1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 2016 by Delphix. All rights reserved.
  25  * Copyright 2019 Peter Tribble.
  26  */
  27 
  28 #include <sys/machsystm.h>
  29 #include <sys/archsystm.h>
  30 #include <sys/vm.h>
  31 #include <sys/cpu.h>
  32 #include <sys/atomic.h>
  33 #include <sys/reboot.h>
  34 #include <sys/kdi.h>
  35 #include <sys/bootconf.h>
  36 #include <sys/memlist_plat.h>
  37 #include <sys/memlist_impl.h>
  38 #include <sys/prom_plat.h>
  39 #include <sys/prom_isa.h>
  40 #include <sys/autoconf.h>
  41 #include <sys/ivintr.h>
  42 #include <sys/fpu/fpusystm.h>
  43 #include <sys/iommutsb.h>
  44 #include <vm/vm_dep.h>
  45 #include <vm/seg_dev.h>
  46 #include <vm/seg_kmem.h>
  47 #include <vm/seg_kpm.h>
  48 #include <vm/seg_map.h>
  49 #include <vm/seg_kp.h>
  50 #include <sys/sysconf.h>
  51 #include <vm/hat_sfmmu.h>
  52 #include <sys/kobj.h>
  53 #include <sys/sun4asi.h>
  54 #include <sys/clconf.h>
  55 #include <sys/platform_module.h>
  56 #include <sys/panic.h>
  57 #include <sys/cpu_sgnblk_defs.h>
  58 #include <sys/clock.h>
  59 #include <sys/cmn_err.h>
  60 #include <sys/dumphdr.h>
  61 #include <sys/promif.h>
  62 #include <sys/prom_debug.h>
  63 #include <sys/traptrace.h>
  64 #include <sys/memnode.h>
  65 #include <sys/mem_cage.h>
  66 #include <sys/mmu.h>
  67 #include <sys/swap.h>
  68 
  69 extern void setup_trap_table(void);
  70 extern int cpu_intrq_setup(struct cpu *);
  71 extern void cpu_intrq_register(struct cpu *);
  72 extern void contig_mem_init(void);
  73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
  74 extern void mach_dump_buffer_init(void);
  75 extern void mach_descrip_init(void);
  76 extern void mach_descrip_startup_fini(void);
  77 extern void mach_memscrub(void);
  78 extern void mach_fpras(void);
  79 extern void mach_cpu_halt_idle(void);
  80 extern void mach_hw_copy_limit(void);
  81 extern void load_mach_drivers(void);
  82 extern void load_tod_module(void);
  83 #pragma weak load_tod_module
  84 
  85 extern int ndata_alloc_mmfsa(struct memlist *ndata);
  86 #pragma weak ndata_alloc_mmfsa
  87 
  88 extern void cif_init(void);
  89 #pragma weak cif_init
  90 
  91 extern void parse_idprom(void);
  92 extern void add_vx_handler(char *, int, void (*)(cell_t *));
  93 extern void mem_config_init(void);
  94 extern void memseg_remap_init(void);
  95 
  96 extern void mach_kpm_init(void);
  97 extern void pcf_init();
  98 extern int size_pse_array(pgcnt_t, int);
  99 extern void pg_init();
 100 
 101 /*
 102  * External Data:
 103  */
 104 extern int vac_size;    /* cache size in bytes */
 105 extern uint_t vac_mask; /* VAC alignment consistency mask */
 106 extern uint_t vac_colors;
 107 
 108 /*
 109  * Global Data Definitions:
 110  */
 111 
 112 /*
 113  * XXX - Don't port this to new architectures
 114  * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
 115  * 'romp' has no use with a prom with an IEEE 1275 client interface.
 116  * The driver doesn't use the value, but it depends on the symbol.
 117  */
 118 void *romp;             /* veritas driver won't load without romp 4154976 */
 119 /*
 120  * Declare these as initialized data so we can patch them.
 121  */
 122 pgcnt_t physmem = 0;    /* memory size in pages, patch if you want less */
 123 pgcnt_t segkpsize =
 124     btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
 125 uint_t segmap_percent = 6; /* Size of segmap segment */
 126 
 127 int use_cache = 1;              /* cache not reliable (605 bugs) with MP */
 128 int vac_copyback = 1;
 129 char *cache_mode = NULL;
 130 int use_mix = 1;
 131 int prom_debug = 0;
 132 
 133 caddr_t boot_tba;               /* %tba at boot - used by kmdb */
 134 uint_t  tba_taken_over = 0;
 135 
 136 caddr_t s_text;                 /* start of kernel text segment */
 137 caddr_t e_text;                 /* end of kernel text segment */
 138 caddr_t s_data;                 /* start of kernel data segment */
 139 caddr_t e_data;                 /* end of kernel data segment */
 140 
 141 caddr_t modtext;                /* beginning of module text */
 142 size_t  modtext_sz;             /* size of module text */
 143 caddr_t moddata;                /* beginning of module data reserve */
 144 caddr_t e_moddata;              /* end of module data reserve */
 145 
 146 /*
 147  * End of first block of contiguous kernel in 32-bit virtual address space
 148  */
 149 caddr_t         econtig32;      /* end of first blk of contiguous kernel */
 150 
 151 caddr_t         ncbase;         /* beginning of non-cached segment */
 152 caddr_t         ncend;          /* end of non-cached segment */
 153 
 154 size_t  ndata_remain_sz;        /* bytes from end of data to 4MB boundary */
 155 caddr_t nalloc_base;            /* beginning of nucleus allocation */
 156 caddr_t nalloc_end;             /* end of nucleus allocatable memory */
 157 caddr_t valloc_base;            /* beginning of kvalloc segment */
 158 
 159 caddr_t kmem64_base;            /* base of kernel mem segment in 64-bit space */
 160 caddr_t kmem64_end;             /* end of kernel mem segment in 64-bit space */
 161 size_t  kmem64_sz;              /* bytes in kernel mem segment, 64-bit space */
 162 caddr_t kmem64_aligned_end;     /* end of large page, overmaps 64-bit space */
 163 int     kmem64_szc;             /* page size code */
 164 uint64_t kmem64_pabase = (uint64_t)-1;  /* physical address of kmem64_base */
 165 
 166 uintptr_t shm_alignment;        /* VAC address consistency modulus */
 167 struct memlist *phys_install;   /* Total installed physical memory */
 168 struct memlist *phys_avail;     /* Available (unreserved) physical memory */
 169 struct memlist *virt_avail;     /* Available (unmapped?) virtual memory */
 170 struct memlist *nopp_list;      /* pages with no backing page structs */
 171 struct memlist ndata;           /* memlist of nucleus allocatable memory */
 172 int memexp_flag;                /* memory expansion card flag */
 173 uint64_t ecache_flushaddr;      /* physical address used for flushing E$ */
 174 pgcnt_t obp_pages;              /* Physical pages used by OBP */
 175 
 176 /*
 177  * VM data structures
 178  */
 179 long page_hashsz;               /* Size of page hash table (power of two) */
 180 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
 181 struct page *pp_base;           /* Base of system page struct array */
 182 size_t pp_sz;                   /* Size in bytes of page struct array */
 183 struct page **page_hash;        /* Page hash table */
 184 pad_mutex_t *pse_mutex;         /* Locks protecting pp->p_selock */
 185 size_t pse_table_size;          /* Number of mutexes in pse_mutex[] */
 186 int pse_shift;                  /* log2(pse_table_size) */
 187 struct seg ktextseg;            /* Segment used for kernel executable image */
 188 struct seg kvalloc;             /* Segment used for "valloc" mapping */
 189 struct seg kpseg;               /* Segment used for pageable kernel virt mem */
 190 struct seg ktexthole;           /* Segment used for nucleus text hole */
 191 struct seg kmapseg;             /* Segment used for generic kernel mappings */
 192 struct seg kpmseg;              /* Segment used for physical mapping */
 193 struct seg kdebugseg;           /* Segment used for the kernel debugger */
 194 
 195 void *kpm_pp_base;              /* Base of system kpm_page array */
 196 size_t  kpm_pp_sz;              /* Size of system kpm_page array */
 197 pgcnt_t kpm_npages;             /* How many kpm pages are managed */
 198 
 199 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
 200 struct seg *segkmap = &kmapseg;     /* Kernel generic mapping segment */
 201 struct seg *segkpm = &kpmseg;       /* 64bit kernel physical mapping segment */
 202 
 203 int segzio_fromheap = 0;        /* zio allocations occur from heap */
 204 caddr_t segzio_base;            /* Base address of segzio */
 205 pgcnt_t segziosize = 0;         /* size of zio segment in pages */
 206 
 207 /*
 208  * A static DR page_t VA map is reserved that can map the page structures
 209  * for a domain's entire RA space. The pages that backs this space are
 210  * dynamically allocated and need not be physically contiguous.  The DR
 211  * map size is derived from KPM size.
 212  */
 213 int ppvm_enable = 0;            /* Static virtual map for page structs */
 214 page_t *ppvm_base;              /* Base of page struct map */
 215 pgcnt_t ppvm_size = 0;          /* Size of page struct map */
 216 
 217 /*
 218  * debugger pages (if allocated)
 219  */
 220 struct vnode kdebugvp;
 221 
 222 /*
 223  * VA range available to the debugger
 224  */
 225 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
 226 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
 227 
 228 /*
 229  * Segment for relocated kernel structures in 64-bit large RAM kernels
 230  */
 231 struct seg kmem64;
 232 
 233 struct memseg *memseg_free;
 234 
 235 struct vnode unused_pages_vp;
 236 
 237 /*
 238  * VM data structures allocated early during boot.
 239  */
 240 size_t pagehash_sz;
 241 uint64_t memlist_sz;
 242 
 243 char tbr_wr_addr_inited = 0;
 244 
 245 caddr_t mpo_heap32_buf = NULL;
 246 size_t  mpo_heap32_bufsz = 0;
 247 
 248 /*
 249  * Static Routines:
 250  */
 251 static int ndata_alloc_memseg(struct memlist *, size_t);
 252 static void memlist_new(uint64_t, uint64_t, struct memlist **);
 253 static void memlist_add(uint64_t, uint64_t,
 254         struct memlist **, struct memlist **);
 255 static void kphysm_init(void);
 256 static void kvm_init(void);
 257 static void install_kmem64_tte(void);
 258 
 259 static void startup_init(void);
 260 static void startup_memlist(void);
 261 static void startup_modules(void);
 262 static void startup_bop_gone(void);
 263 static void startup_vm(void);
 264 static void startup_end(void);
 265 static void setup_cage_params(void);
 266 static void startup_create_io_node(void);
 267 
 268 static pgcnt_t npages;
 269 static struct memlist *memlist;
 270 void *memlist_end;
 271 
 272 static pgcnt_t bop_alloc_pages;
 273 static caddr_t hblk_base;
 274 uint_t hblk_alloc_dynamic = 0;
 275 uint_t hblk1_min = H1MIN;
 276 
 277 
 278 /*
 279  * After receiving a thermal interrupt, this is the number of seconds
 280  * to delay before shutting off the system, assuming
 281  * shutdown fails.  Use /etc/system to change the delay if this isn't
 282  * large enough.
 283  */
 284 int thermal_powerdown_delay = 1200;
 285 
 286 /*
 287  * Used to hold off page relocations into the cage until OBP has completed
 288  * its boot-time handoff of its resources to the kernel.
 289  */
 290 int page_relocate_ready = 0;
 291 
 292 /*
 293  * Indicate if kmem64 allocation was done in small chunks
 294  */
 295 int kmem64_smchunks = 0;
 296 
 297 /*
 298  * Enable some debugging messages concerning memory usage...
 299  */
 300 #ifdef  DEBUGGING_MEM
 301 static int debugging_mem;
 302 static void
 303 printmemlist(char *title, struct memlist *list)
 304 {
 305         if (!debugging_mem)
 306                 return;
 307 
 308         printf("%s\n", title);
 309 
 310         while (list) {
 311                 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
 312                     (uint32_t)(list->ml_address >> 32),
 313                     (uint32_t)list->ml_address,
 314                     (uint32_t)(list->ml_size >> 32),
 315                     (uint32_t)(list->ml_size));
 316                 list = list->ml_next;
 317         }
 318 }
 319 
 320 void
 321 printmemseg(struct memseg *memseg)
 322 {
 323         if (!debugging_mem)
 324                 return;
 325 
 326         printf("memseg\n");
 327 
 328         while (memseg) {
 329                 prom_printf("\tpage = 0x%p, epage = 0x%p, "
 330                     "pfn = 0x%x, epfn = 0x%x\n",
 331                     memseg->pages, memseg->epages,
 332                     memseg->pages_base, memseg->pages_end);
 333                 memseg = memseg->next;
 334         }
 335 }
 336 
 337 #define debug_pause(str)        halt((str))
 338 #define MPRINTF(str)            if (debugging_mem) prom_printf((str))
 339 #define MPRINTF1(str, a)        if (debugging_mem) prom_printf((str), (a))
 340 #define MPRINTF2(str, a, b)     if (debugging_mem) prom_printf((str), (a), (b))
 341 #define MPRINTF3(str, a, b, c) \
 342         if (debugging_mem) prom_printf((str), (a), (b), (c))
 343 #else   /* DEBUGGING_MEM */
 344 #define MPRINTF(str)
 345 #define MPRINTF1(str, a)
 346 #define MPRINTF2(str, a, b)
 347 #define MPRINTF3(str, a, b, c)
 348 #endif  /* DEBUGGING_MEM */
 349 
 350 
 351 /*
 352  *
 353  *                    Kernel's Virtual Memory Layout.
