11553 Want pluggable TCP congestion control algorithms Portions contributed by: Cody Peter Mello <cody.mello@joyent.com> Reviewed by: Dan McDonald <danmcd@joyent.com> Reviewed by: Robert Mustacchi <robert.mustacchi@joyent.com>
1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2011 Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, 2017 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/strlog.h> 31 #include <sys/strsun.h> 32 #include <sys/squeue_impl.h> 33 #include <sys/squeue.h> 34 #include <sys/callo.h> 35 #include <sys/strsubr.h> 36 37 #include <inet/common.h> 38 #include <inet/ip.h> 39 #include <inet/ip_ire.h> 40 #include <inet/ip_rts.h> 41 #include <inet/tcp.h> 42 #include <inet/tcp_impl.h> 43 44 /* 45 * Implementation of TCP Timers. 46 * ============================= 47 * 48 * INTERFACE: 49 * 50 * There are two basic functions dealing with tcp timers: 51 * 52 * timeout_id_t tcp_timeout(connp, func, time) 53 * clock_t tcp_timeout_cancel(connp, timeout_id) 54 * TCP_TIMER_RESTART(tcp, intvl) 55 * 56 * tcp_timeout() starts a timer for the 'tcp' instance arranging to call 'func' 57 * after 'time' ticks passed. The function called by timeout() must adhere to 58 * the same restrictions as a driver soft interrupt handler - it must not sleep 59 * or call other functions that might sleep. The value returned is the opaque 60 * non-zero timeout identifier that can be passed to tcp_timeout_cancel() to 61 * cancel the request. The call to tcp_timeout() may fail in which case it 62 * returns zero. This is different from the timeout(9F) function which never 63 * fails. 64 * 65 * The call-back function 'func' always receives 'connp' as its single 66 * argument. It is always executed in the squeue corresponding to the tcp 67 * structure. The tcp structure is guaranteed to be present at the time the 68 * call-back is called. 69 * 70 * NOTE: The call-back function 'func' is never called if tcp is in 71 * the TCPS_CLOSED state. 72 * 73 * tcp_timeout_cancel() attempts to cancel a pending tcp_timeout() 74 * request. locks acquired by the call-back routine should not be held across 75 * the call to tcp_timeout_cancel() or a deadlock may result. 76 * 77 * tcp_timeout_cancel() returns -1 if the timeout request is invalid. 78 * Otherwise, it returns an integer value greater than or equal to 0. 79 * 80 * NOTE: both tcp_timeout() and tcp_timeout_cancel() should always be called 81 * within squeue context corresponding to the tcp instance. Since the 82 * call-back is also called via the same squeue, there are no race 83 * conditions described in untimeout(9F) manual page since all calls are 84 * strictly serialized. 85 * 86 * TCP_TIMER_RESTART() is a macro that attempts to cancel a pending timeout 87 * stored in tcp_timer_tid and starts a new one using 88 * MSEC_TO_TICK(intvl). It always uses tcp_timer() function as a call-back 89 * and stores the return value of tcp_timeout() in the tcp->tcp_timer_tid 90 * field. 91 * 92 * IMPLEMENTATION: 93 * 94 * TCP timers are implemented using three-stage process. The call to 95 * tcp_timeout() uses timeout(9F) function to call tcp_timer_callback() function 96 * when the timer expires. The tcp_timer_callback() arranges the call of the 97 * tcp_timer_handler() function via squeue corresponding to the tcp 98 * instance. The tcp_timer_handler() calls actual requested timeout call-back 99 * and passes tcp instance as an argument to it. Information is passed between 100 * stages using the tcp_timer_t structure which contains the connp pointer, the 101 * tcp call-back to call and the timeout id returned by the timeout(9F). 102 * 103 * The tcp_timer_t structure is not used directly, it is embedded in an mblk_t - 104 * like structure that is used to enter an squeue. The mp->b_rptr of this pseudo 105 * mblk points to the beginning of tcp_timer_t structure. The tcp_timeout() 106 * returns the pointer to this mblk. 107 * 108 * The pseudo mblk is allocated from a special tcp_timer_cache kmem cache. It 109 * looks like a normal mblk without actual dblk attached to it. 110 * 111 * To optimize performance each tcp instance holds a small cache of timer 112 * mblocks. In the current implementation it caches up to two timer mblocks per 113 * tcp instance. The cache is preserved over tcp frees and is only freed when 114 * the whole tcp structure is destroyed by its kmem destructor. Since all tcp 115 * timer processing happens on a corresponding squeue, the cache manipulation 116 * does not require any locks. Experiments show that majority of timer mblocks 117 * allocations are satisfied from the tcp cache and do not involve kmem calls. 