpI Fil eConf\fR obj ects encapsul ate the configuration paraneters of

323 \fBcpl _file_conpletions()\fR These paraneters, which start out with default
324 val ues, can be changed by calling the accessor functions described bel ow.
325 .sp

326 .LP

327 By default, the \fBcpl _file_conpletions()\fR callback function searches

328 backwards for the start of the filenane being conpleted, |ooking for the first

new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a

329
330
331
332
333
334
335
336
337
338
339
340
341
346
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

364
366

367
368

369 .i

371
372
373
374
375
376
380

unescaped space or the start of the input line. If you wish to specify a
different location, call \fBcfc_file_start()\fRwi th the index at which the
filenane starts in the input line. Passing \flstart_index\fR=-1 reenables the

defaul t behavi or.

.sp
.LP

By default, when \fBcpl _file_conpletions()\fR looks at a filename in the input
l'ine, each lone backslash in the input line is interpreted as being a special
character which renoves any special significance of the character which follows

it, such as a space which should be taken as part of the filename rather than
delimting the start of the filenane. These backsl ashes are thus ignored while
| ooki ng for conpletions, and subsequently added before spaces, tabs and literal
backsl ashes in the list of conpletions. To have unescaped backsl ashes treated
back slashes in the |list of conpletions. To have unescaped back sl ashes treated
as normal characters, call \fBcfc_literal escapes()\fRwth a non-zero value in
its \flliteral\fR argunent.

.sp
.LP

By default, \fBcpl _file_conpletions()\fR reports all files whose nanes start
with the prefix that is being conpleted. If you only want a sel ected subset of

these files to be reported in the |ist of conpletions, you can arrange this by
providing a call back function which takes the full pathname of a file, and
returns O if the file should be ignored, or 1 if the file should be included in
the list of conpletions. To register such a function for use by

\fBcpl _file_conpletions()\fR, call \fBcfc_set_check_fn()\fR and pass it a
pointer to the function, together with a pointer to any data that you would

i ke passed to this callback whenever it Is called. Your callback can make its
deci si ons based on any property of the file, such as the filenanme itself,
\fmlether the file is readable, witable or executable, or even based on what the
ile contains.

.sp
Lin 42
. nf
#define CPL_CHECK FN(fn) int (fn)(void *data, \e

const char *pathnane)
typedef CPL_CHECK_ FN(Cpl CheckFn);

void cfc_set_check_fn(Cpl FileConf *cfc, Cpl CheckFn *chk_fn, \e
voi d *chk_dat a);
i

n-2

.sp
.LP

The \fBcpl _check_exe()\fR function is a provided cal |l back of the above type,
for use with \fBcpl _file_conpletions()\fR It returns non-zero if the filenane
that it is given represents a normal file that the user has pernission to
execute. You could use this to have \fBcpl _file_conpletions()\fR only |ist

that it is given represents a normal file that the user has execute perm ssion

381 to. You could use this to have \fBcpl _file_conpletions()\fR only Iist

377 conpl etions of executable files.

378 .sp

379 . LP

380 When you have finished with a \fBCpl Fil eConf\fR variable, you can pass it to
381 the \fBdel _Cpl Fil eConf()\fR destructor function to reclaimits nenory.

382 .SS "Thread Safety"

388 .sp

389 .LP

383 It is safe to use the facilities of this nmodule in nmultiple threads, provided
384 that each thread uses a separately allocated \fBWrdConpletion\fR object. In
385 other words, if two threads want to do word conpletion, they should each call
386 \fBnew WrdConpletion()\fR to allocate their own conpletion objects.

387 . SH ATTRI BUTES

395 .sp

396 .LP

new usr/src/ man/ man3t ecl a/ cpl _conpl ete_word. 3tecl a

388 See \fBattributes\fR(5) for descriptions of the follow ng attributes:
389 .sp

391 .sp

392 . TS

393 box;

394 c | ¢

395 1 | I .

396 ATTRI BUTE TYPE ATTRI BUTE VALUE
397

398 Interface Stability Evol vi ng
399 _

400 M- Level Mr- Saf e

401 . TE

403 . SH SEE ALSO

413 .sp

414 . LP

404 \fBef _expand_file\fR(3TECLA), \fBgl_get_line\fR(3TECLA), \fBlibtecla\fR(3LIB),
405 \fBpca_l ookup_file\fR(3TECLA), \fBattributes\fR(5)

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

R R R R

85606 Sat Jan 18 13:36:57 2020
new usr/src/ man/ man3tecl a/ gl _get _line.3tecla
12212 typos in some section 3tecla nman pages
IR R SR SR RS RS SRR SRR SRR R R R R R SRR R R SRR EEEEREEREEEEEEEEESE]
"\" te
.\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd.
A" Al Rights Reserved.

.\" Permission is hereby granted, free of charge, to any person obtaining a copy

1

2

3

4

5 .\" "Software"), to deal in the Software w thout restriction, including

6 .\" without limtation the rights to use, copy, nodify, nerge, publish,

7 .\" distribute, and/or sell copies of the Software, and to permt persons
8 .\" to whomthe Software is furnished to do so, provided that the above

9 .\" copyright notice(s) and this perm ssion notice appear in all copies of
10 .\" the Software and that both the above copyright notice(s) and this

11 .\" permnission notice appear in supporting docunentation.

13 .\" THE SOFTWARE | S PROVI DED "AS 1S", WTHOUT WARRANTY OF ANY KI ND, EXPRESS

14 .\" OR I MPLIED, I NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF

15 .\" MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE AND NONI NFRI NGEMENT
16 .\" OF TH RD PARTY RIGHTS. I N NO EVENT SHALL THE COPYRI GHT HOLDER OR

17 .\" HOLDERS | NCLUDED IN THI S NOTI CE BE LI ABLE FOR ANY CLAIM OR ANY SPECI AL
18 .\" | NDI RECT OR CONSEQUENTI AL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTI NG
19 .\" FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN ACTI ON OF CONTRACT,

20 .\" NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SING OUT OF OR | N CONNECTI ON
21 .\" WTH THE USE OR PERFORMANCE OF TH S SOFTWARE.

22 .\"

23 .\" Except as contained in this notice, the nane of a copyright hol der

24 .\" shall not be used in advertising or otherwi se to pronote the sale, use
25 .\" or other dealings in this Software without prior witten authorization
26 .\" of the copyright holder.

27 .\" Portions Copyright (c) 2007, Sun Mcrosystenms, Inc. All Rights Reserved.

28 . TH CGL_CET_LI NE 3TECLA "January 18, 2020"

28 .TH GL_GET_LINE 3TECLA "April 9, 2016"

29 . SH NAMVE

30 gl _get_line, new GetlLine, del_GetLine, gl_custom ze_conpletion,

31 gl _change_termnal, gl confi gure_getline, gl_load_hi story, gl _save_history,
32 gl _group_history, gl_show history, gl_ wat ch _fd, gl_inactivity_tineout,

33 gl _termnal _size, gl_set_termsize, gl _resize history, gl _limt_history,

34 gl _clear_history, gl _toggle_ history, gl _|ookup_history, gl _state_ of_history,
35 gl _range_of _history, gl_size_of_history, gl_echo_node, gl _replace_pronpt,

36 gl _pronpt_style, gl _ignore_signal, gl _trap_signal, gl_last_signal,

37 gl _conpl etion_action, gl_register_action, gl_display_text, gl_return_status,
38 gl _error_nessage, gl _catch_blocked, gl _list_signals, gl_bind_keyseq,

39 gl _erase_terminal, gl _automatic_history, gl_append_history, gl_query_char,
40 gl _read_char \- allow the user to conpose an Input |ine

41 . SH SYNOPSI S

42 . LP

44 #incl ude <stdio. h>
45 #include <libtecla.h>

47 \fBGetLine *\fR fBnew GetLine\fR(\fBsize_t\fR\fllinelen\fR \fBsize_t\fR\flhis

48 .fi

50 .LP
51 .nf
52 \fBGetLine *\fR fBdel _GetLine\fR(\fBGetLine *\fRflglI\fR);
53 .fi

55 . LP

56 .nf

57 \fBchar *\fRfBgl _get_line\fR(\fBGetLine *\fR flgl\fR \fBconst char *\fRflprom
58 \fBconst char *\fR flstart_line\fR \fBint\fR \flstart_pos\fR);

59 .fi

. nf
43 cc [\fIflag\fR &\|[.\|. 1 \fIfile\fR&\|.\|. \fB-Itecla\fR [\fllibrary\fR &\

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 2

61
62
63

.LP
. nf
\fBint\fR\fBgl _query_char\fR(\fBCGetLine *\fRflglI\fR \fBconst char *\fRflprom

64 .fi

66

67 .

68

69 .f

111 .
113 .

114
115
116

117 .
119 .

120
121

122 .

124 .
125 .

.LP
nf
\fBint\fR\fBgl _read_char\fR(\fBGetLine *\fRflIglI\fR);

\fBgl _custom ze_conpletion\fR(\fBGetLine *\fRflIglI\fR \fBvoid *\fRfl
I Mat chFn *\fRfTmatch_fn\fR);

o
=
o

nge_t ermi nal \ fR(\ BGetLine *\fRflglI\fR \fBFILE *\fR flinput
loutput _fp\fR \fBconst char *\fRfltermfR);

fBgI _configur getllne\ R(\fBGetLine *\fRflgl\fR \fBconst char *\fR
st char *\fR flapp_file\fR \ \fBconst char *\fR fluser_file\fR);

e
S=

\fBgI _bind_keysegq\fR(\fBGetLine *\fRflglI\fR, \f GKeyO|g|n\fR\fI0r|
onst char *\fR flkeyseq\fR, \fBconst char *\fR flaction\fR);

_2
——

\fR \fBgl _save hlstory\fR(\fB tLine *\fRf
f Bc t\fR\

gl\fR \fBconst char *\fRflfi
onst char *\fR flcoment\fR \fB n |

nt |
\ flmax_lines\fR);

fR\fBgl | oad _history\fR(\fBGetLine *\fRflgl\fR \fBconst char *\fRflIfi

nt\
\fBconst char *\fR flcoment\fR);

f fBgl _wat ch_fd\fR(\fBGetLine *
fRflcallba

R\ R \fRfI \fIfd\fR \fBd Fd
BA FdEvent Fn *\f R\ ck\fR, \fBvoi ;

g,,,
s
g

an

nt\
\ f

inactivity_timeout\fR(\fBCGetLine *\fRflgl\fR \fBd Ti neout Fn *\

\fBlnt\fR\fBgI_
\ f id *\fRfldata\fR, \fBunsigned long\fR \flsec\fR, \fBunsigned |ong\fR

Bvo

\fBl nt\fR \fBgl _group_history\fR(\fBGetLine *\fRflgl\fR \fBunsigned\fR \flstre

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 3

126
127
128

130
131
132

133 .

135
136
137
138

140
141
142
143

145 .

146
147

148 .

150
151
152
153
154

156
157
158
159

161
162
163
164
165

167
168
169
170

172
173
174
175

177
178
179

180 .

182
183
184

185 .

187
188
189
190

\fBint\fR \fBgl _show history\fR(\fBGetLine *\fRflglI\fR \fBFILE *\fRfIfp\fR \
\fBint\fR\flall_groups\fR \fBint\fR\flmax_|lines\fR);

i

.LP

. nf
\fBint\fR\fBgl _resize_history\fR(\fBGetLine *\fRflgl\fR \fBsize_t\fR \flbufsi
fi

.LP
. nf
\fBvoid\fR \fBgl _limt_history\fR(\fBGetLine *\fRflglI\fR \fBint\fR\flnmax_line
i

.LP
. nf
\fBvoid\f R \fBgl _clear_history\fR(\fBGetLine *\fRflglI\fR \fBint\fR\flall_grou
fi

LP

. nf
\fBvoid\fR \fBgl _toggl e_history\fR(\fBGetLine *\fRflglI\fR \fBint\fR \flenabl e\
fi

.LP

. nf

\fBd Term nal Si ze\fR \fBgl _term nal _si ze\fR(\fBGetLine *\fRflglI\fR \fBint\fR\
\fBint\fR\fldef_nline\fR);

fi

.LP

. nf
\fBint\fR\fBgl _set_termsize\fR(\fBGetLine *\fRflgl\fR \fBint\fR \flncolum\f
i

. LP

. nf

\fBint\fR \fBgl _| ookup_hi story\fR(\fBGetLine *\fRflgl\fR \fBunsigned long\fR\
\fBd Hi storyLine *\fR flhline\fR);

i

.LP

. nf
\fBvoid\fR \fBgl _state_of _history\fR(\fBGetLine *\fRflgl\fR \fBd Hi storyState
i

.LP
. nf
\fBvoi d\f R \ fBgl _range_of _history\fR(\fBGetLine *\fR flgl\fR \fBd Hi storyRange
Cfi

.LP

. nf
\fBvoi d\f R \ fBgl _si ze_of _history\fR(\fBCGetLine *\fRflglI\fR \fBd H storySi ze *\
fi

.LP

. nf
\fBvoi d\f R \ fBgl _echo_node\ f R(\ fBGetLine *\fRflIgI\fR \fBint\fR \flenable\fR);
fi

.LP
. nf
\fBvoid\fR \fBgl _repl ace_pronpt\fR(\fBGetLine *\fRflgl\fR \fBconst char *\fRf
i

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 4

192
193
194

195 .

197
198
199
200

202
203
204
205
206

208
209
210
211

213 .

214
215
216
217

218 .
220 .

221
222
223

224 .
226 .

227
228
229
230
231

233
234
235
236

238
239
240
241

243
244
245

246 .

248
249
250

251 .

253
254
255
256

.LP

. nf
\fBvoid\fR \fBgl _pronpt_style\fR(\fBGetLine *\fRflgl\fR \fBG PronptStyle\fR \f
fi

.LP
. nf
\fBint\fR \fBgl __ignore_signal\fR(\fBGetLine *\fRflglI\fR \fBint\fR \flsigno\fR)
Cfi

. LP
. nf
\fBint\fR \fBgl _trap_signa
f te \

fBCGetLine *\fRf
rSignal\fR r

Igl\fR \fBint\fR\flsigno\fR, \
\fR \fBint\fR\fI

errno_val ue\fR);
i

.LP
. nf
\fBint\fR\fBgl | ast_signal\fR(\fBGetLine *\fRflgl\fR);
i

g |

f
tch_fn\fR \fBint\fR\fllist_only\fR \fBconst char

n_action\fR(\fBCGetLine *\fRflglI\fR \fBvoid *\fR fldat
| i
I keyseq\fR);

\fBin R \fBvoid *\fR fldata\

fR\fBgl _register_action\fR(\fBGetLine *\fRflgl\f
f keyseq\fR);

I\
Bconst char *\fR flnane\fR, \fBconst char *\fRfl

\fBint\fR \fBgl displ
\f Bconst char *\
\EBint\fR \fl def

ine *\fRfIgI\fR \fBint\fR \flindentatio
const char *\fR flsuffix\fR \fBint\fR\
R \flstart\fR, \fBconst char *\fR flstri

- —h
x
—=
— —h —h
- —
— =
-

i
.LP
. nf
\fBd ReturnStatus\fR \fBgl _return_status\fR(\fBGetLine *\fRflglI\fR);
i
.LP

. nf
\fBconst char *\fR fBgl _error_nessage\fR(\fBGetLine *\fRflgl\fR \fBchar *\fRf
i

.LP

. nf
\fBvoi d\fR \ fBgl _cat ch_bl ocked\f R(\ f BGetLine *\fRflgl\fR);
fi

.LP

. nf
\fBint\fR\fBgl _list_signals\fR(\fBGetLine *\fRflglI\fR \fBsigset_t *\fRflset\
fi

.LP
. nf
\fBint\fR \fBgl _append_hi story\fR(\fBGetLine *\fRflgl\fR \fBconst char *\fRfl
i

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

258 . LP

259 . nf

260 \fBint\fR \fBgl _automatic_history\fR(\fBGetLine *\fRflglI\fR \fBint\fR \flenabl
261 .fi

263 . LP

264 . nf

265 \fBint\fR \fBgl _erase_term nal \fR(\fBGetLine *\fRflgl\fR);

266 . fi

268 . SH DESCRI PTI ON

270 . LP

269 The \fBgl _get_line()\fR function is part of the \fBlibtecla\fR(3LIB) library.
270 If the user is typing at a termnal, each call prompts themfor a |line of

271 input, then provides interactive editing facilities, simlar to those of the
272 UNLX \fBtcsh\fR shell. In addition to sinple command-line editing, it supports
273 recall of previously entered conmand |ines, TAB conpletion of file names, and
274 in-line wild-card expansion of filenanes. Docunmentation of both the user-I|evel
275 command-line editing features and all user configuration options can be found
276 on the \fBtecla\fR(5) nmanual page.

277 .SS "An Exanpl e"

280 . LP

278 The foll owi ng shows a conpl ete exanple of how to use the \fBgl_get_line()\fR
279 function to get input fromthe user:

280 .sp

281 .in +2

282 . nf

283 #include <stdio. h>

284 #include <l ocal e. h>

285 #include <libtecla.h>

287 int main(int argc, char *argv[])

288 {

289 char *line; /* The line that the user typed */

290 Get Line *gl; /* The gl _get_line() resource object */

292 setlocal e(LC_CTYPE, ""); /* Adopt the user’s choice */

293 /* of character set. */

295 gl = new GetLine(1024, 2048);

296 if(!gl)

297 return 1,

298 while((line=gl_get_line(gl, "$ ", NULL, -1)) != NULL &&

299 strcnp(line, "exit\en") !=0)

300 printf("You typed: %\en", line);

302 gl = del _GetLine(gl);

303 return O;

304 }

305 . fi

306 .in -2

308 .sp

309 .LP

310 In the exanple, first the resources needed by the \fBgl_get_line()\fR function
311 are created by calling \fBnew GetLine()\fR This allocates the nmenory used in
312 subsequent calls to the \fBgl _get_line()\fR function, including the history
313 buffer for recording previously entered |ines. Then one or nore lines are read
314 fromthe user, until either an error occurs, or the user types exit. Then

315 finally the resources that were allocated by \fBnew GetLine()\fR are returned
316 to the systemby calling \fBdel _GetLine()\fR Note the use of the \fINULL\fR
317 return value of \fBdel _GetLine()\fRto make \fIgI\fR\fINULL\fR This is a
318 safety precaution. If the program subsequently attenpts to pass \flgl\fR to
319 \fBgl _get_line()\fR said function will conplain, and return an error, instead
320 of attenpting to use the del eted resource object.