 354  *                       /-----------------------\
 355  * 0xFFFFFFFF.FFFFFFFF  -|                       |-
 356  *                       |   OBP's virtual page  |
 357  *                       |        tables         |
 358  * 0xFFFFFFFC.00000000  -|-----------------------|-
 359  *                       :                       :
 360  *                       :                       :
 361  *                      -|-----------------------|-
 362  *                       |       segzio          | (base and size vary)
 363  * 0xFFFFFE00.00000000  -|-----------------------|-
 364  *                       |                       |  Ultrasparc I/II support
 365  *                       |    segkpm segment     |  up to 2TB of physical
 366  *                       | (64-bit kernel ONLY)  |  memory, VAC has 2 colors
 367  *                       |                       |
 368  * 0xFFFFFA00.00000000  -|-----------------------|- 2TB segkpm alignment
 369  *                       :                       :
 370  *                       :                       :
 371  * 0xFFFFF810.00000000  -|-----------------------|- hole_end
 372  *                       |                       |      ^
 373  *                       |  UltraSPARC I/II call |      |
 374  *                       | bug requires an extra |      |
 375  *                       | 4 GB of space between |      |
 376  *                       |   hole and used RAM   |      |
 377  *                       |                       |      |
 378  * 0xFFFFF800.00000000  -|-----------------------|-     |
 379  *                       |                       |      |
 380  *                       | Virtual Address Hole  |   UltraSPARC
 381  *                       |  on UltraSPARC I/II   |  I/II * ONLY *
 382  *                       |                       |      |
 383  * 0x00000800.00000000  -|-----------------------|-     |
 384  *                       |                       |      |
 385  *                       |  UltraSPARC I/II call |      |
 386  *                       | bug requires an extra |      |
 387  *                       | 4 GB of space between |      |
 388  *                       |   hole and used RAM   |      |
 389  *                       |                       |      v
 390  * 0x000007FF.00000000  -|-----------------------|- hole_start -----
 391  *                       :                       :                 ^
 392  *                       :                       :                 |
 393  *                       |-----------------------|                 |
 394  *                       |                       |                 |
 395  *                       |  ecache flush area    |                 |
 396  *                       |  (twice largest e$)   |                 |
 397  *                       |                       |                 |
 398  * 0x00000XXX.XXX00000  -|-----------------------|- kmem64_        |
 399  *                       | overmapped area       |   alignend_end  |
 400  *                       | (kmem64_alignsize     |                 |
 401  *                       |  boundary)            |                 |
 402  * 0x00000XXX.XXXXXXXX  -|-----------------------|- kmem64_end     |
 403  *                       |                       |                 |
 404  *                       |   64-bit kernel ONLY  |                 |
 405  *                       |                       |                 |
 406  *                       |    kmem64 segment     |                 |
 407  *                       |                       |                 |
 408  *                       | (Relocated extra HME  |           Approximately
 409  *                       |   block allocations,  |          1 TB of virtual
 410  *                       |   memnode freelists,  |           address space
 411  *                       |    HME hash buckets,  |                 |
 412  *                       | mml_table, kpmp_table,|                 |
 413  *                       |  page_t array and     |                 |
 414  *                       |  hashblock pool to    |                 |
 415  *                       |   avoid hard-coded    |                 |
 416  *                       |     32-bit vaddr      |                 |
 417  *                       |     limitations)      |                 |
 418  *                       |                       |                 v
 419  * 0x00000700.00000000  -|-----------------------|- SYSLIMIT (kmem64_base)
 420  *                       |                       |
 421  *                       |  segkmem segment      | (SYSLIMIT - SYSBASE = 4TB)
 422  *                       |                       |
 423  * 0x00000300.00000000  -|-----------------------|- SYSBASE
 424  *                       :                       :
 425  *                       :                       :
 426  *                      -|-----------------------|-
 427  *                       |                       |
 428  *                       |  segmap segment       |   SEGMAPSIZE (1/8th physmem,
 429  *                       |                       |               256G MAX)
 430  * 0x000002a7.50000000  -|-----------------------|- SEGMAPBASE
 431  *                       :                       :
 432  *                       :                       :
 433  *                      -|-----------------------|-
 434  *                       |                       |
 435  *                       |       segkp           |    SEGKPSIZE (2GB)
 436  *                       |                       |
 437  *                       |                       |
 438  * 0x000002a1.00000000  -|-----------------------|- SEGKPBASE
 439  *                       |                       |
 440  * 0x000002a0.00000000  -|-----------------------|- MEMSCRUBBASE
 441  *                       |                       |       (SEGKPBASE - 0x400000)
 442  * 0x0000029F.FFE00000  -|-----------------------|- ARGSBASE
 443  *                       |                       |       (MEMSCRUBBASE - NCARGS)
 444  * 0x0000029F.FFD80000  -|-----------------------|- PPMAPBASE
 445  *                       |                       |       (ARGSBASE - PPMAPSIZE)
 446  * 0x0000029F.FFD00000  -|-----------------------|- PPMAP_FAST_BASE
 447  *                       |                       |
 448  * 0x0000029F.FF980000  -|-----------------------|- PIOMAPBASE
 449  *                       |                       |
 450  * 0x0000029F.FF580000  -|-----------------------|- NARG_BASE
 451  *                       :                       :
 452  *                       :                       :
 453  * 0x00000000.FFFFFFFF  -|-----------------------|- OFW_END_ADDR
 454  *                       |                       |
 455  *                       |         OBP           |
 456  *                       |                       |
 457  * 0x00000000.F0000000  -|-----------------------|- OFW_START_ADDR
 458  *                       |         kmdb          |
 459  * 0x00000000.EDD00000  -|-----------------------|- SEGDEBUGBASE
 460  *                       :                       :
 461  *                       :                       :
 462  * 0x00000000.7c000000  -|-----------------------|- SYSLIMIT32
 463  *                       |                       |
 464  *                       |  segkmem32 segment    | (SYSLIMIT32 - SYSBASE32 =
 465  *                       |                       |    ~64MB)
 466  *                      -|-----------------------|
 467  *                       |      IVSIZE           |
 468  * 0x00000000.70004000  -|-----------------------|
 469  *                       |     panicbuf          |
 470  * 0x00000000.70002000  -|-----------------------|
 471  *                       |      PAGESIZE         |
 472  * 0x00000000.70000000  -|-----------------------|- SYSBASE32
 473  *                       |       boot-time       |
 474  *                       |    temporary space    |
 475  * 0x00000000.4C000000  -|-----------------------|- BOOTTMPBASE
 476  *                       :                       :
 477  *                       :                       :
 478  *                       |                       |
 479  *                       |-----------------------|- econtig32
 480  *                       |    vm structures      |
 481  * 0x00000000.01C00000   |-----------------------|- nalloc_end
 482  *                       |         TSBs          |
 483  *                       |-----------------------|- end/nalloc_base
 484  *                       |   kernel data & bss   |
 485  * 0x00000000.01800000  -|-----------------------|
 486  *                       :   nucleus text hole   :
 487  * 0x00000000.01400000  -|-----------------------|
 488  *                       :                       :
 489  *                       |-----------------------|
 490  *                       |      module text      |
 491  *                       |-----------------------|- e_text/modtext
 492  *                       |      kernel text      |
 493  *                       |-----------------------|
 494  *                       |    trap table (48k)   |
 495  * 0x00000000.01000000  -|-----------------------|- KERNELBASE
 496  *                       | reserved for trapstat |} TSTAT_TOTAL_SIZE
 497  *                       |-----------------------|
 498  *                       |                       |
 499  *                       |        invalid        |
 500  *                       |                       |
 501  * 0x00000000.00000000  _|_______________________|
 502  *
 503  *
 504  *
 505  *                   32-bit User Virtual Memory Layout.
 506  *                       /-----------------------\
 507  *                       |                       |
 508  *                       |        invalid        |
 509  *                       |                       |
 510  *          0xFFC00000  -|-----------------------|- USERLIMIT
 511  *                       |       user stack      |
 512  *                       :                       :
 513  *                       :                       :
 514  *                       :                       :
 515  *                       |       user data       |
 516  *                      -|-----------------------|-
 517  *                       |       user text       |
 518  *          0x00002000  -|-----------------------|-
 519  *                       |       invalid         |
 520  *          0x00000000  _|_______________________|
 521  *
 522  *
 523  *
 524  *                   64-bit User Virtual Memory Layout.
 525  *                       /-----------------------\
 526  *                       |                       |
 527  *                       |        invalid        |
 528  *                       |                       |
 529  *  0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
 530  *                       |       user stack      |
 531  *                       :                       :
 532  *                       :                       :
 533  *                       :                       :
 534  *                       |       user data       |
 535  *                      -|-----------------------|-
 536  *                       |       user text       |
 537  *  0x00000000.01000000 -|-----------------------|-
 538  *                       |       invalid         |
 539  *  0x00000000.00000000 _|_______________________|
 540  */
 541 
 542 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
 543 extern uint64_t ecache_flush_address(void);
 544 
 545 #pragma weak load_platform_modules
 546 #pragma weak plat_startup_memlist
 547 #pragma weak ecache_init_scrub_flush_area
 548 #pragma weak ecache_flush_address
 549 
 550 
 551 /*
 552  * By default the DR Cage is enabled for maximum OS
 553  * MPSS performance.  Users needing to disable the cage mechanism
 554  * can set this variable to zero via /etc/system.
 555  * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
 556  * will result in loss of DR functionality.
 557  * Platforms wishing to disable kernel Cage by default
 558  * should do so in their set_platform_defaults() routine.
 559  */
 560 int     kernel_cage_enable = 1;
 561 
 562 static void
 563 setup_cage_params(void)
 564 {
 565         void (*func)(void);
 566 
 567         func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
 568         if (func != NULL) {
 569                 (*func)();
 570                 return;
 571         }
 572 
 573         if (kernel_cage_enable == 0) {
 574                 return;
 575         }
 576         kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
 577 
 578         if (kcage_on) {
 579                 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
 580         } else {
 581                 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
 582         }
 583 
 584 }
 585 
 586 /*
 587  * Machine-dependent startup code
 588  */
 589 void
 590 startup(void)
 591 {
 592         startup_init();
 593         if (&startup_platform)
 594                 startup_platform();
 595         startup_memlist();
 596         startup_modules();
 597         setup_cage_params();
 598         startup_bop_gone();
 599         startup_vm();
 600         startup_end();
 601 }
 602 
 603 struct regs sync_reg_buf;
 604 uint64_t sync_tt;
 605 
 606 void
 607 sync_handler(void)
 608 {
 609         struct  panic_trap_info ti;
 610         int i;
 611 
 612         /*
 613          * Prevent trying to talk to the other CPUs since they are
 614          * sitting in the prom and won't reply.
 615          */
 616         for (i = 0; i < NCPU; i++) {
 617                 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
 618                         cpu[i]->cpu_flags &= ~CPU_READY;
 619                         cpu[i]->cpu_flags |= CPU_QUIESCED;
 620                         CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
 621                 }
 622         }
 623 
 624         /*
 625          * Force a serial dump, since there are no CPUs to help.
 626          */
 627         dump_plat_mincpu = 0;
 628 
 629         /*
 630          * We've managed to get here without going through the
 631          * normal panic code path. Try and save some useful
 632          * information.
 633          */
 634         if (!panicstr && (curthread->t_panic_trap == NULL)) {
 635                 ti.trap_type = sync_tt;
 636                 ti.trap_regs = &sync_reg_buf;
 637                 ti.trap_addr = NULL;
 638                 ti.trap_mmu_fsr = 0x0;
 639 
 640                 curthread->t_panic_trap = &ti;
 641         }
 642 
 643         /*
 644          * If we're re-entering the panic path, update the signature
 645          * block so that the SC knows we're in the second part of panic.
 646          */
 647         if (panicstr)
 648                 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
 649 
 650         nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
 651         panic("sync initiated");
 652 }
 653 
 654 
 655 static void
 656 startup_init(void)
 657 {
 658         /*
 659          * We want to save the registers while we're still in OBP
 660          * so that we know they haven't been fiddled with since.
 661          * (In principle, OBP can't change them just because it
 662          * makes a callback, but we'd rather not depend on that
 663          * behavior.)
 664          */
 665         char            sync_str[] =
 666             "warning @ warning off : sync "
 667             "%%tl-c %%tstate h# %p x! "
 668             "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
 669             "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
 670             "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
 671             "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
 672             "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
 673             "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
 674             "%%y h# %p l! %%tl-c %%tt h# %p x! "
 675             "sync ; warning !";
 676 
 677         /*
 678          * 20 == num of %p substrings
 679          * 16 == max num of chars %p will expand to.
 680          */
 681         char            bp[sizeof (sync_str) + 16 * 20];
 682 
 683         /*
 684          * Initialize ptl1 stack for the 1st CPU.
 685          */
 686         ptl1_init_cpu(&cpu0);
 687 
 688         /*
 689          * Initialize the address map for cache consistent mappings
 690          * to random pages; must be done after vac_size is set.
 691          */
 692         ppmapinit();
 693 
 694         /*
 695          * Initialize the PROM callback handler.
 696          */
 697         init_vx_handler();
 698 
 699         /*
 700          * have prom call sync_callback() to handle the sync and
 701          * save some useful information which will be stored in the
 702          * core file later.
 703          */
 704         (void) sprintf((char *)bp, sync_str,
 705             (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
 706             (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
 707             (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
 708             (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
 709             (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
 710             (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
 711             (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
 712             (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
 713             (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
 714             (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
 715         prom_interpret(bp, 0, 0, 0, 0, 0);
 716         add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
 717 }
 718 
 719 
 720 size_t
 721 calc_pp_sz(pgcnt_t npages)
 722 {
 723 
 724         return (npages * sizeof (struct page));
 725 }
 726 
 727 size_t
 728 calc_kpmpp_sz(pgcnt_t npages)
 729 {
 730 
 731         kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
 732         kpm_pgsz = 1ull << kpm_pgshft;
 733         kpm_pgoff = kpm_pgsz - 1;
 734         kpmp2pshft = kpm_pgshft - PAGESHIFT;
 735         kpmpnpgs = 1 << kpmp2pshft;
 736 
 737         if (kpm_smallpages == 0) {
 738                 /*
 739                  * Avoid fragmentation problems in kphysm_init()
 740                  * by allocating for all of physical memory
 741                  */
 742                 kpm_npages = ptokpmpr(physinstalled);
 743                 return (kpm_npages * sizeof (kpm_page_t));
 744         } else {
 745                 kpm_npages = npages;
 746                 return (kpm_npages * sizeof (kpm_spage_t));
 747         }
 748 }
 749 
 750 size_t
 751 calc_pagehash_sz(pgcnt_t npages)
 752 {
 753         /* LINTED */
 754         ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page))));
 755         /*
 756          * The page structure hash table size is a power of 2
 757          * such that the average hash chain length is PAGE_HASHAVELEN.