118 * 119 * The tcp_timeout() places a refhold on the connp instance which guarantees 120 * that it will be present at the time the call-back function fires. The 121 * tcp_timer_handler() drops the reference after calling the call-back, so the 122 * call-back function does not need to manipulate the references explicitly. 123 */ 124 125 kmem_cache_t *tcp_timercache; 126 127 static void tcp_ip_notify(tcp_t *); 128 static void tcp_timer_callback(void *); 129 static void tcp_timer_free(tcp_t *, mblk_t *); 130 static void tcp_timer_handler(void *, mblk_t *, void *, ip_recv_attr_t *); 131 132 /* 133 * tim is in millisec. 134 */ 135 timeout_id_t 136 tcp_timeout(conn_t *connp, void (*f)(void *), hrtime_t tim) 137 { 138 mblk_t *mp; 139 tcp_timer_t *tcpt; 140 tcp_t *tcp = connp->conn_tcp; 141 142 ASSERT(connp->conn_sqp != NULL); 143 144 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_calls); 145 146 if (tcp->tcp_timercache == NULL) { 147 mp = tcp_timermp_alloc(KM_NOSLEEP | KM_PANIC); 148 } else { 149 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timeout_cached_alloc); 150 mp = tcp->tcp_timercache; 151 tcp->tcp_timercache = mp->b_next; 152 mp->b_next = NULL; 153 ASSERT(mp->b_wptr == NULL); 154 } 155 156 CONN_INC_REF(connp); 157 tcpt = (tcp_timer_t *)mp->b_rptr; 158 tcpt->connp = connp; 159 tcpt->tcpt_proc = f; 160 /* 161 * TCP timers are normal timeouts. Plus, they do not require more than 162 * a 10 millisecond resolution. By choosing a coarser resolution and by 163 * rounding up the expiration to the next resolution boundary, we can 164 * batch timers in the callout subsystem to make TCP timers more 165 * efficient. The roundup also protects short timers from expiring too 166 * early before they have a chance to be cancelled. 167 */ 168 tcpt->tcpt_tid = timeout_generic(CALLOUT_NORMAL, tcp_timer_callback, mp, 169 tim * MICROSEC, CALLOUT_TCP_RESOLUTION, CALLOUT_FLAG_ROUNDUP); 170 VERIFY(!(tcpt->tcpt_tid & CALLOUT_ID_FREE)); 171 172 return ((timeout_id_t)mp); 173 } 174 175 static void 176 tcp_timer_callback(void *arg) 177 { 178 mblk_t *mp = (mblk_t *)arg; 179 tcp_timer_t *tcpt; 180 conn_t *connp; 181 182 tcpt = (tcp_timer_t *)mp->b_rptr; 183 connp = tcpt->connp; 184 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_timer_handler, connp, 185 NULL, SQ_FILL, SQTAG_TCP_TIMER); 186 } 187 188 /* ARGSUSED */ 189 static void 190 tcp_timer_handler(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 191 { 192 tcp_timer_t *tcpt; 193 conn_t *connp = (conn_t *)arg; 194 tcp_t *tcp = connp->conn_tcp; 195 196 tcpt = (tcp_timer_t *)mp->b_rptr; 197 ASSERT(connp == tcpt->connp); 198 ASSERT((squeue_t *)arg2 == connp->conn_sqp); 199 200 if (tcpt->tcpt_tid & CALLOUT_ID_FREE) { 201 /* 202 * This timeout was cancelled after it was enqueued to the 203 * squeue; free the timer and return. 204 */ 205 tcp_timer_free(connp->conn_tcp, mp); 206 return; 207 } 208 209 /* 210 * If the TCP has reached the closed state, don't proceed any 211 * further. This TCP logically does not exist on the system. 212 * tcpt_proc could for example access queues, that have already 213 * been qprocoff'ed off. 214 */ 215 if (tcp->tcp_state != TCPS_CLOSED) { 216 (*tcpt->tcpt_proc)(connp); 217 } else { 218 tcp->tcp_timer_tid = 0; 219 } 220 221 tcp_timer_free(connp->conn_tcp, mp); 222 } 223 224 /* 225 * There is potential race with untimeout and the handler firing at the same 226 * time. The mblock may be freed by the handler while we are trying to use 227 * it. But since both should execute on the same squeue, this race should not 228 * occur. 