11553 Want pluggable TCP congestion control algorithms Portions contributed by: Cody Peter Mello <cody.mello@joyent.com> Reviewed by: Dan McDonald <danmcd@joyent.com> Reviewed by: Robert Mustacchi <robert.mustacchi@joyent.com>
1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent Inc. All rights reserved. 25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013, 2017 by Delphix. All rights reserved. 27 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved. 28 */ 29 /* Copyright (c) 1990 Mentat Inc. */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/timod.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/suntpi.h> 43 #include <sys/xti_inet.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/sdt.h> 47 #include <sys/vtrace.h> 48 #include <sys/kmem.h> 49 #include <sys/ethernet.h> 50 #include <sys/cpuvar.h> 51 #include <sys/dlpi.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/cc.h> 78 #include <inet/ip.h> 79 #include <inet/ip_impl.h> 80 #include <inet/ip6.h> 81 #include <inet/ip_ndp.h> 82 #include <inet/proto_set.h> 83 #include <inet/mib2.h> 84 #include <inet/optcom.h> 85 #include <inet/snmpcom.h> 86 #include <inet/kstatcom.h> 87 #include <inet/tcp.h> 88 #include <inet/tcp_impl.h> 89 #include <inet/tcp_cluster.h> 90 #include <inet/udp_impl.h> 91 #include <net/pfkeyv2.h> 92 #include <inet/ipdrop.h> 93 94 #include <inet/ipclassifier.h> 95 #include <inet/ip_ire.h> 96 #include <inet/ip_ftable.h> 97 #include <inet/ip_if.h> 98 #include <inet/ipp_common.h> 99 #include <inet/ip_rts.h> 100 #include <inet/ip_netinfo.h> 101 #include <sys/squeue_impl.h> 102 #include <sys/squeue.h> 103 #include <sys/tsol/label.h> 104 #include <sys/tsol/tnet.h> 105 #include <rpc/pmap_prot.h> 106 #include <sys/callo.h> 107 108 /* 109 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 110 * 111 * (Read the detailed design doc in PSARC case directory) 112 * 113 * The entire tcp state is contained in tcp_t and conn_t structure 114 * which are allocated in tandem using ipcl_conn_create() and passing 115 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 116 * the references on the tcp_t. The tcp_t structure is never compressed 117 * and packets always land on the correct TCP perimeter from the time 118 * eager is created till the time tcp_t dies (as such the old mentat 119 * TCP global queue is not used for detached state and no IPSEC checking 120 * is required). The global queue is still allocated to send out resets 121 * for connection which have no listeners and IP directly calls 122 * tcp_xmit_listeners_reset() which does any policy check. 123 * 124 * Protection and Synchronisation mechanism: 125 * 126 * The tcp data structure does not use any kind of lock for protecting 127 * its state but instead uses 'squeues' for mutual exclusion from various 128 * read and write side threads. To access a tcp member, the thread should 129 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 130 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 131 * can pass any tcp function having prototype of edesc_t as argument 132 * (different from traditional STREAMs model where packets come in only 133 * designated entry points). The list of functions that can be directly 134 * called via squeue are listed before the usual function prototype. 135 * 136 * Referencing: 137 * 138 * TCP is MT-Hot and we use a reference based scheme to make sure that the 139 * tcp structure doesn't disappear when its needed. When the application 140 * creates an outgoing connection or accepts an incoming connection, we 141 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 142 * The IP reference is just a symbolic reference since ip_tcpclose() 143 * looks at tcp structure after tcp_close_output() returns which could 144 * have dropped the last TCP reference. So as long as the connection is 145 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 146 * conn_t. The classifier puts its own reference when the connection is 147 * inserted in listen or connected hash. Anytime a thread needs to enter 148 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 149 * on write side or by doing a classify on read side and then puts a 150 * reference on the conn before doing squeue_enter/tryenter/fill. For 151 * read side, the classifier itself puts the reference under fanout lock 152 * to make sure that tcp can't disappear before it gets processed. The 153 * squeue will drop this reference automatically so the called function 154 * doesn't have to do a DEC_REF. 155 * 156 * Opening a new connection: 157 * 158 * The outgoing connection open is pretty simple. tcp_open() does the 159 * work in creating the conn/tcp structure and initializing it. The 160 * squeue assignment is done based on the CPU the application 161 * is running on. So for outbound connections, processing is always done 162 * on application CPU which might be different from the incoming CPU 163 * being interrupted by the NIC. An optimal way would be to figure out 164 * the NIC <-> CPU binding at listen time, and assign the outgoing 165 * connection to the squeue attached to the CPU that will be interrupted 166 * for incoming packets (we know the NIC based on the bind IP address). 167 * This might seem like a problem if more data is going out but the 168 * fact is that in most cases the transmit is ACK driven transmit where 169 * the outgoing data normally sits on TCP's xmit queue waiting to be 170 * transmitted. 171 * 172 * Accepting a connection: 173 * 174 * This is a more interesting case because of various races involved in 175 * establishing a eager in its own perimeter. Read the meta comment on 176 * top of tcp_input_listener(). But briefly, the squeue is picked by 177 * ip_fanout based on the ring or the sender (if loopback). 178 * 179 * Closing a connection: 180 * 181 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 182 * via squeue to do the close and mark the tcp as detached if the connection 183 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 184 * reference but tcp_close() drop IP's reference always. So if tcp was 185 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 186 * and 1 because it is in classifier's connected hash. This is the condition 187 * we use to determine that its OK to clean up the tcp outside of squeue 188 * when time wait expires (check the ref under fanout and conn_lock and 189 * if it is 2, remove it from fanout hash and kill it). 190 * 191 * Although close just drops the necessary references and marks the 192 * tcp_detached state, tcp_close needs to know the tcp_detached has been 193 * set (under squeue) before letting the STREAM go away (because a 194 * inbound packet might attempt to go up the STREAM while the close 195 * has happened and tcp_detached is not set). So a special lock and 196 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 197 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 198 * tcp_detached. 199 * 200 * Special provisions and fast paths: 201 * 202 * We make special provisions for sockfs by marking tcp_issocket 203 * whenever we have only sockfs on top of TCP. This allows us to skip 204 * putting the tcp in acceptor hash since a sockfs listener can never 205 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 206 * since eager has already been allocated and the accept now happens 207 * on acceptor STREAM. There is a big blob of comment on top of 208 * tcp_input_listener explaining the new accept. When socket is POP'd, 209 * sockfs sends us an ioctl to mark the fact and we go back to old 210 * behaviour. Once tcp_issocket is unset, its never set for the 211 * life of that connection. 212 * 213 * IPsec notes : 214 * 215 * Since a packet is always executed on the correct TCP perimeter 216 * all IPsec processing is defered to IP including checking new 217 * connections and setting IPSEC policies for new connection. The 218 * only exception is tcp_xmit_listeners_reset() which is called 219 * directly from IP and needs to policy check to see if TH_RST 220 * can be sent out. 221 */ 222 223 /* 224 * Values for squeue switch: 225 * 1: SQ_NODRAIN 226 * 2: SQ_PROCESS 227 * 3: SQ_FILL 228 */ 229 int tcp_squeue_wput = 2; /* /etc/systems */ 230 int tcp_squeue_flag; 231 232 /* 233 * To prevent memory hog, limit the number of entries in tcp_free_list 234 * to 1% of available memory / number of cpus 235 */ 236 uint_t tcp_free_list_max_cnt = 0; 237 238 #define TIDUSZ 4096 /* transport interface data unit size */ 239 240 /* 241 * Size of acceptor hash list. It has to be a power of 2 for hashing. 242 */ 243 #define TCP_ACCEPTOR_FANOUT_SIZE 512 244 245 #ifdef _ILP32 246 #define TCP_ACCEPTOR_HASH(accid) \ 247 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 248 #else 249 #define TCP_ACCEPTOR_HASH(accid) \ 250 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 251 #endif /* _ILP32 */ 252 253 /* 254 * Minimum number of connections which can be created per listener. Used 255 * when the listener connection count is in effect. 256 */ 257 static uint32_t tcp_min_conn_listener = 2; 258 259 uint32_t tcp_early_abort = 30; 260 261 /* TCP Timer control structure */ 262 typedef struct tcpt_s { 263 pfv_t tcpt_pfv; /* The routine we are to call */ 264 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 265 } tcpt_t; 266 267 /* 268 * Functions called directly via squeue having a prototype of edesc_t. 269 */ 270 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 271 ip_recv_attr_t *ira); 272 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 273 ip_recv_attr_t *dummy); 274 275 276 /* Prototype for TCP functions */ 277 static void tcp_random_init(void); 278 int tcp_random(void); 279 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 280 in_port_t dstport, uint_t srcid); 281 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 282 in_port_t dstport, uint32_t flowinfo, 283 uint_t srcid, uint32_t scope_id); 284 static void tcp_iss_init(tcp_t *tcp); 285 static void tcp_reinit(tcp_t *tcp); 286 static void tcp_reinit_values(tcp_t *tcp); 287 288 static int tcp_wsrv(queue_t *q); 289 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 290 static void tcp_update_zcopy(tcp_t *tcp); 291 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 292 ixa_notify_arg_t); 293 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 294 static void tcp_stack_fini(netstackid_t stackid, void *arg); 295 296 static int tcp_squeue_switch(int); 297 298 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 299 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 300 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 301 302 static void tcp_squeue_add(squeue_t *); 303 304 struct module_info tcp_rinfo = { 305 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 306 }; 307 308 static struct module_info tcp_winfo = { 309 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 310 }; 311 312 /* 313 * Entry points for TCP as a device. The normal case which supports 314 * the TCP functionality. 315 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 316 */ 317 struct qinit tcp_rinitv4 = { 318 NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 319 }; 320 321 struct qinit tcp_rinitv6 = { 322 NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 323 }; 324 325 struct qinit tcp_winit = { 326 tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 327 }; 328 329 /* Initial entry point for TCP in socket mode. */ 330 struct qinit tcp_sock_winit = { 331 tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 332 }; 333 334 /* TCP entry point during fallback */ 335 struct qinit tcp_fallback_sock_winit = { 336 tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 337 }; 338 339 /* 340 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 341 * an accept. Avoid allocating data structures since eager has already 342 * been created. 343 */ 344 struct qinit tcp_acceptor_rinit = { 345 NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 346 }; 347 348 struct qinit tcp_acceptor_winit = { 349 tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 350 }; 351 352 /* For AF_INET aka /dev/tcp */ 353 struct streamtab tcpinfov4 = { 354 &tcp_rinitv4, &tcp_winit 355 }; 356 357 /* For AF_INET6 aka /dev/tcp6 */ 358 struct streamtab tcpinfov6 = { 359 &tcp_rinitv6, &tcp_winit 360 }; 361 362 /* 363 * Following assumes TPI alignment requirements stay along 32 bit 364 * boundaries 365 */ 366 #define ROUNDUP32(x) \ 367 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 368 369 /* Template for response to info request. */ 370 struct T_info_ack tcp_g_t_info_ack = { 371 T_INFO_ACK, /* PRIM_type */ 372 0, /* TSDU_size */ 373 T_INFINITE, /* ETSDU_size */ 374 T_INVALID, /* CDATA_size */ 375 T_INVALID, /* DDATA_size */ 376 sizeof (sin_t), /* ADDR_size */ 377 0, /* OPT_size - not initialized here */ 378 TIDUSZ, /* TIDU_size */ 379 T_COTS_ORD, /* SERV_type */ 380 TCPS_IDLE, /* CURRENT_state */ 381 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 382 }; 383 384 struct T_info_ack tcp_g_t_info_ack_v6 = { 385 T_INFO_ACK, /* PRIM_type */ 386 0, /* TSDU_size */ 387 T_INFINITE, /* ETSDU_size */ 388 T_INVALID, /* CDATA_size */ 389 T_INVALID, /* DDATA_size */ 390 sizeof (sin6_t), /* ADDR_size */ 391 0, /* OPT_size - not initialized here */ 392 TIDUSZ, /* TIDU_size */ 393 T_COTS_ORD, /* SERV_type */ 394 TCPS_IDLE, /* CURRENT_state */ 395 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 396 }; 397 398 /* 399 * TCP tunables related declarations. Definitions are in tcp_tunables.c 400 */ 401 extern mod_prop_info_t tcp_propinfo_tbl[]; 402 extern int tcp_propinfo_count; 403 404 #define IS_VMLOANED_MBLK(mp) \ 405 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 406 407 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 408 409 /* 410 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 411 * tunable settable via NDD. Otherwise, the per-connection behavior is 412 * determined dynamically during tcp_set_destination(), which is the default. 413 */ 414 boolean_t tcp_static_maxpsz = B_FALSE; 415 416 /* 417 * If the receive buffer size is changed, this function is called to update 418 * the upper socket layer on the new delayed receive wake up threshold. 419 */ 420 static void 421 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 422 { 423 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 424 425 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 426 conn_t *connp = tcp->tcp_connp; 427 struct sock_proto_props sopp; 428 429 /* 430 * only increase rcvthresh upto default_threshold 431 */ 432 if (new_rcvthresh > default_threshold) 433 new_rcvthresh = default_threshold; 434 435 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 436 sopp.sopp_rcvthresh = new_rcvthresh; 437 438 (*connp->conn_upcalls->su_set_proto_props) 439 (connp->conn_upper_handle, &sopp); 440 } 441 } 442 443 /* 444 * Figure out the value of window scale opton. Note that the rwnd is 445 * ASSUMED to be rounded up to the nearest MSS before the calculation. 446 * We cannot find the scale value and then do a round up of tcp_rwnd 447 * because the scale value may not be correct after that. 448 * 449 * Set the compiler flag to make this function inline. 450 */ 451 void 452 tcp_set_ws_value(tcp_t *tcp) 453 { 454 int i; 455 uint32_t rwnd = tcp->tcp_rwnd; 456 457 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 458 i++, rwnd >>= 1) 459 ; 460 tcp->tcp_rcv_ws = i; 461 } 462 463 /* 464 * Remove cached/latched IPsec references. 465 */ 466 void 467 tcp_ipsec_cleanup(tcp_t *tcp) 468 { 469 conn_t *connp = tcp->tcp_connp; 470 471 ASSERT(connp->conn_flags & IPCL_TCPCONN); 472 473 if (connp->conn_latch != NULL) { 474 IPLATCH_REFRELE(connp->conn_latch); 475 connp->conn_latch = NULL; 476 } 477 if (connp->conn_latch_in_policy != NULL) { 478 IPPOL_REFRELE(connp->conn_latch_in_policy); 479 connp->conn_latch_in_policy = NULL; 480 } 481 if (connp->conn_latch_in_action != NULL) { 482 IPACT_REFRELE(connp->conn_latch_in_action); 483 connp->conn_latch_in_action = NULL; 484 } 485 if (connp->conn_policy != NULL) { 486 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 487 connp->conn_policy = NULL; 488 } 489 } 490 491 /* 492 * Cleaup before placing on free list. 493 * Disassociate from the netstack/tcp_stack_t since the freelist 494 * is per squeue and not per netstack. 495 */ 496 void 497 tcp_cleanup(tcp_t *tcp) 498 { 499 mblk_t *mp; 500 conn_t *connp = tcp->tcp_connp; 501 tcp_stack_t *tcps = tcp->tcp_tcps; 502 netstack_t *ns = tcps->tcps_netstack; 503 mblk_t *tcp_rsrv_mp; 504 505 tcp_bind_hash_remove(tcp); 506 507 /* Cleanup that which needs the netstack first */ 508 tcp_ipsec_cleanup(tcp); 509 ixa_cleanup(connp->conn_ixa); 510 511 if (connp->conn_ht_iphc != NULL) { 512 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 513 connp->conn_ht_iphc = NULL; 514 connp->conn_ht_iphc_allocated = 0; 515 connp->conn_ht_iphc_len = 0; 516 connp->conn_ht_ulp = NULL; 517 connp->conn_ht_ulp_len = 0; 518 tcp->tcp_ipha = NULL; 519 tcp->tcp_ip6h = NULL; 520 tcp->tcp_tcpha = NULL; 521 } 522 523 /* We clear any IP_OPTIONS and extension headers */ 524 ip_pkt_free(&connp->conn_xmit_ipp); 525 526 tcp_free(tcp); 527 528 /* 529 * Since we will bzero the entire structure, we need to 530 * remove it and reinsert it in global hash list. We 531 * know the walkers can't get to this conn because we 532 * had set CONDEMNED flag earlier and checked reference 533 * under conn_lock so walker won't pick it and when we 534 * go the ipcl_globalhash_remove() below, no walker 535 * can get to it. 536 */ 537 ipcl_globalhash_remove(connp); 538 539 /* Save some state */ 540 mp = tcp->tcp_timercache; 541 542 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 543 544 if (connp->conn_cred != NULL) { 545 crfree(connp->conn_cred); 546 connp->conn_cred = NULL; 547 } 548 ipcl_conn_cleanup(connp); 549 connp->conn_flags = IPCL_TCPCONN; 550 551 /* 552 * Now it is safe to decrement the reference counts. 