 758          */
 759         page_hashsz = npages / PAGE_HASHAVELEN;
 760         page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1),
 761             highbit(page_hashsz));
 762         page_hashsz = 1 << page_hashsz_shift;
 763         return (page_hashsz * sizeof (struct page *));
 764 }
 765 
 766 int testkmem64_smchunks = 0;
 767 
 768 int
 769 alloc_kmem64(caddr_t base, caddr_t end)
 770 {
 771         int i;
 772         caddr_t aligned_end = NULL;
 773 
 774         if (testkmem64_smchunks)
 775                 return (1);
 776 
 777         /*
 778          * Make one large memory alloc after figuring out the 64-bit size. This
 779          * will enable use of the largest page size appropriate for the system
 780          * architecture.
 781          */
 782         ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
 783         ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
 784         for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
 785                 size_t alloc_size, alignsize;
 786 #if !defined(C_OBP)
 787                 unsigned long long pa;
 788 #endif  /* !C_OBP */
 789 
 790                 if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
 791                         continue;
 792                 alignsize = TTEBYTES(i);
 793                 kmem64_szc = i;
 794 
 795                 /* limit page size for small memory */
 796                 if (mmu_btop(alignsize) > (npages >> 2))
 797                         continue;
 798 
 799                 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
 800                 alloc_size = aligned_end - base;
 801 #if !defined(C_OBP)
 802                 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
 803                         if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
 804                                 kmem64_pabase = pa;
 805                                 kmem64_aligned_end = aligned_end;
 806                                 install_kmem64_tte();
 807                                 break;
 808                         } else {
 809                                 prom_free_phys(alloc_size, pa);
 810                         }
 811                 }
 812 #else   /* !C_OBP */
 813                 if (prom_alloc(base, alloc_size, alignsize) == base) {
 814                         kmem64_pabase = va_to_pa(kmem64_base);
 815                         kmem64_aligned_end = aligned_end;
 816                         break;
 817                 }
 818 #endif  /* !C_OBP */
 819                 if (i == TTE8K) {
 820 #ifdef sun4v
 821                         /* return failure to try small allocations */
 822                         return (1);
 823 #else
 824                         prom_panic("kmem64 allocation failure");
 825 #endif
 826                 }
 827         }
 828         ASSERT(aligned_end != NULL);
 829         return (0);
 830 }
 831 
 832 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
 833 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
 834 
 835 #if !defined(C_OBP)
 836 /*
 837  * Install a temporary tte handler in OBP for kmem64 area.
 838  *
 839  * We map kmem64 area with large pages before the trap table is taken
 840  * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
 841  * the same area. Duplicate tlb entries with different page sizes
 842  * cause unpredicatble behavior.  To avoid this, we don't create
 843  * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
 844  * OBP).  Instead, we manage translations with a temporary va>tte-data
 845  * handler (kmem64-tte).  This handler is replaced by unix-tte when
 846  * the trap table is taken over.
 847  *
 848  * The temporary handler knows the physical address of the kmem64
 849  * area. It uses the prom's pgmap@ Forth word for other addresses.
 850  *
 851  * We have to use BOP_ALLOC() method for C-OBP platforms because
 852  * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
 853  * sun4u platforms. On sun4u we flush tlb after trap table is taken
 854  * over if we use large pages for kernel heap and kmem64. Since sun4u
 855  * prom (unlike sun4v) calls va>tte-data first for client address
 856  * translation prom's ttes for kmem64 can't get into TLB even if we
 857  * later switch to prom's trap table again. C-OBP uses 4M pages for
 858  * client mappings when possible so on all platforms we get the
 859  * benefit from large mappings for kmem64 area immediately during
 860  * boot.
 861  *
 862  * pseudo code:
 863  * if (context != 0) {
 864  *      return false
 865  * } else if (miss_va in range[kmem64_base, kmem64_end)) {
 866  *      tte = tte_template +
 867  *              (((miss_va & pagemask) - kmem64_base));
 868  *      return tte, true
 869  * } else {
 870  *      return pgmap@ result
 871  * }
 872  */
 873 char kmem64_obp_str[] =
 874         "h# %lx constant kmem64-base "
 875         "h# %lx constant kmem64-end "
 876         "h# %lx constant kmem64-pagemask "
 877         "h# %lx constant kmem64-template "
 878 
 879         ": kmem64-tte ( addr cnum -- false | tte-data true ) "
 880         "    if                                       ( addr ) "
 881         "       drop false exit then                  ( false ) "
 882         "    dup  kmem64-base kmem64-end  within  if  ( addr ) "
 883         "       kmem64-pagemask and                   ( addr' ) "
 884         "       kmem64-base -                         ( addr' ) "
 885         "       kmem64-template +                     ( tte ) "
 886         "       true                                  ( tte true ) "
 887         "    else                                     ( addr ) "
 888         "       pgmap@                                ( tte ) "
 889         "       dup 0< if true else drop false then   ( tte true  |  false ) "
 890         "    then                                     ( tte true  |  false ) "
 891         "; "
 892 
 893         "' kmem64-tte is va>tte-data "
 894 ;
 895 
 896 static void
 897 install_kmem64_tte()
 898 {
 899         char b[sizeof (kmem64_obp_str) + (4 * 16)];
 900         tte_t tte;
 901 
 902         PRM_DEBUG(kmem64_pabase);
 903         PRM_DEBUG(kmem64_szc);
 904         sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
 905             PROC_DATA | HAT_NOSYNC, kmem64_szc);
 906         PRM_DEBUG(tte.ll);
 907         (void) sprintf(b, kmem64_obp_str,
 908             kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
 909         ASSERT(strlen(b) < sizeof (b));
 910         prom_interpret(b, 0, 0, 0, 0, 0);
 911 }
 912 #endif  /* !C_OBP */
 913 
 914 /*
 915  * As OBP takes up some RAM when the system boots, pages will already be "lost"
 916  * to the system and reflected in npages by the time we see it.
 917  *
 918  * We only want to allocate kernel structures in the 64-bit virtual address
 919  * space on systems with enough RAM to make the overhead of keeping track of
 920  * an extra kernel memory segment worthwhile.
 921  *
 922  * Since OBP has already performed its memory allocations by this point, if we
 923  * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
 924  * memory in the 64-bit virtual address space; otherwise keep allocations
 925  * contiguous with we've mapped so far in the 32-bit virtual address space.
 926  */
 927 #define MINMOVE_RAM_MB  ((size_t)1900)
 928 #define MB_TO_BYTES(mb) ((mb) * 1048576ul)
 929 #define BYTES_TO_MB(b) ((b) / 1048576ul)
 930 
 931 pgcnt_t tune_npages = (pgcnt_t)
 932         (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
 933 
 934 #pragma weak page_set_colorequiv_arr_cpu
 935 extern void page_set_colorequiv_arr_cpu(void);
 936 extern void page_set_colorequiv_arr(void);
 937 
 938 static pgcnt_t ramdisk_npages;
 939 static struct memlist *old_phys_avail;
 940 
 941 kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
 942 
 943 static void
 944 startup_memlist(void)
 945 {
 946         size_t hmehash_sz, pagelist_sz, tt_sz;
 947         size_t psetable_sz;
 948         caddr_t alloc_base;
 949         caddr_t memspace;
 950         struct memlist *cur;
 951         size_t syslimit = (size_t)SYSLIMIT;
 952         size_t sysbase = (size_t)SYSBASE;
 953 
 954         /*
 955          * Initialize enough of the system to allow kmem_alloc to work by
 956          * calling boot to allocate its memory until the time that
 957          * kvm_init is completed.  The page structs are allocated after
 958          * rounding up end to the nearest page boundary; the memsegs are
 959          * initialized and the space they use comes from the kernel heap.
 960          * With appropriate initialization, they can be reallocated later
 961          * to a size appropriate for the machine's configuration.
 962          *
 963          * At this point, memory is allocated for things that will never
 964          * need to be freed, this used to be "valloced".  This allows a
 965          * savings as the pages don't need page structures to describe
 966          * them because them will not be managed by the vm system.
 967          */
 968 
 969         /*
 970          * We're loaded by boot with the following configuration (as
 971          * specified in the sun4u/conf/Mapfile):
 972          *
 973          *      text:           4 MB chunk aligned on a 4MB boundary
 974          *      data & bss: 4 MB chunk aligned on a 4MB boundary
 975          *
 976          * These two chunks will eventually be mapped by 2 locked 4MB
 977          * ttes and will represent the nucleus of the kernel.  This gives
 978          * us some free space that is already allocated, some or all of
 979          * which is made available to kernel module text.
 980          *
 981          * The free space in the data-bss chunk is used for nucleus
 982          * allocatable data structures and we reserve it using the
 983          * nalloc_base and nalloc_end variables.  This space is currently
 984          * being used for hat data structures required for tlb miss
 985          * handling operations.  We align nalloc_base to a l2 cache
 986          * linesize because this is the line size the hardware uses to
 987          * maintain cache coherency.
 988          * 512K is carved out for module data.
 989          */
 990 
 991         moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
 992         e_moddata = moddata + MODDATA;
 993         nalloc_base = e_moddata;
 994 
 995         nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
 996         valloc_base = nalloc_base;
 997 
 998         /*
 999          * Calculate the start of the data segment.
1000          */
1001         if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
1002                 prom_panic("nucleus data overflow");
1003 
1004         PRM_DEBUG(moddata);
1005         PRM_DEBUG(nalloc_base);
1006         PRM_DEBUG(nalloc_end);
1007 
1008         /*
1009          * Remember any slop after e_text so we can give it to the modules.
1010          */
1011         PRM_DEBUG(e_text);
1012         modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
1013         if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
1014                 prom_panic("nucleus text overflow");
1015         modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
1016             modtext;
1017         PRM_DEBUG(modtext);
1018         PRM_DEBUG(modtext_sz);
1019 
1020         init_boot_memlists();
1021         copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1022             &boot_physavail, &boot_physavail_len,
1023             &boot_virtavail, &boot_virtavail_len);
1024 
1025         /*
1026          * Remember what the physically available highest page is
1027          * so that dumpsys works properly, and find out how much
1028          * memory is installed.
1029          */
1030         installed_top_size_memlist_array(boot_physinstalled,
1031             boot_physinstalled_len, &physmax, &physinstalled);
1032         PRM_DEBUG(physinstalled);
1033         PRM_DEBUG(physmax);
1034 
1035         /* Fill out memory nodes config structure */
1036         startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1037 
1038         /*
1039          * npages is the maximum of available physical memory possible.
1040          * (ie. it will never be more than this)
1041          *
1042          * When we boot from a ramdisk, the ramdisk memory isn't free, so
1043          * using phys_avail will underestimate what will end up being freed.
1044          * A better initial guess is just total memory minus the kernel text
1045          */
1046         npages = physinstalled - btop(MMU_PAGESIZE4M);
1047 
1048         /*
1049          * First allocate things that can go in the nucleus data page
1050          * (fault status, TSBs, dmv, CPUs)
1051          */
1052         ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1053 
1054         if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1055                 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1056 
1057         if (ndata_alloc_tsbs(&ndata, npages) != 0)
1058                 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1059 
1060         if (ndata_alloc_dmv(&ndata) != 0)
1061                 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1062 
1063         if (ndata_alloc_page_mutexs(&ndata) != 0)
1064                 cmn_err(CE_PANIC,
1065                     "no more nucleus memory after page free lists alloc");
1066 
1067         if (ndata_alloc_hat(&ndata) != 0)
1068                 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1069 
1070         if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1071                 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1072 
1073         /*
1074          * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1075          *
1076          * There are comments all over the SFMMU code warning of dire
1077          * consequences if the TSBs are moved out of 32-bit space.  This
1078          * is largely because the asm code uses "sethi %hi(addr)"-type
1079          * instructions which will not provide the expected result if the
1080          * address is a 64-bit one.
1081          *
1082          * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1083          */
1084         alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1085         PRM_DEBUG(alloc_base);
1086 
1087         alloc_base = sfmmu_ktsb_alloc(alloc_base);
1088         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1089         PRM_DEBUG(alloc_base);
1090 
1091         /*
1092          * Allocate IOMMU TSB array.  We do this here so that the physical
1093          * memory gets deducted from the PROM's physical memory list.
1094          */
1095         alloc_base = iommu_tsb_init(alloc_base);
1096         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1097         PRM_DEBUG(alloc_base);
1098 
1099         /*
1100          * Allow for an early allocation of physically contiguous memory.
1101          */
1102         alloc_base = contig_mem_prealloc(alloc_base, npages);
1103 
1104         /*
1105          * Platforms like Starcat and OPL need special structures assigned in
1106          * 32-bit virtual address space because their probing routines execute
1107          * FCode, and FCode can't handle 64-bit virtual addresses...
1108          */
1109         if (&plat_startup_memlist) {
1110                 alloc_base = plat_startup_memlist(alloc_base);
1111                 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1112                     ecache_alignsize);
1113                 PRM_DEBUG(alloc_base);
1114         }
1115 
1116         /*
1117          * Save off where the contiguous allocations to date have ended
1118          * in econtig32.
1119          */
1120         econtig32 = alloc_base;
1121         PRM_DEBUG(econtig32);
1122         if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1123                 cmn_err(CE_PANIC, "econtig32 too big");
1124 
1125         pp_sz = calc_pp_sz(npages);
1126         PRM_DEBUG(pp_sz);
1127         if (kpm_enable) {
1128                 kpm_pp_sz = calc_kpmpp_sz(npages);
1129                 PRM_DEBUG(kpm_pp_sz);
1130         }
1131 
1132         hmehash_sz = calc_hmehash_sz(npages);
1133         PRM_DEBUG(hmehash_sz);
1134 
1135         pagehash_sz = calc_pagehash_sz(npages);
1136         PRM_DEBUG(pagehash_sz);
1137 
1138         pagelist_sz = calc_free_pagelist_sz();
1139         PRM_DEBUG(pagelist_sz);
1140 
1141 #ifdef  TRAPTRACE
1142         tt_sz = calc_traptrace_sz();
1143         PRM_DEBUG(tt_sz);
1144 #else
1145         tt_sz = 0;
1146 #endif  /* TRAPTRACE */
1147 
1148         /*
1149          * Place the array that protects pp->p_selock in the kmem64 wad.