229 */ 230 clock_t 231 tcp_timeout_cancel(conn_t *connp, timeout_id_t id) 232 { 233 mblk_t *mp = (mblk_t *)id; 234 tcp_timer_t *tcpt; 235 clock_t delta; 236 237 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_cancel_reqs); 238 239 if (mp == NULL) 240 return (-1); 241 242 tcpt = (tcp_timer_t *)mp->b_rptr; 243 ASSERT(tcpt->connp == connp); 244 245 delta = untimeout_default(tcpt->tcpt_tid, 0); 246 247 if (delta >= 0) { 248 TCP_DBGSTAT(connp->conn_tcp->tcp_tcps, tcp_timeout_canceled); 249 tcp_timer_free(connp->conn_tcp, mp); 250 CONN_DEC_REF(connp); 251 } else { 252 /* 253 * If we were unable to untimeout successfully, it has already 254 * been enqueued on the squeue; mark the ID with the free 255 * bit. This bit can never be set in a valid identifier, and 256 * we'll use it to prevent the timeout from being executed. 257 * And note that we're within the squeue perimeter here, so 258 * we don't need to worry about racing with timer handling 259 * (which also executes within the perimeter). 260 */ 261 tcpt->tcpt_tid |= CALLOUT_ID_FREE; 262 delta = 0; 263 } 264 265 return (TICK_TO_MSEC(delta)); 266 } 267 268 /* 269 * Allocate space for the timer event. The allocation looks like mblk, but it is 270 * not a proper mblk. To avoid confusion we set b_wptr to NULL. 271 * 272 * Dealing with failures: If we can't allocate from the timer cache we try 273 * allocating from dblock caches using allocb_tryhard(). In this case b_wptr 274 * points to b_rptr. 275 * If we can't allocate anything using allocb_tryhard(), we perform a last 276 * attempt and use kmem_alloc_tryhard(). In this case we set b_wptr to -1 and 277 * save the actual allocation size in b_datap. 278 */ 279 mblk_t * 280 tcp_timermp_alloc(int kmflags) 281 { 282 mblk_t *mp = (mblk_t *)kmem_cache_alloc(tcp_timercache, 283 kmflags & ~KM_PANIC); 284 285 if (mp != NULL) { 286 mp->b_next = mp->b_prev = NULL; 287 mp->b_rptr = (uchar_t *)(&mp[1]); 288 mp->b_wptr = NULL; 289 mp->b_datap = NULL; 290 mp->b_queue = NULL; 291 mp->b_cont = NULL; 292 } else if (kmflags & KM_PANIC) { 293 /* 294 * Failed to allocate memory for the timer. Try allocating from 295 * dblock caches. 296 */ 297 /* ipclassifier calls this from a constructor - hence no tcps */ 298 TCP_G_STAT(tcp_timermp_allocfail); 299 mp = allocb_tryhard(sizeof (tcp_timer_t)); 300 if (mp == NULL) { 301 size_t size = 0; 302 /* 303 * Memory is really low. Try tryhard allocation. 304 * 305 * ipclassifier calls this from a constructor - 306 * hence no tcps 307 */ 308 TCP_G_STAT(tcp_timermp_allocdblfail); 309 mp = kmem_alloc_tryhard(sizeof (mblk_t) + 310 sizeof (tcp_timer_t), &size, kmflags); 311 mp->b_rptr = (uchar_t *)(&mp[1]); 312 mp->b_next = mp->b_prev = NULL; 313 mp->b_wptr = (uchar_t *)-1; 314 mp->b_datap = (dblk_t *)size; 315 mp->b_queue = NULL; 316 mp->b_cont = NULL; 317 } 318 ASSERT(mp->b_wptr != NULL); 319 } 320 /* ipclassifier calls this from a constructor - hence no tcps */ 321 TCP_G_DBGSTAT(tcp_timermp_alloced); 322 323 return (mp); 324 } 325 326 /* 327 * Free per-tcp timer cache. 328 * It can only contain entries from tcp_timercache. 329 */ 330 void 331 tcp_timermp_free(tcp_t *tcp) 332 { 333 mblk_t *mp; 334 335 while ((mp = tcp->tcp_timercache) != NULL) { 336 ASSERT(mp->b_wptr == NULL); 337 tcp->tcp_timercache = tcp->tcp_timercache->b_next; 338 kmem_cache_free(tcp_timercache, mp); 339 } 340 } 341 342 /* 343 * Free timer event. Put it on the per-tcp timer cache if there is not too many 344 * events there already (currently at most two events are cached). 345 * If the event is not allocated from the timer cache, free it right away. 346 */ 347 static void 348 tcp_timer_free(tcp_t *tcp, mblk_t *mp) 349 { 350 mblk_t *mp1 = tcp->tcp_timercache; 351 352 if (mp->b_wptr != NULL) { 353 /* 354 * This allocation is not from a timer cache, free it right 355 * away. 356 */ 357 if (mp->b_wptr != (uchar_t *)-1) 358 freeb(mp); 359 else 360 kmem_free(mp, (size_t)mp->b_datap); 361 } else if (mp1 == NULL || mp1->b_next == NULL) { 362 /* Cache this timer block for future allocations */ 363 mp->b_rptr = (uchar_t *)(&mp[1]); 364 mp->b_next = mp1; 365 tcp->tcp_timercache = mp; 366 } else { 367 kmem_cache_free(tcp_timercache, mp); 368 TCP_DBGSTAT(tcp->tcp_tcps, tcp_timermp_freed); 369 } 370 } 371 372 /* 373 * Stop all TCP timers. 