1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright (c) 1990 Mentat Inc.
  25  * Copyright (c) 2017 OmniTI Computer Consulting, Inc. All rights reserved.
  26  * Copyright (c) 2016 by Delphix. All rights reserved.
  27  * Copyright (c) 2019 Joyent, Inc. All rights reserved.
  28  */
  29 
  30 #include <sys/types.h>
  31 #include <sys/stream.h>
  32 #include <sys/dlpi.h>
  33 #include <sys/stropts.h>
  34 #include <sys/sysmacros.h>
  35 #include <sys/strsubr.h>
  36 #include <sys/strlog.h>
  37 #include <sys/strsun.h>
  38 #include <sys/zone.h>
  39 #define _SUN_TPI_VERSION 2
  40 #include <sys/tihdr.h>
  41 #include <sys/xti_inet.h>
  42 #include <sys/ddi.h>
  43 #include <sys/suntpi.h>
  44 #include <sys/cmn_err.h>
  45 #include <sys/debug.h>
  46 #include <sys/kobj.h>
  47 #include <sys/modctl.h>
  48 #include <sys/atomic.h>
  49 #include <sys/policy.h>
  50 #include <sys/priv.h>
  51 #include <sys/taskq.h>
  52 
  53 #include <sys/systm.h>
  54 #include <sys/param.h>
  55 #include <sys/kmem.h>
  56 #include <sys/sdt.h>
  57 #include <sys/socket.h>
  58 #include <sys/vtrace.h>
  59 #include <sys/isa_defs.h>
  60 #include <sys/mac.h>
  61 #include <net/if.h>
  62 #include <net/if_arp.h>
  63 #include <net/route.h>
  64 #include <sys/sockio.h>
  65 #include <netinet/in.h>
  66 #include <net/if_dl.h>
  67 
  68 #include <inet/common.h>
  69 #include <inet/mi.h>
  70 #include <inet/mib2.h>
  71 #include <inet/nd.h>
  72 #include <inet/arp.h>
  73 #include <inet/snmpcom.h>
  74 #include <inet/optcom.h>
  75 #include <inet/kstatcom.h>
  76 
  77 #include <netinet/igmp_var.h>
  78 #include <netinet/ip6.h>
  79 #include <netinet/icmp6.h>
  80 #include <netinet/sctp.h>
  81 
  82 #include <inet/ip.h>
  83 #include <inet/ip_impl.h>
  84 #include <inet/ip6.h>
  85 #include <inet/ip6_asp.h>
  86 #include <inet/tcp.h>
  87 #include <inet/tcp_impl.h>
  88 #include <inet/ip_multi.h>
  89 #include <inet/ip_if.h>
  90 #include <inet/ip_ire.h>
  91 #include <inet/ip_ftable.h>
  92 #include <inet/ip_rts.h>
  93 #include <inet/ip_ndp.h>
  94 #include <inet/ip_listutils.h>
  95 #include <netinet/igmp.h>
  96 #include <netinet/ip_mroute.h>
  97 #include <inet/ipp_common.h>
  98 #include <inet/cc.h>
  99 
 100 #include <net/pfkeyv2.h>
 101 #include <inet/sadb.h>
 102 #include <inet/ipsec_impl.h>
 103 #include <inet/iptun/iptun_impl.h>
 104 #include <inet/ipdrop.h>
 105 #include <inet/ip_netinfo.h>
 106 #include <inet/ilb_ip.h>
 107 
 108 #include <sys/ethernet.h>
 109 #include <net/if_types.h>
 110 #include <sys/cpuvar.h>
 111 
 112 #include <ipp/ipp.h>
 113 #include <ipp/ipp_impl.h>
 114 #include <ipp/ipgpc/ipgpc.h>
 115 
 116 #include <sys/pattr.h>
 117 #include <inet/ipclassifier.h>
 118 #include <inet/sctp_ip.h>
 119 #include <inet/sctp/sctp_impl.h>
 120 #include <inet/udp_impl.h>
 121 #include <inet/rawip_impl.h>
 122 #include <inet/rts_impl.h>
 123 
 124 #include <sys/tsol/label.h>
 125 #include <sys/tsol/tnet.h>
 126 
 127 #include <sys/squeue_impl.h>
 128 #include <inet/ip_arp.h>
 129 
 130 #include <sys/clock_impl.h>       /* For LBOLT_FASTPATH{,64} */
 131 
 132 /*
 133  * Values for squeue switch:
 134  * IP_SQUEUE_ENTER_NODRAIN: SQ_NODRAIN
 135  * IP_SQUEUE_ENTER: SQ_PROCESS
 136  * IP_SQUEUE_FILL: SQ_FILL
 137  */
 138 int ip_squeue_enter = IP_SQUEUE_ENTER;  /* Setable in /etc/system */
 139 
 140 int ip_squeue_flag;
 141 
 142 /*
 143  * Setable in /etc/system
 144  */
 145 int ip_poll_normal_ms = 100;
 146 int ip_poll_normal_ticks = 0;
 147 int ip_modclose_ackwait_ms = 3000;
 148 
 149 /*
 150  * It would be nice to have these present only in DEBUG systems, but the
 151  * current design of the global symbol checking logic requires them to be
 152  * unconditionally present.
 153  */
 154 uint_t ip_thread_data;                  /* TSD key for debug support */
 155 krwlock_t ip_thread_rwlock;
 156 list_t  ip_thread_list;
 157 
 158 /*
 159  * Structure to represent a linked list of msgblks. Used by ip_snmp_ functions.
 160  */
 161 
 162 struct listptr_s {
 163         mblk_t  *lp_head;       /* pointer to the head of the list */
 164         mblk_t  *lp_tail;       /* pointer to the tail of the list */
 165 };
 166 
 167 typedef struct listptr_s listptr_t;
 168 
 169 /*
 170  * This is used by ip_snmp_get_mib2_ip_route_media and
 171  * ip_snmp_get_mib2_ip6_route_media to carry the lists of return data.
 172  */
 173 typedef struct iproutedata_s {
 174         uint_t          ird_idx;
 175         uint_t          ird_flags;      /* see below */
 176         listptr_t       ird_route;      /* ipRouteEntryTable */
 177         listptr_t       ird_netmedia;   /* ipNetToMediaEntryTable */
 178         listptr_t       ird_attrs;      /* ipRouteAttributeTable */
 179 } iproutedata_t;
 180 
 181 /* Include ire_testhidden and IRE_IF_CLONE routes */
 182 #define IRD_REPORT_ALL  0x01
 183 
 184 /*
 185  * Cluster specific hooks. These should be NULL when booted as a non-cluster
 186  */
 187 
 188 /*
 189  * Hook functions to enable cluster networking
 190  * On non-clustered systems these vectors must always be NULL.
 191  *
 192  * Hook function to Check ip specified ip address is a shared ip address
 193  * in the cluster
 194  *
 195  */
 196 int (*cl_inet_isclusterwide)(netstackid_t stack_id, uint8_t protocol,
 197     sa_family_t addr_family, uint8_t *laddrp, void *args) = NULL;
 198 
 199 /*
 200  * Hook function to generate cluster wide ip fragment identifier
 201  */
 202 uint32_t (*cl_inet_ipident)(netstackid_t stack_id, uint8_t protocol,
 203     sa_family_t addr_family, uint8_t *laddrp, uint8_t *faddrp,
 204     void *args) = NULL;
 205 
 206 /*
 207  * Hook function to generate cluster wide SPI.
 208  */
 209 void (*cl_inet_getspi)(netstackid_t, uint8_t, uint8_t *, size_t,
 210     void *) = NULL;
 211 
 212 /*
 213  * Hook function to verify if the SPI is already utlized.
 214  */
 215 
 216 int (*cl_inet_checkspi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 217 
 218 /*
 219  * Hook function to delete the SPI from the cluster wide repository.
 220  */
 221 
 222 void (*cl_inet_deletespi)(netstackid_t, uint8_t, uint32_t, void *) = NULL;
 223 
 224 /*
 225  * Hook function to inform the cluster when packet received on an IDLE SA
 226  */
 227 
 228 void (*cl_inet_idlesa)(netstackid_t, uint8_t, uint32_t, sa_family_t,
 229     in6_addr_t, in6_addr_t, void *) = NULL;
 230 
 231 /*
 232  * Synchronization notes:
 233  *
 234  * IP is a fully D_MP STREAMS module/driver. Thus it does not depend on any
 235  * MT level protection given by STREAMS. IP uses a combination of its own
 236  * internal serialization mechanism and standard Solaris locking techniques.
 237  * The internal serialization is per phyint.  This is used to serialize
 238  * plumbing operations, IPMP operations, most set ioctls, etc.
 239  *
 240  * Plumbing is a long sequence of operations involving message
 241  * exchanges between IP, ARP and device drivers. Many set ioctls are typically
 242  * involved in plumbing operations. A natural model is to serialize these
 243  * ioctls one per ill. For example plumbing of hme0 and qfe0 can go on in
 244  * parallel without any interference. But various set ioctls on hme0 are best
 245  * serialized, along with IPMP operations and processing of DLPI control
 246  * messages received from drivers on a per phyint basis. This serialization is
 247  * provided by the ipsq_t and primitives operating on this. Details can
 248  * be found in ip_if.c above the core primitives operating on ipsq_t.
 249  *
 250  * Lookups of an ipif or ill by a thread return a refheld ipif / ill.
 251  * Simiarly lookup of an ire by a thread also returns a refheld ire.
 252  * In addition ipif's and ill's referenced by the ire are also indirectly
 253  * refheld. Thus no ipif or ill can vanish as long as an ipif is refheld
 254  * directly or indirectly. For example an SIOCSLIFADDR ioctl that changes the
 255  * address of an ipif has to go through the ipsq_t. This ensures that only
 256  * one such exclusive operation proceeds at any time on the ipif. It then
 257  * waits for all refcnts
 258  * associated with this ipif to come down to zero. The address is changed
 259  * only after the ipif has been quiesced. Then the ipif is brought up again.
 260  * More details are described above the comment in ip_sioctl_flags.
 261  *
 262  * Packet processing is based mostly on IREs and are fully multi-threaded
 263  * using standard Solaris MT techniques.
 264  *
 265  * There are explicit locks in IP to handle:
 266  * - The ip_g_head list maintained by mi_open_link() and friends.
 267  *
 268  * - The reassembly data structures (one lock per hash bucket)
 269  *
 270  * - conn_lock is meant to protect conn_t fields. The fields actually
 271  *   protected by conn_lock are documented in the conn_t definition.
 272  *
 273  * - ire_lock to protect some of the fields of the ire, IRE tables
 274  *   (one lock per hash bucket). Refer to ip_ire.c for details.
 275  *
 276  * - ndp_g_lock and ncec_lock for protecting NCEs.
 277  *
 278  * - ill_lock protects fields of the ill and ipif. Details in ip.h
 279  *
 280  * - ill_g_lock: This is a global reader/writer lock. Protects the following
 281  *      * The AVL tree based global multi list of all ills.
 282  *      * The linked list of all ipifs of an ill
 283  *      * The <ipsq-xop> mapping
 284  *      * <ill-phyint> association
 285  *   Insertion/deletion of an ill in the system, insertion/deletion of an ipif
 286  *   into an ill, changing the <ipsq-xop> mapping of an ill, changing the
 287  *   <ill-phyint> assoc of an ill will all have to hold the ill_g_lock as
 288  *   writer for the actual duration of the insertion/deletion/change.
 289  *
 290  * - ill_lock:  This is a per ill mutex.
 291  *   It protects some members of the ill_t struct; see ip.h for details.
 292  *   It also protects the <ill-phyint> assoc.
 293  *   It also protects the list of ipifs hanging off the ill.
 294  *
 295  * - ipsq_lock: This is a per ipsq_t mutex lock.
 296  *   This protects some members of the ipsq_t struct; see ip.h for details.
 297  *   It also protects the <ipsq-ipxop> mapping
 298  *
 299  * - ipx_lock: This is a per ipxop_t mutex lock.
 300  *   This protects some members of the ipxop_t struct; see ip.h for details.
 301  *
 302  * - phyint_lock: This is a per phyint mutex lock. Protects just the
 303  *   phyint_flags
 304  *
 305  * - ip_addr_avail_lock: This is used to ensure the uniqueness of IP addresses.
 306  *   This lock is held in ipif_up_done and the ipif is marked IPIF_UP and the
 307  *   uniqueness check also done atomically.
 308  *
 309  * - ill_g_usesrc_lock: This readers/writer lock protects the usesrc
 310  *   group list linked by ill_usesrc_grp_next. It also protects the
 311  *   ill_usesrc_ifindex field. It is taken as a writer when a member of the
 312  *   group is being added or deleted.  This lock is taken as a reader when
 313  *   walking the list/group(eg: to get the number of members in a usesrc group).
 314  *   Note, it is only necessary to take this lock if the ill_usesrc_grp_next
 315  *   field is changing state i.e from NULL to non-NULL or vice-versa. For
 316  *   example, it is not necessary to take this lock in the initial portion
 317  *   of ip_sioctl_slifusesrc or at all in ip_sioctl_flags since these
 318  *   operations are executed exclusively and that ensures that the "usesrc
 319  *   group state" cannot change. The "usesrc group state" change can happen
 320  *   only in the latter part of ip_sioctl_slifusesrc and in ill_delete.
 321  *
 322  * Changing <ill-phyint>, <ipsq-xop> assocications:
 323  *
 324  * To change the <ill-phyint> association, the ill_g_lock must be held
 325  * as writer, and the ill_locks of both the v4 and v6 instance of the ill
 326  * must be held.
 327  *
 328  * To change the <ipsq-xop> association, the ill_g_lock must be held as
 329  * writer, the ipsq_lock must be held, and one must be writer on the ipsq.
 330  * This is only done when ills are added or removed from IPMP groups.
 331  *
 332  * To add or delete an ipif from the list of ipifs hanging off the ill,
 333  * ill_g_lock (writer) and ill_lock must be held and the thread must be
 334  * a writer on the associated ipsq.
 335  *
 336  * To add or delete an ill to the system, the ill_g_lock must be held as
 337  * writer and the thread must be a writer on the associated ipsq.
 338  *
 339  * To add or delete an ilm to an ill, the ill_lock must be held and the thread
 340  * must be a writer on the associated ipsq.
 341  *
 342  * Lock hierarchy
 343  *
 344  * Some lock hierarchy scenarios are listed below.
 345  *
 346  * ill_g_lock -> conn_lock -> ill_lock -> ipsq_lock -> ipx_lock
 347  * ill_g_lock -> ill_lock(s) -> phyint_lock
 348  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock
 349  * ill_g_lock -> ip_addr_avail_lock
 350  * conn_lock -> irb_lock -> ill_lock -> ire_lock
 351  * ill_g_lock -> ip_g_nd_lock
 352  * ill_g_lock -> ips_ipmp_lock -> ill_lock -> nce_lock
 353  * ill_g_lock -> ndp_g_lock -> ill_lock -> ncec_lock -> nce_lock
 354  * arl_lock -> ill_lock
 355  * ips_ire_dep_lock -> irb_lock
 356  *
 357  * When more than 1 ill lock is needed to be held, all ill lock addresses
 358  * are sorted on address and locked starting from highest addressed lock
 359  * downward.
 360  *
 361  * Multicast scenarios
 362  * ips_ill_g_lock -> ill_mcast_lock
 363  * conn_ilg_lock -> ips_ill_g_lock -> ill_lock
 364  * ill_mcast_serializer -> ill_mcast_lock -> ips_ipmp_lock -> ill_lock
 365  * ill_mcast_serializer -> ill_mcast_lock -> connf_lock -> conn_lock
 366  * ill_mcast_serializer -> ill_mcast_lock -> conn_ilg_lock
 367  * ill_mcast_serializer -> ill_mcast_lock -> ips_igmp_timer_lock
 368  *
 369  * IPsec scenarios
 370  *
 371  * ipsa_lock -> ill_g_lock -> ill_lock
 372  * ill_g_usesrc_lock -> ill_g_lock -> ill_lock
 373  *
 374  * Trusted Solaris scenarios
 375  *
 376  * igsa_lock -> gcgrp_rwlock -> gcgrp_lock
 377  * igsa_lock -> gcdb_lock
 378  * gcgrp_rwlock -> ire_lock
 379  * gcgrp_rwlock -> gcdb_lock
 380  *
 381  * squeue(sq_lock), flow related (ft_lock, fe_lock) locking
 382  *
 383  * cpu_lock --> ill_lock --> sqset_lock --> sq_lock
 384  * sq_lock -> conn_lock -> QLOCK(q)
 385  * ill_lock -> ft_lock -> fe_lock
 386  *
 387  * Routing/forwarding table locking notes:
 388  *
 389  * Lock acquisition order: Radix tree lock, irb_lock.
 390  * Requirements:
 391  * i.  Walker must not hold any locks during the walker callback.
 392  * ii  Walker must not see a truncated tree during the walk because of any node
 393  *     deletion.
 394  * iii Existing code assumes ire_bucket is valid if it is non-null and is used
 395  *     in many places in the code to walk the irb list. Thus even if all the
 396  *     ires in a bucket have been deleted, we still can't free the radix node
 397  *     until the ires have actually been inactive'd (freed).
 398  *
 399  * Tree traversal - Need to hold the global tree lock in read mode.
 400  * Before dropping the global tree lock, need to either increment the ire_refcnt
 401  * to ensure that the radix node can't be deleted.
 402  *
 403  * Tree add - Need to hold the global tree lock in write mode to add a
 404  * radix node. To prevent the node from being deleted, increment the
 405  * irb_refcnt, after the node is added to the tree. The ire itself is
 406  * added later while holding the irb_lock, but not the tree lock.
 407  *
 408  * Tree delete - Need to hold the global tree lock and irb_lock in write mode.
 409  * All associated ires must be inactive (i.e. freed), and irb_refcnt
 410  * must be zero.
 411  *
 412  * Walker - Increment irb_refcnt before calling the walker callback. Hold the
 413  * global tree lock (read mode) for traversal.
 414  *
 415  * IRE dependencies - In some cases we hold ips_ire_dep_lock across ire_refrele
 416  * hence we will acquire irb_lock while holding ips_ire_dep_lock.
 417  *
 418  * IPsec notes :
 419  *
 420  * IP interacts with the IPsec code (AH/ESP) by storing IPsec attributes
 421  * in the ip_xmit_attr_t ip_recv_attr_t. For outbound datagrams, the
 422  * ip_xmit_attr_t has the
 423  * information used by the IPsec code for applying the right level of
 424  * protection. The information initialized by IP in the ip_xmit_attr_t
 425  * is determined by the per-socket policy or global policy in the system.
 426  * For inbound datagrams, the ip_recv_attr_t
 427  * starts out with nothing in it. It gets filled
 428  * with the right information if it goes through the AH/ESP code, which
 429  * happens if the incoming packet is secure. The information initialized
 430  * by AH/ESP, is later used by IP (during fanouts to ULP) to see whether
 431  * the policy requirements needed by per-socket policy or global policy
 432  * is met or not.
 433  *
 434  * For fully connected sockets i.e dst, src [addr, port] is known,
 435  * conn_policy_cached is set indicating that policy has been cached.
 436  * conn_in_enforce_policy may or may not be set depending on whether
 437  * there is a global policy match or per-socket policy match.
 438  * Policy inheriting happpens in ip_policy_set once the destination is known.
 439  * Once the right policy is set on the conn_t, policy cannot change for
 440  * this socket. This makes life simpler for TCP (UDP ?) where
 441  * re-transmissions go out with the same policy. For symmetry, policy
 442  * is cached for fully connected UDP sockets also. Thus if policy is cached,
 443  * it also implies that policy is latched i.e policy cannot change
 444  * on these sockets. As we have the right policy on the conn, we don't
 445  * have to lookup global policy for every outbound and inbound datagram
 446  * and thus serving as an optimization. Note that a global policy change
 447  * does not affect fully connected sockets if they have policy. If fully
 448  * connected sockets did not have any policy associated with it, global
 449  * policy change may affect them.
 450  *
 451  * IP Flow control notes:
 452  * ---------------------
 453  * Non-TCP streams are flow controlled by IP. The way this is accomplished
 454  * differs when ILL_CAPAB_DLD_DIRECT is enabled for that IP instance. When
 455  * ILL_DIRECT_CAPABLE(ill) is TRUE, IP can do direct function calls into
 456  * GLDv3. Otherwise packets are sent down to lower layers using STREAMS
 457  * functions.
 458  *
 459  * Per Tx ring udp flow control:
 460  * This is applicable only when ILL_CAPAB_DLD_DIRECT capability is set in
 461  * the ill (i.e. ILL_DIRECT_CAPABLE(ill) is true).
 462  *
 463  * The underlying link can expose multiple Tx rings to the GLDv3 mac layer.
 464  * To achieve best performance, outgoing traffic need to be fanned out among
 465  * these Tx ring. mac_tx() is called (via str_mdata_fastpath_put()) to send
 466  * traffic out of the NIC and it takes a fanout hint. UDP connections pass
 467  * the address of connp as fanout hint to mac_tx(). Under flow controlled
 468  * condition, mac_tx() returns a non-NULL cookie (ip_mac_tx_cookie_t). This
 469  * cookie points to a specific Tx ring that is blocked. The cookie is used to
 470  * hash into an idl_tx_list[] entry in idl_tx_list[] array. Each idl_tx_list_t
 471  * point to drain_lists (idl_t's). These drain list will store the blocked UDP
 472  * connp's. The drain list is not a single list but a configurable number of
 473  * lists.
 474  *
 475  * The diagram below shows idl_tx_list_t's and their drain_lists. ip_stack_t
 476  * has an array of idl_tx_list_t. The size of the array is TX_FANOUT_SIZE
 477  * which is equal to 128. This array in turn contains a pointer to idl_t[],
 478  * the ip drain list. The idl_t[] array size is MIN(max_ncpus, 8). The drain
 479  * list will point to the list of connp's that are flow controlled.
 480  *
 481  *                      ---------------   -------   -------   -------
 482  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 483  *                   |  ---------------   -------   -------   -------
 484  *                   |  ---------------   -------   -------   -------
 485  *                   |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 486  * ----------------  |  ---------------   -------   -------   -------
 487  * |idl_tx_list[0]|->|  ---------------   -------   -------   -------
 488  * ----------------  |->|drain_list[2]|-->|connp|-->|connp|-->|connp|-->
 489  *                   |  ---------------   -------   -------   -------
 490  *                   .        .              .         .         .
 491  *                   |  ---------------   -------   -------   -------
 492  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 493  *                      ---------------   -------   -------   -------
 494  *                      ---------------   -------   -------   -------
 495  *                   |->|drain_list[0]|-->|connp|-->|connp|-->|connp|-->
 496  *                   |  ---------------   -------   -------   -------
 497  *                   |  ---------------   -------   -------   -------
 498  * ----------------  |->|drain_list[1]|-->|connp|-->|connp|-->|connp|-->
 499  * |idl_tx_list[1]|->|  ---------------   -------   -------   -------
 500  * ----------------  |        .              .         .         .
 501  *                   |  ---------------   -------   -------   -------
 502  *                   |->|drain_list[n]|-->|connp|-->|connp|-->|connp|-->
 503  *                      ---------------   -------   -------   -------
 504  *     .....
 505  * ----------------
 506  * |idl_tx_list[n]|-> ...
 507  * ----------------
 508  *
 509  * When mac_tx() returns a cookie, the cookie is hashed into an index into
 510  * ips_idl_tx_list[], and conn_drain_insert() is called with the idl_tx_list
 511  * to insert the conn onto.  conn_drain_insert() asserts flow control for the
 512  * sockets via su_txq_full() (non-STREAMS) or QFULL on conn_wq (STREAMS).
 513  * Further, conn_blocked is set to indicate that the conn is blocked.
 514  *
 515  * GLDv3 calls ill_flow_enable() when flow control is relieved.  The cookie
 516  * passed in the call to ill_flow_enable() identifies the blocked Tx ring and
 517  * is again hashed to locate the appropriate idl_tx_list, which is then
 518  * drained via conn_walk_drain().  conn_walk_drain() goes through each conn in
 519  * the drain list and calls conn_drain_remove() to clear flow control (via
 520  * calling su_txq_full() or clearing QFULL), and remove the conn from the
 521  * drain list.
 522  *
 523  * Note that the drain list is not a single list but a (configurable) array of
 524  * lists (8 elements by default).  Synchronization between drain insertion and
 525  * flow control wakeup is handled by using idl_txl->txl_lock, and only
 526  * conn_drain_insert() and conn_drain_remove() manipulate the drain list.