1150          */
1151         pse_shift = size_pse_array(npages, max_ncpus);
1152         PRM_DEBUG(pse_shift);
1153         pse_table_size = 1 << pse_shift;
1154         PRM_DEBUG(pse_table_size);
1155         psetable_sz = roundup(
1156             pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1157         PRM_DEBUG(psetable_sz);
1158 
1159         /*
1160          * Now allocate the whole wad
1161          */
1162         kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1163             pagelist_sz + tt_sz + psetable_sz;
1164         kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1165         kmem64_base = (caddr_t)syslimit;
1166         kmem64_end = kmem64_base + kmem64_sz;
1167         if (alloc_kmem64(kmem64_base, kmem64_end)) {
1168                 /*
1169                  * Attempt for kmem64 to allocate one big
1170                  * contiguous chunk of memory failed.
1171                  * We get here because we are sun4v.
1172                  * We will proceed by breaking up
1173                  * the allocation into two attempts.
1174                  * First, we allocate kpm_pp_sz, hmehash_sz,
1175                  * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1176                  * one contiguous chunk. This is a much smaller
1177                  * chunk and we should get it, if not we panic.
1178                  * Note that hmehash and tt need to be physically
1179                  * (in the real address sense) contiguous.
1180                  * Next, we use bop_alloc_chunk() to
1181                  * to allocate the page_t structures.
1182                  * This will allow the page_t to be allocated
1183                  * in multiple smaller chunks.
1184                  * In doing so, the assumption that page_t is
1185                  * physically contiguous no longer hold, this is ok
1186                  * for sun4v but not for sun4u.
1187                  */
1188                 size_t  tmp_size;
1189                 caddr_t tmp_base;
1190 
1191                 pp_sz  = roundup(pp_sz, PAGESIZE);
1192 
1193                 /*
1194                  * Allocate kpm_pp_sz, hmehash_sz,
1195                  * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1196                  */
1197                 tmp_base = kmem64_base + pp_sz;
1198                 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1199                     pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1200                 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1201                         prom_panic("kmem64 prom_alloc contig failed");
1202                 PRM_DEBUG(tmp_base);
1203                 PRM_DEBUG(tmp_size);
1204 
1205                 /*
1206                  * Allocate the page_ts
1207                  */
1208                 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1209                         prom_panic("kmem64 bop_alloc_chunk page_t failed");
1210                 PRM_DEBUG(kmem64_base);
1211                 PRM_DEBUG(pp_sz);
1212 
1213                 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1214                 ASSERT(kmem64_aligned_end >= kmem64_end);
1215 
1216                 kmem64_smchunks = 1;
1217         } else {
1218 
1219                 /*
1220                  * We need to adjust pp_sz for the normal
1221                  * case where kmem64 can allocate one large chunk
1222                  */
1223                 if (kpm_smallpages == 0) {
1224                         npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1225                 } else {
1226                         npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1227                             sizeof (kpm_spage_t));
1228                 }
1229                 pp_sz = npages * sizeof (struct page);
1230         }
1231 
1232         if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1233                 cmn_err(CE_PANIC, "not enough kmem64 space");
1234         PRM_DEBUG(kmem64_base);
1235         PRM_DEBUG(kmem64_end);
1236         PRM_DEBUG(kmem64_aligned_end);
1237 
1238         /*
1239          * ... and divy it up
1240          */
1241         alloc_base = kmem64_base;
1242 
1243         pp_base = (page_t *)alloc_base;
1244         alloc_base += pp_sz;
1245         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1246         PRM_DEBUG(pp_base);
1247         PRM_DEBUG(npages);
1248 
1249         if (kpm_enable) {
1250                 kpm_pp_base = alloc_base;
1251                 if (kpm_smallpages == 0) {
1252                         /* kpm_npages based on physinstalled, don't reset */
1253                         kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1254                 } else {
1255                         kpm_npages = ptokpmpr(npages);
1256                         kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1257                 }
1258                 alloc_base += kpm_pp_sz;
1259                 alloc_base =
1260                     (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1261                 PRM_DEBUG(kpm_pp_base);
1262         }
1263 
1264         alloc_base = alloc_hmehash(alloc_base);
1265         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1266         PRM_DEBUG(alloc_base);
1267 
1268         page_hash = (page_t **)alloc_base;
1269         alloc_base += pagehash_sz;
1270         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1271         PRM_DEBUG(page_hash);
1272 
1273         alloc_base = alloc_page_freelists(alloc_base);
1274         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1275         PRM_DEBUG(alloc_base);
1276 
1277 #ifdef  TRAPTRACE
1278         ttrace_buf = alloc_base;
1279         alloc_base += tt_sz;
1280         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1281         PRM_DEBUG(alloc_base);
1282 #endif  /* TRAPTRACE */
1283 
1284         pse_mutex = (pad_mutex_t *)alloc_base;
1285         alloc_base += psetable_sz;
1286         alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1287         PRM_DEBUG(alloc_base);
1288 
1289         /*
1290          * Note that if we use small chunk allocations for
1291          * kmem64, we need to ensure kmem64_end is the same as
1292          * kmem64_aligned_end to prevent subsequent logic from
1293          * trying to reuse the overmapping.
1294          * Otherwise we adjust kmem64_end to what we really allocated.
1295          */
1296         if (kmem64_smchunks) {
1297                 kmem64_end = kmem64_aligned_end;
1298         } else {
1299                 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1300         }
1301         kmem64_sz = kmem64_end - kmem64_base;
1302 
1303         if (&ecache_init_scrub_flush_area) {
1304                 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1305                 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1306         }
1307 
1308         /*
1309          * If physmem is patched to be non-zero, use it instead of
1310          * the monitor value unless physmem is larger than the total
1311          * amount of memory on hand.
1312          */
1313         if (physmem == 0 || physmem > npages)
1314                 physmem = npages;
1315 
1316         /*
1317          * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1318          * is mounted as root. This memory is held down by OBP and unlike
1319          * the stub boot_archive is never released.
1320          *
1321          * In order to get things sized correctly on lower memory
1322          * machines (where the memory used by the ramdisk represents
1323          * a significant portion of memory), physmem is adjusted.
1324          *
1325          * This is done by subtracting the ramdisk_size which is set
1326          * to the size of the ramdisk (in Kb) in /etc/system at the
1327          * time the miniroot archive is constructed.
1328          */
1329         if (root_is_ramdisk == B_TRUE) {
1330                 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1331                 physmem -= ramdisk_npages;
1332         }
1333 
1334         if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1335                 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1336 
1337         /*
1338          * Allocate space for the interrupt vector table.
1339          */
1340         memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1341         if (memspace != (caddr_t)intr_vec_table)
1342                 prom_panic("interrupt vector table allocation failure");
1343 
1344         /*
1345          * Between now and when we finish copying in the memory lists,
1346          * allocations happen so the space gets fragmented and the
1347          * lists longer.  Leave enough space for lists twice as
1348          * long as we have now; then roundup to a pagesize.
1349          */
1350         memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1351             prom_phys_avail_len() + prom_virt_avail_len());
1352         memlist_sz *= 2;
1353         memlist_sz = roundup(memlist_sz, PAGESIZE);
1354         memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1355         if (memspace == NULL)
1356                 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1357 
1358         memlist = (struct memlist *)memspace;
1359         memlist_end = (char *)memspace + memlist_sz;
1360         PRM_DEBUG(memlist);
1361         PRM_DEBUG(memlist_end);
1362 
1363         PRM_DEBUG(sysbase);
1364         PRM_DEBUG(syslimit);
1365         kernelheap_init((void *)sysbase, (void *)syslimit,
1366             (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1367 
1368         /*
1369          * Take the most current snapshot we can by calling mem-update.
1370          */
1371         copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1372             &boot_physavail, &boot_physavail_len,
1373             &boot_virtavail, &boot_virtavail_len);
1374 
1375         /*
1376          * Remove the space used by prom_alloc from the kernel heap
1377          * plus the area actually used by the OBP (if any)
1378          * ignoring virtual addresses in virt_avail, above syslimit.
1379          */
1380         virt_avail = memlist;
1381         copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1382 
1383         for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) {
1384                 uint64_t range_base, range_size;
1385 
1386                 if ((range_base = cur->ml_address + cur->ml_size) <
1387                     (uint64_t)sysbase)
1388                         continue;
1389                 if (range_base >= (uint64_t)syslimit)
1390                         break;
1391                 /*
1392                  * Limit the range to end at syslimit.
1393                  */
1394                 range_size = MIN(cur->ml_next->ml_address,
1395                     (uint64_t)syslimit) - range_base;
1396                 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1397                     0, 0, (void *)range_base, (void *)(range_base + range_size),
1398                     VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1399         }
1400 
1401         phys_avail = memlist;
1402         copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1403 
1404         /*
1405          * Add any extra memory at the end of the ndata region if there's at
1406          * least a page to add.  There might be a few more pages available in
1407          * the middle of the ndata region, but for now they are ignored.
1408          */
1409         nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1410         if (nalloc_base == NULL)
1411                 nalloc_base = nalloc_end;
1412         ndata_remain_sz = nalloc_end - nalloc_base;
1413 
1414         /*
1415          * Copy physinstalled list into kernel space.
1416          */
1417         phys_install = memlist;
1418         copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1419 
1420         /*
1421          * Create list of physical addrs we don't need pp's for:
1422          * kernel text 4M page
1423          * kernel data 4M page - ndata_remain_sz
1424          * kmem64 pages
1425          *
1426          * NB if adding any pages here, make sure no kpm page
1427          * overlaps can occur (see ASSERTs in kphysm_memsegs)
1428          */
1429         nopp_list = memlist;
1430         memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1431         memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1432             &memlist, &nopp_list);
1433 
1434         /* Don't add to nopp_list if kmem64 was allocated in smchunks */
1435         if (!kmem64_smchunks)
1436                 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1437 
1438         if ((caddr_t)memlist > (memspace + memlist_sz))
1439                 prom_panic("memlist overflow");
1440 
1441         /*
1442          * Size the pcf array based on the number of cpus in the box at
1443          * boot time.
1444          */
1445         pcf_init();
1446 
1447         /*
1448          * Initialize the page structures from the memory lists.
1449          */
1450         kphysm_init();
1451 
1452         availrmem_initial = availrmem = freemem;
1453         PRM_DEBUG(availrmem);
1454 
1455         /*
1456          * Some of the locks depend on page_hashsz being set!
1457          * kmem_init() depends on this; so, keep it here.
1458          */
1459         page_lock_init();
1460 
1461         /*
1462          * Initialize kernel memory allocator.
1463          */
1464         kmem_init();
1465 
1466         /*
1467          * Factor in colorequiv to check additional 'equivalent' bins
1468          */
1469         if (&page_set_colorequiv_arr_cpu != NULL)
1470                 page_set_colorequiv_arr_cpu();
1471         else
1472                 page_set_colorequiv_arr();
1473 
1474         /*
1475          * Initialize bp_mapin().
1476          */
1477         bp_init(shm_alignment, HAT_STRICTORDER);
1478 
1479         /*
1480          * Reserve space for MPO mblock structs from the 32-bit heap.
1481          */
1482 
1483         if (mpo_heap32_bufsz > (size_t)0) {
1484                 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1485                     PAGESIZE, 0, 0, mpo_heap32_buf,
1486                     mpo_heap32_buf + mpo_heap32_bufsz,
1487                     VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1488         }
1489         mem_config_init();
1490 }
1491 
1492 static void
1493 startup_modules(void)
1494 {
1495         int nhblk1, nhblk8;
1496         size_t  nhblksz;
1497         pgcnt_t pages_per_hblk;
1498         size_t hme8blk_sz, hme1blk_sz;
1499 
1500         /*
1501          * The system file /etc/system was read already under startup_memlist.
1502          */
1503         if (&set_platform_defaults)
1504                 set_platform_defaults();
1505 
1506         /*
1507          * Calculate default settings of system parameters based upon
1508          * maxusers, yet allow to be overridden via the /etc/system file.
1509          */
1510         param_calc(0);
1511 
1512         mod_setup();
1513 
1514         /*
1515          * Initialize system parameters
1516          */
1517         param_init();
1518 
1519         /*
1520          * maxmem is the amount of physical memory we're playing with.
1521          */
1522         maxmem = physmem;
1523 
1524         /* Set segkp limits. */
1525         ncbase = kdi_segdebugbase;
1526         ncend = kdi_segdebugbase;
1527 
1528         /*
1529          * Initialize the hat layer.
1530          */
1531         hat_init();
1532 
1533         /*
1534          * Initialize segment management stuff.
1535          */
1536         seg_init();
1537 
1538         /*
1539          * Create the va>tte handler, so the prom can understand
1540          * kernel translations.  The handler is installed later, just
1541          * as we are about to take over the trap table from the prom.
1542          */
1543         create_va_to_tte();
1544 
1545         /*
1546          * Load the forthdebugger (optional)
1547          */
1548         forthdebug_init();
1549 
1550         /*
1551          * Create OBP node for console input callbacks
1552          * if it is needed.
1553          */
1554         startup_create_io_node();
1555 
1556         if (modloadonly("fs", "specfs") == -1)
1557                 halt("Can't load specfs");
1558 
1559         if (modloadonly("fs", "devfs") == -1)
1560                 halt("Can't load devfs");
1561 
1562         if (modloadonly("fs", "procfs") == -1)
1563                 halt("Can't load procfs");
1564 
1565         if (modloadonly("misc", "swapgeneric") == -1)
1566                 halt("Can't load swapgeneric");
1567 
1568         (void) modloadonly("sys", "lbl_edition");
1569 
1570         dispinit();
1571 
1572         /*
1573          * Infer meanings to the members of the idprom buffer.
1574          */
1575         parse_idprom();
1576 
1577         /* Read cluster configuration data. */
1578         clconf_init();
1579 
1580         setup_ddi();
1581 
1582         /*
1583          * Lets take this opportunity to load the root device.
1584          */
1585         if (loadrootmodules() != 0)
1586                 debug_enter("Can't load the root filesystem");
1587 
1588         /*
1589          * Load tod driver module for the tod part found on this system.
1590          * Recompute the cpu frequency/delays based on tod as tod part
1591          * tends to keep time more accurately.
1592          */
1593         if (&load_tod_module)
1594                 load_tod_module();
1595 
1596         /*
1597          * Allow platforms to load modules which might
1598          * be needed after bootops are gone.