374 */ 375 void 376 tcp_timers_stop(tcp_t *tcp) 377 { 378 if (tcp->tcp_timer_tid != 0) { 379 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 380 tcp->tcp_timer_tid = 0; 381 } 382 if (tcp->tcp_ka_tid != 0) { 383 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ka_tid); 384 tcp->tcp_ka_tid = 0; 385 } 386 if (tcp->tcp_ack_tid != 0) { 387 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_ack_tid); 388 tcp->tcp_ack_tid = 0; 389 } 390 if (tcp->tcp_push_tid != 0) { 391 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 392 tcp->tcp_push_tid = 0; 393 } 394 if (tcp->tcp_reass_tid != 0) { 395 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_reass_tid); 396 tcp->tcp_reass_tid = 0; 397 } 398 } 399 400 /* 401 * Timer callback routine for keepalive probe. We do a fake resend of 402 * last ACKed byte. Then set a timer using RTO. When the timer expires, 403 * check to see if we have heard anything from the other end for the last 404 * RTO period. If we have, set the timer to expire for another 405 * tcp_keepalive_intrvl and check again. If we have not, set a timer using 406 * RTO << 1 and check again when it expires. Keep exponentially increasing 407 * the timeout if we have not heard from the other side. If for more than 408 * (tcp_ka_interval + tcp_ka_abort_thres) we have not heard anything, 409 * kill the connection unless the keepalive abort threshold is 0. In 410 * that case, we will probe "forever." 411 * If tcp_ka_cnt and tcp_ka_rinterval are non-zero, then we do not follow 412 * the exponential backoff, but send probes tcp_ka_cnt times in regular 413 * intervals of tcp_ka_rinterval milliseconds until we hear back from peer. 414 * Kill the connection if we don't hear back from peer after tcp_ka_cnt 415 * probes are sent. 416 */ 417 void 418 tcp_keepalive_timer(void *arg) 419 { 420 mblk_t *mp; 421 conn_t *connp = (conn_t *)arg; 422 tcp_t *tcp = connp->conn_tcp; 423 int32_t firetime; 424 int32_t idletime; 425 int32_t ka_intrvl; 426 tcp_stack_t *tcps = tcp->tcp_tcps; 427 428 tcp->tcp_ka_tid = 0; 429 430 if (tcp->tcp_fused) 431 return; 432 433 TCPS_BUMP_MIB(tcps, tcpTimKeepalive); 434 ka_intrvl = tcp->tcp_ka_interval; 435 436 /* 437 * Keepalive probe should only be sent if the application has not 438 * done a close on the connection. 439 */ 440 if (tcp->tcp_state > TCPS_CLOSE_WAIT) { 441 return; 442 } 443 /* Timer fired too early, restart it. */ 444 if (tcp->tcp_state < TCPS_ESTABLISHED) { 445 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, 446 ka_intrvl); 447 return; 448 } 449 450 idletime = TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time); 451 /* 452 * If we have not heard from the other side for a long 453 * time, kill the connection unless the keepalive abort 454 * threshold is 0. In that case, we will probe "forever." 455 */ 456 if (tcp->tcp_ka_abort_thres != 0 && 457 idletime > (ka_intrvl + tcp->tcp_ka_abort_thres)) { 458 TCPS_BUMP_MIB(tcps, tcpTimKeepaliveDrop); 459 (void) tcp_clean_death(tcp, tcp->tcp_client_errno ? 460 tcp->tcp_client_errno : ETIMEDOUT); 461 return; 462 } 463 464 if (tcp->tcp_snxt == tcp->tcp_suna && 465 idletime >= ka_intrvl) { 466 /* Fake resend of last ACKed byte. */ 467 mblk_t *mp1 = allocb(1, BPRI_LO); 468 469 if (mp1 != NULL) { 470 *mp1->b_wptr++ = '\0'; 471 mp = tcp_xmit_mp(tcp, mp1, 1, NULL, NULL, 472 tcp->tcp_suna - 1, B_FALSE, NULL, B_TRUE); 473 freeb(mp1); 474 /* 475 * if allocation failed, fall through to start the 476 * timer back. 477 */ 478 if (mp != NULL) { 479 tcp_send_data(tcp, mp); 480 TCPS_BUMP_MIB(tcps, tcpTimKeepaliveProbe); 481 if (tcp->tcp_ka_rinterval) { 482 firetime = tcp->tcp_ka_rinterval; 483 } else if (tcp->tcp_ka_last_intrvl != 0) { 484 int max; 485 /* 486 * We should probe again at least 487 * in ka_intrvl, but not more than 488 * tcp_rto_max. 489 */ 490 max = tcp->tcp_rto_max; 491 firetime = MIN(ka_intrvl - 1, 492 tcp->tcp_ka_last_intrvl << 1); 493 if (firetime > max) 494 firetime = max; 495 } else { 496 firetime = tcp->tcp_rto; 497 } 498 tcp->tcp_ka_tid = TCP_TIMER(tcp, 499 tcp_keepalive_timer, firetime); 500 tcp->tcp_ka_last_intrvl = firetime; 501 return; 502 } 503 } 504 } else { 505 tcp->tcp_ka_last_intrvl = 0; 506 } 507 508 /* firetime can be negative if (mp1 == NULL || mp == NULL) */ 509 if ((firetime = ka_intrvl - idletime) < 0) { 510 firetime = ka_intrvl; 511 } 512 tcp->tcp_ka_tid = TCP_TIMER(tcp, tcp_keepalive_timer, firetime); 513 } 514 515 void 516 