321 . SS "The Functions Used In The Exanple"

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

325
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

378 .

374
375
376
377
378
379
380
381
382
383
384
385

.LP

The \fBnew GetLine()\fR function creates the resources used by the

\fBgl _get_line()\fR function and returns an opaque pointer to the object that
contains them The maxi numlength of an input line is specified by the
\fllinelen\fR argunent, and the nunmber of bytes to allocate for storing history
lines is set by the \flhistlen\fR argunment. History lines are stored
back-to-back in a single buffer of this size. Note that this neans that the
nunber of history lines that can be stored at any given tinme, depends on the
I engths of the individual lines. If you want to place an upper limt on the
nunber of lines that can be stored, see the description of the

\fBgl _limt_history()\fR function. If you do not want history at all, specify
\flhistlen\fR as zero, and no history buffer will be allocated.

.sp

.LP

On error, a nessage is printed to \fBstderr\fR and \fINULL\fR i s returned.
.sp

.LP

The \fBdel _GetLine()\fR function del etes the resources that were returned by a
previous call to \fBnew GetLine()\fR It always returns \fINULL\fR (for
exanple, a deleted object). It does nothing if the \flgl\fR argunment is
\fINULL\ f R

.sp

.LP

The \fBgl _get _line()\fR function can be called any nunber of tines to read
input fromthe user. The gl argunent nust have been previously returned by a
call to \fBnew GetLine()\fR The \flpronpt\fR argunent should be a nornal
null-termnated string, specifying the pronpt to present the user with. By
default pronpts are displayed literally, but if enabled with the

\fBgl _pronpt _style()\fR function, pronpts can contain directives to do
underlining, switch to and frombold fonts, or turn highlighting on and off.
.sp

.LP

If you want to specify the initial contents of the line for the user to edit,
pass the desired string with the \flstart_line\fR argunent. You can then
speci fy which character of this line the cursor is initially positioned over by
using the \flstart_pos\fR argunment. This should be -1 if you want the cursor to
follow the | ast character of the start line. If you do not want to preload the
line in this manner, send \flstart_line\fR as \fINULL\fR, and set
\flstart_pos\fR to -1.

.sp

.LP

The \fBgl _get_line()\fR function returns a pointer to the line entered by the
user, or \fINULL\fR on error or at the end of the input. The returned pointer
is part of the specified \flgl\fR resource object, and thus should not be freed
by the caller, or assuned to be unchanging fromone call to the next. Wen
reading froma user at a termnal, there will always be a new ine character at
the end of the returned |ine. Wen standard input Is being taken froma pipe or
a file, there will sinmlarly be a newine unless the input line was too long to
store in the internal buffer. In the latter case you should call

\fBgl _get_line()\fR again to read the rest of the line. Note that this behavior
makes \fBgl _get_line()\fR simlar to \fBfgets\fR(3C). Wien \fBstdin\fR is not
connected to a terminal, \fBgl _get_line()\fR sinply calls \fBfgets()\fR

.SS "The Return Status O \fBgl_get_line()\fR
LP

The \fBgl _get _line()\fR function has two possible return values: a pointer to
the conpleted input line, or \fINULL\fR Additional information about what
caused \fBgl _get _line()\fRto return is available both by inspecting
\fBerrno\fR and by calling the \fBgl _return_status()\fR function.

.sp

.LP

The following are the possible enunerated val ues returned by

\fBgl _return_status()\fR

.sp

.ne 2

. ha
\fB\f BGLR_ NEW.INE\fR fR

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

386
387
388
389
390

392
393
394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412

414
415
416
417
418
419
420
421
422
423

425
426
427
428
429
430
431
436
432
433

435
436
437
438
439
440
441
442
443

.ad

. RS 15n

The last call to \fBgl_get_line()\fR successfully returned a conpl eted input
l'i ne.

.RE

.Sp
.ne 2

.na
\fB\f BGLR BLOCKED\f R\ f R

.ad

. RS 15n

The \fBgl _get_line()\fR function was i n non-bl ocking server node, and returned
early to avoid bl ocking the process while waiting for termnal |/O The

\ fBgl _pending_i o()\fR function can be used to see what type of I/0O

\fBgl _get _line()\fR was waiting for. See the \fBgl _i o_node\fR(3TECLA).

.RE

.sp
.ne 2

.na
\fB\f BGLR_SIGNAL\f R f R

.ad

. RS 15n

A signal was caught by \fBgl _get_line()\fR that had an after-signal disposition
of \fBGLS_ABORT\fR See \fBgl _trap_signal ()\fR

. RE

.sp
.ne 2

. ha
\fB\f BGLR_TI MEQUT\ f R\ f R

. al
. RS 15n

The inactivity tinmer expired while \fBgl_get_line()\fR was waiting for input,
and the timeout callback function returned \fBGTO ABORT\fR See

\fBgl _inactivity_tineout()\fR for information about timeouts.

.RE

.sp
.ne 2

.na
\fB\f BGLR_FDABORT\f R\ f R
.ad

. RS 15n

An application
An application
\ fBgl _wat ch_f d(
. RE

1/0 call back returned \fBGLFD ABORT\fR See
1/ 0O cal l back returned \fBGFD_ABORT\fR Ssee
J\VfR

.sp

.ne 2

.na

\fB\f BGLR EORF\f R fR

.ad

. RS 15n

End of file reached. This can happen when input is conming froma file or a
pi pe, instead of the terminal. It also occurs if the user invokes the
list-or-eof or del-char-or-list-or-eof actions at the start of a new line.

444 . RE

446
447
448
449
450

.sp
.ne 2

.na
\fB\f BGLR_ERROR\ f R f R
.ad

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

451
452
453
454

456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

478 .

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

498
499
500
501
502
503
504
505

507
508
509
510
511
512
513
514

.RS 15n

An unexpected error caused \fBgl_get_line()\fR to abort (consult \fBerrno\fR
and/or \fBgl _error_nessage()\fR for details.

.RE

.sp
. LP

When \fBgl _return_status()\fR returns \fBGLR ERROR fR and t he val ue of
\fBerrno\fR is not sufficient to explain what happened, you can use the

\fBgl _error_nessage()\fR function to request a description of the last error
that occurred.

.sp

.LP

The return value of \fBgl_error_nessage()\fRis a pointer to the nessage that
occurred. If the \flbuff\fR argunent is \fINULL\fR, this will be a pointer to a
buffer within \flgl\fR whose value will probably change on the next call to any
function associated with \fBgl_get_line()\fR Oherwise, if a non-null
\flbuff\fR argunent is provided, the error nmessage, including a '\e0O’
termnator, will be witten within the first \fIn\fR elenents of this buffer,
and the return value will be a pointer to the first element of this buffer. If
the nessage will not fit in the provided buffer, it will be truncated to fit.
.SS "Optional Pronpt Formatting"

LP

Whereas by default the pronpt string that you specify is displayed literally
wi t hout any special interpretation of the characters within it, the

\fBgl _pronpt _style()\fR function can be used to enable optional formatting
directives wthin the pronpt.

.sp

.LP
The \flstyle\fR argunment, which specifies the formatting style, can take any of
the foll owi ng val ues:

.sp
.ne 2

.na
\ f B\ f BGL_FORVAT_PROWT\ f R f R

.ad

. RS 21n

In this style, the formatting directives described bel ow, when included in
pronpt strings, are interpreted as foll ows:

s

.ne 2

.na
\fB\fBMB\fR fR
.ad

. RS 6n
Di spl ay subsequent characters with a bold font.
. RE

.sp
.ne 2

. ha
\fB\fBW\fRfR

.a

. RS 6n

Stop di splaying characters with the bold font.
. RE

.sp
.ne 2

.ha
\fB\fBB\fRfR

.ad

.RS 6n

Make subsequent characters flash.
.RE

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

516
517
518
519
520
521
522

.sp
.ne 2

. na
\fg\fB%\fR\fR

. al
. RS 6n
Turn of f flashing characters.

523 . RE

525
526
527
528
529
530
531
532

534
535
536
537
538
539
540
541

543
544
545
546
547
548
549
550

552
553
554
555
556
557
558
559

561
562
563
564
565
566
567
568

570
571
572
573
574
575
576
577

579
580
581

.sp
.ne 2

. na
\fB\fBBAfR fR

.ad

. RS 6n

Underl i ne subsequent characters.
. RE

.sp
.ne 2

.na
\fB\fBW\fRfR

.ad

. RS 6n

Stop underlining characters.
. RE

.sp
.ne 2

.na
\fB\fB¥\fRfR

.ad

. RS 6n

Switch to a pale (half brightness) font.
. RE

.sp

.ne 2

. na

\fB\fB¥p\fR fR
d

. al
.RS 6n

Stop using the pale font.
.RE

.sp
.ne 2

. na
\fB\fB¥®\fR fR
.ad

. RS 6n

Hi ghl i ght subsequent characters (al so known as standout node).
.RE

.sp
.ne 2

.na
\fB\fB¥%s\fR fR

.ad

. RS 6n

Stop highlighting characters.
.RE

.sp
.ne 2
.na

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

582 \fB\fBWAfR fR

583 . ad

584 . RS 6n

585 Turn on reverse video.
586 . RE

588 .sp

589 .ne 2

590 .na

591 \fB\fBW\fR fR

592 . ad

593 . RS 6n

594 Turn off reverse video.
595 . RE

597 .sp

598 .ne 2

599 .na

600 \fB\fB®WAfR fR

601 . ad

602 . RS 6n

603

604

606
607
608
609
610
611
612
613
614

Di splay a single %character.
.RE

For exanple, in this node, a pronpt string |ike "%JOKW$" woul d di splay the
pronpt "OK$", but with the OK part underlined.

.sp
Note that although a pair of characters that starts with a %character, but
does not nmatch any of the above directives is displayed literally, if a new
directive is subsequently introduced which does match, the displayed pronpt
will change, so it is better to always use %boto display a literal %

.sp

Al'so note that not all terminals support all of these text attributes, and that

615 sone substitute a different attribute for mssing ones.
616 . RE

618 . sp

619 .ne 2

620 .na

621 \fB\f BG_LI TERAL_PROWT\fR fR

622 . al

623 . RS 21n

624 In this style, the pronpt string is printed literally. This is the default
625 style.

626 . RE

628 .SS "Alternate Configuration Sources"

635

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

.LP

By default users have the option of configuring the behavior of

\fBgl _get_line()\fRwith a configuration file called \fB\& teclarc\fRin their
home directories. The fact that all applications share this same configuration
file is both an advantage and a di sadvantage. In npst cases it is an advantage,
since it encourages uniformty, and frees the user fromhaving to configure
each application separately. In sonme applications, however, this single neans
of configuration is a problem This is particularly true of enbedded software,
where there’s no filesystemto read a configuration file from and also in
applications where a radically different choice of keybindings is needed to
emul ate a | egacy keyboard interface. To cater for such cases, the

\fBgl _configure_getline()\fR function allows the application to control where
configuration information is read from

.sp

.LP

The \fBgl _configure_getline()\fR function allows the configurati on conmands
that would normally be read froma user’s \fB~/.teclarc\fR file, to be read
fromany or none of, a string, an application specific configuration file,
and/or a user-specific configuration file. If this function is called before

10

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

647 the first call to \fBgl_get_line()\fR the default behavior of reading

648 \fB~/.teclarc\fR on the first call to \fBgl_get_line()\fR is disabled, so all
649 configurations nmust be achi eved using the configuration sources specified with
650 this function.

651 .sp

652 . LP

653 If \flapp_string\fR!=\fINULL\fR, then it is interpreted as a string

654 containing one or nore configuration commands, separated fromeach other in the
655 string by enbedded newline characters. If \flapp_file\fR!=\fINULL\fR then it
656 is interpreted as the full pathnane of an application-specific configuration
657 file. If user_file !=\fINULL\fR then it is interpreted as the full path nane
658 of a user-specific configuration file, such as \fB~/.teclarc\fR For exanple,
659 in the call

660 .sp

661 .in +2

662 . nf

663 gl _configure_getline(gl, "edit-node vi \en nobeep"”,

664 "/usr/sharel/ nyapp/teclarc", "~/ .teclarc");

665 . fi

666 .in -2

668 .sp

669 .LP

670 The \flapp_string\fR argunent causes the calling application to start in

671 \fBvi\fR(1) edit-npde, instead of the default \fBenacs\fR node, and turns off
672 the use of the terminal bell by the library. It then attenpts to read

673 systemw de configuration conmands from an optional file called

674 \fB/usr/share/ nyapp/teclarc\fR, then finally reads user-specific configuration
675 commands from an optional \fB\& teclarc\fRfile in the user’s hone directory.
676 Note that the argunents are listed in ascending order of priority, with the
677 contents of \flapp_string\fR being potentially overridden by commands in

684 contents of \flapp_string\fR being potentially over riden by commands in

678 \flapp_file\fR and commands in \flapp_file\fR potentially being overridden by
679 commands in \fluser_file\fR

680 .sp

681 . LP

682 You can call this function as many tines as needed, the results being

683 cumul ative, but note that copies of any file names specified with the

684 \flapp_file\fR and \fluser_file\fR argunents are recorded internally for

685 subsequent use by the read-init-files key-binding function, so if you plan to
686 call this function nultiple tinmes, be sure that the last call specifies the
687 filenanes that you want re-read when the user requests that the configuration
688 files be re-read.

689 .sp

690 .LP

691 Individual key sequences can al so be bound and unbound using the

692 \fBgl _bi nd_keyseq()\fR function. The \florigin\fR argument specifies the

693 priority of the binding, according to whomit is being established for, and
694 nust be one of the followi ng two val ues.

695 .sp

696 .ne 2

697 .na

698 \fB\f BGL_USER KEY\f R fR

699 . ad

700 . RS 15n

701 The user requested this key-binding.

702 . RE

704 .sp

705 .ne 2

706 . na

707 \fB\f BGL_APP_KEW\ f R f R

708 . ad

709 . RS 15n

710 This is a default binding set by the application.

711 . RE

11

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

713
714
715
716
717
718
719
720
721
722
723
724
725
726
734
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
759
752
753
754
755
756
764
757
758
759
767
760
761
762
763
764
765
766
767
768
777
769
770
771
772

12

.sp
.LP

When both user and application bindings for a given key sequence have been
speci fied, the user binding takes precedence. The application's binding is
subsequently reinstated if the user’s binding is later unbound with either
another call to this function, or a call to \fBgl _configure_getline()\fR

.sp

.LP

The \fl keyseq\fR argunment specifies the key sequence to be bound or unbound,
and is expressed in the sane way as in a \fB~/.teclarc\fR configuration file.
The \flaction\fR argunent nust either be a string containing the nane of the
action to bind the key sequence to, or it nust be \fINULL\fR or \fB""\fR to
unbi nd the key sequence.

. SS "Custom zed Wrd Conpl eti on”

.LP

If in your application you would |ike to have TAB conpl eti on conpl ete ot her
things in addition to or instead of filenames, you can arrange this by
registering an alternate conpletion callback function with a call to the

\ fBgl _custoni ze_conpl etion()\fR function.

.sp

.LP

The \fldata\fR argunment provides a way for your application to pass arbitrary,
application-specific information to the callback function. This is passed to
the call back every time that it is called. It mght for exanple point to the
synbol table from which possible conpletions are to be sought. The
\flmatch_fn\fR argunment specifies the callback function to be called. The
\f1Cpl Mat chFn\fR function type is defined in <\fBlibtecla.h\\fR>, as is a

\ f BCPL_MATCH FN()\fR macro that you can use to declare and prototype call back
functions. The declaration and responsibilities of callback functions are
described in depth on the \fBcpl _conpl ete_word\fR(3TECLA) manual page.

.sp

. LP

The cal | back function is responsible for |ooking backwards in the input |ine
fromthe point at which the user pressed TAB, to find the start of the word
bei ng conpleted. It then nust | ookup possible conpletions of this word, and
record themone by one in the \fBWwrdConpletion\fR object that is passed to it
as an argunent, by calling the \fBcpl _add_conpletion()\fR function. If the
cal | back function wants to provide filename conpletion in addition to its own
specific conpletions, it has the option of itself calling the builtin filenane
conpl etion call back. This is also docunented in the

conpl etion callback. This also is docunmented on the

\ f Bcpl _conpl et e_wor d\ f RC3TECLA) manual page.

.sp

. LP

If you would like \fBgl_get_line()\fRto return the current input |ine when a
successful conpletion has been made, you can arrange this when you call
successful conpletion is been nade, you can arrange this when you call

\ fBcpl _add_conpl etion()\fR by making the | ast character of the continuation
suffix a newine character. The input line will be updated to display the
conpl etion, together with any continuation suffix up to the newine character,
conpl etion, together with any contiuation suffix up to the newine character,
and \fBgl _get_line()\fRw Il return this input Iine.

.sp

.LP

I f your callback function needs to wite sonmething to the terminal, it nust
call \fBgl _normal _io()\fR before doing so. This will start a newline after the
input line that is currently being edited, reinstate normal termnal /0O and
notify \fBgl_get_line()\fR that the input line will need to be redrawn when the
cal | back returns.

. SS "Addi ng Conpl etion Actions"

.LP

In the previous section the ability to customi ze the behavior of the only
default conpl etion action, conplete-word, was described. In this section the
ability to install additional action functions, so that different types of word
conpl etion can be bound to different key sequences, is described. This is

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 13

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
802
794
795
796
797
798
799
800
801
802
803
804
814
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

832 .i

834
835
836

achi eved by using the \fBgl _conpletion_action()\fR function.

.sp

.LP

The \fldata\fR and \flmatch_fn\fR argunents are as described on the

\ f Bcpl _conpl et e_wor d\ f RC3TECLA) manual page, and specify the callback function

that should be invoked to identify possible conpletions. The \fllist_only\fR

argunent determnes whether the action that is being defined should attenpt to

conplete the word as far as possible in the input |ine before displaying any

possi bl e anmbi guous conpl etions, or whether it should sinply display the Iist of

possi bl e conpl etions wthout touching the input line. The forner option is

sel ected by specifying a value of 0, and the latter by specifying a value of 1.