 527  *
 528  * Flow control via STREAMS is used when ILL_DIRECT_CAPABLE() returns FALSE.
 529  * On the send side, if the packet cannot be sent down to the driver by IP
 530  * (canput() fails), ip_xmit() drops the packet and returns EWOULDBLOCK to the
 531  * caller, who may then invoke ixa_check_drain_insert() to insert the conn on
 532  * the 0'th drain list.  When ip_wsrv() runs on the ill_wq because flow
 533  * control has been relieved, the blocked conns in the 0'th drain list are
 534  * drained as in the non-STREAMS case.
 535  *
 536  * In both the STREAMS and non-STREAMS cases, the sockfs upcall to set QFULL
 537  * is done when the conn is inserted into the drain list (conn_drain_insert())
 538  * and cleared when the conn is removed from the it (conn_drain_remove()).
 539  *
 540  * IPQOS notes:
 541  *
 542  * IPQoS Policies are applied to packets using IPPF (IP Policy framework)
 543  * and IPQoS modules. IPPF includes hooks in IP at different control points
 544  * (callout positions) which direct packets to IPQoS modules for policy
 545  * processing. Policies, if present, are global.
 546  *
 547  * The callout positions are located in the following paths:
 548  *              o local_in (packets destined for this host)
 549  *              o local_out (packets orginating from this host )
 550  *              o fwd_in  (packets forwarded by this m/c - inbound)
 551  *              o fwd_out (packets forwarded by this m/c - outbound)
 552  * Hooks at these callout points can be enabled/disabled using the ndd variable
 553  * ip_policy_mask (a bit mask with the 4 LSB indicating the callout positions).
 554  * By default all the callout positions are enabled.
 555  *
 556  * Outbound (local_out)
 557  * Hooks are placed in ire_send_wire_v4 and ire_send_wire_v6.
 558  *
 559  * Inbound (local_in)
 560  * Hooks are placed in ip_fanout_v4 and ip_fanout_v6.
 561  *
 562  * Forwarding (in and out)
 563  * Hooks are placed in ire_recv_forward_v4/v6.
 564  *
 565  * IP Policy Framework processing (IPPF processing)
 566  * Policy processing for a packet is initiated by ip_process, which ascertains
 567  * that the classifier (ipgpc) is loaded and configured, failing which the
 568  * packet resumes normal processing in IP. If the clasifier is present, the
 569  * packet is acted upon by one or more IPQoS modules (action instances), per
 570  * filters configured in ipgpc and resumes normal IP processing thereafter.
 571  * An action instance can drop a packet in course of its processing.
 572  *
 573  * Zones notes:
 574  *
 575  * The partitioning rules for networking are as follows:
 576  * 1) Packets coming from a zone must have a source address belonging to that
 577  * zone.
 578  * 2) Packets coming from a zone can only be sent on a physical interface on
 579  * which the zone has an IP address.
 580  * 3) Between two zones on the same machine, packet delivery is only allowed if
 581  * there's a matching route for the destination and zone in the forwarding
 582  * table.
 583  * 4) The TCP and UDP port spaces are per-zone; that is, two processes in
 584  * different zones can bind to the same port with the wildcard address
 585  * (INADDR_ANY).
 586  *
 587  * The granularity of interface partitioning is at the logical interface level.
 588  * Therefore, every zone has its own IP addresses, and incoming packets can be
 589  * attributed to a zone unambiguously. A logical interface is placed into a zone
 590  * using the SIOCSLIFZONE ioctl; this sets the ipif_zoneid field in the ipif_t
 591  * structure. Rule (1) is implemented by modifying the source address selection
 592  * algorithm so that the list of eligible addresses is filtered based on the
 593  * sending process zone.
 594  *
 595  * The Internet Routing Entries (IREs) are either exclusive to a zone or shared
 596  * across all zones, depending on their type. Here is the break-up:
 597  *
 598  * IRE type                             Shared/exclusive
 599  * --------                             ----------------
 600  * IRE_BROADCAST                        Exclusive
 601  * IRE_DEFAULT (default routes)         Shared (*)
 602  * IRE_LOCAL                            Exclusive (x)
 603  * IRE_LOOPBACK                         Exclusive
 604  * IRE_PREFIX (net routes)              Shared (*)
 605  * IRE_IF_NORESOLVER (interface routes) Exclusive
 606  * IRE_IF_RESOLVER (interface routes)   Exclusive
 607  * IRE_IF_CLONE (interface routes)      Exclusive
 608  * IRE_HOST (host routes)               Shared (*)
 609  *
 610  * (*) A zone can only use a default or off-subnet route if the gateway is
 611  * directly reachable from the zone, that is, if the gateway's address matches
 612  * one of the zone's logical interfaces.
 613  *
 614  * (x) IRE_LOCAL are handled a bit differently.
 615  * When ip_restrict_interzone_loopback is set (the default),
 616  * ire_route_recursive restricts loopback using an IRE_LOCAL
 617  * between zone to the case when L2 would have conceptually looped the packet
 618  * back, i.e. the loopback which is required since neither Ethernet drivers
 619  * nor Ethernet hardware loops them back. This is the case when the normal
 620  * routes (ignoring IREs with different zoneids) would send out the packet on
 621  * the same ill as the ill with which is IRE_LOCAL is associated.
 622  *
 623  * Multiple zones can share a common broadcast address; typically all zones
 624  * share the 255.255.255.255 address. Incoming as well as locally originated
 625  * broadcast packets must be dispatched to all the zones on the broadcast
 626  * network. For directed broadcasts (e.g. 10.16.72.255) this is not trivial
 627  * since some zones may not be on the 10.16.72/24 network. To handle this, each
 628  * zone has its own set of IRE_BROADCAST entries; then, broadcast packets are
 629  * sent to every zone that has an IRE_BROADCAST entry for the destination
 630  * address on the input ill, see ip_input_broadcast().
 631  *
 632  * Applications in different zones can join the same multicast group address.
 633  * The same logic applies for multicast as for broadcast. ip_input_multicast
 634  * dispatches packets to all zones that have members on the physical interface.
 635  */
 636 
 637 /*
 638  * Squeue Fanout flags:
 639  *      0: No fanout.
 640  *      1: Fanout across all squeues
 641  */
 642 boolean_t       ip_squeue_fanout = 0;
 643 
 644 /*
 645  * Maximum dups allowed per packet.
 646  */
 647 uint_t ip_max_frag_dups = 10;
 648 
 649 static int      ip_open(queue_t *q, dev_t *devp, int flag, int sflag,
 650                     cred_t *credp, boolean_t isv6);
 651 static mblk_t   *ip_xmit_attach_llhdr(mblk_t *, nce_t *);
 652 
 653 static boolean_t icmp_inbound_verify_v4(mblk_t *, icmph_t *, ip_recv_attr_t *);
 654 static void     icmp_inbound_too_big_v4(icmph_t *, ip_recv_attr_t *);
 655 static void     icmp_inbound_error_fanout_v4(mblk_t *, icmph_t *,
 656     ip_recv_attr_t *);
 657 static void     icmp_options_update(ipha_t *);
 658 static void     icmp_param_problem(mblk_t *, uint8_t,  ip_recv_attr_t *);
 659 static void     icmp_pkt(mblk_t *, void *, size_t, ip_recv_attr_t *);
 660 static mblk_t   *icmp_pkt_err_ok(mblk_t *, ip_recv_attr_t *);
 661 static void     icmp_redirect_v4(mblk_t *mp, ipha_t *, icmph_t *,
 662     ip_recv_attr_t *);
 663 static void     icmp_send_redirect(mblk_t *, ipaddr_t, ip_recv_attr_t *);
 664 static void     icmp_send_reply_v4(mblk_t *, ipha_t *, icmph_t *,
 665     ip_recv_attr_t *);
 666 
 667 mblk_t          *ip_dlpi_alloc(size_t, t_uscalar_t);
 668 char            *ip_dot_addr(ipaddr_t, char *);
 669 mblk_t          *ip_carve_mp(mblk_t **, ssize_t);
 670 static char     *ip_dot_saddr(uchar_t *, char *);
 671 static int      ip_lrput(queue_t *, mblk_t *);
 672 ipaddr_t        ip_net_mask(ipaddr_t);
 673 char            *ip_nv_lookup(nv_t *, int);
 674 int             ip_rput(queue_t *, mblk_t *);
 675 static void     ip_rput_dlpi_writer(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp,
 676                     void *dummy_arg);
 677 int             ip_snmp_get(queue_t *, mblk_t *, int, boolean_t);
 678 static mblk_t   *ip_snmp_get_mib2_ip(queue_t *, mblk_t *,
 679                     mib2_ipIfStatsEntry_t *, ip_stack_t *, boolean_t);
 680 static mblk_t   *ip_snmp_get_mib2_ip_traffic_stats(queue_t *, mblk_t *,
 681                     ip_stack_t *, boolean_t);
 682 static mblk_t   *ip_snmp_get_mib2_ip6(queue_t *, mblk_t *, ip_stack_t *,
 683                     boolean_t);
 684 static mblk_t   *ip_snmp_get_mib2_icmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 685 static mblk_t   *ip_snmp_get_mib2_icmp6(queue_t *, mblk_t *, ip_stack_t *ipst);
 686 static mblk_t   *ip_snmp_get_mib2_igmp(queue_t *, mblk_t *, ip_stack_t *ipst);
 687 static mblk_t   *ip_snmp_get_mib2_multi(queue_t *, mblk_t *, ip_stack_t *ipst);
 688 static mblk_t   *ip_snmp_get_mib2_ip_addr(queue_t *, mblk_t *,
 689                     ip_stack_t *ipst, boolean_t);
 690 static mblk_t   *ip_snmp_get_mib2_ip6_addr(queue_t *, mblk_t *,
 691                     ip_stack_t *ipst, boolean_t);
 692 static mblk_t   *ip_snmp_get_mib2_ip_group_src(queue_t *, mblk_t *,
 693                     ip_stack_t *ipst);
 694 static mblk_t   *ip_snmp_get_mib2_ip6_group_src(queue_t *, mblk_t *,
 695                     ip_stack_t *ipst);
 696 static mblk_t   *ip_snmp_get_mib2_ip_group_mem(queue_t *, mblk_t *,
 697                     ip_stack_t *ipst);
 698 static mblk_t   *ip_snmp_get_mib2_ip6_group_mem(queue_t *, mblk_t *,
 699                     ip_stack_t *ipst);
 700 static mblk_t   *ip_snmp_get_mib2_virt_multi(queue_t *, mblk_t *,
 701                     ip_stack_t *ipst);
 702 static mblk_t   *ip_snmp_get_mib2_multi_rtable(queue_t *, mblk_t *,
 703                     ip_stack_t *ipst);
 704 static mblk_t   *ip_snmp_get_mib2_ip_route_media(queue_t *, mblk_t *, int,
 705                     ip_stack_t *ipst);
 706 static mblk_t   *ip_snmp_get_mib2_ip6_route_media(queue_t *, mblk_t *, int,
 707                     ip_stack_t *ipst);
 708 static void     ip_snmp_get2_v4(ire_t *, iproutedata_t *);
 709 static void     ip_snmp_get2_v6_route(ire_t *, iproutedata_t *);
 710 static void     ip_snmp_get2_v4_media(ncec_t *, void *);
 711 static void     ip_snmp_get2_v6_media(ncec_t *, void *);
 712 int             ip_snmp_set(queue_t *, int, int, uchar_t *, int);
 713 
 714 static mblk_t   *ip_fragment_copyhdr(uchar_t *, int, int, ip_stack_t *,
 715                     mblk_t *);
 716 
 717 static void     conn_drain_init(ip_stack_t *);
 718 static void     conn_drain_fini(ip_stack_t *);
 719 static void     conn_drain(conn_t *connp, boolean_t closing);
 720 
 721 static void     conn_walk_drain(ip_stack_t *, idl_tx_list_t *);
 722 static void     conn_walk_sctp(pfv_t, void *, zoneid_t, netstack_t *);
 723 
 724 static void     *ip_stack_init(netstackid_t stackid, netstack_t *ns);
 725 static void     ip_stack_shutdown(netstackid_t stackid, void *arg);
 726 static void     ip_stack_fini(netstackid_t stackid, void *arg);
 727 
 728 static int      ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
 729     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
 730     ire_t *, conn_t *, boolean_t, const in6_addr_t *,  mcast_record_t,
 731     const in6_addr_t *);
 732 
 733 static int      ip_squeue_switch(int);
 734 
 735 static void     *ip_kstat_init(netstackid_t, ip_stack_t *);
 736 static void     ip_kstat_fini(netstackid_t, kstat_t *);
 737 static int      ip_kstat_update(kstat_t *kp, int rw);
 738 static void     *icmp_kstat_init(netstackid_t);
 739 static void     icmp_kstat_fini(netstackid_t, kstat_t *);
 740 static int      icmp_kstat_update(kstat_t *kp, int rw);
 741 static void     *ip_kstat2_init(netstackid_t, ip_stat_t *);
 742 static void     ip_kstat2_fini(netstackid_t, kstat_t *);
 743 
 744 static void     ipobs_init(ip_stack_t *);
 745 static void     ipobs_fini(ip_stack_t *);
 746 
 747 static int      ip_tp_cpu_update(cpu_setup_t, int, void *);
 748 
 749 ipaddr_t        ip_g_all_ones = IP_HOST_MASK;
 750 
 751 static long ip_rput_pullups;
 752 int     dohwcksum = 1;  /* use h/w cksum if supported by the hardware */
 753 
 754 vmem_t *ip_minor_arena_sa; /* for minor nos. from INET_MIN_DEV+2 thru 2^^18-1 */
 755 vmem_t *ip_minor_arena_la; /* for minor nos. from 2^^18 thru 2^^32-1 */
 756 
 757 int     ip_debug;
 758 
 759 /*
 760  * Multirouting/CGTP stuff
 761  */
 762 int     ip_cgtp_filter_rev = CGTP_FILTER_REV;   /* CGTP hooks version */
 763 
 764 /*
 765  * IP tunables related declarations. Definitions are in ip_tunables.c
 766  */
 767 extern mod_prop_info_t ip_propinfo_tbl[];
 768 extern int ip_propinfo_count;
 769 
 770 /*
 771  * Table of IP ioctls encoding the various properties of the ioctl and
 772  * indexed based on the last byte of the ioctl command. Occasionally there
 773  * is a clash, and there is more than 1 ioctl with the same last byte.
 774  * In such a case 1 ioctl is encoded in the ndx table and the remaining
 775  * ioctls are encoded in the misc table. An entry in the ndx table is
 776  * retrieved by indexing on the last byte of the ioctl command and comparing
 777  * the ioctl command with the value in the ndx table. In the event of a
 778  * mismatch the misc table is then searched sequentially for the desired
 779  * ioctl command.
 780  *
 781  * Entry: <command> <copyin_size> <flags> <cmd_type> <function> <restart_func>
 782  */
 783 ip_ioctl_cmd_t ip_ndx_ioctl_table[] = {
 784         /* 000 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 785         /* 001 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 786         /* 002 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 787         /* 003 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 788         /* 004 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 789         /* 005 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 790         /* 006 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 791         /* 007 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 792         /* 008 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 793         /* 009 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 794 
 795         /* 010 */ { SIOCADDRT,  sizeof (struct rtentry), IPI_PRIV,
 796                         MISC_CMD, ip_siocaddrt, NULL },
 797         /* 011 */ { SIOCDELRT,  sizeof (struct rtentry), IPI_PRIV,
 798                         MISC_CMD, ip_siocdelrt, NULL },
 799 
 800         /* 012 */ { SIOCSIFADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 801                         IF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 802         /* 013 */ { SIOCGIFADDR, sizeof (struct ifreq), IPI_GET_CMD,
 803                         IF_CMD, ip_sioctl_get_addr, NULL },
 804 
 805         /* 014 */ { SIOCSIFDSTADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 806                         IF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 807         /* 015 */ { SIOCGIFDSTADDR, sizeof (struct ifreq),
 808                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_dstaddr, NULL },
 809 
 810         /* 016 */ { SIOCSIFFLAGS, sizeof (struct ifreq),
 811                         IPI_PRIV | IPI_WR,
 812                         IF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 813         /* 017 */ { SIOCGIFFLAGS, sizeof (struct ifreq),
 814                         IPI_MODOK | IPI_GET_CMD,
 815                         IF_CMD, ip_sioctl_get_flags, NULL },
 816 
 817         /* 018 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 818         /* 019 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 819 
 820         /* copyin size cannot be coded for SIOCGIFCONF */
 821         /* 020 */ { O_SIOCGIFCONF, 0, IPI_GET_CMD,
 822                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 823 
 824         /* 021 */ { SIOCSIFMTU, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 825                         IF_CMD, ip_sioctl_mtu, NULL },
 826         /* 022 */ { SIOCGIFMTU, sizeof (struct ifreq), IPI_GET_CMD,
 827                         IF_CMD, ip_sioctl_get_mtu, NULL },
 828         /* 023 */ { SIOCGIFBRDADDR, sizeof (struct ifreq),
 829                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_brdaddr, NULL },
 830         /* 024 */ { SIOCSIFBRDADDR, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 831                         IF_CMD, ip_sioctl_brdaddr, NULL },
 832         /* 025 */ { SIOCGIFNETMASK, sizeof (struct ifreq),
 833                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_netmask, NULL },
 834         /* 026 */ { SIOCSIFNETMASK, sizeof (struct ifreq), IPI_PRIV | IPI_WR,
 835                         IF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 836         /* 027 */ { SIOCGIFMETRIC, sizeof (struct ifreq),
 837                         IPI_GET_CMD, IF_CMD, ip_sioctl_get_metric, NULL },
 838         /* 028 */ { SIOCSIFMETRIC, sizeof (struct ifreq), IPI_PRIV,
 839                         IF_CMD, ip_sioctl_metric, NULL },
 840         /* 029 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 841 
 842         /* See 166-168 below for extended SIOC*XARP ioctls */
 843         /* 030 */ { SIOCSARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 844                         ARP_CMD, ip_sioctl_arp, NULL },
 845         /* 031 */ { SIOCGARP, sizeof (struct arpreq), IPI_GET_CMD,
 846                         ARP_CMD, ip_sioctl_arp, NULL },
 847         /* 032 */ { SIOCDARP, sizeof (struct arpreq), IPI_PRIV | IPI_WR,
 848                         ARP_CMD, ip_sioctl_arp, NULL },
 849 
 850         /* 033 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 851         /* 034 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 852         /* 035 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 853         /* 036 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 854         /* 037 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 855         /* 038 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 856         /* 039 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 857         /* 040 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 858         /* 041 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 859         /* 042 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 860         /* 043 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 861         /* 044 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 862         /* 045 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 863         /* 046 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 864         /* 047 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 865         /* 048 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 866         /* 049 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 867         /* 050 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 868         /* 051 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 869         /* 052 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 870         /* 053 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 871 
 872         /* 054 */ { IF_UNITSEL, sizeof (int), IPI_PRIV | IPI_WR | IPI_MODOK,
 873                         MISC_CMD, if_unitsel, if_unitsel_restart },
 874 
 875         /* 055 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 876         /* 056 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 877         /* 057 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 878         /* 058 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 879         /* 059 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 880         /* 060 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 881         /* 061 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 882         /* 062 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 883         /* 063 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 884         /* 064 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 885         /* 065 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 886         /* 066 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 887         /* 067 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 888         /* 068 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 889         /* 069 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 890         /* 070 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 891         /* 071 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 892         /* 072 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 893 
 894         /* 073 */ { SIOCSIFNAME, sizeof (struct ifreq),
 895                         IPI_PRIV | IPI_WR | IPI_MODOK,
 896                         IF_CMD, ip_sioctl_sifname, NULL },
 897 
 898         /* 074 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 899         /* 075 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 900         /* 076 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 901         /* 077 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 902         /* 078 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 903         /* 079 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 904         /* 080 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 905         /* 081 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 906         /* 082 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 907         /* 083 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 908         /* 084 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 909         /* 085 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 910         /* 086 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 911 
 912         /* 087 */ { SIOCGIFNUM, sizeof (int), IPI_GET_CMD,
 913                         MISC_CMD, ip_sioctl_get_ifnum, NULL },
 914         /* 088 */ { SIOCGIFMUXID, sizeof (struct ifreq), IPI_GET_CMD,
 915                         IF_CMD, ip_sioctl_get_muxid, NULL },
 916         /* 089 */ { SIOCSIFMUXID, sizeof (struct ifreq),
 917                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_muxid, NULL },
 918 
 919         /* Both if and lif variants share same func */
 920         /* 090 */ { SIOCGIFINDEX, sizeof (struct ifreq), IPI_GET_CMD,
 921                         IF_CMD, ip_sioctl_get_lifindex, NULL },
 922         /* Both if and lif variants share same func */
 923         /* 091 */ { SIOCSIFINDEX, sizeof (struct ifreq),
 924                         IPI_PRIV | IPI_WR, IF_CMD, ip_sioctl_slifindex, NULL },
 925 
 926         /* copyin size cannot be coded for SIOCGIFCONF */
 927         /* 092 */ { SIOCGIFCONF, 0, IPI_GET_CMD,
 928                         MISC_CMD, ip_sioctl_get_ifconf, NULL },
 929         /* 093 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 930         /* 094 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 931         /* 095 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 932         /* 096 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 933         /* 097 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 934         /* 098 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 935         /* 099 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 936         /* 100 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 937         /* 101 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 938         /* 102 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 939         /* 103 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 940         /* 104 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 941         /* 105 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 942         /* 106 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 943         /* 107 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 944         /* 108 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 945         /* 109 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 946 
 947         /* 110 */ { SIOCLIFREMOVEIF, sizeof (struct lifreq),
 948                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_removeif,
 949                         ip_sioctl_removeif_restart },
 950         /* 111 */ { SIOCLIFADDIF, sizeof (struct lifreq),
 951                         IPI_GET_CMD | IPI_PRIV | IPI_WR,
 952                         LIF_CMD, ip_sioctl_addif, NULL },
 953 #define SIOCLIFADDR_NDX 112
 954         /* 112 */ { SIOCSLIFADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 955                         LIF_CMD, ip_sioctl_addr, ip_sioctl_addr_restart },
 956         /* 113 */ { SIOCGLIFADDR, sizeof (struct lifreq),
 957                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_addr, NULL },
 958         /* 114 */ { SIOCSLIFDSTADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 959                         LIF_CMD, ip_sioctl_dstaddr, ip_sioctl_dstaddr_restart },
 960         /* 115 */ { SIOCGLIFDSTADDR, sizeof (struct lifreq),
 961                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dstaddr, NULL },
 962         /* 116 */ { SIOCSLIFFLAGS, sizeof (struct lifreq),
 963                         IPI_PRIV | IPI_WR,
 964                         LIF_CMD, ip_sioctl_flags, ip_sioctl_flags_restart },
 965         /* 117 */ { SIOCGLIFFLAGS, sizeof (struct lifreq),
 966                         IPI_GET_CMD | IPI_MODOK,
 967                         LIF_CMD, ip_sioctl_get_flags, NULL },
 968 
 969         /* 118 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 970         /* 119 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
 971 
 972         /* 120 */ { O_SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
 973                         ip_sioctl_get_lifconf, NULL },
 974         /* 121 */ { SIOCSLIFMTU, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 975                         LIF_CMD, ip_sioctl_mtu, NULL },
 976         /* 122 */ { SIOCGLIFMTU, sizeof (struct lifreq), IPI_GET_CMD,
 977                         LIF_CMD, ip_sioctl_get_mtu, NULL },
 978         /* 123 */ { SIOCGLIFBRDADDR, sizeof (struct lifreq),
 979                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_brdaddr, NULL },
 980         /* 124 */ { SIOCSLIFBRDADDR, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 981                         LIF_CMD, ip_sioctl_brdaddr, NULL },
 982         /* 125 */ { SIOCGLIFNETMASK, sizeof (struct lifreq),
 983                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_netmask, NULL },
 984         /* 126 */ { SIOCSLIFNETMASK, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 985                         LIF_CMD, ip_sioctl_netmask, ip_sioctl_netmask_restart },
 986         /* 127 */ { SIOCGLIFMETRIC, sizeof (struct lifreq),
 987                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_metric, NULL },
 988         /* 128 */ { SIOCSLIFMETRIC, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
 989                         LIF_CMD, ip_sioctl_metric, NULL },
 990         /* 129 */ { SIOCSLIFNAME, sizeof (struct lifreq),
 991                         IPI_PRIV | IPI_WR | IPI_MODOK,
 992                         LIF_CMD, ip_sioctl_slifname,
 993                         ip_sioctl_slifname_restart },
 994 
 995         /* 130 */ { SIOCGLIFNUM, sizeof (struct lifnum), IPI_GET_CMD,
 996                         MISC_CMD, ip_sioctl_get_lifnum, NULL },
 997         /* 131 */ { SIOCGLIFMUXID, sizeof (struct lifreq),
 998                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_muxid, NULL },
 999         /* 132 */ { SIOCSLIFMUXID, sizeof (struct lifreq),
1000                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_muxid, NULL },
1001         /* 133 */ { SIOCGLIFINDEX, sizeof (struct lifreq),
1002                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifindex, 0 },
1003         /* 134 */ { SIOCSLIFINDEX, sizeof (struct lifreq),
1004                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifindex, 0 },
1005         /* 135 */ { SIOCSLIFTOKEN, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1006                         LIF_CMD, ip_sioctl_token, NULL },