tcp_reass_timer(void *arg) 517 { 518 conn_t *connp = (conn_t *)arg; 519 tcp_t *tcp = connp->conn_tcp; 520 521 tcp->tcp_reass_tid = 0; 522 if (tcp->tcp_reass_head == NULL) 523 return; 524 ASSERT(tcp->tcp_reass_tail != NULL); 525 if (tcp->tcp_snd_sack_ok && tcp->tcp_num_sack_blk > 0) { 526 tcp_sack_remove(tcp->tcp_sack_list, 527 TCP_REASS_END(tcp->tcp_reass_tail), &tcp->tcp_num_sack_blk); 528 } 529 tcp_close_mpp(&tcp->tcp_reass_head); 530 tcp->tcp_reass_tail = NULL; 531 TCP_STAT(tcp->tcp_tcps, tcp_reass_timeout); 532 } 533 534 /* This function handles the push timeout. */ 535 void 536 tcp_push_timer(void *arg) 537 { 538 conn_t *connp = (conn_t *)arg; 539 tcp_t *tcp = connp->conn_tcp; 540 541 TCP_DBGSTAT(tcp->tcp_tcps, tcp_push_timer_cnt); 542 543 ASSERT(tcp->tcp_listener == NULL); 544 545 ASSERT(!IPCL_IS_NONSTR(connp)); 546 547 tcp->tcp_push_tid = 0; 548 549 if (tcp->tcp_rcv_list != NULL && 550 tcp_rcv_drain(tcp) == TH_ACK_NEEDED) 551 tcp_xmit_ctl(NULL, tcp, tcp->tcp_snxt, tcp->tcp_rnxt, TH_ACK); 552 } 553 554 /* 555 * This function handles delayed ACK timeout. 556 */ 557 void 558 tcp_ack_timer(void *arg) 559 { 560 conn_t *connp = (conn_t *)arg; 561 tcp_t *tcp = connp->conn_tcp; 562 mblk_t *mp; 563 tcp_stack_t *tcps = tcp->tcp_tcps; 564 565 TCP_DBGSTAT(tcps, tcp_ack_timer_cnt); 566 567 tcp->tcp_ack_tid = 0; 568 569 if (tcp->tcp_fused) 570 return; 571 572 /* 573 * Do not send ACK if there is no outstanding unack'ed data. 574 */ 575 if (tcp->tcp_rnxt == tcp->tcp_rack) { 576 return; 577 } 578 579 if ((tcp->tcp_rnxt - tcp->tcp_rack) > tcp->tcp_mss) { 580 /* 581 * Make sure we don't allow deferred ACKs to result in 582 * timer-based ACKing. If we have held off an ACK 583 * when there was more than an mss here, and the timer 584 * goes off, we have to worry about the possibility 585 * that the sender isn't doing slow-start, or is out 586 * of step with us for some other reason. We fall 587 * permanently back in the direction of 588 * ACK-every-other-packet as suggested in RFC 1122. 589 */ 590 if (tcp->tcp_rack_abs_max > 2) 591 tcp->tcp_rack_abs_max--; 592 tcp->tcp_rack_cur_max = 2; 593 } 594 mp = tcp_ack_mp(tcp); 595 596 if (mp != NULL) { 597 TCPS_BUMP_MIB(tcps, tcpHCOutSegs); 598 TCPS_BUMP_MIB(tcps, tcpOutAck); 599 TCPS_BUMP_MIB(tcps, tcpOutAckDelayed); 600 tcp_send_data(tcp, mp); 601 } 602 } 603 604 /* 605 * Notify IP that we are having trouble with this connection. IP should 606 * make note so it can potentially use a different IRE. 607 */ 608 static void 609 tcp_ip_notify(tcp_t *tcp) 610 { 611 conn_t *connp = tcp->tcp_connp; 612 ire_t *ire; 613 614 /* 615 * Note: in the case of source routing we want to blow away the 616 * route to the first source route hop. 617 */ 618 ire = connp->conn_ixa->ixa_ire; 619 if (ire != NULL && !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) { 620 if (ire->ire_ipversion == IPV4_VERSION) { 621 /* 622 * As per RFC 1122, we send an RTM_LOSING to inform 623 * routing protocols. 624 */ 625 ip_rts_change(RTM_LOSING, ire->ire_addr, 626 ire->ire_gateway_addr, ire->ire_mask, 627 connp->conn_laddr_v4, 0, 0, 0, 628 (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_IFA), 629 ire->ire_ipst); 630 } 631 (void) ire_no_good(ire); 632 } 633 } 634 635 /* 636 * tcp_timer is the timer service routine. It handles the retransmission, 637 * FIN_WAIT_2 flush, and zero window probe timeout events. It figures out 638 * from the state of the tcp instance what kind of action needs to be done 639 * at the time it is called. 640 */ 641 void 642 tcp_timer(void *arg) 643 { 644 mblk_t *mp; 645 clock_t first_threshold; 646 clock_t second_threshold; 647 clock_t ms; 648 uint32_t mss; 649 conn_t *connp = (conn_t *)arg; 650 tcp_t *tcp = connp->conn_tcp; 651 tcp_stack_t *tcps = tcp->tcp_tcps; 652 boolean_t dont_timeout = B_FALSE; 653 654 tcp->tcp_timer_tid = 0; 655 656 if (tcp->tcp_fused) 657 return; 658 659 first_threshold = tcp->tcp_first_timer_threshold; 660 second_threshold = tcp->tcp_second_timer_threshold; 661 switch (tcp->tcp_state) { 662 case TCPS_IDLE: 663 case TCPS_BOUND: 664 case TCPS_LISTEN: 665 return; 666 case TCPS_SYN_RCVD: { 667 tcp_t *listener = tcp->tcp_listener; 668 669 if (tcp->tcp_syn_rcvd_timeout == 0 && (listener != NULL)) { 670 /* it's our first timeout */ 671 tcp->tcp_syn_rcvd_timeout = 1; 672 mutex_enter(&listener->tcp_eager_lock); 673 listener->tcp_syn_rcvd_timeout++; 674 if (!tcp->tcp_dontdrop && !tcp->tcp_closemp_used) { 675 /* 676 * Make this eager available for drop if we 677 * need to drop one to accomodate a new 678 * incoming SYN request. 