1599          */
1600         if (&load_platform_modules)
1601                 load_platform_modules();
1602 
1603         setcpudelay();
1604 
1605         copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1606             &boot_physavail, &boot_physavail_len,
1607             &boot_virtavail, &boot_virtavail_len);
1608 
1609         /*
1610          * Calculation and allocation of hmeblks needed to remap
1611          * the memory allocated by PROM till now.
1612          * Overestimate the number of hblk1 elements by assuming
1613          * worst case of TTE64K mappings.
1614          * sfmmu_hblk_alloc will panic if this calculation is wrong.
1615          */
1616         bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1617         pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1618         bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1619         nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1620 
1621         bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1622 
1623         /* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1624         hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1625         hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1626 
1627         bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1628 
1629         pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1630         nhblk8 = 0;
1631         while (bop_alloc_pages > 1) {
1632                 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1633                 nhblk8 += bop_alloc_pages /= pages_per_hblk;
1634                 bop_alloc_pages *= hme8blk_sz;
1635                 bop_alloc_pages = btopr(bop_alloc_pages);
1636         }
1637         nhblk8 += 2;
1638 
1639         /*
1640          * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1641          * boundary, the number of hblk8's needed to map the entries in the
1642          * boot_virtavail list needs to be adjusted to take this into
1643          * consideration.  Thus, we need to add additional hblk8's since it
1644          * is possible that an hblk8 will not have all 8 slots used due to
1645          * alignment constraints.  Since there were boot_virtavail_len entries
1646          * in that list, we need to add that many hblk8's to the number
1647          * already calculated to make sure we don't underestimate.
1648          */
1649         nhblk8 += boot_virtavail_len;
1650         nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1651 
1652         /* Allocate in pagesize chunks */
1653         nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1654         hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1655         sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1656 }
1657 
1658 static void
1659 startup_bop_gone(void)
1660 {
1661 
1662         /*
1663          * Destroy the MD initialized at startup
1664          * The startup initializes the MD framework
1665          * using prom and BOP alloc free it now.
1666          */
1667         mach_descrip_startup_fini();
1668 
1669         /*
1670          * We're done with prom allocations.
1671          */
1672         bop_fini();
1673 
1674         copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1675             &boot_physavail, &boot_physavail_len,
1676             &boot_virtavail, &boot_virtavail_len);
1677 
1678         /*
1679          * setup physically contiguous area twice as large as the ecache.
1680          * this is used while doing displacement flush of ecaches
1681          */
1682         if (&ecache_flush_address) {
1683                 ecache_flushaddr = ecache_flush_address();
1684                 if (ecache_flushaddr == (uint64_t)-1) {
1685                         cmn_err(CE_PANIC,
1686                             "startup: no memory to set ecache_flushaddr");
1687                 }
1688         }
1689 
1690         /*
1691          * Virtual available next.
1692          */
1693         ASSERT(virt_avail != NULL);
1694         memlist_free_list(virt_avail);
1695         virt_avail = memlist;
1696         copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1697 
1698 }
1699 
1700 
1701 /*
1702  * startup_fixup_physavail - called from mach_sfmmu.c after the final
1703  * allocations have been performed.  We can't call it in startup_bop_gone
1704  * since later operations can cause obp to allocate more memory.
1705  */
1706 void
1707 startup_fixup_physavail(void)
1708 {
1709         struct memlist *cur;
1710         size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1711 
1712         PRM_DEBUG(kmem64_overmap_size);
1713 
1714         /*
1715          * take the most current snapshot we can by calling mem-update
1716          */
1717         copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1718             &boot_physavail, &boot_physavail_len,
1719             &boot_virtavail, &boot_virtavail_len);
1720 
1721         /*
1722          * Copy phys_avail list, again.
1723          * Both the kernel/boot and the prom have been allocating
1724          * from the original list we copied earlier.
1725          */
1726         cur = memlist;
1727         copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1728 
1729         /*
1730          * Add any unused kmem64 memory from overmapped page
1731          * (Note: va_to_pa does not work for kmem64_end)
1732          */
1733         if (kmem64_overmap_size) {
1734                 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1735                     kmem64_overmap_size, &memlist, &cur);
1736         }
1737 
1738         /*
1739          * Add any extra memory after e_data we added to the phys_avail list
1740          * back to the old list.
1741          */
1742         if (ndata_remain_sz >= MMU_PAGESIZE)
1743                 memlist_add(va_to_pa(nalloc_base),
1744                     (uint64_t)ndata_remain_sz, &memlist, &cur);
1745 
1746         /*
1747          * There isn't any bounds checking on the memlist area
1748          * so ensure it hasn't overgrown.
1749          */
1750         if ((caddr_t)memlist > (caddr_t)memlist_end)
1751                 cmn_err(CE_PANIC, "startup: memlist size exceeded");
1752 
1753         /*
1754          * The kernel removes the pages that were allocated for it from
1755          * the freelist, but we now have to find any -extra- pages that
1756          * the prom has allocated for it's own book-keeping, and remove
1757          * them from the freelist too. sigh.
1758          */
1759         sync_memlists(phys_avail, cur);
1760 
1761         ASSERT(phys_avail != NULL);
1762 
1763         old_phys_avail = phys_avail;
1764         phys_avail = cur;
1765 }
1766 
1767 void
1768 update_kcage_ranges(uint64_t addr, uint64_t len)
1769 {
1770         pfn_t base = btop(addr);
1771         pgcnt_t num = btop(len);
1772         int rv;
1773 
1774         rv = kcage_range_add(base, num, kcage_startup_dir);
1775 
1776         if (rv == ENOMEM) {
1777                 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1778                     (len == 0 ? 0 : BYTES_TO_MB(len)));
1779         } else if (rv != 0) {
1780                 /* catch this in debug kernels */
1781                 ASSERT(0);
1782 
1783                 cmn_err(CE_WARN, "unexpected kcage_range_add"
1784                     " return value %d", rv);
1785         }
1786 }
1787 
1788 static void
1789 startup_vm(void)
1790 {
1791         size_t  i;
1792         struct segmap_crargs a;
1793         struct segkpm_crargs b;
1794 
1795         uint64_t avmem;
1796         caddr_t va;
1797         pgcnt_t max_phys_segkp;
1798         int     mnode;
1799 
1800         extern int use_brk_lpg, use_stk_lpg;
1801 
1802         /*
1803          * get prom's mappings, create hments for them and switch
1804          * to the kernel context.
1805          */
1806         hat_kern_setup();
1807 
1808         /*
1809          * Take over trap table
1810          */
1811         setup_trap_table();
1812 
1813         /*
1814          * Install the va>tte handler, so that the prom can handle
1815          * misses and understand the kernel table layout in case
1816          * we need call into the prom.
1817          */
1818         install_va_to_tte();
1819 
1820         /*
1821          * Set a flag to indicate that the tba has been taken over.
1822          */
1823         tba_taken_over = 1;
1824 
1825         /* initialize MMU primary context register */
1826         mmu_init_kcontext();
1827 
1828         /*
1829          * The boot cpu can now take interrupts, x-calls, x-traps
1830          */
1831         CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1832         CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1833 
1834         /*
1835          * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1836          */
1837         tbr_wr_addr_inited = 1;
1838 
1839         /*
1840          * Initialize VM system, and map kernel address space.
1841          */
1842         kvm_init();
1843 
1844         ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1845         if (kernel_cage_enable) {
1846                 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1847         }
1848         memlist_free_list(old_phys_avail);
1849 
1850         /*
1851          * If the following is true, someone has patched
1852          * phsymem to be less than the number of pages that
1853          * the system actually has.  Remove pages until system
1854          * memory is limited to the requested amount.  Since we
1855          * have allocated page structures for all pages, we
1856          * correct the amount of memory we want to remove
1857          * by the size of the memory used to hold page structures
1858          * for the non-used pages.
1859          */
1860         if (physmem + ramdisk_npages < npages) {
1861                 pgcnt_t diff, off;
1862                 struct page *pp;
1863                 struct seg kseg;
1864 
1865                 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1866 
1867                 off = 0;
1868                 diff = npages - (physmem + ramdisk_npages);
1869                 diff -= mmu_btopr(diff * sizeof (struct page));
1870                 kseg.s_as = &kas;
1871                 while (diff--) {
1872                         pp = page_create_va(&unused_pages_vp, (offset_t)off,
1873                             MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1874                             &kseg, (caddr_t)off);
1875                         if (pp == NULL)
1876                                 cmn_err(CE_PANIC, "limited physmem too much!");
1877                         page_io_unlock(pp);
1878                         page_downgrade(pp);
1879                         availrmem--;
1880                         off += MMU_PAGESIZE;
1881                 }
1882         }
1883 
1884         /*
1885          * When printing memory, show the total as physmem less
1886          * that stolen by a debugger.
1887          */
1888         cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1889             (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1890             (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1891 
1892         avmem = (uint64_t)freemem << PAGESHIFT;
1893         cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1894 
1895         /*
1896          * For small memory systems disable automatic large pages.
1897          */
1898         if (physmem < privm_lpg_min_physmem) {
1899                 use_brk_lpg = 0;
1900                 use_stk_lpg = 0;
1901         }
1902 
1903         /*
1904          * Perform platform specific freelist processing
1905          */
1906         if (&plat_freelist_process) {
1907                 for (mnode = 0; mnode < max_mem_nodes; mnode++)
1908                         if (mem_node_config[mnode].exists)
1909                                 plat_freelist_process(mnode);
1910         }
1911 
1912         /*
1913          * Initialize the segkp segment type.  We position it
1914          * after the configured tables and buffers (whose end
1915          * is given by econtig) and before V_WKBASE_ADDR.
1916          * Also in this area is segkmap (size SEGMAPSIZE).
1917          */
1918 
1919         /* XXX - cache alignment? */
1920         va = (caddr_t)SEGKPBASE;
1921         ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1922 
1923         max_phys_segkp = (physmem * 2);
1924 
1925         if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1926                 segkpsize = btop(SEGKPDEFSIZE);
1927                 cmn_err(CE_WARN, "Illegal value for segkpsize. "
1928                     "segkpsize has been reset to %ld pages", segkpsize);
1929         }
1930 
1931         i = ptob(MIN(segkpsize, max_phys_segkp));
1932 
1933         rw_enter(&kas.a_lock, RW_WRITER);
1934         if (seg_attach(&kas, va, i, segkp) < 0)
1935                 cmn_err(CE_PANIC, "startup: cannot attach segkp");
1936         if (segkp_create(segkp) != 0)
1937                 cmn_err(CE_PANIC, "startup: segkp_create failed");
1938         rw_exit(&kas.a_lock);
1939 
1940         /*
1941          * kpm segment
1942          */
1943         segmap_kpm = kpm_enable &&
1944             segmap_kpm && PAGESIZE == MAXBSIZE;
1945 
1946         if (kpm_enable) {
1947                 rw_enter(&kas.a_lock, RW_WRITER);
1948 
1949                 /*
1950                  * The segkpm virtual range range is larger than the
1951                  * actual physical memory size and also covers gaps in
1952                  * the physical address range for the following reasons:
1953                  * . keep conversion between segkpm and physical addresses
1954                  *   simple, cheap and unambiguous.
1955                  * . avoid extension/shrink of the the segkpm in case of DR.
1956                  * . avoid complexity for handling of virtual addressed
1957                  *   caches, segkpm and the regular mapping scheme must be
1958                  *   kept in sync wrt. the virtual color of mapped pages.
1959                  * Any accesses to virtual segkpm ranges not backed by
1960                  * physical memory will fall through the memseg pfn hash
1961                  * and will be handled in segkpm_fault.
1962                  * Additional kpm_size spaces needed for vac alias prevention.
1963                  */
1964                 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1965                     segkpm) < 0)
1966                         cmn_err(CE_PANIC, "cannot attach segkpm");
1967 
1968                 b.prot = PROT_READ | PROT_WRITE;
1969                 b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1970 
1971                 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
1972                         panic("segkpm_create segkpm");
1973 
1974                 rw_exit(&kas.a_lock);
1975 
1976                 mach_kpm_init();
1977         }
1978 
1979         va = kpm_vbase + (kpm_size * vac_colors);
1980 
1981         if (!segzio_fromheap) {
1982                 size_t size;
1983                 size_t physmem_b = mmu_ptob(physmem);
1984 
1985                 /* size is in bytes, segziosize is in pages */
1986                 if (segziosize == 0) {
1987                         size = physmem_b;
1988                 } else {
1989                         size = mmu_ptob(segziosize);
1990                 }
1991 
1992                 if (size < SEGZIOMINSIZE) {
1993                         size = SEGZIOMINSIZE;
1994                 } else if (size > SEGZIOMAXSIZE) {
1995                         size = SEGZIOMAXSIZE;
1996                         /*
1997                          * On 64-bit x86, we only have 2TB of KVA.  This exists
1998                          * for parity with x86.
1999                          *
2000                          * SEGZIOMAXSIZE is capped at 512gb so that segzio
2001                          * doesn't consume all of KVA.  However, if we have a
2002                          * system that has more thant 512gb of physical memory,
2003                          * we can actually consume about half of the difference
2004                          * between 512gb and the rest of the available physical
2005                          * memory.
2006                          */
2007                         if (physmem_b > SEGZIOMAXSIZE) {
2008                                 size += (physmem_b - SEGZIOMAXSIZE) / 2;
2009                 }
2010                 }
2011                 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2012                 /* put the base of the ZIO segment after the kpm segment */
2013                 segzio_base = va;
2014                 va += mmu_ptob(segziosize);
2015                 PRM_DEBUG(segziosize);
2016                 PRM_DEBUG(segzio_base);
2017 
2018                 /*
2019                  * On some platforms, kvm_init is called after the kpm
2020                  * sizes have been determined.  On SPARC, kvm_init is called
2021                  * before, so we have to attach the kzioseg after kvm is
2022                  * initialized, otherwise we'll try to allocate from the boot
2023                  * area since the kernel heap hasn't yet been configured.
2024                  */
2025                 rw_enter(&kas.a_lock, RW_WRITER);
2026 
2027                 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2028                     &kzioseg);
2029                 (void) segkmem_zio_create(&kzioseg);
2030 
2031                 /* create zio area covering new segment */
2032                 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2033 
2034                 rw_exit(&kas.a_lock);
2035         }
2036 
2037         if (ppvm_enable) {
2038                 caddr_t ppvm_max;
2039 
2040                 /*
2041                  * ppvm refers to the static VA space used to map
2042                  * the page_t's for dynamically added memory.