The \flname\fR argunent specifies the name by which configuration files and

future invocations of this function should refer to the action. This nust

either be the nanme of an existing conpletion action to be changed, or be a new

unused nanme for a new action. Finally, the \flkeyseq\fR argunent specifies the

default key sequence to bind the action to. If this is \fINULL\fR, no new key

sequence will be bound to the action.

.sp

.LP

Beware that in order for the user to be able to change the key sequence that is

bound to actions that are installed in this manner, you should call

bound to actions that are installed in this nmanner, you shoul dcal |

\fBgl _conpl etion_action()\fRto install a given action for the first tine

bet ween cal ling \anew_Get Line()\fR and the first call to \fBgl_get_line()\fR

O herwi se, when the user’s configuration file is read on the first call to

\fBgl _get_line()\fR the name of the your additional action will not be known,

and any reference to it in the configuration file will generate an error.

- SPp

LP

As discussed for \fBgl_custom ze_conpletion()\fR, if your callback function

needs to wite anything to the termnal, it nust call \fBgl_normal _io()\fR

bef ore doing so.

. SS "Defining Custom Actions"”

.LP

Al t hough the built-in key-binding actions are sufficient for the needs of nost

applications, occasionally a specialized application may need to define one or

nore custom actions, bound to application-specific key sequences. For exanple,

a sal es application would benefit fromhaving a key sequence that displayed the

part name that corresponded to a part nunber preceding the cursor. Such a

feature is clearly beyond the scope of the built-in action functions. So for

such special cases, the \fBgl _register_action()\fR function is provided.

.sp

.LP

The \fBgl _register_action()\fR function lets the application register an

external function, \fIfn\fR, that will thereafter be called whenever either the

speci fi ed key sequence, \flkeyseq\fR is entered by the user, or the user

enters any other key sequence that the user subsequently bi nds to the speci fied

action narme, \flnane\fR, in their configuration file. The \fldata\fR argunent

can be a pointer to anything that the application wants to have passed to the

action function, \fIfn\fR whenever that function is invoked.

.sp

LP

The action functi on,

\ f BGL_ACTI ON_FN()\ fR

.sp

.in +2

. nf

#define GL_ACTION_FN(fn) G AfterAction (fn)(CetLine *gl, \e
void *data, int count, size_t curpos, \e
const char *line)

\fIfn\fR should be declared using the
macro, which is defined in <\fBlibtecla.h\fR>.

Cfi
n-2

- Sp
LP
The \flgl\fR and \fldata\fR argunments are those that were previously passed to

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 14

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

\fBgl _register_action()\fR when the action function was registered. The
\flcount\fR argument is a nuneric argument which the user has the option of
entering using the digit-argunent action, before invoking the action. If the
user does not enter a nunber, then the \flcount\fR argunment is set to 1.
Nominally this argunent is interpreted as a repeat count, neaning that the
action should be repeated that nany tines. In practice however, for sone
actions a repeat count nekes little sense. In such cases, actions can either
sinply ignore the \flcount\fR argunment, or use its value for a different

pur pose.

.sp

.LP

A copy of the current input line is passed in the read-only \flline\fR
argunent. The current cursor position within this string is given by the index
contained in the \flcurpos\fR argunent. Note that direct manipulation of the
input line and the cursor position is not permtted because the rules dictated
by various nodes (such as \fBvi\fR node versus \fBemacs\fR npde, no-echo node,
and insert node versus overstrike nbde) make it too conplex for an application
witer to wite a conformng editing action, as well as constrain future
changes to the internals of \fBgl_get_line()\fR A potential solution to this
dil emma woul d be to allow the action function to edit the line using the
existing editing actions. This is currently under consideration.

.sp

.LP

If the action function wishes to wite text to the terminal without this
getting mixed up with the displayed text of the input line, or read fromthe
termnal w thout having to handle raw termnal I/O then before doi ng either of
these operations, it must tenporarily suspend line editing by calling the

\ f Bgl _normal _i o()\fR function. This function flushes any pending output to the

terminal, noves the cursor to the start of the Iine that follows the |ast
terminal line of the input line, then restores the termnal to a state that is
suitable for use with the C\fBstdio\fR facilities. The latter includes such

things as restoring the normal mapping of \en to \er\en, and, when in server
node, restoring the normal blocking formof terminal 1/O Having called this
functlon the action function can read fromand wite to the termnal w thout
the fear of creating a mess. It is not necessary for the action function to

restore the original editing environment before it returns. This is done

873 automatically by \fBgl _get_line()\fR after the action function returns. The
874 following is a sinple exanple of an action function which wites the sentence
875 "Hello world" on a newternminal line after the line being edited. Wen this
876 function returns, the input line is redrawn on the line that follows the "Hello
877 world" line, and line editing resunes.

878 .sp

879 .in +2

880 . nf

881 {statlc GL_ACTI ON_FN(say_hel I o_f n)

882

883 if(gl_normal _io(gl)) /* Tenporarily suspend editing */

884 return GLA ABORT;

885 printf("Hello world\en");

886 return GLA_CONTI NUE;

887 }

888 . fi

889 .in -2

891 .sp

892 . LP

893 Action functions nust return one of the follow ng values, to tell

894 \fBgl _get_line()\fR how to proceed.

895 .sp

896 .ne 2

897 .na

898 \fB\f BGLA ABORT\fR fR

899 . ad

900 . RS 16n

901 Cause \fBgl _get_line()\fRto return \fINULL\fR

902 . RE

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 15

904 .sp
905 .ne 2

906 .na

907 \fB\f BGLA_ RETURN\f R f R

908 . ad

909 . RS 16n

910 Cause \fBgl _get_line()\fR to return the conpleted input |line

911 .RE

913 .sp

914 .ne 2

915 .na

916 \fB\f BGLA CONTINUE\fR fR

917 . ad

918 . RS 16n

919 Resune command-|ine editing.

920 . RE

922 .sp

923 . LP

924 Note that the \flnane\fR argunent of \fBgl_register_action()\fR specifies the
925 nanme by which a user can refer to the action in their configuration file. This
926 allows themto re-bind the action to an alternate key-sequence. In order for
927 this to work, it is necessary to call \fBgl_register_action()\fR between

928 calling \fBnew GetLine()\fR and the first call to \fBgl_get_line()\fR

929 . SS "H story Files"

940

930 To save the contents of the history buffer before quitting your application and
931 subsequently restore them when you next start the application, the

932 \fBgl _save_history()\fR and \fBgl _I oad_hi story()\fR functions are provided.
933 .sp

934 . LP

935 The \fIfilename\fR argunent specifies the name to give the history file when
936 saving, or the nane of an existing history file, when |loading. This may contain
937 hone directory and environnent variable expr essi ons, such as

938 \fB~/.nyapp_history\fR or \fB$HOVE/ . nyapp_hi story\fR

939 .sp

940 .LP

941 Along with each history line, additional information about it, such as its

942 nesting level and when it was entered by the user, is recorded as a comment
943 preceding the line in the history file. Witing this as a conment al |l ows the
944 history file to double as a conmand file, just in case you wish to replay a
945 whol e session using it. Since comment prefixes differ in different |anguages,
946 the comrent argunent is provided for specifying the comment prefix. For

947 exanple, if your application were a UNI X shell, such as the Bourne shell, you
948 woul d specify "#" here. Watever you choose for the comrent character, you nust
949 specify the sane prefix to \fBgl _|oad_history()\fR that you used when you

950 called \fBgl _save_history()\fRto wite the history file.

951 .sp

952 . LP

953 The \flmax_lines\fR argunent nust be either -1 to specify that all lines in the
954 history |ist be saved, or a positive nunber specifying a ceiling on how many of
955 the npbst recent |ines should be saved.

956 .sp

957 . LP

958 Both functions return non-zero on error, after witing an error nessage to
969 Both fuctions return non-zero on error, after witing an error nessage to

959 \fBstderr\fR Note that \fBgl_load_history()\fR does not consider the

960 non-existence of a file to be an error.

961 .SS "Multiple History Lists"

973 . LP

962 If your application uses a single \fBGetLine\fR object for entering many

963 different types of input lines, you mght want \fBgl_get_line()\fR to

964 di stinguish the different types of lines in the history Tist, and only recall
965 lines that match the current type of line. To support this requirerrent,

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 16
966 \fBgl _get_line()\fR marks lines being recorded in the history list with an

967 integer identifier chosen by the application. Initially this identifier is set
968 to 0 by \fBnew GetLine()\fR but it can be changed subsequently by calling

969 \fBgl _group_history()\fR

970 .sp

971 . LP

972 The integer identifier I D can be any nunber chosen by the application, but note

973
974
975
976
977
978
979
980
981
982
983
996
984
985
986
987
988
989

that \fBgl_save_history()\fR and \fBgl _| oad_history()\fR preserve the
associ ation between identifiers and historical input |ines between program
i nvocations, so you should choose fixed identifiers for the different types of
input |ine used by your application.
.sp
.LP
Wienever \fBgl _get_line()\fR appends a new input line to the history list, the
current history identifier is recorded with it, and when it is asked to recall
a historical input line, it only recalls lines that are narked with the current
i dent ifier.

SS "Di spl ayi ng History"

The history list can be displayed by calling \fBgl_show history()\fR This
function displays the current contents of the history list to the \fBstdio\fR
output stream\flIfp\fR If the \flmax_|lines\fR argument is greater than or
equal to zero, then no nore than this nunber of the npbst recent lines will be
displayed. If the \flall_groups\fR argument is non-zero, lines fromall history
groups are displayed. Otherwi se only those of the currently selected history

990 group are displayed. The format string argunent, \flfnm\fR determ nes how the
991 line is displayed. This can contain arbitrary characters which are witten
992 verbatim interleaved with any of the follow ng format directives
993 .sp

994 .ne 2

995 . na

996 \fB\fBYD\fR fR

997 . ad

998 . RS 6n

999 The date on which the line was originally entered, formatted |ike 2001-11-20
1000 . RE

1002 . sp

1003 .ne 2

1004 . na

1005 \fB\fBWN\fR fR

1006 . ad

1007 . RS 6n

1008 The tinme of day when the line was entered, formatted |ike 23:59:59
1009 . RE

1011 .sp

1012 .ne 2

1013 .na

1014 \fB\fBBMfR fR

1015 . ad

1016 . RS 6n

1017 The sequential entry nunber of the line in the history buffer.
1018 . RE

1020 . sp

1021 .ne 2

1022 .na

1023 \fB\fB#3 fRfR

1024 . ad

1025 . RS 6n

1026 The nunber of the history group which the line belongs to

1027 . RE

1029 .sp

1030 .ne 2

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 17

1031
1032
1033
1034
1035
1036

1038
1039

.na
\fB\fB®WAfR fR

.ad

.RS 6n

Aliteral %character.
.RE

.sp
.ne 2

1040 .na

1041
1042
1043
1044

\fB\fBBAFfRfR

.ad

.RS 6n

The history line itself.

1045 . RE

1047
1048
1049
1050
1051

.sp
.LP

Thus a format string |ike
.sp

.in +2

"o 9% %0" woul d output sonething like:

1052 . nf

1053

1054

1055
1057

1058

1059
1060
1074
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

1074

1075
1076
1077
1078
1079
1080
1095
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094

2001-11-20 10:23:34 Hello world
f
.in -2

.sp
LP

Note the inclusion of an explicit newine character in the format string.
SS "Looking Up History"

The \ f Bgl _I ookup_hi story()\fRfunchon allows the calling application to | ook
up lines in the history |ist

- Sp

.LP

The \flid\fR argunent indicates which line to | ook up, where the first line
that was entered in the history list after \fBnew GetLine()\fR was called is
denoted by 0, and subsequently entered |lines are denoted w th successively

hi gher nunbers. Note that the range of lines currently preserved in the history
I'ist can be queried by calling the \fBgl _range_of _history()\fR function. If the
requested line is in the history list, the details of the line are recorded in
the variable pointed to by the VElhline\fR argunent, and 1 is returned.

O herwise O is returned, and the variable pointed to by \flhline\fRis left
unchanged.

sp

.LP

Beware that the string returned in \flhline\fR->\flline\fRis part of the

hi story buffer, so it nmust not be nodified by the caller, and will be recycled
on the next caII to any function that takes \flgl\fR as |ts argunment. Therefore
you shoul d neke a private copy of this string if you need to keep it.

.SS "Manual History Archival”

.LP

By default, whenever a line is entered by the user, it is automatically
appended to the history list, just before \fBgl_get_line()\fR returns the line
to the caller. This is convenient for the majority of applications, but there
are al so applications that need finer-grained control over what gets added to
the history list. In such cases, the automatic addition of entered lines to the
history list can be turned off by calling the \fBgl_automatic_history()\fR
function.

.sp

.LP

If this function is called with its \flenable\fR argunent set to O,

\fBgl _get_line()\fRw Il not automatically archive subsequently entered |ines.
Aut onatic archiving can be reenabled at a later time by calling this function
again, with its \flenable\fR argunent set to 1. Wile automatic history
archiving is disabled, the calling application can use the

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 18
1095 \f Bgl _append_history()\fR to append lines to the history list as needed.

1096 .sp

1097 . LP

1098 The \flline\fR argunment specifies the line to be added to the history list.

1099 This nmust be a normal '\e0 ' termnated string. |If this string contains any
1100 new i ne characters, the line that gets archived in the history list will be
1101 terminated by the first of these. Gtherwise it will be termnated by the "\e0 ’
1102 terminator. If the line is longer than the maxi numinput line length that was

1103
1104
1105

1106

1107
1108
1109
1110
1111
1112
1113
1114
1115

speci fied when \fBnew GetLine()\fR was called, it will be truncated to the
actual \fBgl_get_line()\fRIine Iength when the line is recalled.

.sp

LP

I f successful, \fBgl_append_history()\fRreturns 0. Gtherwise it returns
non-zero and sets \fBerrno\fR to one of the follow ng val ues.

.sp

.ne 2

.na
\f B\ f BEI NVAL\ f R f R

.ad

. RS 10n

One of the argunents passed to \fBgl _append_history()\fR was \fINULL\fR

1116 . RE

1118
1119

.sp
.ne 2

1120 .na

1121
1122
1123
1124
1125

\ f B\ f BENOVMEM f R f R

.ad

RS 10
The speufled line was | onger than the allocated size of the history buffer (as
speci fied when \fBnew CGetLine()\fR was called), so it could not be archived.

1126 . RE

1128
1129
1130
1131
1132
1133
1134
1150
1135
1136
1137

1138

1139
1140

.sp
.LP
A textual description of the error can optionally be obtained by calling

\fBgl _error_nessage()\fR Note that after such an error, the history |ist
remains in a valid state to receive new history lines, so there is little harm
in sinply ignoring the return status of \fBgl_append_history()\fR

.SS "M scel | aneous History Configuration”
LP

If you wi sh to change the size of the hist
specified in the call to \fBnew GetLine()\
\fBgl _resize_history()\fR function.

sp

.LP

The \flhistlen\fR argunent specifies the new size in bytes,

ory buffer that was originally
fR, you can do so with the

and if you specify

1141 this as 0, the buffer will be deleted.

1142 .sp

1143 . LP

1144 As nentioned in the discussion of \fBnew GetLine()\fR the nunber of lines that
1145 can be stored in the history buffer, depends on the I engths of the individual
1146 lines. For exanple, a 1000 byte buffer could equally store 10 lines of average
1147 length 100 bytes, or 20 lines of average |length 50 bytes. Al though the buffer
1148 is never expanded when new |lines are added, a |list of pointers into the buffer
1149 does get expanded when needed to accommpdate the nunmber of lines currently
1150 stored in the buffer. To place an upper linmt on the nunber of lines in the
1151 buffer, and thus a ceiling on the anpunt of menory used in this list, you can
1152 call the \fBgl _limt_history()\fR function.

1153 .sp

1154 . LP

1155 The \flmax_l i nes\fR shoul d either be a positive nunber >= 0, specifying an
1156 upper limt on the nunber of lines in the buffer, or be -1 to cancel any

1157 previously specified limt. Wien a linit is in effect, only the \flmax_|lines\fR

1158
1159

nost recently appended lines are kept in the buffer. Oder lines are discarded.

.sp

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 19

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1195
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1216
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

.LP

To discard lines fromthe history buffer, use the \fBgl_clear_history()\fR
function.

.sp

.LP

The \flall_groups\fR argunment tells the function whether to delete just the
lines associated with the current history group (see \fBgl_group_history()\fR)
or all historical lines in the buffer.

.sp

.LP

The \fBgl _toggle_history()\fR function allows you to toggle history on and of f
wi thout |osing the current contents of the history list.

.sp

.LP

Setting the \flenable\fR argunent to 0 turns off the history nmechanism and
setting it to 1 turns it back on. Wen history is turned off, no new lines wll
be added to the history list, and history | ookup key-bindings will act as
though there is nothing in the history buffer.

. SS "Querying History Information"

.LP

The configured state of the history |list can be queried with the

\fBgl _history_state()\fR function. On return, the status information is
recorded in the variable pointed to by the \flstate\fR argunent.

.sp

.LP

The \fBgl _range_of _history()\fR function returns the nunber and range of |ines
inthe history list. The return values are recorded in the variable pointed to
by the range argument. If the \flnlines\fR menber of this structure is greater
than zero, then the ol dest and newest nenbers report the range of lines in the
list, and \flnewest\fR=\flol dest\fR+\flnlines\fR-1. Otherw se they are both
zero.

.sp

.LP

The \fBgl _size_of _history()\fR function returns the total size of the history
buffer and the amount of the buffer that is currently occupi ed.

.sp

.LP

On return, the size information is recorded in the variable pointed to by the
\flsize\fR argunent.

. SS "Changi ng Term nal s"

.LP

The \fBnew GetLine()\fR constructor function assunmes that input is to be read
from\fBstdin\fR and output witten to \fBstdout\fR The followi ng function
allows you to switch to different input and output streans.