679 */ 680 MAKE_DROPPABLE(listener, tcp); 681 } 682 if (!listener->tcp_syn_defense && 683 (listener->tcp_syn_rcvd_timeout > 684 (tcps->tcps_conn_req_max_q0 >> 2)) && 685 (tcps->tcps_conn_req_max_q0 > 200)) { 686 /* We may be under attack. Put on a defense. */ 687 listener->tcp_syn_defense = B_TRUE; 688 cmn_err(CE_WARN, "High TCP connect timeout " 689 "rate! System (port %d) may be under a " 690 "SYN flood attack!", 691 ntohs(listener->tcp_connp->conn_lport)); 692 693 listener->tcp_ip_addr_cache = kmem_zalloc( 694 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t), 695 KM_NOSLEEP); 696 } 697 mutex_exit(&listener->tcp_eager_lock); 698 } else if (listener != NULL) { 699 mutex_enter(&listener->tcp_eager_lock); 700 tcp->tcp_syn_rcvd_timeout++; 701 if (tcp->tcp_syn_rcvd_timeout > 1 && 702 !tcp->tcp_closemp_used) { 703 /* 704 * This is our second timeout. Put the tcp in 705 * the list of droppable eagers to allow it to 706 * be dropped, if needed. We don't check 707 * whether tcp_dontdrop is set or not to 708 * protect ourselve from a SYN attack where a 709 * remote host can spoof itself as one of the 710 * good IP source and continue to hold 711 * resources too long. 712 */ 713 MAKE_DROPPABLE(listener, tcp); 714 } 715 mutex_exit(&listener->tcp_eager_lock); 716 } 717 } 718 /* FALLTHRU */ 719 case TCPS_SYN_SENT: 720 first_threshold = tcp->tcp_first_ctimer_threshold; 721 second_threshold = tcp->tcp_second_ctimer_threshold; 722 723 /* 724 * If an app has set the second_threshold to 0, it means that 725 * we need to retransmit forever, unless this is a passive 726 * open. We need to set second_threshold back to a normal 727 * value such that later comparison with it still makes 728 * sense. But we set dont_timeout to B_TRUE so that we will 729 * never time out. 730 */ 731 if (second_threshold == 0) { 732 second_threshold = tcps->tcps_ip_abort_linterval; 733 if (tcp->tcp_active_open) 734 dont_timeout = B_TRUE; 735 } 736 break; 737 case TCPS_ESTABLISHED: 738 case TCPS_CLOSE_WAIT: 739 /* 740 * If the end point has not been closed, TCP can retransmit 741 * forever. But if the end point is closed, the normal 742 * timeout applies. 743 */ 744 if (second_threshold == 0) { 745 second_threshold = tcps->tcps_ip_abort_linterval; 746 dont_timeout = B_TRUE; 747 } 748 /* FALLTHRU */ 749 case TCPS_FIN_WAIT_1: 750 case TCPS_CLOSING: 751 case TCPS_LAST_ACK: 752 /* If we have data to rexmit */ 753 if (tcp->tcp_suna != tcp->tcp_snxt) { 754 clock_t time_to_wait; 755 756 TCPS_BUMP_MIB(tcps, tcpTimRetrans); 757 if (!tcp->tcp_xmit_head) 758 break; 759 time_to_wait = NSEC2MSEC(gethrtime() - 760 (hrtime_t)(intptr_t)tcp->tcp_xmit_head->b_prev); 761 time_to_wait = tcp->tcp_rto - time_to_wait; 762 /* 763 * If the timer fires too early, 1 clock tick earlier, 764 * restart the timer. 765 */ 766 if (time_to_wait > msec_per_tick) { 767 TCP_STAT(tcps, tcp_timer_fire_early); 768 TCP_TIMER_RESTART(tcp, time_to_wait); 769 return; 770 } 771 /* 772 * When we probe zero windows, we force the swnd open. 773 * If our peer acks with a closed window swnd will be 774 * set to zero by tcp_rput(). As long as we are 775 * receiving acks tcp_rput will 776 * reset 'tcp_ms_we_have_waited' so as not to trip the 777 * first and second interval actions. NOTE: the timer 778 * interval is allowed to continue its exponential 779 * backoff. 780 */ 781 if (tcp->tcp_swnd == 0 || tcp->tcp_zero_win_probe) { 782 if (connp->conn_debug) { 783 (void) strlog(TCP_MOD_ID, 0, 1, 784 SL_TRACE, "tcp_timer: zero win"); 785 } 786 } else { 787 cc_cong_signal(tcp, NULL, CC_RTO); 788 } 789 break; 790 } 791 /* 792 * We have something to send yet we cannot send. The 793 * reason can be: 794 * 795 * 1. Zero send window: we need to do zero window probe. 796 * 2. Zero cwnd: because of ECN, we need to "clock out 797 * segments. 798 * 3. SWS avoidance: receiver may have shrunk window, 799 * reset our knowledge. 