1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2016 by Delphix. All rights reserved. 25 * Copyright 2019 Peter Tribble. 26 */ 27 28 #include <sys/machsystm.h> 29 #include <sys/archsystm.h> 30 #include <sys/vm.h> 31 #include <sys/cpu.h> 32 #include <sys/atomic.h> 33 #include <sys/reboot.h> 34 #include <sys/kdi.h> 35 #include <sys/bootconf.h> 36 #include <sys/memlist_plat.h> 37 #include <sys/memlist_impl.h> 38 #include <sys/prom_plat.h> 39 #include <sys/prom_isa.h> 40 #include <sys/autoconf.h> 41 #include <sys/ivintr.h> 42 #include <sys/fpu/fpusystm.h> 43 #include <sys/iommutsb.h> 44 #include <vm/vm_dep.h> 45 #include <vm/seg_dev.h> 46 #include <vm/seg_kmem.h> 47 #include <vm/seg_kpm.h> 48 #include <vm/seg_map.h> 49 #include <vm/seg_kp.h> 50 #include <sys/sysconf.h> 51 #include <vm/hat_sfmmu.h> 52 #include <sys/kobj.h> 53 #include <sys/sun4asi.h> 54 #include <sys/clconf.h> 55 #include <sys/platform_module.h> 56 #include <sys/panic.h> 57 #include <sys/cpu_sgnblk_defs.h> 58 #include <sys/clock.h> 59 #include <sys/cmn_err.h> 60 #include <sys/dumphdr.h> 61 #include <sys/promif.h> 62 #include <sys/prom_debug.h> 63 #include <sys/traptrace.h> 64 #include <sys/memnode.h> 65 #include <sys/mem_cage.h> 66 #include <sys/mmu.h> 67 #include <sys/swap.h> 68 69 extern void setup_trap_table(void); 70 extern int cpu_intrq_setup(struct cpu *); 71 extern void cpu_intrq_register(struct cpu *); 72 extern void contig_mem_init(void); 73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t); 74 extern void mach_dump_buffer_init(void); 75 extern void mach_descrip_init(void); 76 extern void mach_descrip_startup_fini(void); 77 extern void mach_memscrub(void); 78 extern void mach_fpras(void); 79 extern void mach_cpu_halt_idle(void); 80 extern void mach_hw_copy_limit(void); 81 extern void load_mach_drivers(void); 82 extern void load_tod_module(void); 83 #pragma weak load_tod_module 84 85 extern int ndata_alloc_mmfsa(struct memlist *ndata); 86 #pragma weak ndata_alloc_mmfsa 87 88 extern void cif_init(void); 89 #pragma weak cif_init 90 91 extern void parse_idprom(void); 92 extern void add_vx_handler(char *, int, void (*)(cell_t *)); 93 extern void mem_config_init(void); 94 extern void memseg_remap_init(void); 95 96 extern void mach_kpm_init(void); 97 extern void pcf_init(); 98 extern int size_pse_array(pgcnt_t, int); 99 extern void pg_init(); 100 101 /* 102 * External Data: 103 */ 104 extern int vac_size; /* cache size in bytes */ 105 extern uint_t vac_mask; /* VAC alignment consistency mask */ 106 extern uint_t vac_colors; 107 108 /* 109 * Global Data Definitions: 110 */ 111 112 /* 113 * XXX - Don't port this to new architectures 114 * A 3rd party volume manager driver (vxdm) depends on the symbol romp. 115 * 'romp' has no use with a prom with an IEEE 1275 client interface. 116 * The driver doesn't use the value, but it depends on the symbol. 117 */ 118 void *romp; /* veritas driver won't load without romp 4154976 */ 119 /* 120 * Declare these as initialized data so we can patch them. 121 */ 122 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */ 123 pgcnt_t segkpsize = 124 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */ 125 uint_t segmap_percent = 6; /* Size of segmap segment */ 126 127 int use_cache = 1; /* cache not reliable (605 bugs) with MP */ 128 int vac_copyback = 1; 129 char *cache_mode = NULL; 130 int use_mix = 1; 131 int prom_debug = 0; 132 133 caddr_t boot_tba; /* %tba at boot - used by kmdb */ 134 uint_t tba_taken_over = 0; 135 136 caddr_t s_text; /* start of kernel text segment */ 137 caddr_t e_text; /* end of kernel text segment */ 138 caddr_t s_data; /* start of kernel data segment */ 139 caddr_t e_data; /* end of kernel data segment */ 140 141 caddr_t modtext; /* beginning of module text */ 142 size_t modtext_sz; /* size of module text */ 143 caddr_t moddata; /* beginning of module data reserve */ 144 caddr_t e_moddata; /* end of module data reserve */ 145 146 /* 147 * End of first block of contiguous kernel in 32-bit virtual address space 148 */ 149 caddr_t econtig32; /* end of first blk of contiguous kernel */ 150 151 caddr_t ncbase; /* beginning of non-cached segment */ 152 caddr_t ncend; /* end of non-cached segment */ 153 154 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */ 155 caddr_t nalloc_base; /* beginning of nucleus allocation */ 156 caddr_t nalloc_end; /* end of nucleus allocatable memory */ 157 caddr_t valloc_base; /* beginning of kvalloc segment */ 158 159 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */ 160 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */ 161 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */ 162 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */ 163 int kmem64_szc; /* page size code */ 164 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */ 165 166 uintptr_t shm_alignment; /* VAC address consistency modulus */ 167 struct memlist *phys_install; /* Total installed physical memory */ 168 struct memlist *phys_avail; /* Available (unreserved) physical memory */ 169 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */ 170 struct memlist *nopp_list; /* pages with no backing page structs */ 171 struct memlist ndata; /* memlist of nucleus allocatable memory */ 172 int memexp_flag; /* memory expansion card flag */ 173 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */ 174 pgcnt_t obp_pages; /* Physical pages used by OBP */ 175 176 /* 177 * VM data structures 178 */ 179 long page_hashsz; /* Size of page hash table (power of two) */ 180 unsigned int page_hashsz_shift; /* log2(page_hashsz) */ 181 struct page *pp_base; /* Base of system page struct array */ 182 size_t pp_sz; /* Size in bytes of page struct array */ 183 struct page **page_hash; /* Page hash table */ 184 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */ 185 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */ 186 int pse_shift; /* log2(pse_table_size) */ 187 struct seg ktextseg; /* Segment used for kernel executable image */ 188 struct seg kvalloc; /* Segment used for "valloc" mapping */ 189 struct seg kpseg; /* Segment used for pageable kernel virt mem */ 190 struct seg ktexthole; /* Segment used for nucleus text hole */ 191 struct seg kmapseg; /* Segment used for generic kernel mappings */ 192 struct seg kpmseg; /* Segment used for physical mapping */ 193 struct seg kdebugseg; /* Segment used for the kernel debugger */ 194 195 void *kpm_pp_base; /* Base of system kpm_page array */ 196 size_t kpm_pp_sz; /* Size of system kpm_page array */ 197 pgcnt_t kpm_npages; /* How many kpm pages are managed */ 198 199 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */ 200 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */ 201 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */ 202 203 int segzio_fromheap = 0; /* zio allocations occur from heap */ 204 caddr_t segzio_base; /* Base address of segzio */ 205 pgcnt_t segziosize = 0; /* size of zio segment in pages */ 206 207 /* 208 * A static DR page_t VA map is reserved that can map the page structures 209 * for a domain's entire RA space. The pages that backs this space are 210 * dynamically allocated and need not be physically contiguous. The DR 211 * map size is derived from KPM size. 212 */ 213 int ppvm_enable = 0; /* Static virtual map for page structs */ 214 page_t *ppvm_base; /* Base of page struct map */ 215 pgcnt_t ppvm_size = 0; /* Size of page struct map */ 216 217 /* 218 * debugger pages (if allocated) 219 */ 220 struct vnode kdebugvp; 221 222 /* 223 * VA range available to the debugger 224 */ 225 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE; 226 const size_t kdi_segdebugsize = SEGDEBUGSIZE; 227 228 /* 229 * Segment for relocated kernel structures in 64-bit large RAM kernels 230 */ 231 struct seg kmem64; 232 233 struct memseg *memseg_free; 234 235 struct vnode unused_pages_vp; 236 237 /* 238 * VM data structures allocated early during boot. 239 */ 240 size_t pagehash_sz; 241 uint64_t memlist_sz; 242 243 char tbr_wr_addr_inited = 0; 244 245 caddr_t mpo_heap32_buf = NULL; 246 size_t mpo_heap32_bufsz = 0; 247 248 /* 249 * Static Routines: 250 */ 251 static int ndata_alloc_memseg(struct memlist *, size_t); 252 static void memlist_new(uint64_t, uint64_t, struct memlist **); 253 static void memlist_add(uint64_t, uint64_t, 254 struct memlist **, struct memlist **); 255 static void kphysm_init(void); 256 static void kvm_init(void); 257 static void install_kmem64_tte(void); 258 259 static void startup_init(void); 260 static void startup_memlist(void); 261 static void startup_modules(void); 262 static void startup_bop_gone(void); 263 static void startup_vm(void); 264 static void startup_end(void); 265 static void setup_cage_params(void); 266 static void startup_create_io_node(void); 267 268 static pgcnt_t npages; 269 static struct memlist *memlist; 270 void *memlist_end; 271 272 static pgcnt_t bop_alloc_pages; 273 static caddr_t hblk_base; 274 uint_t hblk_alloc_dynamic = 0; 275 uint_t hblk1_min = H1MIN; 276 277 278 /* 279 * After receiving a thermal interrupt, this is the number of seconds 280 * to delay before shutting off the system, assuming 281 * shutdown fails. Use /etc/system to change the delay if this isn't 282 * large enough. 283 */ 284 int thermal_powerdown_delay = 1200; 285 286 /* 287 * Used to hold off page relocations into the cage until OBP has completed 288 * its boot-time handoff of its resources to the kernel. 289 */ 290 int page_relocate_ready = 0; 291 292 /* 293 * Indicate if kmem64 allocation was done in small chunks 294 */ 295 int kmem64_smchunks = 0; 296 297 /* 298 * Enable some debugging messages concerning memory usage... 299 */ 300 #ifdef DEBUGGING_MEM 301 static int debugging_mem; 302 static void 303 printmemlist(char *title, struct memlist *list) 304 { 305 if (!debugging_mem) 306 return; 307 308 printf("%s\n", title); 309 310 while (list) { 311 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n", 312 (uint32_t)(list->ml_address >> 32), 313 (uint32_t)list->ml_address, 314 (uint32_t)(list->ml_size >> 32), 315 (uint32_t)(list->ml_size)); 316 list = list->ml_next; 317 } 318 } 319 320 void 321 printmemseg(struct memseg *memseg) 322 { 323 if (!debugging_mem) 324 return; 325 326 printf("memseg\n"); 327 328 while (memseg) { 329 prom_printf("\tpage = 0x%p, epage = 0x%p, " 330 "pfn = 0x%x, epfn = 0x%x\n", 331 memseg->pages, memseg->epages, 332 memseg->pages_base, memseg->pages_end); 333 memseg = memseg->next; 334 } 335 } 336 337 #define debug_pause(str) halt((str)) 338 #define MPRINTF(str) if (debugging_mem) prom_printf((str)) 339 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a)) 340 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b)) 341 #define MPRINTF3(str, a, b, c) \ 342 if (debugging_mem) prom_printf((str), (a), (b), (c)) 343 #else /* DEBUGGING_MEM */ 344 #define MPRINTF(str) 345 #define MPRINTF1(str, a) 346 #define MPRINTF2(str, a, b) 347 #define MPRINTF3(str, a, b, c) 348 #endif /* DEBUGGING_MEM */ 349 350 351 /* 352 * 353 * Kernel's Virtual Memory Layout. 