1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016 by Delphix. All rights reserved.
25 * Copyright 2019 Peter Tribble.
26 */
27
28 #include <sys/machsystm.h>
29 #include <sys/archsystm.h>
30 #include <sys/vm.h>
31 #include <sys/cpu.h>
32 #include <sys/atomic.h>
33 #include <sys/reboot.h>
34 #include <sys/kdi.h>
35 #include <sys/bootconf.h>
36 #include <sys/memlist_plat.h>
37 #include <sys/memlist_impl.h>
38 #include <sys/prom_plat.h>
39 #include <sys/prom_isa.h>
40 #include <sys/autoconf.h>
41 #include <sys/ivintr.h>
42 #include <sys/fpu/fpusystm.h>
43 #include <sys/iommutsb.h>
44 #include <vm/vm_dep.h>
45 #include <vm/seg_dev.h>
46 #include <vm/seg_kmem.h>
47 #include <vm/seg_kpm.h>
48 #include <vm/seg_map.h>
49 #include <vm/seg_kp.h>
50 #include <sys/sysconf.h>
51 #include <vm/hat_sfmmu.h>
52 #include <sys/kobj.h>
53 #include <sys/sun4asi.h>
54 #include <sys/clconf.h>
55 #include <sys/platform_module.h>
56 #include <sys/panic.h>
57 #include <sys/cpu_sgnblk_defs.h>
58 #include <sys/clock.h>
59 #include <sys/cmn_err.h>
60 #include <sys/dumphdr.h>
61 #include <sys/promif.h>
62 #include <sys/prom_debug.h>
63 #include <sys/traptrace.h>
64 #include <sys/memnode.h>
65 #include <sys/mem_cage.h>
66 #include <sys/mmu.h>
67 #include <sys/swap.h>
68
69 extern void setup_trap_table(void);
70 extern int cpu_intrq_setup(struct cpu *);
71 extern void cpu_intrq_register(struct cpu *);
72 extern void contig_mem_init(void);
73 extern caddr_t contig_mem_prealloc(caddr_t, pgcnt_t);
74 extern void mach_dump_buffer_init(void);
75 extern void mach_descrip_init(void);
76 extern void mach_descrip_startup_fini(void);
77 extern void mach_memscrub(void);
78 extern void mach_fpras(void);
79 extern void mach_cpu_halt_idle(void);
80 extern void mach_hw_copy_limit(void);
81 extern void load_mach_drivers(void);
82 extern void load_tod_module(void);
83 #pragma weak load_tod_module
84
85 extern int ndata_alloc_mmfsa(struct memlist *ndata);
86 #pragma weak ndata_alloc_mmfsa
87
88 extern void cif_init(void);
89 #pragma weak cif_init
90
91 extern void parse_idprom(void);
92 extern void add_vx_handler(char *, int, void (*)(cell_t *));
93 extern void mem_config_init(void);
94 extern void memseg_remap_init(void);
95
96 extern void mach_kpm_init(void);
97 extern void pcf_init();
98 extern int size_pse_array(pgcnt_t, int);
99 extern void pg_init();
100
101 /*
102 * External Data:
103 */
104 extern int vac_size; /* cache size in bytes */
105 extern uint_t vac_mask; /* VAC alignment consistency mask */
106 extern uint_t vac_colors;
107
108 /*
109 * Global Data Definitions:
110 */
111
112 /*
113 * XXX - Don't port this to new architectures
114 * A 3rd party volume manager driver (vxdm) depends on the symbol romp.
115 * 'romp' has no use with a prom with an IEEE 1275 client interface.
116 * The driver doesn't use the value, but it depends on the symbol.
117 */
118 void *romp; /* veritas driver won't load without romp 4154976 */
119 /*
120 * Declare these as initialized data so we can patch them.
121 */
122 pgcnt_t physmem = 0; /* memory size in pages, patch if you want less */
123 pgcnt_t segkpsize =
124 btop(SEGKPDEFSIZE); /* size of segkp segment in pages */
125 uint_t segmap_percent = 6; /* Size of segmap segment */
126
127 int use_cache = 1; /* cache not reliable (605 bugs) with MP */
128 int vac_copyback = 1;
129 char *cache_mode = NULL;
130 int use_mix = 1;
131 int prom_debug = 0;
132
133 caddr_t boot_tba; /* %tba at boot - used by kmdb */
134 uint_t tba_taken_over = 0;
135
136 caddr_t s_text; /* start of kernel text segment */
137 caddr_t e_text; /* end of kernel text segment */
138 caddr_t s_data; /* start of kernel data segment */
139 caddr_t e_data; /* end of kernel data segment */
140
141 caddr_t modtext; /* beginning of module text */
142 size_t modtext_sz; /* size of module text */
143 caddr_t moddata; /* beginning of module data reserve */
144 caddr_t e_moddata; /* end of module data reserve */
145
146 /*
147 * End of first block of contiguous kernel in 32-bit virtual address space
148 */
149 caddr_t econtig32; /* end of first blk of contiguous kernel */
150
151 caddr_t ncbase; /* beginning of non-cached segment */
152 caddr_t ncend; /* end of non-cached segment */
153
154 size_t ndata_remain_sz; /* bytes from end of data to 4MB boundary */
155 caddr_t nalloc_base; /* beginning of nucleus allocation */
156 caddr_t nalloc_end; /* end of nucleus allocatable memory */
157 caddr_t valloc_base; /* beginning of kvalloc segment */
158
159 caddr_t kmem64_base; /* base of kernel mem segment in 64-bit space */
160 caddr_t kmem64_end; /* end of kernel mem segment in 64-bit space */
161 size_t kmem64_sz; /* bytes in kernel mem segment, 64-bit space */
162 caddr_t kmem64_aligned_end; /* end of large page, overmaps 64-bit space */
163 int kmem64_szc; /* page size code */
164 uint64_t kmem64_pabase = (uint64_t)-1; /* physical address of kmem64_base */
165
166 uintptr_t shm_alignment; /* VAC address consistency modulus */
167 struct memlist *phys_install; /* Total installed physical memory */
168 struct memlist *phys_avail; /* Available (unreserved) physical memory */
169 struct memlist *virt_avail; /* Available (unmapped?) virtual memory */
170 struct memlist *nopp_list; /* pages with no backing page structs */
171 struct memlist ndata; /* memlist of nucleus allocatable memory */
172 int memexp_flag; /* memory expansion card flag */
173 uint64_t ecache_flushaddr; /* physical address used for flushing E$ */
174 pgcnt_t obp_pages; /* Physical pages used by OBP */
175
176 /*
177 * VM data structures
178 */
179 long page_hashsz; /* Size of page hash table (power of two) */
180 unsigned int page_hashsz_shift; /* log2(page_hashsz) */
181 struct page *pp_base; /* Base of system page struct array */
182 size_t pp_sz; /* Size in bytes of page struct array */
183 struct page **page_hash; /* Page hash table */
184 pad_mutex_t *pse_mutex; /* Locks protecting pp->p_selock */
185 size_t pse_table_size; /* Number of mutexes in pse_mutex[] */
186 int pse_shift; /* log2(pse_table_size) */
187 struct seg ktextseg; /* Segment used for kernel executable image */
188 struct seg kvalloc; /* Segment used for "valloc" mapping */
189 struct seg kpseg; /* Segment used for pageable kernel virt mem */
190 struct seg ktexthole; /* Segment used for nucleus text hole */
191 struct seg kmapseg; /* Segment used for generic kernel mappings */
192 struct seg kpmseg; /* Segment used for physical mapping */
193 struct seg kdebugseg; /* Segment used for the kernel debugger */
194
195 void *kpm_pp_base; /* Base of system kpm_page array */
196 size_t kpm_pp_sz; /* Size of system kpm_page array */
197 pgcnt_t kpm_npages; /* How many kpm pages are managed */
198
199 struct seg *segkp = &kpseg; /* Pageable kernel virtual memory segment */
200 struct seg *segkmap = &kmapseg; /* Kernel generic mapping segment */
201 struct seg *segkpm = &kpmseg; /* 64bit kernel physical mapping segment */
202
203 int segzio_fromheap = 0; /* zio allocations occur from heap */
204 caddr_t segzio_base; /* Base address of segzio */
205 pgcnt_t segziosize = 0; /* size of zio segment in pages */
206
207 /*
208 * A static DR page_t VA map is reserved that can map the page structures
209 * for a domain's entire RA space. The pages that backs this space are
210 * dynamically allocated and need not be physically contiguous. The DR
211 * map size is derived from KPM size.
212 */
213 int ppvm_enable = 0; /* Static virtual map for page structs */
214 page_t *ppvm_base; /* Base of page struct map */
215 pgcnt_t ppvm_size = 0; /* Size of page struct map */
216
217 /*
218 * debugger pages (if allocated)
219 */
220 struct vnode kdebugvp;
221
222 /*
223 * VA range available to the debugger
224 */
225 const caddr_t kdi_segdebugbase = (const caddr_t)SEGDEBUGBASE;
226 const size_t kdi_segdebugsize = SEGDEBUGSIZE;
227
228 /*
229 * Segment for relocated kernel structures in 64-bit large RAM kernels
230 */
231 struct seg kmem64;
232
233 struct memseg *memseg_free;
234
235 struct vnode unused_pages_vp;
236
237 /*
238 * VM data structures allocated early during boot.
239 */
240 size_t pagehash_sz;
241 uint64_t memlist_sz;
242
243 char tbr_wr_addr_inited = 0;
244
245 caddr_t mpo_heap32_buf = NULL;
246 size_t mpo_heap32_bufsz = 0;
247
248 /*
249 * Static Routines:
250 */
251 static int ndata_alloc_memseg(struct memlist *, size_t);
252 static void memlist_new(uint64_t, uint64_t, struct memlist **);
253 static void memlist_add(uint64_t, uint64_t,
254 struct memlist **, struct memlist **);
255 static void kphysm_init(void);
256 static void kvm_init(void);
257 static void install_kmem64_tte(void);
258
259 static void startup_init(void);
260 static void startup_memlist(void);
261 static void startup_modules(void);
262 static void startup_bop_gone(void);
263 static void startup_vm(void);
264 static void startup_end(void);
265 static void setup_cage_params(void);
266 static void startup_create_io_node(void);
267
268 static pgcnt_t npages;
269 static struct memlist *memlist;
270 void *memlist_end;
271
272 static pgcnt_t bop_alloc_pages;
273 static caddr_t hblk_base;
274 uint_t hblk_alloc_dynamic = 0;
275 uint_t hblk1_min = H1MIN;
276
277
278 /*
279 * After receiving a thermal interrupt, this is the number of seconds
280 * to delay before shutting off the system, assuming
281 * shutdown fails. Use /etc/system to change the delay if this isn't
282 * large enough.
283 */
284 int thermal_powerdown_delay = 1200;
285
286 /*
287 * Used to hold off page relocations into the cage until OBP has completed
288 * its boot-time handoff of its resources to the kernel.
289 */
290 int page_relocate_ready = 0;
291
292 /*
293 * Indicate if kmem64 allocation was done in small chunks
294 */
295 int kmem64_smchunks = 0;
296
297 /*
298 * Enable some debugging messages concerning memory usage...
299 */
300 #ifdef DEBUGGING_MEM
301 static int debugging_mem;
302 static void
303 printmemlist(char *title, struct memlist *list)
304 {
305 if (!debugging_mem)
306 return;
307
308 printf("%s\n", title);
309
310 while (list) {
311 prom_printf("\taddr = 0x%x %8x, size = 0x%x %8x\n",
312 (uint32_t)(list->ml_address >> 32),
313 (uint32_t)list->ml_address,
314 (uint32_t)(list->ml_size >> 32),
315 (uint32_t)(list->ml_size));
316 list = list->ml_next;
317 }
318 }
319
320 void
321 printmemseg(struct memseg *memseg)
322 {
323 if (!debugging_mem)
324 return;
325
326 printf("memseg\n");
327
328 while (memseg) {
329 prom_printf("\tpage = 0x%p, epage = 0x%p, "
330 "pfn = 0x%x, epfn = 0x%x\n",
331 memseg->pages, memseg->epages,
332 memseg->pages_base, memseg->pages_end);
333 memseg = memseg->next;
334 }
335 }
336
337 #define debug_pause(str) halt((str))
338 #define MPRINTF(str) if (debugging_mem) prom_printf((str))
339 #define MPRINTF1(str, a) if (debugging_mem) prom_printf((str), (a))
340 #define MPRINTF2(str, a, b) if (debugging_mem) prom_printf((str), (a), (b))
341 #define MPRINTF3(str, a, b, c) \
342 if (debugging_mem) prom_printf((str), (a), (b), (c))
343 #else /* DEBUGGING_MEM */
344 #define MPRINTF(str)
345 #define MPRINTF1(str, a)
346 #define MPRINTF2(str, a, b)
347 #define MPRINTF3(str, a, b, c)
348 #endif /* DEBUGGING_MEM */
349
350
351 /*
352 *
353 * Kernel's Virtual Memory Layout.