800 * 801 * Note that condition 2 can happen with either 1 or 802 * 3. But 1 and 3 are exclusive. 803 */ 804 if (tcp->tcp_unsent != 0) { 805 /* 806 * Should not hold the zero-copy messages for too long. 807 */ 808 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 809 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 810 tcp->tcp_xmit_head, B_TRUE); 811 812 if (tcp->tcp_cwnd == 0) { 813 /* 814 * Set tcp_cwnd to 1 MSS so that a 815 * new segment can be sent out. We 816 * are "clocking out" new data when 817 * the network is really congested. 818 */ 819 ASSERT(tcp->tcp_ecn_ok); 820 tcp->tcp_cwnd = tcp->tcp_mss; 821 } 822 if (tcp->tcp_swnd == 0) { 823 /* Extend window for zero window probe */ 824 tcp->tcp_swnd++; 825 tcp->tcp_zero_win_probe = B_TRUE; 826 TCPS_BUMP_MIB(tcps, tcpOutWinProbe); 827 tcp->tcp_cs.tcp_out_zwnd_probes++; 828 } else { 829 /* 830 * Handle timeout from sender SWS avoidance. 831 * Reset our knowledge of the max send window 832 * since the receiver might have reduced its 833 * receive buffer. Avoid setting tcp_max_swnd 834 * to one since that will essentially disable 835 * the SWS checks. 836 * 837 * Note that since we don't have a SWS 838 * state variable, if the timeout is set 839 * for ECN but not for SWS, this 840 * code will also be executed. This is 841 * fine as tcp_max_swnd is updated 842 * constantly and it will not affect 843 * anything. 844 */ 845 tcp->tcp_max_swnd = MAX(tcp->tcp_swnd, 2); 846 } 847 tcp_wput_data(tcp, NULL, B_FALSE); 848 return; 849 } 850 /* Is there a FIN that needs to be to re retransmitted? */ 851 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 852 !tcp->tcp_fin_acked) 853 break; 854 /* Nothing to do, return without restarting timer. */ 855 TCP_STAT(tcps, tcp_timer_fire_miss); 856 return; 857 case TCPS_FIN_WAIT_2: 858 /* 859 * User closed the TCP endpoint and peer ACK'ed our FIN. 860 * We waited some time for for peer's FIN, but it hasn't 861 * arrived. We flush the connection now to avoid 862 * case where the peer has rebooted. 863 */ 864 if (TCP_IS_DETACHED(tcp)) { 865 (void) tcp_clean_death(tcp, 0); 866 } else { 867 TCP_TIMER_RESTART(tcp, 868 tcp->tcp_fin_wait_2_flush_interval); 869 } 870 return; 871 case TCPS_TIME_WAIT: 872 (void) tcp_clean_death(tcp, 0); 873 return; 874 default: 875 if (connp->conn_debug) { 876 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 877 "tcp_timer: strange state (%d) %s", 878 tcp->tcp_state, tcp_display(tcp, NULL, 879 DISP_PORT_ONLY)); 880 } 881 return; 882 } 883 884 /* 885 * If the system is under memory pressure or the max number of 886 * connections have been established for the listener, be more 887 * aggressive in aborting connections. 888 */ 889 if (tcps->tcps_reclaim || (tcp->tcp_listen_cnt != NULL && 890 tcp->tcp_listen_cnt->tlc_cnt > tcp->tcp_listen_cnt->tlc_max)) { 891 second_threshold = tcp_early_abort * SECONDS; 892 893 /* We will ignore the never timeout promise in this case... */ 894 dont_timeout = B_FALSE; 895 } 896 897 ASSERT(second_threshold != 0); 898 899 if ((ms = tcp->tcp_ms_we_have_waited) > second_threshold) { 900 /* 901 * Should not hold the zero-copy messages for too long. 902 */ 903 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 904 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 905 tcp->tcp_xmit_head, B_TRUE); 906 907 if (dont_timeout) { 908 /* 909 * Reset tcp_ms_we_have_waited to avoid overflow since 910 * we are going to retransmit forever. 911 */ 912 tcp->tcp_ms_we_have_waited = second_threshold; 913 goto timer_rexmit; 914 } 915 916 /* 917 * For zero window probe, we need to send indefinitely, 918 * unless we have not heard from the other side for some 919 * time... 920 */ 921 if ((tcp->tcp_zero_win_probe == 0) || 922 (TICK_TO_MSEC(ddi_get_lbolt() - tcp->tcp_last_recv_time) > 923 second_threshold)) { 924 TCPS_BUMP_MIB(tcps, tcpTimRetransDrop); 925 /* 926 * If TCP is in SYN_RCVD state, send back a 927 * RST|ACK as BSD does. Note that tcp_zero_win_probe 928 * should be zero in TCPS_SYN_RCVD state. 929 */ 930 if (tcp->tcp_state == TCPS_SYN_RCVD) { 931 tcp_xmit_ctl("tcp_timer: RST sent on timeout " 932 "in SYN_RCVD", 933 tcp, tcp->tcp_snxt, 934 tcp->tcp_rnxt, TH_RST | TH_ACK); 935 } 936 (void) tcp_clean_death(tcp, 937 tcp->tcp_client_errno ? 