1007         /* 136 */ { SIOCGLIFTOKEN, sizeof (struct lifreq),
1008                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_token, NULL },
1009         /* 137 */ { SIOCSLIFSUBNET, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1010                         LIF_CMD, ip_sioctl_subnet, ip_sioctl_subnet_restart },
1011         /* 138 */ { SIOCGLIFSUBNET, sizeof (struct lifreq),
1012                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_subnet, NULL },
1013         /* 139 */ { SIOCSLIFLNKINFO, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1014                         LIF_CMD, ip_sioctl_lnkinfo, NULL },
1015 
1016         /* 140 */ { SIOCGLIFLNKINFO, sizeof (struct lifreq),
1017                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lnkinfo, NULL },
1018         /* 141 */ { SIOCLIFDELND, sizeof (struct lifreq), IPI_PRIV,
1019                         LIF_CMD, ip_siocdelndp_v6, NULL },
1020         /* 142 */ { SIOCLIFGETND, sizeof (struct lifreq), IPI_GET_CMD,
1021                         LIF_CMD, ip_siocqueryndp_v6, NULL },
1022         /* 143 */ { SIOCLIFSETND, sizeof (struct lifreq), IPI_PRIV,
1023                         LIF_CMD, ip_siocsetndp_v6, NULL },
1024         /* 144 */ { SIOCTMYADDR, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1025                         MISC_CMD, ip_sioctl_tmyaddr, NULL },
1026         /* 145 */ { SIOCTONLINK, sizeof (struct sioc_addrreq), IPI_GET_CMD,
1027                         MISC_CMD, ip_sioctl_tonlink, NULL },
1028         /* 146 */ { SIOCTMYSITE, sizeof (struct sioc_addrreq), 0,
1029                         MISC_CMD, ip_sioctl_tmysite, NULL },
1030         /* 147 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1031         /* 148 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1032 
1033         /* Old *IPSECONFIG ioctls are now deprecated, now see spdsock.c */
1034         /* 149 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1035         /* 150 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1036         /* 151 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1037         /* 152 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1038 
1039         /* 153 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1040 
1041         /* 154 */ { SIOCGLIFBINDING, sizeof (struct lifreq), IPI_GET_CMD,
1042                         LIF_CMD, ip_sioctl_get_binding, NULL },
1043         /* 155 */ { SIOCSLIFGROUPNAME, sizeof (struct lifreq),
1044                         IPI_PRIV | IPI_WR,
1045                         LIF_CMD, ip_sioctl_groupname, ip_sioctl_groupname },
1046         /* 156 */ { SIOCGLIFGROUPNAME, sizeof (struct lifreq),
1047                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_groupname, NULL },
1048         /* 157 */ { SIOCGLIFGROUPINFO, sizeof (lifgroupinfo_t),
1049                         IPI_GET_CMD, MISC_CMD, ip_sioctl_groupinfo, NULL },
1050 
1051         /* Leave 158-160 unused; used to be SIOC*IFARP ioctls */
1052         /* 158 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1053         /* 159 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1054         /* 160 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1055 
1056         /* 161 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1057 
1058         /* These are handled in ip_sioctl_copyin_setup itself */
1059         /* 162 */ { SIOCGIP6ADDRPOLICY, 0, IPI_NULL_BCONT,
1060                         MISC_CMD, NULL, NULL },
1061         /* 163 */ { SIOCSIP6ADDRPOLICY, 0, IPI_PRIV | IPI_NULL_BCONT,
1062                         MISC_CMD, NULL, NULL },
1063         /* 164 */ { SIOCGDSTINFO, 0, IPI_GET_CMD, MISC_CMD, NULL, NULL },
1064 
1065         /* 165 */ { SIOCGLIFCONF, 0, IPI_GET_CMD, MISC_CMD,
1066                         ip_sioctl_get_lifconf, NULL },
1067 
1068         /* 166 */ { SIOCSXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1069                         XARP_CMD, ip_sioctl_arp, NULL },
1070         /* 167 */ { SIOCGXARP, sizeof (struct xarpreq), IPI_GET_CMD,
1071                         XARP_CMD, ip_sioctl_arp, NULL },
1072         /* 168 */ { SIOCDXARP, sizeof (struct xarpreq), IPI_PRIV | IPI_WR,
1073                         XARP_CMD, ip_sioctl_arp, NULL },
1074 
1075         /* SIOCPOPSOCKFS is not handled by IP */
1076         /* 169 */ { IPI_DONTCARE /* SIOCPOPSOCKFS */, 0, 0, 0, NULL, NULL },
1077 
1078         /* 170 */ { SIOCGLIFZONE, sizeof (struct lifreq),
1079                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_lifzone, NULL },
1080         /* 171 */ { SIOCSLIFZONE, sizeof (struct lifreq),
1081                         IPI_PRIV | IPI_WR, LIF_CMD, ip_sioctl_slifzone,
1082                         ip_sioctl_slifzone_restart },
1083         /* 172-174 are SCTP ioctls and not handled by IP */
1084         /* 172 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1085         /* 173 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1086         /* 174 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1087         /* 175 */ { SIOCGLIFUSESRC, sizeof (struct lifreq),
1088                         IPI_GET_CMD, LIF_CMD,
1089                         ip_sioctl_get_lifusesrc, 0 },
1090         /* 176 */ { SIOCSLIFUSESRC, sizeof (struct lifreq),
1091                         IPI_PRIV | IPI_WR,
1092                         LIF_CMD, ip_sioctl_slifusesrc,
1093                         NULL },
1094         /* 177 */ { SIOCGLIFSRCOF, 0, IPI_GET_CMD, MISC_CMD,
1095                         ip_sioctl_get_lifsrcof, NULL },
1096         /* 178 */ { SIOCGMSFILTER, sizeof (struct group_filter), IPI_GET_CMD,
1097                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1098         /* 179 */ { SIOCSMSFILTER, sizeof (struct group_filter), 0,
1099                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1100         /* 180 */ { SIOCGIPMSFILTER, sizeof (struct ip_msfilter), IPI_GET_CMD,
1101                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1102         /* 181 */ { SIOCSIPMSFILTER, sizeof (struct ip_msfilter), 0,
1103                         MSFILT_CMD, ip_sioctl_msfilter, NULL },
1104         /* 182 */ { IPI_DONTCARE, 0, 0, 0, NULL, NULL },
1105         /* SIOCSENABLESDP is handled by SDP */
1106         /* 183 */ { IPI_DONTCARE /* SIOCSENABLESDP */, 0, 0, 0, NULL, NULL },
1107         /* 184 */ { IPI_DONTCARE /* SIOCSQPTR */, 0, 0, 0, NULL, NULL },
1108         /* 185 */ { SIOCGIFHWADDR, sizeof (struct ifreq), IPI_GET_CMD,
1109                         IF_CMD, ip_sioctl_get_ifhwaddr, NULL },
1110         /* 186 */ { IPI_DONTCARE /* SIOCGSTAMP */, 0, 0, 0, NULL, NULL },
1111         /* 187 */ { SIOCILB, 0, IPI_PRIV | IPI_GET_CMD, MISC_CMD,
1112                         ip_sioctl_ilb_cmd, NULL },
1113         /* 188 */ { SIOCGETPROP, 0, IPI_GET_CMD, 0, NULL, NULL },
1114         /* 189 */ { SIOCSETPROP, 0, IPI_PRIV | IPI_WR, 0, NULL, NULL},
1115         /* 190 */ { SIOCGLIFDADSTATE, sizeof (struct lifreq),
1116                         IPI_GET_CMD, LIF_CMD, ip_sioctl_get_dadstate, NULL },
1117         /* 191 */ { SIOCSLIFPREFIX, sizeof (struct lifreq), IPI_PRIV | IPI_WR,
1118                         LIF_CMD, ip_sioctl_prefix, ip_sioctl_prefix_restart },
1119         /* 192 */ { SIOCGLIFHWADDR, sizeof (struct lifreq), IPI_GET_CMD,
1120                         LIF_CMD, ip_sioctl_get_lifhwaddr, NULL }
1121 };
1122 
1123 int ip_ndx_ioctl_count = sizeof (ip_ndx_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1124 
1125 ip_ioctl_cmd_t ip_misc_ioctl_table[] = {
1126         { I_LINK,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1127         { I_UNLINK,     0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1128         { I_PLINK,      0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1129         { I_PUNLINK,    0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1130         { ND_GET,       0, 0, 0, NULL, NULL },
1131         { ND_SET,       0, IPI_PRIV | IPI_WR, 0, NULL, NULL },
1132         { IP_IOCTL,     0, 0, 0, NULL, NULL },
1133         { SIOCGETVIFCNT, sizeof (struct sioc_vif_req), IPI_GET_CMD,
1134                 MISC_CMD, mrt_ioctl},
1135         { SIOCGETSGCNT, sizeof (struct sioc_sg_req), IPI_GET_CMD,
1136                 MISC_CMD, mrt_ioctl},
1137         { SIOCGETLSGCNT, sizeof (struct sioc_lsg_req), IPI_GET_CMD,
1138                 MISC_CMD, mrt_ioctl}
1139 };
1140 
1141 int ip_misc_ioctl_count =
1142     sizeof (ip_misc_ioctl_table) / sizeof (ip_ioctl_cmd_t);
1143 
1144 int     conn_drain_nthreads;            /* Number of drainers reqd. */
1145                                         /* Settable in /etc/system */
1146 /* Defined in ip_ire.c */
1147 extern uint32_t ip_ire_max_bucket_cnt, ip6_ire_max_bucket_cnt;
1148 extern uint32_t ip_ire_min_bucket_cnt, ip6_ire_min_bucket_cnt;
1149 extern uint32_t ip_ire_mem_ratio, ip_ire_cpu_ratio;
1150 
1151 static nv_t     ire_nv_arr[] = {
1152         { IRE_BROADCAST, "BROADCAST" },
1153         { IRE_LOCAL, "LOCAL" },
1154         { IRE_LOOPBACK, "LOOPBACK" },
1155         { IRE_DEFAULT, "DEFAULT" },
1156         { IRE_PREFIX, "PREFIX" },
1157         { IRE_IF_NORESOLVER, "IF_NORESOL" },
1158         { IRE_IF_RESOLVER, "IF_RESOLV" },
1159         { IRE_IF_CLONE, "IF_CLONE" },
1160         { IRE_HOST, "HOST" },
1161         { IRE_MULTICAST, "MULTICAST" },
1162         { IRE_NOROUTE, "NOROUTE" },
1163         { 0 }
1164 };
1165 
1166 nv_t    *ire_nv_tbl = ire_nv_arr;
1167 
1168 /* Simple ICMP IP Header Template */
1169 static ipha_t icmp_ipha = {
1170         IP_SIMPLE_HDR_VERSION, 0, 0, 0, 0, 0, IPPROTO_ICMP
1171 };
1172 
1173 struct module_info ip_mod_info = {
1174         IP_MOD_ID, IP_MOD_NAME, IP_MOD_MINPSZ, IP_MOD_MAXPSZ, IP_MOD_HIWAT,
1175         IP_MOD_LOWAT
1176 };
1177 
1178 /*
1179  * Duplicate static symbols within a module confuses mdb; so we avoid the
1180  * problem by making the symbols here distinct from those in udp.c.
1181  */
1182 
1183 /*
1184  * Entry points for IP as a device and as a module.
1185  * We have separate open functions for the /dev/ip and /dev/ip6 devices.
1186  */
1187 static struct qinit iprinitv4 = {
1188         ip_rput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1189 };
1190 
1191 struct qinit iprinitv6 = {
1192         ip_rput_v6, NULL, ip_openv6, ip_close, NULL, &ip_mod_info
1193 };
1194 
1195 static struct qinit ipwinit = {
1196         ip_wput_nondata, ip_wsrv, NULL, NULL, NULL, &ip_mod_info
1197 };
1198 
1199 static struct qinit iplrinit = {
1200         ip_lrput, NULL, ip_openv4, ip_close, NULL, &ip_mod_info
1201 };
1202 
1203 static struct qinit iplwinit = {
1204         ip_lwput, NULL, NULL, NULL, NULL, &ip_mod_info
1205 };
1206 
1207 /* For AF_INET aka /dev/ip */
1208 struct streamtab ipinfov4 = {
1209         &iprinitv4, &ipwinit, &iplrinit, &iplwinit
1210 };
1211 
1212 /* For AF_INET6 aka /dev/ip6 */
1213 struct streamtab ipinfov6 = {
1214         &iprinitv6, &ipwinit, &iplrinit, &iplwinit
1215 };
1216 
1217 #ifdef  DEBUG
1218 boolean_t skip_sctp_cksum = B_FALSE;
1219 #endif
1220 
1221 /*
1222  * Generate an ICMP fragmentation needed message.
1223  * When called from ip_output side a minimal ip_recv_attr_t needs to be
1224  * constructed by the caller.
1225  */
1226 void
1227 icmp_frag_needed(mblk_t *mp, int mtu, ip_recv_attr_t *ira)
1228 {
1229         icmph_t icmph;
1230         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1231 
1232         mp = icmp_pkt_err_ok(mp, ira);
1233         if (mp == NULL)
1234                 return;
1235 
1236         bzero(&icmph, sizeof (icmph_t));
1237         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
1238         icmph.icmph_code = ICMP_FRAGMENTATION_NEEDED;
1239         icmph.icmph_du_mtu = htons((uint16_t)mtu);
1240         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutFragNeeded);
1241         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
1242 
1243         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
1244 }
1245 
1246 /*
1247  * icmp_inbound_v4 deals with ICMP messages that are handled by IP.
1248  * If the ICMP message is consumed by IP, i.e., it should not be delivered
1249  * to any IPPROTO_ICMP raw sockets, then it returns NULL.
1250  * Likewise, if the ICMP error is misformed (too short, etc), then it
1251  * returns NULL. The caller uses this to determine whether or not to send
1252  * to raw sockets.
1253  *
1254  * All error messages are passed to the matching transport stream.
1255  *
1256  * The following cases are handled by icmp_inbound:
1257  * 1) It needs to send a reply back and possibly delivering it
1258  *    to the "interested" upper clients.
1259  * 2) Return the mblk so that the caller can pass it to the RAW socket clients.
1260  * 3) It needs to change some values in IP only.
1261  * 4) It needs to change some values in IP and upper layers e.g TCP
1262  *    by delivering an error to the upper layers.
1263  *
1264  * We handle the above three cases in the context of IPsec in the
1265  * following way :
1266  *
1267  * 1) Send the reply back in the same way as the request came in.
1268  *    If it came in encrypted, it goes out encrypted. If it came in
1269  *    clear, it goes out in clear. Thus, this will prevent chosen
1270  *    plain text attack.
1271  * 2) The client may or may not expect things to come in secure.
1272  *    If it comes in secure, the policy constraints are checked
1273  *    before delivering it to the upper layers. If it comes in
1274  *    clear, ipsec_inbound_accept_clear will decide whether to
1275  *    accept this in clear or not. In both the cases, if the returned
1276  *    message (IP header + 8 bytes) that caused the icmp message has
1277  *    AH/ESP headers, it is sent up to AH/ESP for validation before
1278  *    sending up. If there are only 8 bytes of returned message, then
1279  *    upper client will not be notified.
1280  * 3) Check with global policy to see whether it matches the constaints.
1281  *    But this will be done only if icmp_accept_messages_in_clear is
1282  *    zero.
1283  * 4) If we need to change both in IP and ULP, then the decision taken
1284  *    while affecting the values in IP and while delivering up to TCP
1285  *    should be the same.
1286  *
1287  *      There are two cases.
1288  *
1289  *      a) If we reject data at the IP layer (ipsec_check_global_policy()
1290  *         failed), we will not deliver it to the ULP, even though they
1291  *         are *willing* to accept in *clear*. This is fine as our global
1292  *         disposition to icmp messages asks us reject the datagram.
1293  *
1294  *      b) If we accept data at the IP layer (ipsec_check_global_policy()
1295  *         succeeded or icmp_accept_messages_in_clear is 1), and not able
1296  *         to deliver it to ULP (policy failed), it can lead to
1297  *         consistency problems. The cases known at this time are
1298  *         ICMP_DESTINATION_UNREACHABLE  messages with following code
1299  *         values :
1300  *
1301  *         - ICMP_FRAGMENTATION_NEEDED : IP adapts to the new value
1302  *           and Upper layer rejects. Then the communication will
1303  *           come to a stop. This is solved by making similar decisions
1304  *           at both levels. Currently, when we are unable to deliver
1305  *           to the Upper Layer (due to policy failures) while IP has
1306  *           adjusted dce_pmtu, the next outbound datagram would
1307  *           generate a local ICMP_FRAGMENTATION_NEEDED message - which
1308  *           will be with the right level of protection. Thus the right
1309  *           value will be communicated even if we are not able to
1310  *           communicate when we get from the wire initially. But this
1311  *           assumes there would be at least one outbound datagram after
1312  *           IP has adjusted its dce_pmtu value. To make things
1313  *           simpler, we accept in clear after the validation of
1314  *           AH/ESP headers.
1315  *
1316  *         - Other ICMP ERRORS : We may not be able to deliver it to the
1317  *           upper layer depending on the level of protection the upper
1318  *           layer expects and the disposition in ipsec_inbound_accept_clear().
1319  *           ipsec_inbound_accept_clear() decides whether a given ICMP error
1320  *           should be accepted in clear when the Upper layer expects secure.
1321  *           Thus the communication may get aborted by some bad ICMP
1322  *           packets.
1323  */
1324 mblk_t *
1325 icmp_inbound_v4(mblk_t *mp, ip_recv_attr_t *ira)
1326 {
1327         icmph_t         *icmph;
1328         ipha_t          *ipha;          /* Outer header */
1329         int             ip_hdr_length;  /* Outer header length */
1330         boolean_t       interested;
1331         ipif_t          *ipif;
1332         uint32_t        ts;
1333         uint32_t        *tsp;
1334         timestruc_t     now;
1335         ill_t           *ill = ira->ira_ill;
1336         ip_stack_t      *ipst = ill->ill_ipst;
1337         zoneid_t        zoneid = ira->ira_zoneid;
1338         int             len_needed;
1339         mblk_t          *mp_ret = NULL;
1340 
1341         ipha = (ipha_t *)mp->b_rptr;
1342 
1343         BUMP_MIB(&ipst->ips_icmp_mib, icmpInMsgs);
1344 
1345         ip_hdr_length = ira->ira_ip_hdr_length;
1346         if ((mp->b_wptr - mp->b_rptr) < (ip_hdr_length + ICMPH_SIZE)) {
1347                 if (ira->ira_pktlen < (ip_hdr_length + ICMPH_SIZE)) {
1348                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1349                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1350                         freemsg(mp);
1351                         return (NULL);
1352                 }
1353                 /* Last chance to get real. */
1354                 ipha = ip_pullup(mp, ip_hdr_length + ICMPH_SIZE, ira);
1355                 if (ipha == NULL) {
1356                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
1357                         freemsg(mp);
1358                         return (NULL);
1359                 }
1360         }
1361 
1362         /* The IP header will always be a multiple of four bytes */
1363         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1364         ip2dbg(("icmp_inbound_v4: type %d code %d\n", icmph->icmph_type,
1365             icmph->icmph_code));
1366 
1367         /*
1368          * We will set "interested" to "true" if we should pass a copy to
1369          * the transport or if we handle the packet locally.
1370          */
1371         interested = B_FALSE;
1372         switch (icmph->icmph_type) {
1373         case ICMP_ECHO_REPLY:
1374                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchoReps);
1375                 break;
1376         case ICMP_DEST_UNREACHABLE:
1377                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED)
1378                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInFragNeeded);
1379                 interested = B_TRUE;    /* Pass up to transport */
1380                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInDestUnreachs);
1381                 break;
1382         case ICMP_SOURCE_QUENCH:
1383                 interested = B_TRUE;    /* Pass up to transport */
1384                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInSrcQuenchs);
1385                 break;
1386         case ICMP_REDIRECT:
1387                 if (!ipst->ips_ip_ignore_redirect)
1388                         interested = B_TRUE;
1389                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInRedirects);
1390                 break;
1391         case ICMP_ECHO_REQUEST:
1392                 /*
1393                  * Whether to respond to echo requests that come in as IP
1394                  * broadcasts or as IP multicast is subject to debate
1395                  * (what isn't?).  We aim to please, you pick it.
1396                  * Default is do it.
1397                  */
1398                 if (ira->ira_flags & IRAF_MULTICAST) {
1399                         /* multicast: respond based on tunable */
1400                         interested = ipst->ips_ip_g_resp_to_echo_mcast;
1401                 } else if (ira->ira_flags & IRAF_BROADCAST) {
1402                         /* broadcast: respond based on tunable */
1403                         interested = ipst->ips_ip_g_resp_to_echo_bcast;
1404                 } else {
1405                         /* unicast: always respond */
1406                         interested = B_TRUE;
1407                 }
1408                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInEchos);
1409                 if (!interested) {
1410                         /* We never pass these to RAW sockets */
1411                         freemsg(mp);
1412                         return (NULL);
1413                 }
1414 
1415                 /* Check db_ref to make sure we can modify the packet. */
1416                 if (mp->b_datap->db_ref > 1) {
1417                         mblk_t  *mp1;
1418 
1419                         mp1 = copymsg(mp);
1420                         freemsg(mp);
1421                         if (!mp1) {
1422                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1423                                 return (NULL);
1424                         }
1425                         mp = mp1;
1426                         ipha = (ipha_t *)mp->b_rptr;
1427                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1428                 }
1429                 icmph->icmph_type = ICMP_ECHO_REPLY;
1430                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutEchoReps);
1431                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1432                 return (NULL);
1433 
1434         case ICMP_ROUTER_ADVERTISEMENT:
1435         case ICMP_ROUTER_SOLICITATION:
1436                 break;
1437         case ICMP_TIME_EXCEEDED:
1438                 interested = B_TRUE;    /* Pass up to transport */
1439                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimeExcds);
1440                 break;
1441         case ICMP_PARAM_PROBLEM:
1442                 interested = B_TRUE;    /* Pass up to transport */
1443                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInParmProbs);
1444                 break;
1445         case ICMP_TIME_STAMP_REQUEST:
1446                 /* Response to Time Stamp Requests is local policy. */
1447                 if (ipst->ips_ip_g_resp_to_timestamp) {
1448                         if (ira->ira_flags & IRAF_MULTIBROADCAST)
1449                                 interested =
1450                                     ipst->ips_ip_g_resp_to_timestamp_bcast;
1451                         else
1452                                 interested = B_TRUE;
1453                 }
1454                 if (!interested) {
1455                         /* We never pass these to RAW sockets */
1456                         freemsg(mp);
1457                         return (NULL);
1458                 }
1459 
1460                 /* Make sure we have enough of the packet */
1461                 len_needed = ip_hdr_length + ICMPH_SIZE +
1462                     3 * sizeof (uint32_t);
1463 
1464                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1465                         ipha = ip_pullup(mp, len_needed, ira);
1466                         if (ipha == NULL) {
1467                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1468                                 ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1469                                     mp, ill);
1470                                 freemsg(mp);
1471                                 return (NULL);
1472                         }
1473                         /* Refresh following the pullup. */
1474                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1475                 }
1476                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestamps);
1477                 /* Check db_ref to make sure we can modify the packet. */
1478                 if (mp->b_datap->db_ref > 1) {
1479                         mblk_t  *mp1;
1480 
1481                         mp1 = copymsg(mp);
1482                         freemsg(mp);
1483                         if (!mp1) {
1484                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1485                                 return (NULL);
1486                         }
1487                         mp = mp1;
1488                         ipha = (ipha_t *)mp->b_rptr;
1489                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1490                 }
1491                 icmph->icmph_type = ICMP_TIME_STAMP_REPLY;
1492                 tsp = (uint32_t *)&icmph[1];
1493                 tsp++;          /* Skip past 'originate time' */
1494                 /* Compute # of milliseconds since midnight */
1495                 gethrestime(&now);
1496                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
1497                     NSEC2MSEC(now.tv_nsec);
1498                 *tsp++ = htonl(ts);     /* Lay in 'receive time' */
1499                 *tsp++ = htonl(ts);     /* Lay in 'send time' */
1500                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimestampReps);
1501                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1502                 return (NULL);
1503 
1504         case ICMP_TIME_STAMP_REPLY:
1505                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInTimestampReps);
1506                 break;
1507         case ICMP_INFO_REQUEST:
1508                 /* Per RFC 1122 3.2.2.7, ignore this. */
1509         case ICMP_INFO_REPLY:
1510                 break;
1511         case ICMP_ADDRESS_MASK_REQUEST:
1512                 if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1513                         interested =
1514                             ipst->ips_ip_respond_to_address_mask_broadcast;
1515                 } else {
1516                         interested = B_TRUE;
1517                 }
1518                 if (!interested) {
1519                         /* We never pass these to RAW sockets */
1520                         freemsg(mp);
1521                         return (NULL);
1522                 }
1523                 len_needed = ip_hdr_length + ICMPH_SIZE + IP_ADDR_LEN;
1524                 if (mp->b_wptr - mp->b_rptr < len_needed) {
1525                         ipha = ip_pullup(mp, len_needed, ira);
1526                         if (ipha == NULL) {
1527                                 BUMP_MIB(ill->ill_ip_mib,
1528                                     ipIfStatsInTruncatedPkts);
1529                                 ip_drop_input("ipIfStatsInTruncatedPkts", mp,
1530                                     ill);
1531                                 freemsg(mp);
1532                                 return (NULL);
1533                         }
1534                         /* Refresh following the pullup. */
1535                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1536                 }
1537                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMasks);
1538                 /* Check db_ref to make sure we can modify the packet. */
1539                 if (mp->b_datap->db_ref > 1) {
1540                         mblk_t  *mp1;
1541 
1542                         mp1 = copymsg(mp);
1543                         freemsg(mp);
1544                         if (!mp1) {
1545                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
1546                                 return (NULL);
1547                         }
1548                         mp = mp1;
1549                         ipha = (ipha_t *)mp->b_rptr;
1550                         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1551                 }
1552                 /*
1553                  * Need the ipif with the mask be the same as the source
1554                  * address of the mask reply. For unicast we have a specific
1555                  * ipif. For multicast/broadcast we only handle onlink
1556                  * senders, and use the source address to pick an ipif.