2043                  *
2044                  * ppvm_base should not cross a potential VA hole.
2045                  *
2046                  * ppvm_size should be large enough to map the
2047                  * page_t's needed to manage all of KPM range.
2048                  */
2049                 ppvm_size =
2050                     roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
2051                     MMU_PAGESIZE);
2052                 ppvm_max = (caddr_t)(0ull - ppvm_size);
2053                 ppvm_base = (page_t *)va;
2054 
2055                 if ((caddr_t)ppvm_base <= hole_end) {
2056                         cmn_err(CE_WARN,
2057                             "Memory DR disabled: invalid DR map base: 0x%p\n",
2058                             (void *)ppvm_base);
2059                         ppvm_enable = 0;
2060                 } else if ((caddr_t)ppvm_base > ppvm_max) {
2061                         uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
2062 
2063                         cmn_err(CE_WARN,
2064                             "Memory DR disabled: insufficient DR map size:"
2065                             " 0x%lx (needed 0x%lx)\n",
2066                             ppvm_size - diff, ppvm_size);
2067                         ppvm_enable = 0;
2068                 }
2069                 PRM_DEBUG(ppvm_size);
2070                 PRM_DEBUG(ppvm_base);
2071         }
2072 
2073         /*
2074          * Now create generic mapping segment.  This mapping
2075          * goes SEGMAPSIZE beyond SEGMAPBASE.  But if the total
2076          * virtual address is greater than the amount of free
2077          * memory that is available, then we trim back the
2078          * segment size to that amount
2079          */
2080         va = (caddr_t)SEGMAPBASE;
2081 
2082         /*
2083          * 1201049: segkmap base address must be MAXBSIZE aligned
2084          */
2085         ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2086 
2087         /*
2088          * Set size of segmap to percentage of freemem at boot,
2089          * but stay within the allowable range
2090          * Note we take percentage  before converting from pages
2091          * to bytes to avoid an overflow on 32-bit kernels.
2092          */
2093         i = mmu_ptob((freemem * segmap_percent) / 100);
2094 
2095         if (i < MINMAPSIZE)
2096                 i = MINMAPSIZE;
2097 
2098         if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2099                 i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2100 
2101         i &= MAXBMASK;      /* 1201049: segkmap size must be MAXBSIZE aligned */
2102 
2103         rw_enter(&kas.a_lock, RW_WRITER);
2104         if (seg_attach(&kas, va, i, segkmap) < 0)
2105                 cmn_err(CE_PANIC, "cannot attach segkmap");
2106 
2107         a.prot = PROT_READ | PROT_WRITE;
2108         a.shmsize = shm_alignment;
2109         a.nfreelist = 0;        /* use segmap driver defaults */
2110 
2111         if (segmap_create(segkmap, (caddr_t)&a) != 0)
2112                 panic("segmap_create segkmap");
2113         rw_exit(&kas.a_lock);
2114 
2115         segdev_init();
2116 }
2117 
2118 static void
2119 startup_end(void)
2120 {
2121         if ((caddr_t)memlist > (caddr_t)memlist_end)
2122                 panic("memlist overflow 2");
2123         memlist_free_block((caddr_t)memlist,
2124             ((caddr_t)memlist_end - (caddr_t)memlist));
2125         memlist = NULL;
2126 
2127         /* enable page_relocation since OBP is now done */
2128         page_relocate_ready = 1;
2129 
2130         /*
2131          * Perform tasks that get done after most of the VM
2132          * initialization has been done but before the clock
2133          * and other devices get started.
2134          */
2135         kern_setup1();
2136 
2137         /*
2138          * Perform CPC initialization for this CPU.
2139          */
2140         kcpc_hw_init();
2141 
2142         /*
2143          * Intialize the VM arenas for allocating physically
2144          * contiguus memory chunk for interrupt queues snd
2145          * allocate/register boot cpu's queues, if any and
2146          * allocate dump buffer for sun4v systems to store
2147          * extra crash information during crash dump
2148          */
2149         contig_mem_init();
2150         mach_descrip_init();
2151 
2152         if (cpu_intrq_setup(CPU)) {
2153                 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2154         }
2155         cpu_intrq_register(CPU);
2156         mach_htraptrace_setup(CPU->cpu_id);
2157         mach_htraptrace_configure(CPU->cpu_id);
2158         mach_dump_buffer_init();
2159 
2160         /*
2161          * Initialize interrupt related stuff
2162          */
2163         cpu_intr_alloc(CPU, NINTR_THREADS);
2164 
2165         (void) splzs();                 /* allow hi clock ints but not zs */
2166 
2167         /*
2168          * Initialize errors.
2169          */
2170         error_init();
2171 
2172         /*
2173          * Note that we may have already used kernel bcopy before this
2174          * point - but if you really care about this, adb the use_hw_*
2175          * variables to 0 before rebooting.
2176          */
2177         mach_hw_copy_limit();
2178 
2179         /*
2180          * Install the "real" preemption guards before DDI services
2181          * are available.
2182          */
2183         (void) prom_set_preprom(kern_preprom);
2184         (void) prom_set_postprom(kern_postprom);
2185         CPU->cpu_m.mutex_ready = 1;
2186 
2187         /*
2188          * Initialize segnf (kernel support for non-faulting loads).
2189          */
2190         segnf_init();
2191 
2192         /*
2193          * Configure the root devinfo node.
2194          */
2195         configure();            /* set up devices */
2196         mach_cpu_halt_idle();
2197 }
2198 
2199 
2200 void
2201 post_startup(void)
2202 {
2203 #ifdef  PTL1_PANIC_DEBUG
2204         extern void init_ptl1_thread(void);
2205 #endif  /* PTL1_PANIC_DEBUG */
2206         extern void abort_sequence_init(void);
2207 
2208         /*
2209          * Set the system wide, processor-specific flags to be passed
2210          * to userland via the aux vector for performance hints and
2211          * instruction set extensions.
2212          */
2213         bind_hwcap();
2214 
2215         /*
2216          * Startup memory scrubber (if any)
2217          */
2218         mach_memscrub();
2219 
2220         /*
2221          * Allocate soft interrupt to handle abort sequence.
2222          */
2223         abort_sequence_init();
2224 
2225         /*
2226          * Configure the rest of the system.
2227          * Perform forceloading tasks for /etc/system.
2228          */
2229         (void) mod_sysctl(SYS_FORCELOAD, NULL);
2230         /*
2231          * ON4.0: Force /proc module in until clock interrupt handle fixed
2232          * ON4.0: This must be fixed or restated in /etc/systems.
2233          */
2234         (void) modload("fs", "procfs");
2235 
2236         /* load machine class specific drivers */
2237         load_mach_drivers();
2238 
2239         /* load platform specific drivers */
2240         if (&load_platform_drivers)
2241                 load_platform_drivers();
2242 
2243         /* load vis simulation module, if we are running w/fpu off */
2244         if (!fpu_exists) {
2245                 if (modload("misc", "vis") == -1)
2246                         halt("Can't load vis");
2247         }
2248 
2249         mach_fpras();
2250 
2251         maxmem = freemem;
2252 
2253         pg_init();
2254 
2255 #ifdef  PTL1_PANIC_DEBUG
2256         init_ptl1_thread();
2257 #endif  /* PTL1_PANIC_DEBUG */
2258 }
2259 
2260 #ifdef  PTL1_PANIC_DEBUG
2261 int             ptl1_panic_test = 0;
2262 int             ptl1_panic_xc_one_test = 0;
2263 int             ptl1_panic_xc_all_test = 0;
2264 int             ptl1_panic_xt_one_test = 0;
2265 int             ptl1_panic_xt_all_test = 0;
2266 kthread_id_t    ptl1_thread_p = NULL;
2267 kcondvar_t      ptl1_cv;
2268 kmutex_t        ptl1_mutex;
2269 int             ptl1_recurse_count_threshold = 0x40;
2270 int             ptl1_recurse_trap_threshold = 0x3d;
2271 extern void     ptl1_recurse(int, int);
2272 extern void     ptl1_panic_xt(int, int);
2273 
2274 /*
2275  * Called once per second by timeout() to wake up
2276  * the ptl1_panic thread to see if it should cause
2277  * a trap to the ptl1_panic() code.
2278  */
2279 /* ARGSUSED */
2280 static void
2281 ptl1_wakeup(void *arg)
2282 {
2283         mutex_enter(&ptl1_mutex);
2284         cv_signal(&ptl1_cv);
2285         mutex_exit(&ptl1_mutex);
2286 }
2287 
2288 /*
2289  * ptl1_panic cross call function:
2290  *     Needed because xc_one() and xc_some() can pass
2291  *      64 bit args but ptl1_recurse() expects ints.
2292  */
2293 static void
2294 ptl1_panic_xc(void)
2295 {
2296         ptl1_recurse(ptl1_recurse_count_threshold,
2297             ptl1_recurse_trap_threshold);
2298 }
2299 
2300 /*
2301  * The ptl1 thread waits for a global flag to be set
2302  * and uses the recurse thresholds to set the stack depth
2303  * to cause a ptl1_panic() directly via a call to ptl1_recurse
2304  * or indirectly via the cross call and cross trap functions.
2305  *
2306  * This is useful testing stack overflows and normal
2307  * ptl1_panic() states with a know stack frame.
2308  *
2309  * ptl1_recurse() is an asm function in ptl1_panic.s that
2310  * sets the {In, Local, Out, and Global} registers to a
2311  * know state on the stack and just prior to causing a
2312  * test ptl1_panic trap.
2313  */
2314 static void
2315 ptl1_thread(void)
2316 {
2317         mutex_enter(&ptl1_mutex);
2318         while (ptl1_thread_p) {
2319                 cpuset_t        other_cpus;
2320                 int             cpu_id;
2321                 int             my_cpu_id;
2322                 int             target_cpu_id;
2323                 int             target_found;
2324 
2325                 if (ptl1_panic_test) {
2326                         ptl1_recurse(ptl1_recurse_count_threshold,
2327                             ptl1_recurse_trap_threshold);
2328                 }
2329 
2330                 /*
2331                  * Find potential targets for x-call and x-trap,
2332                  * if any exist while preempt is disabled we
2333                  * start a ptl1_panic if requested via a
2334                  * globals.
2335                  */
2336                 kpreempt_disable();
2337                 my_cpu_id = CPU->cpu_id;
2338                 other_cpus = cpu_ready_set;
2339                 CPUSET_DEL(other_cpus, CPU->cpu_id);
2340                 target_found = 0;
2341                 if (!CPUSET_ISNULL(other_cpus)) {
2342                         /*
2343                          * Pick the first one
2344                          */
2345                         for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2346                                 if (cpu_id == my_cpu_id)
2347                                         continue;
2348 
2349                                 if (CPU_XCALL_READY(cpu_id)) {
2350                                         target_cpu_id = cpu_id;
2351                                         target_found = 1;
2352                                         break;
2353                                 }
2354                         }
2355                         ASSERT(target_found);
2356 
2357                         if (ptl1_panic_xc_one_test) {
2358                                 xc_one(target_cpu_id,
2359                                     (xcfunc_t *)ptl1_panic_xc, 0, 0);
2360                         }
2361                         if (ptl1_panic_xc_all_test) {
2362                                 xc_some(other_cpus,
2363                                     (xcfunc_t *)ptl1_panic_xc, 0, 0);
2364                         }
2365                         if (ptl1_panic_xt_one_test) {
2366                                 xt_one(target_cpu_id,
2367                                     (xcfunc_t *)ptl1_panic_xt, 0, 0);
2368                         }
2369                         if (ptl1_panic_xt_all_test) {
2370                                 xt_some(other_cpus,
2371                                     (xcfunc_t *)ptl1_panic_xt, 0, 0);
2372                         }
2373                 }
2374                 kpreempt_enable();
2375                 (void) timeout(ptl1_wakeup, NULL, hz);
2376                 (void) cv_wait(&ptl1_cv, &ptl1_mutex);
2377         }
2378         mutex_exit(&ptl1_mutex);
2379 }
2380 
2381 /*
2382  * Called during early startup to create the ptl1_thread
2383  */
2384 void
2385 init_ptl1_thread(void)
2386 {
2387         ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2388             &p0, TS_RUN, 0);
2389 }
2390 #endif  /* PTL1_PANIC_DEBUG */
2391 
2392 
2393 static void
2394 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2395 {
2396         struct memlist *new;
2397 
2398         new = *memlistp;
2399         new->ml_address = start;
2400         new->ml_size = len;
2401         *memlistp = new + 1;
2402 }
2403 
2404 /*
2405  * Add to a memory list.
2406  * start = start of new memory segment
2407  * len = length of new memory segment in bytes
2408  * memlistp = pointer to array of available memory segment structures
2409  * curmemlistp = memory list to which to add segment.
2410  */
2411 static void
2412 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2413     struct memlist **curmemlistp)
2414 {
2415         struct memlist *new = *memlistp;
2416 
2417         memlist_new(start, len, memlistp);
2418         memlist_insert(new, curmemlistp);
2419 }
2420 
2421 static int
2422 ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2423 {
2424         int nseg;
2425         size_t memseg_sz;
2426         struct memseg *msp;
2427 
2428         /*
2429          * The memseg list is for the chunks of physical memory that
2430          * will be managed by the vm system.  The number calculated is
2431          * a guess as boot may fragment it more when memory allocations
2432          * are made before kphysm_init().
2433          */
2434         memseg_sz = (avail + 10) * sizeof (struct memseg);
2435         memseg_sz = roundup(memseg_sz, PAGESIZE);
2436         nseg = memseg_sz / sizeof (struct memseg);
2437         msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2438         if (msp == NULL)
2439                 return (1);
2440         PRM_DEBUG(memseg_free);
2441 
2442         while (nseg--) {
2443                 msp->next = memseg_free;
2444                 memseg_free = msp;
2445                 msp++;
2446         }
2447         return (0);
2448 }
2449 
2450 /*
2451  * In the case of architectures that support dynamic addition of
2452  * memory at run-time there are two cases where memsegs need to
2453  * be initialized and added to the memseg list.
2454  * 1) memsegs that are constructed at startup.
2455  * 2) memsegs that are constructed at run-time on
2456  *    hot-plug capable architectures.