354 * /-----------------------\
355 * 0xFFFFFFFF.FFFFFFFF -| |-
356 * | OBP's virtual page |
357 * | tables |
358 * 0xFFFFFFFC.00000000 -|-----------------------|-
359 * : :
360 * : :
361 * -|-----------------------|-
362 * | segzio | (base and size vary)
363 * 0xFFFFFE00.00000000 -|-----------------------|-
364 * | | Ultrasparc I/II support
365 * | segkpm segment | up to 2TB of physical
366 * | (64-bit kernel ONLY) | memory, VAC has 2 colors
367 * | |
368 * 0xFFFFFA00.00000000 -|-----------------------|- 2TB segkpm alignment
369 * : :
370 * : :
371 * 0xFFFFF810.00000000 -|-----------------------|- hole_end
372 * | | ^
373 * | UltraSPARC I/II call | |
374 * | bug requires an extra | |
375 * | 4 GB of space between | |
376 * | hole and used RAM | |
377 * | | |
378 * 0xFFFFF800.00000000 -|-----------------------|- |
379 * | | |
380 * | Virtual Address Hole | UltraSPARC
381 * | on UltraSPARC I/II | I/II * ONLY *
382 * | | |
383 * 0x00000800.00000000 -|-----------------------|- |
384 * | | |
385 * | UltraSPARC I/II call | |
386 * | bug requires an extra | |
387 * | 4 GB of space between | |
388 * | hole and used RAM | |
389 * | | v
390 * 0x000007FF.00000000 -|-----------------------|- hole_start -----
391 * : : ^
392 * : : |
393 * |-----------------------| |
394 * | | |
395 * | ecache flush area | |
396 * | (twice largest e$) | |
397 * | | |
398 * 0x00000XXX.XXX00000 -|-----------------------|- kmem64_ |
399 * | overmapped area | alignend_end |
400 * | (kmem64_alignsize | |
401 * | boundary) | |
402 * 0x00000XXX.XXXXXXXX -|-----------------------|- kmem64_end |
403 * | | |
404 * | 64-bit kernel ONLY | |
405 * | | |
406 * | kmem64 segment | |
407 * | | |
408 * | (Relocated extra HME | Approximately
409 * | block allocations, | 1 TB of virtual
410 * | memnode freelists, | address space
411 * | HME hash buckets, | |
412 * | mml_table, kpmp_table,| |
413 * | page_t array and | |
414 * | hashblock pool to | |
415 * | avoid hard-coded | |
416 * | 32-bit vaddr | |
417 * | limitations) | |
418 * | | v
419 * 0x00000700.00000000 -|-----------------------|- SYSLIMIT (kmem64_base)
420 * | |
421 * | segkmem segment | (SYSLIMIT - SYSBASE = 4TB)
422 * | |
423 * 0x00000300.00000000 -|-----------------------|- SYSBASE
424 * : :
425 * : :
426 * -|-----------------------|-
427 * | |
428 * | segmap segment | SEGMAPSIZE (1/8th physmem,
429 * | | 256G MAX)
430 * 0x000002a7.50000000 -|-----------------------|- SEGMAPBASE
431 * : :
432 * : :
433 * -|-----------------------|-
434 * | |
435 * | segkp | SEGKPSIZE (2GB)
436 * | |
437 * | |
438 * 0x000002a1.00000000 -|-----------------------|- SEGKPBASE
439 * | |
440 * 0x000002a0.00000000 -|-----------------------|- MEMSCRUBBASE
441 * | | (SEGKPBASE - 0x400000)
442 * 0x0000029F.FFE00000 -|-----------------------|- ARGSBASE
443 * | | (MEMSCRUBBASE - NCARGS)
444 * 0x0000029F.FFD80000 -|-----------------------|- PPMAPBASE
445 * | | (ARGSBASE - PPMAPSIZE)
446 * 0x0000029F.FFD00000 -|-----------------------|- PPMAP_FAST_BASE
447 * | |
448 * 0x0000029F.FF980000 -|-----------------------|- PIOMAPBASE
449 * | |
450 * 0x0000029F.FF580000 -|-----------------------|- NARG_BASE
451 * : :
452 * : :
453 * 0x00000000.FFFFFFFF -|-----------------------|- OFW_END_ADDR
454 * | |
455 * | OBP |
456 * | |
457 * 0x00000000.F0000000 -|-----------------------|- OFW_START_ADDR
458 * | kmdb |
459 * 0x00000000.EDD00000 -|-----------------------|- SEGDEBUGBASE
460 * : :
461 * : :
462 * 0x00000000.7c000000 -|-----------------------|- SYSLIMIT32
463 * | |
464 * | segkmem32 segment | (SYSLIMIT32 - SYSBASE32 =
465 * | | ~64MB)
466 * -|-----------------------|
467 * | IVSIZE |
468 * 0x00000000.70004000 -|-----------------------|
469 * | panicbuf |
470 * 0x00000000.70002000 -|-----------------------|
471 * | PAGESIZE |
472 * 0x00000000.70000000 -|-----------------------|- SYSBASE32
473 * | boot-time |
474 * | temporary space |
475 * 0x00000000.4C000000 -|-----------------------|- BOOTTMPBASE
476 * : :
477 * : :
478 * | |
479 * |-----------------------|- econtig32
480 * | vm structures |
481 * 0x00000000.01C00000 |-----------------------|- nalloc_end
482 * | TSBs |
483 * |-----------------------|- end/nalloc_base
484 * | kernel data & bss |
485 * 0x00000000.01800000 -|-----------------------|
486 * : nucleus text hole :
487 * 0x00000000.01400000 -|-----------------------|
488 * : :
489 * |-----------------------|
490 * | module text |
491 * |-----------------------|- e_text/modtext
492 * | kernel text |
493 * |-----------------------|
494 * | trap table (48k) |
495 * 0x00000000.01000000 -|-----------------------|- KERNELBASE
496 * | reserved for trapstat |} TSTAT_TOTAL_SIZE
497 * |-----------------------|
498 * | |
499 * | invalid |
500 * | |
501 * 0x00000000.00000000 _|_______________________|
502 *
503 *
504 *
505 * 32-bit User Virtual Memory Layout.
506 * /-----------------------\
507 * | |
508 * | invalid |
509 * | |
510 * 0xFFC00000 -|-----------------------|- USERLIMIT
511 * | user stack |
512 * : :
513 * : :
514 * : :
515 * | user data |
516 * -|-----------------------|-
517 * | user text |
518 * 0x00002000 -|-----------------------|-
519 * | invalid |
520 * 0x00000000 _|_______________________|
521 *
522 *
523 *
524 * 64-bit User Virtual Memory Layout.
525 * /-----------------------\
526 * | |
527 * | invalid |
528 * | |
529 * 0xFFFFFFFF.80000000 -|-----------------------|- USERLIMIT
530 * | user stack |
531 * : :
532 * : :
533 * : :
534 * | user data |
535 * -|-----------------------|-
536 * | user text |
537 * 0x00000000.01000000 -|-----------------------|-
538 * | invalid |
539 * 0x00000000.00000000 _|_______________________|
540 */
541
542 extern caddr_t ecache_init_scrub_flush_area(caddr_t alloc_base);
543 extern uint64_t ecache_flush_address(void);
544
545 #pragma weak load_platform_modules
546 #pragma weak plat_startup_memlist
547 #pragma weak ecache_init_scrub_flush_area
548 #pragma weak ecache_flush_address
549
550
551 /*
552 * By default the DR Cage is enabled for maximum OS
553 * MPSS performance. Users needing to disable the cage mechanism
554 * can set this variable to zero via /etc/system.
555 * Disabling the cage on systems supporting Dynamic Reconfiguration (DR)
556 * will result in loss of DR functionality.
557 * Platforms wishing to disable kernel Cage by default
558 * should do so in their set_platform_defaults() routine.
559 */
560 int kernel_cage_enable = 1;
561
562 static void
563 setup_cage_params(void)
564 {
565 void (*func)(void);
566
567 func = (void (*)(void))kobj_getsymvalue("set_platform_cage_params", 0);
568 if (func != NULL) {
569 (*func)();
570 return;
571 }
572
573 if (kernel_cage_enable == 0) {
574 return;
575 }
576 kcage_range_init(phys_avail, KCAGE_DOWN, total_pages / 256);
577
578 if (kcage_on) {
579 cmn_err(CE_NOTE, "!Kernel Cage is ENABLED");
580 } else {
581 cmn_err(CE_NOTE, "!Kernel Cage is DISABLED");
582 }
583
584 }
585
586 /*
587 * Machine-dependent startup code
588 */
589 void
590 startup(void)
591 {
592 startup_init();
593 if (&startup_platform)
594 startup_platform();
595 startup_memlist();
596 startup_modules();
597 setup_cage_params();
598 startup_bop_gone();
599 startup_vm();
600 startup_end();
601 }
602
603 struct regs sync_reg_buf;
604 uint64_t sync_tt;
605
606 void
607 sync_handler(void)
608 {
609 struct panic_trap_info ti;
610 int i;
611
612 /*
613 * Prevent trying to talk to the other CPUs since they are
614 * sitting in the prom and won't reply.
615 */
616 for (i = 0; i < NCPU; i++) {
617 if ((i != CPU->cpu_id) && CPU_XCALL_READY(i)) {
618 cpu[i]->cpu_flags &= ~CPU_READY;
619 cpu[i]->cpu_flags |= CPU_QUIESCED;
620 CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
621 }
622 }
623
624 /*
625 * Force a serial dump, since there are no CPUs to help.
626 */
627 dump_plat_mincpu = 0;
628
629 /*
630 * We've managed to get here without going through the
631 * normal panic code path. Try and save some useful
632 * information.
633 */
634 if (!panicstr && (curthread->t_panic_trap == NULL)) {
635 ti.trap_type = sync_tt;
636 ti.trap_regs = &sync_reg_buf;
637 ti.trap_addr = NULL;
638 ti.trap_mmu_fsr = 0x0;
639
640 curthread->t_panic_trap = &ti;
641 }
642
643 /*
644 * If we're re-entering the panic path, update the signature
645 * block so that the SC knows we're in the second part of panic.
646 */
647 if (panicstr)
648 CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
649
650 nopanicdebug = 1; /* do not perform debug_enter() prior to dump */
651 panic("sync initiated");
652 }
653
654
655 static void
656 startup_init(void)
657 {
658 /*
659 * We want to save the registers while we're still in OBP
660 * so that we know they haven't been fiddled with since.
661 * (In principle, OBP can't change them just because it
662 * makes a callback, but we'd rather not depend on that
663 * behavior.)
664 */
665 char sync_str[] =
666 "warning @ warning off : sync "
667 "%%tl-c %%tstate h# %p x! "
668 "%%g1 h# %p x! %%g2 h# %p x! %%g3 h# %p x! "
669 "%%g4 h# %p x! %%g5 h# %p x! %%g6 h# %p x! "
670 "%%g7 h# %p x! %%o0 h# %p x! %%o1 h# %p x! "
671 "%%o2 h# %p x! %%o3 h# %p x! %%o4 h# %p x! "
672 "%%o5 h# %p x! %%o6 h# %p x! %%o7 h# %p x! "
673 "%%tl-c %%tpc h# %p x! %%tl-c %%tnpc h# %p x! "
674 "%%y h# %p l! %%tl-c %%tt h# %p x! "
675 "sync ; warning !";
676
677 /*
678 * 20 == num of %p substrings
679 * 16 == max num of chars %p will expand to.
680 */
681 char bp[sizeof (sync_str) + 16 * 20];
682
683 /*
684 * Initialize ptl1 stack for the 1st CPU.
685 */
686 ptl1_init_cpu(&cpu0);
687
688 /*
689 * Initialize the address map for cache consistent mappings
690 * to random pages; must be done after vac_size is set.
691 */
692 ppmapinit();
693
694 /*
695 * Initialize the PROM callback handler.
696 */
697 init_vx_handler();
698
699 /*
700 * have prom call sync_callback() to handle the sync and
701 * save some useful information which will be stored in the
702 * core file later.
703 */
704 (void) sprintf((char *)bp, sync_str,
705 (void *)&sync_reg_buf.r_tstate, (void *)&sync_reg_buf.r_g1,
706 (void *)&sync_reg_buf.r_g2, (void *)&sync_reg_buf.r_g3,
707 (void *)&sync_reg_buf.r_g4, (void *)&sync_reg_buf.r_g5,
708 (void *)&sync_reg_buf.r_g6, (void *)&sync_reg_buf.r_g7,
709 (void *)&sync_reg_buf.r_o0, (void *)&sync_reg_buf.r_o1,
710 (void *)&sync_reg_buf.r_o2, (void *)&sync_reg_buf.r_o3,
711 (void *)&sync_reg_buf.r_o4, (void *)&sync_reg_buf.r_o5,
712 (void *)&sync_reg_buf.r_o6, (void *)&sync_reg_buf.r_o7,
713 (void *)&sync_reg_buf.r_pc, (void *)&sync_reg_buf.r_npc,
714 (void *)&sync_reg_buf.r_y, (void *)&sync_tt);
715 prom_interpret(bp, 0, 0, 0, 0, 0);
716 add_vx_handler("sync", 1, (void (*)(cell_t *))sync_handler);
717 }
718
719
720 size_t
721 calc_pp_sz(pgcnt_t npages)
722 {
723
724 return (npages * sizeof (struct page));
725 }
726
727 size_t
728 calc_kpmpp_sz(pgcnt_t npages)
729 {
730
731 kpm_pgshft = (kpm_smallpages == 0) ? MMU_PAGESHIFT4M : MMU_PAGESHIFT;
732 kpm_pgsz = 1ull << kpm_pgshft;
733 kpm_pgoff = kpm_pgsz - 1;
734 kpmp2pshft = kpm_pgshft - PAGESHIFT;
735 kpmpnpgs = 1 << kpmp2pshft;
736
737 if (kpm_smallpages == 0) {
738 /*
739 * Avoid fragmentation problems in kphysm_init()
740 * by allocating for all of physical memory
741 */
742 kpm_npages = ptokpmpr(physinstalled);
743 return (kpm_npages * sizeof (kpm_page_t));
744 } else {
745 kpm_npages = npages;
746 return (kpm_npages * sizeof (kpm_spage_t));
747 }
748 }
749
750 size_t
751 calc_pagehash_sz(pgcnt_t npages)
752 {
753 /* LINTED */
754 ASSERT(P2SAMEHIGHBIT((1 << PP_SHIFT), (sizeof (struct page))));
755 /*
756 * The page structure hash table size is a power of 2
757 * such that the average hash chain length is PAGE_HASHAVELEN.
758 */
759 page_hashsz = npages / PAGE_HASHAVELEN;
760 page_hashsz_shift = MAX((AN_VPSHIFT + VNODE_ALIGN_LOG2 + 1),
761 highbit(page_hashsz));
762 page_hashsz = 1 << page_hashsz_shift;
763 return (page_hashsz * sizeof (struct page *));
764 }
765
766 int testkmem64_smchunks = 0;
767
768 int
769 alloc_kmem64(caddr_t base, caddr_t end)
770 {
771 int i;
772 caddr_t aligned_end = NULL;
773
774 if (testkmem64_smchunks)
775 return (1);
776
777 /*
778 * Make one large memory alloc after figuring out the 64-bit size. This
779 * will enable use of the largest page size appropriate for the system
780 * architecture.
781 */
782 ASSERT(mmu_exported_pagesize_mask & (1 << TTE8K));
783 ASSERT(IS_P2ALIGNED(base, TTEBYTES(max_bootlp_tteszc)));
784 for (i = max_bootlp_tteszc; i >= TTE8K; i--) {
785 size_t alloc_size, alignsize;
786 #if !defined(C_OBP)
787 unsigned long long pa;
788 #endif /* !C_OBP */
789
790 if ((mmu_exported_pagesize_mask & (1 << i)) == 0)
791 continue;
792 alignsize = TTEBYTES(i);
793 kmem64_szc = i;
794
795 /* limit page size for small memory */
796 if (mmu_btop(alignsize) > (npages >> 2))
797 continue;
798
799 aligned_end = (caddr_t)roundup((uintptr_t)end, alignsize);
800 alloc_size = aligned_end - base;
801 #if !defined(C_OBP)
802 if (prom_allocate_phys(alloc_size, alignsize, &pa) == 0) {
803 if (prom_claim_virt(alloc_size, base) != (caddr_t)-1) {
804 kmem64_pabase = pa;
805 kmem64_aligned_end = aligned_end;
806 install_kmem64_tte();
807 break;
808 } else {
809 prom_free_phys(alloc_size, pa);
810 }
811 }
812 #else /* !C_OBP */
813 if (prom_alloc(base, alloc_size, alignsize) == base) {
814 kmem64_pabase = va_to_pa(kmem64_base);
815 kmem64_aligned_end = aligned_end;
816 break;
817 }
818 #endif /* !C_OBP */
819 if (i == TTE8K) {
820 #ifdef sun4v
821 /* return failure to try small allocations */
822 return (1);
823 #else
824 prom_panic("kmem64 allocation failure");
825 #endif
826 }
827 }
828 ASSERT(aligned_end != NULL);
829 return (0);
830 }
831
832 static prom_memlist_t *boot_physinstalled, *boot_physavail, *boot_virtavail;
833 static size_t boot_physinstalled_len, boot_physavail_len, boot_virtavail_len;
834
835 #if !defined(C_OBP)
836 /*
837 * Install a temporary tte handler in OBP for kmem64 area.
838 *
839 * We map kmem64 area with large pages before the trap table is taken
840 * over. Since OBP makes 8K mappings, it can create 8K tlb entries in
841 * the same area. Duplicate tlb entries with different page sizes
842 * cause unpredicatble behavior. To avoid this, we don't create
843 * kmem64 mappings via BOP_ALLOC (ends up as prom_alloc() call to
844 * OBP). Instead, we manage translations with a temporary va>tte-data
845 * handler (kmem64-tte). This handler is replaced by unix-tte when
846 * the trap table is taken over.