1557                  */
1558                 ipif = ipif_lookup_addr(ipha->ipha_dst, ill, zoneid, ipst);
1559                 if (ipif == NULL) {
1560                         /* Broadcast or multicast */
1561                         ipif = ipif_lookup_remote(ill, ipha->ipha_src, zoneid);
1562                         if (ipif == NULL) {
1563                                 freemsg(mp);
1564                                 return (NULL);
1565                         }
1566                 }
1567                 icmph->icmph_type = ICMP_ADDRESS_MASK_REPLY;
1568                 bcopy(&ipif->ipif_net_mask, &icmph[1], IP_ADDR_LEN);
1569                 ipif_refrele(ipif);
1570                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutAddrMaskReps);
1571                 icmp_send_reply_v4(mp, ipha, icmph, ira);
1572                 return (NULL);
1573 
1574         case ICMP_ADDRESS_MASK_REPLY:
1575                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInAddrMaskReps);
1576                 break;
1577         default:
1578                 interested = B_TRUE;    /* Pass up to transport */
1579                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInUnknowns);
1580                 break;
1581         }
1582         /*
1583          * See if there is an ICMP client to avoid an extra copymsg/freemsg
1584          * if there isn't one.
1585          */
1586         if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_ICMP].connf_head != NULL) {
1587                 /* If there is an ICMP client and we want one too, copy it. */
1588 
1589                 if (!interested) {
1590                         /* Caller will deliver to RAW sockets */
1591                         return (mp);
1592                 }
1593                 mp_ret = copymsg(mp);
1594                 if (mp_ret == NULL) {
1595                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1596                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1597                 }
1598         } else if (!interested) {
1599                 /* Neither we nor raw sockets are interested. Drop packet now */
1600                 freemsg(mp);
1601                 return (NULL);
1602         }
1603 
1604         /*
1605          * ICMP error or redirect packet. Make sure we have enough of
1606          * the header and that db_ref == 1 since we might end up modifying
1607          * the packet.
1608          */
1609         if (mp->b_cont != NULL) {
1610                 if (ip_pullup(mp, -1, ira) == NULL) {
1611                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1612                         ip_drop_input("ipIfStatsInDiscards - ip_pullup",
1613                             mp, ill);
1614                         freemsg(mp);
1615                         return (mp_ret);
1616                 }
1617         }
1618 
1619         if (mp->b_datap->db_ref > 1) {
1620                 mblk_t  *mp1;
1621 
1622                 mp1 = copymsg(mp);
1623                 if (mp1 == NULL) {
1624                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1625                         ip_drop_input("ipIfStatsInDiscards - copymsg", mp, ill);
1626                         freemsg(mp);
1627                         return (mp_ret);
1628                 }
1629                 freemsg(mp);
1630                 mp = mp1;
1631         }
1632 
1633         /*
1634          * In case mp has changed, verify the message before any further
1635          * processes.
1636          */
1637         ipha = (ipha_t *)mp->b_rptr;
1638         icmph = (icmph_t *)&mp->b_rptr[ip_hdr_length];
1639         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
1640                 freemsg(mp);
1641                 return (mp_ret);
1642         }
1643 
1644         switch (icmph->icmph_type) {
1645         case ICMP_REDIRECT:
1646                 icmp_redirect_v4(mp, ipha, icmph, ira);
1647                 break;
1648         case ICMP_DEST_UNREACHABLE:
1649                 if (icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED) {
1650                         /* Update DCE and adjust MTU is icmp header if needed */
1651                         icmp_inbound_too_big_v4(icmph, ira);
1652                 }
1653                 /* FALLTHROUGH */
1654         default:
1655                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
1656                 break;
1657         }
1658         return (mp_ret);
1659 }
1660 
1661 /*
1662  * Send an ICMP echo, timestamp or address mask reply.
1663  * The caller has already updated the payload part of the packet.
1664  * We handle the ICMP checksum, IP source address selection and feed
1665  * the packet into ip_output_simple.
1666  */
1667 static void
1668 icmp_send_reply_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph,
1669     ip_recv_attr_t *ira)
1670 {
1671         uint_t          ip_hdr_length = ira->ira_ip_hdr_length;
1672         ill_t           *ill = ira->ira_ill;
1673         ip_stack_t      *ipst = ill->ill_ipst;
1674         ip_xmit_attr_t  ixas;
1675 
1676         /* Send out an ICMP packet */
1677         icmph->icmph_checksum = 0;
1678         icmph->icmph_checksum = IP_CSUM(mp, ip_hdr_length, 0);
1679         /* Reset time to live. */
1680         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
1681         {
1682                 /* Swap source and destination addresses */
1683                 ipaddr_t tmp;
1684 
1685                 tmp = ipha->ipha_src;
1686                 ipha->ipha_src = ipha->ipha_dst;
1687                 ipha->ipha_dst = tmp;
1688         }
1689         ipha->ipha_ident = 0;
1690         if (!IS_SIMPLE_IPH(ipha))
1691                 icmp_options_update(ipha);
1692 
1693         bzero(&ixas, sizeof (ixas));
1694         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
1695         ixas.ixa_zoneid = ira->ira_zoneid;
1696         ixas.ixa_cred = kcred;
1697         ixas.ixa_cpid = NOPID;
1698         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
1699         ixas.ixa_ifindex = 0;
1700         ixas.ixa_ipst = ipst;
1701         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1702 
1703         if (!(ira->ira_flags & IRAF_IPSEC_SECURE)) {
1704                 /*
1705                  * This packet should go out the same way as it
1706                  * came in i.e in clear, independent of the IPsec policy
1707                  * for transmitting packets.
1708                  */
1709                 ixas.ixa_flags |= IXAF_NO_IPSEC;
1710         } else {
1711                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
1712                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1713                         /* Note: mp already consumed and ip_drop_packet done */
1714                         return;
1715                 }
1716         }
1717         if (ira->ira_flags & IRAF_MULTIBROADCAST) {
1718                 /*
1719                  * Not one or our addresses (IRE_LOCALs), thus we let
1720                  * ip_output_simple pick the source.
1721                  */
1722                 ipha->ipha_src = INADDR_ANY;
1723                 ixas.ixa_flags |= IXAF_SET_SOURCE;
1724         }
1725         /* Should we send with DF and use dce_pmtu? */
1726         if (ipst->ips_ipv4_icmp_return_pmtu) {
1727                 ixas.ixa_flags |= IXAF_PMTU_DISCOVERY;
1728                 ipha->ipha_fragment_offset_and_flags |= IPH_DF_HTONS;
1729         }
1730 
1731         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
1732 
1733         (void) ip_output_simple(mp, &ixas);
1734         ixa_cleanup(&ixas);
1735 }
1736 
1737 /*
1738  * Verify the ICMP messages for either for ICMP error or redirect packet.
1739  * The caller should have fully pulled up the message. If it's a redirect
1740  * packet, only basic checks on IP header will be done; otherwise, verify
1741  * the packet by looking at the included ULP header.
1742  *
1743  * Called before icmp_inbound_error_fanout_v4 is called.
1744  */
1745 static boolean_t
1746 icmp_inbound_verify_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
1747 {
1748         ill_t           *ill = ira->ira_ill;
1749         int             hdr_length;
1750         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
1751         conn_t          *connp;
1752         ipha_t          *ipha;  /* Inner IP header */
1753 
1754         ipha = (ipha_t *)&icmph[1];
1755         if ((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH > mp->b_wptr)
1756                 goto truncated;
1757 
1758         hdr_length = IPH_HDR_LENGTH(ipha);
1759 
1760         if ((IPH_HDR_VERSION(ipha) != IPV4_VERSION))
1761                 goto discard_pkt;
1762 
1763         if (hdr_length < sizeof (ipha_t))
1764                 goto truncated;
1765 
1766         if ((uchar_t *)ipha + hdr_length > mp->b_wptr)
1767                 goto truncated;
1768 
1769         /*
1770          * Stop here for ICMP_REDIRECT.
1771          */
1772         if (icmph->icmph_type == ICMP_REDIRECT)
1773                 return (B_TRUE);
1774 
1775         /*
1776          * ICMP errors only.
1777          */
1778         switch (ipha->ipha_protocol) {
1779         case IPPROTO_UDP:
1780                 /*
1781                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1782                  * transport header.
1783                  */
1784                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1785                     mp->b_wptr)
1786                         goto truncated;
1787                 break;
1788         case IPPROTO_TCP: {
1789                 tcpha_t         *tcpha;
1790 
1791                 /*
1792                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1793                  * transport header.
1794                  */
1795                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1796                     mp->b_wptr)
1797                         goto truncated;
1798 
1799                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
1800                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
1801                     ipst);
1802                 if (connp == NULL)
1803                         goto discard_pkt;
1804 
1805                 if ((connp->conn_verifyicmp != NULL) &&
1806                     !connp->conn_verifyicmp(connp, tcpha, icmph, NULL, ira)) {
1807                         CONN_DEC_REF(connp);
1808                         goto discard_pkt;
1809                 }
1810                 CONN_DEC_REF(connp);
1811                 break;
1812         }
1813         case IPPROTO_SCTP:
1814                 /*
1815                  * Verify we have at least ICMP_MIN_TP_HDR_LEN bytes of
1816                  * transport header.
1817                  */
1818                 if ((uchar_t *)ipha + hdr_length + ICMP_MIN_TP_HDR_LEN >
1819                     mp->b_wptr)
1820                         goto truncated;
1821                 break;
1822         case IPPROTO_ESP:
1823         case IPPROTO_AH:
1824                 break;
1825         case IPPROTO_ENCAP:
1826                 if ((uchar_t *)ipha + hdr_length + sizeof (ipha_t) >
1827                     mp->b_wptr)
1828                         goto truncated;
1829                 break;
1830         default:
1831                 break;
1832         }
1833 
1834         return (B_TRUE);
1835 
1836 discard_pkt:
1837         /* Bogus ICMP error. */
1838         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
1839         return (B_FALSE);
1840 
1841 truncated:
1842         /* We pulled up everthing already. Must be truncated */
1843         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
1844         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
1845         return (B_FALSE);
1846 }
1847 
1848 /* Table from RFC 1191 */
1849 static int icmp_frag_size_table[] =
1850 { 32000, 17914, 8166, 4352, 2002, 1496, 1006, 508, 296, 68 };
1851 
1852 /*
1853  * Process received ICMP Packet too big.
1854  * Just handles the DCE create/update, including using the above table of
1855  * PMTU guesses. The caller is responsible for validating the packet before
1856  * passing it in and also to fanout the ICMP error to any matching transport
1857  * conns. Assumes the message has been fully pulled up and verified.
1858  *
1859  * Before getting here, the caller has called icmp_inbound_verify_v4()
1860  * that should have verified with ULP to prevent undoing the changes we're
1861  * going to make to DCE. For example, TCP might have verified that the packet
1862  * which generated error is in the send window.
1863  *
1864  * In some cases modified this MTU in the ICMP header packet; the caller
1865  * should pass to the matching ULP after this returns.
1866  */
1867 static void
1868 icmp_inbound_too_big_v4(icmph_t *icmph, ip_recv_attr_t *ira)
1869 {
1870         dce_t           *dce;
1871         int             old_mtu;
1872         int             mtu, orig_mtu;
1873         ipaddr_t        dst;
1874         boolean_t       disable_pmtud;
1875         ill_t           *ill = ira->ira_ill;
1876         ip_stack_t      *ipst = ill->ill_ipst;
1877         uint_t          hdr_length;
1878         ipha_t          *ipha;
1879 
1880         /* Caller already pulled up everything. */
1881         ipha = (ipha_t *)&icmph[1];
1882         ASSERT(icmph->icmph_type == ICMP_DEST_UNREACHABLE &&
1883             icmph->icmph_code == ICMP_FRAGMENTATION_NEEDED);
1884         ASSERT(ill != NULL);
1885 
1886         hdr_length = IPH_HDR_LENGTH(ipha);
1887 
1888         /*
1889          * We handle path MTU for source routed packets since the DCE
1890          * is looked up using the final destination.
1891          */
1892         dst = ip_get_dst(ipha);
1893 
1894         dce = dce_lookup_and_add_v4(dst, ipst);
1895         if (dce == NULL) {
1896                 /* Couldn't add a unique one - ENOMEM */
1897                 ip1dbg(("icmp_inbound_too_big_v4: no dce for 0x%x\n",
1898                     ntohl(dst)));
1899                 return;
1900         }
1901 
1902         /* Check for MTU discovery advice as described in RFC 1191 */
1903         mtu = ntohs(icmph->icmph_du_mtu);
1904         orig_mtu = mtu;
1905         disable_pmtud = B_FALSE;
1906 
1907         mutex_enter(&dce->dce_lock);
1908         if (dce->dce_flags & DCEF_PMTU)
1909                 old_mtu = dce->dce_pmtu;
1910         else
1911                 old_mtu = ill->ill_mtu;
1912 
1913         if (icmph->icmph_du_zero != 0 || mtu < ipst->ips_ip_pmtu_min) {
1914                 uint32_t length;
1915                 int     i;
1916 
1917                 /*
1918                  * Use the table from RFC 1191 to figure out
1919                  * the next "plateau" based on the length in
1920                  * the original IP packet.
1921                  */
1922                 length = ntohs(ipha->ipha_length);
1923                 DTRACE_PROBE2(ip4__pmtu__guess, dce_t *, dce,
1924                     uint32_t, length);
1925                 if (old_mtu <= length &&
1926                     old_mtu >= length - hdr_length) {
1927                         /*
1928                          * Handle broken BSD 4.2 systems that
1929                          * return the wrong ipha_length in ICMP
1930                          * errors.
1931                          */
1932                         ip1dbg(("Wrong mtu: sent %d, dce %d\n",
1933                             length, old_mtu));
1934                         length -= hdr_length;
1935                 }
1936                 for (i = 0; i < A_CNT(icmp_frag_size_table); i++) {
1937                         if (length > icmp_frag_size_table[i])
1938                                 break;
1939                 }
1940                 if (i == A_CNT(icmp_frag_size_table)) {
1941                         /* Smaller than IP_MIN_MTU! */
1942                         ip1dbg(("Too big for packet size %d\n",
1943                             length));
1944                         disable_pmtud = B_TRUE;
1945                         mtu = ipst->ips_ip_pmtu_min;
1946                 } else {
1947                         mtu = icmp_frag_size_table[i];
1948                         ip1dbg(("Calculated mtu %d, packet size %d, "
1949                             "before %d\n", mtu, length, old_mtu));
1950                         if (mtu < ipst->ips_ip_pmtu_min) {
1951                                 mtu = ipst->ips_ip_pmtu_min;
1952                                 disable_pmtud = B_TRUE;
1953                         }
1954                 }
1955         }
1956         if (disable_pmtud)
1957                 dce->dce_flags |= DCEF_TOO_SMALL_PMTU;
1958         else
1959                 dce->dce_flags &= ~DCEF_TOO_SMALL_PMTU;
1960 
1961         dce->dce_pmtu = MIN(old_mtu, mtu);
1962         /* Prepare to send the new max frag size for the ULP. */
1963         icmph->icmph_du_zero = 0;
1964         icmph->icmph_du_mtu =  htons((uint16_t)dce->dce_pmtu);
1965         DTRACE_PROBE4(ip4__pmtu__change, icmph_t *, icmph, dce_t *,
1966             dce, int, orig_mtu, int, mtu);
1967 
1968         /* We now have a PMTU for sure */
1969         dce->dce_flags |= DCEF_PMTU;
1970         dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
1971         mutex_exit(&dce->dce_lock);
1972         /*
1973          * After dropping the lock the new value is visible to everyone.
1974          * Then we bump the generation number so any cached values reinspect
1975          * the dce_t.
1976          */
1977         dce_increment_generation(dce);
1978         dce_refrele(dce);
1979 }
1980 
1981 /*
1982  * If the packet in error is Self-Encapsulated, icmp_inbound_error_fanout_v4
1983  * calls this function.
1984  */
1985 static mblk_t *
1986 icmp_inbound_self_encap_error_v4(mblk_t *mp, ipha_t *ipha, ipha_t *in_ipha)
1987 {
1988         int length;
1989 
1990         ASSERT(mp->b_datap->db_type == M_DATA);
1991 
1992         /* icmp_inbound_v4 has already pulled up the whole error packet */
1993         ASSERT(mp->b_cont == NULL);
1994 
1995         /*
1996          * The length that we want to overlay is the inner header
1997          * and what follows it.
1998          */
1999         length = msgdsize(mp) - ((uchar_t *)in_ipha - mp->b_rptr);
2000 
2001         /*
2002          * Overlay the inner header and whatever follows it over the
2003          * outer header.
2004          */
2005         bcopy((uchar_t *)in_ipha, (uchar_t *)ipha, length);
2006 
2007         /* Adjust for what we removed */
2008         mp->b_wptr -= (uchar_t *)in_ipha - (uchar_t *)ipha;
2009         return (mp);
2010 }
2011 
2012 /*
2013  * Try to pass the ICMP message upstream in case the ULP cares.
2014  *
2015  * If the packet that caused the ICMP error is secure, we send
2016  * it to AH/ESP to make sure that the attached packet has a
2017  * valid association. ipha in the code below points to the
2018  * IP header of the packet that caused the error.
2019  *
2020  * For IPsec cases, we let the next-layer-up (which has access to
2021  * cached policy on the conn_t, or can query the SPD directly)
2022  * subtract out any IPsec overhead if they must.  We therefore make no
2023  * adjustments here for IPsec overhead.
2024  *
2025  * IFN could have been generated locally or by some router.
2026  *
2027  * LOCAL : ire_send_wire (before calling ipsec_out_process) can call
2028  * icmp_frag_needed/icmp_pkt2big_v6 to generated a local IFN.
2029  *          This happens because IP adjusted its value of MTU on an
2030  *          earlier IFN message and could not tell the upper layer,
2031  *          the new adjusted value of MTU e.g. Packet was encrypted
2032  *          or there was not enough information to fanout to upper
2033  *          layers. Thus on the next outbound datagram, ire_send_wire
2034  *          generates the IFN, where IPsec processing has *not* been
2035  *          done.
2036  *
2037  *          Note that we retain ixa_fragsize across IPsec thus once
2038  *          we have picking ixa_fragsize and entered ipsec_out_process we do
2039  *          no change the fragsize even if the path MTU changes before
2040  *          we reach ip_output_post_ipsec.
2041  *
2042  *          In the local case, IRAF_LOOPBACK will be set indicating
2043  *          that IFN was generated locally.
2044  *
2045  * ROUTER : IFN could be secure or non-secure.
2046  *
2047  *          * SECURE : We use the IPSEC_IN to fanout to AH/ESP if the
2048  *            packet in error has AH/ESP headers to validate the AH/ESP
2049  *            headers. AH/ESP will verify whether there is a valid SA or
2050  *            not and send it back. We will fanout again if we have more
2051  *            data in the packet.
2052  *
2053  *            If the packet in error does not have AH/ESP, we handle it
2054  *            like any other case.
2055  *
2056  *          * NON_SECURE : If the packet in error has AH/ESP headers, we send it
2057  *            up to AH/ESP for validation. AH/ESP will verify whether there is a
2058  *            valid SA or not and send it back. We will fanout again if
2059  *            we have more data in the packet.
2060  *
2061  *            If the packet in error does not have AH/ESP, we handle it
2062  *            like any other case.
2063  *
2064  * The caller must have called icmp_inbound_verify_v4.
2065  */
2066 static void
2067 icmp_inbound_error_fanout_v4(mblk_t *mp, icmph_t *icmph, ip_recv_attr_t *ira)
2068 {
2069         uint16_t        *up;    /* Pointer to ports in ULP header */
2070         uint32_t        ports;  /* reversed ports for fanout */
2071         ipha_t          ripha;  /* With reversed addresses */
2072         ipha_t          *ipha;  /* Inner IP header */
2073         uint_t          hdr_length; /* Inner IP header length */
2074         tcpha_t         *tcpha;
2075         conn_t          *connp;
2076         ill_t           *ill = ira->ira_ill;
2077         ip_stack_t      *ipst = ill->ill_ipst;
2078         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
2079         ill_t           *rill = ira->ira_rill;
2080 
2081         /* Caller already pulled up everything. */
2082         ipha = (ipha_t *)&icmph[1];
2083         ASSERT((uchar_t *)&ipha[1] <= mp->b_wptr);
2084         ASSERT(mp->b_cont == NULL);
2085 
2086         hdr_length = IPH_HDR_LENGTH(ipha);
2087         ira->ira_protocol = ipha->ipha_protocol;
2088 
2089         /*
2090          * We need a separate IP header with the source and destination
2091          * addresses reversed to do fanout/classification because the ipha in
2092          * the ICMP error is in the form we sent it out.
2093          */
2094         ripha.ipha_src = ipha->ipha_dst;
2095         ripha.ipha_dst = ipha->ipha_src;
2096         ripha.ipha_protocol = ipha->ipha_protocol;
2097         ripha.ipha_version_and_hdr_length = ipha->ipha_version_and_hdr_length;
2098 
2099         ip2dbg(("icmp_inbound_error_v4: proto %d %x to %x: %d/%d\n",
2100             ripha.ipha_protocol, ntohl(ipha->ipha_src),
2101             ntohl(ipha->ipha_dst),
2102             icmph->icmph_type, icmph->icmph_code));
2103 
2104         switch (ipha->ipha_protocol) {
2105         case IPPROTO_UDP:
2106                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2107 
2108                 /* Attempt to find a client stream based on port. */
2109                 ip2dbg(("icmp_inbound_error_v4: UDP ports %d to %d\n",
2110                     ntohs(up[0]), ntohs(up[1])));
2111 
2112                 /* Note that we send error to all matches. */
2113                 ira->ira_flags |= IRAF_ICMP_ERROR;
2114                 ip_fanout_udp_multi_v4(mp, &ripha, up[0], up[1], ira);
2115                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2116                 return;
2117 
2118         case IPPROTO_TCP:
2119                 /*
2120                  * Find a TCP client stream for this packet.