938 tcp->tcp_client_errno : ETIMEDOUT); 939 return; 940 } else { 941 /* 942 * If the system is under memory pressure, we also 943 * abort connection in zero window probing. 944 */ 945 if (tcps->tcps_reclaim) { 946 (void) tcp_clean_death(tcp, 947 tcp->tcp_client_errno ? 948 tcp->tcp_client_errno : ETIMEDOUT); 949 TCP_STAT(tcps, tcp_zwin_mem_drop); 950 return; 951 } 952 /* 953 * Set tcp_ms_we_have_waited to second_threshold 954 * so that in next timeout, we will do the above 955 * check (ddi_get_lbolt() - tcp_last_recv_time). 956 * This is also to avoid overflow. 957 * 958 * We don't need to decrement tcp_timer_backoff 959 * to avoid overflow because it will be decremented 960 * later if new timeout value is greater than 961 * tcp_rto_max. In the case when tcp_rto_max is 962 * greater than second_threshold, it means that we 963 * will wait longer than second_threshold to send 964 * the next 965 * window probe. 966 */ 967 tcp->tcp_ms_we_have_waited = second_threshold; 968 } 969 } else if (ms > first_threshold) { 970 /* 971 * Should not hold the zero-copy messages for too long. 972 */ 973 if (tcp->tcp_snd_zcopy_aware && !tcp->tcp_xmit_zc_clean) 974 tcp->tcp_xmit_head = tcp_zcopy_backoff(tcp, 975 tcp->tcp_xmit_head, B_TRUE); 976 977 /* 978 * We have been retransmitting for too long... The RTT 979 * we calculated is probably incorrect. Reinitialize it. 980 * Need to compensate for 0 tcp_rtt_sa. Reset 981 * tcp_rtt_update so that we won't accidentally cache a 982 * bad value. But only do this if this is not a zero 983 * window probe. 984 */ 985 if (tcp->tcp_rtt_sa != 0 && tcp->tcp_zero_win_probe == 0) { 986 tcp->tcp_rtt_sd += tcp->tcp_rtt_sa >> 3 + 987 tcp->tcp_rtt_sa >> 5; 988 tcp->tcp_rtt_sa = 0; 989 tcp_ip_notify(tcp); 990 tcp->tcp_rtt_update = 0; 991 } 992 } 993 994 timer_rexmit: 995 tcp->tcp_timer_backoff++; 996 /* 997 * Calculate the backed off retransmission timeout. If the shift brings 998 * us back over the max, then we repin the value, and decrement the 999 * backoff to avoid overflow. 1000 */ 1001 ms = tcp_calculate_rto(tcp, tcps, 0) << tcp->tcp_timer_backoff; 1002 if (ms > tcp->tcp_rto_max) { 1003 ms = tcp->tcp_rto_max; 1004 tcp->tcp_timer_backoff--; 1005 } 1006 tcp->tcp_ms_we_have_waited += ms; 1007 if (tcp->tcp_zero_win_probe == 0) { 1008 tcp->tcp_rto = ms; 1009 } 1010 TCP_TIMER_RESTART(tcp, ms); 1011 /* 1012 * This is after a timeout and tcp_rto is backed off. Set 1013 * tcp_set_timer to 1 so that next time RTO is updated, we will 1014 * restart the timer with a correct value. 1015 */ 1016 tcp->tcp_set_timer = 1; 1017 mss = tcp->tcp_snxt - tcp->tcp_suna; 1018 if (mss > tcp->tcp_mss) 1019 mss = tcp->tcp_mss; 1020 if (mss > tcp->tcp_swnd && tcp->tcp_swnd != 0) 1021 mss = tcp->tcp_swnd; 1022 1023 if ((mp = tcp->tcp_xmit_head) != NULL) { 1024 mp->b_prev = (mblk_t *)(intptr_t)gethrtime(); 1025 } 1026 mp = tcp_xmit_mp(tcp, mp, mss, NULL, NULL, tcp->tcp_suna, B_TRUE, &mss, 1027 B_TRUE); 1028 1029 /* 1030 * When slow start after retransmission begins, start with 1031 * this seq no. tcp_rexmit_max marks the end of special slow 1032 * start phase. 1033 */ 1034 tcp->tcp_rexmit_nxt = tcp->tcp_suna; 1035 if ((tcp->tcp_valid_bits & TCP_FSS_VALID) && 1036 (tcp->tcp_unsent == 0)) { 1037 tcp->tcp_rexmit_max = tcp->tcp_fss; 1038 } else { 1039 tcp->tcp_rexmit_max = tcp->tcp_snxt; 1040 } 1041 tcp->tcp_rexmit = B_TRUE; 1042 tcp->tcp_dupack_cnt = 0; 1043 1044 /* 1045 * Remove all rexmit SACK blk to start from fresh. 1046 */ 1047 if (tcp->tcp_snd_sack_ok) 1048 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1049 if (mp == NULL) { 1050 return; 1051 } 1052 1053 tcp->tcp_csuna = tcp->tcp_snxt; 1054 TCPS_BUMP_MIB(tcps, tcpRetransSegs); 1055 TCPS_UPDATE_MIB(tcps, tcpRetransBytes, mss); 1056 tcp->tcp_cs.tcp_out_retrans_segs++; 1057 tcp->tcp_cs.tcp_out_retrans_bytes += mss; 1058 tcp_send_data(tcp, mp); 1059 1060 } 1061 1062 /* 1063 * Handle lingering timeouts. This function is called when the SO_LINGER timeout 1064 * expires. 1065 */ 1066 void 1067 tcp_close_linger_timeout(void *arg) 1068 { 1069 conn_t *connp = (conn_t *)arg; 1070 tcp_t *tcp = connp->conn_tcp; 1071 1072 tcp->tcp_client_errno = ETIMEDOUT; 1073 tcp_stop_lingering(tcp); 1074 } --- EOF ---