2457  * This code was originally part of the function kphysm_init().
2458  */
2459 
2460 static void
2461 memseg_list_add(struct memseg *memsegp)
2462 {
2463         struct memseg **prev_memsegp;
2464         pgcnt_t num;
2465 
2466         /* insert in memseg list, decreasing number of pages order */
2467 
2468         num = MSEG_NPAGES(memsegp);
2469 
2470         for (prev_memsegp = &memsegs; *prev_memsegp;
2471             prev_memsegp = &((*prev_memsegp)->next)) {
2472                 if (num > MSEG_NPAGES(*prev_memsegp))
2473                         break;
2474         }
2475 
2476         memsegp->next = *prev_memsegp;
2477         *prev_memsegp = memsegp;
2478 
2479         if (kpm_enable) {
2480                 memsegp->nextpa = (memsegp->next) ?
2481                     va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2482 
2483                 if (prev_memsegp != &memsegs) {
2484                         struct memseg *msp;
2485                         msp = (struct memseg *)((caddr_t)prev_memsegp -
2486                             offsetof(struct memseg, next));
2487                         msp->nextpa = va_to_pa(memsegp);
2488                 } else {
2489                         memsegspa = va_to_pa(memsegs);
2490                 }
2491         }
2492 }
2493 
2494 /*
2495  * PSM add_physmem_cb(). US-II and newer processors have some
2496  * flavor of the prefetch capability implemented. We exploit
2497  * this capability for optimum performance.
2498  */
2499 #define PREFETCH_BYTES  64
2500 
2501 void
2502 add_physmem_cb(page_t *pp, pfn_t pnum)
2503 {
2504         extern void      prefetch_page_w(void *);
2505 
2506         pp->p_pagenum = pnum;
2507 
2508         /*
2509          * Prefetch one more page_t into E$. To prevent future
2510          * mishaps with the sizeof(page_t) changing on us, we
2511          * catch this on debug kernels if we can't bring in the
2512          * entire hpage with 2 PREFETCH_BYTES reads. See
2513          * also, sun4u/cpu/cpu_module.c
2514          */
2515         /*LINTED*/
2516         ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2517         prefetch_page_w((char *)pp);
2518 }
2519 
2520 /*
2521  * Find memseg with given pfn
2522  */
2523 static struct memseg *
2524 memseg_find(pfn_t base, pfn_t *next)
2525 {
2526         struct memseg *seg;
2527 
2528         if (next != NULL)
2529                 *next = LONG_MAX;
2530         for (seg = memsegs; seg != NULL; seg = seg->next) {
2531                 if (base >= seg->pages_base && base < seg->pages_end)
2532                         return (seg);
2533                 if (next != NULL && seg->pages_base > base &&
2534                     seg->pages_base < *next)
2535                         *next = seg->pages_base;
2536         }
2537         return (NULL);
2538 }
2539 
2540 /*
2541  * Put page allocated by OBP on prom_ppages
2542  */
2543 static void
2544 kphysm_erase(uint64_t addr, uint64_t len)
2545 {
2546         struct page *pp;
2547         struct memseg *seg;
2548         pfn_t base = btop(addr), next;
2549         pgcnt_t num = btop(len);
2550 
2551         while (num != 0) {
2552                 pgcnt_t off, left;
2553 
2554                 seg = memseg_find(base, &next);
2555                 if (seg == NULL) {
2556                         if (next == LONG_MAX)
2557                                 break;
2558                         left = MIN(next - base, num);
2559                         base += left, num -= left;
2560                         continue;
2561                 }
2562                 off = base - seg->pages_base;
2563                 pp = seg->pages + off;
2564                 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2565                 while (num != left) {
2566                         /*
2567                          * init it, lock it, and hashin on prom_pages vp.
2568                          *
2569                          * Mark it as NONRELOC to let DR know the page
2570                          * is locked long term, otherwise DR hangs when
2571                          * trying to remove those pages.
2572                          *
2573                          * XXX  vnode offsets on the prom_ppages vnode
2574                          *      are page numbers (gack) for >32 bit
2575                          *      physical memory machines.
2576                          */
2577                         PP_SETNORELOC(pp);
2578                         add_physmem_cb(pp, base);
2579                         if (page_trylock(pp, SE_EXCL) == 0)
2580                                 cmn_err(CE_PANIC, "prom page locked");
2581                         (void) page_hashin(pp, &promvp,
2582                             (offset_t)base, NULL);
2583                         (void) page_pp_lock(pp, 0, 1);
2584                         pp++, base++, num--;
2585                 }
2586         }
2587 }
2588 
2589 static page_t *ppnext;
2590 static pgcnt_t ppleft;
2591 
2592 static void *kpm_ppnext;
2593 static pgcnt_t kpm_ppleft;
2594 
2595 /*
2596  * Create a memseg
2597  */
2598 static void
2599 kphysm_memseg(uint64_t addr, uint64_t len)
2600 {
2601         pfn_t base = btop(addr);
2602         pgcnt_t num = btop(len);
2603         struct memseg *seg;
2604 
2605         seg = memseg_free;
2606         memseg_free = seg->next;
2607         ASSERT(seg != NULL);
2608 
2609         seg->pages = ppnext;
2610         seg->epages = ppnext + num;
2611         seg->pages_base = base;
2612         seg->pages_end = base + num;
2613         ppnext += num;
2614         ppleft -= num;
2615 
2616         if (kpm_enable) {
2617                 pgcnt_t kpnum = ptokpmpr(num);
2618 
2619                 if (kpnum > kpm_ppleft)
2620                         panic("kphysm_memseg: kpm_pp overflow");
2621                 seg->pagespa = va_to_pa(seg->pages);
2622                 seg->epagespa = va_to_pa(seg->epages);
2623                 seg->kpm_pbase = kpmptop(ptokpmp(base));
2624                 seg->kpm_nkpmpgs = kpnum;
2625                 /*
2626                  * In the kpm_smallpage case, the kpm array
2627                  * is 1-1 wrt the page array
2628                  */
2629                 if (kpm_smallpages) {
2630                         kpm_spage_t *kpm_pp = kpm_ppnext;
2631 
2632                         kpm_ppnext = kpm_pp + kpnum;
2633                         seg->kpm_spages = kpm_pp;
2634                         seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2635                 } else {
2636                         kpm_page_t *kpm_pp = kpm_ppnext;
2637 
2638                         kpm_ppnext = kpm_pp + kpnum;
2639                         seg->kpm_pages = kpm_pp;
2640                         seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2641                         /* ASSERT no kpm overlaps */
2642                         ASSERT(
2643                             memseg_find(base - pmodkpmp(base), NULL) == NULL);
2644                         ASSERT(memseg_find(
2645                             roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2646                 }
2647                 kpm_ppleft -= kpnum;
2648         }
2649 
2650         memseg_list_add(seg);
2651 }
2652 
2653 /*
2654  * Add range to free list
2655  */
2656 void
2657 kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2658 {
2659         struct page *pp;
2660         struct memseg *seg;
2661         pfn_t base = btop(addr);
2662         pgcnt_t num = btop(len);
2663 
2664         seg = memseg_find(base, NULL);
2665         ASSERT(seg != NULL);
2666         pp = seg->pages + (base - seg->pages_base);
2667 
2668         if (reclaim) {
2669                 struct page *rpp = pp;
2670                 struct page *lpp = pp + num;
2671 
2672                 /*
2673                  * page should be locked on prom_ppages
2674                  * unhash and unlock it
2675                  */
2676                 while (rpp < lpp) {
2677                         ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp);
2678                         ASSERT(PP_ISNORELOC(rpp));
2679                         PP_CLRNORELOC(rpp);
2680                         page_pp_unlock(rpp, 0, 1);
2681                         page_hashout(rpp, NULL);
2682                         page_unlock(rpp);
2683                         rpp++;
2684                 }
2685         }
2686 
2687         /*
2688          * add_physmem() initializes the PSM part of the page
2689          * struct by calling the PSM back with add_physmem_cb().
2690          * In addition it coalesces pages into larger pages as
2691          * it initializes them.
2692          */
2693         add_physmem(pp, num, base);
2694 }
2695 
2696 /*
2697  * kphysm_init() tackles the problem of initializing physical memory.
2698  */
2699 static void
2700 kphysm_init(void)
2701 {
2702         struct memlist *pmem;
2703 
2704         ASSERT(page_hash != NULL && page_hashsz != 0);
2705 
2706         ppnext = pp_base;
2707         ppleft = npages;
2708         kpm_ppnext = kpm_pp_base;
2709         kpm_ppleft = kpm_npages;
2710 
2711         /*
2712          * installed pages not on nopp_memlist go in memseg list
2713          */
2714         diff_memlists(phys_install, nopp_list, kphysm_memseg);
2715 
2716         /*
2717          * Free the avail list
2718          */
2719         for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next)
2720                 kphysm_add(pmem->ml_address, pmem->ml_size, 0);
2721 
2722         /*
2723          * Erase pages that aren't available
2724          */
2725         diff_memlists(phys_install, phys_avail, kphysm_erase);
2726 
2727         build_pfn_hash();
2728 }
2729 
2730 /*
2731  * Kernel VM initialization.
2732  * Assumptions about kernel address space ordering:
2733  *      (1) gap (user space)
2734  *      (2) kernel text
2735  *      (3) kernel data/bss
2736  *      (4) gap
2737  *      (5) kernel data structures
2738  *      (6) gap
2739  *      (7) debugger (optional)
2740  *      (8) monitor
2741  *      (9) gap (possibly null)
2742  *      (10) dvma
2743  *      (11) devices
2744  */
2745 static void
2746 kvm_init(void)
2747 {
2748         /*
2749          * Put the kernel segments in kernel address space.
2750          */
2751         rw_enter(&kas.a_lock, RW_WRITER);
2752         as_avlinit(&kas);
2753 
2754         (void) seg_attach(&kas, (caddr_t)KERNELBASE,
2755             (size_t)(e_moddata - KERNELBASE), &ktextseg);
2756         (void) segkmem_create(&ktextseg);
2757 
2758         (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2759             (size_t)(MMU_PAGESIZE4M), &ktexthole);
2760         (void) segkmem_create(&ktexthole);
2761 
2762         (void) seg_attach(&kas, (caddr_t)valloc_base,
2763             (size_t)(econtig32 - valloc_base), &kvalloc);
2764         (void) segkmem_create(&kvalloc);
2765 
2766         if (kmem64_base) {
2767                 (void) seg_attach(&kas, (caddr_t)kmem64_base,
2768                     (size_t)(kmem64_end - kmem64_base), &kmem64);
2769                 (void) segkmem_create(&kmem64);
2770         }
2771 
2772         /*
2773          * We're about to map out /boot.  This is the beginning of the
2774          * system resource management transition. We can no longer
2775          * call into /boot for I/O or memory allocations.
2776          */
2777         (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2778         (void) segkmem_create(&kvseg);
2779         hblk_alloc_dynamic = 1;
2780 
2781         /*
2782          * we need to preallocate pages for DR operations before enabling large
2783          * page kernel heap because of memseg_remap_init() hat_unload() hack.
2784          */
2785         memseg_remap_init();
2786 
2787         /* at this point we are ready to use large page heap */
2788         segkmem_heap_lp_init();
2789 
2790         (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2791             &kvseg32);
2792         (void) segkmem_create(&kvseg32);
2793 
2794         /*
2795          * Create a segment for the debugger.