553 * This might be the last reference on the netstack 554 * in which case it will cause the freeing of the IP Instance. 555 */ 556 connp->conn_netstack = NULL; 557 connp->conn_ixa->ixa_ipst = NULL; 558 netstack_rele(ns); 559 ASSERT(tcps != NULL); 560 tcp->tcp_tcps = NULL; 561 562 bzero(tcp, sizeof (tcp_t)); 563 564 /* restore the state */ 565 tcp->tcp_timercache = mp; 566 567 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 568 569 tcp->tcp_connp = connp; 570 571 ASSERT(connp->conn_tcp == tcp); 572 ASSERT(connp->conn_flags & IPCL_TCPCONN); 573 connp->conn_state_flags = CONN_INCIPIENT; 574 ASSERT(connp->conn_proto == IPPROTO_TCP); 575 ASSERT(connp->conn_ref == 1); 576 } 577 578 /* 579 * Adapt to the information, such as rtt and rtt_sd, provided from the 580 * DCE and IRE maintained by IP. 581 * 582 * Checks for multicast and broadcast destination address. 583 * Returns zero if ok; an errno on failure. 584 * 585 * Note that the MSS calculation here is based on the info given in 586 * the DCE and IRE. We do not do any calculation based on TCP options. They 587 * will be handled in tcp_input_data() when TCP knows which options to use. 588 * 589 * Note on how TCP gets its parameters for a connection. 590 * 591 * When a tcp_t structure is allocated, it gets all the default parameters. 592 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 593 * spipe, rpipe, ... from the route metrics. Route metric overrides the 594 * default. 595 * 596 * An incoming SYN with a multicast or broadcast destination address is dropped 597 * in ip_fanout_v4/v6. 598 * 599 * An incoming SYN with a multicast or broadcast source address is always 600 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 601 * conn_connect. 602 * The same logic in tcp_set_destination also serves to 603 * reject an attempt to connect to a broadcast or multicast (destination) 604 * address. 605 */ 606 int 607 tcp_set_destination(tcp_t *tcp) 608 { 609 uint32_t mss_max; 610 uint32_t mss; 611 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 612 conn_t *connp = tcp->tcp_connp; 613 tcp_stack_t *tcps = tcp->tcp_tcps; 614 iulp_t uinfo; 615 int error; 616 uint32_t flags; 617 618 flags = IPDF_LSO | IPDF_ZCOPY; 619 /* 620 * Make sure we have a dce for the destination to avoid dce_ident 621 * contention for connected sockets. 622 */ 623 flags |= IPDF_UNIQUE_DCE; 624 625 if (!tcps->tcps_ignore_path_mtu) 626 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 627 628 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 629 mutex_enter(&connp->conn_lock); 630 error = conn_connect(connp, &uinfo, flags); 631 mutex_exit(&connp->conn_lock); 632 if (error != 0) 633 return (error); 634 635 error = tcp_build_hdrs(tcp); 636 if (error != 0) 637 return (error); 638 639 tcp->tcp_localnet = uinfo.iulp_localnet; 640 641 if (uinfo.iulp_rtt != 0) { 642 tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt); 643 tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd); 644 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0); 645 } 646 if (uinfo.iulp_ssthresh != 0) 647 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 648 else 649 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 650 if (uinfo.iulp_spipe > 0) { 651 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 652 tcps->tcps_max_buf); 653 if (tcps->tcps_snd_lowat_fraction != 0) { 654 connp->conn_sndlowat = connp->conn_sndbuf / 655 tcps->tcps_snd_lowat_fraction; 656 } 657 (void) tcp_maxpsz_set(tcp, B_TRUE); 658 } 659 /* 660 * Note that up till now, acceptor always inherits receive 661 * window from the listener. But if there is a metrics 662 * associated with a host, we should use that instead of 663 * inheriting it from listener. Thus we need to pass this 664 * info back to the caller. 665 */ 666 if (uinfo.iulp_rpipe > 0) { 667 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 668 tcps->tcps_max_buf); 669 } 670 671 if (uinfo.iulp_rtomax > 0) { 672 tcp->tcp_second_timer_threshold = 673 uinfo.iulp_rtomax; 674 } 675 676 /* 677 * Use the metric option settings, iulp_tstamp_ok and 678 * iulp_wscale_ok, only for active open. What this means 679 * is that if the other side uses timestamp or window 680 * scale option, TCP will also use those options. That 681 * is for passive open. If the application sets a 682 * large window, window scale is enabled regardless of 683 * the value in iulp_wscale_ok. This is the behavior 684 * since 2.6. So we keep it. 685 * The only case left in passive open processing is the 686 * check for SACK. 687 * For ECN, it should probably be like SACK. But the 688 * current value is binary, so we treat it like the other 689 * cases. The metric only controls active open.For passive 690 * open, the ndd param, tcp_ecn_permitted, controls the 691 * behavior. 692 */ 693 if (!tcp_detached) { 694 /* 695 * The if check means that the following can only 696 * be turned on by the metrics only IRE, but not off. 697 */ 698 if (uinfo.iulp_tstamp_ok) 699 tcp->tcp_snd_ts_ok = B_TRUE; 700 if (uinfo.iulp_wscale_ok) 701 tcp->tcp_snd_ws_ok = B_TRUE; 702 if (uinfo.iulp_sack == 2) 703 tcp->tcp_snd_sack_ok = B_TRUE; 704 if (uinfo.iulp_ecn_ok) 705 tcp->tcp_ecn_ok = B_TRUE; 706 } else { 707 /* 708 * Passive open. 709 * 710 * As above, the if check means that SACK can only be 711 * turned on by the metric only IRE. 712 */ 713 if (uinfo.iulp_sack > 0) { 714 tcp->tcp_snd_sack_ok = B_TRUE; 715 } 716 } 717 718 /* 719 * XXX Note that currently, iulp_mtu can be as small as 68 720 * because of PMTUd. So tcp_mss may go to negative if combined 721 * length of all those options exceeds 28 bytes. But because 722 * of the tcp_mss_min check below, we may not have a problem if 723 * tcp_mss_min is of a reasonable value. The default is 1 so 724 * the negative problem still exists. And the check defeats PMTUd. 725 * In fact, if PMTUd finds that the MSS should be smaller than 726 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 727 * value. 728 * 729 * We do not deal with that now. All those problems related to 730 * PMTUd will be fixed later. 731 */ 732 ASSERT(uinfo.iulp_mtu != 0); 733 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 734 735 /* Sanity check for MSS value. */ 736 if (connp->conn_ipversion == IPV4_VERSION) 737 mss_max = tcps->tcps_mss_max_ipv4; 738 else 739 mss_max = tcps->tcps_mss_max_ipv6; 740 741 if (tcp->tcp_ipsec_overhead == 0) 742 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 743 744 mss -= tcp->tcp_ipsec_overhead; 745 746 if (mss < tcps->tcps_mss_min) 747 mss = tcps->tcps_mss_min; 748 if (mss > mss_max) 749 mss = mss_max; 750 751 /* Note that this is the maximum MSS, excluding all options. */ 752 tcp->tcp_mss = mss; 753 754 /* 755 * Update the tcp connection with LSO capability. 756 */ 757 tcp_update_lso(tcp, connp->conn_ixa); 758 759 /* 760 * Initialize the ISS here now that we have the full connection ID. 761 * The RFC 1948 method of initial sequence number generation requires 762 * knowledge of the full connection ID before setting the ISS. 763 */ 764 tcp_iss_init(tcp); 765 766 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 767 768 /* 769 * Make sure that conn is not marked incipient 770 * for incoming connections. A blind 771 * removal of incipient flag is cheaper than 772 * check and removal. 773 */ 774 mutex_enter(&connp->conn_lock); 775 connp->conn_state_flags &= ~CONN_INCIPIENT; 776 mutex_exit(&connp->conn_lock); 777 return (0); 778 } 779 780 /* 781 * tcp_clean_death / tcp_close_detached must not be called more than once 782 * on a tcp. Thus every function that potentially calls tcp_clean_death 783 * must check for the tcp state before calling tcp_clean_death. 784 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 785 * tcp_timer_handler, all check for the tcp state. 786 */ 787 /* ARGSUSED */ 788 void 789 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 790 ip_recv_attr_t *dummy) 791 { 792 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 793 794 freemsg(mp); 795 if (tcp->tcp_state > TCPS_BOUND) 796 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 797 } 798 799 /* 800 * We are dying for some reason. Try to do it gracefully. (May be called 801 * as writer.) 802 * 803 * Return -1 if the structure was not cleaned up (if the cleanup had to be 804 * done by a service procedure). 805 * TBD - Should the return value distinguish between the tcp_t being 806 * freed and it being reinitialized? 807 */ 808 int 809 tcp_clean_death(tcp_t *tcp, int err) 810 { 811 mblk_t *mp; 812 queue_t *q; 813 conn_t *connp = tcp->tcp_connp; 814 tcp_stack_t *tcps = tcp->tcp_tcps; 815 816 if (tcp->tcp_fused) 817 tcp_unfuse(tcp); 818 819 if (tcp->tcp_linger_tid != 0 && 820 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 821 tcp_stop_lingering(tcp); 822 } 823 824 ASSERT(tcp != NULL); 825 ASSERT((connp->conn_family == AF_INET && 826 connp->conn_ipversion == IPV4_VERSION) || 827 (connp->conn_family == AF_INET6 && 828 (connp->conn_ipversion == IPV4_VERSION || 829 connp->conn_ipversion == IPV6_VERSION))); 830 831 if (TCP_IS_DETACHED(tcp)) { 832 if (tcp->tcp_hard_binding) { 833 /* 834 * Its an eager that we are dealing with. We close the 835 * eager but in case a conn_ind has already gone to the 836 * listener, let tcp_accept_finish() send a discon_ind 837 * to the listener and drop the last reference. If the 838 * listener doesn't even know about the eager i.e. the 839 * conn_ind hasn't gone up, blow away the eager and drop 840 * the last reference as well. If the conn_ind has gone 841 * up, state should be BOUND. tcp_accept_finish 842 * will figure out that the connection has received a 843 * RST and will send a DISCON_IND to the application. 844 */ 845 tcp_closei_local(tcp); 846 if (!tcp->tcp_tconnind_started) { 847 CONN_DEC_REF(connp); 848 } else { 849 tcp->tcp_state = TCPS_BOUND; 850 DTRACE_TCP6(state__change, void, NULL, 851 ip_xmit_attr_t *, connp->conn_ixa, 852 void, NULL, tcp_t *, tcp, void, NULL, 853 int32_t, TCPS_CLOSED); 854 } 855 } else { 856 tcp_close_detached(tcp); 857 } 858 return (0); 859 } 860 861 TCP_STAT(tcps, tcp_clean_death_nondetached); 862 863 /* 864 * The connection is dead. Decrement listener connection counter if 865 * necessary. 866 */ 867 if (tcp->tcp_listen_cnt != NULL) 868 TCP_DECR_LISTEN_CNT(tcp); 869 870 /* 871 * When a connection is moved to TIME_WAIT state, the connection 872 * counter is already decremented. So no need to decrement here 873 * again. See SET_TIME_WAIT() macro. 874 */ 875 if (tcp->tcp_state >= TCPS_ESTABLISHED && 876 tcp->tcp_state < TCPS_TIME_WAIT) { 877 TCPS_CONN_DEC(tcps); 878 } 879 880 q = connp->conn_rq; 881 882 /* Trash all inbound data */ 883 if (!IPCL_IS_NONSTR(connp)) { 884 ASSERT(q != NULL); 885 flushq(q, FLUSHALL); 886 } 887 888 /* 889 * If we are at least part way open and there is error 890 * (err==0 implies no error) 891 * notify our client by a T_DISCON_IND. 892 */ 893 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 894 if (tcp->tcp_state >= TCPS_ESTABLISHED && 895 !TCP_IS_SOCKET(tcp)) { 896 /* 897 * Send M_FLUSH according to TPI. Because sockets will 898 * (and must) ignore FLUSHR we do that only for TPI 899 * endpoints and sockets in STREAMS mode. 900 */ 901 (void) putnextctl1(q, M_FLUSH, FLUSHR); 902 } 903 if (connp->conn_debug) { 904 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 905 "tcp_clean_death: discon err %d", err); 906 } 907 if (IPCL_IS_NONSTR(connp)) { 908 /* Direct socket, use upcall */ 909 (*connp->conn_upcalls->su_disconnected)( 910 connp->conn_upper_handle, tcp->tcp_connid, err); 911 } else { 912 mp = mi_tpi_discon_ind(NULL, err, 0); 913 if (mp != NULL) { 914 putnext(q, mp); 915 } else { 916 if (connp->conn_debug) { 917 (void) strlog(TCP_MOD_ID, 0, 1, 918 SL_ERROR|SL_TRACE, 919 "tcp_clean_death, sending M_ERROR"); 920 } 921 (void) putnextctl1(q, M_ERROR, EPROTO); 922 } 923 } 924 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 925 /* SYN_SENT or SYN_RCVD */ 926 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 927 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 928 /* ESTABLISHED or CLOSE_WAIT */ 929 TCPS_BUMP_MIB(tcps, tcpEstabResets); 930 } 931 } 932 933 /* 934 * ESTABLISHED non-STREAMS eagers are not 'detached' because 935 * an upper handle is obtained when the SYN-ACK comes in. So it 936 * should receive the 'disconnected' upcall, but tcp_reinit should 937 * not be called since this is an eager. 938 */ 939 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 940 tcp_closei_local(tcp); 941 tcp->tcp_state = TCPS_BOUND; 942 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 943 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 944 int32_t, TCPS_CLOSED); 945 return (0); 946 } 947 948 tcp_reinit(tcp); 949 if (IPCL_IS_NONSTR(connp)) 950 (void) tcp_do_unbind(connp); 951 952 return (-1); 953 } 954 955 /* 956 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 957 * to expire, stop the wait and finish the close. 958 */ 959 void 960 tcp_stop_lingering(tcp_t *tcp) 961 { 962 clock_t delta = 0; 963 tcp_stack_t *tcps = tcp->tcp_tcps; 964 conn_t *connp = tcp->tcp_connp; 965 966 tcp->tcp_linger_tid = 0; 967 if (tcp->tcp_state > TCPS_LISTEN) { 968 tcp_acceptor_hash_remove(tcp); 969 mutex_enter(&tcp->tcp_non_sq_lock); 970 if (tcp->tcp_flow_stopped) { 971 tcp_clrqfull(tcp); 972 } 973 mutex_exit(&tcp->tcp_non_sq_lock); 974 975 if (tcp->tcp_timer_tid != 0) { 976 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 977 tcp->tcp_timer_tid = 0; 978 } 979 /* 980 * Need to cancel those timers which will not be used when 981 * TCP is detached. This has to be done before the conn_wq 982 * is cleared. 983 */ 984 tcp_timers_stop(tcp); 985 986 tcp->tcp_detached = B_TRUE; 987 connp->conn_rq = NULL; 988 connp->conn_wq = NULL; 989 990 if (tcp->tcp_state == TCPS_TIME_WAIT) { 991 tcp_time_wait_append(tcp); 992 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 993 goto finish; 994 } 995 996 /* 997 * If delta is zero the timer event wasn't executed and was 998 * successfully canceled. In this case we need to restart it 999 * with the minimal delta possible. 1000 */ 1001 if (delta >= 0) { 1002 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1003 delta ? delta : 1); 1004 } 1005 } else { 1006 tcp_closei_local(tcp); 1007 CONN_DEC_REF(connp); 1008 } 1009 finish: 1010 tcp->tcp_detached = B_TRUE; 1011 connp->conn_rq = NULL; 1012 connp->conn_wq = NULL; 1013 1014 /* Signal closing thread that it can complete close */ 1015 mutex_enter(&tcp->tcp_closelock); 1016 tcp->tcp_closed = 1; 1017 cv_signal(&tcp->tcp_closecv); 1018 mutex_exit(&tcp->tcp_closelock); 1019 1020 /* If we have an upper handle (socket), release it */ 1021 if (IPCL_IS_NONSTR(connp)) { 1022 ASSERT(connp->conn_upper_handle != NULL); 1023 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1024 connp->conn_upper_handle = NULL; 1025 connp->conn_upcalls = NULL; 1026 } 1027 } 1028 1029 void 1030 tcp_close_common(conn_t *connp, int flags) 1031 { 1032 tcp_t *tcp = connp->conn_tcp; 1033 mblk_t *mp = &tcp->tcp_closemp; 1034 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1035 mblk_t *bp; 1036 1037 ASSERT(connp->conn_ref >= 2); 1038 1039 /* 1040 * Mark the conn as closing. ipsq_pending_mp_add will not 1041 * add any mp to the pending mp list, after this conn has 1042 * started closing. 1043 */ 1044 mutex_enter(&connp->conn_lock); 1045 connp->conn_state_flags |= CONN_CLOSING; 1046 if (connp->conn_oper_pending_ill != NULL) 1047 conn_ioctl_cleanup_reqd = B_TRUE; 1048 CONN_INC_REF_LOCKED(connp); 1049 mutex_exit(&connp->conn_lock); 1050 tcp->tcp_closeflags = (uint8_t)flags; 1051 ASSERT(connp->conn_ref >= 3); 1052 1053 /* 1054 * tcp_closemp_used is used below without any protection of a lock 1055 * as we don't expect any one else to use it concurrently at this 1056 * point otherwise it would be a major defect. 1057 */ 1058 1059 if (mp->b_prev == NULL) 1060 tcp->tcp_closemp_used = B_TRUE; 1061 else 1062 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1063 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1064 1065 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1066 1067 /* 1068 * Cleanup any queued ioctls here. This must be done before the wq/rq 1069 * are re-written by tcp_close_output(). 1070 */ 1071 if (conn_ioctl_cleanup_reqd) 1072 conn_ioctl_cleanup(connp); 1073 1074 /* 1075 * As CONN_CLOSING is set, no further ioctls should be passed down to 1076 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1077 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1078 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1079 * was still in flight at the time, we wait for it here. See comments 1080 * for CONN_INC_IOCTLREF in ip.h for details. 1081 */ 1082 mutex_enter(&connp->conn_lock); 1083 while (connp->conn_ioctlref > 0) 1084 cv_wait(&connp->conn_cv, &connp->conn_lock); 1085 ASSERT(connp->conn_ioctlref == 0); 1086 ASSERT(connp->conn_oper_pending_ill == NULL); 1087 mutex_exit(&connp->conn_lock); 1088 1089 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1090 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1091 1092 /* 1093 * For non-STREAMS sockets, the normal case is that the conn makes 1094 * an upcall when it's finally closed, so there is no need to wait 1095 * in the protocol. But in case of SO_LINGER the thread sleeps here 1096 * so it can properly deal with the thread being interrupted. 1097 */ 1098 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1099 goto nowait; 1100 1101 mutex_enter(&tcp->tcp_closelock); 1102 while (!tcp->tcp_closed) { 1103 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1104 /* 1105 * The cv_wait_sig() was interrupted. We now do the 1106 * following: 1107 * 1108 * 1) If the endpoint was lingering, we allow this 1109 * to be interrupted by cancelling the linger timeout 1110 * and closing normally. 