847 *
848 * The temporary handler knows the physical address of the kmem64
849 * area. It uses the prom's pgmap@ Forth word for other addresses.
850 *
851 * We have to use BOP_ALLOC() method for C-OBP platforms because
852 * pgmap@ is not defined in C-OBP. C-OBP is only used on serengeti
853 * sun4u platforms. On sun4u we flush tlb after trap table is taken
854 * over if we use large pages for kernel heap and kmem64. Since sun4u
855 * prom (unlike sun4v) calls va>tte-data first for client address
856 * translation prom's ttes for kmem64 can't get into TLB even if we
857 * later switch to prom's trap table again. C-OBP uses 4M pages for
858 * client mappings when possible so on all platforms we get the
859 * benefit from large mappings for kmem64 area immediately during
860 * boot.
861 *
862 * pseudo code:
863 * if (context != 0) {
864 * return false
865 * } else if (miss_va in range[kmem64_base, kmem64_end)) {
866 * tte = tte_template +
867 * (((miss_va & pagemask) - kmem64_base));
868 * return tte, true
869 * } else {
870 * return pgmap@ result
871 * }
872 */
873 char kmem64_obp_str[] =
874 "h# %lx constant kmem64-base "
875 "h# %lx constant kmem64-end "
876 "h# %lx constant kmem64-pagemask "
877 "h# %lx constant kmem64-template "
878
879 ": kmem64-tte ( addr cnum -- false | tte-data true ) "
880 " if ( addr ) "
881 " drop false exit then ( false ) "
882 " dup kmem64-base kmem64-end within if ( addr ) "
883 " kmem64-pagemask and ( addr' ) "
884 " kmem64-base - ( addr' ) "
885 " kmem64-template + ( tte ) "
886 " true ( tte true ) "
887 " else ( addr ) "
888 " pgmap@ ( tte ) "
889 " dup 0< if true else drop false then ( tte true | false ) "
890 " then ( tte true | false ) "
891 "; "
892
893 "' kmem64-tte is va>tte-data "
894 ;
895
896 static void
897 install_kmem64_tte()
898 {
899 char b[sizeof (kmem64_obp_str) + (4 * 16)];
900 tte_t tte;
901
902 PRM_DEBUG(kmem64_pabase);
903 PRM_DEBUG(kmem64_szc);
904 sfmmu_memtte(&tte, kmem64_pabase >> MMU_PAGESHIFT,
905 PROC_DATA | HAT_NOSYNC, kmem64_szc);
906 PRM_DEBUG(tte.ll);
907 (void) sprintf(b, kmem64_obp_str,
908 kmem64_base, kmem64_end, TTE_PAGEMASK(kmem64_szc), tte.ll);
909 ASSERT(strlen(b) < sizeof (b));
910 prom_interpret(b, 0, 0, 0, 0, 0);
911 }
912 #endif /* !C_OBP */
913
914 /*
915 * As OBP takes up some RAM when the system boots, pages will already be "lost"
916 * to the system and reflected in npages by the time we see it.
917 *
918 * We only want to allocate kernel structures in the 64-bit virtual address
919 * space on systems with enough RAM to make the overhead of keeping track of
920 * an extra kernel memory segment worthwhile.
921 *
922 * Since OBP has already performed its memory allocations by this point, if we
923 * have more than MINMOVE_RAM_MB MB of RAM left free, go ahead and map
924 * memory in the 64-bit virtual address space; otherwise keep allocations
925 * contiguous with we've mapped so far in the 32-bit virtual address space.
926 */
927 #define MINMOVE_RAM_MB ((size_t)1900)
928 #define MB_TO_BYTES(mb) ((mb) * 1048576ul)
929 #define BYTES_TO_MB(b) ((b) / 1048576ul)
930
931 pgcnt_t tune_npages = (pgcnt_t)
932 (MB_TO_BYTES(MINMOVE_RAM_MB)/ (size_t)MMU_PAGESIZE);
933
934 #pragma weak page_set_colorequiv_arr_cpu
935 extern void page_set_colorequiv_arr_cpu(void);
936 extern void page_set_colorequiv_arr(void);
937
938 static pgcnt_t ramdisk_npages;
939 static struct memlist *old_phys_avail;
940
941 kcage_dir_t kcage_startup_dir = KCAGE_DOWN;
942
943 static void
944 startup_memlist(void)
945 {
946 size_t hmehash_sz, pagelist_sz, tt_sz;
947 size_t psetable_sz;
948 caddr_t alloc_base;
949 caddr_t memspace;
950 struct memlist *cur;
951 size_t syslimit = (size_t)SYSLIMIT;
952 size_t sysbase = (size_t)SYSBASE;
953
954 /*
955 * Initialize enough of the system to allow kmem_alloc to work by
956 * calling boot to allocate its memory until the time that
957 * kvm_init is completed. The page structs are allocated after
958 * rounding up end to the nearest page boundary; the memsegs are
959 * initialized and the space they use comes from the kernel heap.
960 * With appropriate initialization, they can be reallocated later
961 * to a size appropriate for the machine's configuration.
962 *
963 * At this point, memory is allocated for things that will never
964 * need to be freed, this used to be "valloced". This allows a
965 * savings as the pages don't need page structures to describe
966 * them because them will not be managed by the vm system.
967 */
968
969 /*
970 * We're loaded by boot with the following configuration (as
971 * specified in the sun4u/conf/Mapfile):
972 *
973 * text: 4 MB chunk aligned on a 4MB boundary
974 * data & bss: 4 MB chunk aligned on a 4MB boundary
975 *
976 * These two chunks will eventually be mapped by 2 locked 4MB
977 * ttes and will represent the nucleus of the kernel. This gives
978 * us some free space that is already allocated, some or all of
979 * which is made available to kernel module text.
980 *
981 * The free space in the data-bss chunk is used for nucleus
982 * allocatable data structures and we reserve it using the
983 * nalloc_base and nalloc_end variables. This space is currently
984 * being used for hat data structures required for tlb miss
985 * handling operations. We align nalloc_base to a l2 cache
986 * linesize because this is the line size the hardware uses to
987 * maintain cache coherency.
988 * 512K is carved out for module data.
989 */
990
991 moddata = (caddr_t)roundup((uintptr_t)e_data, MMU_PAGESIZE);
992 e_moddata = moddata + MODDATA;
993 nalloc_base = e_moddata;
994
995 nalloc_end = (caddr_t)roundup((uintptr_t)nalloc_base, MMU_PAGESIZE4M);
996 valloc_base = nalloc_base;
997
998 /*
999 * Calculate the start of the data segment.
1000 */
1001 if (((uintptr_t)e_moddata & MMU_PAGEMASK4M) != (uintptr_t)s_data)
1002 prom_panic("nucleus data overflow");
1003
1004 PRM_DEBUG(moddata);
1005 PRM_DEBUG(nalloc_base);
1006 PRM_DEBUG(nalloc_end);
1007
1008 /*
1009 * Remember any slop after e_text so we can give it to the modules.
1010 */
1011 PRM_DEBUG(e_text);
1012 modtext = (caddr_t)roundup((uintptr_t)e_text, MMU_PAGESIZE);
1013 if (((uintptr_t)e_text & MMU_PAGEMASK4M) != (uintptr_t)s_text)
1014 prom_panic("nucleus text overflow");
1015 modtext_sz = (caddr_t)roundup((uintptr_t)modtext, MMU_PAGESIZE4M) -
1016 modtext;
1017 PRM_DEBUG(modtext);
1018 PRM_DEBUG(modtext_sz);
1019
1020 init_boot_memlists();
1021 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1022 &boot_physavail, &boot_physavail_len,
1023 &boot_virtavail, &boot_virtavail_len);
1024
1025 /*
1026 * Remember what the physically available highest page is
1027 * so that dumpsys works properly, and find out how much
1028 * memory is installed.
1029 */
1030 installed_top_size_memlist_array(boot_physinstalled,
1031 boot_physinstalled_len, &physmax, &physinstalled);
1032 PRM_DEBUG(physinstalled);
1033 PRM_DEBUG(physmax);
1034
1035 /* Fill out memory nodes config structure */
1036 startup_build_mem_nodes(boot_physinstalled, boot_physinstalled_len);
1037
1038 /*
1039 * npages is the maximum of available physical memory possible.
1040 * (ie. it will never be more than this)
1041 *
1042 * When we boot from a ramdisk, the ramdisk memory isn't free, so
1043 * using phys_avail will underestimate what will end up being freed.
1044 * A better initial guess is just total memory minus the kernel text
1045 */
1046 npages = physinstalled - btop(MMU_PAGESIZE4M);
1047
1048 /*
1049 * First allocate things that can go in the nucleus data page
1050 * (fault status, TSBs, dmv, CPUs)
1051 */
1052 ndata_alloc_init(&ndata, (uintptr_t)nalloc_base, (uintptr_t)nalloc_end);
1053
1054 if ((&ndata_alloc_mmfsa != NULL) && (ndata_alloc_mmfsa(&ndata) != 0))
1055 cmn_err(CE_PANIC, "no more nucleus memory after mfsa alloc");
1056
1057 if (ndata_alloc_tsbs(&ndata, npages) != 0)
1058 cmn_err(CE_PANIC, "no more nucleus memory after tsbs alloc");
1059
1060 if (ndata_alloc_dmv(&ndata) != 0)
1061 cmn_err(CE_PANIC, "no more nucleus memory after dmv alloc");
1062
1063 if (ndata_alloc_page_mutexs(&ndata) != 0)
1064 cmn_err(CE_PANIC,
1065 "no more nucleus memory after page free lists alloc");
1066
1067 if (ndata_alloc_hat(&ndata) != 0)
1068 cmn_err(CE_PANIC, "no more nucleus memory after hat alloc");
1069
1070 if (ndata_alloc_memseg(&ndata, boot_physavail_len) != 0)
1071 cmn_err(CE_PANIC, "no more nucleus memory after memseg alloc");
1072
1073 /*
1074 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1075 *
1076 * There are comments all over the SFMMU code warning of dire
1077 * consequences if the TSBs are moved out of 32-bit space. This
1078 * is largely because the asm code uses "sethi %hi(addr)"-type
1079 * instructions which will not provide the expected result if the
1080 * address is a 64-bit one.
1081 *
1082 * WARNING WARNING WARNING WARNING WARNING WARNING WARNING
1083 */
1084 alloc_base = (caddr_t)roundup((uintptr_t)nalloc_end, MMU_PAGESIZE);
1085 PRM_DEBUG(alloc_base);
1086
1087 alloc_base = sfmmu_ktsb_alloc(alloc_base);
1088 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1089 PRM_DEBUG(alloc_base);
1090
1091 /*
1092 * Allocate IOMMU TSB array. We do this here so that the physical
1093 * memory gets deducted from the PROM's physical memory list.
1094 */
1095 alloc_base = iommu_tsb_init(alloc_base);
1096 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1097 PRM_DEBUG(alloc_base);
1098
1099 /*
1100 * Allow for an early allocation of physically contiguous memory.
1101 */
1102 alloc_base = contig_mem_prealloc(alloc_base, npages);
1103
1104 /*
1105 * Platforms like Starcat and OPL need special structures assigned in
1106 * 32-bit virtual address space because their probing routines execute
1107 * FCode, and FCode can't handle 64-bit virtual addresses...
1108 */
1109 if (&plat_startup_memlist) {
1110 alloc_base = plat_startup_memlist(alloc_base);
1111 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
1112 ecache_alignsize);
1113 PRM_DEBUG(alloc_base);
1114 }
1115
1116 /*
1117 * Save off where the contiguous allocations to date have ended
1118 * in econtig32.
1119 */
1120 econtig32 = alloc_base;
1121 PRM_DEBUG(econtig32);
1122 if (econtig32 > (caddr_t)KERNEL_LIMIT32)
1123 cmn_err(CE_PANIC, "econtig32 too big");
1124
1125 pp_sz = calc_pp_sz(npages);
1126 PRM_DEBUG(pp_sz);
1127 if (kpm_enable) {
1128 kpm_pp_sz = calc_kpmpp_sz(npages);
1129 PRM_DEBUG(kpm_pp_sz);
1130 }
1131
1132 hmehash_sz = calc_hmehash_sz(npages);
1133 PRM_DEBUG(hmehash_sz);
1134
1135 pagehash_sz = calc_pagehash_sz(npages);
1136 PRM_DEBUG(pagehash_sz);
1137
1138 pagelist_sz = calc_free_pagelist_sz();
1139 PRM_DEBUG(pagelist_sz);
1140
1141 #ifdef TRAPTRACE
1142 tt_sz = calc_traptrace_sz();
1143 PRM_DEBUG(tt_sz);
1144 #else
1145 tt_sz = 0;
1146 #endif /* TRAPTRACE */
1147
1148 /*
1149 * Place the array that protects pp->p_selock in the kmem64 wad.
1150 */
1151 pse_shift = size_pse_array(npages, max_ncpus);
1152 PRM_DEBUG(pse_shift);
1153 pse_table_size = 1 << pse_shift;
1154 PRM_DEBUG(pse_table_size);
1155 psetable_sz = roundup(
1156 pse_table_size * sizeof (pad_mutex_t), ecache_alignsize);
1157 PRM_DEBUG(psetable_sz);
1158
1159 /*
1160 * Now allocate the whole wad
1161 */
1162 kmem64_sz = pp_sz + kpm_pp_sz + hmehash_sz + pagehash_sz +
1163 pagelist_sz + tt_sz + psetable_sz;
1164 kmem64_sz = roundup(kmem64_sz, PAGESIZE);
1165 kmem64_base = (caddr_t)syslimit;
1166 kmem64_end = kmem64_base + kmem64_sz;
1167 if (alloc_kmem64(kmem64_base, kmem64_end)) {
1168 /*
1169 * Attempt for kmem64 to allocate one big
1170 * contiguous chunk of memory failed.
1171 * We get here because we are sun4v.
1172 * We will proceed by breaking up
1173 * the allocation into two attempts.
1174 * First, we allocate kpm_pp_sz, hmehash_sz,
1175 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz as
1176 * one contiguous chunk. This is a much smaller
1177 * chunk and we should get it, if not we panic.
1178 * Note that hmehash and tt need to be physically
1179 * (in the real address sense) contiguous.
1180 * Next, we use bop_alloc_chunk() to
1181 * to allocate the page_t structures.
1182 * This will allow the page_t to be allocated
1183 * in multiple smaller chunks.
1184 * In doing so, the assumption that page_t is
1185 * physically contiguous no longer hold, this is ok
1186 * for sun4v but not for sun4u.