.sp

.LP

The \flgl\fR argunent is the object that was returned by \fBnew CetLine()\fR
The \flinput_fp\fR argunment specifies the streamto read from and
\floutput_fp\fR specifies the streamto be witten to. Only if both of these
refer to a terminal, will interactive term nal input be enabled. O herw se
\fBgl _get_line()\fRwi Il sinmply call \fBfgets()\fR to read command input. |f
both streams refer to a termnal, then they nust refer to the sane termnal,
and the type of this term nal nust be specified with the \fltermfR argunent.
The value of the \fltermfR argument is |ooked up in the terminal information
dat abase (\fBterminfo\fR or \fBterntap\fR), in order to deternm ne which special
control sequences are needed to control various aspects of the termnal.

\ fBnew _Get Line()\fR for exanple, passes the return val ue of
\fBgetenv\fR("TERM') in this argunment. Note that if one or both of

\flinput _fp\fR and \floutput_fp\fR do not refer to a termnal, then it is |egal
to pass \fINULL\fR instead of a term nal type.

.sp

.LP

Note that if you want to pass file descriptors to \fBgl_change_terminal ()\fR
you can do this by creating \fBstdi o\fR stream w appers using the POSI X

\ f Bf dopen\ f R(3C) function.

. SS "External Event Handling"

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 20
1242 . LP

1224 By default, \fBgl_get_line()\fR does not return until either a conplete input
1225 line has been entered by the user, or an error occurs. In prograns that need to
1226 watch for 1/O fromother sources than the termnal, there are two options.

1227 .RS +4

1228 . TP

1229 .ie t \(bu

1230 .el o

1231 Use the functions described in the \fBgl_i o_node\fR(3TECLA) manual page to

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266

1268
1269
1270
1271
1272
1273
1274
1275

1277
1278
1279
1280
1281
1282
1283
1284

1286
1287
1288

switch \fBgl _get_line()\fR into non-blocking server node. In this node,
\fBgl _get _line()\fR becones a non-bl ocking, incremental |ine-editing function
that can safely be called froman external event |loop. Although this is a very
versatile nmethod, it involves taking on some responsibilities that are normally
performed behind the scenes by \fBgl _get_line()\fR

RE

RS +4

. TP

.iet \(bu

.el o

While \fBgl _get_line()\fRis waiting for keyboard input fromthe user, you can
ask it to also watch for activity on arbitrary file descriptors, such as
networ k sockets or pipes, and have it call functions of your choosing when
activity is seen. This works on any systemthat has the select systemcall,
which is nost, if not all flavors of UN X

.RE

.sp

.LP

Regi stering a file descriptor to be watched by \fBgl _get_line()\fR involves
calling the \fBgl _watch_fd()\fR function. If this returns non-zero, then it
neans that either your argunents are invalid, or that this facility is not
supported on the host system

.sp

.LP

The \fIfd\fR argunent is the file descriptor to be watched. The event argunent
speci fies what type of activity is of interest, chosen fromthe foll ow ng
enuner ated val ues:

.sp

.ne 2

. ha
\fB\f BGLFD_READ\f R f R

.a
. RS 15n

Watch for the arrival of data to be read.
. RE

.sp
.ne 2

.na
\fB\fBGLFD WRI TE\fR f R

.ad

.RS 15n

Watch for the ability to wite to the file descriptor w thout bl ocking.
.RE

.sp
.ne 2

.na
\fB\f BGLFD_URGENT\ f R\ f R

.ad

.RS 15n

Watch for the arrival of urgent out-of-band data on the file descriptor.
.RE

.sp
.LP
The \flcallback\fR argunent is the function to call when the selected activity

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 21

1289
1290
1291
1292
1293
1294
1295
1296
1297

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318

is seen. It should be defined with the follow ng macro, which is defined in
l'i btecla.h.

.sp
Lin +2

. nf
#define GL_FD EVENT_FN(fn) G FdStatus (fn)(GetLine *gl, \
void *data, int fd, A FdEvent event)
Cfi
.in -2

.sp
.LP

The data argunent of the \fBgl_watch_fd()\fR function is passed to the call back
function for its own use, and can point to anything you |ike, including
\fINULL\fR The file descriptor and the event argunent are al so passed to the
cal I back function, and this potentially allows the same callback function to be
registered to nore than one type of event and/or nore than one file descriptor.
The return value of the callback function should be one of the follow ng

val ues.

.sp

.ne 2

.na
\ f B\ f BGLFD_ABORT\ f R f R

.ad

.RS 17n

Tell \fBgl_get_line()\fR to abort. Wen this happens, \fBgl _get_line()\fR
returns \fINULL\fR, and a following call to \fBgl _return_status()\fR will
return \fBGLR FDABORT\fR. Note that if the application needs \fBerrno\fR al ways
to have a neaningful value when \fBgl _get_line()\fRreturns \fINULL\fR the

cal I back function should set \fBerrno\fR appropriately.

1319 .RE

1321
1322
1323
1324
1325
1326
1327
1328

.sp
.ne 2

. ha

\f B\ f BGLFD_REFRESH\ f R\ f R
. a

.RS 17n

Redraw the input line then continue waiting for input. Return this if your
cal | back wote to the term nal.

1329 . RE

1331
1332
1333
1334
1335
1336
1337
1338

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

.sp
.ne 2

.na
\f B\ f BGLFD_CONTI NUE\ f R f R

.ad

.RS 17n

Continue to wait for input, without redrawi ng the line.
.RE

.sp
.LP

Note that before calling the callback, \fBgl_get_line()\fR blocks nost signals
and | eaves its own signal handlers installed, so if you need to catch a
particular signal you will need to both tenporarily install your own signal
handl er, and unbl ock the signal. Be sure to re-block the signal (if it was
originally blocked) and reinstate the original signal handler, if any, before
returning.

.sp

.LP

Your call back should not try to read fromthe termnal, which is left in raw
node as far as input is concerned. You can wite to the termi nal as usual,
since features |like conversion of newine to carriage-return/linefeed are
re-enabl ed while the callback is running. If your callback function does wite
to the termnal, be sure to output a newline first, and when your call back

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

1355
1356
1357
1358
1359
1360
1361
1362
1363

1383

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402

1404
1405
1406
1407
1408
1409
1410
1411

22

returns, tell \fBgl_get_line()\fR that the input |ine needs to be redrawn, by
returning the \fBGLFD_REFRESH\ f R status code.

.sp

.LP

To renpve a cal |l back function that you previous egistered for a given file

with the same \fIfd\fR

lyr
descriptor and event, sinply call \fBgl_watch_fd()\f
ck\fR argunent of 0. The

and \flevent\fR argunents, but with a \flcallba
\fldata\fR argunment is ignored in this case.
.SS "Setting An Inactivity Tinmeout"

LP

The \fBgl _inactivity_timeout()\fR function can be used to set or cancel an
inactivity timeout. Inactivity in this case refers both to keyboard input, and
to 1/Oon any file descriptors registered by prior and subsequent calls to
\fBgl _watch_fd()\fR

.sp

.LP

The tineout is specified in the formof an integral nunber of seconds and an
integral nunmber of nanoseconds, specified by the \flsec\fR and \flnsec\fR
argunents, respectively. Subsequently, whenever no activity is seen for this
tinme period, the function specified by the \flcallback\fR argurment is called.
The \fldata\fR argunent of \fBgl _inactivity_tinmeout()\fR is passed to this

cal | back function whenever it is invoked, and can thus be used to pass
arbitrary application-specific information to the callback. The foll ow ng macro
is provided in <\fBlibtecla.h\fR> for applications to use to declare and
prototype tinmeout callback functions.

sp

in +2

. nf

#define GL_TI MEQUT_FN(fn) 4 AfterTi meout (fn)(CetLine *gl, void *data)
fi

.in -2

.sp

.LP

On returning, the application’s callback is expected to return one of the

following enunerators to tell \fBgl_get_line()\fR how to proceed after the
ti meout has been handl ed by the call back.

.sp
.ne 2

.na

\fB\f BGLTO ABORT\f R f R

.ad

.RS 17n

Tell \fBgl _get_line()\fR to abort. Wen this happens, \fBgl_get_line()\fR will
return \fINULL\fR, and a following call to \fBgl _return_status()\fRwIlI| return
\fBGLR_TIMEQUT\f R Note that if the application needs \fBerrno\fR al ways to
have a meaningful value when \fBgl _get_line()\fR returns \fINULL\fR, the

cal | back function should set \fBerrno\fR appropriately.
.RE

.sp
.ne 2

.na

\fB\f BGLTO REFRESH\ f R\ f R

.ad

.RS 17n

Redraw the input line, then continue waiting for input. You should return this
value if your callback wote to the termnal.

1412 . RE

1414
1415
1416
1417
1418
1419

.sp
.ne 2

.na
\f B\ f BGLTO_CONTI NUE\ f R f R
.ad

.RS 17n

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 23

1420
1421
1422
1423
1424
1425

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1477
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

1480
1481
1482
1483
1484

I'n normal bl ocking-1/0 node, continue to wait for input, wthout redraw ng the
user’s input line. In non-blocking server I/0O node (see

\fBgl _i o_nmpde\ f RC3TECLA)), \fBgl _get_line()\fR acts as though |1/0O bl ocked. This
neans that \fBgl _get_line()\fRw Il imediately return \fINULL\fR, and a
following call to \fBgl _return_status()\fRw Il return \fBG.R BLOCKED\ f R

. RE

.sp
.LP

Note that before calling the callback, \fBgl_get_line()\fR bl ocks npst signals
and | eaves its own signal handlers installed, so if you need to catch a
particular signal you will need to both tenporarily install your own signal
handl er and unbl ock the signal. Be sure to re-block the signal (if it was
originally blocked) and reinstate the original signal handler, if any, before
returning.

.sp

.LP

Your cal |l back should not try to read fromthe termnal, which is left in raw
node as far as input is concerned. You can however wite to the termnal as
usual, since features |like conversion of newine to carriage-return/linefeed
are re-enabl ed while the callback is running. If your callback function does
wite to the termnal, be sure to output a newine first, and when your

cal I back returns, tell \fBgl_get_line()\fR that the input |line needs to be
redrawn, by returning the \fBGLTO REFRESH\ fR status code.

.sp

.LP

Finally, note that although the timeout argunents include a nanosecond
conponent, few conputer clocks presently have resolutions that are finer than a
few mlliseconds, so asking for less than a few m|liseconds is equivalent to
requesting zero seconds on many systens. If this would be a problem you should
base your tinmeout selection on the actual resolution of the host clock (for
exanple, by calling \fBsysconf\fR(\fB_SC CLK TCK\fR)).

.sp

.LP

To turn off tinmeouts, sinply call \fB
\flcall back\fR argunent of 0. The \fl
.SS "Signal Handling Defaults"”

LP

gl _inactivity_tineout()\fRwith a
data\fR argunment is ignored in this case.

By default, the \fBgl _get_line()\fR function intercepts a nunber of signals.
This is particularly inportant for signals that would by default terminate the
process, since the termnal needs to be restored to a usable state before this
happens. This section describes the signals that are trapped by default and how
\fBgl _get _line()\fR responds to them Changing these defaults is the topic of
the follow ng section.

.sp

.LP

Wien the followi ng subset of signals are caught, \fBgl_get_line()\fR first
restores the termnal settings and signal handling to how they were before
\fBgl _get _line()\fR was called, resends the signal to allow the calling
application’s signal handlers to handle it, then, if the process still exists,
returns \fINULL\fR and sets \fBerrno\fR as specified bel ow.

.sp

.ne 2

.na
\fB\fBSIG NT\fR fR

.ad

.RS 11n

This signal is generated both by the keyboard interrupt key (usually \fB*"QfR),
and the keyboard break key. The \fBerrno\fR value is \fBEINTRfR

. RE

.sp
.ne 2

. na
\fB\fBSIGHUP\ f R f R
.ad

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla

1485
1486

24

.RS 11n
This signal is generated when the controlling termnal exits. The \fBerrno\fR

1487 value is \fBENOTTY\f R

1488 . RE

1490 . sp

1491 .ne 2

1492 .na

1493 \fB\fBSIGPI PE\fR fR

1494 . ad

1495 . RS 11n

1496 This signal is generated when a programattenpts to wite to a pi pe whose
1497 renpte end is not being read by any process. This can happen for exanple if you
1498 have called \fBgl _change_terninal ()\fR to redirect output to a pipe hidden
1499 under a pseudo terminal. The \fBerrno\fR value is \fBEPIPE\fR

1500 . RE

1502 . sp

1503 .ne 2

1504 .na

1505 \fB\fBSIGQU T\fR fR

1506 . ad

1507 . RS 11n

1508 This signal is generated by the keyboard quit key (usually \fBM"e\fR). The
1509 \fBerrno\fR value is \fBEINTRfR

1510 . RE

1512 .sp

1513 .ne 2

1514 .na

1515 \fB\f BSIGABRT\fR f R

1516 . ad

1517 . RS 11n

1518 This signal is generated by the standard C, abort function. By default it both

1519
1520
1521

1523
1524
1525
1526
1527
1528
1529
1530
1531

1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

term nates the process and generates a core dunp. The \fBerrno\fR value is
\f BEINTR f R
.RE

.sp
.ne 2

.na
\fB\fBSI GTERM f R f R

.ad

.RS 11n

This is the default signal that the UNIX kill command sends to processes. The
\fBerrno\fR value is \fBEINTRfR

. RE

.sp

.LP

Note that in the case of all of the above signals, POSI X nmandates that by
default the process is ternminated, with the addition of a core dunp in the case
of the \fBSIGQU T\fR signal. In other words, if the calling application does
not override the default handl er by supplying its own signal handler, receipt
of the corresponding signal will term nate the application before
\fBgl _get _line()\fR returns.

.sp

.LP

If \fBgl _get_line()\fR aborts with \fBerrno\fR set to \fBEINTRfR you can find
out what signal caused it to abort, by calling the \fBgl_last_signal ()\fR
function. This returns the nuneric code (for exanple, \fBSIG@NNfR) of the |ast
signal that was received during the nost recent call to \fBgl_get_line()\fR or
-1 if no signals were received.

.sp

.LP

On systens that support it, when a \fBSIGANNCH fR (w ndow change) signal is

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 25

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

1585
1586
1587
1588
1589
1590
1591
1592

received, \fBgl_get_line()\fR queries the termnal to find out its new size,
redraws the current input line to accommpdate the new size, then returns to
wai ting for keyboard input fromthe user. Unlike other signals, this signal is
not resent to the application.

.sp

.LP

Finally, the follow ng signals cause \fBgl _get_line()\fRto first restore the
terminal and signal environnent to that which prevailed before

\fBgl _get_line()\fR was called, then resend the signal to the application. If
the process still exists after the signal has been delivered, then

\fBgl _get _line()\fR then re-establishes its own signal handlers, sw tches the
term nal back to raw node, redisplays the input line, and goes back to awaiting
termnal input fromthe user.

.sp

.ne 2

.na
\fB\f BSI GCONT\ f R\ f R

.ad

. RS 13n

This signal is generated when a suspended process is resuned.
.RE

.sp
.ne 2

.na
\fB\fBSIGPOLL\f R f R

.ad

. RS 13n

On SVR4 systens, this signal notifies the process of an asynchronous I/O event.
Note that under 4.3+BSD, \fBSIG OfR and \fBSIGPOLL\fR are the sane. On other
systems, \fBSIGOfR is ignored by default, so \fBgl_get_line()\fR does not
trap it by default.

. RE

.sp
.ne 2

.na
\fB\fBSIGPVWVR f R f R

.ad

. RS 13n

This signal is generated when a power failure occurs (presunmably when the
systemis on a UPS).

1593 . RE

1595
1596
1597
1598
1599
1600
1601
1602

1604
1605
1606
1607
1608
1609
1610
1611

1613
1614
1615
1616

.sp
.ne 2

. ha
\fB\fBSI GALRMfR fR

.a

. RS 13n

This signal is generated when a tinmer expires.
. RE

.sp
.ne 2

.nha
\fB\f BSI GUSRI\ f R f R

.ad

.RS 13n

An application specific signal.
.RE

.sp
.ne 2

. ha
\fB\f BSI GUSR2\ f R\ f R

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 26

1617
1618
1619
1620

1622
1623
1624
1625
1626
1627
1628
1629

1631
1632
1633
1634
1635
1636
1637
1638

1640
1641
1642
1643
1644
1645
1646
1647

1649
1650
1651
1652
1653
1654
1655
1656
1657

1659
1660
1661
1662
1663
1664
1665
1666

.ad

.RS 13n

Anot her application specific signal.
.RE

.sp
.ne 2

. na
\fB\f BSI GVTALRM f R f R

.ad

. RS 13n

This signal is generated when a virtual tinmer expires. See \fBsetitiner\fR(2).
. RE

.sp
.ne 2

.na
\fB\f BSI GXCPU f R f R

.ad

. RS 13n

This signal is generated when a process exceeds its soft CPUtine limt.
. RE

.sp
.ne 2

.na
\fB\f BSI GXFSZ\ f R f R

.ad

. RS 13n

This signal is generated when a process exceeds its soft file-size limt.
. RE

.sp
.ne 2

. ha
\fB\fBSI GTSTP\f R fR

. al
.RS 13n

This signal is generated by the term nal suspend key, which is usually
\fB"2Z\fR, or the del ayed term nal suspend key, which is usually \fB*"Y\fR
.RE

.sp
.ne 2

. na
\fB\fBSIGITINNf R fR

.ad

. RS 13n

This signal is generated if the programattenpts to read fromthe term nal
while the programis running in the background.

1667 . RE

1669
1670
1671
1672
1673
1674
1675
1676
1677

1679
1680
1681
1682

.Sp
.ne 2

.na
\fB\fBSIGTTOMAf R fR

.ad

. RS 13n

This signal is generated if the programattenpts to wite to the termnal while
the programis running in the background.

. RE

.sp
.LP

Qoviously not all of the above signals are supported on all systenms, so code to
support themis conditionally conpiled into the tecla library.