1111 * 1112 * 2) Revert to calling cv_wait() 1113 * 1114 * We revert to using cv_wait() to avoid an 1115 * infinite loop which can occur if the calling 1116 * thread is higher priority than the squeue worker 1117 * thread and is bound to the same cpu. 1118 */ 1119 if (connp->conn_linger && connp->conn_lingertime > 0) { 1120 mutex_exit(&tcp->tcp_closelock); 1121 /* Entering squeue, bump ref count. */ 1122 CONN_INC_REF(connp); 1123 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1124 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1125 tcp_linger_interrupted, connp, NULL, 1126 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1127 mutex_enter(&tcp->tcp_closelock); 1128 } 1129 break; 1130 } 1131 } 1132 while (!tcp->tcp_closed) 1133 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1134 mutex_exit(&tcp->tcp_closelock); 1135 1136 /* 1137 * In the case of listener streams that have eagers in the q or q0 1138 * we wait for the eagers to drop their reference to us. conn_rq and 1139 * conn_wq of the eagers point to our queues. By waiting for the 1140 * refcnt to drop to 1, we are sure that the eagers have cleaned 1141 * up their queue pointers and also dropped their references to us. 1142 * 1143 * For non-STREAMS sockets we do not have to wait here; the 1144 * listener will instead make a su_closed upcall when the last 1145 * reference is dropped. 1146 */ 1147 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1148 mutex_enter(&connp->conn_lock); 1149 while (connp->conn_ref != 1) { 1150 cv_wait(&connp->conn_cv, &connp->conn_lock); 1151 } 1152 mutex_exit(&connp->conn_lock); 1153 } 1154 1155 nowait: 1156 connp->conn_cpid = NOPID; 1157 } 1158 1159 /* 1160 * Called by tcp_close() routine via squeue when lingering is 1161 * interrupted by a signal. 1162 */ 1163 1164 /* ARGSUSED */ 1165 static void 1166 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1167 { 1168 conn_t *connp = (conn_t *)arg; 1169 tcp_t *tcp = connp->conn_tcp; 1170 1171 freeb(mp); 1172 if (tcp->tcp_linger_tid != 0 && 1173 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1174 tcp_stop_lingering(tcp); 1175 tcp->tcp_client_errno = EINTR; 1176 } 1177 } 1178 1179 /* 1180 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1181 * Some stream heads get upset if they see these later on as anything but NULL. 1182 */ 1183 void 1184 tcp_close_mpp(mblk_t **mpp) 1185 { 1186 mblk_t *mp; 1187 1188 if ((mp = *mpp) != NULL) { 1189 do { 1190 mp->b_next = NULL; 1191 mp->b_prev = NULL; 1192 } while ((mp = mp->b_cont) != NULL); 1193 1194 mp = *mpp; 1195 *mpp = NULL; 1196 freemsg(mp); 1197 } 1198 } 1199 1200 /* Do detached close. */ 1201 void 1202 tcp_close_detached(tcp_t *tcp) 1203 { 1204 if (tcp->tcp_fused) 1205 tcp_unfuse(tcp); 1206 1207 /* 1208 * Clustering code serializes TCP disconnect callbacks and 1209 * cluster tcp list walks by blocking a TCP disconnect callback 1210 * if a cluster tcp list walk is in progress. This ensures 1211 * accurate accounting of TCPs in the cluster code even though 1212 * the TCP list walk itself is not atomic. 1213 */ 1214 tcp_closei_local(tcp); 1215 CONN_DEC_REF(tcp->tcp_connp); 1216 } 1217 1218 /* 1219 * The tcp_t is going away. Remove it from all lists and set it 1220 * to TCPS_CLOSED. The freeing up of memory is deferred until 1221 * tcp_inactive. This is needed since a thread in tcp_rput might have 1222 * done a CONN_INC_REF on this structure before it was removed from the 1223 * hashes. 1224 */ 1225 void 1226 tcp_closei_local(tcp_t *tcp) 1227 { 1228 conn_t *connp = tcp->tcp_connp; 1229 tcp_stack_t *tcps = tcp->tcp_tcps; 1230 int32_t oldstate; 1231 1232 if (!TCP_IS_SOCKET(tcp)) 1233 tcp_acceptor_hash_remove(tcp); 1234 1235 /* 1236 * This can be called via tcp_time_wait_processing() if TCP gets a 1237 * SYN with sequence number outside the TIME-WAIT connection's 1238 * window. So we need to check for TIME-WAIT state here as the 1239 * connection counter is already decremented. See SET_TIME_WAIT() 1240 * macro 1241 */ 1242 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1243 tcp->tcp_state < TCPS_TIME_WAIT) { 1244 TCPS_CONN_DEC(tcps); 1245 } 1246 1247 /* 1248 * If we are an eager connection hanging off a listener that 1249 * hasn't formally accepted the connection yet, get off its 1250 * list and blow off any data that we have accumulated. 1251 */ 1252 if (tcp->tcp_listener != NULL) { 1253 tcp_t *listener = tcp->tcp_listener; 1254 mutex_enter(&listener->tcp_eager_lock); 1255 /* 1256 * tcp_tconnind_started == B_TRUE means that the 1257 * conn_ind has already gone to listener. At 1258 * this point, eager will be closed but we 1259 * leave it in listeners eager list so that 1260 * if listener decides to close without doing 1261 * accept, we can clean this up. In tcp_tli_accept 1262 * we take care of the case of accept on closed 1263 * eager. 1264 */ 1265 if (!tcp->tcp_tconnind_started) { 1266 tcp_eager_unlink(tcp); 1267 mutex_exit(&listener->tcp_eager_lock); 1268 /* 1269 * We don't want to have any pointers to the 1270 * listener queue, after we have released our 1271 * reference on the listener 1272 */ 1273 ASSERT(tcp->tcp_detached); 1274 connp->conn_rq = NULL; 1275 connp->conn_wq = NULL; 1276 CONN_DEC_REF(listener->tcp_connp); 1277 } else { 1278 mutex_exit(&listener->tcp_eager_lock); 1279 } 1280 } 1281 1282 /* Stop all the timers */ 1283 tcp_timers_stop(tcp); 1284 1285 if (tcp->tcp_state == TCPS_LISTEN) { 1286 if (tcp->tcp_ip_addr_cache) { 1287 kmem_free((void *)tcp->tcp_ip_addr_cache, 1288 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1289 tcp->tcp_ip_addr_cache = NULL; 1290 } 1291 } 1292 1293 /* Decrement listerner connection counter if necessary. */ 1294 if (tcp->tcp_listen_cnt != NULL) 1295 TCP_DECR_LISTEN_CNT(tcp); 1296 1297 mutex_enter(&tcp->tcp_non_sq_lock); 1298 if (tcp->tcp_flow_stopped) 1299 tcp_clrqfull(tcp); 1300 mutex_exit(&tcp->tcp_non_sq_lock); 1301 1302 tcp_bind_hash_remove(tcp); 1303 /* 1304 * If the tcp_time_wait_collector (which runs outside the squeue) 1305 * is trying to remove this tcp from the time wait list, we will 1306 * block in tcp_time_wait_remove while trying to acquire the 1307 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1308 * requires the ipcl_hash_remove to be ordered after the 1309 * tcp_time_wait_remove for the refcnt checks to work correctly. 1310 */ 1311 if (tcp->tcp_state == TCPS_TIME_WAIT) 1312 (void) tcp_time_wait_remove(tcp, NULL); 1313 CL_INET_DISCONNECT(connp); 1314 ipcl_hash_remove(connp); 1315 oldstate = tcp->tcp_state; 1316 tcp->tcp_state = TCPS_CLOSED; 1317 /* Need to probe before ixa_cleanup() is called */ 1318 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1319 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1320 int32_t, oldstate); 1321 ixa_cleanup(connp->conn_ixa); 1322 1323 /* 1324 * Mark the conn as CONDEMNED 1325 */ 1326 mutex_enter(&connp->conn_lock); 1327 connp->conn_state_flags |= CONN_CONDEMNED; 1328 mutex_exit(&connp->conn_lock); 1329 1330 ASSERT(tcp->tcp_time_wait_next == NULL); 1331 ASSERT(tcp->tcp_time_wait_prev == NULL); 1332 ASSERT(tcp->tcp_time_wait_expire == 0); 1333 1334 tcp_ipsec_cleanup(tcp); 1335 } 1336 1337 /* 1338 * tcp is dying (called from ipcl_conn_destroy and error cases). 1339 * Free the tcp_t in either case. 1340 */ 1341 void 1342 tcp_free(tcp_t *tcp) 1343 { 1344 mblk_t *mp; 1345 conn_t *connp = tcp->tcp_connp; 1346 1347 ASSERT(tcp != NULL); 1348 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1349 1350 connp->conn_rq = NULL; 1351 connp->conn_wq = NULL; 1352 1353 tcp_close_mpp(&tcp->tcp_xmit_head); 1354 tcp_close_mpp(&tcp->tcp_reass_head); 1355 if (tcp->tcp_rcv_list != NULL) { 1356 /* Free b_next chain */ 1357 tcp_close_mpp(&tcp->tcp_rcv_list); 1358 } 1359 if ((mp = tcp->tcp_urp_mp) != NULL) { 1360 freemsg(mp); 1361 } 1362 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1363 freemsg(mp); 1364 } 1365 1366 if (tcp->tcp_fused_sigurg_mp != NULL) { 1367 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1368 freeb(tcp->tcp_fused_sigurg_mp); 1369 tcp->tcp_fused_sigurg_mp = NULL; 1370 } 1371 1372 if (tcp->tcp_ordrel_mp != NULL) { 1373 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1374 freeb(tcp->tcp_ordrel_mp); 1375 tcp->tcp_ordrel_mp = NULL; 1376 } 1377 1378 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1379 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1380 1381 if (tcp->tcp_hopopts != NULL) { 1382 mi_free(tcp->tcp_hopopts); 1383 tcp->tcp_hopopts = NULL; 1384 tcp->tcp_hopoptslen = 0; 1385 } 1386 ASSERT(tcp->tcp_hopoptslen == 0); 1387 if (tcp->tcp_dstopts != NULL) { 1388 mi_free(tcp->tcp_dstopts); 1389 tcp->tcp_dstopts = NULL; 1390 tcp->tcp_dstoptslen = 0; 1391 } 1392 ASSERT(tcp->tcp_dstoptslen == 0); 1393 if (tcp->tcp_rthdrdstopts != NULL) { 1394 mi_free(tcp->tcp_rthdrdstopts); 1395 tcp->tcp_rthdrdstopts = NULL; 1396 tcp->tcp_rthdrdstoptslen = 0; 1397 } 1398 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1399 if (tcp->tcp_rthdr != NULL) { 1400 mi_free(tcp->tcp_rthdr); 1401 tcp->tcp_rthdr = NULL; 1402 tcp->tcp_rthdrlen = 0; 1403 } 1404 ASSERT(tcp->tcp_rthdrlen == 0); 1405 1406 /* 1407 * Following is really a blowing away a union. 1408 * It happens to have exactly two members of identical size 1409 * the following code is enough. 1410 */ 1411 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1412 1413 /* Allow the CC algorithm to clean up after itself. */ 1414 if (tcp->tcp_cc_algo != NULL && tcp->tcp_cc_algo->cb_destroy != NULL) 1415 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv); 1416 1417 /* 1418 * If this is a non-STREAM socket still holding on to an upper 1419 * handle, release it. As a result of fallback we might also see 1420 * STREAMS based conns with upper handles, in which case there is 1421 * nothing to do other than clearing the field. 1422 */ 1423 if (connp->conn_upper_handle != NULL) { 1424 if (IPCL_IS_NONSTR(connp)) { 1425 (*connp->conn_upcalls->su_closed)( 1426 connp->conn_upper_handle); 1427 tcp->tcp_detached = B_TRUE; 1428 } 1429 connp->conn_upper_handle = NULL; 1430 connp->conn_upcalls = NULL; 1431 } 1432 } 1433 1434 /* 1435 * tcp_get_conn/tcp_free_conn 1436 * 1437 * tcp_get_conn is used to get a clean tcp connection structure. 1438 * It tries to reuse the connections put on the freelist by the 1439 * time_wait_collector failing which it goes to kmem_cache. This 1440 * way has two benefits compared to just allocating from and 1441 * freeing to kmem_cache. 1442 * 1) The time_wait_collector can free (which includes the cleanup) 1443 * outside the squeue. So when the interrupt comes, we have a clean 1444 * connection sitting in the freelist. Obviously, this buys us 1445 * performance. 1446 * 1447 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1448 * has multiple disadvantages - tying up the squeue during alloc. 1449 * But allocating the conn/tcp in IP land is also not the best since 1450 * we can't check the 'q' and 'q0' which are protected by squeue and 1451 * blindly allocate memory which might have to be freed here if we are 1452 * not allowed to accept the connection. By using the freelist and 1453 * putting the conn/tcp back in freelist, we don't pay a penalty for 1454 * allocating memory without checking 'q/q0' and freeing it if we can't 1455 * accept the connection. 1456 * 1457 * Care should be taken to put the conn back in the same squeue's freelist 1458 * from which it was allocated. Best results are obtained if conn is 1459 * allocated from listener's squeue and freed to the same. Time wait 1460 * collector will free up the freelist is the connection ends up sitting 1461 * there for too long. 1462 */ 1463 conn_t * 1464 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1465 { 1466 tcp_t *tcp = NULL; 1467 conn_t *connp = NULL; 1468 squeue_t *sqp = (squeue_t *)arg; 1469 tcp_squeue_priv_t *tcp_time_wait; 1470 netstack_t *ns; 1471 mblk_t *tcp_rsrv_mp = NULL; 1472 1473 tcp_time_wait = 1474 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1475 1476 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1477 tcp = tcp_time_wait->tcp_free_list; 1478 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1479 if (tcp != NULL) { 1480 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1481 tcp_time_wait->tcp_free_list_cnt--; 1482 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1483 tcp->tcp_time_wait_next = NULL; 1484 connp = tcp->tcp_connp; 1485 connp->conn_flags |= IPCL_REUSED; 1486 1487 ASSERT(tcp->tcp_tcps == NULL); 1488 ASSERT(connp->conn_netstack == NULL); 1489 ASSERT(tcp->tcp_rsrv_mp != NULL); 1490 ns = tcps->tcps_netstack; 1491 netstack_hold(ns); 1492 connp->conn_netstack = ns; 1493 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1494 tcp->tcp_tcps = tcps; 1495 ipcl_globalhash_insert(connp); 1496 1497 connp->conn_ixa->ixa_notify_cookie = tcp; 1498 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1499 connp->conn_recv = tcp_input_data; 1500 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1501 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1502 return (connp); 1503 } 1504 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1505 /* 1506 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1507 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1508 */ 1509 tcp_rsrv_mp = allocb(0, BPRI_HI); 1510 if (tcp_rsrv_mp == NULL) 1511 return (NULL); 1512 1513 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1514 tcps->tcps_netstack)) == NULL) { 1515 freeb(tcp_rsrv_mp); 1516 return (NULL); 1517 } 1518 1519 tcp = connp->conn_tcp; 1520 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1521 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1522 1523 tcp->tcp_tcps = tcps; 1524 1525 connp->conn_recv = tcp_input_data; 1526 connp->conn_recvicmp = tcp_icmp_input; 1527 connp->conn_verifyicmp = tcp_verifyicmp; 1528 1529 /* 1530 * Register tcp_notify to listen to capability changes detected by IP. 1531 * This upcall is made in the context of the call to conn_ip_output 1532 * thus it is inside the squeue. 1533 */ 1534 connp->conn_ixa->ixa_notify = tcp_notify; 1535 connp->conn_ixa->ixa_notify_cookie = tcp; 1536 1537 return (connp); 1538 } 1539 1540 /* 1541 * Handle connect to IPv4 destinations, including connections for AF_INET6 1542 * sockets connecting to IPv4 mapped IPv6 destinations. 1543 * Returns zero if OK, a positive errno, or a negative TLI error. 1544 */ 1545 static int 1546 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1547 uint_t srcid) 1548 { 1549 ipaddr_t dstaddr = *dstaddrp; 1550 uint16_t lport; 1551 conn_t *connp = tcp->tcp_connp; 1552 tcp_stack_t *tcps = tcp->tcp_tcps; 1553 int error; 1554 1555 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1556 1557 /* Check for attempt to connect to INADDR_ANY */ 1558 if (dstaddr == INADDR_ANY) { 1559 /* 1560 * SunOS 4.x and 4.3 BSD allow an application 1561 * to connect a TCP socket to INADDR_ANY. 1562 * When they do this, the kernel picks the 1563 * address of one interface and uses it 1564 * instead. The kernel usually ends up 1565 * picking the address of the loopback 1566 * interface. This is an undocumented feature. 1567 * However, we provide the same thing here 1568 * in order to have source and binary 1569 * compatibility with SunOS 4.x. 1570 * Update the T_CONN_REQ (sin/sin6) since it is used to 1571 * generate the T_CONN_CON. 1572 */ 1573 dstaddr = htonl(INADDR_LOOPBACK); 1574 *dstaddrp = dstaddr; 1575 } 1576 1577 /* Handle __sin6_src_id if socket not bound to an IP address */ 1578 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1579 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1580 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) { 1581 /* Mismatch - conn_laddr_v6 would be v6 address. */ 1582 return (EADDRNOTAVAIL); 1583 } 1584 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1585 } 1586 1587 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1588 connp->conn_fport = dstport; 1589 1590 /* 1591 * At this point the remote destination address and remote port fields 1592 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1593 * have to see which state tcp was in so we can take appropriate action. 1594 */ 1595 if (tcp->tcp_state == TCPS_IDLE) { 1596 /* 1597 * We support a quick connect capability here, allowing 1598 * clients to transition directly from IDLE to SYN_SENT 1599 * tcp_bindi will pick an unused port, insert the connection 1600 * in the bind hash and transition to BOUND state. 1601 */ 1602 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1603 tcp, B_TRUE); 1604 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1605 B_FALSE, B_FALSE); 1606 if (lport == 0) 1607 return (-TNOADDR); 1608 } 1609 1610 /* 1611 * Lookup the route to determine a source address and the uinfo. 1612 * Setup TCP parameters based on the metrics/DCE. 1613 */ 1614 error = tcp_set_destination(tcp); 1615 if (error != 0) 1616 return (error); 1617 1618 /* 1619 * Don't let an endpoint connect to itself. 1620 */ 1621 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1622 connp->conn_fport == connp->conn_lport) 1623 return (-TBADADDR); 1624 1625 tcp->tcp_state = TCPS_SYN_SENT; 1626 1627 return (ipcl_conn_insert_v4(connp)); 1628 } 1629 1630 /* 1631 * Handle connect to IPv6 destinations. 1632 * Returns zero if OK, a positive errno, or a negative TLI error. 