1187 */
1188 size_t tmp_size;
1189 caddr_t tmp_base;
1190
1191 pp_sz = roundup(pp_sz, PAGESIZE);
1192
1193 /*
1194 * Allocate kpm_pp_sz, hmehash_sz,
1195 * pagehash_sz, pagelist_sz, tt_sz & psetable_sz
1196 */
1197 tmp_base = kmem64_base + pp_sz;
1198 tmp_size = roundup(kpm_pp_sz + hmehash_sz + pagehash_sz +
1199 pagelist_sz + tt_sz + psetable_sz, PAGESIZE);
1200 if (prom_alloc(tmp_base, tmp_size, PAGESIZE) == 0)
1201 prom_panic("kmem64 prom_alloc contig failed");
1202 PRM_DEBUG(tmp_base);
1203 PRM_DEBUG(tmp_size);
1204
1205 /*
1206 * Allocate the page_ts
1207 */
1208 if (bop_alloc_chunk(kmem64_base, pp_sz, PAGESIZE) == 0)
1209 prom_panic("kmem64 bop_alloc_chunk page_t failed");
1210 PRM_DEBUG(kmem64_base);
1211 PRM_DEBUG(pp_sz);
1212
1213 kmem64_aligned_end = kmem64_base + pp_sz + tmp_size;
1214 ASSERT(kmem64_aligned_end >= kmem64_end);
1215
1216 kmem64_smchunks = 1;
1217 } else {
1218
1219 /*
1220 * We need to adjust pp_sz for the normal
1221 * case where kmem64 can allocate one large chunk
1222 */
1223 if (kpm_smallpages == 0) {
1224 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page));
1225 } else {
1226 npages -= kmem64_sz / (PAGESIZE + sizeof (struct page) +
1227 sizeof (kpm_spage_t));
1228 }
1229 pp_sz = npages * sizeof (struct page);
1230 }
1231
1232 if (kmem64_aligned_end > (hole_start ? hole_start : kpm_vbase))
1233 cmn_err(CE_PANIC, "not enough kmem64 space");
1234 PRM_DEBUG(kmem64_base);
1235 PRM_DEBUG(kmem64_end);
1236 PRM_DEBUG(kmem64_aligned_end);
1237
1238 /*
1239 * ... and divy it up
1240 */
1241 alloc_base = kmem64_base;
1242
1243 pp_base = (page_t *)alloc_base;
1244 alloc_base += pp_sz;
1245 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1246 PRM_DEBUG(pp_base);
1247 PRM_DEBUG(npages);
1248
1249 if (kpm_enable) {
1250 kpm_pp_base = alloc_base;
1251 if (kpm_smallpages == 0) {
1252 /* kpm_npages based on physinstalled, don't reset */
1253 kpm_pp_sz = kpm_npages * sizeof (kpm_page_t);
1254 } else {
1255 kpm_npages = ptokpmpr(npages);
1256 kpm_pp_sz = kpm_npages * sizeof (kpm_spage_t);
1257 }
1258 alloc_base += kpm_pp_sz;
1259 alloc_base =
1260 (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1261 PRM_DEBUG(kpm_pp_base);
1262 }
1263
1264 alloc_base = alloc_hmehash(alloc_base);
1265 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1266 PRM_DEBUG(alloc_base);
1267
1268 page_hash = (page_t **)alloc_base;
1269 alloc_base += pagehash_sz;
1270 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1271 PRM_DEBUG(page_hash);
1272
1273 alloc_base = alloc_page_freelists(alloc_base);
1274 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1275 PRM_DEBUG(alloc_base);
1276
1277 #ifdef TRAPTRACE
1278 ttrace_buf = alloc_base;
1279 alloc_base += tt_sz;
1280 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1281 PRM_DEBUG(alloc_base);
1282 #endif /* TRAPTRACE */
1283
1284 pse_mutex = (pad_mutex_t *)alloc_base;
1285 alloc_base += psetable_sz;
1286 alloc_base = (caddr_t)roundup((uintptr_t)alloc_base, ecache_alignsize);
1287 PRM_DEBUG(alloc_base);
1288
1289 /*
1290 * Note that if we use small chunk allocations for
1291 * kmem64, we need to ensure kmem64_end is the same as
1292 * kmem64_aligned_end to prevent subsequent logic from
1293 * trying to reuse the overmapping.
1294 * Otherwise we adjust kmem64_end to what we really allocated.
1295 */
1296 if (kmem64_smchunks) {
1297 kmem64_end = kmem64_aligned_end;
1298 } else {
1299 kmem64_end = (caddr_t)roundup((uintptr_t)alloc_base, PAGESIZE);
1300 }
1301 kmem64_sz = kmem64_end - kmem64_base;
1302
1303 if (&ecache_init_scrub_flush_area) {
1304 alloc_base = ecache_init_scrub_flush_area(kmem64_aligned_end);
1305 ASSERT(alloc_base <= (hole_start ? hole_start : kpm_vbase));
1306 }
1307
1308 /*
1309 * If physmem is patched to be non-zero, use it instead of
1310 * the monitor value unless physmem is larger than the total
1311 * amount of memory on hand.
1312 */
1313 if (physmem == 0 || physmem > npages)
1314 physmem = npages;
1315
1316 /*
1317 * root_is_ramdisk is set via /etc/system when the ramdisk miniroot
1318 * is mounted as root. This memory is held down by OBP and unlike
1319 * the stub boot_archive is never released.
1320 *
1321 * In order to get things sized correctly on lower memory
1322 * machines (where the memory used by the ramdisk represents
1323 * a significant portion of memory), physmem is adjusted.
1324 *
1325 * This is done by subtracting the ramdisk_size which is set
1326 * to the size of the ramdisk (in Kb) in /etc/system at the
1327 * time the miniroot archive is constructed.
1328 */
1329 if (root_is_ramdisk == B_TRUE) {
1330 ramdisk_npages = (ramdisk_size * 1024) / PAGESIZE;
1331 physmem -= ramdisk_npages;
1332 }
1333
1334 if (kpm_enable && (ndata_alloc_kpm(&ndata, kpm_npages) != 0))
1335 cmn_err(CE_PANIC, "no more nucleus memory after kpm alloc");
1336
1337 /*
1338 * Allocate space for the interrupt vector table.
1339 */
1340 memspace = prom_alloc((caddr_t)intr_vec_table, IVSIZE, MMU_PAGESIZE);
1341 if (memspace != (caddr_t)intr_vec_table)
1342 prom_panic("interrupt vector table allocation failure");
1343
1344 /*
1345 * Between now and when we finish copying in the memory lists,
1346 * allocations happen so the space gets fragmented and the
1347 * lists longer. Leave enough space for lists twice as
1348 * long as we have now; then roundup to a pagesize.
1349 */
1350 memlist_sz = sizeof (struct memlist) * (prom_phys_installed_len() +
1351 prom_phys_avail_len() + prom_virt_avail_len());
1352 memlist_sz *= 2;
1353 memlist_sz = roundup(memlist_sz, PAGESIZE);
1354 memspace = ndata_alloc(&ndata, memlist_sz, ecache_alignsize);
1355 if (memspace == NULL)
1356 cmn_err(CE_PANIC, "no more nucleus memory after memlist alloc");
1357
1358 memlist = (struct memlist *)memspace;
1359 memlist_end = (char *)memspace + memlist_sz;
1360 PRM_DEBUG(memlist);
1361 PRM_DEBUG(memlist_end);
1362
1363 PRM_DEBUG(sysbase);
1364 PRM_DEBUG(syslimit);
1365 kernelheap_init((void *)sysbase, (void *)syslimit,
1366 (caddr_t)sysbase + PAGESIZE, NULL, NULL);
1367
1368 /*
1369 * Take the most current snapshot we can by calling mem-update.
1370 */
1371 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1372 &boot_physavail, &boot_physavail_len,
1373 &boot_virtavail, &boot_virtavail_len);
1374
1375 /*
1376 * Remove the space used by prom_alloc from the kernel heap
1377 * plus the area actually used by the OBP (if any)
1378 * ignoring virtual addresses in virt_avail, above syslimit.
1379 */
1380 virt_avail = memlist;
1381 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1382
1383 for (cur = virt_avail; cur->ml_next; cur = cur->ml_next) {
1384 uint64_t range_base, range_size;
1385
1386 if ((range_base = cur->ml_address + cur->ml_size) <
1387 (uint64_t)sysbase)
1388 continue;
1389 if (range_base >= (uint64_t)syslimit)
1390 break;
1391 /*
1392 * Limit the range to end at syslimit.
1393 */
1394 range_size = MIN(cur->ml_next->ml_address,
1395 (uint64_t)syslimit) - range_base;
1396 (void) vmem_xalloc(heap_arena, (size_t)range_size, PAGESIZE,
1397 0, 0, (void *)range_base, (void *)(range_base + range_size),
1398 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1399 }
1400
1401 phys_avail = memlist;
1402 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1403
1404 /*
1405 * Add any extra memory at the end of the ndata region if there's at
1406 * least a page to add. There might be a few more pages available in
1407 * the middle of the ndata region, but for now they are ignored.
1408 */
1409 nalloc_base = ndata_extra_base(&ndata, MMU_PAGESIZE, nalloc_end);
1410 if (nalloc_base == NULL)
1411 nalloc_base = nalloc_end;
1412 ndata_remain_sz = nalloc_end - nalloc_base;
1413
1414 /*
1415 * Copy physinstalled list into kernel space.
1416 */
1417 phys_install = memlist;
1418 copy_memlist(boot_physinstalled, boot_physinstalled_len, &memlist);
1419
1420 /*
1421 * Create list of physical addrs we don't need pp's for:
1422 * kernel text 4M page
1423 * kernel data 4M page - ndata_remain_sz
1424 * kmem64 pages
1425 *
1426 * NB if adding any pages here, make sure no kpm page
1427 * overlaps can occur (see ASSERTs in kphysm_memsegs)
1428 */
1429 nopp_list = memlist;
1430 memlist_new(va_to_pa(s_text), MMU_PAGESIZE4M, &memlist);
1431 memlist_add(va_to_pa(s_data), MMU_PAGESIZE4M - ndata_remain_sz,
1432 &memlist, &nopp_list);
1433
1434 /* Don't add to nopp_list if kmem64 was allocated in smchunks */
1435 if (!kmem64_smchunks)
1436 memlist_add(kmem64_pabase, kmem64_sz, &memlist, &nopp_list);
1437
1438 if ((caddr_t)memlist > (memspace + memlist_sz))
1439 prom_panic("memlist overflow");
1440
1441 /*
1442 * Size the pcf array based on the number of cpus in the box at
1443 * boot time.
1444 */
1445 pcf_init();
1446
1447 /*
1448 * Initialize the page structures from the memory lists.
1449 */
1450 kphysm_init();
1451
1452 availrmem_initial = availrmem = freemem;
1453 PRM_DEBUG(availrmem);
1454
1455 /*
1456 * Some of the locks depend on page_hashsz being set!
1457 * kmem_init() depends on this; so, keep it here.
1458 */
1459 page_lock_init();
1460
1461 /*
1462 * Initialize kernel memory allocator.
1463 */
1464 kmem_init();
1465
1466 /*
1467 * Factor in colorequiv to check additional 'equivalent' bins
1468 */
1469 if (&page_set_colorequiv_arr_cpu != NULL)
1470 page_set_colorequiv_arr_cpu();
1471 else
1472 page_set_colorequiv_arr();
1473
1474 /*
1475 * Initialize bp_mapin().
1476 */
1477 bp_init(shm_alignment, HAT_STRICTORDER);
1478
1479 /*
1480 * Reserve space for MPO mblock structs from the 32-bit heap.
1481 */
1482
1483 if (mpo_heap32_bufsz > (size_t)0) {
1484 (void) vmem_xalloc(heap32_arena, mpo_heap32_bufsz,
1485 PAGESIZE, 0, 0, mpo_heap32_buf,
1486 mpo_heap32_buf + mpo_heap32_bufsz,
1487 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1488 }
1489 mem_config_init();
1490 }
1491
1492 static void
1493 startup_modules(void)
1494 {
1495 int nhblk1, nhblk8;
1496 size_t nhblksz;
1497 pgcnt_t pages_per_hblk;
1498 size_t hme8blk_sz, hme1blk_sz;
1499
1500 /*
1501 * The system file /etc/system was read already under startup_memlist.
1502 */
1503 if (&set_platform_defaults)
1504 set_platform_defaults();
1505
1506 /*
1507 * Calculate default settings of system parameters based upon
1508 * maxusers, yet allow to be overridden via the /etc/system file.
1509 */
1510 param_calc(0);
1511
1512 mod_setup();
1513
1514 /*
1515 * Initialize system parameters
1516 */
1517 param_init();
1518
1519 /*
1520 * maxmem is the amount of physical memory we're playing with.
1521 */
1522 maxmem = physmem;
1523
1524 /* Set segkp limits. */
1525 ncbase = kdi_segdebugbase;
1526 ncend = kdi_segdebugbase;
1527
1528 /*
1529 * Initialize the hat layer.
1530 */
1531 hat_init();
1532
1533 /*
1534 * Initialize segment management stuff.
1535 */
1536 seg_init();
1537
1538 /*
1539 * Create the va>tte handler, so the prom can understand
1540 * kernel translations. The handler is installed later, just
1541 * as we are about to take over the trap table from the prom.
1542 */
1543 create_va_to_tte();
1544
1545 /*
1546 * Load the forthdebugger (optional)
1547 */
1548 forthdebug_init();
1549
1550 /*
1551 * Create OBP node for console input callbacks
1552 * if it is needed.
1553 */
1554 startup_create_io_node();
1555
1556 if (modloadonly("fs", "specfs") == -1)
1557 halt("Can't load specfs");
1558
1559 if (modloadonly("fs", "devfs") == -1)
1560 halt("Can't load devfs");
1561
1562 if (modloadonly("fs", "procfs") == -1)
1563 halt("Can't load procfs");
1564
1565 if (modloadonly("misc", "swapgeneric") == -1)
1566 halt("Can't load swapgeneric");
1567
1568 (void) modloadonly("sys", "lbl_edition");
1569
1570 dispinit();
1571
1572 /*
1573 * Infer meanings to the members of the idprom buffer.
1574 */
1575 parse_idprom();
1576
1577 /* Read cluster configuration data. */
1578 clconf_init();
1579
1580 setup_ddi();
1581
1582 /*
1583 * Lets take this opportunity to load the root device.
1584 */
1585 if (loadrootmodules() != 0)
1586 debug_enter("Can't load the root filesystem");
1587
1588 /*
1589 * Load tod driver module for the tod part found on this system.
1590 * Recompute the cpu frequency/delays based on tod as tod part
1591 * tends to keep time more accurately.
1592 */
1593 if (&load_tod_module)
1594 load_tod_module();
1595
1596 /*
1597 * Allow platforms to load modules which might
1598 * be needed after bootops are gone.
1599 */
1600 if (&load_platform_modules)
1601 load_platform_modules();
1602
1603 setcpudelay();
1604
1605 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1606 &boot_physavail, &boot_physavail_len,
1607 &boot_virtavail, &boot_virtavail_len);
1608
1609 /*
1610 * Calculation and allocation of hmeblks needed to remap
1611 * the memory allocated by PROM till now.
1612 * Overestimate the number of hblk1 elements by assuming
1613 * worst case of TTE64K mappings.
1614 * sfmmu_hblk_alloc will panic if this calculation is wrong.