354 * /-----------------------\ 355 * 0xFFFFFFFF.FFFFFFFF -| |- 356 * | OBP's virtual page | 357 * | tables | 358 * 0xFFFFFFFC.00000000 -|-----------------------|- 359 * : : 360 * : : 361 * -|-----------------------|- 362 * | segzio | (base and size vary) 363 * 0xFFFFFE00.00000000 -|-----------------------|- 364 * | | Ultrasparc I/II support 365 * | segkpm segment | up to 2TB of physical 366 * | (64-bit kernel ONLY) | memory, VAC has 2 colors 367 * | | 368 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment 369 * : : 370 * : : 371 * 0xFFFFF810.00000000 -|-----------------------|- hole_end 372 * | | ^ 373 * | UltraSPARC I/II call | | 374 * | bug requires an extra | | 375 * | 4 GB of space between | | 376 * | hole and used RAM | | 377 * | | | 378 * 0xFFFFF800.00000000 -|-----------------------|- | 379 * | | | 380 * | Virtual Address Hole | UltraSPARC 381 * | on UltraSPARC I/II | I/II * ONLY * 382 * | | | 383 * 0x00000800.00000000 -|-----------------------|- | 384 * | | | 385 * | UltraSPARC I/II call | | 386 * | bug requires an extra | | 387 * | 4 GB of space between | | 388 * | hole and used RAM | | 389 * | | v 390 * 0x000007FF.00000000 -|-----------------------|- hole_start ----- 391 * : : ^ 392 * : : | 393 * |-----------------------| | 394 * | | | 395 * | ecache flush area | | 396 * | (twice largest e$) | | 397 * | | | 398 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ | 399 * | overmapped area | alignend_end | 400 * | (kmem64_alignsize | | 401 * | boundary) | | 402 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end | 403 * | | | 404 * | 64-bit kernel ONLY | | 405 * | | | 406 * | kmem64 segment | | 407 * | | | 408 * | (Relocated extra HME | Approximately 409 * | block allocations, | 1 TB of virtual 410 * | memnode freelists, | address space 411 * | HME hash buckets, | | 412 * | mml_table, kpmp_table,| | 413 * | page_t array and | | 414 * | hashblock pool to | | 415 * | avoid hard-coded | | 416 * | 32-bit vaddr | | 417 * | limitations) | | 418 * | | v 419 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base) 420 * | | 421 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB) 422 * | | 423 * 0x00000300.00000000 -|-----------------------|- SYSBASE 424 * : : 425 * : : 426 * -|-----------------------|- 427 * | | 428 * | segmap segment | SEGMAPSIZE (1/8th physmem, 429 * | | 256G MAX) 430 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE 431 * : : 432 * : : 433 * -|-----------------------|- 434 * | | 435 * | segkp | SEGKPSIZE (2GB) 436 * | | 437 * | | 438 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE 439 * | | 440 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE 441 * | | (SEGKPBASE - 0x400000) 442 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE 443 * | | (MEMSCRUBBASE - NCARGS) 444 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE 445 * | | (ARGSBASE - PPMAPSIZE) 446 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE 447 * | | 448 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE 449 * | | 450 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE 451 * : : 452 * : : 453 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR 454 * | | 455 * | OBP | 456 * | | 457 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR 458 * | kmdb | 459 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE 460 * : : 461 * : : 462 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32 463 * | | 464 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 = 465 * | | ~64MB) 466 * -|-----------------------| 467 * | IVSIZE | 468 * 0x00000000.70004000 -|-----------------------| 469 * | panicbuf | 470 * 0x00000000.70002000 -|-----------------------| 471 * | PAGESIZE | 472 * 0x00000000.70000000 -|-----------------------|- SYSBASE32 473 * | boot-time | 474 * | temporary space | 475 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE 476 * : : 477 * : : 478 * | | 479 * |-----------------------|- econtig32 480 * | vm structures | 481 * 0x00000000.01C00000 |-----------------------|- nalloc_end 482 * | TSBs | 483 * |-----------------------|- end/nalloc_base 484 * | kernel data & bss | 485 * 0x00000000.01800000 -|-----------------------| 486 * : nucleus text hole : 487 * 0x00000000.01400000 -|-----------------------| 488 * : : 489 * |-----------------------| 490 * | module text | 491 * |-----------------------|- e_text/modtext 492 * | kernel text | 493 * |-----------------------| 494 * | trap table (48k) | 495 * 0x00000000.01000000 -|-----------------------|- KERNELBASE 496 * | reserved for trapstat |} TSTAT_TOTAL_SIZE 497 * |-----------------------| 498 * | | 499 * | invalid | 500 * | | 501 * 0x00000000.00000000 _|_______________________| 502 * 503 * 504 * 505 * 32-bit User Virtual Memory Layout. 506 * /-----------------------\ 507 * | | 508 * | invalid | 509 * | | 510 * 0xFFC00000 -|-----------------------|- USERLIMIT 511 * | user stack | 512 * : : 513 * : : 514 * : : 515 * | user data | 516 * -|-----------------------|- 517 * | user text | 518 * 0x00002000 -|-----------------------|- 519 * | invalid | 520 * 0x00000000 _|_______________________| 521 * 522 * 523 * 524 * 64-bit User Virtual Memory Layout. 525 * /-----------------------\ 526 * | | 527 * | invalid | 528 * | | 529 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT 530 * | user stack | 531 * : : 532 * : : 533 * : : 534 * | user data | 535 * -|-----------------------|- 536 * | user text | 537 * 0x00000000.01000000 -|-----------------------|- 538 * | invalid | 539 * 0x00000000.00000000 _|_______________________| 540 */ 541 542 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base); 543 extern uint64_t ecache_flush_address(void); 544 545 #pragma weak load_platform_modules 546 #pragma weak plat_startup_memlist 547 #pragma weak ecache_init_scrub_flush_area 548 #pragma weak ecache_flush_address 549 550 551 /* 552 * By default the DR Cage is enabled for maximum OS 553 * MPSS performance. Users needing to disable the cage mechanism 554 * can set this variable to zero via /etc/system. 555 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR) 556 * will result in loss of DR functionality. 557 * Platforms wishing to disable kernel Cage by default 558 * should do so in their set_platform_defaults() routine. 559 */ 560 int kernel_cage_enable = 1; 561 562 static void 563 setup_cage_params(void) 564 { 565 void (*func)(void); 566 567 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0); 568 if (func != NULL) { 569 (*func)(); 570 return; 571 } 572 573 if (kernel_cage_enable == 0) { 574 return; 575 } 576 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256); 577 578 if (kcage_on) { 579 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED"); 580 } else { 581 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED"); 582 } 583 584 } 585 586 /* 587 * Machine-dependent startup code 588 */ 589 void 590 startup(void) 591 { 592 startup_init(); 593 if (&startup_platform) 594 startup_platform(); 595 startup_memlist(); 596 startup_modules(); 597 setup_cage_params(); 598 startup_bop_gone(); 599 startup_vm(); 600 startup_end(); 601 } 602 603 struct regs sync_reg_buf; 604 uint64_t sync_tt; 605 606 void 607 sync_handler(void) 608 { 609 struct panic_trap_info ti; 610 int i; 611 612 /* 613 * Prevent trying to talk to the other CPUs since they are 614 * sitting in the prom and won't reply. 615 */ 616 for (i = 0; i < NCPU; i++) { 617 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) { 618 cpu[i]->cpu_flags &= ~CPU_READY; 619 cpu[i]->cpu_flags |= CPU_QUIESCED; 620 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id); 621 } 622 } 623 624 /* 625 * Force a serial dump, since there are no CPUs to help. 626 */ 627 dump_plat_mincpu = 0; 628 629 /* 630 * We've managed to get here without going through the 631 * normal panic code path. Try and save some useful 632 * information. 633 */ 634 if (!panicstr && (curthread->t_panic_trap == NULL)) { 635 ti.trap_type = sync_tt; 636 ti.trap_regs = &sync_reg_buf; 637 ti.trap_addr = NULL; 638 ti.trap_mmu_fsr = 0x0; 639 640 curthread->t_panic_trap = &ti; 641 } 642 643 /* 644 * If we're re-entering the panic path, update the signature 645 * block so that the SC knows we're in the second part of panic. 646 */ 647 if (panicstr) 648 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1); 649 650 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */ 651 panic("sync initiated"); 652 } 653 654 655 static void 656 startup_init(void) 657 { 658 /* 659 * We want to save the registers while we're still in OBP 660 * so that we know they haven't been fiddled with since. 661 * (In principle, OBP can't change them just because it 662 * makes a callback, but we'd rather not depend on that 663 * behavior.) 664 */ 665 char sync_str[] = 666 "warning @ warning off : sync " 667 "%%tl-c %%tstate h# %p x! " 668 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! " 669 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! " 670 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! " 671 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! " 672 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! " 673 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! " 674 "%%y h# %p l! %%tl-c %%tt h# %p x! " 675 "sync ; warning !"; 676 677 /* 678 * 20 == num of %p substrings 679 * 16 == max num of chars %p will expand to. 680 */ 681 char bp[sizeof (sync_str) + 16 * 20]; 682 683 /* 684 * Initialize ptl1 stack for the 1st CPU. 685 */ 686 ptl1_init_cpu(&cpu0); 687 688 /* 689 * Initialize the address map for cache consistent mappings 690 * to random pages; must be done after vac_size is set. 691 */ 692 ppmapinit(); 693 694 /* 695 * Initialize the PROM callback handler. 696 */ 697 init_vx_handler(); 698 699 /* 700 * have prom call sync_callback() to handle the sync and 701 * save some useful information which will be stored in the 702 * core file later. 703 */ 704 (void) sprintf((char *)bp, sync_str, 705 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1, 706 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3, 707 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5, 708 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7, 709 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1, 710 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3, 711 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5, 712 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7, 713 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc, 714 (void *)&sync_reg_buf.r_y, (void *)&sync_tt); 715 prom_interpret(bp, 0, 0, 0, 0, 0); 716 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler); 717 } 718 719 720 size_t 721 calc_pp_sz(pgcnt_t npages) 722 { 723 724 return (npages * sizeof (struct page)); 725 } 726 727 size_t 728 calc_kpmpp_sz(pgcnt_t npages) 729 { 730 731 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT; 732 kpm_pgsz = 1ull << kpm_pgshft; 733 kpm_pgoff = kpm_pgsz - 1; 734 kpmp2pshft = kpm_pgshft - PAGESHIFT; 735 kpmpnpgs = 1 << kpmp2pshft; 736 737 if (kpm_smallpages == 0) { 738 /* 739 * Avoid fragmentation problems in kphysm_init() 740 * by allocating for all of physical memory 741 */ 742 kpm_npages = ptokpmpr(physinstalled); 743 return (kpm_npages * sizeof (kpm_page_t)); 744 } else { 745 kpm_npages = npages; 746 return (kpm_npages * sizeof (kpm_spage_t)); 747 } 748 } 749 750 size_t 751 calc_pagehash_sz(pgcnt_t npages) 752 { 753 /* LINTED */ 754 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page)))); 755 /* 756 * The page structure hash table size is a power of 2 757 * such that the average hash chain length is PAGE_HASHAVELEN. 758 */ 759 page_hashsz = npages / PAGE_HASHAVELEN; 760 page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1), 761 highbit(page_hashsz)); 762 page_hashsz = 1 << page_hashsz_shift; 763 return (page_hashsz * sizeof (struct page *)); 764 } 765 766 int testkmem64_smchunks = 0; 767 768 int 769 alloc_kmem64(caddr_t base, caddr_t end) 770 { 771 int i; 772 caddr_t aligned_end = NULL; 773 774 if (testkmem64_smchunks) 775 return (1); 776 777 /* 778 * Make one large memory alloc after figuring out the 64-bit size. This 779 * will enable use of the largest page size appropriate for the system 780 * architecture. 781 */ 782 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K)); 783 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc))); 784 for (i = max_bootlp_tteszc; i >= TTE8K; i--) { 785 size_t alloc_size, alignsize; 786 #if !defined(C_OBP) 787 unsigned long long pa; 788 #endif /* !C_OBP */ 789 790 if ((mmu_exported_pagesize_mask & (1 << i)) == 0) 791 continue; 792 alignsize = TTEBYTES(i); 793 kmem64_szc = i; 794 795 /* limit page size for small memory */ 796 if (mmu_btop(alignsize) > (npages >> 2)) 797 continue; 798 799 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize); 800 alloc_size = aligned_end - base; 801 #if !defined(C_OBP) 802 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) { 803 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) { 804 kmem64_pabase = pa; 805 kmem64_aligned_end = aligned_end; 806 install_kmem64_tte(); 807 break; 808 } else { 809 prom_free_phys(alloc_size, pa); 810 } 811 } 812 #else /* !C_OBP */ 813 if (prom_alloc(base, alloc_size, alignsize) == base) { 814 kmem64_pabase = va_to_pa(kmem64_base); 815 kmem64_aligned_end = aligned_end; 816 break; 817 } 818 #endif /* !C_OBP */ 819 if (i == TTE8K) { 820 #ifdef sun4v 821 /* return failure to try small allocations */ 822 return (1); 823 #else 824 prom_panic("kmem64 allocation failure"); 825 #endif 826 } 827 } 828 ASSERT(aligned_end != NULL); 829 return (0); 830 } 831 832 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail; 833 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len; 834 835 #if !defined(C_OBP) 836 /* 837 * Install a temporary tte handler in OBP for kmem64 area. 838 * 839 * We map kmem64 area with large pages before the trap table is taken 840 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in 841 * the same area. Duplicate tlb entries with different page sizes 842 * cause unpredicatble behavior. To avoid this, we don't create 843 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to 844 * OBP). Instead, we manage translations with a temporary va>tte-data 845 * handler (kmem64-tte). This handler is replaced by unix-tte when 846 * the trap table is taken over. 847 * 848 * The temporary handler knows the physical address of the kmem64 849 * area. It uses the prom's pgmap@ Forth word for other addresses. 