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 27

1683 . sp

1684 . LP

1685 Note that if \fBSIGKILL\fR or \fBSIGPOLL\fR, which by definition cannot be
1686 caught, or any of the hardware generated exception signals, such as

1687 \fBSIGSEGWfR, \fBSIGBUS\fR, and \fBSIGFPE\fR, are received and unhandl ed while
1688 \fBgl _get_line()\fR has the terminal in raw node, the programw || be

1689 terminated without the term nal having been restored to a usable state. In
1690 practice, job-control shells usually reset the term nal settings when a process
1691 relinquishes the controlling termnal, so this is only a problemw th ol der
1692 shells.

1693 . SS "Custom zed Signal Handling"

1715 . LP

1694 The previous section listed the signals that \fBgl _get_line()\fR traps by
1695 default, and described how it responds to them This section describes how to
1696 both add and renove signals fromthe list of trapped signals, and how to
1697 specify how \fBgl _get_line()\fR should respond to a given signal.

1698 . sp

1699 .LP

1700 If you do not need \fBgl _get_line()\fR to do anything in response to a signal
1701 that it normally traps, you can tell to \fBgl _get_line()\fR to ignore that
1702 signal by calling \fBgl _ignore_signal ()\fR

1703 .sp

1704 . LP

1705 The \flsigno\fR argurment is the nunber of the signal (for exanple,

1706 \fBSIG NT\fR) that you want to have ignored. If the specified signal is not
1707 currently one of those being trapped, this function does nothing.

1708 . sp

1709 . LP

1710 The \fBgl _trap_signal ()\fR function allows you to either add a new signal to
1711 the list that \fBgl _get_line()\fR traps or nodify how it responds to a signal
1712 that it already traps.

1713 .sp

1714 . LP

1715 The \flsigno\fR argunment is the nunber of the signal that you want to have
1716 trapped. The \flflags\fR argunent is a set of flags that determ ne the
1717 environnment in which the application’s signal handler is invoked. The

1718 \flafter\fR argument tells \fBgl _get_line()\fR what to do after the

1719 application’s signal handler returns. The \flerrno_value\fR tells

1720 \fBgl _get_line()\fR what to set \fBerrno\fRto if told to abort.

1721 .sp

1722 . LP

1723 The \flflags\fR argument is a bitwise OR of zero or nore of the follow ng
1724 enunerators:

1725 .sp

1726 .ne 2

1727 .na

1728 \fB\f BGLS_RESTORE_SIG fR fR

1729 . ad

1730 . RS 20n

1731 Restore the caller’s signal environnent while handling the signal.

1732 . RE

1734 .sp

1735 .ne 2

1736 .na

1737 \fB\f BGLS_RESTORE_TTWfR fR

1738 . ad

1739 . RS 20n

1740 Restore the caller’s termnal settings while handling the signal.

1741 . RE

1743 . sp

1744 .ne 2

1745 . na

1746 \fB\f BGLS_RESTORE_LINE\fR fR

1747 . ad

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 28

1748
1749
1750

. RS 20n
Move the cursor to the start of the line following the input Iine before
i nvoking the application’ s signal handler.

1751 . RE

1753
1754
1755
1756
1757
1758
1759
1760

1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

1774
1775
1776
1777
1778
1779
1780
1781
1782

1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

1796
1797
1798
1799
1800
1801
1802
1803

1805
1806
1807
1808
1809
1810
1811
1812
1813

.sp
.ne 2

. na
\fB\f BGQLS_REDRAW LI NE\f R f R

.ad

. RS 20n

Redraw the input line when the application’s signal handler returns.
. RE

.sp
.ne 2

.na
\fB\f BGLS_UNBLOCK_SIG fR fR
.ad

. RS 20n

Normal Iy, if the calli
\ f Bsi gprocmask\fR(2)),
tells \fBgl _get_line()\
the call to \fBgl_get_l
.RE

n ogram has a signal blocked (see

| _get_line()\fR does not trap that signal. This flag
o trap the signal and unblock it for the duration of
)

\fR

g _pr
\fBg
fRt
i ne(
.sp
.ne 2

.na
\f B\ f BGLS_DONT_FORWARD\ f R\ f R

.ad

. RS 20n

If this flag is included, the signal will not be forwarded to the signal
handl er of the calling program

. RE

.sp
.LP

Two commonly useful flag conbinations are al so enunerated as foll ows:
.sp

.ne 2

.na
\fB\f BGLS_RESTORE_ENW f R f R

.ad

. RS 21n

\f BGLS_RESTORE_SIG fR | \fBGLS_RESTORE_TTY\fR |\fBGLS_REDRAW LI NE\ f R
. RE

.sp
.ne 2

. ha

\fB\ f BGLS_SUSPEND | NPUT\ f R\ f R

.ad

. RS 21n

\fBGALS_RESTORE_ ENV fR | \fBGLS_RESTORE_LI NE\f R
.RE

.sp
.LP

If your signal handler, or the default system signal handler for this signal,
if you have not overridden it, never either wites to the termnal, nor
suspends or terminates the calling program then you can safely set the
\flflags\fR argunment to O.

.RS +4

TP

.iet \(bu

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 29

1814

1815

el o
The cursor does not get left in the mddl e of the input |line.

1816 . RE

1817
1818
1819
1820
1821

.RS +4

. TP

.iet \(bu

.el o

So that the user can type in input and have it echoed.

1822 . RE

1823
1824
1825
1826
1827
1828

1829

1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1868
1847

1848
1849

1850
1851
1852

1853

1854

.RS +4

TP

.iet \(bu

.el o

So that you do not need to end each output Iline with \er\en,
\en.

RE

.sp

.LP

The \ f BGL_RESTORE_ENW f R conbi nation is the same as \fBGL_SUSPEND_| NPUT\ f R,
except that it does not nove the cursor. |If your signal handl er does not read
or wite anything to the termnal, the user will not see any visible indication
that a signal was caught. This can be useful if you have a signal handler that
only occasionally wites to the term nal, where using \fBG._SUSPEND_LI NE\fR
woul d cause the input line to be unnecessarily duplicated when nothing had been
witten to the terminal. Such a signal handler, when it does wite to the
termnal, should be sure to start a newline at the start of its first wite,
by witing a new line before returning. If the signal arrives while the user is
entering a line that only occupies a signal termnal line, or if the cursor is
on the last terminal line of a longer input line, this will have the same
effect as \fBG_SUSPEND I NPUT\fR. Ctherwise it will start witing on a |ine
that already contains part of the displayed input line. This does not do any
harm but it looks a bit ugly, which is why the \fBG._SUSPEND | NPUT\ f R
conbination is better if you know that you are always going to be witing to
conbination is better if you know that you are always going to be witting to
the term nal.

instead of just

The \flafter\fR argunment, which deternmi nes what \fBgl_get_line()\fR does after
the application’ s signal handler returns (if it returns), can take any one of
the foll owi ng val ues:

.ne 2

1855 . na

1856

\fB\f BGLS RETURN\ f R\ f R

1857 . ad

1858
1859
1860

.RS 16n
Return the conpleted input line, just as though the user had pressed the return
key.

1861 . RE

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873

.sp
.ne 2

.na

\fB\f BGLS_ABORT\f R f R

.ad

RS 16n

Cause \fBgl _get _line()\fR to abort. Wen this happens, \fBgl_get_li f
returns \fINULL\fR, and a following call to \fBgl_return_status()\f |
return \fBGLR SIGNAL\fR. Note that if the application needs \fBerrno\fR a
to have a neani ngful value when \fBgl _get_line()\fR returns \fINULL\f t

cal | back function should set \fBerrno\fR appropriately.

1874 .RE

1876
1877
1878

.sp
.ne 2
.na

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 30
1879 \fB\f BGLS_CONTI NUE\ f R f R

1880 . ad

1881 . RS 16n

1882 Resune conmand |ine editing.

1883 . RE

1885 . sp

1886 .LP

1887 The \flerrno_value\fR argunment is intended to be conbined with the

1888
1889
1890
1891
1892
1893

\fBGLS ABORT\fR option, telling \fBgl _get line()\fR what to set the standard
\fBerrno\fR variable to before returning \fINULL\fR to the calling program It
can al so, however, be used with the \fBG_RETURNfR option, in case you want to
have a way to di sti ngui sh between an input |line that was entered using the
return key, and one that was entered by the receipt of a signal.

.SS "Reliable Signal Handling"

1916 . L

1894
1895
1896
1897
1898
1899
1900
1901
1902
1903

P
Signal handling is surpr|5| ngly hard to do reliably w thout race conditions. In
\fBgl _get _line()\fR a | ot of care has been taken to allow applications to
perform reliable signal handling around \fBgl get_line()\fR This section

expl ains how to nake use of this.

.sp

.LP

As an exanpl e of the problems that can arise if the application is not witten
correctly, imamgine that one’s application has a \fBSI G NI\ fR signal handler
that sets a global flag. Now suppose that the application tests this flag just
before invoking \fBgl _get_line()\fR If a \fBSIG NT\fR signal happens to be

1904 received in the small window of time between the statement that tests the value
1905 of this flag, and the statement that calls \fBgl_get_line()\fR then

1906 \fBgl _get _line()\fRw Il not see the signal, and will not be interrupted. As a
1907 result, the application will not be able to respond to the signal until the
1908 user gets around to finishing entering the input Iine and \fBgl _get_line()\fR
1909 returns. Depending on the application, this mght or might not be a disaster,
1910 but at the very least it would puzzle the user.

1911 .sp

1912 . LP

1913 The way to avoid such problens is to do the follow ng.

1914 . RS +4

1915 . TP

1916 1.

1917 If needed, use the \fBgl _trap_signal ()\fR function to configure

1918 \fBgl _get _line()\fR to abort when inportant signals are caught.

1919 . RE

1920 . RS +4

1921 . TP

1922 2.

1923 Configure \fBgl_get_line()\fR such that if any of the signals that it

1924 catches are bl ocked when \fBgl _get _line()\fRis called, they will be unbl ocked
1925 automatically during tinmes when \fBgl_get_line()\fRis waiting for 1/0 This
1926 can be done either on a per signal basis, by calling the \fBgl _trap_signal ()\fR
1927 function, and specifying the \TBAS_ UNBLOCK\ fR attribute of the si gnal, or

1928 global ly by calling the \fBgl catch_bl ocked()\fR function. This function sinply
1929 adds the \fBGLS UNBLOCK\fR attribute to all of the signals that it is currently
1930 configured to trap.

1931 . RE

1932 . RS +4

1933 . TP

1934 3

1935 Just before calling \fBgl _get _line()\fR, block delivery of all of the

1936
1937
1938
1939
1940
1941
1942
1943

signals that \fBgl _get_line()\fRis configured to trap. This can be done using
the POSI X sigprocmask function in conjunction with the \fBgl _list_signals()\fR
function. This function returns the set of signals that it is currently
configured to catch in the set argunent, which is in the formrequired by
\fBSI gprocmask\ f R(2) .

RS +4
TP

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 31

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953

4

In the exanple, one would now test the global flag that the signal handler
sets, knowing that there is now no danger of this flag being set again until
\fBgI _get_line()\fR unblocks its signals while performng I/Q

RS +4

TP
5

Eventual Iy \fBgl _get_line()\fR returns, either because a signal was caught,
an error occurred, or the user fi ni shed enteri ng their input line.

1954 . RE

1955
1956
1957
1958
1959
1960
1961
1962

.RS +4

. TP

6

Now one woul d check the gl obal signal flag again,
toit, and zero the flag.

.RE

.RS +4

. TP

and if it is set, respond

1963 7

1964

Use \fBsi gprocmask()\fR to unbl ock the signals that were bl ocked in step 3.

1965 . RE

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988

.sp
.LP

The sane techni que can be used around certain POSI X signal -aware functions,
such as \fBsigsetjnmp\fR(3C) and \fBsigsuspend\fR(2), and in particular, the
fornmer of these two functions can be used in conjunction with

\fBsi gl ongj np\fR(3C) to inplenment race-condition free signal handling around
ot her |ong-running systemcalls. The \fBgl _get_line()\fR function manages to
reliably trap signals around calls to functions like \fBread\fR(2) and

\fBsel ect\fR(3C) without race conditions.

.sp

.LP

The \fBgl _get _line()\fR function first uses the PCSI X \fBsigprocmask()\fR
function to block the delivery of all of the signals that it is currently
configured to catch. This is redundant if the application has already bl ocked
them but it does no harm It undoes this step just before returning.

.sp

.LP

Whenever \fBgl _get_line()\fR needs to call read or select to wait for input
fromthe user, it first calls the PGOSI X \fBsigsetjnp()\fR function, being sure
to specify a non-zero value for its \flsavemask\fR argunent.

.sp

.LP
If \fBsigsetjmp()\fR returns zero, \fBgl_get_line()\fR then does the follow ng.

1989 . RS +4

1990
1991
1992
1993
1994
1995
1996

TP

1

It uses the POSI X \fBsigaction\fR(2) function to register a tenporary signal
handler to all of the signals that it is configured to catch. This signal
handl er does two things.

.RS +4

TP

1997 a

1998
1999

I't records the number of the signal that was received in a file-scope
vari abl e.

2000 . RE

2001
2002
2003
2004
2005
2006
2007
2008
2009

.RS +4

. TP

b

It then calls the PGSl X \fBsigl o gj mp(
was passed to \fBsigsetjnp()\fR for it
its second argunent.

RE

J\fR function using the buffer that

s first argunent and a non-zero val ue for
When this signal handler is registered, the \flsa_mask\fR nmenber of the
\fBstruct sigaction\fR\flact\fR argumsnt of the call to \fBsigaction()\fRis

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 32

2010
2011
2012
2013

configured to contain all of the signals that \fBgl_get_line()\fR is catching.
This ensures that only one signal wll be caught at once by our signal handler,
which in turn ensures that nmultiple instances of our signal handler do not
tread on each other’s toes.

2014 . RE

2015
2016

.RS +4
. TP

2017 2

2018
2019

Now that the si gnal handl er has been set up, \fBgI _get_line()\fR unbl ocks
all of the signals that it is configured to catch

2020 . RE

2021
2022
2023
2024
2025

.RS +4

. TP

3

It then calls the \fBread()\fR or \fBselect()\fR function to wait for
keyboard i nput.

2026 . RE

2027
2028
2029 4
2030
2031\
2032
2033
2034
2035
2036
2037

RS +4
TP

I'f this function returns (that is, no signal is received),
fBgl _get _line()\fR blocks delivery of the signals of interest again.
RE

RS +4

. TP

5

It then reinstates the signal handlers that were displaced by the one that
was just installed.

2038 . RE

2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

.sp
.LP

Alternatively, if \fBsigsetjnp()\fR returns non-zero, this neans that one of
the signals being trapped was caught while the above steps were executing. \Wen
this happens, \fBgl _get_line()\fR does the follow ng.

- Sp

LP

First, note that when a call to \fBsiglongjnp()\fR causes \fBsigsetjnp()\fR to
return, provided that the \flsavenask\fR argunent of \fBsigsetjnmp()\fR was
non-zero, the signal process mask is restored to how it was when
\fBsigsetjnp()\fR was called. This is the inportant difference between
\fBsigsetjnp()\fR and the ol der problenatic \fBsetjnp\fR(3C), and is the
essential ingredient that makes it possible to avoid signal handling race

2052 conditions. Because of this we are guaranteed that all of the signals that we
2053 bl ocked before calling \fBsigsetjnp()\fR are bl ocked again as soon as any
2054 signal is caught. The follow ng statenents, which are then executed, are thus
2055 guaranteed to be executed wi thout any further signals being caught.

2056 . RS +4

2057 . TP

2058 1.

2059 If so instructed by the \fBgl_get_line()\fR configuration attributes of the
2060 signal that was caught, \fBgl _get_line()\fR restores the termnal attributes to
2061 the state that they had when {fBgl _get _line()\fR was called. This is

2062 particularly inportant for signals that suspend or term nate the process, since
2063 otherwise the termnal would be left in an unusable state.

2064 . RE

2065 . RS +4

2066 . TP

2067 2.

2068 It then reinstates the application’s signal handlers.

2069 . RE

2070 . RS +4

2071 . TP

2072 3.

2073

2074

Then it uses the C standard-library \fBraise\fR(3C) function to re-send the
application the signal that was caught.

2075 . RE

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 33

2076 . RS +4

2077 . TP

2078 4.

2079 Next it unblocks delivery of the signal that we just sent. This results in
2080 the signal that was just sent by \fBraise()\fR being caught by the

2081 application’s original signal handl er, which can now handle it as it sees fit.
2082 . RE

2083 . RS +4

2084 . TP

2085 5.

2086 If the signal handler returns (that is, it does not terminate the process),
2087 \fBgl _get _line()\fR blocks delivery of the above signal again.

2088 RE

2089 . RS +4

2090 . TP

2091 6.

2092 It then undoes any actions performed in the first of the above steps and

2093 redisplays the line, if the signal configuration calls for this.

2094 . RE

2095 . RS +4

2096 . TP

2097 7.

2098 \fBgl _get _line()\fR then either resumes trying to read a character, or

2099 aborts, depending on the configuration of the signal that was caught.

2100 . RE

2101 .sp

2102 .LP

2103 What the above steps do in essence is to take asynchronously delivered signals
2104 and handl e them synchronously, one at a time, at a point in the code where
2105 \fBgl _get_line()\fR has conplete control over its environnent.

2106 .SS "The Terninal Size"

2130 .LP

2107 On nost systens the conbination of the \fBTIOCGANNSZ\fR ioctl and the

2108 \fBSIGN NCH\ fR signal is used to maintain an accurate idea of the term nal
2109 size. The terninal size is newy queried every time that \fBgl _get_line()\fRis
2110 cal l ed and whenever a \fBSIGANCH\ fR signal is received.

2111 .sp

2112 . LP

2113 On the few systens where this mechanismis not available, at startup

2114 \fBnew CetLine()\fR first looks for the \fBLINES\fR and \fBCOLUWS\ f R

2115 environnent variables. If these are not found, or they contain unusabl e val ues,
2116 then if a termnal infornation database |ike \fBtermnfo\fR or \fBterntap\fR is
2117 avail able, the default size of the termnal is |ooked up in this database. |f
2118 this too fails to provide the term nal size, a default size of 80 colums by 24
2119 lines is used.