1633 */ 1634 static int 1635 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1636 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1637 { 1638 uint16_t lport; 1639 conn_t *connp = tcp->tcp_connp; 1640 tcp_stack_t *tcps = tcp->tcp_tcps; 1641 int error; 1642 1643 ASSERT(connp->conn_family == AF_INET6); 1644 1645 /* 1646 * If we're here, it means that the destination address is a native 1647 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1648 * reason why it might not be IPv6 is if the socket was bound to an 1649 * IPv4-mapped IPv6 address. 1650 */ 1651 if (connp->conn_ipversion != IPV6_VERSION) 1652 return (-TBADADDR); 1653 1654 /* 1655 * Interpret a zero destination to mean loopback. 1656 * Update the T_CONN_REQ (sin/sin6) since it is used to 1657 * generate the T_CONN_CON. 1658 */ 1659 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1660 *dstaddrp = ipv6_loopback; 1661 1662 /* Handle __sin6_src_id if socket not bound to an IP address */ 1663 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1664 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1665 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) { 1666 /* Mismatch - conn_laddr_v6 would be v4-mapped. */ 1667 return (EADDRNOTAVAIL); 1668 } 1669 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1670 } 1671 1672 /* 1673 * Take care of the scope_id now. 1674 */ 1675 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1676 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1677 connp->conn_ixa->ixa_scopeid = scope_id; 1678 } else { 1679 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1680 } 1681 1682 connp->conn_flowinfo = flowinfo; 1683 connp->conn_faddr_v6 = *dstaddrp; 1684 connp->conn_fport = dstport; 1685 1686 /* 1687 * At this point the remote destination address and remote port fields 1688 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1689 * have to see which state tcp was in so we can take appropriate action. 1690 */ 1691 if (tcp->tcp_state == TCPS_IDLE) { 1692 /* 1693 * We support a quick connect capability here, allowing 1694 * clients to transition directly from IDLE to SYN_SENT 1695 * tcp_bindi will pick an unused port, insert the connection 1696 * in the bind hash and transition to BOUND state. 1697 */ 1698 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1699 tcp, B_TRUE); 1700 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1701 B_FALSE, B_FALSE); 1702 if (lport == 0) 1703 return (-TNOADDR); 1704 } 1705 1706 /* 1707 * Lookup the route to determine a source address and the uinfo. 1708 * Setup TCP parameters based on the metrics/DCE. 1709 */ 1710 error = tcp_set_destination(tcp); 1711 if (error != 0) 1712 return (error); 1713 1714 /* 1715 * Don't let an endpoint connect to itself. 1716 */ 1717 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1718 connp->conn_fport == connp->conn_lport) 1719 return (-TBADADDR); 1720 1721 tcp->tcp_state = TCPS_SYN_SENT; 1722 1723 return (ipcl_conn_insert_v6(connp)); 1724 } 1725 1726 /* 1727 * Disconnect 1728 * Note that unlike other functions this returns a positive tli error 1729 * when it fails; it never returns an errno. 1730 */ 1731 static int 1732 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1733 { 1734 conn_t *lconnp; 1735 tcp_stack_t *tcps = tcp->tcp_tcps; 1736 conn_t *connp = tcp->tcp_connp; 1737 1738 /* 1739 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1740 * when the stream is in BOUND state. Do not send a reset, 1741 * since the destination IP address is not valid, and it can 1742 * be the initialized value of all zeros (broadcast address). 1743 */ 1744 if (tcp->tcp_state <= TCPS_BOUND) { 1745 if (connp->conn_debug) { 1746 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1747 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1748 } 1749 return (TOUTSTATE); 1750 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1751 TCPS_CONN_DEC(tcps); 1752 } 1753 1754 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1755 1756 /* 1757 * According to TPI, for non-listeners, ignore seqnum 1758 * and disconnect. 1759 * Following interpretation of -1 seqnum is historical 1760 * and implied TPI ? (TPI only states that for T_CONN_IND, 1761 * a valid seqnum should not be -1). 1762 * 1763 * -1 means disconnect everything 1764 * regardless even on a listener. 1765 */ 1766 1767 int old_state = tcp->tcp_state; 1768 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1769 1770 /* 1771 * The connection can't be on the tcp_time_wait_head list 1772 * since it is not detached. 1773 */ 1774 ASSERT(tcp->tcp_time_wait_next == NULL); 1775 ASSERT(tcp->tcp_time_wait_prev == NULL); 1776 ASSERT(tcp->tcp_time_wait_expire == 0); 1777 /* 1778 * If it used to be a listener, check to make sure no one else 1779 * has taken the port before switching back to LISTEN state. 1780 */ 1781 if (connp->conn_ipversion == IPV4_VERSION) { 1782 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1783 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1784 } else { 1785 uint_t ifindex = 0; 1786 1787 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1788 ifindex = connp->conn_ixa->ixa_scopeid; 1789 1790 /* Allow conn_bound_if listeners? */ 1791 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1792 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1793 ipst); 1794 } 1795 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1796 tcp->tcp_state = TCPS_LISTEN; 1797 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1798 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1799 NULL, int32_t, old_state); 1800 } else if (old_state > TCPS_BOUND) { 1801 tcp->tcp_conn_req_max = 0; 1802 tcp->tcp_state = TCPS_BOUND; 1803 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1804 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1805 NULL, int32_t, old_state); 1806 1807 /* 1808 * If this end point is not going to become a listener, 1809 * decrement the listener connection count if 1810 * necessary. Note that we do not do this if it is 1811 * going to be a listner (the above if case) since 1812 * then it may remove the counter struct. 1813 */ 1814 if (tcp->tcp_listen_cnt != NULL) 1815 TCP_DECR_LISTEN_CNT(tcp); 1816 } 1817 if (lconnp != NULL) 1818 CONN_DEC_REF(lconnp); 1819 switch (old_state) { 1820 case TCPS_SYN_SENT: 1821 case TCPS_SYN_RCVD: 1822 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1823 break; 1824 case TCPS_ESTABLISHED: 1825 case TCPS_CLOSE_WAIT: 1826 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1827 break; 1828 } 1829 1830 if (tcp->tcp_fused) 1831 tcp_unfuse(tcp); 1832 1833 mutex_enter(&tcp->tcp_eager_lock); 1834 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1835 (tcp->tcp_conn_req_cnt_q != 0)) { 1836 tcp_eager_cleanup(tcp, 0); 1837 } 1838 mutex_exit(&tcp->tcp_eager_lock); 1839 1840 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1841 tcp->tcp_rnxt, TH_RST | TH_ACK); 1842 1843 tcp_reinit(tcp); 1844 1845 return (0); 1846 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1847 return (TBADSEQ); 1848 } 1849 return (0); 1850 } 1851 1852 /* 1853 * Our client hereby directs us to reject the connection request 1854 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1855 * of sending the appropriate RST, not an ICMP error. 1856 */ 1857 void 1858 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1859 { 1860 t_scalar_t seqnum; 1861 int error; 1862 conn_t *connp = tcp->tcp_connp; 1863 1864 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1865 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1866 tcp_err_ack(tcp, mp, TPROTO, 0); 1867 return; 1868 } 1869 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1870 error = tcp_disconnect_common(tcp, seqnum); 1871 if (error != 0) 1872 tcp_err_ack(tcp, mp, error, 0); 1873 else { 1874 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1875 /* Send M_FLUSH according to TPI */ 1876 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1877 } 1878 mp = mi_tpi_ok_ack_alloc(mp); 1879 if (mp != NULL) 1880 putnext(connp->conn_rq, mp); 1881 } 1882 } 1883 1884 /* 1885 * Handle reinitialization of a tcp structure. 1886 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1887 */ 1888 static void 1889 tcp_reinit(tcp_t *tcp) 1890 { 1891 mblk_t *mp; 1892 tcp_stack_t *tcps = tcp->tcp_tcps; 1893 conn_t *connp = tcp->tcp_connp; 1894 int32_t oldstate; 1895 1896 /* tcp_reinit should never be called for detached tcp_t's */ 1897 ASSERT(tcp->tcp_listener == NULL); 1898 ASSERT((connp->conn_family == AF_INET && 1899 connp->conn_ipversion == IPV4_VERSION) || 1900 (connp->conn_family == AF_INET6 && 1901 (connp->conn_ipversion == IPV4_VERSION || 1902 connp->conn_ipversion == IPV6_VERSION))); 1903 1904 /* Cancel outstanding timers */ 1905 tcp_timers_stop(tcp); 1906 1907 tcp_close_mpp(&tcp->tcp_xmit_head); 1908 if (tcp->tcp_snd_zcopy_aware) 1909 tcp_zcopy_notify(tcp); 1910 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1911 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1912 mutex_enter(&tcp->tcp_non_sq_lock); 1913 if (tcp->tcp_flow_stopped && 1914 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1915 tcp_clrqfull(tcp); 1916 } 1917 mutex_exit(&tcp->tcp_non_sq_lock); 1918 tcp_close_mpp(&tcp->tcp_reass_head); 1919 tcp->tcp_reass_tail = NULL; 1920 if (tcp->tcp_rcv_list != NULL) { 1921 /* Free b_next chain */ 1922 tcp_close_mpp(&tcp->tcp_rcv_list); 1923 tcp->tcp_rcv_last_head = NULL; 1924 tcp->tcp_rcv_last_tail = NULL; 1925 tcp->tcp_rcv_cnt = 0; 1926 } 1927 tcp->tcp_rcv_last_tail = NULL; 1928 1929 if ((mp = tcp->tcp_urp_mp) != NULL) { 1930 freemsg(mp); 1931 tcp->tcp_urp_mp = NULL; 1932 } 1933 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1934 freemsg(mp); 1935 tcp->tcp_urp_mark_mp = NULL; 1936 } 1937 if (tcp->tcp_fused_sigurg_mp != NULL) { 1938 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1939 freeb(tcp->tcp_fused_sigurg_mp); 1940 tcp->tcp_fused_sigurg_mp = NULL; 1941 } 1942 if (tcp->tcp_ordrel_mp != NULL) { 1943 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1944 freeb(tcp->tcp_ordrel_mp); 1945 tcp->tcp_ordrel_mp = NULL; 1946 } 1947 1948 /* 1949 * Following is a union with two members which are 1950 * identical types and size so the following cleanup 1951 * is enough. 1952 */ 1953 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1954 1955 CL_INET_DISCONNECT(connp); 1956 1957 /* 1958 * The connection can't be on the tcp_time_wait_head list 1959 * since it is not detached. 1960 */ 1961 ASSERT(tcp->tcp_time_wait_next == NULL); 1962 ASSERT(tcp->tcp_time_wait_prev == NULL); 1963 ASSERT(tcp->tcp_time_wait_expire == 0); 1964 1965 /* 1966 * Reset/preserve other values 1967 */ 1968 tcp_reinit_values(tcp); 1969 ipcl_hash_remove(connp); 1970 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1971 ixa_cleanup(connp->conn_ixa); 1972 tcp_ipsec_cleanup(tcp); 1973 1974 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1975 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1976 oldstate = tcp->tcp_state; 1977 1978 if (tcp->tcp_conn_req_max != 0) { 1979 /* 1980 * This is the case when a TLI program uses the same 1981 * transport end point to accept a connection. This 1982 * makes the TCP both a listener and acceptor. When 1983 * this connection is closed, we need to set the state 1984 * back to TCPS_LISTEN. Make sure that the eager list 1985 * is reinitialized. 1986 * 1987 * Note that this stream is still bound to the four 1988 * tuples of the previous connection in IP. If a new 1989 * SYN with different foreign address comes in, IP will 1990 * not find it and will send it to the global queue. In 1991 * the global queue, TCP will do a tcp_lookup_listener() 1992 * to find this stream. This works because this stream 1993 * is only removed from connected hash. 1994 * 1995 */ 1996 tcp->tcp_state = TCPS_LISTEN; 1997 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 1998 tcp->tcp_eager_next_drop_q0 = tcp; 1999 tcp->tcp_eager_prev_drop_q0 = tcp; 2000 /* 2001 * Initially set conn_recv to tcp_input_listener_unbound to try 2002 * to pick a good squeue for the listener when the first SYN 2003 * arrives. tcp_input_listener_unbound sets it to 2004 * tcp_input_listener on that first SYN. 2005 */ 2006 connp->conn_recv = tcp_input_listener_unbound; 2007 2008 connp->conn_proto = IPPROTO_TCP; 2009 connp->conn_faddr_v6 = ipv6_all_zeros; 2010 connp->conn_fport = 0; 2011 2012 (void) ipcl_bind_insert(connp); 2013 } else { 2014 tcp->tcp_state = TCPS_BOUND; 2015 } 2016 2017 /* 2018 * Initialize to default values 2019 */ 2020 tcp_init_values(tcp, NULL); 2021 2022 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2023 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2024 int32_t, oldstate); 2025 2026 ASSERT(tcp->tcp_ptpbhn != NULL); 2027 tcp->tcp_rwnd = connp->conn_rcvbuf; 2028 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2029 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2030 } 2031 2032 /* 2033 * Force values to zero that need be zero. 2034 * Do not touch values asociated with the BOUND or LISTEN state 2035 * since the connection will end up in that state after the reinit. 2036 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2037 * structure! 2038 */ 2039 static void 2040 tcp_reinit_values(tcp_t *tcp) 2041 { 2042 tcp_stack_t *tcps = tcp->tcp_tcps; 2043 conn_t *connp = tcp->tcp_connp; 2044 2045 #ifndef lint 2046 #define DONTCARE(x) 2047 #define PRESERVE(x) 2048 #else 2049 #define DONTCARE(x) ((x) = (x)) 2050 #define PRESERVE(x) ((x) = (x)) 2051 #endif /* lint */ 2052 2053 PRESERVE(tcp->tcp_bind_hash_port); 2054 PRESERVE(tcp->tcp_bind_hash); 2055 PRESERVE(tcp->tcp_ptpbhn); 2056 PRESERVE(tcp->tcp_acceptor_hash); 2057 PRESERVE(tcp->tcp_ptpahn); 2058 2059 /* Should be ASSERT NULL on these with new code! */ 2060 ASSERT(tcp->tcp_time_wait_next == NULL); 2061 ASSERT(tcp->tcp_time_wait_prev == NULL); 2062 ASSERT(tcp->tcp_time_wait_expire == 0); 2063 PRESERVE(tcp->tcp_state); 2064 PRESERVE(connp->conn_rq); 2065 PRESERVE(connp->conn_wq); 2066 2067 ASSERT(tcp->tcp_xmit_head == NULL); 2068 ASSERT(tcp->tcp_xmit_last == NULL); 2069 ASSERT(tcp->tcp_unsent == 0); 2070 ASSERT(tcp->tcp_xmit_tail == NULL); 2071 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2072 2073 tcp->tcp_snxt = 0; /* Displayed in mib */ 2074 tcp->tcp_suna = 0; /* Displayed in mib */ 2075 tcp->tcp_swnd = 0; 2076 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2077 2078 if (connp->conn_ht_iphc != NULL) { 2079 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2080 connp->conn_ht_iphc = NULL; 2081 connp->conn_ht_iphc_allocated = 0; 2082 connp->conn_ht_iphc_len = 0; 2083 connp->conn_ht_ulp = NULL; 2084 connp->conn_ht_ulp_len = 0; 2085 tcp->tcp_ipha = NULL; 2086 tcp->tcp_ip6h = NULL; 2087 tcp->tcp_tcpha = NULL; 2088 } 2089 2090 /* We clear any IP_OPTIONS and extension headers */ 2091 ip_pkt_free(&connp->conn_xmit_ipp); 2092 2093 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2094 DONTCARE(tcp->tcp_ipha); 2095 DONTCARE(tcp->tcp_ip6h); 2096 DONTCARE(tcp->tcp_tcpha); 2097 tcp->tcp_valid_bits = 0; 2098 2099 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2100 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2101 tcp->tcp_last_rcv_lbolt = 0; 2102 2103 tcp->tcp_init_cwnd = 0; 2104 2105 tcp->tcp_urp_last_valid = 0; 2106 tcp->tcp_hard_binding = 0; 2107 2108 tcp->tcp_fin_acked = 0; 2109 tcp->tcp_fin_rcvd = 0; 2110 tcp->tcp_fin_sent = 0; 2111 tcp->tcp_ordrel_done = 0; 2112 2113 tcp->tcp_detached = 0; 2114 2115 tcp->tcp_snd_ws_ok = B_FALSE; 2116 tcp->tcp_snd_ts_ok = B_FALSE; 2117 tcp->tcp_zero_win_probe = 0; 2118 2119 tcp->tcp_loopback = 0; 2120 tcp->tcp_localnet = 0; 2121 tcp->tcp_syn_defense = 0; 2122 tcp->tcp_set_timer = 0; 2123 2124 tcp->tcp_active_open = 0; 2125 tcp->tcp_rexmit = B_FALSE; 2126 tcp->tcp_xmit_zc_clean = B_FALSE; 2127 2128 tcp->tcp_snd_sack_ok = B_FALSE; 2129 tcp->tcp_hwcksum = B_FALSE; 2130 2131 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2132 2133 tcp->tcp_conn_def_q0 = 0; 2134 tcp->tcp_ip_forward_progress = B_FALSE; 2135 tcp->tcp_ecn_ok = B_FALSE; 2136 2137 tcp->tcp_cwr = B_FALSE; 2138 tcp->tcp_ecn_echo_on = B_FALSE; 2139 tcp->tcp_is_wnd_shrnk = B_FALSE; 2140 2141 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2142 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2143 2144 tcp->tcp_rcv_ws = 0; 2145 tcp->tcp_snd_ws = 0; 2146 tcp->tcp_ts_recent = 0; 2147 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2148 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2149 tcp->tcp_initial_pmtu = 0; 2150 2151 ASSERT(tcp->tcp_reass_head == NULL); 2152 ASSERT(tcp->tcp_reass_tail == NULL); 2153 2154 tcp->tcp_cwnd_cnt = 0; 2155 2156 ASSERT(tcp->tcp_rcv_list == NULL); 2157 ASSERT(tcp->tcp_rcv_last_head == NULL); 2158 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2159 ASSERT(tcp->tcp_rcv_cnt == 0); 2160 2161 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2162 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2163 tcp->tcp_csuna = 0; 2164 2165 tcp->tcp_rto = 0; /* Displayed in MIB */ 2166 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2167 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2168 tcp->tcp_rtt_update = 0; 2169 tcp->tcp_rtt_sum = 0; 2170 tcp->tcp_rtt_cnt = 0; 2171 2172 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2173 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2174 2175 tcp->tcp_rack = 0; /* Displayed in mib */ 2176 tcp->tcp_rack_cnt = 0; 2177 tcp->tcp_rack_cur_max = 0; 2178 tcp->tcp_rack_abs_max = 0; 2179 2180 tcp->tcp_max_swnd = 0; 2181 2182 ASSERT(tcp->tcp_listener == NULL); 2183 2184 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2185 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2186 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2187 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2188 2189 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2190 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2191 PRESERVE(tcp->tcp_conn_req_max); 2192 PRESERVE(tcp->tcp_conn_req_seqnum); 