2121                  * Note that we do a reverse lookup since the header is
2122                  * in the form we sent it out.
2123                  */
2124                 tcpha = (tcpha_t *)((uchar_t *)ipha + hdr_length);
2125                 connp = ipcl_tcp_lookup_reversed_ipv4(ipha, tcpha, TCPS_LISTEN,
2126                     ipst);
2127                 if (connp == NULL)
2128                         goto discard_pkt;
2129 
2130                 if (CONN_INBOUND_POLICY_PRESENT(connp, ipss) ||
2131                     (ira->ira_flags & IRAF_IPSEC_SECURE)) {
2132                         mp = ipsec_check_inbound_policy(mp, connp,
2133                             ipha, NULL, ira);
2134                         if (mp == NULL) {
2135                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2136                                 /* Note that mp is NULL */
2137                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
2138                                 CONN_DEC_REF(connp);
2139                                 return;
2140                         }
2141                 }
2142 
2143                 ira->ira_flags |= IRAF_ICMP_ERROR;
2144                 ira->ira_ill = ira->ira_rill = NULL;
2145                 if (IPCL_IS_TCP(connp)) {
2146                         SQUEUE_ENTER_ONE(connp->conn_sqp, mp,
2147                             connp->conn_recvicmp, connp, ira, SQ_FILL,
2148                             SQTAG_TCP_INPUT_ICMP_ERR);
2149                 } else {
2150                         /* Not TCP; must be SOCK_RAW, IPPROTO_TCP */
2151                         (connp->conn_recv)(connp, mp, NULL, ira);
2152                         CONN_DEC_REF(connp);
2153                 }
2154                 ira->ira_ill = ill;
2155                 ira->ira_rill = rill;
2156                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2157                 return;
2158 
2159         case IPPROTO_SCTP:
2160                 up = (uint16_t *)((uchar_t *)ipha + hdr_length);
2161                 /* Find a SCTP client stream for this packet. */
2162                 ((uint16_t *)&ports)[0] = up[1];
2163                 ((uint16_t *)&ports)[1] = up[0];
2164 
2165                 ira->ira_flags |= IRAF_ICMP_ERROR;
2166                 ip_fanout_sctp(mp, &ripha, NULL, ports, ira);
2167                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2168                 return;
2169 
2170         case IPPROTO_ESP:
2171         case IPPROTO_AH:
2172                 if (!ipsec_loaded(ipss)) {
2173                         ip_proto_not_sup(mp, ira);
2174                         return;
2175                 }
2176 
2177                 if (ipha->ipha_protocol == IPPROTO_ESP)
2178                         mp = ipsecesp_icmp_error(mp, ira);
2179                 else
2180                         mp = ipsecah_icmp_error(mp, ira);
2181                 if (mp == NULL)
2182                         return;
2183 
2184                 /* Just in case ipsec didn't preserve the NULL b_cont */
2185                 if (mp->b_cont != NULL) {
2186                         if (!pullupmsg(mp, -1))
2187                                 goto discard_pkt;
2188                 }
2189 
2190                 /*
2191                  * Note that ira_pktlen and ira_ip_hdr_length are no longer
2192                  * correct, but we don't use them any more here.
2193                  *
2194                  * If succesful, the mp has been modified to not include
2195                  * the ESP/AH header so we can fanout to the ULP's icmp
2196                  * error handler.
2197                  */
2198                 if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2199                         goto truncated;
2200 
2201                 /* Verify the modified message before any further processes. */
2202                 ipha = (ipha_t *)mp->b_rptr;
2203                 hdr_length = IPH_HDR_LENGTH(ipha);
2204                 icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2205                 if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2206                         freemsg(mp);
2207                         return;
2208                 }
2209 
2210                 icmp_inbound_error_fanout_v4(mp, icmph, ira);
2211                 return;
2212 
2213         case IPPROTO_ENCAP: {
2214                 /* Look for self-encapsulated packets that caused an error */
2215                 ipha_t *in_ipha;
2216 
2217                 /*
2218                  * Caller has verified that length has to be
2219                  * at least the size of IP header.
2220                  */
2221                 ASSERT(hdr_length >= sizeof (ipha_t));
2222                 /*
2223                  * Check the sanity of the inner IP header like
2224                  * we did for the outer header.
2225                  */
2226                 in_ipha = (ipha_t *)((uchar_t *)ipha + hdr_length);
2227                 if ((IPH_HDR_VERSION(in_ipha) != IPV4_VERSION)) {
2228                         goto discard_pkt;
2229                 }
2230                 if (IPH_HDR_LENGTH(in_ipha) < sizeof (ipha_t)) {
2231                         goto discard_pkt;
2232                 }
2233                 /* Check for Self-encapsulated tunnels */
2234                 if (in_ipha->ipha_src == ipha->ipha_src &&
2235                     in_ipha->ipha_dst == ipha->ipha_dst) {
2236 
2237                         mp = icmp_inbound_self_encap_error_v4(mp, ipha,
2238                             in_ipha);
2239                         if (mp == NULL)
2240                                 goto discard_pkt;
2241 
2242                         /*
2243                          * Just in case self_encap didn't preserve the NULL
2244                          * b_cont
2245                          */
2246                         if (mp->b_cont != NULL) {
2247                                 if (!pullupmsg(mp, -1))
2248                                         goto discard_pkt;
2249                         }
2250                         /*
2251                          * Note that ira_pktlen and ira_ip_hdr_length are no
2252                          * longer correct, but we don't use them any more here.
2253                          */
2254                         if (mp->b_wptr - mp->b_rptr < IP_SIMPLE_HDR_LENGTH)
2255                                 goto truncated;
2256 
2257                         /*
2258                          * Verify the modified message before any further
2259                          * processes.
2260                          */
2261                         ipha = (ipha_t *)mp->b_rptr;
2262                         hdr_length = IPH_HDR_LENGTH(ipha);
2263                         icmph = (icmph_t *)&mp->b_rptr[hdr_length];
2264                         if (!icmp_inbound_verify_v4(mp, icmph, ira)) {
2265                                 freemsg(mp);
2266                                 return;
2267                         }
2268 
2269                         /*
2270                          * The packet in error is self-encapsualted.
2271                          * And we are finding it further encapsulated
2272                          * which we could not have possibly generated.
2273                          */
2274                         if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2275                                 goto discard_pkt;
2276                         }
2277                         icmp_inbound_error_fanout_v4(mp, icmph, ira);
2278                         return;
2279                 }
2280                 /* No self-encapsulated */
2281         }
2282         /* FALLTHROUGH */
2283         case IPPROTO_IPV6:
2284                 if ((connp = ipcl_iptun_classify_v4(&ripha.ipha_src,
2285                     &ripha.ipha_dst, ipst)) != NULL) {
2286                         ira->ira_flags |= IRAF_ICMP_ERROR;
2287                         connp->conn_recvicmp(connp, mp, NULL, ira);
2288                         CONN_DEC_REF(connp);
2289                         ira->ira_flags &= ~IRAF_ICMP_ERROR;
2290                         return;
2291                 }
2292                 /*
2293                  * No IP tunnel is interested, fallthrough and see
2294                  * if a raw socket will want it.
2295                  */
2296                 /* FALLTHROUGH */
2297         default:
2298                 ira->ira_flags |= IRAF_ICMP_ERROR;
2299                 ip_fanout_proto_v4(mp, &ripha, ira);
2300                 ira->ira_flags &= ~IRAF_ICMP_ERROR;
2301                 return;
2302         }
2303         /* NOTREACHED */
2304 discard_pkt:
2305         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
2306         ip1dbg(("icmp_inbound_error_fanout_v4: drop pkt\n"));
2307         ip_drop_input("ipIfStatsInDiscards", mp, ill);
2308         freemsg(mp);
2309         return;
2310 
2311 truncated:
2312         /* We pulled up everthing already. Must be truncated */
2313         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
2314         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
2315         freemsg(mp);
2316 }
2317 
2318 /*
2319  * Common IP options parser.
2320  *
2321  * Setup routine: fill in *optp with options-parsing state, then
2322  * tail-call ipoptp_next to return the first option.
2323  */
2324 uint8_t
2325 ipoptp_first(ipoptp_t *optp, ipha_t *ipha)
2326 {
2327         uint32_t totallen; /* total length of all options */
2328 
2329         totallen = ipha->ipha_version_and_hdr_length -
2330             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
2331         totallen <<= 2;
2332         optp->ipoptp_next = (uint8_t *)(&ipha[1]);
2333         optp->ipoptp_end = optp->ipoptp_next + totallen;
2334         optp->ipoptp_flags = 0;
2335         return (ipoptp_next(optp));
2336 }
2337 
2338 /* Like above but without an ipha_t */
2339 uint8_t
2340 ipoptp_first2(ipoptp_t *optp, uint32_t totallen, uint8_t *opt)
2341 {
2342         optp->ipoptp_next = opt;
2343         optp->ipoptp_end = optp->ipoptp_next + totallen;
2344         optp->ipoptp_flags = 0;
2345         return (ipoptp_next(optp));
2346 }
2347 
2348 /*
2349  * Common IP options parser: extract next option.
2350  */
2351 uint8_t
2352 ipoptp_next(ipoptp_t *optp)
2353 {
2354         uint8_t *end = optp->ipoptp_end;
2355         uint8_t *cur = optp->ipoptp_next;
2356         uint8_t opt, len, pointer;
2357 
2358         /*
2359          * If cur > end already, then the ipoptp_end or ipoptp_next pointer
2360          * has been corrupted.
2361          */
2362         ASSERT(cur <= end);
2363 
2364         if (cur == end)
2365                 return (IPOPT_EOL);
2366 
2367         opt = cur[IPOPT_OPTVAL];
2368 
2369         /*
2370          * Skip any NOP options.
2371          */
2372         while (opt == IPOPT_NOP) {
2373                 cur++;
2374                 if (cur == end)
2375                         return (IPOPT_EOL);
2376                 opt = cur[IPOPT_OPTVAL];
2377         }
2378 
2379         if (opt == IPOPT_EOL)
2380                 return (IPOPT_EOL);
2381 
2382         /*
2383          * Option requiring a length.
2384          */
2385         if ((cur + 1) >= end) {
2386                 optp->ipoptp_flags |= IPOPTP_ERROR;
2387                 return (IPOPT_EOL);
2388         }
2389         len = cur[IPOPT_OLEN];
2390         if (len < 2) {
2391                 optp->ipoptp_flags |= IPOPTP_ERROR;
2392                 return (IPOPT_EOL);
2393         }
2394         optp->ipoptp_cur = cur;
2395         optp->ipoptp_len = len;
2396         optp->ipoptp_next = cur + len;
2397         if (cur + len > end) {
2398                 optp->ipoptp_flags |= IPOPTP_ERROR;
2399                 return (IPOPT_EOL);
2400         }
2401 
2402         /*
2403          * For the options which require a pointer field, make sure
2404          * its there, and make sure it points to either something
2405          * inside this option, or the end of the option.
2406          */
2407         switch (opt) {
2408         case IPOPT_RR:
2409         case IPOPT_TS:
2410         case IPOPT_LSRR:
2411         case IPOPT_SSRR:
2412                 if (len <= IPOPT_OFFSET) {
2413                         optp->ipoptp_flags |= IPOPTP_ERROR;
2414                         return (opt);
2415                 }
2416                 pointer = cur[IPOPT_OFFSET];
2417                 if (pointer - 1 > len) {
2418                         optp->ipoptp_flags |= IPOPTP_ERROR;
2419                         return (opt);
2420                 }
2421                 break;
2422         }
2423 
2424         /*
2425          * Sanity check the pointer field based on the type of the
2426          * option.
2427          */
2428         switch (opt) {
2429         case IPOPT_RR:
2430         case IPOPT_SSRR:
2431         case IPOPT_LSRR:
2432                 if (pointer < IPOPT_MINOFF_SR)
2433                         optp->ipoptp_flags |= IPOPTP_ERROR;
2434                 break;
2435         case IPOPT_TS:
2436                 if (pointer < IPOPT_MINOFF_IT)
2437                         optp->ipoptp_flags |= IPOPTP_ERROR;
2438                 /*
2439                  * Note that the Internet Timestamp option also
2440                  * contains two four bit fields (the Overflow field,
2441                  * and the Flag field), which follow the pointer
2442                  * field.  We don't need to check that these fields
2443                  * fall within the length of the option because this
2444                  * was implicitely done above.  We've checked that the
2445                  * pointer value is at least IPOPT_MINOFF_IT, and that
2446                  * it falls within the option.  Since IPOPT_MINOFF_IT >
2447                  * IPOPT_POS_OV_FLG, we don't need the explicit check.
2448                  */
2449                 ASSERT(len > IPOPT_POS_OV_FLG);
2450                 break;
2451         }
2452 
2453         return (opt);
2454 }
2455 
2456 /*
2457  * Use the outgoing IP header to create an IP_OPTIONS option the way
2458  * it was passed down from the application.
2459  *
2460  * This is compatible with BSD in that it returns
2461  * the reverse source route with the final destination
2462  * as the last entry. The first 4 bytes of the option
2463  * will contain the final destination.
2464  */
2465 int
2466 ip_opt_get_user(conn_t *connp, uchar_t *buf)
2467 {
2468         ipoptp_t        opts;
2469         uchar_t         *opt;
2470         uint8_t         optval;
2471         uint8_t         optlen;
2472         uint32_t        len = 0;
2473         uchar_t         *buf1 = buf;
2474         uint32_t        totallen;
2475         ipaddr_t        dst;
2476         ip_pkt_t        *ipp = &connp->conn_xmit_ipp;
2477 
2478         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
2479                 return (0);
2480 
2481         totallen = ipp->ipp_ipv4_options_len;
2482         if (totallen & 0x3)
2483                 return (0);
2484 
2485         buf += IP_ADDR_LEN;     /* Leave room for final destination */
2486         len += IP_ADDR_LEN;
2487         bzero(buf1, IP_ADDR_LEN);
2488 
2489         dst = connp->conn_faddr_v4;
2490 
2491         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
2492             optval != IPOPT_EOL;
2493             optval = ipoptp_next(&opts)) {
2494                 int     off;
2495 
2496                 opt = opts.ipoptp_cur;
2497                 if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
2498                         break;
2499                 }
2500                 optlen = opts.ipoptp_len;
2501 
2502                 switch (optval) {
2503                 case IPOPT_SSRR:
2504                 case IPOPT_LSRR:
2505 
2506                         /*
2507                          * Insert destination as the first entry in the source
2508                          * route and move down the entries on step.
2509                          * The last entry gets placed at buf1.
2510                          */
2511                         buf[IPOPT_OPTVAL] = optval;
2512                         buf[IPOPT_OLEN] = optlen;
2513                         buf[IPOPT_OFFSET] = optlen;
2514 
2515                         off = optlen - IP_ADDR_LEN;
2516                         if (off < 0) {
2517                                 /* No entries in source route */
2518                                 break;
2519                         }
2520                         /* Last entry in source route if not already set */
2521                         if (dst == INADDR_ANY)
2522                                 bcopy(opt + off, buf1, IP_ADDR_LEN);
2523                         off -= IP_ADDR_LEN;
2524 
2525                         while (off > 0) {
2526                                 bcopy(opt + off,
2527                                     buf + off + IP_ADDR_LEN,
2528                                     IP_ADDR_LEN);
2529                                 off -= IP_ADDR_LEN;
2530                         }
2531                         /* ipha_dst into first slot */
2532                         bcopy(&dst, buf + off + IP_ADDR_LEN,
2533                             IP_ADDR_LEN);
2534                         buf += optlen;
2535                         len += optlen;
2536                         break;
2537 
2538                 default:
2539                         bcopy(opt, buf, optlen);
2540                         buf += optlen;
2541                         len += optlen;
2542                         break;
2543                 }
2544         }
2545 done:
2546         /* Pad the resulting options */
2547         while (len & 0x3) {
2548                 *buf++ = IPOPT_EOL;
2549                 len++;
2550         }
2551         return (len);
2552 }
2553 
2554 /*
2555  * Update any record route or timestamp options to include this host.
2556  * Reverse any source route option.
2557  * This routine assumes that the options are well formed i.e. that they
2558  * have already been checked.
2559  */
2560 static void
2561 icmp_options_update(ipha_t *ipha)
2562 {
2563         ipoptp_t        opts;
2564         uchar_t         *opt;
2565         uint8_t         optval;
2566         ipaddr_t        src;            /* Our local address */
2567         ipaddr_t        dst;
2568 
2569         ip2dbg(("icmp_options_update\n"));
2570         src = ipha->ipha_src;
2571         dst = ipha->ipha_dst;
2572 
2573         for (optval = ipoptp_first(&opts, ipha);
2574             optval != IPOPT_EOL;
2575             optval = ipoptp_next(&opts)) {
2576                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
2577                 opt = opts.ipoptp_cur;
2578                 ip2dbg(("icmp_options_update: opt %d, len %d\n",
2579                     optval, opts.ipoptp_len));
2580                 switch (optval) {
2581                         int off1, off2;
2582                 case IPOPT_SSRR:
2583                 case IPOPT_LSRR:
2584                         /*
2585                          * Reverse the source route.  The first entry
2586                          * should be the next to last one in the current
2587                          * source route (the last entry is our address).
2588                          * The last entry should be the final destination.
2589                          */
2590                         off1 = IPOPT_MINOFF_SR - 1;
2591                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
2592                         if (off2 < 0) {
2593                                 /* No entries in source route */
2594                                 ip1dbg((
2595                                     "icmp_options_update: bad src route\n"));
2596                                 break;
2597                         }
2598                         bcopy((char *)opt + off2, &dst, IP_ADDR_LEN);
2599                         bcopy(&ipha->ipha_dst, (char *)opt + off2, IP_ADDR_LEN);
2600                         bcopy(&dst, &ipha->ipha_dst, IP_ADDR_LEN);
2601                         off2 -= IP_ADDR_LEN;
2602 
2603                         while (off1 < off2) {
2604                                 bcopy((char *)opt + off1, &src, IP_ADDR_LEN);
2605                                 bcopy((char *)opt + off2, (char *)opt + off1,
2606                                     IP_ADDR_LEN);
2607                                 bcopy(&src, (char *)opt + off2, IP_ADDR_LEN);
2608                                 off1 += IP_ADDR_LEN;
2609                                 off2 -= IP_ADDR_LEN;
2610                         }
2611                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
2612                         break;
2613                 }
2614         }
2615 }
2616 
2617 /*
2618  * Process received ICMP Redirect messages.
2619  * Assumes the caller has verified that the headers are in the pulled up mblk.
2620  * Consumes mp.
2621  */
2622 static void
2623 icmp_redirect_v4(mblk_t *mp, ipha_t *ipha, icmph_t *icmph, ip_recv_attr_t *ira)
2624 {
2625         ire_t           *ire, *nire;
2626         ire_t           *prev_ire;
2627         ipaddr_t        src, dst, gateway;
2628         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2629         ipha_t          *inner_ipha;    /* Inner IP header */
2630 
2631         /* Caller already pulled up everything. */
2632         inner_ipha = (ipha_t *)&icmph[1];
2633         src = ipha->ipha_src;
2634         dst = inner_ipha->ipha_dst;
2635         gateway = icmph->icmph_rd_gateway;
2636         /* Make sure the new gateway is reachable somehow. */
2637         ire = ire_ftable_lookup_v4(gateway, 0, 0, IRE_ONLINK, NULL,
2638             ALL_ZONES, NULL, MATCH_IRE_TYPE, 0, ipst, NULL);
2639         /*
2640          * Make sure we had a route for the dest in question and that
2641          * that route was pointing to the old gateway (the source of the
2642          * redirect packet.)
2643          * We do longest match and then compare ire_gateway_addr below.
2644          */
2645         prev_ire = ire_ftable_lookup_v4(dst, 0, 0, 0, NULL, ALL_ZONES,
2646             NULL, MATCH_IRE_DSTONLY, 0, ipst, NULL);
2647         /*
2648          * Check that
2649          *      the redirect was not from ourselves
2650          *      the new gateway and the old gateway are directly reachable
2651          */
2652         if (prev_ire == NULL || ire == NULL ||
2653             (prev_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) ||
2654             (prev_ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) ||
2655             !(ire->ire_type & IRE_IF_ALL) ||
2656             prev_ire->ire_gateway_addr != src) {
2657                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2658                 ip_drop_input("icmpInBadRedirects - ire", mp, ira->ira_ill);
2659                 freemsg(mp);
2660                 if (ire != NULL)
2661                         ire_refrele(ire);
2662                 if (prev_ire != NULL)
2663                         ire_refrele(prev_ire);
2664                 return;
2665         }
2666 
2667         ire_refrele(prev_ire);
2668         ire_refrele(ire);
2669 
2670         /*
2671          * TODO: more precise handling for cases 0, 2, 3, the latter two
2672          * require TOS routing
2673          */
2674         switch (icmph->icmph_code) {
2675         case 0:
2676         case 1:
2677                 /* TODO: TOS specificity for cases 2 and 3 */
2678         case 2:
2679         case 3:
2680                 break;
2681         default:
2682                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInBadRedirects);
2683                 ip_drop_input("icmpInBadRedirects - code", mp, ira->ira_ill);
2684                 freemsg(mp);
2685                 return;
2686         }
2687         /*
2688          * Create a Route Association.  This will allow us to remember that
2689          * someone we believe told us to use the particular gateway.
2690          */
2691         ire = ire_create(
2692             (uchar_t *)&dst,                        /* dest addr */
2693             (uchar_t *)&ip_g_all_ones,              /* mask */
2694             (uchar_t *)&gateway,            /* gateway addr */
2695             IRE_HOST,
2696             NULL,                               /* ill */
2697             ALL_ZONES,
2698             (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST),
2699             NULL,                               /* tsol_gc_t */
2700             ipst);
2701 
2702         if (ire == NULL) {
2703                 freemsg(mp);
2704                 return;
2705         }
2706         nire = ire_add(ire);
2707         /* Check if it was a duplicate entry */
2708         if (nire != NULL && nire != ire) {
2709                 ASSERT(nire->ire_identical_ref > 1);
2710                 ire_delete(nire);
2711                 ire_refrele(nire);
2712                 nire = NULL;
2713         }
2714         ire = nire;
2715         if (ire != NULL) {
2716                 ire_refrele(ire);               /* Held in ire_add */
2717 
2718                 /* tell routing sockets that we received a redirect */
2719                 ip_rts_change(RTM_REDIRECT, dst, gateway, IP_HOST_MASK, 0, src,
2720                     (RTF_DYNAMIC | RTF_GATEWAY | RTF_HOST), 0,
2721                     (RTA_DST | RTA_GATEWAY | RTA_NETMASK | RTA_AUTHOR), ipst);
2722         }
2723 
2724         /*
2725          * Delete any existing IRE_HOST type redirect ires for this destination.
2726          * This together with the added IRE has the effect of
2727          * modifying an existing redirect.
2728          */
2729         prev_ire = ire_ftable_lookup_v4(dst, 0, src, IRE_HOST, NULL,
2730             ALL_ZONES, NULL, (MATCH_IRE_GW | MATCH_IRE_TYPE), 0, ipst, NULL);
2731         if (prev_ire != NULL) {
2732                 if (prev_ire ->ire_flags & RTF_DYNAMIC)
2733                         ire_delete(prev_ire);
2734                 ire_refrele(prev_ire);
2735         }
2736 
2737         freemsg(mp);
2738 }
2739 
2740 /*
2741  * Generate an ICMP parameter problem message.
2742  * When called from ip_output side a minimal ip_recv_attr_t needs to be
2743  * constructed by the caller.
2744  */
2745 static void
2746 icmp_param_problem(mblk_t *mp, uint8_t ptr, ip_recv_attr_t *ira)
2747 {
2748         icmph_t icmph;
2749         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2750 
2751         mp = icmp_pkt_err_ok(mp, ira);
2752         if (mp == NULL)
2753                 return;
2754 
2755         bzero(&icmph, sizeof (icmph_t));
2756         icmph.icmph_type = ICMP_PARAM_PROBLEM;
2757         icmph.icmph_pp_ptr = ptr;
2758         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutParmProbs);
2759         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
2760 }
2761 
2762 /*
2763  * Build and ship an IPv4 ICMP message using the packet data in mp, and
2764  * the ICMP header pointed to by "stuff".  (May be called as writer.)
2765  * Note: assumes that icmp_pkt_err_ok has been called to verify that
2766  * an icmp error packet can be sent.
2767  * Assigns an appropriate source address to the packet. If ipha_dst is
2768  * one of our addresses use it for source. Otherwise let ip_output_simple
2769  * pick the source address.