2120 .sp

2121 . LP

2122 Even on systenms that do support ioctl (\fBTIOCGAWNSZ\fR), if the termnal is on
2123 the other end of a serial line, the termnal driver generally has no way of
2124 detecting when a resize occurs or of querying what the current size is. In such
2125 cases no \fBSIGNNCH\fR is sent to the process, and the dinensions returned by
2126 ioctl (\fBTIOCGAN NSZ\fR) are not correct. The only way to handl e such instances
2127 is to provide a way for the user to enter a command that tells the renpte
2128 system what the new size is. This command woul d then call the

2129 \fBgl _set_termsize()\fR function to tell \fBgl_get_line()\fR about the change
2130 in size.

2131 .sp

2132 . LP

2133 The \flncolum\fR and \flnline\fR argunents are used to specify the new

2134 dimensions of the terminal, and nmust not be |less than 1. On systens that do
2135 support ioctl (\fBTIOCGANNSZ\fR), this function first calls

2136 ioctl (\fBTIOCSWNSZ\fR) to tell the termnal driver about the change in size.
2137 In non-bl ocking server-1/O node, if aline is currently being input, the input
2138 line is then redrawn to accommpdate the changed size. Finally the new values are
2139 recorded in \flgl\fR for future use by \fBgl_get_line()\fR

2140 .sp

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 34

2141
2142
2143
2144
2145
2146
2147

2148 .

2149
2150
2151
2152
2153
2154
2155
2156
2181
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2208
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204

.LP

The \fBgl _term nal _size()\fR function allows you to query the current size of
the termnal, and install an alternate fallback size for cases where the size
is not available. Beware that the termnal size will not be available if

reading froma pipe or a file, so the default values can be inportant even on
systems that do support ways of finding out the termnal size.

- Sp

LP

This function first updates \fBgl_get_line()\fR s fallback term nal dinensions,
then records its findings in the return val ue.
sp

LP
The \fldef _ncol unm\fR and \fI def _nline\fR argunents specify the default number
of terminal colums and lines to use if the termnal size cannot be deternined
by ioctl (\fBTI OCGN NSZ\fR) or environnent vari abl es.
.SS "Hi di ng What You Type"
.LP
Wien entering sensitive information, such as passwords, it is best not to have
the text that you are entering echoed on the term nal. Furthernore, such text
shoul d not be recorded in the history list, since sonebody finding your
terminal unattended could then recall it, or somebody snooping through your
directories could see it in your history file. Wth this in mnd, the
\ fBgl _echo_node()\fR function allows you to toggle on and of f the di spl ay and
archival of any text that is subsequently entered in calls to
\fBgI _get_line()\fR

sp

LP

The \flenabl e\fR argunent specifies whether entered text should be visible or
not. If it is O, then subsequently entered lines will not be visible on the
termnal, and will not be recorded in the history list. If it is 1, then
subsequent input lines will be displayed as they are entered, and provided that
hi story has not been turned off with a call to \fBgl_toggl e_hi story()\fR, then
they will also be archived in the history list. Finally, if the enable argunment
is -1, then the echoing node is |eft unchanged, which allows you to
non-destructively query the current setting through the return value. In all
cases, the return value of the function is 0 if echoing was di sabl ed before the

function was called, and 1 if it was enabl ed.

- SPp

.LP

Wien echoing is turned off, note that although tab conpletion will invisibly

conpl ete your prefix as far as possible, not be
di spl ayed.

SS 'Singl e Character Queries"

anbi guous conpl etions will

USI ng \fBgl _get_line()\fR to query the user for a single character reply, is

i nconveni ent for the user, since they must hit the enter or return key before
the character that they typed is returned to the program Thus the

\ f Bgl query char()\fR function has been provided for single character queries
like this.

- Sp

.LP

This function displays the specified pronpt at the start of a new line, and
waits for the user to type a character. \When the user types a character,

\fBgl _query_char()\fR displays it to the right of the pronpt, starts a newine,
then returns the character to the calling program The return value of the
function is the character that was typed. If the read had to be aborted for
some reason, ECF is returned instead. In the latter case, the application can
call the previously documented \fBgl _return_status()\fR to find out what went
wrong. This could, for exanple, have been the reception of a signal, or the
optional inactivity tiner going off.

.sp

.LP

If the user sinply hits enter, the value of the \fldefchar\fR argunent is
substituted. This means that when the user hits either newine or return, the
character specified in \fldefchar\fR is displayed after the pronpt, as though
the user had typed it, as well as being returned to the calling application. If

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 35

2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2256
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2278
2251
2252
2253
2254
2255
2284
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

such a replacenent is not inportant, as the val ue of
\fldefchar\fR

.sp

.LP

If the entered character is an unprintable character, it is displayed
synmbolically. For exanple, control-A is displayed as \fB*A\fR, and characters
beyond 127 are displayed in octal, preceded by a backsl ash.

.sp

.LP

As with \fBgl _get_line()\fR echoing of the entered character can be disabled
using the \fBgl _echo_node()\fR function.

.sp

.LP

If the calling process is suspended while waiting for the user to type their
response, the cursor is noved to the line follow ng the pronpt line, then when
the process resunmes, the pronpt is redisplayed, and \fBgl _query_char()\fR
resumes waiting for the user to type a character.

.sp

.LP

Note that in non-blocking server node, if an inconplete input line is in the
process of being read when \fBgl _query_char()\fR is called, the partial input
line is discarded, and erased fromthe ternminal, before the new pronpt is

di spl ayed. The next call to \fBgl _get_Ii ne()\fR will thus start editing a new
l'i ne.

SS "Readi ng Raw Characters"

sinply pass '\en’

V\hereas the \fBgl _query_char()\fR function visibly pronpts the user for a
character, and displays what they typed, the \fBgl _read_char()\fR function
reads a signal character fromthe user, without witing anything to the
termnal, or perturbing any inconpletely entered input line. This nmeans that it
can be called not only frombetween calls to \fBgl_get_line()\fR, but also from
cal | back functions that the application has registered to be called by

\fBgl _get_line()\fR

.sp

.LP

On success, the return value of \fBgl _read_char()\fR is the character that was
read. On fallure ECF is returned, and the \fBgl return_status()\fR function
can be called to find out what went wong. Possibilities include the optional
inactivity timer going off, the receipt of a signal that is configured to abort
\fBgl _get _line()\fR or terminal 1/0O blocking, when in non-bl ocking server-1/0
node.

.sp

.LP

Beware that certain keyboard keys, such as function keys, and cursor keys,
usual |y generate at |least three characters each, so a single call to

\fBgI read_char()\fR will not be enough to identify such keystrokes.

SS "C earing The Terninal"

The calling programcan clear the termnal by calling

\fBgl _erase_termnal ()\fR In non-blocking server-1/0 node, this function al so
arranges for the current input line to be redrawn from scratch when

\fBgI _get _Iine()\fRis next called.

SS "D spl ayi ng Text Dynanically"

Between calls to \fBgl _get_line()\fR the \fBgl _display_text()\fR function
provi des a convenient way to display paragraphs of text, left-justified and
split over one or nore terminal lines according to the constraints of the
current width of the termnal. Exanples of the use of this function nay be
found in the denp prograns, where it is used to display introductions. In those
exanpl es the advanced use of optional prefixes, suffixes and filled lines to
draw a box around the text is also illustrated.

.sp

.LP

If \flglI\fRis not currently connected to a ternminal, for exanple if the output
of a programthat uses \fBgl _get_line()\fR is being p| ped to anot her program or
redirected to a file, then the value of the \fldef_w dth\fR paraneter is used

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 36
2268 as the termnal wdth.

2269 .sp

2270 . LP

2271 The \flindentation\fR argunent specifies the nunmber of characters to use to
2272 indent each line of output. The \fIfill_char\fR argunent specifies the character
2273 that will be used to performthis indentation.

2274 .sp

2275 . L

2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292

P
The \flprefix\fR argument can be either \fINULL\fR or a string to place at the
begi nning of each new line (after any indentation). Simlarly, the \flsuffix\fR
argunment can be either \fINULL\fR or a string to place at the end of each line.
The suffix is placed flush against the right edge of the termnal, and any

space between its first character and the last word on that line is filled with
the character specified by the \flfill_char\fR argument. Nornally the
fill-character is a space.

.sp

.LP

The \flstart\fR argunment tells \fBgl_display_text()\fR how nmany characters have
already been witten to the current termnal line, and thus tells it the
starting colum index of the cursor. Since the return val ue of

\fBgl _display_text()\fR is the ending colum index of the cursor, by passing
the return value of one call to the start argument of the next call, a
paragraph that is broken between nore than one string can be conposed by
calling \fBgl _display_text()\fR for each successive portion of the paragraph.
Note that literal newine characters are necessary at the end of each paragraph

2293 to force a new line to be started.

2294 .sp

2295 . LP

2296 On error, \fBgl _display_ text()\fR returns -1.

2297 . SS "Cal | back Function Facilities"

2327 .LP

2298 UnI ess otherw se stated, callback functions such as tab conpletion callbacks
2299 and event call backs should not call any functions in this nodule. The foll ow ng
2300 functions, however, are designed specifically to be used by callback functions.
2301 .sp

2302 .LP

2303 Calling the \fBgl _replace_pronpt()\fR function froma callback tells

2304 \fBgl _get_line()\fR to display a different pronpt when the callback returns.
2305 Except in non-blocking server node, it has no effect if used between calls to
2306 \fBgl _get _line()\fR 1In non-blocking server node, when used between two calls
2307 to \fBgl _get _line()\fR that are operating on the sane input line, the current
2308 input Tine will be re-drawn with the new pronpt on the following call to

2309 \fBgl _get_line()\fR

2310 .SS "International Character Sets"

2341 . LP

2311 Since \fBlibtecla\fR(3LIB) version 1.4.0, \fBgl_get_line()\fR has been 8-bit
2312 clean. This neans that all 8-bit characters that are printable in the user’s
2313 current locale are now di splayed verbatimand included in the returned input
2314 line. Assuming that the calling programcorrectly contains a call |ike the
2315 fol | owi ng,

2316 .sp

2317 .in +2

2318 . nf

2319 setlocal e(LC_CTYPE, "")

2320 .fi

2321 .in -2

2323 .sp

2324 . LP

2325 then the current locale is determned by the first of the environment variables
2326 \fBLC CTYPE\fR, \fBLC ALL\fR, and \fBLANG fR that is found to contain a valid
2327 locale name. |f none of these variables are defined, or the program neglects to
2328 call \fBsetlocal e\fR(3C), then the default Clocale is used, whichis US 7-bit
2329 ASCII. On npst UNI X-like platforms, you can get a list of valid |ocal es by

2330
2331

typi ng the command:
.sp

new usr/src/ man/ man3tecl a/ gl _get _line.3tecla 37

2332
2333
2334
2335
2336
2337

2339
2340
2341
2342
2343
2375
2344
2345
2346
2347
2348
2349
2350
2351
2352
2385
2353
2354

2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366

2368
2402
2369
2370
2371

Lin +2

. nf
locale -a
i

.in -2
.sp

.sp
.LP

at the shell pronpt. Further docunentation on how the user can make use of this
to enter international characters can be found in the \fBtecla\fR(5) nan page.
.SS "Thread Safety"

.LP

Unfortunately neither \fBterm nfo\fR nor \fBternctap\fR were designed to be
reentrant, so you cannot safely use the functions of the getline nodule in
nul tiple threads (you can use the separate file-expansion and word-conpletion
nodul es in multiple threads, see the correspondi ng man pages for details).
However due to the use of POSIX reentrant functions for |ooking up home
directories, it is safe to use this nodule froma single thread of a

nmul ti-threaded program provided that your other threads do not use any
\fBterncap\fR or \fBtermnfo\fR functions.

. SH ATTRI BUTES

.LP

See \fBattributes\fR(5) for descriptions of the follow ng attributes:

.sp

.sp
. TS
box;
c| c

| |
ATTRI BUTE TYPE ATTRI BUTE VALUE

Tnterface Stability Conmi tted
M- Level MT- Saf e

.TE

. SH SEE ALSO

. LP

\ f Bcpl _conpl et e_wor d\ f
\ fBgl _i o_node\ f R(3STECL
\fBattributes\fR(5), \

R(3TECLA), \fBef_expand_file\fR(3TECLA),
A), \fBlibtecla\fR(3LIB), \fBpca_l ookup_file\fR(3TECLA),
f Bt ecl a\ f R(5)

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a

R R R R

22180 Sat Jan 18 13:36:58 2020
new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a
12212 typos in some section 3tecla nman pages
IR R SR SR RS RS SRR SRR SRR R R R R R SRR R R SRR EEEEREEREEEEEEEEESE]
"\" te
.\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd.
A" Al Rights Reserved.

.\" Permission is hereby granted, free of charge, to any person obtaining a copy

A" without limtation the rights to use, copy, nodify, nerge, publish,
.\" distribute, and/or sell copies of the Software, and to permt persons
.\" to whomthe Software is furnished to do so, provided that the above
.\" copyright notice(s) and this permission notice appear in all copies of
10 .\" the Software and that both the above copyright notice(s) and this
11 .\" permnission notice appear in supporting docunentation.

1

2

3

4

5 .\" "Software"), to deal in the Software w thout restriction, including
6 \"

7

8

9

13 .\" THE SOFTWARE | S PROVI DED "AS 1S", WTHOUT WARRANTY OF ANY KI ND, EXPRESS

14 .\" OR I MPLIED, I NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF

15 .\" MERCHANTABI LI TY, FI TNESS FOR A PARTI CULAR PURPOSE AND NONI NFRI NGEMENT
16 .\" OF TH RD PARTY RIGHTS. I N NO EVENT SHALL THE COPYRI GHT HOLDER OR

17 .\" HOLDERS | NCLUDED IN THI S NOTI CE BE LI ABLE FOR ANY CLAIM OR ANY SPECI AL
18 .\" | NDI RECT OR CONSEQUENTI AL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTI NG
19 .\" FROM LOSS OF USE, DATA OR PROFI TS, WHETHER I N AN ACTI ON OF CONTRACT,

20 .\" NEGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SING OUT OF OR | N CONNECTI ON
21 .\" WTH THE USE OR PERFORMANCE OF TH S SOFTWARE.

22 .\"

23 .\" Except as contained in this notice, the nane of a copyright hol der

24 .\" shall not be used in advertising or otherwi se to pronote the sale, use
25 .\" or other dealings in this Software without prior witten authorization
26 .\" of the copyright holder.

27 .\" Portions Copyright (c) 2007, Sun Mcrosystens, Inc. All Rights Reserved.

28 . TH GL_I O MODE 3TECLA "January 18 2020"

28 . TH GL_I O MODE 3TECLA "Jun 1, 2004"

29 . SH NAME

30 gl _io_node, gl _raw_.io, gl _normal _io, gl _tty signals, gl_abandon_line,

31 gl _handl e_signal, gl _pending_ io \- use \fBgl _get_|line()VfR from an external
32 event |oop

33 . SH SYNOPSI S

34 .LP

36 #include <libtecla.h>

41 . LP

. nf
43 \gBi nt\fR\fBgl _raw_ i o\fR(\fBGetLine *\fRflIgI\fR);
44 . fi

46 . LP

. nf
48 \fBint\fR \fBgl _normal _io\fR(\fBGetLine *\fRflglI\fR);
49 . fi

52 .nf
53 \fBi nt\fR\fBgl _tty_signal s\fR(\fBvoid (*\f
54 \fBvoid (*\fR flcont_handler\fR)(int),
55 . fi

0=

57 . LP
. nf
59 \fBvoid\fR \fBgl _abandon_line\fR(\fBGetLine *\fRflglI\fR);

. nf
35 cc [\fIflag\fR&\|.\|. 1 \fIfile\fR&\|.\|. \fB-Itecla\fR [\fllibrary\fR &\

38 \fBint\fR \fBgl _io_node\fR(\fBGetLine *\fRflgl\fR \fBA | Owde\fR \flnode\fR);
Cfi

Ry (int), \fBvoid (
ize_ hand| er\fR) (int

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a 2

60

i
.LP
. nf
\fBvoi d\f R \fBgl _handl e_signal \fR(\fBint\fR \flsigno\fR \fBGetLine *\fRflgl\fR
i

.LP
. nf
\ f Bd Pendi ngl O fR \ fBgl _pendi ng_i o\fR(\fBGetLine *\fRflglI\fR);
fi

. SH DESCRI PTI ON

.sp

.LP

The \fBgl _get _|ine\fR(3TECLA) function supports two different |/O nodes. These
are selected by calling the \fBgl _io_node()\fR function. The \flnode\fR
argument of \fBgl _i o_node()\fR specifies the new |/O nmode and nust be one of
the follow ng.

.sp

.ne 2

.nha
\f B\ f BGL_NORMAL_MODE\ f R\ f R

.ad

.RS 18n

Sel ect the normal bl ocking-1/0 node. In this node \fBgl_get_line()\fR does not
return until either an error occurs of the user finishes entering a new line.
. RE

.sp
.ne 2

.na
\ f B\ f BGL_SERVER MODE\f R f R

.ad

. RS 18n

Sel ect non-bl ocking server 1/0 node. In this nbde, since non-blocking term nal
1/Ois used, the entry of each new input line typically requires many calls to
\fBgl _get_line()\fR froman external 1/Odriven event | oop.

. RE

.sp
.LP

Newl y created GetlLine objects start in nornal 1/0O npde, so to switch to
non- bl ocki ng server node requires an initial call to \fBgl_io_npbde()\fR

.SS "Server |/0O Mde"

.sp

.LP

I'n non-bl ocking server |/O node, the application is required to have an event
| oop that calls \fBgl get_llne()\fRV\henever the terminal file descriptor can
performthe type of 1/Othat \fBgl _get_line()\fRis waiting for. To determne

performthe type |/O that \fBgl _get_line()\fRis waiting for. To deternine
which type of 1/O\fBgl _get line()\fTRis waiting for, the application calls the
\fBgl _pending_io()\fR function. The return value is one of the follow ng two

enuner at ed val ues.

.sp
.ne 2

.na
\fB\f BGLP_READ\ f R f R
.ad

. RS 13n

\fBgl _get _line()\fRis waiting to wite a character to the terminal.
.RE

.sp

.ne 2
. ha

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a

121 \fB\fBAP_WRI TE\fR fR

122 . ad

123 . RS 13n

124 \fBgl _get _line()\fRis waiting to read a character fromthe keyboard.