2193 2194 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2195 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2196 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2197 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2198 2199 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2200 ASSERT(tcp->tcp_urp_mp == NULL); 2201 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2202 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2203 2204 ASSERT(tcp->tcp_eager_next_q == NULL); 2205 ASSERT(tcp->tcp_eager_last_q == NULL); 2206 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2207 tcp->tcp_eager_prev_q0 == NULL) || 2208 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2209 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2210 2211 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2212 tcp->tcp_eager_prev_drop_q0 == NULL) || 2213 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2214 2215 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */ 2216 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */ 2217 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */ 2218 2219 tcp->tcp_client_errno = 0; 2220 2221 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2222 2223 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2224 2225 PRESERVE(connp->conn_bound_addr_v6); 2226 tcp->tcp_last_sent_len = 0; 2227 tcp->tcp_dupack_cnt = 0; 2228 2229 connp->conn_fport = 0; /* Displayed in MIB */ 2230 PRESERVE(connp->conn_lport); 2231 2232 PRESERVE(tcp->tcp_acceptor_lockp); 2233 2234 ASSERT(tcp->tcp_ordrel_mp == NULL); 2235 PRESERVE(tcp->tcp_acceptor_id); 2236 DONTCARE(tcp->tcp_ipsec_overhead); 2237 2238 PRESERVE(connp->conn_family); 2239 /* Remove any remnants of mapped address binding */ 2240 if (connp->conn_family == AF_INET6) { 2241 connp->conn_ipversion = IPV6_VERSION; 2242 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2243 } else { 2244 connp->conn_ipversion = IPV4_VERSION; 2245 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2246 } 2247 2248 connp->conn_bound_if = 0; 2249 connp->conn_recv_ancillary.crb_all = 0; 2250 tcp->tcp_recvifindex = 0; 2251 tcp->tcp_recvhops = 0; 2252 tcp->tcp_closed = 0; 2253 if (tcp->tcp_hopopts != NULL) { 2254 mi_free(tcp->tcp_hopopts); 2255 tcp->tcp_hopopts = NULL; 2256 tcp->tcp_hopoptslen = 0; 2257 } 2258 ASSERT(tcp->tcp_hopoptslen == 0); 2259 if (tcp->tcp_dstopts != NULL) { 2260 mi_free(tcp->tcp_dstopts); 2261 tcp->tcp_dstopts = NULL; 2262 tcp->tcp_dstoptslen = 0; 2263 } 2264 ASSERT(tcp->tcp_dstoptslen == 0); 2265 if (tcp->tcp_rthdrdstopts != NULL) { 2266 mi_free(tcp->tcp_rthdrdstopts); 2267 tcp->tcp_rthdrdstopts = NULL; 2268 tcp->tcp_rthdrdstoptslen = 0; 2269 } 2270 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2271 if (tcp->tcp_rthdr != NULL) { 2272 mi_free(tcp->tcp_rthdr); 2273 tcp->tcp_rthdr = NULL; 2274 tcp->tcp_rthdrlen = 0; 2275 } 2276 ASSERT(tcp->tcp_rthdrlen == 0); 2277 2278 /* Reset fusion-related fields */ 2279 tcp->tcp_fused = B_FALSE; 2280 tcp->tcp_unfusable = B_FALSE; 2281 tcp->tcp_fused_sigurg = B_FALSE; 2282 tcp->tcp_loopback_peer = NULL; 2283 2284 tcp->tcp_lso = B_FALSE; 2285 2286 tcp->tcp_in_ack_unsent = 0; 2287 tcp->tcp_cork = B_FALSE; 2288 tcp->tcp_tconnind_started = B_FALSE; 2289 2290 PRESERVE(tcp->tcp_squeue_bytes); 2291 2292 tcp->tcp_closemp_used = B_FALSE; 2293 2294 PRESERVE(tcp->tcp_rsrv_mp); 2295 PRESERVE(tcp->tcp_rsrv_mp_lock); 2296 2297 #ifdef DEBUG 2298 DONTCARE(tcp->tcmp_stk[0]); 2299 #endif 2300 2301 PRESERVE(tcp->tcp_connid); 2302 2303 ASSERT(tcp->tcp_listen_cnt == NULL); 2304 ASSERT(tcp->tcp_reass_tid == 0); 2305 2306 /* Allow the CC algorithm to clean up after itself. */ 2307 if (tcp->tcp_cc_algo->cb_destroy != NULL) 2308 tcp->tcp_cc_algo->cb_destroy(&tcp->tcp_ccv); 2309 tcp->tcp_cc_algo = NULL; 2310 2311 #undef DONTCARE 2312 #undef PRESERVE 2313 } 2314 2315 /* 2316 * Initialize the various fields in tcp_t. If parent (the listener) is non 2317 * NULL, certain values will be inheritted from it. 2318 */ 2319 void 2320 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2321 { 2322 tcp_stack_t *tcps = tcp->tcp_tcps; 2323 conn_t *connp = tcp->tcp_connp; 2324 2325 ASSERT((connp->conn_family == AF_INET && 2326 connp->conn_ipversion == IPV4_VERSION) || 2327 (connp->conn_family == AF_INET6 && 2328 (connp->conn_ipversion == IPV4_VERSION || 2329 connp->conn_ipversion == IPV6_VERSION))); 2330 2331 tcp->tcp_ccv.type = IPPROTO_TCP; 2332 tcp->tcp_ccv.ccvc.tcp = tcp; 2333 2334 if (parent == NULL) { 2335 tcp->tcp_cc_algo = tcps->tcps_default_cc_algo; 2336 2337 tcp->tcp_naglim = tcps->tcps_naglim_def; 2338 2339 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2340 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2341 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2342 2343 tcp->tcp_first_ctimer_threshold = 2344 tcps->tcps_ip_notify_cinterval; 2345 tcp->tcp_second_ctimer_threshold = 2346 tcps->tcps_ip_abort_cinterval; 2347 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2348 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2349 2350 tcp->tcp_fin_wait_2_flush_interval = 2351 tcps->tcps_fin_wait_2_flush_interval; 2352 2353 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2354 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2355 tcp->tcp_ka_cnt = 0; 2356 tcp->tcp_ka_rinterval = 0; 2357 2358 /* 2359 * Default value of tcp_init_cwnd is 0, so no need to set here 2360 * if parent is NULL. But we need to inherit it from parent. 2361 */ 2362 } else { 2363 /* Inherit various TCP parameters from the parent. */ 2364 tcp->tcp_cc_algo = parent->tcp_cc_algo; 2365 2366 tcp->tcp_naglim = parent->tcp_naglim; 2367 2368 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2369 tcp->tcp_rto_min = parent->tcp_rto_min; 2370 tcp->tcp_rto_max = parent->tcp_rto_max; 2371 2372 tcp->tcp_first_ctimer_threshold = 2373 parent->tcp_first_ctimer_threshold; 2374 tcp->tcp_second_ctimer_threshold = 2375 parent->tcp_second_ctimer_threshold; 2376 tcp->tcp_first_timer_threshold = 2377 parent->tcp_first_timer_threshold; 2378 tcp->tcp_second_timer_threshold = 2379 parent->tcp_second_timer_threshold; 2380 2381 tcp->tcp_fin_wait_2_flush_interval = 2382 parent->tcp_fin_wait_2_flush_interval; 2383 2384 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2385 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2386 tcp->tcp_ka_cnt = parent->tcp_ka_cnt; 2387 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval; 2388 2389 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2390 } 2391 2392 if (tcp->tcp_cc_algo->cb_init != NULL) 2393 VERIFY(tcp->tcp_cc_algo->cb_init(&tcp->tcp_ccv) == 0); 2394 2395 /* 2396 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2397 * will be close to tcp_rexmit_interval_initial. By doing this, we 2398 * allow the algorithm to adjust slowly to large fluctuations of RTT 2399 * during first few transmissions of a connection as seen in slow 2400 * links. 2401 */ 2402 tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2; 2403 tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1; 2404 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 2405 tcps->tcps_conn_grace_period); 2406 2407 tcp->tcp_timer_backoff = 0; 2408 tcp->tcp_ms_we_have_waited = 0; 2409 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2410 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2411 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2412 2413 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2414 2415 /* NOTE: ISS is now set in tcp_set_destination(). */ 2416 2417 /* Reset fusion-related fields */ 2418 tcp->tcp_fused = B_FALSE; 2419 tcp->tcp_unfusable = B_FALSE; 2420 tcp->tcp_fused_sigurg = B_FALSE; 2421 tcp->tcp_loopback_peer = NULL; 2422 2423 /* We rebuild the header template on the next connect/conn_request */ 2424 2425 connp->conn_mlp_type = mlptSingle; 2426 2427 /* 2428 * Init the window scale to the max so tcp_rwnd_set() won't pare 2429 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2430 */ 2431 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2432 tcp->tcp_rwnd = connp->conn_rcvbuf; 2433 2434 tcp->tcp_cork = B_FALSE; 2435 /* 2436 * Init the tcp_debug option if it wasn't already set. This value 2437 * determines whether TCP 2438 * calls strlog() to print out debug messages. Doing this 2439 * initialization here means that this value is not inherited thru 2440 * tcp_reinit(). 2441 */ 2442 if (!connp->conn_debug) 2443 connp->conn_debug = tcps->tcps_dbg; 2444 } 2445 2446 /* 2447 * Update the TCP connection according to change of PMTU. 2448 * 2449 * Path MTU might have changed by either increase or decrease, so need to 2450 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2451 * or negative MSS, since tcp_mss_set() will do it. 2452 */ 2453 void 2454 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2455 { 2456 uint32_t pmtu; 2457 int32_t mss; 2458 conn_t *connp = tcp->tcp_connp; 2459 ip_xmit_attr_t *ixa = connp->conn_ixa; 2460 iaflags_t ixaflags; 2461 2462 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2463 return; 2464 2465 if (tcp->tcp_state < TCPS_ESTABLISHED) 2466 return; 2467 2468 /* 2469 * Always call ip_get_pmtu() to make sure that IP has updated 2470 * ixa_flags properly. 2471 */ 2472 pmtu = ip_get_pmtu(ixa); 2473 ixaflags = ixa->ixa_flags; 2474 2475 /* 2476 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2477 * IPsec overhead if applied. Make sure to use the most recent 2478 * IPsec information. 2479 */ 2480 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2481 2482 /* 2483 * Nothing to change, so just return. 2484 */ 2485 if (mss == tcp->tcp_mss) 2486 return; 2487 2488 /* 2489 * Currently, for ICMP errors, only PMTU decrease is handled. 2490 */ 2491 if (mss > tcp->tcp_mss && decrease_only) 2492 return; 2493 2494 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2495 2496 /* 2497 * Update ixa_fragsize and ixa_pmtu. 2498 */ 2499 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2500 2501 /* 2502 * Adjust MSS and all relevant variables. 2503 */ 2504 tcp_mss_set(tcp, mss); 2505 2506 /* 2507 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2508 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2509 * has a (potentially different) min size we do the same. Make sure to 2510 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2511 * fragment the packet. 2512 * 2513 * LSO over IPv6 can not be fragmented. So need to disable LSO 2514 * when IPv6 fragmentation is needed. 2515 */ 2516 if (mss < tcp->tcp_tcps->tcps_mss_min) 2517 ixaflags |= IXAF_PMTU_TOO_SMALL; 2518 2519 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2520 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2521 2522 if ((connp->conn_ipversion == IPV4_VERSION) && 2523 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2524 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2525 } 2526 ixa->ixa_flags = ixaflags; 2527 } 2528 2529 int 2530 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2531 { 2532 conn_t *connp = tcp->tcp_connp; 2533 queue_t *q = connp->conn_rq; 2534 int32_t mss = tcp->tcp_mss; 2535 int maxpsz; 2536 2537 if (TCP_IS_DETACHED(tcp)) 2538 return (mss); 2539 if (tcp->tcp_fused) { 2540 maxpsz = tcp_fuse_maxpsz(tcp); 2541 mss = INFPSZ; 2542 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2543 /* 2544 * Set the sd_qn_maxpsz according to the socket send buffer 2545 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2546 * instruct the stream head to copyin user data into contiguous 2547 * kernel-allocated buffers without breaking it up into smaller 2548 * chunks. We round up the buffer size to the nearest SMSS. 2549 */ 2550 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2551 mss = INFPSZ; 2552 } else { 2553 /* 2554 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2555 * (and a multiple of the mss). This instructs the stream 2556 * head to break down larger than SMSS writes into SMSS- 2557 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2558 */ 2559 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2560 if (maxpsz > connp->conn_sndbuf / 2) { 2561 maxpsz = connp->conn_sndbuf / 2; 2562 /* Round up to nearest mss */ 2563 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2564 } 2565 } 2566 2567 (void) proto_set_maxpsz(q, connp, maxpsz); 2568 if (!(IPCL_IS_NONSTR(connp))) 2569 connp->conn_wq->q_maxpsz = maxpsz; 2570 if (set_maxblk) 2571 (void) proto_set_tx_maxblk(q, connp, mss); 2572 return (mss); 2573 } 2574 2575 /* For /dev/tcp aka AF_INET open */ 2576 static int 2577 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2578 { 2579 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2580 } 2581 2582 /* For /dev/tcp6 aka AF_INET6 open */ 2583 static int 2584 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2585 { 2586 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2587 } 2588 2589 conn_t * 2590 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2591 int *errorp) 2592 { 2593 tcp_t *tcp = NULL; 2594 conn_t *connp; 2595 zoneid_t zoneid; 2596 tcp_stack_t *tcps; 2597 squeue_t *sqp; 2598 2599 ASSERT(errorp != NULL); 2600 /* 2601 * Find the proper zoneid and netstack. 2602 */ 2603 /* 2604 * Special case for install: miniroot needs to be able to 2605 * access files via NFS as though it were always in the 2606 * global zone. 2607 */ 2608 if (credp == kcred && nfs_global_client_only != 0) { 2609 zoneid = GLOBAL_ZONEID; 2610 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2611 netstack_tcp; 2612 ASSERT(tcps != NULL); 2613 } else { 2614 netstack_t *ns; 2615 int err; 2616 2617 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2618 *errorp = err; 2619 return (NULL); 2620 } 2621 2622 ns = netstack_find_by_cred(credp); 2623 ASSERT(ns != NULL); 2624 tcps = ns->netstack_tcp; 2625 ASSERT(tcps != NULL); 2626 2627 /* 2628 * For exclusive stacks we set the zoneid to zero 2629 * to make TCP operate as if in the global zone. 2630 */ 2631 if (tcps->tcps_netstack->netstack_stackid != 2632 GLOBAL_NETSTACKID) 2633 zoneid = GLOBAL_ZONEID; 2634 else 2635 zoneid = crgetzoneid(credp); 2636 } 2637 2638 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2639 connp = tcp_get_conn(sqp, tcps); 2640 /* 2641 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2642 * so we drop it by one. 2643 */ 2644 netstack_rele(tcps->tcps_netstack); 2645 if (connp == NULL) { 2646 *errorp = ENOSR; 2647 return (NULL); 2648 } 2649 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2650 2651 connp->conn_sqp = sqp; 2652 connp->conn_initial_sqp = connp->conn_sqp; 2653 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2654 tcp = connp->conn_tcp; 2655 2656 /* 2657 * Besides asking IP to set the checksum for us, have conn_ip_output 2658 * to do the following checks when necessary: 2659 * 2660 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2661 * IXAF_VERIFY_PMTU: verify PMTU changes 2662 * IXAF_VERIFY_LSO: verify LSO capability changes 2663 */ 2664 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2665 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2666 2667 if (!tcps->tcps_dev_flow_ctl) 2668 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2669 2670 if (isv6) { 2671 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2672 connp->conn_ipversion = IPV6_VERSION; 2673 connp->conn_family = AF_INET6; 2674 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2675 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2676 } else { 2677 connp->conn_ipversion = IPV4_VERSION; 2678 connp->conn_family = AF_INET; 2679 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2680 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2681 } 2682 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2683 2684 crhold(credp); 2685 connp->conn_cred = credp; 2686 connp->conn_cpid = curproc->p_pid; 2687 connp->conn_open_time = ddi_get_lbolt64(); 2688 2689 /* Cache things in the ixa without any refhold */ 2690 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2691 connp->conn_ixa->ixa_cred = credp; 2692 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2693 2694 connp->conn_zoneid = zoneid; 2695 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2696 connp->conn_ixa->ixa_zoneid = zoneid; 2697 connp->conn_mlp_type = mlptSingle; 2698 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2699 ASSERT(tcp->tcp_tcps == tcps); 2700 2701 /* 2702 * If the caller has the process-wide flag set, then default to MAC 2703 * exempt mode. This allows read-down to unlabeled hosts. 2704 */ 2705 if (getpflags(NET_MAC_AWARE, credp) != 0) 2706 connp->conn_mac_mode = CONN_MAC_AWARE; 2707 2708 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2709 2710 if (issocket) { 2711 tcp->tcp_issocket = 1; 2712 } 2713 2714 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2715 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2716 if (tcps->tcps_snd_lowat_fraction != 0) { 2717 connp->conn_sndlowat = connp->conn_sndbuf / 2718 tcps->tcps_snd_lowat_fraction; 2719 } else { 2720 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2721 } 2722 connp->conn_so_type = SOCK_STREAM; 2723 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2724 tcps->tcps_wroff_xtra; 2725 2726 SOCK_CONNID_INIT(tcp->tcp_connid); 2727 /* DTrace ignores this - it isn't a tcp:::state-change */ 2728 tcp->tcp_state = TCPS_IDLE; 2729 tcp_init_values(tcp, NULL); 2730 return (connp); 2731 } 2732 2733 static int 2734 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2735 boolean_t isv6) 2736 { 2737 tcp_t *tcp = NULL; 2738 conn_t *connp = NULL; 2739 int err; 2740 vmem_t *minor_arena = NULL; 2741 dev_t conn_dev; 2742 boolean_t issocket; 2743 2744 if (q->q_ptr != NULL) 2745 return (0); 2746 2747 if (sflag == MODOPEN) 2748 return (EINVAL); 2749 2750 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2751 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2752 minor_arena = ip_minor_arena_la; 2753 } else { 2754 /* 2755 * Either minor numbers in the large arena were exhausted 2756 * or a non socket application is doing the open. 2757 * Try to allocate from the small arena. 