2770  */
2771 static void
2772 icmp_pkt(mblk_t *mp, void *stuff, size_t len, ip_recv_attr_t *ira)
2773 {
2774         ipaddr_t dst;
2775         icmph_t *icmph;
2776         ipha_t  *ipha;
2777         uint_t  len_needed;
2778         size_t  msg_len;
2779         mblk_t  *mp1;
2780         ipaddr_t src;
2781         ire_t   *ire;
2782         ip_xmit_attr_t ixas;
2783         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
2784 
2785         ipha = (ipha_t *)mp->b_rptr;
2786 
2787         bzero(&ixas, sizeof (ixas));
2788         ixas.ixa_flags = IXAF_BASIC_SIMPLE_V4;
2789         ixas.ixa_zoneid = ira->ira_zoneid;
2790         ixas.ixa_ifindex = 0;
2791         ixas.ixa_ipst = ipst;
2792         ixas.ixa_cred = kcred;
2793         ixas.ixa_cpid = NOPID;
2794         ixas.ixa_tsl = ira->ira_tsl; /* Behave as a multi-level responder */
2795         ixas.ixa_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
2796 
2797         if (ira->ira_flags & IRAF_IPSEC_SECURE) {
2798                 /*
2799                  * Apply IPsec based on how IPsec was applied to
2800                  * the packet that had the error.
2801                  *
2802                  * If it was an outbound packet that caused the ICMP
2803                  * error, then the caller will have setup the IRA
2804                  * appropriately.
2805                  */
2806                 if (!ipsec_in_to_out(ira, &ixas, mp, ipha, NULL)) {
2807                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2808                         /* Note: mp already consumed and ip_drop_packet done */
2809                         return;
2810                 }
2811         } else {
2812                 /*
2813                  * This is in clear. The icmp message we are building
2814                  * here should go out in clear, independent of our policy.
2815                  */
2816                 ixas.ixa_flags |= IXAF_NO_IPSEC;
2817         }
2818 
2819         /* Remember our eventual destination */
2820         dst = ipha->ipha_src;
2821 
2822         /*
2823          * If the packet was for one of our unicast addresses, make
2824          * sure we respond with that as the source. Otherwise
2825          * have ip_output_simple pick the source address.
2826          */
2827         ire = ire_ftable_lookup_v4(ipha->ipha_dst, 0, 0,
2828             (IRE_LOCAL|IRE_LOOPBACK), NULL, ira->ira_zoneid, NULL,
2829             MATCH_IRE_TYPE|MATCH_IRE_ZONEONLY, 0, ipst, NULL);
2830         if (ire != NULL) {
2831                 ire_refrele(ire);
2832                 src = ipha->ipha_dst;
2833         } else {
2834                 src = INADDR_ANY;
2835                 ixas.ixa_flags |= IXAF_SET_SOURCE;
2836         }
2837 
2838         /*
2839          * Check if we can send back more then 8 bytes in addition to
2840          * the IP header.  We try to send 64 bytes of data and the internal
2841          * header in the special cases of ipv4 encapsulated ipv4 or ipv6.
2842          */
2843         len_needed = IPH_HDR_LENGTH(ipha);
2844         if (ipha->ipha_protocol == IPPROTO_ENCAP ||
2845             ipha->ipha_protocol == IPPROTO_IPV6) {
2846                 if (!pullupmsg(mp, -1)) {
2847                         BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsOutDiscards);
2848                         ip_drop_output("ipIfStatsOutDiscards", mp, NULL);
2849                         freemsg(mp);
2850                         return;
2851                 }
2852                 ipha = (ipha_t *)mp->b_rptr;
2853 
2854                 if (ipha->ipha_protocol == IPPROTO_ENCAP) {
2855                         len_needed += IPH_HDR_LENGTH(((uchar_t *)ipha +
2856                             len_needed));
2857                 } else {
2858                         ip6_t *ip6h = (ip6_t *)((uchar_t *)ipha + len_needed);
2859 
2860                         ASSERT(ipha->ipha_protocol == IPPROTO_IPV6);
2861                         len_needed += ip_hdr_length_v6(mp, ip6h);
2862                 }
2863         }
2864         len_needed += ipst->ips_ip_icmp_return;
2865         msg_len = msgdsize(mp);
2866         if (msg_len > len_needed) {
2867                 (void) adjmsg(mp, len_needed - msg_len);
2868                 msg_len = len_needed;
2869         }
2870         mp1 = allocb(sizeof (icmp_ipha) + len, BPRI_MED);
2871         if (mp1 == NULL) {
2872                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutErrors);
2873                 freemsg(mp);
2874                 return;
2875         }
2876         mp1->b_cont = mp;
2877         mp = mp1;
2878 
2879         /*
2880          * Set IXAF_TRUSTED_ICMP so we can let the ICMP messages this
2881          * node generates be accepted in peace by all on-host destinations.
2882          * If we do NOT assume that all on-host destinations trust
2883          * self-generated ICMP messages, then rework here, ip6.c, and spd.c.
2884          * (Look for IXAF_TRUSTED_ICMP).
2885          */
2886         ixas.ixa_flags |= IXAF_TRUSTED_ICMP;
2887 
2888         ipha = (ipha_t *)mp->b_rptr;
2889         mp1->b_wptr = (uchar_t *)ipha + (sizeof (icmp_ipha) + len);
2890         *ipha = icmp_ipha;
2891         ipha->ipha_src = src;
2892         ipha->ipha_dst = dst;
2893         ipha->ipha_ttl = ipst->ips_ip_def_ttl;
2894         msg_len += sizeof (icmp_ipha) + len;
2895         if (msg_len > IP_MAXPACKET) {
2896                 (void) adjmsg(mp, IP_MAXPACKET - msg_len);
2897                 msg_len = IP_MAXPACKET;
2898         }
2899         ipha->ipha_length = htons((uint16_t)msg_len);
2900         icmph = (icmph_t *)&ipha[1];
2901         bcopy(stuff, icmph, len);
2902         icmph->icmph_checksum = 0;
2903         icmph->icmph_checksum = IP_CSUM(mp, (int32_t)sizeof (ipha_t), 0);
2904         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutMsgs);
2905 
2906         (void) ip_output_simple(mp, &ixas);
2907         ixa_cleanup(&ixas);
2908 }
2909 
2910 /*
2911  * Determine if an ICMP error packet can be sent given the rate limit.
2912  * The limit consists of an average frequency (icmp_pkt_err_interval measured
2913  * in milliseconds) and a burst size. Burst size number of packets can
2914  * be sent arbitrarely closely spaced.
2915  * The state is tracked using two variables to implement an approximate
2916  * token bucket filter:
2917  *      icmp_pkt_err_last - lbolt value when the last burst started
2918  *      icmp_pkt_err_sent - number of packets sent in current burst
2919  */
2920 boolean_t
2921 icmp_err_rate_limit(ip_stack_t *ipst)
2922 {
2923         clock_t now = TICK_TO_MSEC(ddi_get_lbolt());
2924         uint_t refilled; /* Number of packets refilled in tbf since last */
2925         /* Guard against changes by loading into local variable */
2926         uint_t err_interval = ipst->ips_ip_icmp_err_interval;
2927 
2928         if (err_interval == 0)
2929                 return (B_FALSE);
2930 
2931         if (ipst->ips_icmp_pkt_err_last > now) {
2932                 /* 100HZ lbolt in ms for 32bit arch wraps every 49.7 days */
2933                 ipst->ips_icmp_pkt_err_last = 0;
2934                 ipst->ips_icmp_pkt_err_sent = 0;
2935         }
2936         /*
2937          * If we are in a burst update the token bucket filter.
2938          * Update the "last" time to be close to "now" but make sure
2939          * we don't loose precision.
2940          */
2941         if (ipst->ips_icmp_pkt_err_sent != 0) {
2942                 refilled = (now - ipst->ips_icmp_pkt_err_last)/err_interval;
2943                 if (refilled > ipst->ips_icmp_pkt_err_sent) {
2944                         ipst->ips_icmp_pkt_err_sent = 0;
2945                 } else {
2946                         ipst->ips_icmp_pkt_err_sent -= refilled;
2947                         ipst->ips_icmp_pkt_err_last += refilled * err_interval;
2948                 }
2949         }
2950         if (ipst->ips_icmp_pkt_err_sent == 0) {
2951                 /* Start of new burst */
2952                 ipst->ips_icmp_pkt_err_last = now;
2953         }
2954         if (ipst->ips_icmp_pkt_err_sent < ipst->ips_ip_icmp_err_burst) {
2955                 ipst->ips_icmp_pkt_err_sent++;
2956                 ip1dbg(("icmp_err_rate_limit: %d sent in burst\n",
2957                     ipst->ips_icmp_pkt_err_sent));
2958                 return (B_FALSE);
2959         }
2960         ip1dbg(("icmp_err_rate_limit: dropped\n"));
2961         return (B_TRUE);
2962 }
2963 
2964 /*
2965  * Check if it is ok to send an IPv4 ICMP error packet in
2966  * response to the IPv4 packet in mp.
2967  * Free the message and return null if no
2968  * ICMP error packet should be sent.
2969  */
2970 static mblk_t *
2971 icmp_pkt_err_ok(mblk_t *mp, ip_recv_attr_t *ira)
2972 {
2973         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
2974         icmph_t *icmph;
2975         ipha_t  *ipha;
2976         uint_t  len_needed;
2977 
2978         if (!mp)
2979                 return (NULL);
2980         ipha = (ipha_t *)mp->b_rptr;
2981         if (ip_csum_hdr(ipha)) {
2982                 BUMP_MIB(&ipst->ips_ip_mib, ipIfStatsInCksumErrs);
2983                 ip_drop_input("ipIfStatsInCksumErrs", mp, NULL);
2984                 freemsg(mp);
2985                 return (NULL);
2986         }
2987         if (ip_type_v4(ipha->ipha_dst, ipst) == IRE_BROADCAST ||
2988             ip_type_v4(ipha->ipha_src, ipst) == IRE_BROADCAST ||
2989             CLASSD(ipha->ipha_dst) ||
2990             CLASSD(ipha->ipha_src) ||
2991             (ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET)) {
2992                 /* Note: only errors to the fragment with offset 0 */
2993                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
2994                 freemsg(mp);
2995                 return (NULL);
2996         }
2997         if (ipha->ipha_protocol == IPPROTO_ICMP) {
2998                 /*
2999                  * Check the ICMP type.  RFC 1122 sez:  don't send ICMP
3000                  * errors in response to any ICMP errors.
3001                  */
3002                 len_needed = IPH_HDR_LENGTH(ipha) + ICMPH_SIZE;
3003                 if (mp->b_wptr - mp->b_rptr < len_needed) {
3004                         if (!pullupmsg(mp, len_needed)) {
3005                                 BUMP_MIB(&ipst->ips_icmp_mib, icmpInErrors);
3006                                 freemsg(mp);
3007                                 return (NULL);
3008                         }
3009                         ipha = (ipha_t *)mp->b_rptr;
3010                 }
3011                 icmph = (icmph_t *)
3012                     (&((char *)ipha)[IPH_HDR_LENGTH(ipha)]);
3013                 switch (icmph->icmph_type) {
3014                 case ICMP_DEST_UNREACHABLE:
3015                 case ICMP_SOURCE_QUENCH:
3016                 case ICMP_TIME_EXCEEDED:
3017                 case ICMP_PARAM_PROBLEM:
3018                 case ICMP_REDIRECT:
3019                         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3020                         freemsg(mp);
3021                         return (NULL);
3022                 default:
3023                         break;
3024                 }
3025         }
3026         /*
3027          * If this is a labeled system, then check to see if we're allowed to
3028          * send a response to this particular sender.  If not, then just drop.
3029          */
3030         if (is_system_labeled() && !tsol_can_reply_error(mp, ira)) {
3031                 ip2dbg(("icmp_pkt_err_ok: can't respond to packet\n"));
3032                 BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDrops);
3033                 freemsg(mp);
3034                 return (NULL);
3035         }
3036         if (icmp_err_rate_limit(ipst)) {
3037                 /*
3038                  * Only send ICMP error packets every so often.
3039                  * This should be done on a per port/source basis,
3040                  * but for now this will suffice.
3041                  */
3042                 freemsg(mp);
3043                 return (NULL);
3044         }
3045         return (mp);
3046 }
3047 
3048 /*
3049  * Called when a packet was sent out the same link that it arrived on.
3050  * Check if it is ok to send a redirect and then send it.
3051  */
3052 void
3053 ip_send_potential_redirect_v4(mblk_t *mp, ipha_t *ipha, ire_t *ire,
3054     ip_recv_attr_t *ira)
3055 {
3056         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
3057         ipaddr_t        src, nhop;
3058         mblk_t          *mp1;
3059         ire_t           *nhop_ire;
3060 
3061         /*
3062          * Check the source address to see if it originated
3063          * on the same logical subnet it is going back out on.
3064          * If so, we should be able to send it a redirect.
3065          * Avoid sending a redirect if the destination
3066          * is directly connected (i.e., we matched an IRE_ONLINK),
3067          * or if the packet was source routed out this interface.
3068          *
3069          * We avoid sending a redirect if the
3070          * destination is directly connected
3071          * because it is possible that multiple
3072          * IP subnets may have been configured on
3073          * the link, and the source may not
3074          * be on the same subnet as ip destination,
3075          * even though they are on the same
3076          * physical link.
3077          */
3078         if ((ire->ire_type & IRE_ONLINK) ||
3079             ip_source_routed(ipha, ipst))
3080                 return;
3081 
3082         nhop_ire = ire_nexthop(ire);
3083         if (nhop_ire == NULL)
3084                 return;
3085 
3086         nhop = nhop_ire->ire_addr;
3087 
3088         if (nhop_ire->ire_type & IRE_IF_CLONE) {
3089                 ire_t   *ire2;
3090 
3091                 /* Follow ire_dep_parent to find non-clone IRE_INTERFACE */
3092                 mutex_enter(&nhop_ire->ire_lock);
3093                 ire2 = nhop_ire->ire_dep_parent;
3094                 if (ire2 != NULL)
3095                         ire_refhold(ire2);
3096                 mutex_exit(&nhop_ire->ire_lock);
3097                 ire_refrele(nhop_ire);
3098                 nhop_ire = ire2;
3099         }
3100         if (nhop_ire == NULL)
3101                 return;
3102 
3103         ASSERT(!(nhop_ire->ire_type & IRE_IF_CLONE));
3104 
3105         src = ipha->ipha_src;
3106 
3107         /*
3108          * We look at the interface ire for the nexthop,
3109          * to see if ipha_src is in the same subnet
3110          * as the nexthop.
3111          */
3112         if ((src & nhop_ire->ire_mask) == (nhop & nhop_ire->ire_mask)) {
3113                 /*
3114                  * The source is directly connected.
3115                  */
3116                 mp1 = copymsg(mp);
3117                 if (mp1 != NULL) {
3118                         icmp_send_redirect(mp1, nhop, ira);
3119                 }
3120         }
3121         ire_refrele(nhop_ire);
3122 }
3123 
3124 /*
3125  * Generate an ICMP redirect message.
3126  */
3127 static void
3128 icmp_send_redirect(mblk_t *mp, ipaddr_t gateway, ip_recv_attr_t *ira)
3129 {
3130         icmph_t icmph;
3131         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3132 
3133         mp = icmp_pkt_err_ok(mp, ira);
3134         if (mp == NULL)
3135                 return;
3136 
3137         bzero(&icmph, sizeof (icmph_t));
3138         icmph.icmph_type = ICMP_REDIRECT;
3139         icmph.icmph_code = 1;
3140         icmph.icmph_rd_gateway = gateway;
3141         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutRedirects);
3142         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3143 }
3144 
3145 /*
3146  * Generate an ICMP time exceeded message.
3147  */
3148 void
3149 icmp_time_exceeded(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3150 {
3151         icmph_t icmph;
3152         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3153 
3154         mp = icmp_pkt_err_ok(mp, ira);
3155         if (mp == NULL)
3156                 return;
3157 
3158         bzero(&icmph, sizeof (icmph_t));
3159         icmph.icmph_type = ICMP_TIME_EXCEEDED;
3160         icmph.icmph_code = code;
3161         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutTimeExcds);
3162         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3163 }
3164 
3165 /*
3166  * Generate an ICMP unreachable message.
3167  * When called from ip_output side a minimal ip_recv_attr_t needs to be
3168  * constructed by the caller.
3169  */
3170 void
3171 icmp_unreachable(mblk_t *mp, uint8_t code, ip_recv_attr_t *ira)
3172 {
3173         icmph_t icmph;
3174         ip_stack_t *ipst = ira->ira_ill->ill_ipst;
3175 
3176         mp = icmp_pkt_err_ok(mp, ira);
3177         if (mp == NULL)
3178                 return;
3179 
3180         bzero(&icmph, sizeof (icmph_t));
3181         icmph.icmph_type = ICMP_DEST_UNREACHABLE;
3182         icmph.icmph_code = code;
3183         BUMP_MIB(&ipst->ips_icmp_mib, icmpOutDestUnreachs);
3184         icmp_pkt(mp, &icmph, sizeof (icmph_t), ira);
3185 }
3186 
3187 /*
3188  * Latch in the IPsec state for a stream based the policy in the listener
3189  * and the actions in the ip_recv_attr_t.
3190  * Called directly from TCP and SCTP.
3191  */
3192 boolean_t
3193 ip_ipsec_policy_inherit(conn_t *connp, conn_t *lconnp, ip_recv_attr_t *ira)
3194 {
3195         ASSERT(lconnp->conn_policy != NULL);
3196         ASSERT(connp->conn_policy == NULL);
3197 
3198         IPPH_REFHOLD(lconnp->conn_policy);
3199         connp->conn_policy = lconnp->conn_policy;
3200 
3201         if (ira->ira_ipsec_action != NULL) {
3202                 if (connp->conn_latch == NULL) {
3203                         connp->conn_latch = iplatch_create();
3204                         if (connp->conn_latch == NULL)
3205                                 return (B_FALSE);
3206                 }
3207                 ipsec_latch_inbound(connp, ira);
3208         }
3209         return (B_TRUE);
3210 }
3211 
3212 /*
3213  * Verify whether or not the IP address is a valid local address.
3214  * Could be a unicast, including one for a down interface.
3215  * If allow_mcbc then a multicast or broadcast address is also
3216  * acceptable.
3217  *
3218  * In the case of a broadcast/multicast address, however, the
3219  * upper protocol is expected to reset the src address
3220  * to zero when we return IPVL_MCAST/IPVL_BCAST so that
3221  * no packets are emitted with broadcast/multicast address as
3222  * source address (that violates hosts requirements RFC 1122)
3223  * The addresses valid for bind are:
3224  *      (1) - INADDR_ANY (0)
3225  *      (2) - IP address of an UP interface
3226  *      (3) - IP address of a DOWN interface
3227  *      (4) - valid local IP broadcast addresses. In this case
3228  *      the conn will only receive packets destined to
3229  *      the specified broadcast address.
3230  *      (5) - a multicast address. In this case
3231  *      the conn will only receive packets destined to
3232  *      the specified multicast address. Note: the
3233  *      application still has to issue an
3234  *      IP_ADD_MEMBERSHIP socket option.
3235  *
3236  * In all the above cases, the bound address must be valid in the current zone.
3237  * When the address is loopback, multicast or broadcast, there might be many
3238  * matching IREs so bind has to look up based on the zone.
3239  */
3240 ip_laddr_t
3241 ip_laddr_verify_v4(ipaddr_t src_addr, zoneid_t zoneid,
3242     ip_stack_t *ipst, boolean_t allow_mcbc)
3243 {
3244         ire_t *src_ire;
3245 
3246         ASSERT(src_addr != INADDR_ANY);
3247 
3248         src_ire = ire_ftable_lookup_v4(src_addr, 0, 0, 0,
3249             NULL, zoneid, NULL, MATCH_IRE_ZONEONLY, 0, ipst, NULL);
3250 
3251         /*
3252          * If an address other than in6addr_any is requested,
3253          * we verify that it is a valid address for bind
3254          * Note: Following code is in if-else-if form for
3255          * readability compared to a condition check.
3256          */
3257         if (src_ire != NULL && (src_ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK))) {
3258                 /*
3259                  * (2) Bind to address of local UP interface
3260                  */
3261                 ire_refrele(src_ire);
3262                 return (IPVL_UNICAST_UP);
3263         } else if (src_ire != NULL && src_ire->ire_type & IRE_BROADCAST) {
3264                 /*
3265                  * (4) Bind to broadcast address
3266                  */
3267                 ire_refrele(src_ire);
3268                 if (allow_mcbc)
3269                         return (IPVL_BCAST);
3270                 else
3271                         return (IPVL_BAD);
3272         } else if (CLASSD(src_addr)) {
3273                 /* (5) bind to multicast address. */
3274                 if (src_ire != NULL)
3275                         ire_refrele(src_ire);
3276 
3277                 if (allow_mcbc)
3278                         return (IPVL_MCAST);
3279                 else
3280                         return (IPVL_BAD);
3281         } else {
3282                 ipif_t *ipif;
3283 
3284                 /*
3285                  * (3) Bind to address of local DOWN interface?
3286                  * (ipif_lookup_addr() looks up all interfaces
3287                  * but we do not get here for UP interfaces
3288                  * - case (2) above)
3289                  */
3290                 if (src_ire != NULL)
3291                         ire_refrele(src_ire);
3292 
3293                 ipif = ipif_lookup_addr(src_addr, NULL, zoneid, ipst);
3294                 if (ipif == NULL)
3295                         return (IPVL_BAD);
3296 
3297                 /* Not a useful source? */
3298                 if (ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST)) {
3299                         ipif_refrele(ipif);
3300                         return (IPVL_BAD);
3301                 }
3302                 ipif_refrele(ipif);
3303                 return (IPVL_UNICAST_DOWN);
3304         }
3305 }
3306 
3307 /*
3308  * Insert in the bind fanout for IPv4 and IPv6.
3309  * The caller should already have used ip_laddr_verify_v*() before calling
3310  * this.
3311  */
3312 int
3313 ip_laddr_fanout_insert(conn_t *connp)
3314 {
3315         int             error;
3316 
3317         /*
3318          * Allow setting new policies. For example, disconnects result
3319          * in us being called. As we would have set conn_policy_cached
3320          * to B_TRUE before, we should set it to B_FALSE, so that policy
3321          * can change after the disconnect.
3322          */
3323         connp->conn_policy_cached = B_FALSE;
3324 
3325         error = ipcl_bind_insert(connp);
3326         if (error != 0) {
3327                 if (connp->conn_anon_port) {
3328                         (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
3329                             connp->conn_mlp_type, connp->conn_proto,
3330                             ntohs(connp->conn_lport), B_FALSE);
3331                 }
3332                 connp->conn_mlp_type = mlptSingle;
3333         }
3334         return (error);
3335 }
3336 
3337 /*
3338  * Verify that both the source and destination addresses are valid. If
3339  * IPDF_VERIFY_DST is not set, then the destination address may be unreachable,
3340  * i.e. have no route to it.  Protocols like TCP want to verify destination
3341  * reachability, while tunnels do not.
3342  *
3343  * Determine the route, the interface, and (optionally) the source address
3344  * to use to reach a given destination.
3345  * Note that we allow connect to broadcast and multicast addresses when
3346  * IPDF_ALLOW_MCBC is set.
3347  * first_hop and dst_addr are normally the same, but if source routing
3348  * they will differ; in that case the first_hop is what we'll use for the
3349  * routing lookup but the dce and label checks will be done on dst_addr,
3350  *
3351  * If uinfo is set, then we fill in the best available information
3352  * we have for the destination. This is based on (in priority order) any
3353  * metrics and path MTU stored in a dce_t, route metrics, and finally the
3354  * ill_mtu/ill_mc_mtu.
3355  *
3356  * Tsol note: If we have a source route then dst_addr != firsthop. But we
3357  * always do the label check on dst_addr.
3358  */
3359 int
3360 ip_set_destination_v4(ipaddr_t *src_addrp, ipaddr_t dst_addr, ipaddr_t firsthop,
3361     ip_xmit_attr_t *ixa, iulp_t *uinfo, uint32_t flags, uint_t mac_mode)
3362 {
3363         ire_t           *ire = NULL;
3364         int             error = 0;
3365         ipaddr_t        setsrc;                         /* RTF_SETSRC */
3366         zoneid_t        zoneid = ixa->ixa_zoneid;    /* Honors SO_ALLZONES */
3367         ip_stack_t      *ipst = ixa->ixa_ipst;
3368         dce_t           *dce;
3369         uint_t          pmtu;
3370         uint_t          generation;
3371         nce_t           *nce;
3372         ill_t           *ill = NULL;
3373         boolean_t       multirt = B_FALSE;
3374 
3375         ASSERT(ixa->ixa_flags & IXAF_IS_IPV4);
3376 
3377         /*
3378          * We never send to zero; the ULPs map it to the loopback address.