1615 */
1616 bop_alloc_pages = btopr(kmem64_end - kmem64_base);
1617 pages_per_hblk = btop(HMEBLK_SPAN(TTE64K));
1618 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1619 nhblk1 = bop_alloc_pages / pages_per_hblk + hblk1_min;
1620
1621 bop_alloc_pages = size_virtalloc(boot_virtavail, boot_virtavail_len);
1622
1623 /* sfmmu_init_nucleus_hblks expects properly aligned data structures */
1624 hme8blk_sz = roundup(HME8BLK_SZ, sizeof (int64_t));
1625 hme1blk_sz = roundup(HME1BLK_SZ, sizeof (int64_t));
1626
1627 bop_alloc_pages += btopr(nhblk1 * hme1blk_sz);
1628
1629 pages_per_hblk = btop(HMEBLK_SPAN(TTE8K));
1630 nhblk8 = 0;
1631 while (bop_alloc_pages > 1) {
1632 bop_alloc_pages = roundup(bop_alloc_pages, pages_per_hblk);
1633 nhblk8 += bop_alloc_pages /= pages_per_hblk;
1634 bop_alloc_pages *= hme8blk_sz;
1635 bop_alloc_pages = btopr(bop_alloc_pages);
1636 }
1637 nhblk8 += 2;
1638
1639 /*
1640 * Since hblk8's can hold up to 64k of mappings aligned on a 64k
1641 * boundary, the number of hblk8's needed to map the entries in the
1642 * boot_virtavail list needs to be adjusted to take this into
1643 * consideration. Thus, we need to add additional hblk8's since it
1644 * is possible that an hblk8 will not have all 8 slots used due to
1645 * alignment constraints. Since there were boot_virtavail_len entries
1646 * in that list, we need to add that many hblk8's to the number
1647 * already calculated to make sure we don't underestimate.
1648 */
1649 nhblk8 += boot_virtavail_len;
1650 nhblksz = nhblk8 * hme8blk_sz + nhblk1 * hme1blk_sz;
1651
1652 /* Allocate in pagesize chunks */
1653 nhblksz = roundup(nhblksz, MMU_PAGESIZE);
1654 hblk_base = kmem_zalloc(nhblksz, KM_SLEEP);
1655 sfmmu_init_nucleus_hblks(hblk_base, nhblksz, nhblk8, nhblk1);
1656 }
1657
1658 static void
1659 startup_bop_gone(void)
1660 {
1661
1662 /*
1663 * Destroy the MD initialized at startup
1664 * The startup initializes the MD framework
1665 * using prom and BOP alloc free it now.
1666 */
1667 mach_descrip_startup_fini();
1668
1669 /*
1670 * We're done with prom allocations.
1671 */
1672 bop_fini();
1673
1674 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1675 &boot_physavail, &boot_physavail_len,
1676 &boot_virtavail, &boot_virtavail_len);
1677
1678 /*
1679 * setup physically contiguous area twice as large as the ecache.
1680 * this is used while doing displacement flush of ecaches
1681 */
1682 if (&ecache_flush_address) {
1683 ecache_flushaddr = ecache_flush_address();
1684 if (ecache_flushaddr == (uint64_t)-1) {
1685 cmn_err(CE_PANIC,
1686 "startup: no memory to set ecache_flushaddr");
1687 }
1688 }
1689
1690 /*
1691 * Virtual available next.
1692 */
1693 ASSERT(virt_avail != NULL);
1694 memlist_free_list(virt_avail);
1695 virt_avail = memlist;
1696 copy_memlist(boot_virtavail, boot_virtavail_len, &memlist);
1697
1698 }
1699
1700
1701 /*
1702 * startup_fixup_physavail - called from mach_sfmmu.c after the final
1703 * allocations have been performed. We can't call it in startup_bop_gone
1704 * since later operations can cause obp to allocate more memory.
1705 */
1706 void
1707 startup_fixup_physavail(void)
1708 {
1709 struct memlist *cur;
1710 size_t kmem64_overmap_size = kmem64_aligned_end - kmem64_end;
1711
1712 PRM_DEBUG(kmem64_overmap_size);
1713
1714 /*
1715 * take the most current snapshot we can by calling mem-update
1716 */
1717 copy_boot_memlists(&boot_physinstalled, &boot_physinstalled_len,
1718 &boot_physavail, &boot_physavail_len,
1719 &boot_virtavail, &boot_virtavail_len);
1720
1721 /*
1722 * Copy phys_avail list, again.
1723 * Both the kernel/boot and the prom have been allocating
1724 * from the original list we copied earlier.
1725 */
1726 cur = memlist;
1727 copy_memlist(boot_physavail, boot_physavail_len, &memlist);
1728
1729 /*
1730 * Add any unused kmem64 memory from overmapped page
1731 * (Note: va_to_pa does not work for kmem64_end)
1732 */
1733 if (kmem64_overmap_size) {
1734 memlist_add(kmem64_pabase + (kmem64_end - kmem64_base),
1735 kmem64_overmap_size, &memlist, &cur);
1736 }
1737
1738 /*
1739 * Add any extra memory after e_data we added to the phys_avail list
1740 * back to the old list.
1741 */
1742 if (ndata_remain_sz >= MMU_PAGESIZE)
1743 memlist_add(va_to_pa(nalloc_base),
1744 (uint64_t)ndata_remain_sz, &memlist, &cur);
1745
1746 /*
1747 * There isn't any bounds checking on the memlist area
1748 * so ensure it hasn't overgrown.
1749 */
1750 if ((caddr_t)memlist > (caddr_t)memlist_end)
1751 cmn_err(CE_PANIC, "startup: memlist size exceeded");
1752
1753 /*
1754 * The kernel removes the pages that were allocated for it from
1755 * the freelist, but we now have to find any -extra- pages that
1756 * the prom has allocated for it's own book-keeping, and remove
1757 * them from the freelist too. sigh.
1758 */
1759 sync_memlists(phys_avail, cur);
1760
1761 ASSERT(phys_avail != NULL);
1762
1763 old_phys_avail = phys_avail;
1764 phys_avail = cur;
1765 }
1766
1767 void
1768 update_kcage_ranges(uint64_t addr, uint64_t len)
1769 {
1770 pfn_t base = btop(addr);
1771 pgcnt_t num = btop(len);
1772 int rv;
1773
1774 rv = kcage_range_add(base, num, kcage_startup_dir);
1775
1776 if (rv == ENOMEM) {
1777 cmn_err(CE_WARN, "%ld megabytes not available to kernel cage",
1778 (len == 0 ? 0 : BYTES_TO_MB(len)));
1779 } else if (rv != 0) {
1780 /* catch this in debug kernels */
1781 ASSERT(0);
1782
1783 cmn_err(CE_WARN, "unexpected kcage_range_add"
1784 " return value %d", rv);
1785 }
1786 }
1787
1788 static void
1789 startup_vm(void)
1790 {
1791 size_t i;
1792 struct segmap_crargs a;
1793 struct segkpm_crargs b;
1794
1795 uint64_t avmem;
1796 caddr_t va;
1797 pgcnt_t max_phys_segkp;
1798 int mnode;
1799
1800 extern int use_brk_lpg, use_stk_lpg;
1801
1802 /*
1803 * get prom's mappings, create hments for them and switch
1804 * to the kernel context.
1805 */
1806 hat_kern_setup();
1807
1808 /*
1809 * Take over trap table
1810 */
1811 setup_trap_table();
1812
1813 /*
1814 * Install the va>tte handler, so that the prom can handle
1815 * misses and understand the kernel table layout in case
1816 * we need call into the prom.
1817 */
1818 install_va_to_tte();
1819
1820 /*
1821 * Set a flag to indicate that the tba has been taken over.
1822 */
1823 tba_taken_over = 1;
1824
1825 /* initialize MMU primary context register */
1826 mmu_init_kcontext();
1827
1828 /*
1829 * The boot cpu can now take interrupts, x-calls, x-traps
1830 */
1831 CPUSET_ADD(cpu_ready_set, CPU->cpu_id);
1832 CPU->cpu_flags |= (CPU_READY | CPU_ENABLE | CPU_EXISTS);
1833
1834 /*
1835 * Set a flag to tell write_scb_int() that it can access V_TBR_WR_ADDR.
1836 */
1837 tbr_wr_addr_inited = 1;
1838
1839 /*
1840 * Initialize VM system, and map kernel address space.
1841 */
1842 kvm_init();
1843
1844 ASSERT(old_phys_avail != NULL && phys_avail != NULL);
1845 if (kernel_cage_enable) {
1846 diff_memlists(phys_avail, old_phys_avail, update_kcage_ranges);
1847 }
1848 memlist_free_list(old_phys_avail);
1849
1850 /*
1851 * If the following is true, someone has patched
1852 * phsymem to be less than the number of pages that
1853 * the system actually has. Remove pages until system
1854 * memory is limited to the requested amount. Since we
1855 * have allocated page structures for all pages, we
1856 * correct the amount of memory we want to remove
1857 * by the size of the memory used to hold page structures
1858 * for the non-used pages.
1859 */
1860 if (physmem + ramdisk_npages < npages) {
1861 pgcnt_t diff, off;
1862 struct page *pp;
1863 struct seg kseg;
1864
1865 cmn_err(CE_WARN, "limiting physmem to %ld pages", physmem);
1866
1867 off = 0;
1868 diff = npages - (physmem + ramdisk_npages);
1869 diff -= mmu_btopr(diff * sizeof (struct page));
1870 kseg.s_as = &kas;
1871 while (diff--) {
1872 pp = page_create_va(&unused_pages_vp, (offset_t)off,
1873 MMU_PAGESIZE, PG_WAIT | PG_EXCL,
1874 &kseg, (caddr_t)off);
1875 if (pp == NULL)
1876 cmn_err(CE_PANIC, "limited physmem too much!");
1877 page_io_unlock(pp);
1878 page_downgrade(pp);
1879 availrmem--;
1880 off += MMU_PAGESIZE;
1881 }
1882 }
1883
1884 /*
1885 * When printing memory, show the total as physmem less
1886 * that stolen by a debugger.
1887 */
1888 cmn_err(CE_CONT, "?mem = %ldK (0x%lx000)\n",
1889 (ulong_t)(physinstalled) << (PAGESHIFT - 10),
1890 (ulong_t)(physinstalled) << (PAGESHIFT - 12));
1891
1892 avmem = (uint64_t)freemem << PAGESHIFT;
1893 cmn_err(CE_CONT, "?avail mem = %lld\n", (unsigned long long)avmem);
1894
1895 /*
1896 * For small memory systems disable automatic large pages.
1897 */
1898 if (physmem < privm_lpg_min_physmem) {
1899 use_brk_lpg = 0;
1900 use_stk_lpg = 0;
1901 }
1902
1903 /*
1904 * Perform platform specific freelist processing
1905 */
1906 if (&plat_freelist_process) {
1907 for (mnode = 0; mnode < max_mem_nodes; mnode++)
1908 if (mem_node_config[mnode].exists)
1909 plat_freelist_process(mnode);
1910 }
1911
1912 /*
1913 * Initialize the segkp segment type. We position it
1914 * after the configured tables and buffers (whose end
1915 * is given by econtig) and before V_WKBASE_ADDR.
1916 * Also in this area is segkmap (size SEGMAPSIZE).
1917 */
1918
1919 /* XXX - cache alignment? */
1920 va = (caddr_t)SEGKPBASE;
1921 ASSERT(((uintptr_t)va & PAGEOFFSET) == 0);
1922
1923 max_phys_segkp = (physmem * 2);
1924
1925 if (segkpsize < btop(SEGKPMINSIZE) || segkpsize > btop(SEGKPMAXSIZE)) {
1926 segkpsize = btop(SEGKPDEFSIZE);
1927 cmn_err(CE_WARN, "Illegal value for segkpsize. "
1928 "segkpsize has been reset to %ld pages", segkpsize);
1929 }
1930
1931 i = ptob(MIN(segkpsize, max_phys_segkp));
1932
1933 rw_enter(&kas.a_lock, RW_WRITER);
1934 if (seg_attach(&kas, va, i, segkp) < 0)
1935 cmn_err(CE_PANIC, "startup: cannot attach segkp");
1936 if (segkp_create(segkp) != 0)
1937 cmn_err(CE_PANIC, "startup: segkp_create failed");
1938 rw_exit(&kas.a_lock);
1939
1940 /*
1941 * kpm segment
1942 */
1943 segmap_kpm = kpm_enable &&
1944 segmap_kpm && PAGESIZE == MAXBSIZE;
1945
1946 if (kpm_enable) {
1947 rw_enter(&kas.a_lock, RW_WRITER);
1948
1949 /*
1950 * The segkpm virtual range range is larger than the
1951 * actual physical memory size and also covers gaps in
1952 * the physical address range for the following reasons:
1953 * . keep conversion between segkpm and physical addresses
1954 * simple, cheap and unambiguous.
1955 * . avoid extension/shrink of the the segkpm in case of DR.
1956 * . avoid complexity for handling of virtual addressed
1957 * caches, segkpm and the regular mapping scheme must be
1958 * kept in sync wrt. the virtual color of mapped pages.
1959 * Any accesses to virtual segkpm ranges not backed by
1960 * physical memory will fall through the memseg pfn hash
1961 * and will be handled in segkpm_fault.
1962 * Additional kpm_size spaces needed for vac alias prevention.
1963 */
1964 if (seg_attach(&kas, kpm_vbase, kpm_size * vac_colors,
1965 segkpm) < 0)
1966 cmn_err(CE_PANIC, "cannot attach segkpm");
1967
1968 b.prot = PROT_READ | PROT_WRITE;
1969 b.nvcolors = shm_alignment >> MMU_PAGESHIFT;
1970
1971 if (segkpm_create(segkpm, (caddr_t)&b) != 0)
1972 panic("segkpm_create segkpm");
1973
1974 rw_exit(&kas.a_lock);
1975
1976 mach_kpm_init();
1977 }
1978
1979 va = kpm_vbase + (kpm_size * vac_colors);
1980
1981 if (!segzio_fromheap) {
1982 size_t size;
1983 size_t physmem_b = mmu_ptob(physmem);
1984
1985 /* size is in bytes, segziosize is in pages */
1986 if (segziosize == 0) {
1987 size = physmem_b;
1988 } else {
1989 size = mmu_ptob(segziosize);
1990 }
1991
1992 if (size < SEGZIOMINSIZE) {
1993 size = SEGZIOMINSIZE;
1994 } else if (size > SEGZIOMAXSIZE) {
1995 size = SEGZIOMAXSIZE;
1996 /*
1997 * On 64-bit x86, we only have 2TB of KVA. This exists
1998 * for parity with x86.
1999 *
2000 * SEGZIOMAXSIZE is capped at 512gb so that segzio
2001 * doesn't consume all of KVA. However, if we have a
2002 * system that has more thant 512gb of physical memory,
2003 * we can actually consume about half of the difference
2004 * between 512gb and the rest of the available physical
2005 * memory.
2006 */
2007 if (physmem_b > SEGZIOMAXSIZE) {
2008 size += (physmem_b - SEGZIOMAXSIZE) / 2;
2009 }
2010 }
2011 segziosize = mmu_btop(roundup(size, MMU_PAGESIZE));
2012 /* put the base of the ZIO segment after the kpm segment */
2013 segzio_base = va;
2014 va += mmu_ptob(segziosize);
2015 PRM_DEBUG(segziosize);
2016 PRM_DEBUG(segzio_base);
2017
2018 /*
2019 * On some platforms, kvm_init is called after the kpm
2020 * sizes have been determined. On SPARC, kvm_init is called
2021 * before, so we have to attach the kzioseg after kvm is
2022 * initialized, otherwise we'll try to allocate from the boot
2023 * area since the kernel heap hasn't yet been configured.