2758 */ 2759 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2760 return (EBUSY); 2761 } 2762 minor_arena = ip_minor_arena_sa; 2763 } 2764 2765 ASSERT(minor_arena != NULL); 2766 2767 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2768 2769 if (flag & SO_FALLBACK) { 2770 /* 2771 * Non streams socket needs a stream to fallback to 2772 */ 2773 RD(q)->q_ptr = (void *)conn_dev; 2774 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2775 WR(q)->q_ptr = (void *)minor_arena; 2776 qprocson(q); 2777 return (0); 2778 } else if (flag & SO_ACCEPTOR) { 2779 q->q_qinfo = &tcp_acceptor_rinit; 2780 /* 2781 * the conn_dev and minor_arena will be subsequently used by 2782 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2783 * the minor device number for this connection from the q_ptr. 2784 */ 2785 RD(q)->q_ptr = (void *)conn_dev; 2786 WR(q)->q_qinfo = &tcp_acceptor_winit; 2787 WR(q)->q_ptr = (void *)minor_arena; 2788 qprocson(q); 2789 return (0); 2790 } 2791 2792 issocket = flag & SO_SOCKSTR; 2793 connp = tcp_create_common(credp, isv6, issocket, &err); 2794 2795 if (connp == NULL) { 2796 inet_minor_free(minor_arena, conn_dev); 2797 q->q_ptr = WR(q)->q_ptr = NULL; 2798 return (err); 2799 } 2800 2801 connp->conn_rq = q; 2802 connp->conn_wq = WR(q); 2803 q->q_ptr = WR(q)->q_ptr = connp; 2804 2805 connp->conn_dev = conn_dev; 2806 connp->conn_minor_arena = minor_arena; 2807 2808 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2809 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2810 2811 tcp = connp->conn_tcp; 2812 2813 if (issocket) { 2814 WR(q)->q_qinfo = &tcp_sock_winit; 2815 } else { 2816 #ifdef _ILP32 2817 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2818 #else 2819 tcp->tcp_acceptor_id = conn_dev; 2820 #endif /* _ILP32 */ 2821 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2822 } 2823 2824 /* 2825 * Put the ref for TCP. Ref for IP was already put 2826 * by ipcl_conn_create. Also Make the conn_t globally 2827 * visible to walkers 2828 */ 2829 mutex_enter(&connp->conn_lock); 2830 CONN_INC_REF_LOCKED(connp); 2831 ASSERT(connp->conn_ref == 2); 2832 connp->conn_state_flags &= ~CONN_INCIPIENT; 2833 mutex_exit(&connp->conn_lock); 2834 2835 qprocson(q); 2836 return (0); 2837 } 2838 2839 /* 2840 * Build/update the tcp header template (in conn_ht_iphc) based on 2841 * conn_xmit_ipp. The headers include ip6_t, any extension 2842 * headers, and the maximum size tcp header (to avoid reallocation 2843 * on the fly for additional tcp options). 2844 * 2845 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2846 * Returns failure if can't allocate memory. 2847 */ 2848 int 2849 tcp_build_hdrs(tcp_t *tcp) 2850 { 2851 tcp_stack_t *tcps = tcp->tcp_tcps; 2852 conn_t *connp = tcp->tcp_connp; 2853 char buf[TCP_MAX_HDR_LENGTH]; 2854 uint_t buflen; 2855 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2856 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2857 tcpha_t *tcpha; 2858 uint32_t cksum; 2859 int error; 2860 2861 /* 2862 * We might be called after the connection is set up, and we might 2863 * have TS options already in the TCP header. Thus we save any 2864 * existing tcp header. 2865 */ 2866 buflen = connp->conn_ht_ulp_len; 2867 if (buflen != 0) { 2868 bcopy(connp->conn_ht_ulp, buf, buflen); 2869 extralen -= buflen - ulplen; 2870 ulplen = buflen; 2871 } 2872 2873 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2874 mutex_enter(&connp->conn_lock); 2875 error = conn_build_hdr_template(connp, ulplen, extralen, 2876 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2877 mutex_exit(&connp->conn_lock); 2878 if (error != 0) 2879 return (error); 2880 2881 /* 2882 * Any routing header/option has been massaged. The checksum difference 2883 * is stored in conn_sum for later use. 2884 */ 2885 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2886 tcp->tcp_tcpha = tcpha; 2887 2888 /* restore any old tcp header */ 2889 if (buflen != 0) { 2890 bcopy(buf, connp->conn_ht_ulp, buflen); 2891 } else { 2892 tcpha->tha_sum = 0; 2893 tcpha->tha_urp = 0; 2894 tcpha->tha_ack = 0; 2895 tcpha->tha_offset_and_reserved = (5 << 4); 2896 tcpha->tha_lport = connp->conn_lport; 2897 tcpha->tha_fport = connp->conn_fport; 2898 } 2899 2900 /* 2901 * IP wants our header length in the checksum field to 2902 * allow it to perform a single pseudo-header+checksum 2903 * calculation on behalf of TCP. 2904 * Include the adjustment for a source route once IP_OPTIONS is set. 2905 */ 2906 cksum = sizeof (tcpha_t) + connp->conn_sum; 2907 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2908 ASSERT(cksum < 0x10000); 2909 tcpha->tha_sum = htons(cksum); 2910 2911 if (connp->conn_ipversion == IPV4_VERSION) 2912 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2913 else 2914 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2915 2916 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2917 connp->conn_wroff) { 2918 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2919 tcps->tcps_wroff_xtra; 2920 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2921 connp->conn_wroff); 2922 } 2923 return (0); 2924 } 2925 2926 /* 2927 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2928 * We do not allow the receive window to shrink. After setting rwnd, 2929 * set the flow control hiwat of the stream. 2930 * 2931 * This function is called in 2 cases: 2932 * 2933 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2934 * connection (passive open) and in tcp_input_data() for active connect. 2935 * This is called after tcp_mss_set() when the desired MSS value is known. 2936 * This makes sure that our window size is a mutiple of the other side's 2937 * MSS. 2938 * 2) Handling SO_RCVBUF option. 2939 * 2940 * It is ASSUMED that the requested size is a multiple of the current MSS. 2941 * 2942 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2943 * user requests so. 2944 */ 2945 int 2946 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2947 { 2948 uint32_t mss = tcp->tcp_mss; 2949 uint32_t old_max_rwnd; 2950 uint32_t max_transmittable_rwnd; 2951 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2952 tcp_stack_t *tcps = tcp->tcp_tcps; 2953 conn_t *connp = tcp->tcp_connp; 2954 2955 /* 2956 * Insist on a receive window that is at least 2957 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2958 * funny TCP interactions of Nagle algorithm, SWS avoidance 2959 * and delayed acknowledgement. 2960 */ 2961 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2962 2963 if (tcp->tcp_fused) { 2964 size_t sth_hiwat; 2965 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2966 2967 ASSERT(peer_tcp != NULL); 2968 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2969 if (!tcp_detached) { 2970 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2971 sth_hiwat); 2972 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2973 } 2974 2975 /* Caller could have changed tcp_rwnd; update tha_win */ 2976 if (tcp->tcp_tcpha != NULL) { 2977 tcp->tcp_tcpha->tha_win = 2978 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2979 } 2980 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2981 tcp->tcp_cwnd_max = rwnd; 2982 2983 /* 2984 * In the fusion case, the maxpsz stream head value of 2985 * our peer is set according to its send buffer size 2986 * and our receive buffer size; since the latter may 2987 * have changed we need to update the peer's maxpsz. 2988 */ 2989 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2990 return (sth_hiwat); 2991 } 2992 2993 if (tcp_detached) 2994 old_max_rwnd = tcp->tcp_rwnd; 2995 else 2996 old_max_rwnd = connp->conn_rcvbuf; 2997 2998 2999 /* 3000 * If window size info has already been exchanged, TCP should not 3001 * shrink the window. Shrinking window is doable if done carefully. 3002 * We may add that support later. But so far there is not a real 3003 * need to do that. 3004 */ 3005 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 3006 /* MSS may have changed, do a round up again. */ 3007 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 3008 } 3009 3010 /* 3011 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3012 * can be applied even before the window scale option is decided. 3013 */ 3014 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3015 if (rwnd > max_transmittable_rwnd) { 3016 rwnd = max_transmittable_rwnd - 3017 (max_transmittable_rwnd % mss); 3018 if (rwnd < mss) 3019 rwnd = max_transmittable_rwnd; 3020 /* 3021 * If we're over the limit we may have to back down tcp_rwnd. 3022 * The increment below won't work for us. So we set all three 3023 * here and the increment below will have no effect. 3024 */ 3025 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3026 } 3027 if (tcp->tcp_localnet) { 3028 tcp->tcp_rack_abs_max = 3029 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3030 } else { 3031 /* 3032 * For a remote host on a different subnet (through a router), 3033 * we ack every other packet to be conforming to RFC1122. 3034 * tcp_deferred_acks_max is default to 2. 3035 */ 3036 tcp->tcp_rack_abs_max = 3037 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3038 } 3039 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3040 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3041 else 3042 tcp->tcp_rack_cur_max = 0; 3043 /* 3044 * Increment the current rwnd by the amount the maximum grew (we 3045 * can not overwrite it since we might be in the middle of a 3046 * connection.) 3047 */ 3048 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3049 connp->conn_rcvbuf = rwnd; 3050 3051 /* Are we already connected? */ 3052 if (tcp->tcp_tcpha != NULL) { 3053 tcp->tcp_tcpha->tha_win = 3054 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3055 } 3056 3057 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3058 tcp->tcp_cwnd_max = rwnd; 3059 3060 if (tcp_detached) 3061 return (rwnd); 3062 3063 tcp_set_recv_threshold(tcp, rwnd >> 3); 3064 3065 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3066 return (rwnd); 3067 } 3068 3069 int 3070 tcp_do_unbind(conn_t *connp) 3071 { 3072 tcp_t *tcp = connp->conn_tcp; 3073 int32_t oldstate; 3074 3075 switch (tcp->tcp_state) { 3076 case TCPS_BOUND: 3077 case TCPS_LISTEN: 3078 break; 3079 default: 3080 return (-TOUTSTATE); 3081 } 3082 3083 /* 3084 * Need to clean up all the eagers since after the unbind, segments 3085 * will no longer be delivered to this listener stream. 3086 */ 3087 mutex_enter(&tcp->tcp_eager_lock); 3088 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3089 tcp_eager_cleanup(tcp, 0); 3090 } 3091 mutex_exit(&tcp->tcp_eager_lock); 3092 3093 /* Clean up the listener connection counter if necessary. */ 3094 if (tcp->tcp_listen_cnt != NULL) 3095 TCP_DECR_LISTEN_CNT(tcp); 3096 connp->conn_laddr_v6 = ipv6_all_zeros; 3097 connp->conn_saddr_v6 = ipv6_all_zeros; 3098 tcp_bind_hash_remove(tcp); 3099 oldstate = tcp->tcp_state; 3100 tcp->tcp_state = TCPS_IDLE; 3101 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3102 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3103 int32_t, oldstate); 3104 3105 ip_unbind(connp); 3106 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3107 3108 return (0); 3109 } 3110 3111 /* 3112 * Collect protocol properties to send to the upper handle. 3113 */ 3114 void 3115 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3116 { 3117 conn_t *connp = tcp->tcp_connp; 3118 3119 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3120 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3121 3122 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3123 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3124 connp->conn_rcvbuf; 3125 /* 3126 * Determine what write offset value to use depending on SACK and 3127 * whether the endpoint is fused or not. 3128 */ 3129 if (tcp->tcp_fused) { 3130 ASSERT(tcp->tcp_loopback); 3131 ASSERT(tcp->tcp_loopback_peer != NULL); 3132 /* 3133 * For fused tcp loopback, set the stream head's write 3134 * offset value to zero since we won't be needing any room 3135 * for TCP/IP headers. This would also improve performance 3136 * since it would reduce the amount of work done by kmem. 3137 * Non-fused tcp loopback case is handled separately below. 3138 */ 3139 sopp->sopp_wroff = 0; 3140 /* 3141 * Update the peer's transmit parameters according to 3142 * our recently calculated high water mark value. 3143 */ 3144 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3145 } else if (tcp->tcp_snd_sack_ok) { 3146 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3147 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3148 } else { 3149 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3150 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3151 } 3152 3153 if (tcp->tcp_loopback) { 3154 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3155 sopp->sopp_loopback = B_TRUE; 3156 } 3157 } 3158 3159 /* 3160 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3161 */ 3162 boolean_t 3163 tcp_zcopy_check(tcp_t *tcp) 3164 { 3165 conn_t *connp = tcp->tcp_connp; 3166 ip_xmit_attr_t *ixa = connp->conn_ixa; 3167 boolean_t zc_enabled = B_FALSE; 3168 tcp_stack_t *tcps = tcp->tcp_tcps; 3169 3170 if (do_tcpzcopy == 2) 3171 zc_enabled = B_TRUE; 3172 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3173 zc_enabled = B_TRUE; 3174 3175 tcp->tcp_snd_zcopy_on = zc_enabled; 3176 if (!TCP_IS_DETACHED(tcp)) { 3177 if (zc_enabled) { 3178 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3179 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3180 ZCVMSAFE); 3181 TCP_STAT(tcps, tcp_zcopy_on); 3182 } else { 3183 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3184 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3185 ZCVMUNSAFE); 3186 TCP_STAT(tcps, tcp_zcopy_off); 3187 } 3188 } 3189 return (zc_enabled); 3190 } 3191 3192 /* 3193 * Backoff from a zero-copy message by copying data to a new allocated 3194 * message and freeing the original desballoca'ed segmapped message. 3195 * 3196 * This function is called by following two callers: 3197 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3198 * the origial desballoca'ed message and notify sockfs. This is in re- 3199 * transmit state. 3200 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3201 * to be copied to new message. 3202 */ 3203 mblk_t * 3204 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3205 { 3206 mblk_t *nbp; 3207 mblk_t *head = NULL; 3208 mblk_t *tail = NULL; 3209 tcp_stack_t *tcps = tcp->tcp_tcps; 3210 3211 ASSERT(bp != NULL); 3212 while (bp != NULL) { 3213 if (IS_VMLOANED_MBLK(bp)) { 3214 TCP_STAT(tcps, tcp_zcopy_backoff); 3215 if ((nbp = copyb(bp)) == NULL) { 3216 tcp->tcp_xmit_zc_clean = B_FALSE; 3217 if (tail != NULL) 3218 tail->b_cont = bp; 3219 return ((head == NULL) ? bp : head); 3220 } 3221 3222 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3223 if (fix_xmitlist) 3224 tcp_zcopy_notify(tcp); 3225 else 3226 nbp->b_datap->db_struioflag |= 3227 STRUIO_ZCNOTIFY; 3228 } 3229 nbp->b_cont = bp->b_cont; 3230 3231 /* 3232 * Copy saved information and adjust tcp_xmit_tail 3233 * if needed. 3234 */ 3235 if (fix_xmitlist) { 3236 nbp->b_prev = bp->b_prev; 3237 nbp->b_next = bp->b_next; 3238 3239 if (tcp->tcp_xmit_tail == bp) 3240 tcp->tcp_xmit_tail = nbp; 3241 } 3242 3243 /* Free the original message. */ 3244 bp->b_prev = NULL; 3245 bp->b_next = NULL; 3246 freeb(bp); 3247 3248 bp = nbp; 3249 } 3250 3251 if (head == NULL) { 3252 head = bp; 3253 } 3254 if (tail == NULL) { 3255 tail = bp; 3256 } else { 3257 tail->b_cont = bp; 3258 tail = bp; 3259 } 3260 3261 /* Move forward. */ 3262 bp = bp->b_cont; 3263 } 3264 3265 if (fix_xmitlist) { 3266 tcp->tcp_xmit_last = tail; 3267 tcp->tcp_xmit_zc_clean = B_TRUE; 3268 } 3269 3270 return (head); 3271 } 3272 3273 void 3274 tcp_zcopy_notify(tcp_t *tcp) 3275 { 3276 struct stdata *stp; 3277 conn_t *connp; 3278 3279 if (tcp->tcp_detached) 3280 return; 3281 connp = tcp->tcp_connp; 3282 if (IPCL_IS_NONSTR(connp)) { 3283 (*connp->conn_upcalls->su_zcopy_notify) 3284 (connp->conn_upper_handle); 3285 return; 3286 } 3287 stp = STREAM(connp->conn_rq); 3288 mutex_enter(&stp->sd_lock); 3289 stp->sd_flag |= STZCNOTIFY; 3290 cv_broadcast(&stp->sd_zcopy_wait); 3291 mutex_exit(&stp->sd_lock); 3292 } 3293 3294 /* 3295 * Update the TCP connection according to change of LSO capability. 3296 */ 3297 static void 3298 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3299 { 3300 /* 3301 * We check against IPv4 header length to preserve the old behavior 3302 * of only enabling LSO when there are no IP options. 3303 * But this restriction might not be necessary at all. Before removing 3304 * it, need to verify how LSO is handled for source routing case, with 3305 * which IP does software checksum. 3306 * 3307 * For IPv6, whenever any extension header is needed, LSO is supressed. 3308 */ 3309 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3310 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3311 return; 3312 3313 /* 3314 * Either the LSO capability newly became usable, or it has changed. 3315 */ 3316 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3317 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3318 3319 ASSERT(lsoc->ill_lso_max > 0); 3320 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3321 3322 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3323 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3324 3325 /* 3326 * If LSO to be enabled, notify the STREAM header with larger 3327 * data block. 