850 * 851 * We have to use BOP_ALLOC() method for C-OBP platforms because 852 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti 853 * sun4u platforms. On sun4u we flush tlb after trap table is taken 854 * over if we use large pages for kernel heap and kmem64. Since sun4u 855 * prom (unlike sun4v) calls va>tte-data first for client address 856 * translation prom's ttes for kmem64 can't get into TLB even if we 857 * later switch to prom's trap table again. C-OBP uses 4M pages for 858 * client mappings when possible so on all platforms we get the 859 * benefit from large mappings for kmem64 area immediately during 860 * boot. 861 * 862 * pseudo code: 863 * if (context != 0) { 864 * return false 865 * } else if (miss_va in range[kmem64_base, kmem64_end)) { 866 * tte = tte_template + 867 * (((miss_va & pagemask) - kmem64_base)); 868 * return tte, true 869 * } else { 870 * return pgmap@ result 871 * } 872 */ 873 char kmem64_obp_str[] = 874 "h# %lx constant kmem64-base " 875 "h# %lx constant kmem64-end " 876 "h# %lx constant kmem64-pagemask " 877 "h# %lx constant kmem64-template " 878 879 ": kmem64-tte ( addr cnum -- false | tte-data true ) " 880 " if ( addr ) " 881 " drop false exit then ( false ) " 882 " dup kmem64-base kmem64-end within if ( addr ) " 883 " kmem64-pagemask and ( addr' ) " 884 " kmem64-base - ( addr' ) " 885 " kmem64-template + ( tte ) " 886 " true ( tte true ) " 887 " else ( addr ) " 888 " pgmap@ ( tte ) " 889 " dup 0< if true else drop false then ( tte true | false ) " 890 " then ( tte true | false ) " 891 "; " 892 893 "' kmem64-tte is va>tte-data " 894 ; 895 896 static void 897 install_kmem64_tte() 898 { 899 char b[sizeof (kmem64_obp_str) + (4 * 16)]; 900 tte_t tte; 901 902 PRM_DEBUG(kmem64_pabase); 903 PRM_DEBUG(kmem64_szc); 904 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT, 905 PROC_DATA | HAT_NOSYNC, kmem64_szc); 906 PRM_DEBUG(tte.ll); 907 (void) sprintf(b, kmem64_obp_str, 908 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll); 909 ASSERT(strlen(b) < sizeof (b)); 910 prom_interpret(b, 0, 0, 0, 0, 0); 911 } 912 #endif /* !C_OBP */ 913 914 /* 915 * As OBP takes up some RAM when the system boots, pages will already be "lost" 916 * to the system and reflected in npages by the time we see it. 917 * 918 * We only want to allocate kernel structures in the 64-bit virtual address 919 * space on systems with enough RAM to make the overhead of keeping track of 920 * an extra kernel memory segment worthwhile. 921 * 922 * Since OBP has already performed its memory allocations by this point, if we 923 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map 924 * memory in the 64-bit virtual address space; otherwise keep allocations 925 * contiguous with we've mapped so far in the 32-bit virtual address space. 926 */ 927 #define MINMOVE_RAM_MB ((size_t)1900) 928 #define MB_TO_BYTES(mb) ((mb) * 1048576ul) 929 #define BYTES_TO_MB(b) ((b) / 1048576ul) 930 931 pgcnt_t tune_npages = (pgcnt_t) 932 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE); 933 934 #pragma weak page_set_colorequiv_arr_cpu 935 extern void page_set_colorequiv_arr_cpu(void); 936 extern void page_set_colorequiv_arr(void); 937 938 static pgcnt_t ramdisk_npages; 939 static struct memlist *old_phys_avail; 940 941 kcage_dir_t kcage_startup_dir = KCAGE_DOWN; 942 943 static void 944 startup_memlist(void) 945 { 946 size_t hmehash_sz, pagelist_sz, tt_sz; 947 size_t psetable_sz; 948 caddr_t alloc_base; 949 caddr_t memspace; 950 struct memlist *cur; 951 size_t syslimit = (size_t)SYSLIMIT; 952 size_t sysbase = (size_t)SYSBASE; 953 954 /* 955 * Initialize enough of the system to allow kmem_alloc to work by 956 * calling boot to allocate its memory until the time that 957 * kvm_init is completed. The page structs are allocated after 958 * rounding up end to the nearest page boundary; the memsegs are 959 * initialized and the space they use comes from the kernel heap. 960 * With appropriate initialization, they can be reallocated later 961 * to a size appropriate for the machine's configuration. 962 * 963 * At this point, memory is allocated for things that will never 964 * need to be freed, this used to be "valloced". This allows a 965 * savings as the pages don't need page structures to describe 966 * them because them will not be managed by the vm system. 967 */ 968 969 /* 970 * We're loaded by boot with the following configuration (as 971 * specified in the sun4u/conf/Mapfile): 972 * 973 * text: 4 MB chunk aligned on a 4MB boundary 974 * data & bss: 4 MB chunk aligned on a 4MB boundary 975 * 976 * These two chunks will eventually be mapped by 2 locked 4MB 977 * ttes and will represent the nucleus of the kernel. This gives 978 * us some free space that is already allocated, some or all of 979 * which is made available to kernel module text. 980 * 981 * The free space in the data-bss chunk is used for nucleus 982 * allocatable data structures and we reserve it using the 983 * nalloc_base and nalloc_end variables. This space is currently 984 * being used for hat data structures required for tlb miss 985 * handling operations. We align nalloc_base to a l2 cache 986 * linesize because this is the line size the hardware uses to 987 * maintain cache coherency. 988 * 512K is carved out for module data. 989 */ 990 991 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE); 992 e_moddata = moddata + MODDATA; 993 nalloc_base = e_moddata; 994 995 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M); 996 valloc_base = nalloc_base; 997 998 /* 999 * Calculate the start of the data segment. 1000 */ 1001 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data) 1002 prom_panic("nucleus data overflow"); 1003 1004 PRM_DEBUG(moddata); 1005 PRM_DEBUG(nalloc_base); 1006 PRM_DEBUG(nalloc_end); 1007 1008 /* 1009 * Remember any slop after e_text so we can give it to the modules. 1010 */ 1011 PRM_DEBUG(e_text); 1012 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE); 1013 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text) 1014 prom_panic("nucleus text overflow"); 1015 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) - 1016 modtext; 1017 PRM_DEBUG(modtext); 1018 PRM_DEBUG(modtext_sz); 1019 1020 init_boot_memlists(); 1021 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1022 &boot_physavail, &boot_physavail_len, 1023 &boot_virtavail, &boot_virtavail_len); 1024 1025 /* 1026 * Remember what the physically available highest page is 1027 * so that dumpsys works properly, and find out how much 1028 * memory is installed. 1029 */ 1030 installed_top_size_memlist_array(boot_physinstalled, 1031 boot_physinstalled_len, &physmax, &physinstalled); 1032 PRM_DEBUG(physinstalled); 1033 PRM_DEBUG(physmax); 1034 1035 /* Fill out memory nodes config structure */ 1036 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len); 1037 1038 /* 1039 * npages is the maximum of available physical memory possible. 1040 * (ie. it will never be more than this) 1041 * 1042 * When we boot from a ramdisk, the ramdisk memory isn't free, so 1043 * using phys_avail will underestimate what will end up being freed. 1044 * A better initial guess is just total memory minus the kernel text 1045 */ 1046 npages = physinstalled - btop(MMU_PAGESIZE4M); 1047 1048 /* 1049 * First allocate things that can go in the nucleus data page 1050 * (fault status, TSBs, dmv, CPUs) 1051 */ 1052 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end); 1053 1054 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0)) 1055 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc"); 1056 1057 if (ndata_alloc_tsbs(&ndata, npages) != 0) 1058 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc"); 1059 1060 if (ndata_alloc_dmv(&ndata) != 0) 1061 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc"); 1062 1063 if (ndata_alloc_page_mutexs(&ndata) != 0) 1064 cmn_err(CE_PANIC, 1065 "no more nucleus memory after page free lists alloc"); 1066 1067 if (ndata_alloc_hat(&ndata) != 0) 1068 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc"); 1069 1070 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0) 1071 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc"); 1072 1073 /* 1074 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1075 * 1076 * There are comments all over the SFMMU code warning of dire 1077 * consequences if the TSBs are moved out of 32-bit space. This 1078 * is largely because the asm code uses "sethi %hi(addr)"-type 1079 * instructions which will not provide the expected result if the 1080 * address is a 64-bit one. 1081 * 1082 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING 1083 */ 1084 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE); 1085 PRM_DEBUG(alloc_base); 1086 1087 alloc_base = sfmmu_ktsb_alloc(alloc_base); 1088 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1089 PRM_DEBUG(alloc_base); 1090 1091 /* 1092 * Allocate IOMMU TSB array. We do this here so that the physical 1093 * memory gets deducted from the PROM's physical memory list. 1094 */ 1095 alloc_base = iommu_tsb_init(alloc_base); 1096 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1097 PRM_DEBUG(alloc_base); 1098 1099 /* 1100 * Allow for an early allocation of physically contiguous memory. 1101 */ 1102 alloc_base = contig_mem_prealloc(alloc_base, npages); 1103 1104 /* 1105 * Platforms like Starcat and OPL need special structures assigned in 1106 * 32-bit virtual address space because their probing routines execute 1107 * FCode, and FCode can't handle 64-bit virtual addresses... 1108 */ 1109 if (&plat_startup_memlist) { 1110 alloc_base = plat_startup_memlist(alloc_base); 1111 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, 1112 ecache_alignsize); 1113 PRM_DEBUG(alloc_base); 1114 } 1115 1116 /* 1117 * Save off where the contiguous allocations to date have ended 1118 * in econtig32. 1119 */ 1120 econtig32 = alloc_base; 1121 PRM_DEBUG(econtig32); 1122 if (econtig32 > (caddr_t)KERNEL_LIMIT32) 1123 cmn_err(CE_PANIC, "econtig32 too big"); 1124 1125 pp_sz = calc_pp_sz(npages); 1126 PRM_DEBUG(pp_sz); 1127 if (kpm_enable) { 1128 kpm_pp_sz = calc_kpmpp_sz(npages); 1129 PRM_DEBUG(kpm_pp_sz); 1130 } 1131 1132 hmehash_sz = calc_hmehash_sz(npages); 1133 PRM_DEBUG(hmehash_sz); 1134 1135 pagehash_sz = calc_pagehash_sz(npages); 1136 PRM_DEBUG(pagehash_sz); 1137 1138 pagelist_sz = calc_free_pagelist_sz(); 1139 PRM_DEBUG(pagelist_sz); 1140 1141 #ifdef TRAPTRACE 1142 tt_sz = calc_traptrace_sz(); 1143 PRM_DEBUG(tt_sz); 1144 #else 1145 tt_sz = 0; 1146 #endif /* TRAPTRACE */ 1147 1148 /* 1149 * Place the array that protects pp->p_selock in the kmem64 wad. 1150 */ 1151 pse_shift = size_pse_array(npages, max_ncpus); 1152 PRM_DEBUG(pse_shift); 1153 pse_table_size = 1 << pse_shift; 1154 PRM_DEBUG(pse_table_size); 1155 psetable_sz = roundup( 1156 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize); 1157 PRM_DEBUG(psetable_sz); 1158 1159 /* 1160 * Now allocate the whole wad 1161 */ 1162 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz + 1163 pagelist_sz + tt_sz + psetable_sz; 1164 kmem64_sz = roundup(kmem64_sz, PAGESIZE); 1165 kmem64_base = (caddr_t)syslimit; 1166 kmem64_end = kmem64_base + kmem64_sz; 1167 if (alloc_kmem64(kmem64_base, kmem64_end)) { 1168 /* 1169 * Attempt for kmem64 to allocate one big 1170 * contiguous chunk of memory failed. 1171 * We get here because we are sun4v. 1172 * We will proceed by breaking up 1173 * the allocation into two attempts. 