129 \fBgl _get_line()\fRis waiting to read a character fromthe keyboad.

125 . RE

127 .sp

128 . LP

129 If the application is using either the \fBselect\fR(3C) or \fBpoll\fR(2)

130 function to watch for 1/Oon a group of file descriptors, then it should call
131 the \fBgl _pending_io()\fR function before each call to these functions to

132 deternine which direction of I/Oit should tell themto watch for, and

133 configure their argunments accordingly. In the case of the \fBselect()\fR

134 function, this nmeans using the \fBFD SET()\fR nacro to add the terminal file
135 descriptor either to the set of file descriptors to be watched for readability
136 or the set to be watched for witability.

137 .sp

138 . LP

139 As in normal 1/O node, the return value of \fBgl_get _line()\fRis either a
140 pointer to a conpleted input line or \fINULL\fR However, whereas in normal 1/0O
141 node a \fINULL\fR return val ue al ways nmeans that an error occurred, in

142 non- bl ocki ng server node, \fINULL\fR is also returned when \fBgl _get_line()\fR
143 cannot read or wite to the term nal w thout blocking. Thus in non-blocking
144 server node, in order to determne when a \fINULL\fR return value signifies
145 that an error occurred or not, it is necessary to call the

146 \fBgl _return_status()\fR function. If this function returns the enunerated

147 value \fBGLR _BLOCKED\fR, \fBgl _get_line()\fRis waiting for 1/0 and no error
148 has occurred.

149 .sp

150 . LP

151 When \fBgl _get_line()\fR returns \fINULL\fR and \fBgl _return_status()\fR

152 indicates that this is due to blocked termnal 1/0O, the application should call
153 \fBgl _get _line()\fR again when the type of I1/O reported by

154 \fBgl _pending_i o()\fR beconmes possible. The \flpronpt\fR \flstart_line\fR and
155 \flstart_pos\fR argunents of \fBgl _get_line()\fRwill be ignored on these

156 calls. If you need to change the pronpt of the line that is currently being
157 edited, you can call the \fBgl _replace_pronpt\fR(3TECLA) function between calls
158 to \fBgl _get_line()\fR

159 .SS "G ving Up The Term nal "

165 .sp

166 . LP

160 A conplication that is unique to non-blocking server node is that it requires
161 that the termnal be left in raw node between calls to \fBgl _get_line()\fR If
162 this were not the case, the external event |oop would not be able to detect
163 i ndi vi dual key-presses, and the basic line editing inplenented by the termnal
164 driver would clash with the editing provided by \fBgl _get_line()\fR Wen the
165 termnal needs to be used for purposes other than entering a new input |line
166 with \fBgl _get_line()\fR, it needs to be restored to a usable state. In

167 particul ar, whenever the process is suspended or termnated, the term nal nust
168 be returned to a normal state. If this is not done, then depending on the

169 characteristics of the shell that was used to invoke the program the user

170 could end up with a hung terminal. To this end, the \fBgl _nornmal _io()\fR

171 function is provided for switching the termnal back to the state that it was
172 in when raw node was |ast established.

173 .sp

174 . LP

175 The \fBgl _normal _io()\fR function first flushes any pending output to the

176 terminal, then noves the cursor to the start of the terminal |ine which follows
177 the end of the inconpletely entered input line. At this point it is safe to
178 suspend or termnate the process, and it is safe for the application to read
179 and wite to the terminal. To resune entry of the input line, the application
180 should call the \fBgl_raw_io()\fR function.

181 .sp

182 .LP

183 The \fBgl _normal _io()\fR function starts a new line, redisplays the partially

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a

184
185
186
187
188
189
190
191
192
193
194
202
203
195
196
197
198
199
200
201
202
203
204
205
206
207

conpleted input line (if any), restores the cursor position within this line to
where it was when \fBgl _normal _io()\fR was called, then swi tches back to raw,
non- bl ocking term nal node ready to continue entry of the input |ine when

\fBgl _get_line()\fR is next called.

.sp
.LP

Note that in non-blocking server node, if \fBgl_get_line()\fRis called after a
call to \fBgl_normal _io()\fR without an intervening call to \fBgl_raw_.io()\fR
\fBgl _get_line()\fRw Il call \fBgl _raw node()\fR itself, and the termnal wll

remain in this node when \fBgl _get_line()\fR returns.

. SS "Signal Handling"

.sp

.LP

In the previous section it was pointed out that in non-blocking server node,
the terminal nust be restored to a sane state whenever a signal is received
that either suspends or termnates the process. In normal 1/O npbde, this is
done for you by \fBgl_get_line()\fR but in non-blocking server node, since the
terminal is left in raw node between calls to \fBgl _get_line()\fR this signal
handl ing has to be done by the application. Since there are nany signals that
can suspend or terminate a process, as well as other signals that are inportant
to \fBgl _get_line()\fR, such as the \fBSIGANNCH fR signal, which tells it when
the term nal size has changed, the \fBgl_tty_signals()\fR function is provided
for installing signal handlers for all pertinent signals.

.sp

.LP
The \fBgl _tty_signals()\fR function uses \fBgl _get_line()\fR s internal |ist of

208 signals to assign specified signal handlers to groups of signals. The argunents
209 of this function are as follows.

210 .sp

211 .ne 2

212 .na

213 \fB\fltermhandler\fRfR

214 . a

215 . RS 16n

216 This is the signal handler that is used to trap signals that by default

217 term nate any process that receives them (for exanple, \fBSIG NN\fR or

218 \fBSIGTERM fR) .

219 .RE

221 .sp

222 .ne 2

223 .na

224 \fB\flsusp_handler\fRfR

225 . ad

226 . RS 16n

227 This is the signal handler that is used to trap signals that by default suspend

228
229

231
232
233
234
235
236
237
238
239
240
241

243
244
245
246
247

any process that receives them (for exanple, \fBSIGISTP\fR or \fBSIGTTOMNfR).
.RE

.sp
.ne 2

.nha
\fB\flcont_handler\fRfR

.ad

. RS 16n

This is the signal handler that is used to trap signals that are usually sent
when a process resunes after being suspended (usually \fBSIGCONT\fR). Beware
that there is nothing to stop a user fromsending one of these signals at other
tines.

. RE

.sp
.ne 2

.nha
\fB\flsize_handler\fRfR
.ad

4

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a

248
249
250
251
252

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
292
293
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

. RS 16n

This signal handler is used to trap signals that are sent to processes when
their controlling termnals are resized by the user (for exanple,

\fBSIGN NCH\ f R) .

.RE

.sp

.LP
These argunents can all be the same, if so desired, and \fBSIG IG\W\fR (ignore
this signal) or \fBSIG DFL\fR (use the system provi ded default signal handl er)
can be specified instead of a function where pertinent. In particular, it is
rarely useful to trap \fBSIGCONT\fR, so the \flcont_handl er\fR argunent will
usual |y be \fBSIGDFL\fR or \fBSIG IGW\fR

.sp

.LP
The \fBgl _tty_signals()\fR function uses the POSI X \fBsigaction\fR(2) function
to install these signal handlers, and it is careful to use the \flsa_mask\fR
menber of each \fBsigaction\fR structure to ensure that only one of these
signals is ever delivered at a tine. This guards against different instances of
these signal handlers from simltaneously trying to wite to common gl obal
data, such as a shared \fBsigsetjnmp\fR(3C) buffer or a signal-received flag.
The signal handlers installed by this function should call the
\ fBgl _handl e_signal ()\fR

.sp

.LP
The \flsigno\fR argunment tells this function which signal it is being asked to
respond to, and the \flgl\fR argunment should be a pointer to the first el enment
of an array of \flngl\fR \fBGetLine\fR objects. If your application has only
one of these objects, pass its pointer as the \flgl\fR argument and specify
\flngl\fRas 1

.sp

.LP

Dﬁpendi ng on the signal that is being handled, this function does different
t hi ngs.

.SS "Process termnation signals"

.sp

.LP

If the signal that was caught is one of those that by default term nates any
process that receives it, then \fBgl _handl e_signal ()\fR does the follow ng

st eps.

.RS +4

. TP

1.

First it blocks the delivery of all signals that can be bl ocked (ie.
\fBSI &I LL\fR and \fBSI GSTOP\f R cannot be bl ocked).

.RE

.RS +4

TP

2.

Next it calls \fBgl_normal _io()\fR for each of the ngl GetLine objects. Note
that this does nothing to any of the GetLine objects that are not currently in
raw node.

. RE

.RS +4

. TP

3.

Next it sets the signal handler of the signal to its default,

process-term nation di sposition.

RE

.RS +4

TP

4.

Next it re-sends the process the signal that was caught.
RE

RS +4
TP

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a

312 5

313
314
315
316
328
329
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
370
371
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

Fi nal | y it unbl ocks delivery of this signal, which results in the process
bei ng terninated.
RE

. SS "Process suspension signals"”

.sp

. LP

If the default disposition of the signal is to suspend the process, the sane
steps are executed as for process term nation signals, except that when the
process is later resunmed, \fBgl_handl e_signal ()\fR continues, and does the
foll owi ng steps.

.RS +4

. TP

1.
It re-blocks delivery of the signal.
RE

.RS +4

TP

2.

It reinstates the signal handler of the signal to the one that was displaced
when its default disposition was substituted.

. RE

.RS +4

TP

3.

For any of the GetLine objects that were in raw node when

\ fBgl _handl e_signal ()\fR was called, \fBgl_handl e_signal ()\fR then calls
\fBgl _raw io()\fR, to resune entry of the input lines on those termnals.
.RE

.RS +4

TP

4.
Finally, it restores the signal process nask to how it was when

\ fBgl _handl e_si gnal ()\fR was call ed.

. RE

.sp

.LP

Note that the process is suspended or termi nated using the original signal that
was caught, rather than using the uncatchable \fBSIGSTOP\fR and \fBSI &I LL\fR
signals. This is inportant, because when a process is suspended or term nated,
the parent of the process may wi sh to use the status value returned by the wait
systemcall to figure out which signal was responsible. In particular, nost
shells use this infornmation to print a correspondi ng nessage to the termnal.
Users would be rightly confused if when their process received a \fBSIGPl PE\fR
signal, the program responded by sending itself a \fBSIGKILL\fR signal, and the
shell then printed out the provocative statement, "Killed!".

.SS "Interrupting The Event Loop"

.sp

.LP

If a signal is caught and handl ed when the application’s event |loop is waiting
in \fBselect()\fR or \fBpoll()\fR these functions will be aborted with
\fBerrno\fR set to \fBEINTRfR Wen this happens the event |oop should call
\fBgl _pending_io()\fR before calling \fBselect()\fR or \fBpoll()\fR again. It
shoul d then arrange for \fBselect()\fR or \fBpoll()\fR to wait for the type of
1/O that \fBgl_pending_io()\fR reports. This is necessary because any signal
handl er that calls \fBgl _handle_signal ()\fRwi Il frequently change the type of
1/Othat \fBgl_get_line()\fRis waiting for.

.sp

.LP

If a signal arrives between the statenents that configure the argunents of
\fBselect()\fR or \fBpoll ()\fR and the calls to these functions, the signal
will not be seen by these functions, which will then not be aborted. |If these
functions are waiting for keyboard input fromthe user when the signal is

recei ved, and the signal handler arranges to redraw the input line to
accommopdate a terminal resize or the resunption of the process. This redisplay
wi Il be delayed until the user presses the next key. Apart from puzzling the

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a 7

374
375
376
377
378

user, this clearly is not a serious problem However there is a way, albeit
conplicated, to conpletely avoid this race condition. The foll ow ng steps
illustrate this.

.RS +4

. TP

379 1

380
381

Bl ock all of the signals that \fBgl_get_

line()\fR catches, by passing the
signal set returned by \fBgl _|ist_signals()\f

R to \fBsi gprocmask\fR(Z).

382 . RE

383
384
385
386
387 \
388
389
390

RS +4
TP

2.

CaII Bg
fBo IO\
e

RS +4
TP

pending_io()\fR and set up the argunents of \fBselect()\fR or
accordl ngly.

391 3

392

Call \fBsi gsetjnmp\fR(3C) with a non-zero \flsavemask\fR argunent.

393 . RE

394
395
396
397
398
399

400 .

401

.RS +4

TP

4.

Initially this \fBsigsetjnp()\fR statement will return zero, indicating that
control is not resumng there after a matching call to \fBsiglongjnm\fR(3C).

RS +4
. TP

402 5

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

Repl ace all of the handlers of the signals that \fBgl_get_line()\fRis
configured to catch, with a signal handler that first records the nunber of the
signal that was caught, in a file-scope variable, then calls \fBsiglongjnmp()\fR
with a non-zero \flval\fR argunent, to return execution to the above
\fBsigsetjnp()\fR statenment. Registering these signal handlers can conveniently
be done using the \fBgl _tty_signals()\fR function.

RE

.RS +4

. TP

6.

Set the file-scope variable that the above signal handler uses to record any
signal that is caught to -1, so that we can check whether a signal was caught
by seeing if it contains a valid signal nunber.

RS +4

TP

7.

Now unbl ock the signals that were blocked in step 1. Any signal that was

recei ved by the process in between step 1 and now wi Il now be delivered, and
trigger our signal handler, as will any signal that is received until we block
these signals again.

424 . RE

425
426

.RS +4
. TP

427 8

428
429
430
431
432
433
434
435
436
437
438
439

Now cal | \fBsel ect()\fR or \fBpoll ()\fR
RE

.RS +4

TP

9.

When sel ect returns,
.sp

If a signal is arrived any time during the above steps, our signal handler wll
be triggered and cause control to return to the \fBsigsetjnp()\fR statenent,
where this tine, \fBsigsetjmp()\fRw Il return non-zero, indicating that a
signal was caught. Wien this happens we sinply skip the above bl ock of
statements, and continue with the follow ng statenents, which are executed

again block the signals that were unblocked in step 7.

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a 8

440
441

regardl ess of whether or not a signal is caught. Note that when
\fBsigsetjnp()\fR returns, regardless of why it returned, the process signal

442 mask is returned to how it was when \fBsigsetjnp()\fR was call ed. Thus the
443 followi ng statenents are al ways executed with all of our signals blocked.
444 . RE

445 | RS +4

446 . TP

447 10.

448 Reinstate the signal handlers that were displaced in step 5.

449 | RE

450 .RS +4

451 . TP

452 11.

453 Check whether a signal was caught, by checking the fil e-scope variable that
468 Check wet her a signal was caught, by checking the fil e-scope variable that
454 the signal handler records signal nunmbers in

455 . RE

456 . RS +4

457 . TP

458 12.

459 |f a signal was caught, send this signal to the application again and

460 unbl ock only this signal so that it invokes the signal handler which was just
461 reinstated in step 10.

462 . RE

463 . RS +4

464 . TP

465 13.

466 Unbl ock all of the signals that were blocked in step 7.

467 . RE

468 . SS "Signals Caught By \fBgl _get_line()\fR

484 . sp

485 . LP

469
470
471
472
473
474
475
476
477
478
496
497
479
480
481
482
483
484
485
504
486
487
507
508
488
489
490
491
492
493
494
495
496
497

Since the application is expected to handl e signals in non-blocking server

node, \fBgl_get_line()\fR does not attenpt to duplicate this when it is being
called. If one of the signals that it is configured to catch is sent to the
application while \fBgl _get _line()\fRis being called, \fBgl_get_line()\fR
reinstates the caller’s signal handlers, then inmediately before returning,
re-sends the signal to the process to let the application s signal handler
handle it. If the process is not terminated by this signal, \fBgl_get_line()\fR
returns \fINULL\fR, and a following call to \fBgl _return_status()\fR returns
the enunerated value \fBGLR SI GNAL\f R

. SS "Aborting Line Input”

.sp

.LP

O'ten, rather than letting it termnate the process, applications respond to
the \fBSI G NT\fR user-interrupt signal by aborting the current input line. This

can be acconplished in non-blocking server-1/0 nmode by not calling

\fBgl _handl e_signal ()\fR when this signal is caught, but by calling instead the
\ fBgl _abandon_line()\fR function. This function arranges that when

\fBgl _get_line()\fRis next called, it first flushes any pending output to the

termnal, discards the current input |ine, outputs a new pronpt on the next

term nal, discardes the current input line, outputs a new pronpt on the next
line, and finally starts accepting input of a newinput line fromthe user.

.SS "Signal Safe Functions"

.sp

.LP

Provided that certain rules are followed, the \fBgl _normal _io()\fR,

\fBgl _raw_io()\fR \fBgl _handl e_signal ()\fR, and \fBgl _abandon_|ine()\fR
functions can be witten to be safely callable fromsignal handlers. Cher
functions in this library should not be called fromsignal handlers. For this
to be true, all signal handlers that call these functions nust be registered in
such a way that only one instance of any one of them can be running at one
time. The way to do this is to use the POSI X \fBsigaction()\fR function to

regi ster all signal handlers, and when doing this, use the \flsa_mask\fR nmenber
of the corresponding \fBsigaction\fR structure to indicate that all of the
signal s whose handl ers invoke the above functions should be bl ocked when the

new usr/src/ man/ man3t ecl a/ gl _i o_node. 3tecl a

498 current signal is being handled. This prevents two signal handlers from

499 operating on a \fBGetLine\fR object at the sanme tine.

500 .sp

501 . LP

502 To prevent signal handlers fromaccessing a \fBGetLine\fR object while

503 \fBgl _get_line()\fR or any of its associated public functions are operating on
504 it, all public functions associated with \fBgl _get_line()\fR including

505 \fBgl _get_line()\fR itself, tenporarily block the delivery of signals when they
506 are accessing \fBGetLine\fR objects. Beware that the only signals that they
507 bl ock are the signals that \fBgl _get_line()\fRis currently configured to

508 catch, so be sure that if you call any of the above functions from signal

509 handlers, that the signals that these handl ers are assigned to are configured
510 to be caught by \fBgl _get _line()\fR See \fBgl_trap_signal\fR(3TECLA).