2024 */
2025 rw_enter(&kas.a_lock, RW_WRITER);
2026
2027 (void) seg_attach(&kas, segzio_base, mmu_ptob(segziosize),
2028 &kzioseg);
2029 (void) segkmem_zio_create(&kzioseg);
2030
2031 /* create zio area covering new segment */
2032 segkmem_zio_init(segzio_base, mmu_ptob(segziosize));
2033
2034 rw_exit(&kas.a_lock);
2035 }
2036
2037 if (ppvm_enable) {
2038 caddr_t ppvm_max;
2039
2040 /*
2041 * ppvm refers to the static VA space used to map
2042 * the page_t's for dynamically added memory.
2043 *
2044 * ppvm_base should not cross a potential VA hole.
2045 *
2046 * ppvm_size should be large enough to map the
2047 * page_t's needed to manage all of KPM range.
2048 */
2049 ppvm_size =
2050 roundup(mmu_btop(kpm_size * vac_colors) * sizeof (page_t),
2051 MMU_PAGESIZE);
2052 ppvm_max = (caddr_t)(0ull - ppvm_size);
2053 ppvm_base = (page_t *)va;
2054
2055 if ((caddr_t)ppvm_base <= hole_end) {
2056 cmn_err(CE_WARN,
2057 "Memory DR disabled: invalid DR map base: 0x%p\n",
2058 (void *)ppvm_base);
2059 ppvm_enable = 0;
2060 } else if ((caddr_t)ppvm_base > ppvm_max) {
2061 uint64_t diff = (caddr_t)ppvm_base - ppvm_max;
2062
2063 cmn_err(CE_WARN,
2064 "Memory DR disabled: insufficient DR map size:"
2065 " 0x%lx (needed 0x%lx)\n",
2066 ppvm_size - diff, ppvm_size);
2067 ppvm_enable = 0;
2068 }
2069 PRM_DEBUG(ppvm_size);
2070 PRM_DEBUG(ppvm_base);
2071 }
2072
2073 /*
2074 * Now create generic mapping segment. This mapping
2075 * goes SEGMAPSIZE beyond SEGMAPBASE. But if the total
2076 * virtual address is greater than the amount of free
2077 * memory that is available, then we trim back the
2078 * segment size to that amount
2079 */
2080 va = (caddr_t)SEGMAPBASE;
2081
2082 /*
2083 * 1201049: segkmap base address must be MAXBSIZE aligned
2084 */
2085 ASSERT(((uintptr_t)va & MAXBOFFSET) == 0);
2086
2087 /*
2088 * Set size of segmap to percentage of freemem at boot,
2089 * but stay within the allowable range
2090 * Note we take percentage before converting from pages
2091 * to bytes to avoid an overflow on 32-bit kernels.
2092 */
2093 i = mmu_ptob((freemem * segmap_percent) / 100);
2094
2095 if (i < MINMAPSIZE)
2096 i = MINMAPSIZE;
2097
2098 if (i > MIN(SEGMAPSIZE, mmu_ptob(freemem)))
2099 i = MIN(SEGMAPSIZE, mmu_ptob(freemem));
2100
2101 i &= MAXBMASK; /* 1201049: segkmap size must be MAXBSIZE aligned */
2102
2103 rw_enter(&kas.a_lock, RW_WRITER);
2104 if (seg_attach(&kas, va, i, segkmap) < 0)
2105 cmn_err(CE_PANIC, "cannot attach segkmap");
2106
2107 a.prot = PROT_READ | PROT_WRITE;
2108 a.shmsize = shm_alignment;
2109 a.nfreelist = 0; /* use segmap driver defaults */
2110
2111 if (segmap_create(segkmap, (caddr_t)&a) != 0)
2112 panic("segmap_create segkmap");
2113 rw_exit(&kas.a_lock);
2114
2115 segdev_init();
2116 }
2117
2118 static void
2119 startup_end(void)
2120 {
2121 if ((caddr_t)memlist > (caddr_t)memlist_end)
2122 panic("memlist overflow 2");
2123 memlist_free_block((caddr_t)memlist,
2124 ((caddr_t)memlist_end - (caddr_t)memlist));
2125 memlist = NULL;
2126
2127 /* enable page_relocation since OBP is now done */
2128 page_relocate_ready = 1;
2129
2130 /*
2131 * Perform tasks that get done after most of the VM
2132 * initialization has been done but before the clock
2133 * and other devices get started.
2134 */
2135 kern_setup1();
2136
2137 /*
2138 * Perform CPC initialization for this CPU.
2139 */
2140 kcpc_hw_init();
2141
2142 /*
2143 * Intialize the VM arenas for allocating physically
2144 * contiguus memory chunk for interrupt queues snd
2145 * allocate/register boot cpu's queues, if any and
2146 * allocate dump buffer for sun4v systems to store
2147 * extra crash information during crash dump
2148 */
2149 contig_mem_init();
2150 mach_descrip_init();
2151
2152 if (cpu_intrq_setup(CPU)) {
2153 cmn_err(CE_PANIC, "cpu%d: setup failed", CPU->cpu_id);
2154 }
2155 cpu_intrq_register(CPU);
2156 mach_htraptrace_setup(CPU->cpu_id);
2157 mach_htraptrace_configure(CPU->cpu_id);
2158 mach_dump_buffer_init();
2159
2160 /*
2161 * Initialize interrupt related stuff
2162 */
2163 cpu_intr_alloc(CPU, NINTR_THREADS);
2164
2165 (void) splzs(); /* allow hi clock ints but not zs */
2166
2167 /*
2168 * Initialize errors.
2169 */
2170 error_init();
2171
2172 /*
2173 * Note that we may have already used kernel bcopy before this
2174 * point - but if you really care about this, adb the use_hw_*
2175 * variables to 0 before rebooting.
2176 */
2177 mach_hw_copy_limit();
2178
2179 /*
2180 * Install the "real" preemption guards before DDI services
2181 * are available.
2182 */
2183 (void) prom_set_preprom(kern_preprom);
2184 (void) prom_set_postprom(kern_postprom);
2185 CPU->cpu_m.mutex_ready = 1;
2186
2187 /*
2188 * Initialize segnf (kernel support for non-faulting loads).
2189 */
2190 segnf_init();
2191
2192 /*
2193 * Configure the root devinfo node.
2194 */
2195 configure(); /* set up devices */
2196 mach_cpu_halt_idle();
2197 }
2198
2199
2200 void
2201 post_startup(void)
2202 {
2203 #ifdef PTL1_PANIC_DEBUG
2204 extern void init_ptl1_thread(void);
2205 #endif /* PTL1_PANIC_DEBUG */
2206 extern void abort_sequence_init(void);
2207
2208 /*
2209 * Set the system wide, processor-specific flags to be passed
2210 * to userland via the aux vector for performance hints and
2211 * instruction set extensions.
2212 */
2213 bind_hwcap();
2214
2215 /*
2216 * Startup memory scrubber (if any)
2217 */
2218 mach_memscrub();
2219
2220 /*
2221 * Allocate soft interrupt to handle abort sequence.
2222 */
2223 abort_sequence_init();
2224
2225 /*
2226 * Configure the rest of the system.
2227 * Perform forceloading tasks for /etc/system.
2228 */
2229 (void) mod_sysctl(SYS_FORCELOAD, NULL);
2230 /*
2231 * ON4.0: Force /proc module in until clock interrupt handle fixed
2232 * ON4.0: This must be fixed or restated in /etc/systems.
2233 */
2234 (void) modload("fs", "procfs");
2235
2236 /* load machine class specific drivers */
2237 load_mach_drivers();
2238
2239 /* load platform specific drivers */
2240 if (&load_platform_drivers)
2241 load_platform_drivers();
2242
2243 /* load vis simulation module, if we are running w/fpu off */
2244 if (!fpu_exists) {
2245 if (modload("misc", "vis") == -1)
2246 halt("Can't load vis");
2247 }
2248
2249 mach_fpras();
2250
2251 maxmem = freemem;
2252
2253 pg_init();
2254
2255 #ifdef PTL1_PANIC_DEBUG
2256 init_ptl1_thread();
2257 #endif /* PTL1_PANIC_DEBUG */
2258 }
2259
2260 #ifdef PTL1_PANIC_DEBUG
2261 int ptl1_panic_test = 0;
2262 int ptl1_panic_xc_one_test = 0;
2263 int ptl1_panic_xc_all_test = 0;
2264 int ptl1_panic_xt_one_test = 0;
2265 int ptl1_panic_xt_all_test = 0;
2266 kthread_id_t ptl1_thread_p = NULL;
2267 kcondvar_t ptl1_cv;
2268 kmutex_t ptl1_mutex;
2269 int ptl1_recurse_count_threshold = 0x40;
2270 int ptl1_recurse_trap_threshold = 0x3d;
2271 extern void ptl1_recurse(int, int);
2272 extern void ptl1_panic_xt(int, int);
2273
2274 /*
2275 * Called once per second by timeout() to wake up
2276 * the ptl1_panic thread to see if it should cause
2277 * a trap to the ptl1_panic() code.
2278 */
2279 /* ARGSUSED */
2280 static void
2281 ptl1_wakeup(void *arg)
2282 {
2283 mutex_enter(&ptl1_mutex);
2284 cv_signal(&ptl1_cv);
2285 mutex_exit(&ptl1_mutex);
2286 }
2287
2288 /*
2289 * ptl1_panic cross call function:
2290 * Needed because xc_one() and xc_some() can pass
2291 * 64 bit args but ptl1_recurse() expects ints.
2292 */
2293 static void
2294 ptl1_panic_xc(void)
2295 {
2296 ptl1_recurse(ptl1_recurse_count_threshold,
2297 ptl1_recurse_trap_threshold);
2298 }
2299
2300 /*
2301 * The ptl1 thread waits for a global flag to be set
2302 * and uses the recurse thresholds to set the stack depth
2303 * to cause a ptl1_panic() directly via a call to ptl1_recurse
2304 * or indirectly via the cross call and cross trap functions.
2305 *
2306 * This is useful testing stack overflows and normal
2307 * ptl1_panic() states with a know stack frame.
2308 *
2309 * ptl1_recurse() is an asm function in ptl1_panic.s that
2310 * sets the {In, Local, Out, and Global} registers to a
2311 * know state on the stack and just prior to causing a
2312 * test ptl1_panic trap.
2313 */
2314 static void
2315 ptl1_thread(void)
2316 {
2317 mutex_enter(&ptl1_mutex);
2318 while (ptl1_thread_p) {
2319 cpuset_t other_cpus;
2320 int cpu_id;
2321 int my_cpu_id;
2322 int target_cpu_id;
2323 int target_found;
2324
2325 if (ptl1_panic_test) {
2326 ptl1_recurse(ptl1_recurse_count_threshold,
2327 ptl1_recurse_trap_threshold);
2328 }
2329
2330 /*
2331 * Find potential targets for x-call and x-trap,
2332 * if any exist while preempt is disabled we
2333 * start a ptl1_panic if requested via a
2334 * globals.
2335 */
2336 kpreempt_disable();
2337 my_cpu_id = CPU->cpu_id;
2338 other_cpus = cpu_ready_set;
2339 CPUSET_DEL(other_cpus, CPU->cpu_id);
2340 target_found = 0;
2341 if (!CPUSET_ISNULL(other_cpus)) {
2342 /*
2343 * Pick the first one
2344 */
2345 for (cpu_id = 0; cpu_id < NCPU; cpu_id++) {
2346 if (cpu_id == my_cpu_id)
2347 continue;
2348
2349 if (CPU_XCALL_READY(cpu_id)) {
2350 target_cpu_id = cpu_id;
2351 target_found = 1;
2352 break;
2353 }
2354 }
2355 ASSERT(target_found);
2356
2357 if (ptl1_panic_xc_one_test) {
2358 xc_one(target_cpu_id,
2359 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2360 }
2361 if (ptl1_panic_xc_all_test) {
2362 xc_some(other_cpus,
2363 (xcfunc_t *)ptl1_panic_xc, 0, 0);
2364 }
2365 if (ptl1_panic_xt_one_test) {
2366 xt_one(target_cpu_id,
2367 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2368 }
2369 if (ptl1_panic_xt_all_test) {
2370 xt_some(other_cpus,
2371 (xcfunc_t *)ptl1_panic_xt, 0, 0);
2372 }
2373 }
2374 kpreempt_enable();
2375 (void) timeout(ptl1_wakeup, NULL, hz);
2376 (void) cv_wait(&ptl1_cv, &ptl1_mutex);
2377 }
2378 mutex_exit(&ptl1_mutex);
2379 }
2380
2381 /*
2382 * Called during early startup to create the ptl1_thread
2383 */
2384 void
2385 init_ptl1_thread(void)
2386 {
2387 ptl1_thread_p = thread_create(NULL, 0, ptl1_thread, NULL, 0,
2388 &p0, TS_RUN, 0);
2389 }
2390 #endif /* PTL1_PANIC_DEBUG */
2391
2392
2393 static void
2394 memlist_new(uint64_t start, uint64_t len, struct memlist **memlistp)
2395 {
2396 struct memlist *new;
2397
2398 new = *memlistp;
2399 new->ml_address = start;
2400 new->ml_size = len;
2401 *memlistp = new + 1;
2402 }
2403
2404 /*
2405 * Add to a memory list.
2406 * start = start of new memory segment
2407 * len = length of new memory segment in bytes
2408 * memlistp = pointer to array of available memory segment structures
2409 * curmemlistp = memory list to which to add segment.
2410 */
2411 static void
2412 memlist_add(uint64_t start, uint64_t len, struct memlist **memlistp,
2413 struct memlist **curmemlistp)
2414 {
2415 struct memlist *new = *memlistp;
2416
2417 memlist_new(start, len, memlistp);
2418 memlist_insert(new, curmemlistp);
2419 }
2420
2421 static int
2422 ndata_alloc_memseg(struct memlist *ndata, size_t avail)
2423 {
2424 int nseg;
2425 size_t memseg_sz;
2426 struct memseg *msp;
2427
2428 /*
2429 * The memseg list is for the chunks of physical memory that
2430 * will be managed by the vm system. The number calculated is
2431 * a guess as boot may fragment it more when memory allocations
2432 * are made before kphysm_init().
2433 */
2434 memseg_sz = (avail + 10) * sizeof (struct memseg);
2435 memseg_sz = roundup(memseg_sz, PAGESIZE);
2436 nseg = memseg_sz / sizeof (struct memseg);
2437 msp = ndata_alloc(ndata, memseg_sz, ecache_alignsize);
2438 if (msp == NULL)
2439 return (1);
2440 PRM_DEBUG(memseg_free);
2441
2442 while (nseg--) {
2443 msp->next = memseg_free;
2444 memseg_free = msp;
2445 msp++;
2446 }
2447 return (0);
2448 }
2449
2450 /*
2451 * In the case of architectures that support dynamic addition of
2452 * memory at run-time there are two cases where memsegs need to
2453 * be initialized and added to the memseg list.
2454 * 1) memsegs that are constructed at startup.
2455 * 2) memsegs that are constructed at run-time on
2456 * hot-plug capable architectures.
2457 * This code was originally part of the function kphysm_init().
2458 */
2459
2460 static void
2461 memseg_list_add(struct memseg *memsegp)
2462 {
2463 struct memseg **prev_memsegp;
2464 pgcnt_t num;
2465
2466 /* insert in memseg list, decreasing number of pages order */
2467
2468 num = MSEG_NPAGES(memsegp);
2469
2470 for (prev_memsegp = &memsegs; *prev_memsegp;
2471 prev_memsegp = &((*prev_memsegp)->next)) {
2472 if (num > MSEG_NPAGES(*prev_memsegp))
2473 break;
2474 }
2475
2476 memsegp->next = *prev_memsegp;
2477 *prev_memsegp = memsegp;
2478
2479 if (kpm_enable) {
2480 memsegp->nextpa = (memsegp->next) ?