1174 * First, we allocate kpm_pp_sz, hmehash_sz, 1175 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as 1176 * one contiguous chunk. This is a much smaller 1177 * chunk and we should get it, if not we panic. 1178 * Note that hmehash and tt need to be physically 1179 * (in the real address sense) contiguous. 1180 * Next, we use bop_alloc_chunk() to 1181 * to allocate the page_t structures. 1182 * This will allow the page_t to be allocated 1183 * in multiple smaller chunks. 1184 * In doing so, the assumption that page_t is 1185 * physically contiguous no longer hold, this is ok 1186 * for sun4v but not for sun4u. 1187 */ 1188 size_t tmp_size; 1189 caddr_t tmp_base; 1190 1191 pp_sz = roundup(pp_sz, PAGESIZE); 1192 1193 /* 1194 * Allocate kpm_pp_sz, hmehash_sz, 1195 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz 1196 */ 1197 tmp_base = kmem64_base + pp_sz; 1198 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz + 1199 pagelist_sz + tt_sz + psetable_sz, PAGESIZE); 1200 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0) 1201 prom_panic("kmem64 prom_alloc contig failed"); 1202 PRM_DEBUG(tmp_base); 1203 PRM_DEBUG(tmp_size); 1204 1205 /* 1206 * Allocate the page_ts 1207 */ 1208 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0) 1209 prom_panic("kmem64 bop_alloc_chunk page_t failed"); 1210 PRM_DEBUG(kmem64_base); 1211 PRM_DEBUG(pp_sz); 1212 1213 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size; 1214 ASSERT(kmem64_aligned_end >= kmem64_end); 1215 1216 kmem64_smchunks = 1; 1217 } else { 1218 1219 /* 1220 * We need to adjust pp_sz for the normal 1221 * case where kmem64 can allocate one large chunk 1222 */ 1223 if (kpm_smallpages == 0) { 1224 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page)); 1225 } else { 1226 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) + 1227 sizeof (kpm_spage_t)); 1228 } 1229 pp_sz = npages * sizeof (struct page); 1230 } 1231 1232 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase)) 1233 cmn_err(CE_PANIC, "not enough kmem64 space"); 1234 PRM_DEBUG(kmem64_base); 1235 PRM_DEBUG(kmem64_end); 1236 PRM_DEBUG(kmem64_aligned_end); 1237 1238 /* 1239 * ... and divy it up 1240 */ 1241 alloc_base = kmem64_base; 1242 1243 pp_base = (page_t *)alloc_base; 1244 alloc_base += pp_sz; 1245 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1246 PRM_DEBUG(pp_base); 1247 PRM_DEBUG(npages); 1248 1249 if (kpm_enable) { 1250 kpm_pp_base = alloc_base; 1251 if (kpm_smallpages == 0) { 1252 /* kpm_npages based on physinstalled, don't reset */ 1253 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t); 1254 } else { 1255 kpm_npages = ptokpmpr(npages); 1256 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t); 1257 } 1258 alloc_base += kpm_pp_sz; 1259 alloc_base = 1260 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1261 PRM_DEBUG(kpm_pp_base); 1262 } 1263 1264 alloc_base = alloc_hmehash(alloc_base); 1265 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1266 PRM_DEBUG(alloc_base); 1267 1268 page_hash = (page_t **)alloc_base; 1269 alloc_base += pagehash_sz; 1270 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1271 PRM_DEBUG(page_hash); 1272 1273 alloc_base = alloc_page_freelists(alloc_base); 1274 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1275 PRM_DEBUG(alloc_base); 1276 1277 #ifdef TRAPTRACE 1278 ttrace_buf = alloc_base; 1279 alloc_base += tt_sz; 1280 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1281 PRM_DEBUG(alloc_base); 1282 #endif /* TRAPTRACE */ 1283 1284 pse_mutex = (pad_mutex_t *)alloc_base; 1285 alloc_base += psetable_sz; 1286 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize); 1287 PRM_DEBUG(alloc_base); 1288 1289 /* 1290 * Note that if we use small chunk allocations for 1291 * kmem64, we need to ensure kmem64_end is the same as 1292 * kmem64_aligned_end to prevent subsequent logic from 1293 * trying to reuse the overmapping. 1294 * Otherwise we adjust kmem64_end to what we really allocated. 1295 */ 1296 if (kmem64_smchunks) { 1297 kmem64_end = kmem64_aligned_end; 1298 } else { 1299 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE); 1300 } 1301 kmem64_sz = kmem64_end - kmem64_base; 1302 1303 if (&ecache_init_scrub_flush_area) { 1304 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end); 1305 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase)); 1306 } 1307 1308 /* 1309 * If physmem is patched to be non-zero, use it instead of 1310 * the monitor value unless physmem is larger than the total 1311 * amount of memory on hand. 1312 */ 1313 if (physmem == 0 || physmem > npages) 1314 physmem = npages; 1315 1316 /* 1317 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot 1318 * is mounted as root. This memory is held down by OBP and unlike 1319 * the stub boot_archive is never released. 1320 * 1321 * In order to get things sized correctly on lower memory 1322 * machines (where the memory used by the ramdisk represents 1323 * a significant portion of memory), physmem is adjusted. 1324 * 1325 * This is done by subtracting the ramdisk_size which is set 1326 * to the size of the ramdisk (in Kb) in /etc/system at the 1327 * time the miniroot archive is constructed. 1328 */ 1329 if (root_is_ramdisk == B_TRUE) { 1330 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE; 1331 physmem -= ramdisk_npages; 1332 } 1333 1334 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0)) 1335 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc"); 1336 1337 /* 1338 * Allocate space for the interrupt vector table. 1339 */ 1340 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE); 1341 if (memspace != (caddr_t)intr_vec_table) 1342 prom_panic("interrupt vector table allocation failure"); 1343 1344 /* 1345 * Between now and when we finish copying in the memory lists, 1346 * allocations happen so the space gets fragmented and the 1347 * lists longer. Leave enough space for lists twice as 1348 * long as we have now; then roundup to a pagesize. 1349 */ 1350 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() + 1351 prom_phys_avail_len() + prom_virt_avail_len()); 1352 memlist_sz *= 2; 1353 memlist_sz = roundup(memlist_sz, PAGESIZE); 1354 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize); 1355 if (memspace == NULL) 1356 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc"); 1357 1358 memlist = (struct memlist *)memspace; 1359 memlist_end = (char *)memspace + memlist_sz; 1360 PRM_DEBUG(memlist); 1361 PRM_DEBUG(memlist_end); 1362 1363 PRM_DEBUG(sysbase); 1364 PRM_DEBUG(syslimit); 1365 kernelheap_init((void *)sysbase, (void *)syslimit, 1366 (caddr_t)sysbase + PAGESIZE, NULL, NULL); 1367 1368 /* 1369 * Take the most current snapshot we can by calling mem-update. 1370 */ 1371 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1372 &boot_physavail, &boot_physavail_len, 1373 &boot_virtavail, &boot_virtavail_len); 1374 1375 /* 1376 * Remove the space used by prom_alloc from the kernel heap 1377 * plus the area actually used by the OBP (if any) 1378 * ignoring virtual addresses in virt_avail, above syslimit. 1379 */ 1380 virt_avail = memlist; 1381 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1382 1383 for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) { 1384 uint64_t range_base, range_size; 1385 1386 if ((range_base = cur->ml_address + cur->ml_size) < 1387 (uint64_t)sysbase) 1388 continue; 1389 if (range_base >= (uint64_t)syslimit) 1390 break; 1391 /* 1392 * Limit the range to end at syslimit. 1393 */ 1394 range_size = MIN(cur->ml_next->ml_address, 1395 (uint64_t)syslimit) - range_base; 1396 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE, 1397 0, 0, (void *)range_base, (void *)(range_base + range_size), 1398 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1399 } 1400 1401 phys_avail = memlist; 1402 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1403 1404 /* 1405 * Add any extra memory at the end of the ndata region if there's at 1406 * least a page to add. There might be a few more pages available in 1407 * the middle of the ndata region, but for now they are ignored. 1408 */ 1409 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end); 1410 if (nalloc_base == NULL) 1411 nalloc_base = nalloc_end; 1412 ndata_remain_sz = nalloc_end - nalloc_base; 1413 1414 /* 1415 * Copy physinstalled list into kernel space. 1416 */ 1417 phys_install = memlist; 1418 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist); 1419 1420 /* 1421 * Create list of physical addrs we don't need pp's for: 1422 * kernel text 4M page 1423 * kernel data 4M page - ndata_remain_sz 1424 * kmem64 pages 1425 * 1426 * NB if adding any pages here, make sure no kpm page 1427 * overlaps can occur (see ASSERTs in kphysm_memsegs) 1428 */ 1429 nopp_list = memlist; 1430 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist); 1431 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz, 1432 &memlist, &nopp_list); 1433 1434 /* Don't add to nopp_list if kmem64 was allocated in smchunks */ 1435 if (!kmem64_smchunks) 1436 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list); 1437 1438 if ((caddr_t)memlist > (memspace + memlist_sz)) 1439 prom_panic("memlist overflow"); 1440 1441 /* 1442 * Size the pcf array based on the number of cpus in the box at 1443 * boot time. 1444 */ 1445 pcf_init(); 1446 1447 /* 1448 * Initialize the page structures from the memory lists. 1449 */ 1450 kphysm_init(); 1451 1452 availrmem_initial = availrmem = freemem; 1453 PRM_DEBUG(availrmem); 1454 1455 /* 1456 * Some of the locks depend on page_hashsz being set! 1457 * kmem_init() depends on this; so, keep it here. 1458 */ 1459 page_lock_init(); 1460 1461 /* 1462 * Initialize kernel memory allocator. 1463 */ 1464 kmem_init(); 1465 1466 /* 1467 * Factor in colorequiv to check additional 'equivalent' bins 1468 */ 1469 if (&page_set_colorequiv_arr_cpu != NULL) 1470 page_set_colorequiv_arr_cpu(); 1471 else 1472 page_set_colorequiv_arr(); 1473 1474 /* 1475 * Initialize bp_mapin(). 1476 */ 1477 bp_init(shm_alignment, HAT_STRICTORDER); 1478 1479 /* 1480 * Reserve space for MPO mblock structs from the 32-bit heap. 1481 */ 1482 1483 if (mpo_heap32_bufsz > (size_t)0) { 1484 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz, 1485 PAGESIZE, 0, 0, mpo_heap32_buf, 1486 mpo_heap32_buf + mpo_heap32_bufsz, 1487 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 1488 } 1489 mem_config_init(); 1490 } 1491 1492 static void 1493 startup_modules(void) 1494 { 1495 int nhblk1, nhblk8; 1496 size_t nhblksz; 1497 pgcnt_t pages_per_hblk; 1498 size_t hme8blk_sz, hme1blk_sz; 1499 1500 /* 1501 * The system file /etc/system was read already under startup_memlist. 1502 */ 1503 if (&set_platform_defaults) 1504 set_platform_defaults(); 1505 1506 /* 1507 * Calculate default settings of system parameters based upon 1508 * maxusers, yet allow to be overridden via the /etc/system file. 1509 */ 1510 param_calc(0); 1511 1512 mod_setup(); 1513 1514 /* 1515 * Initialize system parameters 1516 */ 1517 param_init(); 1518 1519 /* 1520 * maxmem is the amount of physical memory we're playing with. 1521 */ 1522 maxmem = physmem; 1523 1524 /* Set segkp limits. */ 1525 ncbase = kdi_segdebugbase; 1526 ncend = kdi_segdebugbase; 1527 1528 /* 1529 * Initialize the hat layer. 1530 */ 1531 hat_init(); 1532 1533 /* 1534 * Initialize segment management stuff. 1535 */ 1536 seg_init(); 1537 1538 /* 1539 * Create the va>tte handler, so the prom can understand 1540 * kernel translations. The handler is installed later, just 1541 * as we are about to take over the trap table from the prom. 1542 */ 1543 create_va_to_tte(); 1544 1545 /* 1546 * Load the forthdebugger (optional) 1547 */ 1548 forthdebug_init(); 1549 1550 /* 1551 * Create OBP node for console input callbacks 1552 * if it is needed. 1553 */ 1554 startup_create_io_node(); 1555 1556 if (modloadonly("fs", "specfs") == -1) 1557 halt("Can't load specfs"); 1558 1559 if (modloadonly("fs", "devfs") == -1) 1560 halt("Can't load devfs"); 1561 1562 if (modloadonly("fs", "procfs") == -1) 1563 halt("Can't load procfs"); 1564 1565 if (modloadonly("misc", "swapgeneric") == -1) 1566 halt("Can't load swapgeneric"); 1567 1568 (void) modloadonly("sys", "lbl_edition"); 1569 1570 dispinit(); 1571 1572 /* 1573 * Infer meanings to the members of the idprom buffer. 