3328 */ 3329 if (!tcp->tcp_lso) 3330 tcp->tcp_maxpsz_multiplier = 0; 3331 3332 tcp->tcp_lso = B_TRUE; 3333 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3334 } else { /* LSO capability is not usable any more. */ 3335 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3336 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3337 3338 /* 3339 * If LSO to be disabled, notify the STREAM header with smaller 3340 * data block. And need to restore fragsize to PMTU. 3341 */ 3342 if (tcp->tcp_lso) { 3343 tcp->tcp_maxpsz_multiplier = 3344 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3345 ixa->ixa_fragsize = ixa->ixa_pmtu; 3346 tcp->tcp_lso = B_FALSE; 3347 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3348 } 3349 } 3350 3351 (void) tcp_maxpsz_set(tcp, B_TRUE); 3352 } 3353 3354 /* 3355 * Update the TCP connection according to change of ZEROCOPY capability. 3356 */ 3357 static void 3358 tcp_update_zcopy(tcp_t *tcp) 3359 { 3360 conn_t *connp = tcp->tcp_connp; 3361 tcp_stack_t *tcps = tcp->tcp_tcps; 3362 3363 if (tcp->tcp_snd_zcopy_on) { 3364 tcp->tcp_snd_zcopy_on = B_FALSE; 3365 if (!TCP_IS_DETACHED(tcp)) { 3366 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3367 ZCVMUNSAFE); 3368 TCP_STAT(tcps, tcp_zcopy_off); 3369 } 3370 } else { 3371 tcp->tcp_snd_zcopy_on = B_TRUE; 3372 if (!TCP_IS_DETACHED(tcp)) { 3373 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3374 ZCVMSAFE); 3375 TCP_STAT(tcps, tcp_zcopy_on); 3376 } 3377 } 3378 } 3379 3380 /* 3381 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3382 * so it's safe to update the TCP connection. 3383 */ 3384 /* ARGSUSED1 */ 3385 static void 3386 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3387 ixa_notify_arg_t narg) 3388 { 3389 tcp_t *tcp = (tcp_t *)arg; 3390 conn_t *connp = tcp->tcp_connp; 3391 3392 switch (ntype) { 3393 case IXAN_LSO: 3394 tcp_update_lso(tcp, connp->conn_ixa); 3395 break; 3396 case IXAN_PMTU: 3397 tcp_update_pmtu(tcp, B_FALSE); 3398 break; 3399 case IXAN_ZCOPY: 3400 tcp_update_zcopy(tcp); 3401 break; 3402 default: 3403 break; 3404 } 3405 } 3406 3407 /* 3408 * The TCP write service routine should never be called... 3409 */ 3410 /* ARGSUSED */ 3411 static int 3412 tcp_wsrv(queue_t *q) 3413 { 3414 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3415 3416 TCP_STAT(tcps, tcp_wsrv_called); 3417 return (0); 3418 } 3419 3420 /* 3421 * Hash list lookup routine for tcp_t structures. 3422 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3423 */ 3424 tcp_t * 3425 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3426 { 3427 tf_t *tf; 3428 tcp_t *tcp; 3429 3430 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3431 mutex_enter(&tf->tf_lock); 3432 for (tcp = tf->tf_tcp; tcp != NULL; 3433 tcp = tcp->tcp_acceptor_hash) { 3434 if (tcp->tcp_acceptor_id == id) { 3435 CONN_INC_REF(tcp->tcp_connp); 3436 mutex_exit(&tf->tf_lock); 3437 return (tcp); 3438 } 3439 } 3440 mutex_exit(&tf->tf_lock); 3441 return (NULL); 3442 } 3443 3444 /* 3445 * Hash list insertion routine for tcp_t structures. 3446 */ 3447 void 3448 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3449 { 3450 tf_t *tf; 3451 tcp_t **tcpp; 3452 tcp_t *tcpnext; 3453 tcp_stack_t *tcps = tcp->tcp_tcps; 3454 3455 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3456 3457 if (tcp->tcp_ptpahn != NULL) 3458 tcp_acceptor_hash_remove(tcp); 3459 tcpp = &tf->tf_tcp; 3460 mutex_enter(&tf->tf_lock); 3461 tcpnext = tcpp[0]; 3462 if (tcpnext) 3463 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3464 tcp->tcp_acceptor_hash = tcpnext; 3465 tcp->tcp_ptpahn = tcpp; 3466 tcpp[0] = tcp; 3467 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3468 mutex_exit(&tf->tf_lock); 3469 } 3470 3471 /* 3472 * Hash list removal routine for tcp_t structures. 3473 */ 3474 void 3475 tcp_acceptor_hash_remove(tcp_t *tcp) 3476 { 3477 tcp_t *tcpnext; 3478 kmutex_t *lockp; 3479 3480 /* 3481 * Extract the lock pointer in case there are concurrent 3482 * hash_remove's for this instance. 3483 */ 3484 lockp = tcp->tcp_acceptor_lockp; 3485 3486 if (tcp->tcp_ptpahn == NULL) 3487 return; 3488 3489 ASSERT(lockp != NULL); 3490 mutex_enter(lockp); 3491 if (tcp->tcp_ptpahn) { 3492 tcpnext = tcp->tcp_acceptor_hash; 3493 if (tcpnext) { 3494 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3495 tcp->tcp_acceptor_hash = NULL; 3496 } 3497 *tcp->tcp_ptpahn = tcpnext; 3498 tcp->tcp_ptpahn = NULL; 3499 } 3500 mutex_exit(lockp); 3501 tcp->tcp_acceptor_lockp = NULL; 3502 } 3503 3504 /* 3505 * Type three generator adapted from the random() function in 4.4 BSD: 3506 */ 3507 3508 /* 3509 * Copyright (c) 1983, 1993 3510 * The Regents of the University of California. All rights reserved. 3511 * 3512 * Redistribution and use in source and binary forms, with or without 3513 * modification, are permitted provided that the following conditions 3514 * are met: 3515 * 1. Redistributions of source code must retain the above copyright 3516 * notice, this list of conditions and the following disclaimer. 3517 * 2. Redistributions in binary form must reproduce the above copyright 3518 * notice, this list of conditions and the following disclaimer in the 3519 * documentation and/or other materials provided with the distribution. 3520 * 3. All advertising materials mentioning features or use of this software 3521 * must display the following acknowledgement: 3522 * This product includes software developed by the University of 3523 * California, Berkeley and its contributors. 3524 * 4. Neither the name of the University nor the names of its contributors 3525 * may be used to endorse or promote products derived from this software 3526 * without specific prior written permission. 3527 * 3528 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3529 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3530 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3531 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3532 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3533 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3534 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3535 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3536 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3537 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3538 * SUCH DAMAGE. 3539 */ 3540 3541 /* Type 3 -- x**31 + x**3 + 1 */ 3542 #define DEG_3 31 3543 #define SEP_3 3 3544 3545 3546 /* Protected by tcp_random_lock */ 3547 static int tcp_randtbl[DEG_3 + 1]; 3548 3549 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3550 static int *tcp_random_rptr = &tcp_randtbl[1]; 3551 3552 static int *tcp_random_state = &tcp_randtbl[1]; 3553 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3554 3555 kmutex_t tcp_random_lock; 3556 3557 void 3558 tcp_random_init(void) 3559 { 3560 int i; 3561 hrtime_t hrt; 3562 time_t wallclock; 3563 uint64_t result; 3564 3565 /* 3566 * Use high-res timer and current time for seed. Gethrtime() returns 3567 * a longlong, which may contain resolution down to nanoseconds. 3568 * The current time will either be a 32-bit or a 64-bit quantity. 3569 * XOR the two together in a 64-bit result variable. 3570 * Convert the result to a 32-bit value by multiplying the high-order 3571 * 32-bits by the low-order 32-bits. 3572 */ 3573 3574 hrt = gethrtime(); 3575 (void) drv_getparm(TIME, &wallclock); 3576 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3577 mutex_enter(&tcp_random_lock); 3578 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3579 (result & 0xffffffff); 3580 3581 for (i = 1; i < DEG_3; i++) 3582 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3583 + 12345; 3584 tcp_random_fptr = &tcp_random_state[SEP_3]; 3585 tcp_random_rptr = &tcp_random_state[0]; 3586 mutex_exit(&tcp_random_lock); 3587 for (i = 0; i < 10 * DEG_3; i++) 3588 (void) tcp_random(); 3589 } 3590 3591 /* 3592 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3593 * This range is selected to be approximately centered on TCP_ISS / 2, 3594 * and easy to compute. We get this value by generating a 32-bit random 3595 * number, selecting out the high-order 17 bits, and then adding one so 3596 * that we never return zero. 3597 */ 3598 int 3599 tcp_random(void) 3600 { 3601 int i; 3602 3603 mutex_enter(&tcp_random_lock); 3604 *tcp_random_fptr += *tcp_random_rptr; 3605 3606 /* 3607 * The high-order bits are more random than the low-order bits, 3608 * so we select out the high-order 17 bits and add one so that 3609 * we never return zero. 3610 */ 3611 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3612 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3613 tcp_random_fptr = tcp_random_state; 3614 ++tcp_random_rptr; 3615 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3616 tcp_random_rptr = tcp_random_state; 3617 3618 mutex_exit(&tcp_random_lock); 3619 return (i); 3620 } 3621 3622 /* 3623 * Split this function out so that if the secret changes, I'm okay. 3624 * 3625 * Initialize the tcp_iss_cookie and tcp_iss_key. 3626 */ 3627 3628 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3629 3630 void 3631 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3632 { 3633 struct { 3634 int32_t current_time; 3635 uint32_t randnum; 3636 uint16_t pad; 3637 uint8_t ether[6]; 3638 uint8_t passwd[PASSWD_SIZE]; 3639 } tcp_iss_cookie; 3640 time_t t; 3641 3642 /* 3643 * Start with the current absolute time. 3644 */ 3645 (void) drv_getparm(TIME, &t); 3646 tcp_iss_cookie.current_time = t; 3647 3648 /* 3649 * XXX - Need a more random number per RFC 1750, not this crap. 3650 * OTOH, if what follows is pretty random, then I'm in better shape. 3651 */ 3652 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3653 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3654 3655 /* 3656 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3657 * as a good template. 3658 */ 3659 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3660 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3661 3662 /* 3663 * The pass-phrase. Normally this is supplied by user-called NDD. 3664 */ 3665 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3666 3667 /* 3668 * See 4010593 if this section becomes a problem again, 3669 * but the local ethernet address is useful here. 3670 */ 3671 (void) localetheraddr(NULL, 3672 (struct ether_addr *)&tcp_iss_cookie.ether); 3673 3674 /* 3675 * Hash 'em all together. The MD5Final is called per-connection. 3676 */ 3677 mutex_enter(&tcps->tcps_iss_key_lock); 3678 MD5Init(&tcps->tcps_iss_key); 3679 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3680 sizeof (tcp_iss_cookie)); 3681 mutex_exit(&tcps->tcps_iss_key_lock); 3682 } 3683 3684 /* 3685 * Called by IP when IP is loaded into the kernel 3686 */ 3687 void 3688 tcp_ddi_g_init(void) 3689 { 3690 tcp_timercache = kmem_cache_create("tcp_timercache", 3691 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3692 NULL, NULL, NULL, NULL, NULL, 0); 3693 3694 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3695 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3696 3697 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3698 3699 /* Initialize the random number generator */ 3700 tcp_random_init(); 3701 3702 /* A single callback independently of how many netstacks we have */ 3703 ip_squeue_init(tcp_squeue_add); 3704 3705 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3706 3707 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3708 3709 /* 3710 * We want to be informed each time a stack is created or 3711 * destroyed in the kernel, so we can maintain the 3712 * set of tcp_stack_t's. 3713 */ 3714 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3715 } 3716 3717 3718 #define INET_NAME "ip" 3719 3720 /* 3721 * Initialize the TCP stack instance. 3722 */ 3723 static void * 3724 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3725 { 3726 tcp_stack_t *tcps; 3727 int i; 3728 int error = 0; 3729 major_t major; 3730 size_t arrsz; 3731 3732 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3733 tcps->tcps_netstack = ns; 3734 3735 /* Initialize locks */ 3736 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3737 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3738 3739 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3740 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3741 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3742 tcps->tcps_min_anonpriv_port = 512; 3743 3744 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3745 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3746 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3747 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3748 3749 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3750 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3751 MUTEX_DEFAULT, NULL); 3752 } 3753 3754 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3755 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3756 MUTEX_DEFAULT, NULL); 3757 } 3758 3759 /* TCP's IPsec code calls the packet dropper. */ 3760 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3761 3762 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3763 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3764 KM_SLEEP); 3765 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3766 3767 /* 3768 * Note: To really walk the device tree you need the devinfo 3769 * pointer to your device which is only available after probe/attach. 3770 * The following is safe only because it uses ddi_root_node() 3771 */ 3772 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3773 tcp_opt_obj.odb_opt_arr_cnt); 3774 3775 /* 3776 * Initialize RFC 1948 secret values. This will probably be reset once 3777 * by the boot scripts. 3778 * 3779 * Use NULL name, as the name is caught by the new lockstats. 3780 * 3781 * Initialize with some random, non-guessable string, like the global 3782 * T_INFO_ACK. 3783 */ 3784 3785 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3786 sizeof (tcp_g_t_info_ack), tcps); 3787 3788 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3789 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3790 3791 major = mod_name_to_major(INET_NAME); 3792 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3793 ASSERT(error == 0); 3794 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3795 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3796 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL); 3797 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL); 3798 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3799 3800 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3801 tcps->tcps_reclaim = B_FALSE; 3802 tcps->tcps_reclaim_tid = 0; 3803 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3804 3805 /* 3806 * ncpus is the current number of CPUs, which can be bigger than 3807 * boot_ncpus. But we don't want to use ncpus to allocate all the 3808 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3809 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3810 * there are many CPUs as we will be adding them 1 by 1. 3811 * 3812 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3813 * are not freed until the stack is going away. So there is no need 3814 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3815 */ 3816 mutex_enter(&cpu_lock); 3817 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3818 mutex_exit(&cpu_lock); 3819 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3820 KM_SLEEP); 3821 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3822 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3823 KM_SLEEP); 3824 } 3825 3826 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3827 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3828 offsetof(tcp_listener_t, tl_link)); 3829 3830 tcps->tcps_default_cc_algo = cc_load_algo(CC_DEFAULT_ALGO_NAME); 3831 VERIFY3P(tcps->tcps_default_cc_algo, !=, NULL); 3832 3833 return (tcps); 3834 } 3835 3836 /* 3837 * Called when the IP module is about to be unloaded. 3838 */ 3839 void 3840 tcp_ddi_g_destroy(void) 3841 { 3842 tcp_g_kstat_fini(tcp_g_kstat); 3843 tcp_g_kstat = NULL; 3844 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3845 3846 mutex_destroy(&tcp_random_lock); 3847 3848 kmem_cache_destroy(tcp_timercache); 3849 kmem_cache_destroy(tcp_notsack_blk_cache); 3850 3851 netstack_unregister(NS_TCP); 3852 } 3853 3854 /* 3855 * Free the TCP stack instance. 3856 */ 3857 static void 3858 tcp_stack_fini(netstackid_t stackid, void *arg) 3859 { 3860 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3861 int i; 3862 3863 freeb(tcps->tcps_ixa_cleanup_mp); 3864 tcps->tcps_ixa_cleanup_mp = NULL; 3865 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv); 3866 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv); 3867 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3868 3869 /* 3870 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3871 * the timer. 