2796          */
2797         (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2798         (void) segkmem_create(&kdebugseg);
2799 
2800         rw_exit(&kas.a_lock);
2801 }
2802 
2803 char obp_tte_str[] =
2804         "h# %x constant MMU_PAGESHIFT "
2805         "h# %x constant TTE8K "
2806         "h# %x constant SFHME_SIZE "
2807         "h# %x constant SFHME_TTE "
2808         "h# %x constant HMEBLK_TAG "
2809         "h# %x constant HMEBLK_NEXT "
2810         "h# %x constant HMEBLK_MISC "
2811         "h# %x constant HMEBLK_HME1 "
2812         "h# %x constant NHMENTS "
2813         "h# %x constant HBLK_SZMASK "
2814         "h# %x constant HBLK_RANGE_SHIFT "
2815         "h# %x constant HMEBP_HBLK "
2816         "h# %x constant HMEBLK_ENDPA "
2817         "h# %x constant HMEBUCKET_SIZE "
2818         "h# %x constant HTAG_SFMMUPSZ "
2819         "h# %x constant HTAG_BSPAGE_SHIFT "
2820         "h# %x constant HTAG_REHASH_SHIFT "
2821         "h# %x constant SFMMU_INVALID_SHMERID "
2822         "h# %x constant mmu_hashcnt "
2823         "h# %p constant uhme_hash "
2824         "h# %p constant khme_hash "
2825         "h# %x constant UHMEHASH_SZ "
2826         "h# %x constant KHMEHASH_SZ "
2827         "h# %p constant KCONTEXT "
2828         "h# %p constant KHATID "
2829         "h# %x constant ASI_MEM "
2830 
2831         ": PHYS-X@ ( phys -- data ) "
2832         "   ASI_MEM spacex@ "
2833         "; "
2834 
2835         ": PHYS-W@ ( phys -- data ) "
2836         "   ASI_MEM spacew@ "
2837         "; "
2838 
2839         ": PHYS-L@ ( phys -- data ) "
2840         "   ASI_MEM spaceL@ "
2841         "; "
2842 
2843         ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2844         "   3 * MMU_PAGESHIFT + "
2845         "; "
2846 
2847         ": TTE_IS_VALID ( ttep -- flag ) "
2848         "   PHYS-X@ 0< "
2849         "; "
2850 
2851         ": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2852         "   dup TTE8K =  if "
2853         "      drop HBLK_RANGE_SHIFT "
2854         "   else "
2855         "      TTE_PAGE_SHIFT "
2856         "   then "
2857         "; "
2858 
2859         ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2860         "   tuck >> swap MMU_PAGESHIFT - << "
2861         "; "
2862 
2863         ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2864         "   >> over xor swap                    ( hash sfmmup ) "
2865         "   KHATID <>  if                       ( hash ) "
2866         "      UHMEHASH_SZ and                  ( bucket ) "
2867         "      HMEBUCKET_SIZE * uhme_hash +     ( hmebp ) "
2868         "   else                                ( hash ) "
2869         "      KHMEHASH_SZ and                  ( bucket ) "
2870         "      HMEBUCKET_SIZE * khme_hash +     ( hmebp ) "
2871         "   then                                ( hmebp ) "
2872         "; "
2873 
2874         ": HME_HASH_TABLE_SEARCH "
2875         "       ( sfmmup hmebp hblktag --  sfmmup null | sfmmup hmeblkp ) "
2876         "   >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2877         "      dup HMEBLK_ENDPA <> if     ( sfmmup hmeblkp ) ( r: hblktag ) "
2878         "         dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp )     "
2879         "            dup hmeblk_tag + 8 + phys-x@ 2 pick = if             "
2880         "                 true  ( sfmmup hmeblkp true ) ( r: hblktag )    "
2881         "            else                                                 "
2882         "                 hmeblk_next + phys-x@ false                     "
2883         "                       ( sfmmup hmeblkp false ) ( r: hblktag )   "
2884         "            then                                                 "
2885         "         else                                                    "
2886         "            hmeblk_next + phys-x@ false                          "
2887         "                       ( sfmmup hmeblkp false ) ( r: hblktag )   "
2888         "         then                                                    "
2889         "      else                                                       "
2890         "         drop 0 true                                             "
2891         "      then                                                       "
2892         "   until r> drop                                              "
2893         "; "
2894 
2895         ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2896         "   over HME_HASH_SHIFT HME_HASH_BSPAGE  ( sfmmup rehash bspage ) "
2897         "   HTAG_BSPAGE_SHIFT <<           ( sfmmup rehash htag-bspage )"
2898         "   swap HTAG_REHASH_SHIFT << or   ( sfmmup htag-bspage-rehash )"
2899         "   SFMMU_INVALID_SHMERID or nip         ( hblktag ) "
2900         "; "
2901 
2902         ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2903         "   over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and  ( hmeblkp addr ttesz ) "
2904         "   TTE8K =  if                            ( hmeblkp addr ) "
2905         "      MMU_PAGESHIFT >> NHMENTS 1- and     ( hmeblkp hme-index ) "
2906         "   else                                   ( hmeblkp addr ) "
2907         "      drop 0                              ( hmeblkp 0 ) "
2908         "   then                                   ( hmeblkp hme-index ) "
2909         "   SFHME_SIZE * + HMEBLK_HME1 +           ( hmep ) "
2910         "   SFHME_TTE +                            ( ttep ) "
2911         "; "
2912 
2913         ": unix-tte ( addr cnum -- false | tte-data true ) "
2914         "    KCONTEXT = if                   ( addr ) "
2915         "       KHATID                       ( addr khatid ) "
2916         "    else                            ( addr ) "
2917         "       drop false exit              ( false ) "
2918         "    then "
2919         "      ( addr khatid ) "
2920         "      mmu_hashcnt 1+ 1  do           ( addr sfmmup ) "
2921         "         2dup swap i HME_HASH_SHIFT  "
2922                                         "( addr sfmmup sfmmup addr hmeshift ) "
2923         "         HME_HASH_FUNCTION           ( addr sfmmup hmebp ) "
2924         "         over i 4 pick               "
2925                                 "( addr sfmmup hmebp sfmmup rehash addr ) "
2926         "         HME_HASH_TAG                ( addr sfmmup hmebp hblktag ) "
2927         "         HME_HASH_TABLE_SEARCH       "
2928                                         "( addr sfmmup { null | hmeblkp } ) "
2929         "         ?dup  if                    ( addr sfmmup hmeblkp ) "
2930         "            nip swap HBLK_TO_TTEP    ( ttep ) "
2931         "            dup TTE_IS_VALID  if     ( valid-ttep ) "
2932         "               PHYS-X@ true          ( tte-data true ) "
2933         "            else                     ( invalid-tte ) "
2934         "               drop false            ( false ) "
2935         "            then                     ( false | tte-data true ) "
2936         "            unloop exit              ( false | tte-data true ) "
2937         "         then                        ( addr sfmmup ) "
2938         "      loop                           ( addr sfmmup ) "
2939         "      2drop false                    ( false ) "
2940         "; "
2941 ;
2942 
2943 void
2944 create_va_to_tte(void)
2945 {
2946         char *bp;
2947         extern int khmehash_num, uhmehash_num;
2948         extern struct hmehash_bucket *khme_hash, *uhme_hash;
2949 
2950 #define OFFSET(type, field)     ((uintptr_t)(&((type *)0)->field))
2951 
2952         bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2953 
2954         /*
2955          * Teach obp how to parse our sw ttes.
2956          */
2957         (void) sprintf(bp, obp_tte_str,
2958             MMU_PAGESHIFT,
2959             TTE8K,
2960             sizeof (struct sf_hment),
2961             OFFSET(struct sf_hment, hme_tte),
2962             OFFSET(struct hme_blk, hblk_tag),
2963             OFFSET(struct hme_blk, hblk_nextpa),
2964             OFFSET(struct hme_blk, hblk_misc),
2965             OFFSET(struct hme_blk, hblk_hme),
2966             NHMENTS,
2967             HBLK_SZMASK,
2968             HBLK_RANGE_SHIFT,
2969             OFFSET(struct hmehash_bucket, hmeh_nextpa),
2970             HMEBLK_ENDPA,
2971             sizeof (struct hmehash_bucket),
2972             HTAG_SFMMUPSZ,
2973             HTAG_BSPAGE_SHIFT,
2974             HTAG_REHASH_SHIFT,
2975             SFMMU_INVALID_SHMERID,
2976             mmu_hashcnt,
2977             (caddr_t)va_to_pa((caddr_t)uhme_hash),
2978             (caddr_t)va_to_pa((caddr_t)khme_hash),
2979             UHMEHASH_SZ,
2980             KHMEHASH_SZ,
2981             KCONTEXT,
2982             KHATID,
2983             ASI_MEM);
2984         prom_interpret(bp, 0, 0, 0, 0, 0);
2985 
2986         kobj_free(bp, MMU_PAGESIZE);
2987 }
2988 
2989 void
2990 install_va_to_tte(void)
2991 {
2992         /*
2993          * advise prom that it can use unix-tte
2994          */
2995         prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2996 }
2997 
2998 /*
2999  * Here we add "device-type=console" for /os-io node, for currently
3000  * our kernel console output only supports displaying text and
3001  * performing cursor-positioning operations (through kernel framebuffer
3002  * driver) and it doesn't support other functionalities required for a
3003  * standard "display" device as specified in 1275 spec. The main missing
3004  * interface defined by the 1275 spec is "draw-logo".
3005  * also see the comments above prom_stdout_is_framebuffer().
3006  */
3007 static char *create_node =
3008         "\" /\" find-device "
3009         "new-device "
3010         "\" os-io\" device-name "
3011         "\" "OBP_DISPLAY_CONSOLE"\" device-type "
3012         ": cb-r/w  ( adr,len method$ -- #read/#written ) "
3013         "   2>r swap 2 2r> ['] $callback  catch  if "
3014         "      2drop 3drop 0 "
3015         "   then "
3016         "; "
3017         ": read ( adr,len -- #read ) "
3018         "       \" read\" ['] cb-r/w catch  if  2drop 2drop -2 exit then "
3019         "       ( retN ... ret1 N ) "
3020         "       ?dup  if "
3021         "               swap >r 1-  0  ?do  drop  loop  r> "
3022         "       else "
3023         "               -2 "
3024         "       then "
3025         ";    "
3026         ": write ( adr,len -- #written ) "
3027         "       \" write\" ['] cb-r/w catch  if  2drop 2drop 0 exit  then "
3028         "       ( retN ... ret1 N ) "
3029         "       ?dup  if "
3030         "               swap >r 1-  0  ?do  drop  loop  r> "
3031         "        else "
3032         "               0 "
3033         "       then "
3034         "; "
3035         ": poll-tty ( -- ) ; "
3036         ": install-abort  ( -- )  ['] poll-tty d# 10 alarm ; "
3037         ": remove-abort ( -- )  ['] poll-tty 0 alarm ; "
3038         ": cb-give/take ( $method -- ) "
3039         "       0 -rot ['] $callback catch  ?dup  if "
3040         "               >r 2drop 2drop r> throw "
3041         "       else "
3042         "               0  ?do  drop  loop "
3043         "       then "
3044         "; "
3045         ": give ( -- )  \" exit-input\" cb-give/take ; "
3046         ": take ( -- )  \" enter-input\" cb-give/take ; "
3047         ": open ( -- ok? )  true ; "
3048         ": close ( -- ) ; "
3049         "finish-device "
3050         "device-end ";
3051 
3052 /*
3053  * Create the OBP input/output node (FCode serial driver).
3054  * It is needed for both USB console keyboard and for
3055  * the kernel terminal emulator.  It is too early to check for a
3056  * kernel console compatible framebuffer now, so we create this
3057  * so that we're ready if we need to enable kernel terminal emulation.
3058  *
3059  * When the USB software takes over the input device at the time
3060  * consconfig runs, OBP's stdin is redirected to this node.
3061  * Whenever the FORTH user interface is used after this switch,
3062  * the node will call back into the kernel for console input.
3063  * If a serial device such as ttya or a UART with a Type 5 keyboard
3064  * attached is used, OBP takes over the serial device when the system
3065  * goes to the debugger after the system is booted.  This sharing
3066  * of the relatively simple serial device is difficult but possible.
3067  * Sharing the USB host controller is impossible due its complexity.
3068  *
3069  * Similarly to USB keyboard input redirection, after consconfig_dacf
3070  * configures a kernel console framebuffer as the standard output
3071  * device, OBP's stdout is switched to to vector through the
3072  * /os-io node into the kernel terminal emulator.
3073  */
3074 static void
3075 startup_create_io_node(void)
3076 {
3077         prom_interpret(create_node, 0, 0, 0, 0, 0);
3078 }
3079 
3080 
3081 /*
3082  * Must be defined in platform dependent code.
3083  */
3084 extern caddr_t modtext;
3085 extern size_t modtext_sz;
3086 extern caddr_t moddata;
3087 
3088 #define HEAPTEXT_ARENA(addr)    \
3089         ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3090         (((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3091         (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3092 
3093 #define HEAPTEXT_OVERSIZED(addr)        \
3094         ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3095 
3096 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \
3097         (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3098         ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3099 
3100 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3101 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3102 kmutex_t texthole_lock;
3103 
3104 char kern_bootargs[OBP_MAXPATHLEN];
3105 char kern_bootfile[OBP_MAXPATHLEN];
3106 
3107 void
3108 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3109 {
3110         uintptr_t addr, limit;
3111 
3112         addr = HEAPTEXT_BASE;
3113         limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3114 
3115         /*
3116          * Before we initialize the text_arena, we want to punch holes in the
3117          * underlying heaptext_arena.  This guarantees that for any text
3118          * address we can find a text hole less than HEAPTEXT_MAPPED away.
3119          */
3120         for (; addr + HEAPTEXT_UNMAPPED <= limit;
3121             addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3122                 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3123                     0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3124                     VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3125         }
3126 
3127         /*
3128          * Allocate one page at the oversize to break up the text region
3129          * from the oversized region.
3130          */
3131         (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3132             (void *)limit, (void *)(limit + PAGESIZE),
3133             VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3134 
3135         *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3136             modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3137             heaptext_arena, 0, VM_SLEEP);
3138         *data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3139             segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3140 }
3141 
3142 caddr_t
3143 kobj_text_alloc(vmem_t *arena, size_t size)
3144 {
3145         caddr_t rval, better;
3146 
3147         /*
3148          * First, try a sleeping allocation.
3149          */
3150         rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3151 
3152         if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3153                 return (rval);
3154 
3155         /*
3156          * We didn't get the area that we wanted.  We're going to try to do an
3157          * allocation with explicit constraints.
3158          */
3159         better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3160             (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3161             VM_NOSLEEP | VM_BESTFIT);
3162 
3163         if (better != NULL) {
3164                 /*
3165                  * That worked.  Free our first attempt and return.
3166                  */
3167                 vmem_free(arena, rval, size);
3168                 return (better);
3169         }
3170 
3171         /*
3172          * That didn't work; we'll have to return our first attempt.
3173          */
3174         return (rval);
3175 }
3176 
3177 caddr_t
3178 kobj_texthole_alloc(caddr_t addr, size_t size)
3179 {
3180         int arena = HEAPTEXT_ARENA(addr);
3181         char c[30];
3182         uintptr_t base;
3183 
3184         if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3185                 /*
3186                  * If this is an oversized allocation or it is allocated in
3187                  * the nucleus data page, there is no text hole available for
3188                  * it; return NULL.
3189                  */
3190                 return (NULL);
3191         }
3192 
3193         mutex_enter(&texthole_lock);
3194 
3195         if (texthole_arena[arena] == NULL) {
3196                 ASSERT(texthole_source[arena] == NULL);
3197 
3198                 if (arena == 0) {
3199                         texthole_source[0] = vmem_create("module_text_holesrc",
3200                             (void *)(KERNELBASE + MMU_PAGESIZE4M),
3201                             MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3202                             0, VM_SLEEP);
3203                 } else {
3204                         base = HEAPTEXT_BASE +
3205                             (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3206 
3207                         (void) snprintf(c, sizeof (c),
3208                             "heaptext_holesrc_%d", arena);
3209 
3210                         texthole_source[arena] = vmem_create(c, (void *)base,
3211                             HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3212                             0, VM_SLEEP);
3213                 }
3214 
3215                 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3216 
3217                 texthole_arena[arena] = vmem_create(c, NULL, 0,
3218                     sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3219                     texthole_source[arena], 0, VM_SLEEP);
3220         }
3221 
3222         mutex_exit(&texthole_lock);
3223 
3224         ASSERT(texthole_arena[arena] != NULL);
3225         ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3226         return (vmem_alloc(texthole_arena[arena], size,
3227             VM_BESTFIT | VM_NOSLEEP));
3228 }
3229 
3230 void
3231 kobj_texthole_free(caddr_t addr, size_t size)
3232 {
3233         int arena = HEAPTEXT_ARENA(addr);
3234 
3235         ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3236         ASSERT(texthole_arena[arena] != NULL);
3237         vmem_free(texthole_arena[arena], addr, size);
3238 }
3239 
3240 void
3241 release_bootstrap(void)
3242 {
3243         if (&cif_init)
3244                 cif_init();
3245 }