1574 */ 1575 parse_idprom(); 1576 1577 /* Read cluster configuration data. */ 1578 clconf_init(); 1579 1580 setup_ddi(); 1581 1582 /* 1583 * Lets take this opportunity to load the root device. 1584 */ 1585 if (loadrootmodules() != 0) 1586 debug_enter("Can't load the root filesystem"); 1587 1588 /* 1589 * Load tod driver module for the tod part found on this system. 1590 * Recompute the cpu frequency/delays based on tod as tod part 1591 * tends to keep time more accurately. 1592 */ 1593 if (&load_tod_module) 1594 load_tod_module(); 1595 1596 /* 1597 * Allow platforms to load modules which might 1598 * be needed after bootops are gone. 1599 */ 1600 if (&load_platform_modules) 1601 load_platform_modules(); 1602 1603 setcpudelay(); 1604 1605 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1606 &boot_physavail, &boot_physavail_len, 1607 &boot_virtavail, &boot_virtavail_len); 1608 1609 /* 1610 * Calculation and allocation of hmeblks needed to remap 1611 * the memory allocated by PROM till now. 1612 * Overestimate the number of hblk1 elements by assuming 1613 * worst case of TTE64K mappings. 1614 * sfmmu_hblk_alloc will panic if this calculation is wrong. 1615 */ 1616 bop_alloc_pages = btopr(kmem64_end - kmem64_base); 1617 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K)); 1618 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1619 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min; 1620 1621 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len); 1622 1623 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */ 1624 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t)); 1625 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t)); 1626 1627 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz); 1628 1629 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K)); 1630 nhblk8 = 0; 1631 while (bop_alloc_pages > 1) { 1632 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk); 1633 nhblk8 += bop_alloc_pages /= pages_per_hblk; 1634 bop_alloc_pages *= hme8blk_sz; 1635 bop_alloc_pages = btopr(bop_alloc_pages); 1636 } 1637 nhblk8 += 2; 1638 1639 /* 1640 * Since hblk8's can hold up to 64k of mappings aligned on a 64k 1641 * boundary, the number of hblk8's needed to map the entries in the 1642 * boot_virtavail list needs to be adjusted to take this into 1643 * consideration. Thus, we need to add additional hblk8's since it 1644 * is possible that an hblk8 will not have all 8 slots used due to 1645 * alignment constraints. Since there were boot_virtavail_len entries 1646 * in that list, we need to add that many hblk8's to the number 1647 * already calculated to make sure we don't underestimate. 1648 */ 1649 nhblk8 += boot_virtavail_len; 1650 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz; 1651 1652 /* Allocate in pagesize chunks */ 1653 nhblksz = roundup(nhblksz, MMU_PAGESIZE); 1654 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP); 1655 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1); 1656 } 1657 1658 static void 1659 startup_bop_gone(void) 1660 { 1661 1662 /* 1663 * Destroy the MD initialized at startup 1664 * The startup initializes the MD framework 1665 * using prom and BOP alloc free it now. 1666 */ 1667 mach_descrip_startup_fini(); 1668 1669 /* 1670 * We're done with prom allocations. 1671 */ 1672 bop_fini(); 1673 1674 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1675 &boot_physavail, &boot_physavail_len, 1676 &boot_virtavail, &boot_virtavail_len); 1677 1678 /* 1679 * setup physically contiguous area twice as large as the ecache. 1680 * this is used while doing displacement flush of ecaches 1681 */ 1682 if (&ecache_flush_address) { 1683 ecache_flushaddr = ecache_flush_address(); 1684 if (ecache_flushaddr == (uint64_t)-1) { 1685 cmn_err(CE_PANIC, 1686 "startup: no memory to set ecache_flushaddr"); 1687 } 1688 } 1689 1690 /* 1691 * Virtual available next. 1692 */ 1693 ASSERT(virt_avail != NULL); 1694 memlist_free_list(virt_avail); 1695 virt_avail = memlist; 1696 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist); 1697 1698 } 1699 1700 1701 /* 1702 * startup_fixup_physavail - called from mach_sfmmu.c after the final 1703 * allocations have been performed. We can't call it in startup_bop_gone 1704 * since later operations can cause obp to allocate more memory. 1705 */ 1706 void 1707 startup_fixup_physavail(void) 1708 { 1709 struct memlist *cur; 1710 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end; 1711 1712 PRM_DEBUG(kmem64_overmap_size); 1713 1714 /* 1715 * take the most current snapshot we can by calling mem-update 1716 */ 1717 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len, 1718 &boot_physavail, &boot_physavail_len, 1719 &boot_virtavail, &boot_virtavail_len); 1720 1721 /* 1722 * Copy phys_avail list, again. 1723 * Both the kernel/boot and the prom have been allocating 1724 * from the original list we copied earlier. 1725 */ 1726 cur = memlist; 1727 copy_memlist(boot_physavail, boot_physavail_len, &memlist); 1728 1729 /* 1730 * Add any unused kmem64 memory from overmapped page 1731 * (Note: va_to_pa does not work for kmem64_end) 1732 */ 1733 if (kmem64_overmap_size) { 1734 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base), 1735 kmem64_overmap_size, &memlist, &cur); 1736 } 1737 1738 /* 1739 * Add any extra memory after e_data we added to the phys_avail list 1740 * back to the old list. 1741 */ 1742 if (ndata_remain_sz >= MMU_PAGESIZE) 1743 memlist_add(va_to_pa(nalloc_base), 1744 (uint64_t)ndata_remain_sz, &memlist, &cur); 1745 1746 /* 1747 * There isn't any bounds checking on the memlist area 1748 * so ensure it hasn't overgrown. 1749 */ 1750 if ((caddr_t)memlist > (caddr_t)memlist_end) 1751 cmn_err(CE_PANIC, "startup: memlist size exceeded"); 1752 1753 /* 1754 * The kernel removes the pages that were allocated for it from 1755 * the freelist, but we now have to find any -extra- pages that 1756 * the prom has allocated for it's own book-keeping, and remove 1757 * them from the freelist too. sigh. 1758 */ 1759 sync_memlists(phys_avail, cur); 1760 1761 ASSERT(phys_avail != NULL); 1762 1763 old_phys_avail = phys_avail; 1764 phys_avail = cur; 1765 } 1766 1767 void 1768 update_kcage_ranges(uint64_t addr, uint64_t len) 1769 { 1770 pfn_t base = btop(addr); 1771 pgcnt_t num = btop(len); 1772 int rv; 1773 1774 rv = kcage_range_add(base, num, kcage_startup_dir); 1775 1776 if (rv == ENOMEM) { 1777 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage", 1778 (len == 0 ? 0 : BYTES_TO_MB(len))); 1779 } else if (rv != 0) { 1780 /* catch this in debug kernels */ 1781 ASSERT(0); 1782 1783 cmn_err(CE_WARN, "unexpected kcage_range_add" 1784 " return value %d", rv); 1785 } 1786 } 1787 1788 static void 1789 startup_vm(void) 1790 { 1791 size_t i; 1792 struct segmap_crargs a; 1793 struct segkpm_crargs b; 1794 1795 uint64_t avmem; 1796 caddr_t va; 1797 pgcnt_t max_phys_segkp; 1798 int mnode; 1799 1800 extern int use_brk_lpg, use_stk_lpg; 1801 1802 /* 1803 * get prom's mappings, create hments for them and switch 1804 * to the kernel context. 1805 */ 1806 hat_kern_setup(); 1807 1808 /* 1809 * Take over trap table 1810 */ 1811 setup_trap_table(); 1812 1813 /* 1814 * Install the va>tte handler, so that the prom can handle 1815 * misses and understand the kernel table layout in case 1816 * we need call into the prom. 1817 */ 1818 install_va_to_tte(); 1819 1820 /* 1821 * Set a flag to indicate that the tba has been taken over. 1822 */ 1823 tba_taken_over = 1; 1824 1825 /* initialize MMU primary context register */ 1826 mmu_init_kcontext(); 1827 1828 /* 1829 * The boot cpu can now take interrupts, x-calls, x-traps 1830 */ 1831 CPUSET_ADD(cpu_ready_set, CPU->cpu_id); 1832 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS); 1833 1834 /* 1835 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR. 1836 */ 1837 tbr_wr_addr_inited = 1; 1838 1839 /* 1840 * Initialize VM system, and map kernel address space. 1841 */ 1842 kvm_init(); 1843 1844 ASSERT(old_phys_avail != NULL && phys_avail != NULL); 1845 if (kernel_cage_enable) { 1846 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges); 1847 } 1848 memlist_free_list(old_phys_avail); 1849 1850 /* 1851 * If the following is true, someone has patched 1852 * phsymem to be less than the number of pages that 1853 * the system actually has. Remove pages until system 1854 * memory is limited to the requested amount. Since we 1855 * have allocated page structures for all pages, we 1856 * correct the amount of memory we want to remove 1857 * by the size of the memory used to hold page structures 1858 * for the non-used pages. 1859 */ 1860 if (physmem + ramdisk_npages < npages) { 1861 pgcnt_t diff, off; 1862 struct page *pp; 1863 struct seg kseg; 1864 1865 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem); 1866 1867 off = 0; 1868 diff = npages - (physmem + ramdisk_npages); 1869 diff -= mmu_btopr(diff * sizeof (struct page)); 1870 kseg.s_as = &kas; 1871 while (diff--) { 1872 pp = page_create_va(&unused_pages_vp, (offset_t)off, 1873 MMU_PAGESIZE, PG_WAIT | PG_EXCL, 1874 &kseg, (caddr_t)off); 1875 if (pp == NULL) 1876 cmn_err(CE_PANIC, "limited physmem too much!"); 1877 page_io_unlock(pp); 1878 page_downgrade(pp); 1879 availrmem--; 1880 off += MMU_PAGESIZE; 1881 } 1882 } 1883 1884 /* 1885 * When printing memory, show the total as physmem less 1886 * that stolen by a debugger. 1887 */ 1888 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n", 1889 (ulong_t)(physinstalled) << (PAGESHIFT - 10), 1890 (ulong_t)(physinstalled) << (PAGESHIFT - 12)); 1891 1892 avmem = (uint64_t)freemem << PAGESHIFT; 1893 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem); 1894 1895 /* 1896 * For small memory systems disable automatic large pages. 1897 */ 1898 if (physmem < privm_lpg_min_physmem) { 1899 use_brk_lpg = 0; 1900 use_stk_lpg = 0; 1901 } 1902 1903 /* 1904 * Perform platform specific freelist processing 1905 */ 1906 if (&plat_freelist_process) { 1907 for (mnode = 0; mnode < max_mem_nodes; mnode++) 1908 if (mem_node_config[mnode].exists) 1909 plat_freelist_process(mnode); 1910 } 1911 1912 /* 1913 * Initialize the segkp segment type. We position it 1914 * after the configured tables and buffers (whose end 1915 * is given by econtig) and before V_WKBASE_ADDR. 1916 * Also in this area is segkmap (size SEGMAPSIZE). 1917 */ 1918 1919 /* XXX - cache alignment? */ 1920 va = (caddr_t)SEGKPBASE; 1921 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0); 1922 1923 max_phys_segkp = (physmem * 2); 1924 1925 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) { 1926 segkpsize = btop(SEGKPDEFSIZE); 1927 cmn_err(CE_WARN, "Illegal value for segkpsize. " 1928 "segkpsize has been reset to %ld pages", segkpsize); 1929 } 1930 1931 i = ptob(MIN(segkpsize, max_phys_segkp)); 1932 1933 rw_enter(&kas.a_lock, RW_WRITER); 1934 if (seg_attach(&kas, va, i, segkp) < 0) 1935 cmn_err(CE_PANIC, "startup: cannot attach segkp"); 1936 if (segkp_create(segkp) != 0) 1937 cmn_err(CE_PANIC, "startup: segkp_create failed"); 1938 rw_exit(&kas.a_lock); 1939 1940 /* 1941 * kpm segment 1942 */ 1943 segmap_kpm = kpm_enable && 1944 segmap_kpm && PAGESIZE == MAXBSIZE; 1945 1946 if (kpm_enable) { 1947 rw_enter(&kas.a_lock, RW_WRITER); 1948 1949 /* 1950 * The segkpm virtual range range is larger than the 1951 * actual physical memory size and also covers gaps in 1952 * the physical address range for the following reasons: 1953 * . keep conversion between segkpm and physical addresses 1954 * simple, cheap and unambiguous. 1955 * . avoid extension/shrink of the the segkpm in case of DR. 1956 * . avoid complexity for handling of virtual addressed 1957 * caches, segkpm and the regular mapping scheme must be 1958 * kept in sync wrt. the virtual color of mapped pages. 1959 * Any accesses to virtual segkpm ranges not backed by 1960 * physical memory will fall through the memseg pfn hash 1961 * and will be handled in segkpm_fault. 1962 * Additional kpm_size spaces needed for vac alias prevention. 