3872 */ 3873 mutex_enter(&tcps->tcps_reclaim_lock); 3874 tcps->tcps_reclaim = B_FALSE; 3875 mutex_exit(&tcps->tcps_reclaim_lock); 3876 if (tcps->tcps_reclaim_tid != 0) 3877 (void) untimeout(tcps->tcps_reclaim_tid); 3878 mutex_destroy(&tcps->tcps_reclaim_lock); 3879 3880 tcp_listener_conf_cleanup(tcps); 3881 3882 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3883 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3884 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3885 3886 kmem_free(tcps->tcps_propinfo_tbl, 3887 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3888 tcps->tcps_propinfo_tbl = NULL; 3889 3890 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3891 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3892 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3893 } 3894 3895 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3896 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3897 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3898 } 3899 3900 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3901 tcps->tcps_bind_fanout = NULL; 3902 3903 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3904 TCP_ACCEPTOR_FANOUT_SIZE); 3905 tcps->tcps_acceptor_fanout = NULL; 3906 3907 mutex_destroy(&tcps->tcps_iss_key_lock); 3908 mutex_destroy(&tcps->tcps_epriv_port_lock); 3909 3910 ip_drop_unregister(&tcps->tcps_dropper); 3911 3912 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3913 tcps->tcps_kstat = NULL; 3914 3915 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3916 tcps->tcps_mibkp = NULL; 3917 3918 ldi_ident_release(tcps->tcps_ldi_ident); 3919 kmem_free(tcps, sizeof (*tcps)); 3920 } 3921 3922 /* 3923 * Generate ISS, taking into account NDD changes may happen halfway through. 3924 * (If the iss is not zero, set it.) 3925 */ 3926 3927 static void 3928 tcp_iss_init(tcp_t *tcp) 3929 { 3930 MD5_CTX context; 3931 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3932 uint32_t answer[4]; 3933 tcp_stack_t *tcps = tcp->tcp_tcps; 3934 conn_t *connp = tcp->tcp_connp; 3935 3936 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1); 3937 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3938 switch (tcps->tcps_strong_iss) { 3939 case 2: 3940 mutex_enter(&tcps->tcps_iss_key_lock); 3941 context = tcps->tcps_iss_key; 3942 mutex_exit(&tcps->tcps_iss_key_lock); 3943 arg.ports = connp->conn_ports; 3944 arg.src = connp->conn_laddr_v6; 3945 arg.dst = connp->conn_faddr_v6; 3946 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3947 MD5Final((uchar_t *)answer, &context); 3948 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3949 /* 3950 * Now that we've hashed into a unique per-connection sequence 3951 * space, add a random increment per strong_iss == 1. So I 3952 * guess we'll have to... 3953 */ 3954 /* FALLTHRU */ 3955 case 1: 3956 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3957 break; 3958 default: 3959 tcp->tcp_iss += (uint32_t)gethrestime_sec() * 3960 tcps->tcps_iss_incr; 3961 break; 3962 } 3963 tcp->tcp_valid_bits = TCP_ISS_VALID; 3964 tcp->tcp_fss = tcp->tcp_iss - 1; 3965 tcp->tcp_suna = tcp->tcp_iss; 3966 tcp->tcp_snxt = tcp->tcp_iss + 1; 3967 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3968 tcp->tcp_csuna = tcp->tcp_snxt; 3969 } 3970 3971 /* 3972 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3973 * on the specified backing STREAMS q. Note, the caller may make the 3974 * decision to call based on the tcp_t.tcp_flow_stopped value which 3975 * when check outside the q's lock is only an advisory check ... 3976 */ 3977 void 3978 tcp_setqfull(tcp_t *tcp) 3979 { 3980 tcp_stack_t *tcps = tcp->tcp_tcps; 3981 conn_t *connp = tcp->tcp_connp; 3982 3983 if (tcp->tcp_closed) 3984 return; 3985 3986 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3987 if (tcp->tcp_flow_stopped) 3988 TCP_STAT(tcps, tcp_flwctl_on); 3989 } 3990 3991 void 3992 tcp_clrqfull(tcp_t *tcp) 3993 { 3994 conn_t *connp = tcp->tcp_connp; 3995 3996 if (tcp->tcp_closed) 3997 return; 3998 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 3999 } 4000 4001 static int 4002 tcp_squeue_switch(int val) 4003 { 4004 int rval = SQ_FILL; 4005 4006 switch (val) { 4007 case 1: 4008 rval = SQ_NODRAIN; 4009 break; 4010 case 2: 4011 rval = SQ_PROCESS; 4012 break; 4013 default: 4014 break; 4015 } 4016 return (rval); 4017 } 4018 4019 /* 4020 * This is called once for each squeue - globally for all stack 4021 * instances. 4022 */ 4023 static void 4024 tcp_squeue_add(squeue_t *sqp) 4025 { 4026 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4027 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4028 4029 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4030 if (tcp_free_list_max_cnt == 0) { 4031 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4032 max_ncpus : boot_max_ncpus); 4033 4034 /* 4035 * Limit number of entries to 1% of availble memory / tcp_ncpus 4036 */ 4037 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4038 (tcp_ncpus * sizeof (tcp_t) * 100); 4039 } 4040 tcp_time_wait->tcp_free_list_cnt = 0; 4041 } 4042 /* 4043 * Return unix error is tli error is TSYSERR, otherwise return a negative 4044 * tli error. 4045 */ 4046 int 4047 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4048 boolean_t bind_to_req_port_only) 4049 { 4050 int error; 4051 tcp_t *tcp = connp->conn_tcp; 4052 4053 if (tcp->tcp_state >= TCPS_BOUND) { 4054 if (connp->conn_debug) { 4055 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4056 "tcp_bind: bad state, %d", tcp->tcp_state); 4057 } 4058 return (-TOUTSTATE); 4059 } 4060 4061 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4062 if (error != 0) 4063 return (error); 4064 4065 ASSERT(tcp->tcp_state == TCPS_BOUND); 4066 tcp->tcp_conn_req_max = 0; 4067 return (0); 4068 } 4069 4070 /* 4071 * If the return value from this function is positive, it's a UNIX error. 4072 * Otherwise, if it's negative, then the absolute value is a TLI error. 4073 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4074 */ 4075 int 4076 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4077 cred_t *cr, pid_t pid) 4078 { 4079 tcp_t *tcp = connp->conn_tcp; 4080 sin_t *sin = (sin_t *)sa; 4081 sin6_t *sin6 = (sin6_t *)sa; 4082 ipaddr_t *dstaddrp; 4083 in_port_t dstport; 4084 uint_t srcid; 4085 int error; 4086 uint32_t mss; 4087 mblk_t *syn_mp; 4088 tcp_stack_t *tcps = tcp->tcp_tcps; 4089 int32_t oldstate; 4090 ip_xmit_attr_t *ixa = connp->conn_ixa; 4091 4092 oldstate = tcp->tcp_state; 4093 4094 switch (len) { 4095 default: 4096 /* 4097 * Should never happen 4098 */ 4099 return (EINVAL); 4100 4101 case sizeof (sin_t): 4102 sin = (sin_t *)sa; 4103 if (sin->sin_port == 0) { 4104 return (-TBADADDR); 4105 } 4106 if (connp->conn_ipv6_v6only) { 4107 return (EAFNOSUPPORT); 4108 } 4109 break; 4110 4111 case sizeof (sin6_t): 4112 sin6 = (sin6_t *)sa; 4113 if (sin6->sin6_port == 0) { 4114 return (-TBADADDR); 4115 } 4116 break; 4117 } 4118 /* 4119 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4120 * make sure that the conn_ipversion is IPV4_VERSION. We 4121 * need to this before we call tcp_bindi() so that the port lookup 4122 * code will look for ports in the correct port space (IPv4 and 4123 * IPv6 have separate port spaces). 4124 */ 4125 if (connp->conn_family == AF_INET6 && 4126 connp->conn_ipversion == IPV6_VERSION && 4127 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4128 if (connp->conn_ipv6_v6only) 4129 return (EADDRNOTAVAIL); 4130 4131 connp->conn_ipversion = IPV4_VERSION; 4132 } 4133 4134 switch (tcp->tcp_state) { 4135 case TCPS_LISTEN: 4136 /* 4137 * Listening sockets are not allowed to issue connect(). 4138 */ 4139 if (IPCL_IS_NONSTR(connp)) 4140 return (EOPNOTSUPP); 4141 /* FALLTHRU */ 4142 case TCPS_IDLE: 4143 /* 4144 * We support quick connect, refer to comments in 4145 * tcp_connect_*() 4146 */ 4147 /* FALLTHRU */ 4148 case TCPS_BOUND: 4149 break; 4150 default: 4151 return (-TOUTSTATE); 4152 } 4153 4154 /* 4155 * We update our cred/cpid based on the caller of connect 4156 */ 4157 if (connp->conn_cred != cr) { 4158 crhold(cr); 4159 crfree(connp->conn_cred); 4160 connp->conn_cred = cr; 4161 } 4162 connp->conn_cpid = pid; 4163 4164 /* Cache things in the ixa without any refhold */ 4165 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4166 ixa->ixa_cred = cr; 4167 ixa->ixa_cpid = pid; 4168 if (is_system_labeled()) { 4169 /* We need to restart with a label based on the cred */ 4170 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4171 } 4172 4173 if (connp->conn_family == AF_INET6) { 4174 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4175 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4176 sin6->sin6_port, sin6->sin6_flowinfo, 4177 sin6->__sin6_src_id, sin6->sin6_scope_id); 4178 } else { 4179 /* 4180 * Destination adress is mapped IPv6 address. 4181 * Source bound address should be unspecified or 4182 * IPv6 mapped address as well. 4183 */ 4184 if (!IN6_IS_ADDR_UNSPECIFIED( 4185 &connp->conn_bound_addr_v6) && 4186 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4187 return (EADDRNOTAVAIL); 4188 } 4189 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4190 dstport = sin6->sin6_port; 4191 srcid = sin6->__sin6_src_id; 4192 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4193 srcid); 4194 } 4195 } else { 4196 dstaddrp = &sin->sin_addr.s_addr; 4197 dstport = sin->sin_port; 4198 srcid = 0; 4199 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4200 } 4201 4202 if (error != 0) 4203 goto connect_failed; 4204 4205 CL_INET_CONNECT(connp, B_TRUE, error); 4206 if (error != 0) 4207 goto connect_failed; 4208 4209 /* connect succeeded */ 4210 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4211 tcp->tcp_active_open = 1; 4212 4213 /* 4214 * tcp_set_destination() does not adjust for TCP/IP header length. 4215 */ 4216 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4217 4218 /* 4219 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4220 * to the nearest MSS. 4221 * 4222 * We do the round up here because we need to get the interface MTU 4223 * first before we can do the round up. 4224 */ 4225 tcp->tcp_rwnd = connp->conn_rcvbuf; 4226 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4227 tcps->tcps_recv_hiwat_minmss * mss); 4228 connp->conn_rcvbuf = tcp->tcp_rwnd; 4229 tcp_set_ws_value(tcp); 4230 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4231 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4232 tcp->tcp_snd_ws_ok = B_TRUE; 4233 4234 /* 4235 * Set tcp_snd_ts_ok to true 4236 * so that tcp_xmit_mp will 4237 * include the timestamp 4238 * option in the SYN segment. 4239 */ 4240 if (tcps->tcps_tstamp_always || 4241 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4242 tcp->tcp_snd_ts_ok = B_TRUE; 4243 } 4244 4245 /* 4246 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4247 * the SACK metric is set. So here we just check the per stack SACK 4248 * permitted param. 4249 */ 4250 if (tcps->tcps_sack_permitted == 2) { 4251 ASSERT(tcp->tcp_num_sack_blk == 0); 4252 ASSERT(tcp->tcp_notsack_list == NULL); 4253 tcp->tcp_snd_sack_ok = B_TRUE; 4254 } 4255 4256 /* 4257 * Should we use ECN? Note that the current 4258 * default value (SunOS 5.9) of tcp_ecn_permitted 4259 * is 1. The reason for doing this is that there 4260 * are equipments out there that will drop ECN 4261 * enabled IP packets. Setting it to 1 avoids 4262 * compatibility problems. 4263 */ 4264 if (tcps->tcps_ecn_permitted == 2) 4265 tcp->tcp_ecn_ok = B_TRUE; 4266 4267 /* Trace change from BOUND -> SYN_SENT here */ 4268 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4269 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4270 int32_t, TCPS_BOUND); 4271 4272 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4273 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4274 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4275 if (syn_mp != NULL) { 4276 /* 4277 * We must bump the generation before sending the syn 4278 * to ensure that we use the right generation in case 4279 * this thread issues a "connected" up call. 4280 */ 4281 SOCK_CONNID_BUMP(tcp->tcp_connid); 4282 /* 4283 * DTrace sending the first SYN as a 4284 * tcp:::connect-request event. 4285 */ 4286 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4287 ip_xmit_attr_t *, connp->conn_ixa, 4288 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4289 tcph_t *, 4290 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4291 tcp_send_data(tcp, syn_mp); 4292 } 4293 4294 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4295 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4296 return (0); 4297 4298 connect_failed: 4299 connp->conn_faddr_v6 = ipv6_all_zeros; 4300 connp->conn_fport = 0; 4301 tcp->tcp_state = oldstate; 4302 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4303 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4304 return (error); 4305 } 4306 4307 int 4308 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4309 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4310 { 4311 tcp_t *tcp = connp->conn_tcp; 4312 int error = 0; 4313 tcp_stack_t *tcps = tcp->tcp_tcps; 4314 int32_t oldstate; 4315 4316 /* All Solaris components should pass a cred for this operation. */ 4317 ASSERT(cr != NULL); 4318 4319 if (tcp->tcp_state >= TCPS_BOUND) { 4320 if ((tcp->tcp_state == TCPS_BOUND || 4321 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4322 /* 4323 * Handle listen() increasing backlog. 4324 * This is more "liberal" then what the TPI spec 4325 * requires but is needed to avoid a t_unbind 4326 * when handling listen() since the port number 4327 * might be "stolen" between the unbind and bind. 4328 */ 4329 goto do_listen; 4330 } 4331 if (connp->conn_debug) { 4332 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4333 "tcp_listen: bad state, %d", tcp->tcp_state); 4334 } 4335 return (-TOUTSTATE); 4336 } else { 4337 if (sa == NULL) { 4338 sin6_t addr; 4339 sin_t *sin; 4340 sin6_t *sin6; 4341 4342 ASSERT(IPCL_IS_NONSTR(connp)); 4343 /* Do an implicit bind: Request for a generic port. */ 4344 if (connp->conn_family == AF_INET) { 4345 len = sizeof (sin_t); 4346 sin = (sin_t *)&addr; 4347 *sin = sin_null; 4348 sin->sin_family = AF_INET; 4349 } else { 4350 ASSERT(connp->conn_family == AF_INET6); 4351 len = sizeof (sin6_t); 4352 sin6 = (sin6_t *)&addr; 4353 *sin6 = sin6_null; 4354 sin6->sin6_family = AF_INET6; 4355 } 4356 sa = (struct sockaddr *)&addr; 4357 } 4358 4359 error = tcp_bind_check(connp, sa, len, cr, 4360 bind_to_req_port_only); 4361 if (error) 4362 return (error); 4363 /* Fall through and do the fanout insertion */ 4364 } 4365 4366 do_listen: 4367 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4368 tcp->tcp_conn_req_max = backlog; 4369 if (tcp->tcp_conn_req_max) { 4370 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4371 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4372 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4373 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4374 /* 4375 * If this is a listener, do not reset the eager list 4376 * and other stuffs. Note that we don't check if the 4377 * existing eager list meets the new tcp_conn_req_max 4378 * requirement. 4379 */ 4380 if (tcp->tcp_state != TCPS_LISTEN) { 4381 tcp->tcp_state = TCPS_LISTEN; 4382 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4383 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4384 void, NULL, int32_t, TCPS_BOUND); 4385 /* Initialize the chain. Don't need the eager_lock */ 4386 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4387 tcp->tcp_eager_next_drop_q0 = tcp; 4388 tcp->tcp_eager_prev_drop_q0 = tcp; 4389 tcp->tcp_second_ctimer_threshold = 4390 tcps->tcps_ip_abort_linterval; 4391 } 4392 } 4393 4394 /* 4395 * We need to make sure that the conn_recv is set to a non-null 4396 * value before we insert the conn into the classifier table. 4397 * This is to avoid a race with an incoming packet which does an 4398 * ipcl_classify(). 4399 * We initially set it to tcp_input_listener_unbound to try to 4400 * pick a good squeue for the listener when the first SYN arrives. 4401 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4402 * first SYN. 4403 */ 4404 connp->conn_recv = tcp_input_listener_unbound; 4405 4406 /* Insert the listener in the classifier table */ 4407 error = ip_laddr_fanout_insert(connp); 4408 if (error != 0) { 4409 /* Undo the bind - release the port number */ 4410 oldstate = tcp->tcp_state; 4411 tcp->tcp_state = TCPS_IDLE; 4412 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4413 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4414 int32_t, oldstate); 4415 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4416 4417 connp->conn_laddr_v6 = ipv6_all_zeros; 4418 connp->conn_saddr_v6 = ipv6_all_zeros; 4419 connp->conn_ports = 0; 4420 4421 if (connp->conn_anon_port) { 4422 zone_t *zone; 4423 4424 zone = crgetzone(cr); 4425 connp->conn_anon_port = B_FALSE; 4426 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4427 connp->conn_proto, connp->conn_lport, B_FALSE); 4428 } 4429 connp->conn_mlp_type = mlptSingle; 4430 4431 tcp_bind_hash_remove(tcp); 4432 return (error); 4433 } else { 4434 /* 4435 * If there is a connection limit, allocate and initialize 4436 * the counter struct. Note that since listen can be called 4437 * multiple times, the struct may have been allready allocated. 4438 */ 4439 if (!list_is_empty(&tcps->tcps_listener_conf) && 4440 tcp->tcp_listen_cnt == NULL) { 4441 tcp_listen_cnt_t *tlc; 4442 uint32_t ratio; 4443 4444 ratio = tcp_find_listener_conf(tcps, 4445 ntohs(connp->conn_lport)); 4446 if (ratio != 0) { 4447 uint32_t mem_ratio, tot_buf; 4448 4449 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4450 KM_SLEEP); 4451 /* 4452 * Calculate the connection limit based on 4453 * the configured ratio and maxusers. Maxusers 4454 * are calculated based on memory size, 4455 * ~ 1 user per MB. Note that the conn_rcvbuf 4456 * and conn_sndbuf may change after a 4457 * connection is accepted. So what we have 4458 * is only an approximation. 4459 */ 4460 if ((tot_buf = connp->conn_rcvbuf + 4461 connp->conn_sndbuf) < MB) { 4462 mem_ratio = MB / tot_buf; 4463 tlc->tlc_max = maxusers / ratio * 4464 mem_ratio; 4465 } else { 4466 mem_ratio = tot_buf / MB; 4467 tlc->tlc_max = maxusers / ratio / 4468 mem_ratio; 4469 } 4470 /* At least we should allow two connections! */ 4471 if (tlc->tlc_max <= tcp_min_conn_listener) 4472 tlc->tlc_max = tcp_min_conn_listener; 4473 tlc->tlc_cnt = 1; 4474 tlc->tlc_drop = 0; 4475 tcp->tcp_listen_cnt = tlc; 4476 } 4477 } 4478 } 4479 return (error); 4480 } --- EOF ---