3379          * We can't allow it since we use zero to mean unitialized in some
3380          * places.
3381          */
3382         ASSERT(dst_addr != INADDR_ANY);
3383 
3384         if (is_system_labeled()) {
3385                 ts_label_t *tsl = NULL;
3386 
3387                 error = tsol_check_dest(ixa->ixa_tsl, &dst_addr, IPV4_VERSION,
3388                     mac_mode, (flags & IPDF_ZONE_IS_GLOBAL) != 0, &tsl);
3389                 if (error != 0)
3390                         return (error);
3391                 if (tsl != NULL) {
3392                         /* Update the label */
3393                         ip_xmit_attr_replace_tsl(ixa, tsl);
3394                 }
3395         }
3396 
3397         setsrc = INADDR_ANY;
3398         /*
3399          * Select a route; For IPMP interfaces, we would only select
3400          * a "hidden" route (i.e., going through a specific under_ill)
3401          * if ixa_ifindex has been specified.
3402          */
3403         ire = ip_select_route_v4(firsthop, *src_addrp, ixa,
3404             &generation, &setsrc, &error, &multirt);
3405         ASSERT(ire != NULL);    /* IRE_NOROUTE if none found */
3406         if (error != 0)
3407                 goto bad_addr;
3408 
3409         /*
3410          * ire can't be a broadcast or multicast unless IPDF_ALLOW_MCBC is set.
3411          * If IPDF_VERIFY_DST is set, the destination must be reachable;
3412          * Otherwise the destination needn't be reachable.
3413          *
3414          * If we match on a reject or black hole, then we've got a
3415          * local failure.  May as well fail out the connect() attempt,
3416          * since it's never going to succeed.
3417          */
3418         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
3419                 /*
3420                  * If we're verifying destination reachability, we always want
3421                  * to complain here.
3422                  *
3423                  * If we're not verifying destination reachability but the
3424                  * destination has a route, we still want to fail on the
3425                  * temporary address and broadcast address tests.
3426                  *
3427                  * In both cases do we let the code continue so some reasonable
3428                  * information is returned to the caller. That enables the
3429                  * caller to use (and even cache) the IRE. conn_ip_ouput will
3430                  * use the generation mismatch path to check for the unreachable
3431                  * case thereby avoiding any specific check in the main path.
3432                  */
3433                 ASSERT(generation == IRE_GENERATION_VERIFY);
3434                 if (flags & IPDF_VERIFY_DST) {
3435                         /*
3436                          * Set errno but continue to set up ixa_ire to be
3437                          * the RTF_REJECT|RTF_BLACKHOLE IRE.
3438                          * That allows callers to use ip_output to get an
3439                          * ICMP error back.
3440                          */
3441                         if (!(ire->ire_type & IRE_HOST))
3442                                 error = ENETUNREACH;
3443                         else
3444                                 error = EHOSTUNREACH;
3445                 }
3446         }
3447 
3448         if ((ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST)) &&
3449             !(flags & IPDF_ALLOW_MCBC)) {
3450                 ire_refrele(ire);
3451                 ire = ire_reject(ipst, B_FALSE);
3452                 generation = IRE_GENERATION_VERIFY;
3453                 error = ENETUNREACH;
3454         }
3455 
3456         /* Cache things */
3457         if (ixa->ixa_ire != NULL)
3458                 ire_refrele_notr(ixa->ixa_ire);
3459 #ifdef DEBUG
3460         ire_refhold_notr(ire);
3461         ire_refrele(ire);
3462 #endif
3463         ixa->ixa_ire = ire;
3464         ixa->ixa_ire_generation = generation;
3465 
3466         /*
3467          * Ensure that ixa_dce is always set any time that ixa_ire is set,
3468          * since some callers will send a packet to conn_ip_output() even if
3469          * there's an error.
3470          */
3471         if (flags & IPDF_UNIQUE_DCE) {
3472                 /* Fallback to the default dce if allocation fails */
3473                 dce = dce_lookup_and_add_v4(dst_addr, ipst);
3474                 if (dce != NULL)
3475                         generation = dce->dce_generation;
3476                 else
3477                         dce = dce_lookup_v4(dst_addr, ipst, &generation);
3478         } else {
3479                 dce = dce_lookup_v4(dst_addr, ipst, &generation);
3480         }
3481         ASSERT(dce != NULL);
3482         if (ixa->ixa_dce != NULL)
3483                 dce_refrele_notr(ixa->ixa_dce);
3484 #ifdef DEBUG
3485         dce_refhold_notr(dce);
3486         dce_refrele(dce);
3487 #endif
3488         ixa->ixa_dce = dce;
3489         ixa->ixa_dce_generation = generation;
3490 
3491         /*
3492          * For multicast with multirt we have a flag passed back from
3493          * ire_lookup_multi_ill_v4 since we don't have an IRE for each
3494          * possible multicast address.
3495          * We also need a flag for multicast since we can't check
3496          * whether RTF_MULTIRT is set in ixa_ire for multicast.
3497          */
3498         if (multirt) {
3499                 ixa->ixa_postfragfn = ip_postfrag_multirt_v4;
3500                 ixa->ixa_flags |= IXAF_MULTIRT_MULTICAST;
3501         } else {
3502                 ixa->ixa_postfragfn = ire->ire_postfragfn;
3503                 ixa->ixa_flags &= ~IXAF_MULTIRT_MULTICAST;
3504         }
3505         if (!(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3506                 /* Get an nce to cache. */
3507                 nce = ire_to_nce(ire, firsthop, NULL);
3508                 if (nce == NULL) {
3509                         /* Allocation failure? */
3510                         ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3511                 } else {
3512                         if (ixa->ixa_nce != NULL)
3513                                 nce_refrele(ixa->ixa_nce);
3514                         ixa->ixa_nce = nce;
3515                 }
3516         }
3517 
3518         /*
3519          * If the source address is a loopback address, the
3520          * destination had best be local or multicast.
3521          * If we are sending to an IRE_LOCAL using a loopback source then
3522          * it had better be the same zoneid.
3523          */
3524         if (*src_addrp == htonl(INADDR_LOOPBACK)) {
3525                 if ((ire->ire_type & IRE_LOCAL) && ire->ire_zoneid != zoneid) {
3526                         ire = NULL;     /* Stored in ixa_ire */
3527                         error = EADDRNOTAVAIL;
3528                         goto bad_addr;
3529                 }
3530                 if (!(ire->ire_type & (IRE_LOOPBACK|IRE_LOCAL|IRE_MULTICAST))) {
3531                         ire = NULL;     /* Stored in ixa_ire */
3532                         error = EADDRNOTAVAIL;
3533                         goto bad_addr;
3534                 }
3535         }
3536         if (ire->ire_type & IRE_BROADCAST) {
3537                 /*
3538                  * If the ULP didn't have a specified source, then we
3539                  * make sure we reselect the source when sending
3540                  * broadcasts out different interfaces.
3541                  */
3542                 if (flags & IPDF_SELECT_SRC)
3543                         ixa->ixa_flags |= IXAF_SET_SOURCE;
3544                 else
3545                         ixa->ixa_flags &= ~IXAF_SET_SOURCE;
3546         }
3547 
3548         /*
3549          * Does the caller want us to pick a source address?
3550          */
3551         if (flags & IPDF_SELECT_SRC) {
3552                 ipaddr_t        src_addr;
3553 
3554                 /*
3555                  * We use use ire_nexthop_ill to avoid the under ipmp
3556                  * interface for source address selection. Note that for ipmp
3557                  * probe packets, ixa_ifindex would have been specified, and
3558                  * the ip_select_route() invocation would have picked an ire
3559                  * will ire_ill pointing at an under interface.
3560                  */
3561                 ill = ire_nexthop_ill(ire);
3562 
3563                 /* If unreachable we have no ill but need some source */
3564                 if (ill == NULL) {
3565                         src_addr = htonl(INADDR_LOOPBACK);
3566                         /* Make sure we look for a better source address */
3567                         generation = SRC_GENERATION_VERIFY;
3568                 } else {
3569                         error = ip_select_source_v4(ill, setsrc, dst_addr,
3570                             ixa->ixa_multicast_ifaddr, zoneid,
3571                             ipst, &src_addr, &generation, NULL);
3572                         if (error != 0) {
3573                                 ire = NULL;     /* Stored in ixa_ire */
3574                                 goto bad_addr;
3575                         }
3576                 }
3577 
3578                 /*
3579                  * We allow the source address to to down.
3580                  * However, we check that we don't use the loopback address
3581                  * as a source when sending out on the wire.
3582                  */
3583                 if ((src_addr == htonl(INADDR_LOOPBACK)) &&
3584                     !(ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK|IRE_MULTICAST)) &&
3585                     !(ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))) {
3586                         ire = NULL;     /* Stored in ixa_ire */
3587                         error = EADDRNOTAVAIL;
3588                         goto bad_addr;
3589                 }
3590 
3591                 *src_addrp = src_addr;
3592                 ixa->ixa_src_generation = generation;
3593         }
3594 
3595         /*
3596          * Make sure we don't leave an unreachable ixa_nce in place
3597          * since ip_select_route is used when we unplumb i.e., remove
3598          * references on ixa_ire, ixa_nce, and ixa_dce.
3599          */
3600         nce = ixa->ixa_nce;
3601         if (nce != NULL && nce->nce_is_condemned) {
3602                 nce_refrele(nce);
3603                 ixa->ixa_nce = NULL;
3604                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3605         }
3606 
3607         /*
3608          * The caller has set IXAF_PMTU_DISCOVERY if path MTU is desired.
3609          * However, we can't do it for IPv4 multicast or broadcast.
3610          */
3611         if (ire->ire_type & (IRE_BROADCAST|IRE_MULTICAST))
3612                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3613 
3614         /*
3615          * Set initial value for fragmentation limit. Either conn_ip_output
3616          * or ULP might updates it when there are routing changes.
3617          * Handles a NULL ixa_ire->ire_ill or a NULL ixa_nce for RTF_REJECT.
3618          */
3619         pmtu = ip_get_pmtu(ixa);
3620         ixa->ixa_fragsize = pmtu;
3621         /* Make sure ixa_fragsize and ixa_pmtu remain identical */
3622         if (ixa->ixa_flags & IXAF_VERIFY_PMTU)
3623                 ixa->ixa_pmtu = pmtu;
3624 
3625         /*
3626          * Extract information useful for some transports.
3627          * First we look for DCE metrics. Then we take what we have in
3628          * the metrics in the route, where the offlink is used if we have
3629          * one.
3630          */
3631         if (uinfo != NULL) {
3632                 bzero(uinfo, sizeof (*uinfo));
3633 
3634                 if (dce->dce_flags & DCEF_UINFO)
3635                         *uinfo = dce->dce_uinfo;
3636 
3637                 rts_merge_metrics(uinfo, &ire->ire_metrics);
3638 
3639                 /* Allow ire_metrics to decrease the path MTU from above */
3640                 if (uinfo->iulp_mtu == 0 || uinfo->iulp_mtu > pmtu)
3641                         uinfo->iulp_mtu = pmtu;
3642 
3643                 uinfo->iulp_localnet = (ire->ire_type & IRE_ONLINK) != 0;
3644                 uinfo->iulp_loopback = (ire->ire_type & IRE_LOOPBACK) != 0;
3645                 uinfo->iulp_local = (ire->ire_type & IRE_LOCAL) != 0;
3646         }
3647 
3648         if (ill != NULL)
3649                 ill_refrele(ill);
3650 
3651         return (error);
3652 
3653 bad_addr:
3654         if (ire != NULL)
3655                 ire_refrele(ire);
3656 
3657         if (ill != NULL)
3658                 ill_refrele(ill);
3659 
3660         /*
3661          * Make sure we don't leave an unreachable ixa_nce in place
3662          * since ip_select_route is used when we unplumb i.e., remove
3663          * references on ixa_ire, ixa_nce, and ixa_dce.
3664          */
3665         nce = ixa->ixa_nce;
3666         if (nce != NULL && nce->nce_is_condemned) {
3667                 nce_refrele(nce);
3668                 ixa->ixa_nce = NULL;
3669                 ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
3670         }
3671 
3672         return (error);
3673 }
3674 
3675 
3676 /*
3677  * Get the base MTU for the case when path MTU discovery is not used.
3678  * Takes the MTU of the IRE into account.
3679  */
3680 uint_t
3681 ip_get_base_mtu(ill_t *ill, ire_t *ire)
3682 {
3683         uint_t mtu;
3684         uint_t iremtu = ire->ire_metrics.iulp_mtu;
3685 
3686         if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST))
3687                 mtu = ill->ill_mc_mtu;
3688         else
3689                 mtu = ill->ill_mtu;
3690 
3691         if (iremtu != 0 && iremtu < mtu)
3692                 mtu = iremtu;
3693 
3694         return (mtu);
3695 }
3696 
3697 /*
3698  * Get the PMTU for the attributes. Handles both IPv4 and IPv6.
3699  * Assumes that ixa_ire, dce, and nce have already been set up.
3700  *
3701  * The caller has set IXAF_PMTU_DISCOVERY if path MTU discovery is desired.
3702  * We avoid path MTU discovery if it is disabled with ndd.
3703  * Furtermore, if the path MTU is too small, then we don't set DF for IPv4.
3704  *
3705  * NOTE: We also used to turn it off for source routed packets. That
3706  * is no longer required since the dce is per final destination.
3707  */
3708 uint_t
3709 ip_get_pmtu(ip_xmit_attr_t *ixa)
3710 {
3711         ip_stack_t      *ipst = ixa->ixa_ipst;
3712         dce_t           *dce;
3713         nce_t           *nce;
3714         ire_t           *ire;
3715         uint_t          pmtu;
3716 
3717         ire = ixa->ixa_ire;
3718         dce = ixa->ixa_dce;
3719         nce = ixa->ixa_nce;
3720 
3721         /*
3722          * If path MTU discovery has been turned off by ndd, then we ignore
3723          * any dce_pmtu and for IPv4 we will not set DF.
3724          */
3725         if (!ipst->ips_ip_path_mtu_discovery)
3726                 ixa->ixa_flags &= ~IXAF_PMTU_DISCOVERY;
3727 
3728         pmtu = IP_MAXPACKET;
3729         /*
3730          * Decide whether whether IPv4 sets DF
3731          * For IPv6 "no DF" means to use the 1280 mtu
3732          */
3733         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3734                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3735         } else {
3736                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3737                 if (!(ixa->ixa_flags & IXAF_IS_IPV4))
3738                         pmtu = IPV6_MIN_MTU;
3739         }
3740 
3741         /* Check if the PMTU is to old before we use it */
3742         if ((dce->dce_flags & DCEF_PMTU) &&
3743             TICK_TO_SEC(ddi_get_lbolt64()) - dce->dce_last_change_time >
3744             ipst->ips_ip_pathmtu_interval) {
3745                 /*
3746                  * Older than 20 minutes. Drop the path MTU information.
3747                  */
3748                 mutex_enter(&dce->dce_lock);
3749                 dce->dce_flags &= ~(DCEF_PMTU|DCEF_TOO_SMALL_PMTU);
3750                 dce->dce_last_change_time = TICK_TO_SEC(ddi_get_lbolt64());
3751                 mutex_exit(&dce->dce_lock);
3752                 dce_increment_generation(dce);
3753         }
3754 
3755         /* The metrics on the route can lower the path MTU */
3756         if (ire->ire_metrics.iulp_mtu != 0 &&
3757             ire->ire_metrics.iulp_mtu < pmtu)
3758                 pmtu = ire->ire_metrics.iulp_mtu;
3759 
3760         /*
3761          * If the path MTU is smaller than some minimum, we still use dce_pmtu
3762          * above (would be 576 for IPv4 and 1280 for IPv6), but we clear
3763          * IXAF_PMTU_IPV4_DF so that we avoid setting DF for IPv4.
3764          */
3765         if (ixa->ixa_flags & IXAF_PMTU_DISCOVERY) {
3766                 if (dce->dce_flags & DCEF_PMTU) {
3767                         if (dce->dce_pmtu < pmtu)
3768                                 pmtu = dce->dce_pmtu;
3769 
3770                         if (dce->dce_flags & DCEF_TOO_SMALL_PMTU) {
3771                                 ixa->ixa_flags |= IXAF_PMTU_TOO_SMALL;
3772                                 ixa->ixa_flags &= ~IXAF_PMTU_IPV4_DF;
3773                         } else {
3774                                 ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3775                                 ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3776                         }
3777                 } else {
3778                         ixa->ixa_flags &= ~IXAF_PMTU_TOO_SMALL;
3779                         ixa->ixa_flags |= IXAF_PMTU_IPV4_DF;
3780                 }
3781         }
3782 
3783         /*
3784          * If we have an IRE_LOCAL we use the loopback mtu instead of
3785          * the ill for going out the wire i.e., IRE_LOCAL gets the same
3786          * mtu as IRE_LOOPBACK.
3787          */
3788         if (ire->ire_type & (IRE_LOCAL|IRE_LOOPBACK)) {
3789                 uint_t loopback_mtu;
3790 
3791                 loopback_mtu = (ire->ire_ipversion == IPV6_VERSION) ?
3792                     ip_loopback_mtu_v6plus : ip_loopback_mtuplus;
3793 
3794                 if (loopback_mtu < pmtu)
3795                         pmtu = loopback_mtu;
3796         } else if (nce != NULL) {
3797                 /*
3798                  * Make sure we don't exceed the interface MTU.
3799                  * In the case of RTF_REJECT or RTF_BLACKHOLE we might not have
3800                  * an ill. We'd use the above IP_MAXPACKET in that case just
3801                  * to tell the transport something larger than zero.
3802                  */
3803                 if (ire->ire_type & (IRE_MULTICAST|IRE_BROADCAST)) {
3804                         if (nce->nce_common->ncec_ill->ill_mc_mtu < pmtu)
3805                                 pmtu = nce->nce_common->ncec_ill->ill_mc_mtu;
3806                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3807                             nce->nce_ill->ill_mc_mtu < pmtu) {
3808                                 /*
3809                                  * for interfaces in an IPMP group, the mtu of
3810                                  * the nce_ill (under_ill) could be different
3811                                  * from the mtu of the ncec_ill, so we take the
3812                                  * min of the two.
3813                                  */
3814                                 pmtu = nce->nce_ill->ill_mc_mtu;
3815                         }
3816                 } else {
3817                         if (nce->nce_common->ncec_ill->ill_mtu < pmtu)
3818                                 pmtu = nce->nce_common->ncec_ill->ill_mtu;
3819                         if (nce->nce_common->ncec_ill != nce->nce_ill &&
3820                             nce->nce_ill->ill_mtu < pmtu) {
3821                                 /*
3822                                  * for interfaces in an IPMP group, the mtu of
3823                                  * the nce_ill (under_ill) could be different
3824                                  * from the mtu of the ncec_ill, so we take the
3825                                  * min of the two.
3826                                  */
3827                                 pmtu = nce->nce_ill->ill_mtu;
3828                         }
3829                 }
3830         }
3831 
3832         /*
3833          * Handle the IPV6_USE_MIN_MTU socket option or ancillary data.
3834          * Only applies to IPv6.
3835          */
3836         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3837                 if (ixa->ixa_flags & IXAF_USE_MIN_MTU) {
3838                         switch (ixa->ixa_use_min_mtu) {
3839                         case IPV6_USE_MIN_MTU_MULTICAST:
3840                                 if (ire->ire_type & IRE_MULTICAST)
3841                                         pmtu = IPV6_MIN_MTU;
3842                                 break;
3843                         case IPV6_USE_MIN_MTU_ALWAYS:
3844                                 pmtu = IPV6_MIN_MTU;
3845                                 break;
3846                         case IPV6_USE_MIN_MTU_NEVER:
3847                                 break;
3848                         }
3849                 } else {
3850                         /* Default is IPV6_USE_MIN_MTU_MULTICAST */
3851                         if (ire->ire_type & IRE_MULTICAST)
3852                                 pmtu = IPV6_MIN_MTU;
3853                 }
3854         }
3855 
3856         /*
3857          * For multirouted IPv6 packets, the IP layer will insert a 8-byte
3858          * fragment header in every packet. We compensate for those cases by
3859          * returning a smaller path MTU to the ULP.
3860          *
3861          * In the case of CGTP then ip_output will add a fragment header.
3862          * Make sure there is room for it by telling a smaller number
3863          * to the transport.
3864          *
3865          * When IXAF_IPV6_ADDR_FRAGHDR we subtract the frag hdr here
3866          * so the ULPs consistently see a iulp_pmtu and ip_get_pmtu()
3867          * which is the size of the packets it can send.
3868          */
3869         if (!(ixa->ixa_flags & IXAF_IS_IPV4)) {
3870                 if ((ire->ire_flags & RTF_MULTIRT) ||
3871                     (ixa->ixa_flags & IXAF_MULTIRT_MULTICAST)) {
3872                         pmtu -= sizeof (ip6_frag_t);
3873                         ixa->ixa_flags |= IXAF_IPV6_ADD_FRAGHDR;
3874                 }
3875         }
3876 
3877         return (pmtu);
3878 }
3879 
3880 /*
3881  * Carve "len" bytes out of an mblk chain, consuming any we empty, and duping
3882  * the final piece where we don't.  Return a pointer to the first mblk in the
3883  * result, and update the pointer to the next mblk to chew on.  If anything
3884  * goes wrong (i.e., dupb fails), we waste everything in sight and return a
3885  * NULL pointer.
3886  */
3887 mblk_t *
3888 ip_carve_mp(mblk_t **mpp, ssize_t len)
3889 {
3890         mblk_t  *mp0;
3891         mblk_t  *mp1;
3892         mblk_t  *mp2;
3893 
3894         if (!len || !mpp || !(mp0 = *mpp))
3895                 return (NULL);
3896         /* If we aren't going to consume the first mblk, we need a dup. */
3897         if (mp0->b_wptr - mp0->b_rptr > len) {
3898                 mp1 = dupb(mp0);
3899                 if (mp1) {
3900                         /* Partition the data between the two mblks. */
3901                         mp1->b_wptr = mp1->b_rptr + len;
3902                         mp0->b_rptr = mp1->b_wptr;
3903                         /*
3904                          * after adjustments if mblk not consumed is now
3905                          * unaligned, try to align it. If this fails free
3906                          * all messages and let upper layer recover.
3907                          */
3908                         if (!OK_32PTR(mp0->b_rptr)) {
3909                                 if (!pullupmsg(mp0, -1)) {
3910                                         freemsg(mp0);
3911                                         freemsg(mp1);
3912                                         *mpp = NULL;
3913                                         return (NULL);
3914                                 }
3915                         }
3916                 }
3917                 return (mp1);
3918         }
3919         /* Eat through as many mblks as we need to get len bytes. */
3920         len -= mp0->b_wptr - mp0->b_rptr;
3921         for (mp2 = mp1 = mp0; (mp2 = mp2->b_cont) != 0 && len; mp1 = mp2) {
3922                 if (mp2->b_wptr - mp2->b_rptr > len) {
3923                         /*
3924                          * We won't consume the entire last mblk.  Like
3925                          * above, dup and partition it.
3926                          */
3927                         mp1->b_cont = dupb(mp2);
3928                         mp1 = mp1->b_cont;
3929                         if (!mp1) {
3930                                 /*
3931                                  * Trouble.  Rather than go to a lot of
3932                                  * trouble to clean up, we free the messages.
3933                                  * This won't be any worse than losing it on
3934                                  * the wire.
3935                                  */
3936                                 freemsg(mp0);
3937                                 freemsg(mp2);
3938                                 *mpp = NULL;
3939                                 return (NULL);
3940                         }
3941                         mp1->b_wptr = mp1->b_rptr + len;
3942                         mp2->b_rptr = mp1->b_wptr;
3943                         /*
3944                          * after adjustments if mblk not consumed is now
3945                          * unaligned, try to align it. If this fails free
3946                          * all messages and let upper layer recover.