1963 */ 1964 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors, 1965 segkpm) < 0) 1966 cmn_err(CE_PANIC, "cannot attach segkpm"); 1967 1968 b.prot = PROT_READ | PROT_WRITE; 1969 b.nvcolors = shm_alignment >> MMU_PAGESHIFT; 1970 1971 if (segkpm_create(segkpm, (caddr_t)&b) != 0) 1972 panic("segkpm_create segkpm"); 1973 1974 rw_exit(&kas.a_lock); 1975 1976 mach_kpm_init(); 1977 } 1978 1979 va = kpm_vbase + (kpm_size * vac_colors); 1980 1981 if (!segzio_fromheap) { 1982 size_t size; 1983 size_t physmem_b = mmu_ptob(physmem); 1984 1985 /* size is in bytes, segziosize is in pages */ 1986 if (segziosize == 0) { 1987 size = physmem_b; 1988 } else { 1989 size = mmu_ptob(segziosize); 1990 } 1991 1992 if (size < SEGZIOMINSIZE) { 1993 size = SEGZIOMINSIZE; 1994 } else if (size > SEGZIOMAXSIZE) { 1995 size = SEGZIOMAXSIZE; 1996 /* 1997 * On 64-bit x86, we only have 2TB of KVA. This exists 1998 * for parity with x86. 1999 * 2000 * SEGZIOMAXSIZE is capped at 512gb so that segzio 2001 * doesn't consume all of KVA. However, if we have a 2002 * system that has more thant 512gb of physical memory, 2003 * we can actually consume about half of the difference 2004 * between 512gb and the rest of the available physical 2005 * memory. 2006 */ 2007 if (physmem_b > SEGZIOMAXSIZE) { 2008 size += (physmem_b - SEGZIOMAXSIZE) / 2; 2009 } 2010 } 2011 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE)); 2012 /* put the base of the ZIO segment after the kpm segment */ 2013 segzio_base = va; 2014 va += mmu_ptob(segziosize); 2015 PRM_DEBUG(segziosize); 2016 PRM_DEBUG(segzio_base); 2017 2018 /* 2019 * On some platforms, kvm_init is called after the kpm 2020 * sizes have been determined. On SPARC, kvm_init is called 2021 * before, so we have to attach the kzioseg after kvm is 2022 * initialized, otherwise we'll try to allocate from the boot 2023 * area since the kernel heap hasn't yet been configured. 2024 */ 2025 rw_enter(&kas.a_lock, RW_WRITER); 2026 2027 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize), 2028 &kzioseg); 2029 (void) segkmem_zio_create(&kzioseg); 2030 2031 /* create zio area covering new segment */ 2032 segkmem_zio_init(segzio_base, mmu_ptob(segziosize)); 2033 2034 rw_exit(&kas.a_lock); 2035 } 2036 2037 if (ppvm_enable) { 2038 caddr_t ppvm_max; 2039 2040 /* 2041 * ppvm refers to the static VA space used to map 2042 * the page_t's for dynamically added memory. 2043 * 2044 * ppvm_base should not cross a potential VA hole. 2045 * 2046 * ppvm_size should be large enough to map the 2047 * page_t's needed to manage all of KPM range. 2048 */ 2049 ppvm_size = 2050 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t), 2051 MMU_PAGESIZE); 2052 ppvm_max = (caddr_t)(0ull - ppvm_size); 2053 ppvm_base = (page_t *)va; 2054 2055 if ((caddr_t)ppvm_base <= hole_end) { 2056 cmn_err(CE_WARN, 2057 "Memory DR disabled: invalid DR map base: 0x%p\n", 2058 (void *)ppvm_base); 2059 ppvm_enable = 0; 2060 } else if ((caddr_t)ppvm_base > ppvm_max) { 2061 uint64_t diff = (caddr_t)ppvm_base - ppvm_max; 2062 2063 cmn_err(CE_WARN, 2064 "Memory DR disabled: insufficient DR map size:" 2065 " 0x%lx (needed 0x%lx)\n", 2066 ppvm_size - diff, ppvm_size); 2067 ppvm_enable = 0; 2068 } 2069 PRM_DEBUG(ppvm_size); 2070 PRM_DEBUG(ppvm_base); 2071 } 2072 2073 /* 2074 * Now create generic mapping segment. This mapping 2075 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total 2076 * virtual address is greater than the amount of free 2077 * memory that is available, then we trim back the 2078 * segment size to that amount 2079 */ 2080 va = (caddr_t)SEGMAPBASE; 2081 2082 /* 2083 * 1201049: segkmap base address must be MAXBSIZE aligned 2084 */ 2085 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0); 2086 2087 /* 2088 * Set size of segmap to percentage of freemem at boot, 2089 * but stay within the allowable range 2090 * Note we take percentage before converting from pages 2091 * to bytes to avoid an overflow on 32-bit kernels. 2092 */ 2093 i = mmu_ptob((freemem * segmap_percent) / 100); 2094 2095 if (i < MINMAPSIZE) 2096 i = MINMAPSIZE; 2097 2098 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem))) 2099 i = MIN(SEGMAPSIZE, mmu_ptob(freemem)); 2100 2101 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */ 2102 2103 rw_enter(&kas.a_lock, RW_WRITER); 2104 if (seg_attach(&kas, va, i, segkmap) < 0) 2105 cmn_err(CE_PANIC, "cannot attach segkmap"); 2106 2107 a.prot = PROT_READ | PROT_WRITE; 2108 a.shmsize = shm_alignment; 2109 a.nfreelist = 0; /* use segmap driver defaults */ 2110 2111 if (segmap_create(segkmap, (caddr_t)&a) != 0) 2112 panic("segmap_create segkmap"); 2113 rw_exit(&kas.a_lock); 2114 2115 segdev_init(); 2116 } 2117 2118 static void 2119 startup_end(void) 2120 { 2121 if ((caddr_t)memlist > (caddr_t)memlist_end) 2122 panic("memlist overflow 2"); 2123 memlist_free_block((caddr_t)memlist, 2124 ((caddr_t)memlist_end - (caddr_t)memlist)); 2125 memlist = NULL; 2126 2127 /* enable page_relocation since OBP is now done */ 2128 page_relocate_ready = 1; 2129 2130 /* 2131 * Perform tasks that get done after most of the VM 2132 * initialization has been done but before the clock 2133 * and other devices get started. 2134 */ 2135 kern_setup1(); 2136 2137 /* 2138 * Perform CPC initialization for this CPU. 2139 */ 2140 kcpc_hw_init(); 2141 2142 /* 2143 * Intialize the VM arenas for allocating physically 2144 * contiguus memory chunk for interrupt queues snd 2145 * allocate/register boot cpu's queues, if any and 2146 * allocate dump buffer for sun4v systems to store 2147 * extra crash information during crash dump 2148 */ 2149 contig_mem_init(); 2150 mach_descrip_init(); 2151 2152 if (cpu_intrq_setup(CPU)) { 2153 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id); 2154 } 2155 cpu_intrq_register(CPU); 2156 mach_htraptrace_setup(CPU->cpu_id); 2157 mach_htraptrace_configure(CPU->cpu_id); 2158 mach_dump_buffer_init(); 2159 2160 /* 2161 * Initialize interrupt related stuff 2162 */ 2163 cpu_intr_alloc(CPU, NINTR_THREADS); 2164 2165 (void) splzs(); /* allow hi clock ints but not zs */ 2166 2167 /* 2168 * Initialize errors. 2169 */ 2170 error_init(); 2171 2172 /* 2173 * Note that we may have already used kernel bcopy before this 2174 * point - but if you really care about this, adb the use_hw_* 2175 * variables to 0 before rebooting. 2176 */ 2177 mach_hw_copy_limit(); 2178 2179 /* 2180 * Install the "real" preemption guards before DDI services 2181 * are available. 2182 */ 2183 (void) prom_set_preprom(kern_preprom); 2184 (void) prom_set_postprom(kern_postprom); 2185 CPU->cpu_m.mutex_ready = 1; 2186 2187 /* 2188 * Initialize segnf (kernel support for non-faulting loads). 2189 */ 2190 segnf_init(); 2191 2192 /* 2193 * Configure the root devinfo node. 2194 */ 2195 configure(); /* set up devices */ 2196 mach_cpu_halt_idle(); 2197 } 2198 2199 2200 void 2201 post_startup(void) 2202 { 2203 #ifdef PTL1_PANIC_DEBUG 2204 extern void init_ptl1_thread(void); 2205 #endif /* PTL1_PANIC_DEBUG */ 2206 extern void abort_sequence_init(void); 2207 2208 /* 2209 * Set the system wide, processor-specific flags to be passed 2210 * to userland via the aux vector for performance hints and 2211 * instruction set extensions. 2212 */ 2213 bind_hwcap(); 2214 2215 /* 2216 * Startup memory scrubber (if any) 2217 */ 2218 mach_memscrub(); 2219 2220 /* 2221 * Allocate soft interrupt to handle abort sequence. 2222 */ 2223 abort_sequence_init(); 2224 2225 /* 2226 * Configure the rest of the system. 2227 * Perform forceloading tasks for /etc/system. 2228 */ 2229 (void) mod_sysctl(SYS_FORCELOAD, NULL); 2230 /* 2231 * ON4.0: Force /proc module in until clock interrupt handle fixed 2232 * ON4.0: This must be fixed or restated in /etc/systems. 2233 */ 2234 (void) modload("fs", "procfs"); 2235 2236 /* load machine class specific drivers */ 2237 load_mach_drivers(); 2238 2239 /* load platform specific drivers */ 2240 if (&load_platform_drivers) 2241 load_platform_drivers(); 2242 2243 /* load vis simulation module, if we are running w/fpu off */ 2244 if (!fpu_exists) { 2245 if (modload("misc", "vis") == -1) 2246 halt("Can't load vis"); 2247 } 2248 2249 mach_fpras(); 2250 2251 maxmem = freemem; 2252 2253 pg_init(); 2254 2255 #ifdef PTL1_PANIC_DEBUG 2256 init_ptl1_thread(); 2257 #endif /* PTL1_PANIC_DEBUG */ 2258 } 2259 2260 #ifdef PTL1_PANIC_DEBUG 2261 int ptl1_panic_test = 0; 2262 int ptl1_panic_xc_one_test = 0; 2263 int ptl1_panic_xc_all_test = 0; 2264 int ptl1_panic_xt_one_test = 0; 2265 int ptl1_panic_xt_all_test = 0; 2266 kthread_id_t ptl1_thread_p = NULL; 2267 kcondvar_t ptl1_cv; 2268 kmutex_t ptl1_mutex; 2269 int ptl1_recurse_count_threshold = 0x40; 2270 int ptl1_recurse_trap_threshold = 0x3d; 2271 extern void ptl1_recurse(int, int); 2272 extern void ptl1_panic_xt(int, int); 2273 2274 /* 2275 * Called once per second by timeout() to wake up 2276 * the ptl1_panic thread to see if it should cause 2277 * a trap to the ptl1_panic() code. 2278 */ 2279 /* ARGSUSED */ 2280 static void 2281 ptl1_wakeup(void *arg) 2282 { 2283 mutex_enter(&ptl1_mutex); 2284 cv_signal(&ptl1_cv); 2285 mutex_exit(&ptl1_mutex); 2286 } 2287 2288 /* 2289 * ptl1_panic cross call function: 2290 * Needed because xc_one() and xc_some() can pass 2291 * 64 bit args but ptl1_recurse() expects ints. 2292 */ 2293 static void 2294 ptl1_panic_xc(void) 2295 { 2296 ptl1_recurse(ptl1_recurse_count_threshold, 2297 ptl1_recurse_trap_threshold); 2298 } 2299 2300 /* 2301 * The ptl1 thread waits for a global flag to be set 2302 * and uses the recurse thresholds to set the stack depth 2303 * to cause a ptl1_panic() directly via a call to ptl1_recurse 2304 * or indirectly via the cross call and cross trap functions. 2305 * 2306 * This is useful testing stack overflows and normal 2307 * ptl1_panic() states with a know stack frame. 2308 * 2309 * ptl1_recurse() is an asm function in ptl1_panic.s that 2310 * sets the {In, Local, Out, and Global} registers to a 2311 * know state on the stack and just prior to causing a 2312 * test ptl1_panic trap. 2313 */ 2314 static void 2315 ptl1_thread(void) 2316 { 2317 mutex_enter(&ptl1_mutex); 2318 while (ptl1_thread_p) { 2319 cpuset_t other_cpus; 2320 int cpu_id; 2321 int my_cpu_id; 2322 int target_cpu_id; 2323 int target_found; 2324 2325 if (ptl1_panic_test) { 2326 ptl1_recurse(ptl1_recurse_count_threshold, 2327 ptl1_recurse_trap_threshold); 2328 } 2329 2330 /* 2331 * Find potential targets for x-call and x-trap, 2332 * if any exist while preempt is disabled we 2333 * start a ptl1_panic if requested via a 2334 * globals. 2335 */ 2336 kpreempt_disable(); 2337 my_cpu_id = CPU->cpu_id; 2338 other_cpus = cpu_ready_set; 2339 CPUSET_DEL(other_cpus, CPU->cpu_id); 2340 target_found = 0; 2341 if (!CPUSET_ISNULL(other_cpus)) { 2342 /* 2343 * Pick the first one 2344 */ 2345 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) { 2346 if (cpu_id == my_cpu_id) 2347 continue; 2348 2349 if (CPU_XCALL_READY(cpu_id)) { 2350 target_cpu_id = cpu_id; 2351 target_found = 1; 2352 break; 2353 } 2354 } 2355 ASSERT(target_found); 2356 2357 if (ptl1_panic_xc_one_test) { 2358 xc_one(target_cpu_id, 2359 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2360 } 2361 if (ptl1_panic_xc_all_test) { 2362 xc_some(other_cpus, 2363 (xcfunc_t *)ptl1_panic_xc, 0, 0); 2364 } 2365 if (ptl1_panic_xt_one_test) { 2366 xt_one(target_cpu_id, 2367 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2368 } 2369 if (ptl1_panic_xt_all_test) { 2370 xt_some(other_cpus, 2371 (xcfunc_t *)ptl1_panic_xt, 0, 0); 2372 } 2373 } 2374 kpreempt_enable(); 2375 (void) timeout(ptl1_wakeup, NULL, hz); 2376 (void) cv_wait(&ptl1_cv, &ptl1_mutex); 2377 } 2378 mutex_exit(&ptl1_mutex); 2379 } 2380 2381 /* 2382 * Called during early startup to create the ptl1_thread 2383 */ 2384 void 2385 init_ptl1_thread(void) 2386 { 2387 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0, 2388 &p0, TS_RUN, 0); 2389 } 2390 #endif /* PTL1_PANIC_DEBUG */ 2391 2392 2393 static void 2394 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp) 2395 { 2396 struct memlist *new; 2397 2398 new = *memlistp; 2399 new->ml_address = start; 2400 new->ml_size = len; 2401 *memlistp = new + 1; 2402 } 2403 2404 /* 2405 * Add to a memory list. 2406 * start = start of new memory segment 2407 * len = length of new memory segment in bytes 2408 * memlistp = pointer to array of available memory segment structures 2409 * curmemlistp = memory list to which to add segment. 