2481 va_to_pa(memsegp->next) : MSEG_NULLPTR_PA;
2482
2483 if (prev_memsegp != &memsegs) {
2484 struct memseg *msp;
2485 msp = (struct memseg *)((caddr_t)prev_memsegp -
2486 offsetof(struct memseg, next));
2487 msp->nextpa = va_to_pa(memsegp);
2488 } else {
2489 memsegspa = va_to_pa(memsegs);
2490 }
2491 }
2492 }
2493
2494 /*
2495 * PSM add_physmem_cb(). US-II and newer processors have some
2496 * flavor of the prefetch capability implemented. We exploit
2497 * this capability for optimum performance.
2498 */
2499 #define PREFETCH_BYTES 64
2500
2501 void
2502 add_physmem_cb(page_t *pp, pfn_t pnum)
2503 {
2504 extern void prefetch_page_w(void *);
2505
2506 pp->p_pagenum = pnum;
2507
2508 /*
2509 * Prefetch one more page_t into E$. To prevent future
2510 * mishaps with the sizeof(page_t) changing on us, we
2511 * catch this on debug kernels if we can't bring in the
2512 * entire hpage with 2 PREFETCH_BYTES reads. See
2513 * also, sun4u/cpu/cpu_module.c
2514 */
2515 /*LINTED*/
2516 ASSERT(sizeof (page_t) <= 2*PREFETCH_BYTES);
2517 prefetch_page_w((char *)pp);
2518 }
2519
2520 /*
2521 * Find memseg with given pfn
2522 */
2523 static struct memseg *
2524 memseg_find(pfn_t base, pfn_t *next)
2525 {
2526 struct memseg *seg;
2527
2528 if (next != NULL)
2529 *next = LONG_MAX;
2530 for (seg = memsegs; seg != NULL; seg = seg->next) {
2531 if (base >= seg->pages_base && base < seg->pages_end)
2532 return (seg);
2533 if (next != NULL && seg->pages_base > base &&
2534 seg->pages_base < *next)
2535 *next = seg->pages_base;
2536 }
2537 return (NULL);
2538 }
2539
2540 /*
2541 * Put page allocated by OBP on prom_ppages
2542 */
2543 static void
2544 kphysm_erase(uint64_t addr, uint64_t len)
2545 {
2546 struct page *pp;
2547 struct memseg *seg;
2548 pfn_t base = btop(addr), next;
2549 pgcnt_t num = btop(len);
2550
2551 while (num != 0) {
2552 pgcnt_t off, left;
2553
2554 seg = memseg_find(base, &next);
2555 if (seg == NULL) {
2556 if (next == LONG_MAX)
2557 break;
2558 left = MIN(next - base, num);
2559 base += left, num -= left;
2560 continue;
2561 }
2562 off = base - seg->pages_base;
2563 pp = seg->pages + off;
2564 left = num - MIN(num, (seg->pages_end - seg->pages_base) - off);
2565 while (num != left) {
2566 /*
2567 * init it, lock it, and hashin on prom_pages vp.
2568 *
2569 * Mark it as NONRELOC to let DR know the page
2570 * is locked long term, otherwise DR hangs when
2571 * trying to remove those pages.
2572 *
2573 * XXX vnode offsets on the prom_ppages vnode
2574 * are page numbers (gack) for >32 bit
2575 * physical memory machines.
2576 */
2577 PP_SETNORELOC(pp);
2578 add_physmem_cb(pp, base);
2579 if (page_trylock(pp, SE_EXCL) == 0)
2580 cmn_err(CE_PANIC, "prom page locked");
2581 (void) page_hashin(pp, &promvp,
2582 (offset_t)base, NULL);
2583 (void) page_pp_lock(pp, 0, 1);
2584 pp++, base++, num--;
2585 }
2586 }
2587 }
2588
2589 static page_t *ppnext;
2590 static pgcnt_t ppleft;
2591
2592 static void *kpm_ppnext;
2593 static pgcnt_t kpm_ppleft;
2594
2595 /*
2596 * Create a memseg
2597 */
2598 static void
2599 kphysm_memseg(uint64_t addr, uint64_t len)
2600 {
2601 pfn_t base = btop(addr);
2602 pgcnt_t num = btop(len);
2603 struct memseg *seg;
2604
2605 seg = memseg_free;
2606 memseg_free = seg->next;
2607 ASSERT(seg != NULL);
2608
2609 seg->pages = ppnext;
2610 seg->epages = ppnext + num;
2611 seg->pages_base = base;
2612 seg->pages_end = base + num;
2613 ppnext += num;
2614 ppleft -= num;
2615
2616 if (kpm_enable) {
2617 pgcnt_t kpnum = ptokpmpr(num);
2618
2619 if (kpnum > kpm_ppleft)
2620 panic("kphysm_memseg: kpm_pp overflow");
2621 seg->pagespa = va_to_pa(seg->pages);
2622 seg->epagespa = va_to_pa(seg->epages);
2623 seg->kpm_pbase = kpmptop(ptokpmp(base));
2624 seg->kpm_nkpmpgs = kpnum;
2625 /*
2626 * In the kpm_smallpage case, the kpm array
2627 * is 1-1 wrt the page array
2628 */
2629 if (kpm_smallpages) {
2630 kpm_spage_t *kpm_pp = kpm_ppnext;
2631
2632 kpm_ppnext = kpm_pp + kpnum;
2633 seg->kpm_spages = kpm_pp;
2634 seg->kpm_pagespa = va_to_pa(seg->kpm_spages);
2635 } else {
2636 kpm_page_t *kpm_pp = kpm_ppnext;
2637
2638 kpm_ppnext = kpm_pp + kpnum;
2639 seg->kpm_pages = kpm_pp;
2640 seg->kpm_pagespa = va_to_pa(seg->kpm_pages);
2641 /* ASSERT no kpm overlaps */
2642 ASSERT(
2643 memseg_find(base - pmodkpmp(base), NULL) == NULL);
2644 ASSERT(memseg_find(
2645 roundup(base + num, kpmpnpgs) - 1, NULL) == NULL);
2646 }
2647 kpm_ppleft -= kpnum;
2648 }
2649
2650 memseg_list_add(seg);
2651 }
2652
2653 /*
2654 * Add range to free list
2655 */
2656 void
2657 kphysm_add(uint64_t addr, uint64_t len, int reclaim)
2658 {
2659 struct page *pp;
2660 struct memseg *seg;
2661 pfn_t base = btop(addr);
2662 pgcnt_t num = btop(len);
2663
2664 seg = memseg_find(base, NULL);
2665 ASSERT(seg != NULL);
2666 pp = seg->pages + (base - seg->pages_base);
2667
2668 if (reclaim) {
2669 struct page *rpp = pp;
2670 struct page *lpp = pp + num;
2671
2672 /*
2673 * page should be locked on prom_ppages
2674 * unhash and unlock it
2675 */
2676 while (rpp < lpp) {
2677 ASSERT(PAGE_EXCL(rpp) && rpp->p_vnode == &promvp);
2678 ASSERT(PP_ISNORELOC(rpp));
2679 PP_CLRNORELOC(rpp);
2680 page_pp_unlock(rpp, 0, 1);
2681 page_hashout(rpp, NULL);
2682 page_unlock(rpp);
2683 rpp++;
2684 }
2685 }
2686
2687 /*
2688 * add_physmem() initializes the PSM part of the page
2689 * struct by calling the PSM back with add_physmem_cb().
2690 * In addition it coalesces pages into larger pages as
2691 * it initializes them.
2692 */
2693 add_physmem(pp, num, base);
2694 }
2695
2696 /*
2697 * kphysm_init() tackles the problem of initializing physical memory.
2698 */
2699 static void
2700 kphysm_init(void)
2701 {
2702 struct memlist *pmem;
2703
2704 ASSERT(page_hash != NULL && page_hashsz != 0);
2705
2706 ppnext = pp_base;
2707 ppleft = npages;
2708 kpm_ppnext = kpm_pp_base;
2709 kpm_ppleft = kpm_npages;
2710
2711 /*
2712 * installed pages not on nopp_memlist go in memseg list
2713 */
2714 diff_memlists(phys_install, nopp_list, kphysm_memseg);
2715
2716 /*
2717 * Free the avail list
2718 */
2719 for (pmem = phys_avail; pmem != NULL; pmem = pmem->ml_next)
2720 kphysm_add(pmem->ml_address, pmem->ml_size, 0);
2721
2722 /*
2723 * Erase pages that aren't available
2724 */
2725 diff_memlists(phys_install, phys_avail, kphysm_erase);
2726
2727 build_pfn_hash();
2728 }
2729
2730 /*
2731 * Kernel VM initialization.
2732 * Assumptions about kernel address space ordering:
2733 * (1) gap (user space)
2734 * (2) kernel text
2735 * (3) kernel data/bss
2736 * (4) gap
2737 * (5) kernel data structures
2738 * (6) gap
2739 * (7) debugger (optional)
2740 * (8) monitor
2741 * (9) gap (possibly null)
2742 * (10) dvma
2743 * (11) devices
2744 */
2745 static void
2746 kvm_init(void)
2747 {
2748 /*
2749 * Put the kernel segments in kernel address space.
2750 */
2751 rw_enter(&kas.a_lock, RW_WRITER);
2752 as_avlinit(&kas);
2753
2754 (void) seg_attach(&kas, (caddr_t)KERNELBASE,
2755 (size_t)(e_moddata - KERNELBASE), &ktextseg);
2756 (void) segkmem_create(&ktextseg);
2757
2758 (void) seg_attach(&kas, (caddr_t)(KERNELBASE + MMU_PAGESIZE4M),
2759 (size_t)(MMU_PAGESIZE4M), &ktexthole);
2760 (void) segkmem_create(&ktexthole);
2761
2762 (void) seg_attach(&kas, (caddr_t)valloc_base,
2763 (size_t)(econtig32 - valloc_base), &kvalloc);
2764 (void) segkmem_create(&kvalloc);
2765
2766 if (kmem64_base) {
2767 (void) seg_attach(&kas, (caddr_t)kmem64_base,
2768 (size_t)(kmem64_end - kmem64_base), &kmem64);
2769 (void) segkmem_create(&kmem64);
2770 }
2771
2772 /*
2773 * We're about to map out /boot. This is the beginning of the
2774 * system resource management transition. We can no longer
2775 * call into /boot for I/O or memory allocations.
2776 */
2777 (void) seg_attach(&kas, kernelheap, ekernelheap - kernelheap, &kvseg);
2778 (void) segkmem_create(&kvseg);
2779 hblk_alloc_dynamic = 1;
2780
2781 /*
2782 * we need to preallocate pages for DR operations before enabling large
2783 * page kernel heap because of memseg_remap_init() hat_unload() hack.
2784 */
2785 memseg_remap_init();
2786
2787 /* at this point we are ready to use large page heap */
2788 segkmem_heap_lp_init();
2789
2790 (void) seg_attach(&kas, (caddr_t)SYSBASE32, SYSLIMIT32 - SYSBASE32,
2791 &kvseg32);
2792 (void) segkmem_create(&kvseg32);
2793
2794 /*
2795 * Create a segment for the debugger.
2796 */
2797 (void) seg_attach(&kas, kdi_segdebugbase, kdi_segdebugsize, &kdebugseg);
2798 (void) segkmem_create(&kdebugseg);
2799
2800 rw_exit(&kas.a_lock);
2801 }
2802
2803 char obp_tte_str[] =
2804 "h# %x constant MMU_PAGESHIFT "
2805 "h# %x constant TTE8K "
2806 "h# %x constant SFHME_SIZE "
2807 "h# %x constant SFHME_TTE "
2808 "h# %x constant HMEBLK_TAG "
2809 "h# %x constant HMEBLK_NEXT "
2810 "h# %x constant HMEBLK_MISC "
2811 "h# %x constant HMEBLK_HME1 "
2812 "h# %x constant NHMENTS "
2813 "h# %x constant HBLK_SZMASK "
2814 "h# %x constant HBLK_RANGE_SHIFT "
2815 "h# %x constant HMEBP_HBLK "
2816 "h# %x constant HMEBLK_ENDPA "
2817 "h# %x constant HMEBUCKET_SIZE "
2818 "h# %x constant HTAG_SFMMUPSZ "
2819 "h# %x constant HTAG_BSPAGE_SHIFT "
2820 "h# %x constant HTAG_REHASH_SHIFT "
2821 "h# %x constant SFMMU_INVALID_SHMERID "
2822 "h# %x constant mmu_hashcnt "
2823 "h# %p constant uhme_hash "
2824 "h# %p constant khme_hash "
2825 "h# %x constant UHMEHASH_SZ "
2826 "h# %x constant KHMEHASH_SZ "
2827 "h# %p constant KCONTEXT "
2828 "h# %p constant KHATID "
2829 "h# %x constant ASI_MEM "
2830
2831 ": PHYS-X@ ( phys -- data ) "
2832 " ASI_MEM spacex@ "
2833 "; "
2834
2835 ": PHYS-W@ ( phys -- data ) "
2836 " ASI_MEM spacew@ "
2837 "; "
2838
2839 ": PHYS-L@ ( phys -- data ) "
2840 " ASI_MEM spaceL@ "
2841 "; "
2842
2843 ": TTE_PAGE_SHIFT ( ttesz -- hmeshift ) "
2844 " 3 * MMU_PAGESHIFT + "
2845 "; "
2846
2847 ": TTE_IS_VALID ( ttep -- flag ) "
2848 " PHYS-X@ 0< "
2849 "; "
2850
2851 ": HME_HASH_SHIFT ( ttesz -- hmeshift ) "
2852 " dup TTE8K = if "
2853 " drop HBLK_RANGE_SHIFT "
2854 " else "
2855 " TTE_PAGE_SHIFT "
2856 " then "
2857 "; "
2858
2859 ": HME_HASH_BSPAGE ( addr hmeshift -- bspage ) "
2860 " tuck >> swap MMU_PAGESHIFT - << "
2861 "; "
2862
2863 ": HME_HASH_FUNCTION ( sfmmup addr hmeshift -- hmebp ) "
2864 " >> over xor swap ( hash sfmmup ) "
2865 " KHATID <> if ( hash ) "
2866 " UHMEHASH_SZ and ( bucket ) "
2867 " HMEBUCKET_SIZE * uhme_hash + ( hmebp ) "
2868 " else ( hash ) "
2869 " KHMEHASH_SZ and ( bucket ) "
2870 " HMEBUCKET_SIZE * khme_hash + ( hmebp ) "
2871 " then ( hmebp ) "
2872 "; "
2873
2874 ": HME_HASH_TABLE_SEARCH "
2875 " ( sfmmup hmebp hblktag -- sfmmup null | sfmmup hmeblkp ) "
2876 " >r hmebp_hblk + phys-x@ begin ( sfmmup hmeblkp ) ( r: hblktag ) "
2877 " dup HMEBLK_ENDPA <> if ( sfmmup hmeblkp ) ( r: hblktag ) "
2878 " dup hmeblk_tag + phys-x@ r@ = if ( sfmmup hmeblkp ) "
2879 " dup hmeblk_tag + 8 + phys-x@ 2 pick = if "
2880 " true ( sfmmup hmeblkp true ) ( r: hblktag ) "
2881 " else "
2882 " hmeblk_next + phys-x@ false "
2883 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2884 " then "
2885 " else "
2886 " hmeblk_next + phys-x@ false "
2887 " ( sfmmup hmeblkp false ) ( r: hblktag ) "
2888 " then "
2889 " else "
2890 " drop 0 true "
2891 " then "
2892 " until r> drop "
2893 "; "
2894
2895 ": HME_HASH_TAG ( sfmmup rehash addr -- hblktag ) "
2896 " over HME_HASH_SHIFT HME_HASH_BSPAGE ( sfmmup rehash bspage ) "
2897 " HTAG_BSPAGE_SHIFT << ( sfmmup rehash htag-bspage )"
2898 " swap HTAG_REHASH_SHIFT << or ( sfmmup htag-bspage-rehash )"
2899 " SFMMU_INVALID_SHMERID or nip ( hblktag ) "
2900 "; "
2901
2902 ": HBLK_TO_TTEP ( hmeblkp addr -- ttep ) "
2903 " over HMEBLK_MISC + PHYS-L@ HBLK_SZMASK and ( hmeblkp addr ttesz ) "
2904 " TTE8K = if ( hmeblkp addr ) "
2905 " MMU_PAGESHIFT >> NHMENTS 1- and ( hmeblkp hme-index ) "
2906 " else ( hmeblkp addr ) "
2907 " drop 0 ( hmeblkp 0 ) "
2908 " then ( hmeblkp hme-index ) "
2909 " SFHME_SIZE * + HMEBLK_HME1 + ( hmep ) "
2910 " SFHME_TTE + ( ttep ) "
2911 "; "
2912
2913 ": unix-tte ( addr cnum -- false | tte-data true ) "
2914 " KCONTEXT = if ( addr ) "
2915 " KHATID ( addr khatid ) "
2916 " else ( addr ) "
2917 " drop false exit ( false ) "
2918 " then "
2919 " ( addr khatid ) "
2920 " mmu_hashcnt 1+ 1 do ( addr sfmmup ) "
2921 " 2dup swap i HME_HASH_SHIFT "
2922 "( addr sfmmup sfmmup addr hmeshift ) "
2923 " HME_HASH_FUNCTION ( addr sfmmup hmebp ) "
2924 " over i 4 pick "
2925 "( addr sfmmup hmebp sfmmup rehash addr ) "
2926 " HME_HASH_TAG ( addr sfmmup hmebp hblktag ) "
2927 " HME_HASH_TABLE_SEARCH "
2928 "( addr sfmmup { null | hmeblkp } ) "
2929 " ?dup if ( addr sfmmup hmeblkp ) "
2930 " nip swap HBLK_TO_TTEP ( ttep ) "
2931 " dup TTE_IS_VALID if ( valid-ttep ) "
2932 " PHYS-X@ true ( tte-data true ) "
2933 " else ( invalid-tte ) "
2934 " drop false ( false ) "
2935 " then ( false | tte-data true ) "
2936 " unloop exit ( false | tte-data true ) "
2937 " then ( addr sfmmup ) "
2938 " loop ( addr sfmmup ) "
2939 " 2drop false ( false ) "
2940 "; "
2941 ;
2942
2943 void
2944 create_va_to_tte(void)
2945 {
2946 char *bp;
2947 extern int khmehash_num, uhmehash_num;
2948 extern struct hmehash_bucket *khme_hash, *uhme_hash;
2949
2950 #define OFFSET(type, field) ((uintptr_t)(&((type *)0)->field))
2951
2952 bp = (char *)kobj_zalloc(MMU_PAGESIZE, KM_SLEEP);
2953
2954 /*
2955 * Teach obp how to parse our sw ttes.