511 . SS "Using Timeouts To Poll"

533 .sp

534 . LP

512 If instead of using \fBselect()\fR or \fBpoll()\fRto wait for 1/0O your

513 application needs only to get out of \fBgl_get_line()\fR periodically to

514 briefly do sonething el se before returning to accept input fromthe user, use
515 the \fBgl _inactivity_timeout\fR(3TECLA) function in non-blocking server node to
516 specify that a callback function that returns \fBG.TO CONTI NUE\fR shoul d be
517 cal |l ed whenever \fBgl _get_line()\fR has been waiting for 1/0 for nDre than a
518 specified amount of tine. Wien this callback is triggered, \fBgl_get_| |n (O)\fR
519 will return \fINULL\fR and a following call to \fBgl _return_status()VfR will
520 return \fBGLR_BLOCKED\ f R

521 .sp

522 . LP

523 The \fBgl _get_line()\fR function will not return until the user has not typed a
524 key for the specified interval, so if the interval is long and the user keeps
525 typing, \fBgl _get_line()\fR might not return for a while. There is no guarantee
526 that it will return in the tine specified.

527 . SH ATTRI BUTES

551 .sp

552 . LP

528 See \fBattributes\fR(5) for descriptions of the follow ng attributes:

529 .sp

531 .sp

532 . TS

533 box;

534 c | ¢

535 | .

536 ATTRI BUTE TYPE ATTRI BUTE VALUE

537

538 Interface Stability Evol vi ng

539 _

540 Mr-Level M- Saf e

541 . TE

543 . SH SEE ALSO

569 .sp

570 . LP

544 \ fBcpl _conpl et e_word\ f R(C3TECLA), \fBef_expand_file\fR(3TECLA),

545 \fBgl _get_line\fR(3TECLA), \fBlibtecla\fR(3LIB), \fBpca_l ookup_file\fR(3TECLA),
546 \fBattributes\fR(5), \fBtecla\fR(5)

new usr/src/ man/ man3t ecl a/ pca_|l ookup_file.3tecla

R R R R

13780 Sat Jan 18 13:36:58 2020
new usr/src/ man/ man3t ecl a/ pca_| ookup_file.3tecla
12212 typos in some section 3tecla nman pages

R R R R

1'\" te

2 .\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd. All Rights
3 .\" Permission is hereby granted, free of charge, to any person obtaining a copy
4 \" "Software"), to deal in the Software without restriction, including

5 .\" without limtation the rights to use, copy, nodify, merge, publish,

6 .\" distribute, and/or sell copies of the Software, and to permt persons

7 .\" to whomthe Software is furnished to do so, provided that the above

8 .\" copyright notice(s) and this perm ssion notice appear in all copies of

9 .\" the Software and that both the above copyright notice(s) and this

10 .\" permi ssion notice appear in supporting docunentation.

11 .\"

12 THE SOFTWARE |'S PROVI DED "AS |'S", W THOUT WARRANTY OF ANY KIND, EXPRESS

R
13 .\" OR I MPLIED, | NCLUDI NG BUT NOT LIM TED TO THE WARRANTI ES OF

14 .\" MERCHANTABI LI TY, FITNESS FOR A PARTI CULAR PURPOSE AND NONI NFRI NGEMENT
15 .\" OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRI GHT HOLDER OR

16 .\" HOLDERS INCLUDED IN THI S NOTI CE BE LI ABLE FOR ANY CLAIM OR ANY SPECI AL
17 .\" | NDI RECT OR CONSEQUENTI AL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTI NG
18 .\" FROM LOSS OF USE, DATA OR PRCFITS, WHETHER I N AN ACTI ON OF CONTRACT,

19 .\" NECGLI GENCE OR OTHER TORTI QUS ACTI ON, ARI SING OUT OF OR I N CONNECTI ON
20 t W TH THE USE OR PERFORVANCE OF THI S SOFTWARE.

21 .\"

22 .\" Except as contained in this notice, the name of a copyright hol der

23 .\" shall not be used in advertising or otherwise to pronote the sale, use
24 .\" or other dealings in this Software without prior witten authorization
25 .\" of the copyright hol der.

26 .\" Portions Copyright (c) 2007, Sun Mcrosystenms, Inc. All Rights Reserved.

27 . TH PCA_LOOKUP_FI LE 3TECLA "January 18, 2020"

27 . TH PCA_LOOKUP_FI LE 3TECLA "Aug 13, 2007"

28 . SH NAME

29 pca_l ookup_file, del_PathCache, del _PcaPat hConf, new Pat hCache,

30 new_PcaPat hConf, pca_l ast_error, pca_path_conpletions, pca_scan_path,

31 pca_set_check_fn, ppc_file_start, ppc_literal _escapes \- lookup a file in a
32 list of directories

33 . SH SYNOPSI S

34 . LP

36 #include <libtecla.h>

38 \fBchar *\fR\ fBpca_l ookup_file\fR(\fBPathCache *\fR flpc\fR, \fBconst char *\fR
39 \fBint\fR\flname_len\fR \fBint\fR\flliteral\fR);

40 . fi

42 . LP

43

. nf
44 \fBPat hCache *\fR\ fBdel _Pat hCache\f R(\fBPathCache *\fR flpc\fR);
45 . fi

47 . LP
. nf

49 \ f BPcaPat hConf *\fR\ fBdel _PcaPat hConf\fR(\fBPcaPat hConf *\fR\flppc\fR);
i

52 .LP

. nf
54 \f BPat hCache *\fR\ fBnew_Pat hCache\fR(\fBvoi d\fR);
55 . fi

57 . LP
. nf
59 \f BPcaPat hConf *\fR\ fBnew PcaPat hConf\fR(\fBPat hCache *\fR flpc\fR);

. nf
35 cc [\fIflag\fR&\|.\|. 1 \fIfile\fR&\|.\|. \fB-Itecla\fR [\fllibrary\fR &\

new usr/src/ man/ man3t ecl a/ pca_|l ookup_file.3tecla 2

60

120

i
.LP
. nf
\fBconst char *\fR fBpca_l ast_error\fR(\fBPathCache *\fR flpc\fR);
i

.LP

. nf
\ f BCPL_MATCH_FN\ f R(\ f Bpca_pat h_conpl etions\fR);
fi

.LP

. nf
\fBint\fR \fBpca_scan_pat h\f R(\ f BPat hCache *\fR flpc\fR, \fBconst char *\fR flpa
fi

.LP

. nf

\fBvoi d\f R \ f Bpca_set _check_f n\fR(\fBPat hCache *\fR flpc\fR \fBCpl CheckFn *\fR\
\fBvoid *\fR fldata\fR);

fi

.LP

. nf
\fBvoid\fR \fBppc_file_start\fR(\fBPcaPathConf *\fR flppc\fR \fBint\fR\flstart
fi

.LP

. nf
\fBvoid\fR \fBppc_literal _escapes\fR(\fBPcaPat hConf *\fR flppc\fR \fBint\fR \fl
fi

. SH DESCRI PTI ON
.sp

.LP

The \fBPat hCache\fR object is part of the \fBlibtecla\fR(3LIB) library.

\ f BPat hCache\ f R obj ects allow an application to search for files in any colon
separated |list of directories, such as the UNI X execution \fBPATH fR
environnment variable. Files in absolute directories are cached in a

\ f BPat hCache\ f R obj ect, whereas relative directories are scanned as needed.
Using a \fBPat hCache\fR object, you can | ook up the full pathname of a sinple
filenane, or you can obtain a |list of the possible conpletions of a given
filenane prefix. By default all files in the list of directories are targets
for | ookup and conpletion, but a versatile mechanismis provided for only

sel ecting specific types of files. The obvious application of this facility is
to provide Tab-conpletion and | ookup of executable commands in the UNI X
\fBPATH\f R, so an optional callback which rejects all but executable files is
\fBPATH\f R, so an optional callback which rejects all but executable files, is
provi ded.

. SS "An Exanpl e"

.sp

. LP

Under UNI X, the follow ng exanpl e program | ooks up and displays the full

pat hnanes of each of the command nanmes on the command |ine.

.sp

Lin 42

. nf

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <libtecla. h>

int main(int argc, char *argv[])

int i;
/*

new usr/src/ man/ man3t ecl a/ pca_|l ookup_file.3tecla

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150 .

152
153
154
155
156
157
158
159
160
161
162
163

164 .i

166
172
173
167
168
169
170
171
179
180
172
173
174
175
176
177
178
179
180
181
182

* Create a cache for executable files.
*/

Pat hCache *pc = new_Pat hCache();
if(!pc)
exit(1);

* Scan the user’s PATH for execut abl es.
*/
i f(pca_scan_pat h(pc

fprintf(stderr,
exit(1);

getenv("PATH'))) {
"\ en", pca_last_error(pc));

}

/*

* Arrange to only report executable files.
*/

pca_set _check_fn(pc, cpl_check_exe, NULL);
/*

* Lookup and display the full pathname of each of the
* commands listed on the command |ine.
*/

for(i=1; i<argc; i++) {
char *cmd = pca_l ookup_file(pc, argv[i], -1, 0);
printf(" The full pathnane of "%’ is %\ e\ en" argv[i],
cmd ? cnd @ "unknown");
}
pc = del _PathCache(pc); /* Cean up */
return O;
b
fi
in-2
- Sp
LP
The fol I ow ng is an exanple of what this does on a | aptop under LI NUX:
.sp
in 42
. nf

$./exanple |l ess nore blob

The full pathnane of 'less’ is /usr/bin/less
The full pathnane of 'nore’ is /bin/nore

The full pathnane of 'blob’ is unknown

$
i
n-2
. SS "Function Descriptions"
.sp
.LP

To use the facilities of this nodule, you nust first allocate a \fBPathCache\fR
obj ect by calling the \fBnew PathCache()\fR constructor function. This function
creates the resources needed to cache and | ookup files in a list of
directories. It returns \fINULL\fR on error.

. SS "Popul ati ng The Cache"

.sp

.LP

Once you have created a cache, it needs to be populated with files. To do this,
call the \fBpca_scan_path()\fR function. Wenever this function is called, it
discards the current contents of the cache, then scans the list of di rectories
specified in its path argument for files. The path argunment nust be a string
containing a colon-separated |ist of directories, such as

"\fB/usr/bin\fR \fB/ hone/nts/bin\fR ". This can include directories specified
by absol ute pathnanmes such as "\fB/usr/bin\fR', as well as sub-directories
specified by relative pathnanes such as "." or "\fBbin\fR'. Files in the
absolute directories are imedi ately cached in the specified \fBPathCache\fR
obj ect, whereas subdirectories, whose identities obviously change whenever the
current working directory is changed, are marked to be scanned on the fly

new usr/src/ man/ man3t ecl a/ pca_|l ookup_file.3tecla

183
184
185
186
187
188
198
199
189
190
191
192
193
194
195
196
197
198
199
200
201
213
214
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
253
254
240
241
242

whenever a file is | ooked up.

.sp

.LP

On success this function return 0. On error it returns 1, and a description of
the error can be obtained by calling \fBpca_last_error\fR(\flpc\fR).

. SS "Looking Up Files"

.sp

LP

Once the cache has been popul ated with files, you can | ook up the full pathnane
of a file, sinply by specifying its filenanme to \fBpca_l ookup_file()\fR

- Sp

LP

To make it possible to pass this function a filenane which is actually part of
a longer string, the \flnane_len\fR argunent can be used to specify the length
of the filenane at the start of the \finame\fR[] argunent. If you pass -1 for
this length, the length of the string will be determined with \flstrlen\fR If
the \flname\fR] string might contain backslashes that escape the special

meani ngs of spaces and tabs within the filenane, give the \flliteral\fR
argunment the value 0. Otherwi se, if backsl ashes should be treated as nornal
characters, pass 1 for the value of the \flliteral\fR argument.

.SS "Fil ename Conpl etion”

.sp

LP

Looki ng up the potential conpletions of a filenane-prefix in the filenane cache
i s achieved by passing the provided \fBpca_path_conpletions()\fR call back
function to the \fBcpl _conpl et e_word\fR(3TECLA) function.

.sp

.LP

This call back requires that its data argument be a pointer to a PcaPathConf

obj ect. Configuration objects of this type are allocated by calling
\ f Bhew_PcaPat hConf ()\ fR.

.sp

.LP

This function returns an object initialized with default configuration
paraneters, which determ ne how the \fBcpl _path_conpletions()\fR call back
function behaves. The functions which allow you to individually change these
paraneters are di scussed bel ow.

.sp

.LP

By default, the \fBpca_path_conpletions()\fR callback function searches
backwards for the start of the filename bei ng conpl eted, |ooking for the first
un- escaped space or the start of the input line. If you wish to specify a
different location, call \fBppc_file_start()\fRwi th the index at which the
filenane starts in the input line. Passing \flstart_index\fR=-1 re-enables the
defaul t behavi or.

.sp

.LP

By default, when \fBpca_path_conpletions()\fR | ooks at a filenane in the input
I'ine, each |one backslash in the input line is interpreted as being a special
character which renoves any special significance of the character which follows
it, such as a space which should be taken as part of the filename rather than
delimting the start of the filenane. These backsl ashes are thus ignored while
| ooki ng for conpletions, and subsequently added before spaces, tabs and literal
backsl ashes in the list of conpletions. To have unescaped backsl ashes treated
as normal characters, call \fBppc_literal _escapes()\fR with a non-zero value in
its literal argument.

.sp

.LP

When you have finished with a \fBPcaPathConf\fR variable, you can pass it to

t he \deeI PcaPathOonf()\ R destructor function to reclaimits nenory.

. SS "Being Sel ective"

- Sp

.LP

If you are only interested in certain types or files, such as, for exanple,
executable files, or files whose nanes end in a partlcular sufflx you can
arrange for the file conpl etion and | ookup functions to be sel ective in the

new usr/src/ man/ man3t ecl a/ pca_|l ookup_file.3tecla

243 filenanmes that they return. This is done by registering a callback function
244 with your \fBPathCache\fR object. Thereafter, whenever a filename is found

245 which either matches a filename being | ooked up or natches a prefix which is
246 being conpleted, your callback function will be called with the full pathname
247 of the file, plus any application-specific data that you provide. If the

248 cal I back returns 1 the filenane will be reported as a match. If it returns O,
249 it will be ignored. Suitable callback functions and their prototypes should be
250 declared with the follow ng macro. The \fBCpl CheckFn\fR typedef is also

251 provided in case you wish to declare pointers to such functions.

266 provided in case you wish to declare pointers to such functions

252 .sp

253 .in +2

254 . nf

255 #define CPL_CHECK FN(f n) int (fn)(void *data, const char *pathnane)

256 typedef CPL_CHECK_FN(Cpl CheckFn);

257 . fi

258 .in -2

260 .sp

261 . LP

262 Registering one of these functions involves calling the

263 \fBpca_set_check_fn()\fR function. In addition to the callback function passed
264 with the \flcheck_fn\fR argunent, you can pass a pointer to anything with the
265 \fldata\fR argument. This pointer will be passed on to your callback function
266 by its own \fldata\fR argunent whenever it is called, providing a way to pass
267 application-specific data to your callback. Note that these callbacks are

268 passed the full pathnane of each matching file, so the decision about whether a
269 file is of interest can be based on any property of the file, not just its
270 filenane. As an exanple, the provided \fBcpl _check_exe()\fR cal | back function
271 1 ooks at the executable pernissions of the file and the permissions of its

272 parent directories, and only returns 1 if the user has execute perm ssion to
273 the file. This callback function can thus be used to | ookup or conpl ete command
274 names found in the directories listed in the user’s \fBPATH fR environnent

275 variabl e. The exanpl e program above provi des a denpbnstration of this.

276 .sp

277 . LP

278 Beware that if sonebody tries to conplete an enpty string, your callback wll
279 get called once for every file in the cache, which could nunber in the

280 thousands. If your callback does anything tinme consuming, this could result in
281 an unacceptable delay for the user, so callbacks should be kept short.

282 .sp

283 . LP

284 To inprove perfornmance, whenever one of these callbacks is called, the choice
285 that 1t makes is cached, and the next tine the corresponding file is |ooked up,
286 instead of calling the callback again, the cached record of whether it was

287 accepted or rejected is used. Thus if sonmebody tries to conplete an enpty

288 string, and hits tab a second tine when nothing appears to happen, there wll
289 only be one long delay, since the second pass will operate entirely fromthe
290 cached dispositions of the files. These cached dispositions are discarded

305 cached dispositions of the files. These cached dipositions are discarded

291 whenever \fBpca_scan_path()\fR is called, and whenever \fBpca_set_check_fn()\fR
292 is called with changed cal | back function or \fldata\fR argunents.

293 .SS "Error Handling"

309 .sp

310 . LP

294 |f \fBpca_scan_path()\fR reports that an error occurred by returning 1, you can
295 obtain a terse description of the error by calling

296 \fBpca_last_error\fR(\flpc\fR). This returns an internal string containing an
297 error nessage.

298 . SS "d eani ng Up"

316 .sp

317 . LP

299 Once you have finished using a \fBPathCache\fR object, you can reclaimits

300 resources by passing it to the \fBdel _PathCache()\fR destructor function. This
301 takes a pointer to one of these objects, and always returns \flINULL\fR

302 .SS "Thread Safety"

new usr/src/ man/ man3t ecl a/ pca_l ookup_file.3tecla

322
323
303
304
305
306
307
329
330
308

.sp
. LP

It is safe to use the facilities of this nodule in nmultiple threads, provided
that each thread uses a separately allocated \fBPathCache\fR object. In other

words, if two threads want to do path searching, they should each call
\anew Pat hCache()\fR to all ocate their own caches.

. SH ATTRI BUTES

- Sp

LP

See \fBattributes\fR(5) for descriptions of the follow ng attributes:

309 .sp
311 .sp

312 . TS

313 box;

314 c | ¢

315 | .

316 ATTRIBUTE TYPE ATTRI BUTE VALUE

317

318 Interface Stability Evol vi ng

319 _

320 Mr-Level M- Saf e

321 . TE

323 . SH SEE ALSO

347 .sp

348 . LP

324 \ fBcpl conpl _wor d\ f R(C3TECLA), \fBef_expand_file\fR(3TECLA),

325 \fBgl _get_lin R(3TECLA), \fBlibtecla\fR(3LIB), \fBattri butes\fR(S)