2410 */ 2411 static void 2412 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp, 2413 struct memlist **curmemlistp) 2414 { 2415 struct memlist *new = *memlistp; 2416 2417 memlist_new(start, len, memlistp); 2418 memlist_insert(new, curmemlistp); 2419 } 2420 2421 static int 2422 ndata_alloc_memseg(struct memlist *ndata, size_t avail) 2423 { 2424 int nseg; 2425 size_t memseg_sz; 2426 struct memseg *msp; 2427 2428 /* 2429 * The memseg list is for the chunks of physical memory that 2430 * will be managed by the vm system. The number calculated is 2431 * a guess as boot may fragment it more when memory allocations 2432 * are made before kphysm_init(). 2433 */ 2434 memseg_sz = (avail + 10) * sizeof (struct memseg); 2435 memseg_sz = roundup(memseg_sz, PAGESIZE); 2436 nseg = memseg_sz / sizeof (struct memseg); 2437 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize); 2438 if (msp == NULL) 2439 return (1); 2440 PRM_DEBUG(memseg_free); 2441 2442 while (nseg--) { 2443 msp->next = memseg_free; 2444 memseg_free = msp; 2445 msp++; 2446 } 2447 return (0); 2448 } 2449 2450 /* 2451 * In the case of architectures that support dynamic addition of 2452 * memory at run-time there are two cases where memsegs need to 2453 * be initialized and added to the memseg list. 2454 * 1) memsegs that are constructed at startup. 2455 * 2) memsegs that are constructed at run-time on 2456 * hot-plug capable architectures. 2457 * This code was originally part of the function kphysm_init(). 2458 */ 2459 2460 static void 2461 memseg_list_add(struct memseg *memsegp) 2462 { 2463 struct memseg **prev_memsegp; 2464 pgcnt_t num; 2465 2466 /* insert in memseg list, decreasing number of pages order */ 2467 2468 num = MSEG_NPAGES(memsegp); 2469 2470 for (prev_memsegp = &memsegs; *prev_memsegp; 2471 prev_memsegp = &((*prev_memsegp)->next)) { 2472 if (num > MSEG_NPAGES(*prev_memsegp)) 2473 break; 2474 } 2475 2476 memsegp->next = *prev_memsegp; 2477 *prev_memsegp = memsegp; 2478 2479 if (kpm_enable) { 2480 memsegp->nextpa = (memsegp->next) ? 2481 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA; 2482 2483 if (prev_memsegp != &memsegs) { 2484 struct memseg *msp; 2485 msp = (struct memseg *)((caddr_t)prev_memsegp - 2486 offsetof(struct memseg, next)); 2487 msp->nextpa = va_to_pa(memsegp); 2488 } else { 2489 memsegspa = va_to_pa(memsegs); 2490 } 2491 } 2492 } 2493 2494 /* 2495 * PSM add_physmem_cb(). US-II and newer processors have some 2496 * flavor of the prefetch capability implemented. We exploit 2497 * this capability for optimum performance. 2498 */ 2499 #define PREFETCH_BYTES 64 2500 2501 void 2502 add_physmem_cb(page_t *pp, pfn_t pnum) 2503 { 2504 extern void prefetch_page_w(void *); 2505 2506 pp->p_pagenum = pnum; 2507 2508 /* 2509 * Prefetch one more page_t into E$. To prevent future 2510 * mishaps with the sizeof(page_t) changing on us, we 2511 * catch this on debug kernels if we can't bring in the 2512 * entire hpage with 2 PREFETCH_BYTES reads. See 2513 * also, sun4u/cpu/cpu_module.c 2514 */ 2515 /*LINTED*/ 2516 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES); 2517 prefetch_page_w((char *)pp); 2518 } 2519 2520 /* 2521 * Find memseg with given pfn 2522 */ 2523 static struct memseg * 2524 memseg_find(pfn_t base, pfn_t *next) 2525 { 2526 struct memseg *seg; 2527 2528 if (next != NULL) 2529 *next = LONG_MAX; 2530 for (seg = memsegs; seg != NULL; seg = seg->next) { 2531 if (base >= seg->pages_base && base < seg->pages_end) 2532 return (seg); 2533 if (next != NULL && seg->pages_base > base && 2534 seg->pages_base < *next) 2535 *next = seg->pages_base; 2536 } 2537 return (NULL); 2538 } 2539 2540 /* 2541 * Put page allocated by OBP on prom_ppages 2542 */ 2543 static void 2544 kphysm_erase(uint64_t addr, uint64_t len) 2545 { 2546 struct page *pp; 2547 struct memseg *seg; 2548 pfn_t base = btop(addr), next; 2549 pgcnt_t num = btop(len); 2550 2551 while (num != 0) { 2552 pgcnt_t off, left; 2553 2554 seg = memseg_find(base, &next); 2555 if (seg == NULL) { 2556 if (next == LONG_MAX) 2557 break; 2558 left = MIN(next - base, num); 2559 base += left, num -= left; 2560 continue; 2561 } 2562 off = base - seg->pages_base; 2563 pp = seg->pages + off; 2564 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off); 2565 while (num != left) { 2566 /* 2567 * init it, lock it, and hashin on prom_pages vp. 2568 * 2569 * Mark it as NONRELOC to let DR know the page 2570 * is locked long term, otherwise DR hangs when 2571 * trying to remove those pages. 2572 * 2573 * XXX vnode offsets on the prom_ppages vnode 2574 * are page numbers (gack) for >32 bit 2575 * physical memory machines. 2576 */ 2577 PP_SETNORELOC(pp); 2578 add_physmem_cb(pp, base); 2579 if (page_trylock(pp, SE_EXCL) == 0) 2580 cmn_err(CE_PANIC, "prom page locked"); 2581 (void) page_hashin(pp, &promvp, 2582 (offset_t)base, NULL); 2583 (void) page_pp_lock(pp, 0, 1); 2584 pp++, base++, num--; 2585 } 2586 } 2587 } 2588 2589 static page_t *ppnext; 2590 static pgcnt_t ppleft; 2591 2592 static void *kpm_ppnext; 2593 static pgcnt_t kpm_ppleft; 2594 2595 /* 2596 * Create a memseg 2597 */ 2598 static void 2599 kphysm_memseg(uint64_t addr, uint64_t len) 2600 { 2601 pfn_t base = btop(addr); 2602 pgcnt_t num = btop(len); 2603 struct memseg *seg; 2604 2605 seg = memseg_free; 2606 memseg_free = seg->next; 2607 ASSERT(seg != NULL); 2608 2609 seg->pages = ppnext; 2610 seg->epages = ppnext + num; 2611 seg->pages_base = base; 2612 seg->pages_end = base + num; 2613 ppnext += num; 2614 ppleft -= num; 2615 2616 if (kpm_enable) { 2617 pgcnt_t kpnum = ptokpmpr(num); 2618 2619 if (kpnum > kpm_ppleft) 2620 panic("kphysm_memseg: kpm_pp overflow"); 2621 seg->pagespa = va_to_pa(seg->pages); 2622 seg->epagespa = va_to_pa(seg->epages); 2623 seg->kpm_pbase = kpmptop(ptokpmp(base)); 2624 seg->kpm_nkpmpgs = kpnum; 2625 /* 2626 * In the kpm_smallpage case, the kpm array 2627 * is 1-1 wrt the page array 2628 */ 2629 if (kpm_smallpages) { 2630 kpm_spage_t *kpm_pp = kpm_ppnext; 2631 2632 kpm_ppnext = kpm_pp + kpnum; 2633 seg->kpm_spages = kpm_pp; 2634 seg->kpm_pagespa = va_to_pa(seg->kpm_spages); 2635 } else { 2636 kpm_page_t *kpm_pp = kpm_ppnext; 2637 2638 kpm_ppnext = kpm_pp + kpnum; 2639 seg->kpm_pages = kpm_pp; 2640 seg->kpm_pagespa = va_to_pa(seg->kpm_pages); 2641 /* ASSERT no kpm overlaps */ 2642 ASSERT( 2643 memseg_find(base - pmodkpmp(base), NULL) == NULL); 2644 ASSERT(memseg_find( 2645 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL); 2646 } 2647 kpm_ppleft -= kpnum; 2648 } 2649 2650 memseg_list_add(seg); 2651 } 2652 2653 /* 2654 * Add range to free list 2655 */ 2656 void 2657 kphysm_add(uint64_t addr, uint64_t len, int reclaim) 2658 { 2659 struct page *pp; 2660 struct memseg *seg; 2661 pfn_t base = btop(addr); 2662 pgcnt_t num = btop(len); 2663 2664 seg = memseg_find(base, NULL); 2665 ASSERT(seg != NULL); 2666 pp = seg->pages + (base - seg->pages_base); 2667 2668 if (reclaim) { 2669 struct page *rpp = pp; 2670 struct page *lpp = pp + num; 2671 2672 /* 2673 * page should be locked on prom_ppages 2674 * unhash and unlock it 2675 */ 2676 while (rpp < lpp) { 2677 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp); 2678 ASSERT(PP_ISNORELOC(rpp)); 2679 PP_CLRNORELOC(rpp); 2680 page_pp_unlock(rpp, 0, 1); 2681 page_hashout(rpp, NULL); 2682 page_unlock(rpp); 2683 rpp++; 2684 } 2685 } 2686 2687 /* 2688 * add_physmem() initializes the PSM part of the page 2689 * struct by calling the PSM back with add_physmem_cb(). 2690 * In addition it coalesces pages into larger pages as 2691 * it initializes them. 2692 */ 2693 add_physmem(pp, num, base); 2694 } 2695 2696 /* 2697 * kphysm_init() tackles the problem of initializing physical memory. 2698 */ 2699 static void 2700 kphysm_init(void) 2701 { 2702 struct memlist *pmem; 2703 2704 ASSERT(page_hash != NULL && page_hashsz != 0); 2705 2706 ppnext = pp_base; 2707 ppleft = npages; 2708 kpm_ppnext = kpm_pp_base; 2709 kpm_ppleft = kpm_npages; 2710 2711 /* 2712 * installed pages not on nopp_memlist go in memseg list 2713 */ 2714 diff_memlists(phys_install, nopp_list, kphysm_memseg); 2715 2716 /* 2717 * Free the avail list 2718 */ 2719 for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next) 2720 kphysm_add(pmem->ml_address, pmem->ml_size, 0); 2721 2722 /* 2723 * Erase pages that aren't available 2724 */ 2725 diff_memlists(phys_install, phys_avail, kphysm_erase); 2726 2727 build_pfn_hash(); 2728 } 2729 2730 /* 2731 * Kernel VM initialization. 2732 * Assumptions about kernel address space ordering: 2733 * (1) gap (user space) 2734 * (2) kernel text 2735 * (3) kernel data/bss 2736 * (4) gap 2737 * (5) kernel data structures 2738 * (6) gap 2739 * (7) debugger (optional) 2740 * (8) monitor 2741 * (9) gap (possibly null) 2742 * (10) dvma 2743 * (11) devices 2744 */ 2745 static void 2746 kvm_init(void) 2747 { 2748 /* 2749 * Put the kernel segments in kernel address space. 2750 */ 2751 rw_enter(&kas.a_lock, RW_WRITER); 2752 as_avlinit(&kas); 2753 2754 (void) seg_attach(&kas, (caddr_t)KERNELBASE, 2755 (size_t)(e_moddata - KERNELBASE), &ktextseg); 2756 (void) segkmem_create(&ktextseg); 2757 2758 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M), 2759 (size_t)(MMU_PAGESIZE4M), &ktexthole); 2760 (void) segkmem_create(&ktexthole); 2761 2762 (void) seg_attach(&kas, (caddr_t)valloc_base, 2763 (size_t)(econtig32 - valloc_base), &kvalloc); 2764 (void) segkmem_create(&kvalloc); 2765 2766 if (kmem64_base) { 2767 (void) seg_attach(&kas, (caddr_t)kmem64_base, 2768 (size_t)(kmem64_end - kmem64_base), &kmem64); 2769 (void) segkmem_create(&kmem64); 2770 } 2771 2772 /* 2773 * We're about to map out /boot. This is the beginning of the 2774 * system resource management transition. We can no longer 2775 * call into /boot for I/O or memory allocations. 2776 */ 2777 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg); 2778 (void) segkmem_create(&kvseg); 2779 hblk_alloc_dynamic = 1; 2780 2781 /* 2782 * we need to preallocate pages for DR operations before enabling large 2783 * page kernel heap because of memseg_remap_init() hat_unload() hack. 2784 */ 2785 memseg_remap_init(); 2786 2787 /* at this point we are ready to use large page heap */ 2788 segkmem_heap_lp_init(); 2789 2790 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32, 2791 &kvseg32); 2792 (void) segkmem_create(&kvseg32); 2793 2794 /* 2795 * Create a segment for the debugger. 2796 */ 2797 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg); 2798 (void) segkmem_create(&kdebugseg); 2799 2800 rw_exit(&kas.a_lock); 2801 } 2802 2803 char obp_tte_str[] = 2804 "h# %x constant MMU_PAGESHIFT " 2805 "h# %x constant TTE8K " 2806 "h# %x constant SFHME_SIZE " 2807 "h# %x constant SFHME_TTE " 2808 "h# %x constant HMEBLK_TAG " 2809 "h# %x constant HMEBLK_NEXT " 2810 "h# %x constant HMEBLK_MISC " 2811 "h# %x constant HMEBLK_HME1 " 2812 "h# %x constant NHMENTS " 2813 "h# %x constant HBLK_SZMASK " 2814 "h# %x constant HBLK_RANGE_SHIFT " 2815 "h# %x constant HMEBP_HBLK " 2816 "h# %x constant HMEBLK_ENDPA " 2817 "h# %x constant HMEBUCKET_SIZE " 2818 "h# %x constant HTAG_SFMMUPSZ " 2819 "h# %x constant HTAG_BSPAGE_SHIFT " 2820 "h# %x constant HTAG_REHASH_SHIFT " 2821 "h# %x constant SFMMU_INVALID_SHMERID " 2822 "h# %x constant mmu_hashcnt " 2823 "h# %p constant uhme_hash " 2824 "h# %p constant khme_hash " 2825 "h# %x constant UHMEHASH_SZ " 2826 "h# %x constant KHMEHASH_SZ " 2827 "h# %p constant KCONTEXT " 2828 "h# %p constant KHATID " 2829 "h# %x constant ASI_MEM " 2830 2831 ": PHYS-X@ ( phys -- data ) " 2832 " ASI_MEM spacex@ " 2833 "; " 2834 2835 ": PHYS-W@ ( phys -- data ) " 2836 " ASI_MEM spacew@ " 2837 "; " 2838 2839 ": PHYS-L@ ( phys -- data ) " 2840 " ASI_MEM spaceL@ " 2841 "; " 2842 2843 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) " 2844 " 3 * MMU_PAGESHIFT + " 2845 "; " 2846 2847 ": TTE_IS_VALID ( ttep -- flag ) " 2848 " PHYS-X@ 0< " 2849 "; " 2850 2851 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) " 2852 " dup TTE8K = if " 2853 " drop HBLK_RANGE_SHIFT " 2854 " else " 2855 " TTE_PAGE_SHIFT " 2856 " then " 2857 "; " 2858 2859 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) " 2860 " tuck >> swap MMU_PAGESHIFT - << " 2861 "; " 2862 2863 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) " 2864 " >> over xor swap ( hash sfmmup ) " 2865 " KHATID <> if ( hash ) " 2866 " UHMEHASH_SZ and ( bucket ) " 2867 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) " 2868 " else ( hash ) " 2869 " KHMEHASH_SZ and ( bucket ) " 2870 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) " 2871 " then ( hmebp ) " 2872 "; " 2873 2874 ": HME_HASH_TABLE_SEARCH " 2875 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) " 2876 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) " 2877 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) " 2878 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) " 2879 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if " 2880 " true ( sfmmup hmeblkp true ) ( r: hblktag ) " 2881 " else " 2882 " hmeblk_next + phys-x@ false " 2883 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2884 " then " 2885 " else " 2886 " hmeblk_next + phys-x@ false " 2887 " ( sfmmup hmeblkp false ) ( r: hblktag ) " 2888 " then " 2889 " else " 2890 " drop 0 true " 2891 " then " 2892 " until r> drop " 2893 "; " 2894 2895 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) " 2896 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) " 2897 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )" 2898 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )" 2899 " SFMMU_INVALID_SHMERID or nip ( hblktag ) " 2900 "; " 2901 2902 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) " 2903 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) " 2904 " TTE8K = if ( hmeblkp addr ) " 2905 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) " 2906 " else ( hmeblkp addr ) " 2907 " drop 0 ( hmeblkp 0 ) " 2908 " then ( hmeblkp hme-index ) " 2909 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) " 2910 " SFHME_TTE + ( ttep ) " 2911 "; " 2912 2913 ": unix-tte ( addr cnum -- false | tte-data true ) " 2914 " KCONTEXT = if ( addr ) " 2915 " KHATID ( addr khatid ) " 2916 " else ( addr ) " 2917 " drop false exit ( false ) " 2918 " then " 2919 " ( addr khatid ) " 2920 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) " 2921 " 2dup swap i HME_HASH_SHIFT " 2922 "( addr sfmmup sfmmup addr hmeshift ) " 2923 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) " 2924 " over i 4 pick " 2925 "( addr sfmmup hmebp sfmmup rehash addr ) " 2926 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) " 2927 " HME_HASH_TABLE_SEARCH " 2928 "( addr sfmmup { null | hmeblkp } ) " 2929 " ?dup if ( addr sfmmup hmeblkp ) " 2930 " nip swap HBLK_TO_TTEP ( ttep ) " 2931 " dup TTE_IS_VALID if ( valid-ttep ) " 2932 " PHYS-X@ true ( tte-data true ) " 2933 " else ( invalid-tte ) " 2934 " drop false ( false ) " 2935 " then ( false | tte-data true ) " 2936 " unloop exit ( false | tte-data true ) " 2937 " then ( addr sfmmup ) " 2938 " loop ( addr sfmmup ) " 2939 " 2drop false ( false ) " 2940 "; " 2941 ; 2942 2943 void 2944 create_va_to_tte(void) 2945 { 2946 char *bp; 2947 extern int khmehash_num, uhmehash_num; 2948 extern struct hmehash_bucket *khme_hash, *uhme_hash; 2949 2950 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field)) 2951 2952 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP); 2953 2954 /* 2955 * Teach obp how to parse our sw ttes. 2956 */ 2957 (void) sprintf(bp, obp_tte_str, 2958 MMU_PAGESHIFT, 2959 TTE8K, 2960 sizeof (struct sf_hment), 2961 OFFSET(struct sf_hment, hme_tte), 2962 OFFSET(struct hme_blk, hblk_tag), 2963 OFFSET(struct hme_blk, hblk_nextpa), 2964 OFFSET(struct hme_blk, hblk_misc), 2965 OFFSET(struct hme_blk, hblk_hme), 2966 NHMENTS, 2967 HBLK_SZMASK, 2968 HBLK_RANGE_SHIFT, 2969 OFFSET(struct hmehash_bucket, hmeh_nextpa), 2970 HMEBLK_ENDPA, 2971 sizeof (struct hmehash_bucket), 2972 HTAG_SFMMUPSZ, 2973 HTAG_BSPAGE_SHIFT, 2974 HTAG_REHASH_SHIFT, 2975 SFMMU_INVALID_SHMERID, 2976 mmu_hashcnt, 2977 (caddr_t)va_to_pa((caddr_t)uhme_hash), 2978 (caddr_t)va_to_pa((caddr_t)khme_hash), 2979 UHMEHASH_SZ, 2980 KHMEHASH_SZ, 2981 KCONTEXT, 2982 KHATID, 2983 ASI_MEM); 2984 prom_interpret(bp, 0, 0, 0, 0, 0); 2985 2986 kobj_free(bp, MMU_PAGESIZE); 2987 } 2988 2989 void 2990 install_va_to_tte(void) 2991 { 2992 /* 2993 * advise prom that it can use unix-tte 2994 */ 2995 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0); 2996 } 2997 2998 /* 2999 * Here we add "device-type=console" for /os-io node, for currently 3000 * our kernel console output only supports displaying text and 3001 * performing cursor-positioning operations (through kernel framebuffer 3002 * driver) and it doesn't support other functionalities required for a 3003 * standard "display" device as specified in 1275 spec. The main missing 3004 * interface defined by the 1275 spec is "draw-logo". 3005 * also see the comments above prom_stdout_is_framebuffer(). 3006 */ 3007 static char *create_node = 3008 "\" /\" find-device " 3009 "new-device " 3010 "\" os-io\" device-name " 3011 "\" "OBP_DISPLAY_CONSOLE"\" device-type " 3012 ": cb-r/w ( adr,len method$ -- #read/#written ) " 3013 " 2>r swap 2 2r> ['] $callback catch if " 3014 " 2drop 3drop 0 " 3015 " then " 3016 "; " 3017 ": read ( adr,len -- #read ) " 3018 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then " 3019 " ( retN ... ret1 N ) " 3020 " ?dup if " 3021 " swap >r 1- 0 ?do drop loop r> " 3022 " else " 3023 " -2 " 3024 " then " 3025 "; " 3026 ": write ( adr,len -- #written ) " 3027 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then " 3028 " ( retN ... ret1 N ) " 3029 " ?dup if " 3030 " swap >r 1- 0 ?do drop loop r> " 3031 " else " 3032 " 0 " 3033 " then " 3034 "; " 3035 ": poll-tty ( -- ) ; " 3036 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; " 3037 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; " 3038 ": cb-give/take ( $method -- ) " 3039 " 0 -rot ['] $callback catch ?dup if " 3040 " >r 2drop 2drop r> throw " 3041 " else " 3042 " 0 ?do drop loop " 3043 " then " 3044 "; " 3045 ": give ( -- ) \" exit-input\" cb-give/take ; " 3046 ": take ( -- ) \" enter-input\" cb-give/take ; " 3047 ": open ( -- ok? ) true ; " 3048 ": close ( -- ) ; " 3049 "finish-device " 3050 "device-end "; 3051 3052 /* 3053 * Create the OBP input/output node (FCode serial driver). 3054 * It is needed for both USB console keyboard and for 3055 * the kernel terminal emulator. It is too early to check for a 3056 * kernel console compatible framebuffer now, so we create this 3057 * so that we're ready if we need to enable kernel terminal emulation. 3058 * 3059 * When the USB software takes over the input device at the time 3060 * consconfig runs, OBP's stdin is redirected to this node. 3061 * Whenever the FORTH user interface is used after this switch, 3062 * the node will call back into the kernel for console input. 3063 * If a serial device such as ttya or a UART with a Type 5 keyboard 3064 * attached is used, OBP takes over the serial device when the system 3065 * goes to the debugger after the system is booted. This sharing 3066 * of the relatively simple serial device is difficult but possible. 3067 * Sharing the USB host controller is impossible due its complexity. 3068 * 3069 * Similarly to USB keyboard input redirection, after consconfig_dacf 3070 * configures a kernel console framebuffer as the standard output 3071 * device, OBP's stdout is switched to to vector through the 3072 * /os-io node into the kernel terminal emulator. 3073 */ 3074 static void 3075 startup_create_io_node(void) 3076 { 3077 prom_interpret(create_node, 0, 0, 0, 0, 0); 3078 } 3079 3080 3081 /* 3082 * Must be defined in platform dependent code. 3083 */ 3084 extern caddr_t modtext; 3085 extern size_t modtext_sz; 3086 extern caddr_t moddata; 3087 3088 #define HEAPTEXT_ARENA(addr) \ 3089 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \ 3090 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \ 3091 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1)) 3092 3093 #define HEAPTEXT_OVERSIZED(addr) \ 3094 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE) 3095 3096 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \ 3097 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \ 3098 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M)) 3099 3100 vmem_t *texthole_source[HEAPTEXT_NARENAS]; 3101 vmem_t *texthole_arena[HEAPTEXT_NARENAS]; 3102 kmutex_t texthole_lock; 3103 3104 char kern_bootargs[OBP_MAXPATHLEN]; 3105 char kern_bootfile[OBP_MAXPATHLEN]; 3106 3107 void 3108 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena) 3109 { 3110 uintptr_t addr, limit; 3111 3112 addr = HEAPTEXT_BASE; 3113 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE; 3114 3115 /* 3116 * Before we initialize the text_arena, we want to punch holes in the 3117 * underlying heaptext_arena. This guarantees that for any text 3118 * address we can find a text hole less than HEAPTEXT_MAPPED away. 3119 */ 3120 for (; addr + HEAPTEXT_UNMAPPED <= limit; 3121 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) { 3122 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE, 3123 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED), 3124 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3125 } 3126 3127 /* 3128 * Allocate one page at the oversize to break up the text region 3129 * from the oversized region. 3130 */ 3131 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0, 3132 (void *)limit, (void *)(limit + PAGESIZE), 3133 VM_NOSLEEP | VM_BESTFIT | VM_PANIC); 3134 3135 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL, 3136 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free, 3137 heaptext_arena, 0, VM_SLEEP); 3138 *data_arena = vmem_create("module_data", moddata, MODDATA, 1, 3139 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP); 3140 } 3141 3142 caddr_t 3143 kobj_text_alloc(vmem_t *arena, size_t size) 3144 { 3145 caddr_t rval, better; 3146 3147 /* 3148 * First, try a sleeping allocation. 3149 */ 3150 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT); 3151 3152 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval)) 3153 return (rval); 3154 3155 /* 3156 * We didn't get the area that we wanted. We're going to try to do an 3157 * allocation with explicit constraints. 3158 */ 3159 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL, 3160 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE), 3161 VM_NOSLEEP | VM_BESTFIT); 3162 3163 if (better != NULL) { 3164 /* 3165 * That worked. Free our first attempt and return. 3166 */ 3167 vmem_free(arena, rval, size); 3168 return (better); 3169 } 3170 3171 /* 3172 * That didn't work; we'll have to return our first attempt. 3173 */ 3174 return (rval); 3175 } 3176 3177 caddr_t 3178 kobj_texthole_alloc(caddr_t addr, size_t size) 3179 { 3180 int arena = HEAPTEXT_ARENA(addr); 3181 char c[30]; 3182 uintptr_t base; 3183 3184 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) { 3185 /* 3186 * If this is an oversized allocation or it is allocated in 3187 * the nucleus data page, there is no text hole available for 3188 * it; return NULL. 3189 */ 3190 return (NULL); 3191 } 3192 3193 mutex_enter(&texthole_lock); 3194 3195 if (texthole_arena[arena] == NULL) { 3196 ASSERT(texthole_source[arena] == NULL); 3197 3198 if (arena == 0) { 3199 texthole_source[0] = vmem_create("module_text_holesrc", 3200 (void *)(KERNELBASE + MMU_PAGESIZE4M), 3201 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL, 3202 0, VM_SLEEP); 3203 } else { 3204 base = HEAPTEXT_BASE + 3205 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED); 3206 3207 (void) snprintf(c, sizeof (c), 3208 "heaptext_holesrc_%d", arena); 3209 3210 texthole_source[arena] = vmem_create(c, (void *)base, 3211 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL, 3212 0, VM_SLEEP); 3213 } 3214 3215 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena); 3216 3217 texthole_arena[arena] = vmem_create(c, NULL, 0, 3218 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free, 3219 texthole_source[arena], 0, VM_SLEEP); 3220 } 3221 3222 mutex_exit(&texthole_lock); 3223 3224 ASSERT(texthole_arena[arena] != NULL); 3225 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3226 return (vmem_alloc(texthole_arena[arena], size, 3227 VM_BESTFIT | VM_NOSLEEP)); 3228 } 3229 3230 void 3231 kobj_texthole_free(caddr_t addr, size_t size) 3232 { 3233 int arena = HEAPTEXT_ARENA(addr); 3234 3235 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS); 3236 ASSERT(texthole_arena[arena] != NULL); 3237 vmem_free(texthole_arena[arena], addr, size); 3238 } 3239 3240 void 3241 release_bootstrap(void) 3242 { 3243 if (&cif_init) 3244 cif_init(); 3245 }