2956 */
2957 (void) sprintf(bp, obp_tte_str,
2958 MMU_PAGESHIFT,
2959 TTE8K,
2960 sizeof (struct sf_hment),
2961 OFFSET(struct sf_hment, hme_tte),
2962 OFFSET(struct hme_blk, hblk_tag),
2963 OFFSET(struct hme_blk, hblk_nextpa),
2964 OFFSET(struct hme_blk, hblk_misc),
2965 OFFSET(struct hme_blk, hblk_hme),
2966 NHMENTS,
2967 HBLK_SZMASK,
2968 HBLK_RANGE_SHIFT,
2969 OFFSET(struct hmehash_bucket, hmeh_nextpa),
2970 HMEBLK_ENDPA,
2971 sizeof (struct hmehash_bucket),
2972 HTAG_SFMMUPSZ,
2973 HTAG_BSPAGE_SHIFT,
2974 HTAG_REHASH_SHIFT,
2975 SFMMU_INVALID_SHMERID,
2976 mmu_hashcnt,
2977 (caddr_t)va_to_pa((caddr_t)uhme_hash),
2978 (caddr_t)va_to_pa((caddr_t)khme_hash),
2979 UHMEHASH_SZ,
2980 KHMEHASH_SZ,
2981 KCONTEXT,
2982 KHATID,
2983 ASI_MEM);
2984 prom_interpret(bp, 0, 0, 0, 0, 0);
2985
2986 kobj_free(bp, MMU_PAGESIZE);
2987 }
2988
2989 void
2990 install_va_to_tte(void)
2991 {
2992 /*
2993 * advise prom that it can use unix-tte
2994 */
2995 prom_interpret("' unix-tte is va>tte-data", 0, 0, 0, 0, 0);
2996 }
2997
2998 /*
2999 * Here we add "device-type=console" for /os-io node, for currently
3000 * our kernel console output only supports displaying text and
3001 * performing cursor-positioning operations (through kernel framebuffer
3002 * driver) and it doesn't support other functionalities required for a
3003 * standard "display" device as specified in 1275 spec. The main missing
3004 * interface defined by the 1275 spec is "draw-logo".
3005 * also see the comments above prom_stdout_is_framebuffer().
3006 */
3007 static char *create_node =
3008 "\" /\" find-device "
3009 "new-device "
3010 "\" os-io\" device-name "
3011 "\" "OBP_DISPLAY_CONSOLE"\" device-type "
3012 ": cb-r/w ( adr,len method$ -- #read/#written ) "
3013 " 2>r swap 2 2r> ['] $callback catch if "
3014 " 2drop 3drop 0 "
3015 " then "
3016 "; "
3017 ": read ( adr,len -- #read ) "
3018 " \" read\" ['] cb-r/w catch if 2drop 2drop -2 exit then "
3019 " ( retN ... ret1 N ) "
3020 " ?dup if "
3021 " swap >r 1- 0 ?do drop loop r> "
3022 " else "
3023 " -2 "
3024 " then "
3025 "; "
3026 ": write ( adr,len -- #written ) "
3027 " \" write\" ['] cb-r/w catch if 2drop 2drop 0 exit then "
3028 " ( retN ... ret1 N ) "
3029 " ?dup if "
3030 " swap >r 1- 0 ?do drop loop r> "
3031 " else "
3032 " 0 "
3033 " then "
3034 "; "
3035 ": poll-tty ( -- ) ; "
3036 ": install-abort ( -- ) ['] poll-tty d# 10 alarm ; "
3037 ": remove-abort ( -- ) ['] poll-tty 0 alarm ; "
3038 ": cb-give/take ( $method -- ) "
3039 " 0 -rot ['] $callback catch ?dup if "
3040 " >r 2drop 2drop r> throw "
3041 " else "
3042 " 0 ?do drop loop "
3043 " then "
3044 "; "
3045 ": give ( -- ) \" exit-input\" cb-give/take ; "
3046 ": take ( -- ) \" enter-input\" cb-give/take ; "
3047 ": open ( -- ok? ) true ; "
3048 ": close ( -- ) ; "
3049 "finish-device "
3050 "device-end ";
3051
3052 /*
3053 * Create the OBP input/output node (FCode serial driver).
3054 * It is needed for both USB console keyboard and for
3055 * the kernel terminal emulator. It is too early to check for a
3056 * kernel console compatible framebuffer now, so we create this
3057 * so that we're ready if we need to enable kernel terminal emulation.
3058 *
3059 * When the USB software takes over the input device at the time
3060 * consconfig runs, OBP's stdin is redirected to this node.
3061 * Whenever the FORTH user interface is used after this switch,
3062 * the node will call back into the kernel for console input.
3063 * If a serial device such as ttya or a UART with a Type 5 keyboard
3064 * attached is used, OBP takes over the serial device when the system
3065 * goes to the debugger after the system is booted. This sharing
3066 * of the relatively simple serial device is difficult but possible.
3067 * Sharing the USB host controller is impossible due its complexity.
3068 *
3069 * Similarly to USB keyboard input redirection, after consconfig_dacf
3070 * configures a kernel console framebuffer as the standard output
3071 * device, OBP's stdout is switched to to vector through the
3072 * /os-io node into the kernel terminal emulator.
3073 */
3074 static void
3075 startup_create_io_node(void)
3076 {
3077 prom_interpret(create_node, 0, 0, 0, 0, 0);
3078 }
3079
3080
3081 /*
3082 * Must be defined in platform dependent code.
3083 */
3084 extern caddr_t modtext;
3085 extern size_t modtext_sz;
3086 extern caddr_t moddata;
3087
3088 #define HEAPTEXT_ARENA(addr) \
3089 ((uintptr_t)(addr) < KERNELBASE + 2 * MMU_PAGESIZE4M ? 0 : \
3090 (((uintptr_t)(addr) - HEAPTEXT_BASE) / \
3091 (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) + 1))
3092
3093 #define HEAPTEXT_OVERSIZED(addr) \
3094 ((uintptr_t)(addr) >= HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE)
3095
3096 #define HEAPTEXT_IN_NUCLEUSDATA(addr) \
3097 (((uintptr_t)(addr) >= KERNELBASE + 2 * MMU_PAGESIZE4M) && \
3098 ((uintptr_t)(addr) < KERNELBASE + 3 * MMU_PAGESIZE4M))
3099
3100 vmem_t *texthole_source[HEAPTEXT_NARENAS];
3101 vmem_t *texthole_arena[HEAPTEXT_NARENAS];
3102 kmutex_t texthole_lock;
3103
3104 char kern_bootargs[OBP_MAXPATHLEN];
3105 char kern_bootfile[OBP_MAXPATHLEN];
3106
3107 void
3108 kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
3109 {
3110 uintptr_t addr, limit;
3111
3112 addr = HEAPTEXT_BASE;
3113 limit = addr + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE;
3114
3115 /*
3116 * Before we initialize the text_arena, we want to punch holes in the
3117 * underlying heaptext_arena. This guarantees that for any text
3118 * address we can find a text hole less than HEAPTEXT_MAPPED away.
3119 */
3120 for (; addr + HEAPTEXT_UNMAPPED <= limit;
3121 addr += HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED) {
3122 (void) vmem_xalloc(heaptext_arena, HEAPTEXT_UNMAPPED, PAGESIZE,
3123 0, 0, (void *)addr, (void *)(addr + HEAPTEXT_UNMAPPED),
3124 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3125 }
3126
3127 /*
3128 * Allocate one page at the oversize to break up the text region
3129 * from the oversized region.
3130 */
3131 (void) vmem_xalloc(heaptext_arena, PAGESIZE, PAGESIZE, 0, 0,
3132 (void *)limit, (void *)(limit + PAGESIZE),
3133 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
3134
3135 *text_arena = vmem_create("module_text", modtext_sz ? modtext : NULL,
3136 modtext_sz, sizeof (uintptr_t), segkmem_alloc, segkmem_free,
3137 heaptext_arena, 0, VM_SLEEP);
3138 *data_arena = vmem_create("module_data", moddata, MODDATA, 1,
3139 segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
3140 }
3141
3142 caddr_t
3143 kobj_text_alloc(vmem_t *arena, size_t size)
3144 {
3145 caddr_t rval, better;
3146
3147 /*
3148 * First, try a sleeping allocation.
3149 */
3150 rval = vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT);
3151
3152 if (size >= HEAPTEXT_MAPPED || !HEAPTEXT_OVERSIZED(rval))
3153 return (rval);
3154
3155 /*
3156 * We didn't get the area that we wanted. We're going to try to do an
3157 * allocation with explicit constraints.
3158 */
3159 better = vmem_xalloc(arena, size, sizeof (uintptr_t), 0, 0, NULL,
3160 (void *)(HEAPTEXT_BASE + HEAPTEXT_SIZE - HEAPTEXT_OVERSIZE),
3161 VM_NOSLEEP | VM_BESTFIT);
3162
3163 if (better != NULL) {
3164 /*
3165 * That worked. Free our first attempt and return.
3166 */
3167 vmem_free(arena, rval, size);
3168 return (better);
3169 }
3170
3171 /*
3172 * That didn't work; we'll have to return our first attempt.
3173 */
3174 return (rval);
3175 }
3176
3177 caddr_t
3178 kobj_texthole_alloc(caddr_t addr, size_t size)
3179 {
3180 int arena = HEAPTEXT_ARENA(addr);
3181 char c[30];
3182 uintptr_t base;
3183
3184 if (HEAPTEXT_OVERSIZED(addr) || HEAPTEXT_IN_NUCLEUSDATA(addr)) {
3185 /*
3186 * If this is an oversized allocation or it is allocated in
3187 * the nucleus data page, there is no text hole available for
3188 * it; return NULL.
3189 */
3190 return (NULL);
3191 }
3192
3193 mutex_enter(&texthole_lock);
3194
3195 if (texthole_arena[arena] == NULL) {
3196 ASSERT(texthole_source[arena] == NULL);
3197
3198 if (arena == 0) {
3199 texthole_source[0] = vmem_create("module_text_holesrc",
3200 (void *)(KERNELBASE + MMU_PAGESIZE4M),
3201 MMU_PAGESIZE4M, PAGESIZE, NULL, NULL, NULL,
3202 0, VM_SLEEP);
3203 } else {
3204 base = HEAPTEXT_BASE +
3205 (arena - 1) * (HEAPTEXT_MAPPED + HEAPTEXT_UNMAPPED);
3206
3207 (void) snprintf(c, sizeof (c),
3208 "heaptext_holesrc_%d", arena);
3209
3210 texthole_source[arena] = vmem_create(c, (void *)base,
3211 HEAPTEXT_UNMAPPED, PAGESIZE, NULL, NULL, NULL,
3212 0, VM_SLEEP);
3213 }
3214
3215 (void) snprintf(c, sizeof (c), "heaptext_hole_%d", arena);
3216
3217 texthole_arena[arena] = vmem_create(c, NULL, 0,
3218 sizeof (uint32_t), segkmem_alloc_permanent, segkmem_free,
3219 texthole_source[arena], 0, VM_SLEEP);
3220 }
3221
3222 mutex_exit(&texthole_lock);
3223
3224 ASSERT(texthole_arena[arena] != NULL);
3225 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3226 return (vmem_alloc(texthole_arena[arena], size,
3227 VM_BESTFIT | VM_NOSLEEP));
3228 }
3229
3230 void
3231 kobj_texthole_free(caddr_t addr, size_t size)
3232 {
3233 int arena = HEAPTEXT_ARENA(addr);
3234
3235 ASSERT(arena >= 0 && arena < HEAPTEXT_NARENAS);
3236 ASSERT(texthole_arena[arena] != NULL);
3237 vmem_free(texthole_arena[arena], addr, size);
3238 }
3239
3240 void
3241 release_bootstrap(void)
3242 {
3243 if (&cif_init)
3244 cif_init();
3245 }