3947                          */
3948                         if (!OK_32PTR(mp2->b_rptr)) {
3949                                 if (!pullupmsg(mp2, -1)) {
3950                                         freemsg(mp0);
3951                                         freemsg(mp2);
3952                                         *mpp = NULL;
3953                                         return (NULL);
3954                                 }
3955                         }
3956                         *mpp = mp2;
3957                         return (mp0);
3958                 }
3959                 /* Decrement len by the amount we just got. */
3960                 len -= mp2->b_wptr - mp2->b_rptr;
3961         }
3962         /*
3963          * len should be reduced to zero now.  If not our caller has
3964          * screwed up.
3965          */
3966         if (len) {
3967                 /* Shouldn't happen! */
3968                 freemsg(mp0);
3969                 *mpp = NULL;
3970                 return (NULL);
3971         }
3972         /*
3973          * We consumed up to exactly the end of an mblk.  Detach the part
3974          * we are returning from the rest of the chain.
3975          */
3976         mp1->b_cont = NULL;
3977         *mpp = mp2;
3978         return (mp0);
3979 }
3980 
3981 /* The ill stream is being unplumbed. Called from ip_close */
3982 int
3983 ip_modclose(ill_t *ill)
3984 {
3985         boolean_t success;
3986         ipsq_t  *ipsq;
3987         ipif_t  *ipif;
3988         queue_t *q = ill->ill_rq;
3989         ip_stack_t      *ipst = ill->ill_ipst;
3990         int     i;
3991         arl_ill_common_t *ai = ill->ill_common;
3992 
3993         /*
3994          * The punlink prior to this may have initiated a capability
3995          * negotiation. But ipsq_enter will block until that finishes or
3996          * times out.
3997          */
3998         success = ipsq_enter(ill, B_FALSE, NEW_OP);
3999 
4000         /*
4001          * Open/close/push/pop is guaranteed to be single threaded
4002          * per stream by STREAMS. FS guarantees that all references
4003          * from top are gone before close is called. So there can't
4004          * be another close thread that has set CONDEMNED on this ill.
4005          * and cause ipsq_enter to return failure.
4006          */
4007         ASSERT(success);
4008         ipsq = ill->ill_phyint->phyint_ipsq;
4009 
4010         /*
4011          * Mark it condemned. No new reference will be made to this ill.
4012          * Lookup functions will return an error. Threads that try to
4013          * increment the refcnt must check for ILL_CAN_LOOKUP. This ensures
4014          * that the refcnt will drop down to zero.
4015          */
4016         mutex_enter(&ill->ill_lock);
4017         ill->ill_state_flags |= ILL_CONDEMNED;
4018         for (ipif = ill->ill_ipif; ipif != NULL;
4019             ipif = ipif->ipif_next) {
4020                 ipif->ipif_state_flags |= IPIF_CONDEMNED;
4021         }
4022         /*
4023          * Wake up anybody waiting to enter the ipsq. ipsq_enter
4024          * returns  error if ILL_CONDEMNED is set
4025          */
4026         cv_broadcast(&ill->ill_cv);
4027         mutex_exit(&ill->ill_lock);
4028 
4029         /*
4030          * Send all the deferred DLPI messages downstream which came in
4031          * during the small window right before ipsq_enter(). We do this
4032          * without waiting for the ACKs because all the ACKs for M_PROTO
4033          * messages are ignored in ip_rput() when ILL_CONDEMNED is set.
4034          */
4035         ill_dlpi_send_deferred(ill);
4036 
4037         /*
4038          * Shut down fragmentation reassembly.
4039          * ill_frag_timer won't start a timer again.
4040          * Now cancel any existing timer
4041          */
4042         (void) untimeout(ill->ill_frag_timer_id);
4043         (void) ill_frag_timeout(ill, 0);
4044 
4045         /*
4046          * Call ill_delete to bring down the ipifs, ilms and ill on
4047          * this ill. Then wait for the refcnts to drop to zero.
4048          * ill_is_freeable checks whether the ill is really quiescent.
4049          * Then make sure that threads that are waiting to enter the
4050          * ipsq have seen the error returned by ipsq_enter and have
4051          * gone away. Then we call ill_delete_tail which does the
4052          * DL_UNBIND_REQ with the driver and then qprocsoff.
4053          */
4054         ill_delete(ill);
4055         mutex_enter(&ill->ill_lock);
4056         while (!ill_is_freeable(ill))
4057                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4058 
4059         while (ill->ill_waiters)
4060                 cv_wait(&ill->ill_cv, &ill->ill_lock);
4061 
4062         mutex_exit(&ill->ill_lock);
4063 
4064         /*
4065          * ill_delete_tail drops reference on ill_ipst, but we need to keep
4066          * it held until the end of the function since the cleanup
4067          * below needs to be able to use the ip_stack_t.
4068          */
4069         netstack_hold(ipst->ips_netstack);
4070 
4071         /* qprocsoff is done via ill_delete_tail */
4072         ill_delete_tail(ill);
4073         /*
4074          * synchronously wait for arp stream to unbind. After this, we
4075          * cannot get any data packets up from the driver.
4076          */
4077         arp_unbind_complete(ill);
4078         ASSERT(ill->ill_ipst == NULL);
4079 
4080         /*
4081          * Walk through all conns and qenable those that have queued data.
4082          * Close synchronization needs this to
4083          * be done to ensure that all upper layers blocked
4084          * due to flow control to the closing device
4085          * get unblocked.
4086          */
4087         ip1dbg(("ip_wsrv: walking\n"));
4088         for (i = 0; i < TX_FANOUT_SIZE; i++) {
4089                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[i]);
4090         }
4091 
4092         /*
4093          * ai can be null if this is an IPv6 ill, or if the IPv4
4094          * stream is being torn down before ARP was plumbed (e.g.,
4095          * /sbin/ifconfig plumbing a stream twice, and encountering
4096          * an error
4097          */
4098         if (ai != NULL) {
4099                 ASSERT(!ill->ill_isv6);
4100                 mutex_enter(&ai->ai_lock);
4101                 ai->ai_ill = NULL;
4102                 if (ai->ai_arl == NULL) {
4103                         mutex_destroy(&ai->ai_lock);
4104                         kmem_free(ai, sizeof (*ai));
4105                 } else {
4106                         cv_signal(&ai->ai_ill_unplumb_done);
4107                         mutex_exit(&ai->ai_lock);
4108                 }
4109         }
4110 
4111         mutex_enter(&ipst->ips_ip_mi_lock);
4112         mi_close_unlink(&ipst->ips_ip_g_head, (IDP)ill);
4113         mutex_exit(&ipst->ips_ip_mi_lock);
4114 
4115         /*
4116          * credp could be null if the open didn't succeed and ip_modopen
4117          * itself calls ip_close.
4118          */
4119         if (ill->ill_credp != NULL)
4120                 crfree(ill->ill_credp);
4121 
4122         mutex_destroy(&ill->ill_saved_ire_lock);
4123         mutex_destroy(&ill->ill_lock);
4124         rw_destroy(&ill->ill_mcast_lock);
4125         mutex_destroy(&ill->ill_mcast_serializer);
4126         list_destroy(&ill->ill_nce);
4127 
4128         /*
4129          * Now we are done with the module close pieces that
4130          * need the netstack_t.
4131          */
4132         netstack_rele(ipst->ips_netstack);
4133 
4134         mi_close_free((IDP)ill);
4135         q->q_ptr = WR(q)->q_ptr = NULL;
4136 
4137         ipsq_exit(ipsq);
4138 
4139         return (0);
4140 }
4141 
4142 /*
4143  * This is called as part of close() for IP, UDP, ICMP, and RTS
4144  * in order to quiesce the conn.
4145  */
4146 void
4147 ip_quiesce_conn(conn_t *connp)
4148 {
4149         boolean_t       drain_cleanup_reqd = B_FALSE;
4150         boolean_t       conn_ioctl_cleanup_reqd = B_FALSE;
4151         boolean_t       ilg_cleanup_reqd = B_FALSE;
4152         ip_stack_t      *ipst;
4153 
4154         ASSERT(!IPCL_IS_TCP(connp));
4155         ipst = connp->conn_netstack->netstack_ip;
4156 
4157         /*
4158          * Mark the conn as closing, and this conn must not be
4159          * inserted in future into any list. Eg. conn_drain_insert(),
4160          * won't insert this conn into the conn_drain_list.
4161          *
4162          * conn_idl, and conn_ilg cannot get set henceforth.
4163          */
4164         mutex_enter(&connp->conn_lock);
4165         ASSERT(!(connp->conn_state_flags & CONN_QUIESCED));
4166         connp->conn_state_flags |= CONN_CLOSING;
4167         if (connp->conn_idl != NULL)
4168                 drain_cleanup_reqd = B_TRUE;
4169         if (connp->conn_oper_pending_ill != NULL)
4170                 conn_ioctl_cleanup_reqd = B_TRUE;
4171         if (connp->conn_dhcpinit_ill != NULL) {
4172                 ASSERT(connp->conn_dhcpinit_ill->ill_dhcpinit != 0);
4173                 atomic_dec_32(&connp->conn_dhcpinit_ill->ill_dhcpinit);
4174                 ill_set_inputfn(connp->conn_dhcpinit_ill);
4175                 connp->conn_dhcpinit_ill = NULL;
4176         }
4177         if (connp->conn_ilg != NULL)
4178                 ilg_cleanup_reqd = B_TRUE;
4179         mutex_exit(&connp->conn_lock);
4180 
4181         if (conn_ioctl_cleanup_reqd)
4182                 conn_ioctl_cleanup(connp);
4183 
4184         if (is_system_labeled() && connp->conn_anon_port) {
4185                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
4186                     connp->conn_mlp_type, connp->conn_proto,
4187                     ntohs(connp->conn_lport), B_FALSE);
4188                 connp->conn_anon_port = 0;
4189         }
4190         connp->conn_mlp_type = mlptSingle;
4191 
4192         /*
4193          * Remove this conn from any fanout list it is on.
4194          * and then wait for any threads currently operating
4195          * on this endpoint to finish
4196          */
4197         ipcl_hash_remove(connp);
4198 
4199         /*
4200          * Remove this conn from the drain list, and do any other cleanup that
4201          * may be required.  (TCP conns are never flow controlled, and
4202          * conn_idl will be NULL.)
4203          */
4204         if (drain_cleanup_reqd && connp->conn_idl != NULL) {
4205                 idl_t *idl = connp->conn_idl;
4206 
4207                 mutex_enter(&idl->idl_lock);
4208                 conn_drain(connp, B_TRUE);
4209                 mutex_exit(&idl->idl_lock);
4210         }
4211 
4212         if (connp == ipst->ips_ip_g_mrouter)
4213                 (void) ip_mrouter_done(ipst);
4214 
4215         if (ilg_cleanup_reqd)
4216                 ilg_delete_all(connp);
4217 
4218         /*
4219          * Now conn refcnt can increase only thru CONN_INC_REF_LOCKED.
4220          * callers from write side can't be there now because close
4221          * is in progress. The only other caller is ipcl_walk
4222          * which checks for the condemned flag.
4223          */
4224         mutex_enter(&connp->conn_lock);
4225         connp->conn_state_flags |= CONN_CONDEMNED;
4226         while (connp->conn_ref != 1)
4227                 cv_wait(&connp->conn_cv, &connp->conn_lock);
4228         connp->conn_state_flags |= CONN_QUIESCED;
4229         mutex_exit(&connp->conn_lock);
4230 }
4231 
4232 /* ARGSUSED */
4233 int
4234 ip_close(queue_t *q, int flags, cred_t *credp __unused)
4235 {
4236         conn_t          *connp;
4237 
4238         /*
4239          * Call the appropriate delete routine depending on whether this is
4240          * a module or device.
4241          */
4242         if (WR(q)->q_next != NULL) {
4243                 /* This is a module close */
4244                 return (ip_modclose((ill_t *)q->q_ptr));
4245         }
4246 
4247         connp = q->q_ptr;
4248         ip_quiesce_conn(connp);
4249 
4250         qprocsoff(q);
4251 
4252         /*
4253          * Now we are truly single threaded on this stream, and can
4254          * delete the things hanging off the connp, and finally the connp.
4255          * We removed this connp from the fanout list, it cannot be
4256          * accessed thru the fanouts, and we already waited for the
4257          * conn_ref to drop to 0. We are already in close, so
4258          * there cannot be any other thread from the top. qprocsoff
4259          * has completed, and service has completed or won't run in
4260          * future.
4261          */
4262         ASSERT(connp->conn_ref == 1);
4263 
4264         inet_minor_free(connp->conn_minor_arena, connp->conn_dev);
4265 
4266         connp->conn_ref--;
4267         ipcl_conn_destroy(connp);
4268 
4269         q->q_ptr = WR(q)->q_ptr = NULL;
4270         return (0);
4271 }
4272 
4273 /*
4274  * Wapper around putnext() so that ip_rts_request can merely use
4275  * conn_recv.
4276  */
4277 /*ARGSUSED2*/
4278 static void
4279 ip_conn_input(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4280 {
4281         conn_t *connp = (conn_t *)arg1;
4282 
4283         putnext(connp->conn_rq, mp);
4284 }
4285 
4286 /* Dummy in case ICMP error delivery is attempted to a /dev/ip instance */
4287 /* ARGSUSED */
4288 static void
4289 ip_conn_input_icmp(void *arg1, mblk_t *mp, void *arg2, ip_recv_attr_t *ira)
4290 {
4291         freemsg(mp);
4292 }
4293 
4294 /*
4295  * Called when the module is about to be unloaded
4296  */
4297 void
4298 ip_ddi_destroy(void)
4299 {
4300         /* This needs to be called before destroying any transports. */
4301         mutex_enter(&cpu_lock);
4302         unregister_cpu_setup_func(ip_tp_cpu_update, NULL);
4303         mutex_exit(&cpu_lock);
4304 
4305         tnet_fini();
4306 
4307         icmp_ddi_g_destroy();
4308         rts_ddi_g_destroy();
4309         udp_ddi_g_destroy();
4310         sctp_ddi_g_destroy();
4311         tcp_ddi_g_destroy();
4312         ilb_ddi_g_destroy();
4313         dce_g_destroy();
4314         ipsec_policy_g_destroy();
4315         ipcl_g_destroy();
4316         ip_net_g_destroy();
4317         ip_ire_g_fini();
4318         inet_minor_destroy(ip_minor_arena_sa);
4319 #if defined(_LP64)
4320         inet_minor_destroy(ip_minor_arena_la);
4321 #endif
4322 
4323 #ifdef DEBUG
4324         list_destroy(&ip_thread_list);
4325         rw_destroy(&ip_thread_rwlock);
4326         tsd_destroy(&ip_thread_data);
4327 #endif
4328 
4329         netstack_unregister(NS_IP);
4330 }
4331 
4332 /*
4333  * First step in cleanup.
4334  */
4335 /* ARGSUSED */
4336 static void
4337 ip_stack_shutdown(netstackid_t stackid, void *arg)
4338 {
4339         ip_stack_t *ipst = (ip_stack_t *)arg;
4340         kt_did_t ktid;
4341 
4342 #ifdef NS_DEBUG
4343         printf("ip_stack_shutdown(%p, stack %d)\n", (void *)ipst, stackid);
4344 #endif
4345 
4346         /*
4347          * Perform cleanup for special interfaces (loopback and IPMP).
4348          */
4349         ip_interface_cleanup(ipst);
4350 
4351         /*
4352          * The *_hook_shutdown()s start the process of notifying any
4353          * consumers that things are going away.... nothing is destroyed.
4354          */
4355         ipv4_hook_shutdown(ipst);
4356         ipv6_hook_shutdown(ipst);
4357         arp_hook_shutdown(ipst);
4358 
4359         mutex_enter(&ipst->ips_capab_taskq_lock);
4360         ktid = ipst->ips_capab_taskq_thread->t_did;
4361         ipst->ips_capab_taskq_quit = B_TRUE;
4362         cv_signal(&ipst->ips_capab_taskq_cv);
4363         mutex_exit(&ipst->ips_capab_taskq_lock);
4364 
4365         /*
4366          * In rare occurrences, particularly on virtual hardware where CPUs can
4367          * be de-scheduled, the thread that we just signaled will not run until
4368          * after we have gotten through parts of ip_stack_fini. If that happens
4369          * then we'll try to grab the ips_capab_taskq_lock as part of returning
4370          * from cv_wait which no longer exists.
4371          */
4372         thread_join(ktid);
4373 }
4374 
4375 /*
4376  * Free the IP stack instance.
4377  */
4378 static void
4379 ip_stack_fini(netstackid_t stackid, void *arg)
4380 {
4381         ip_stack_t *ipst = (ip_stack_t *)arg;
4382         int ret;
4383 
4384 #ifdef NS_DEBUG
4385         printf("ip_stack_fini(%p, stack %d)\n", (void *)ipst, stackid);
4386 #endif
4387         /*
4388          * At this point, all of the notifications that the events and
4389          * protocols are going away have been run, meaning that we can
4390          * now set about starting to clean things up.
4391          */
4392         ipobs_fini(ipst);
4393         ipv4_hook_destroy(ipst);
4394         ipv6_hook_destroy(ipst);
4395         arp_hook_destroy(ipst);
4396         ip_net_destroy(ipst);
4397 
4398         ipmp_destroy(ipst);
4399 
4400         ip_kstat_fini(stackid, ipst->ips_ip_mibkp);
4401         ipst->ips_ip_mibkp = NULL;
4402         icmp_kstat_fini(stackid, ipst->ips_icmp_mibkp);
4403         ipst->ips_icmp_mibkp = NULL;
4404         ip_kstat2_fini(stackid, ipst->ips_ip_kstat);
4405         ipst->ips_ip_kstat = NULL;
4406         bzero(&ipst->ips_ip_statistics, sizeof (ipst->ips_ip_statistics));
4407         ip6_kstat_fini(stackid, ipst->ips_ip6_kstat);
4408         ipst->ips_ip6_kstat = NULL;
4409         bzero(&ipst->ips_ip6_statistics, sizeof (ipst->ips_ip6_statistics));
4410 
4411         kmem_free(ipst->ips_propinfo_tbl,
4412             ip_propinfo_count * sizeof (mod_prop_info_t));
4413         ipst->ips_propinfo_tbl = NULL;
4414 
4415         dce_stack_destroy(ipst);
4416         ip_mrouter_stack_destroy(ipst);
4417 
4418         /*
4419          * Quiesce all of our timers. Note we set the quiesce flags before we
4420          * call untimeout. The slowtimers may actually kick off another instance
4421          * of the non-slow timers.
4422          */
4423         mutex_enter(&ipst->ips_igmp_timer_lock);
4424         ipst->ips_igmp_timer_quiesce = B_TRUE;
4425         mutex_exit(&ipst->ips_igmp_timer_lock);
4426 
4427         mutex_enter(&ipst->ips_mld_timer_lock);
4428         ipst->ips_mld_timer_quiesce = B_TRUE;
4429         mutex_exit(&ipst->ips_mld_timer_lock);
4430 
4431         mutex_enter(&ipst->ips_igmp_slowtimeout_lock);
4432         ipst->ips_igmp_slowtimeout_quiesce = B_TRUE;
4433         mutex_exit(&ipst->ips_igmp_slowtimeout_lock);
4434 
4435         mutex_enter(&ipst->ips_mld_slowtimeout_lock);
4436         ipst->ips_mld_slowtimeout_quiesce = B_TRUE;
4437         mutex_exit(&ipst->ips_mld_slowtimeout_lock);
4438 
4439         ret = untimeout(ipst->ips_igmp_timeout_id);
4440         if (ret == -1) {
4441                 ASSERT(ipst->ips_igmp_timeout_id == 0);
4442         } else {
4443                 ASSERT(ipst->ips_igmp_timeout_id != 0);
4444                 ipst->ips_igmp_timeout_id = 0;
4445         }
4446         ret = untimeout(ipst->ips_igmp_slowtimeout_id);
4447         if (ret == -1) {
4448                 ASSERT(ipst->ips_igmp_slowtimeout_id == 0);
4449         } else {
4450                 ASSERT(ipst->ips_igmp_slowtimeout_id != 0);
4451                 ipst->ips_igmp_slowtimeout_id = 0;
4452         }
4453         ret = untimeout(ipst->ips_mld_timeout_id);
4454         if (ret == -1) {
4455                 ASSERT(ipst->ips_mld_timeout_id == 0);
4456         } else {
4457                 ASSERT(ipst->ips_mld_timeout_id != 0);
4458                 ipst->ips_mld_timeout_id = 0;
4459         }
4460         ret = untimeout(ipst->ips_mld_slowtimeout_id);
4461         if (ret == -1) {
4462                 ASSERT(ipst->ips_mld_slowtimeout_id == 0);
4463         } else {
4464                 ASSERT(ipst->ips_mld_slowtimeout_id != 0);
4465                 ipst->ips_mld_slowtimeout_id = 0;
4466         }
4467 
4468         ip_ire_fini(ipst);
4469         ip6_asp_free(ipst);
4470         conn_drain_fini(ipst);
4471         ipcl_destroy(ipst);
4472 
4473         mutex_destroy(&ipst->ips_ndp4->ndp_g_lock);
4474         mutex_destroy(&ipst->ips_ndp6->ndp_g_lock);
4475         kmem_free(ipst->ips_ndp4, sizeof (ndp_g_t));
4476         ipst->ips_ndp4 = NULL;
4477         kmem_free(ipst->ips_ndp6, sizeof (ndp_g_t));
4478         ipst->ips_ndp6 = NULL;
4479 
4480         if (ipst->ips_loopback_ksp != NULL) {
4481                 kstat_delete_netstack(ipst->ips_loopback_ksp, stackid);
4482                 ipst->ips_loopback_ksp = NULL;
4483         }
4484 
4485         mutex_destroy(&ipst->ips_capab_taskq_lock);
4486         cv_destroy(&ipst->ips_capab_taskq_cv);
4487 
4488         rw_destroy(&ipst->ips_srcid_lock);
4489 
4490         mutex_destroy(&ipst->ips_ip_mi_lock);
4491         rw_destroy(&ipst->ips_ill_g_usesrc_lock);
4492 
4493         mutex_destroy(&ipst->ips_igmp_timer_lock);
4494         mutex_destroy(&ipst->ips_mld_timer_lock);
4495         mutex_destroy(&ipst->ips_igmp_slowtimeout_lock);
4496         mutex_destroy(&ipst->ips_mld_slowtimeout_lock);
4497         mutex_destroy(&ipst->ips_ip_addr_avail_lock);
4498         rw_destroy(&ipst->ips_ill_g_lock);
4499 
4500         kmem_free(ipst->ips_phyint_g_list, sizeof (phyint_list_t));
4501         ipst->ips_phyint_g_list = NULL;
4502         kmem_free(ipst->ips_ill_g_heads, sizeof (ill_g_head_t) * MAX_G_HEADS);
4503         ipst->ips_ill_g_heads = NULL;
4504 
4505         ldi_ident_release(ipst->ips_ldi_ident);
4506         kmem_free(ipst, sizeof (*ipst));
4507 }
4508 
4509 /*
4510  * This function is called from the TSD destructor, and is used to debug
4511  * reference count issues in IP. See block comment in <inet/ip_if.h> for
4512  * details.
4513  */
4514 static void
4515 ip_thread_exit(void *phash)
4516 {
4517         th_hash_t *thh = phash;
4518 
4519         rw_enter(&ip_thread_rwlock, RW_WRITER);
4520         list_remove(&ip_thread_list, thh);
4521         rw_exit(&ip_thread_rwlock);
4522         mod_hash_destroy_hash(thh->thh_hash);
4523         kmem_free(thh, sizeof (*thh));
4524 }
4525 
4526 /*
4527  * Called when the IP kernel module is loaded into the kernel
4528  */
4529 void
4530 ip_ddi_init(void)
4531 {
4532         ip_squeue_flag = ip_squeue_switch(ip_squeue_enter);
4533 
4534         /*
4535          * For IP and TCP the minor numbers should start from 2 since we have 4
4536          * initial devices: ip, ip6, tcp, tcp6.
4537          */
4538         /*
4539          * If this is a 64-bit kernel, then create two separate arenas -
4540          * one for TLIs in the range of INET_MIN_DEV+2 through 2^^18-1, and the
4541          * other for socket apps in the range 2^^18 through 2^^32-1.
4542          */
4543         ip_minor_arena_la = NULL;
4544         ip_minor_arena_sa = NULL;
4545 #if defined(_LP64)
4546         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4547             INET_MIN_DEV + 2, MAXMIN32, KM_SLEEP)) == NULL) {
4548                 cmn_err(CE_PANIC,
4549                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4550         }
4551         if ((ip_minor_arena_la = inet_minor_create("ip_minor_arena_la",
4552             MAXMIN32 + 1, MAXMIN64, KM_SLEEP)) == NULL) {
4553                 cmn_err(CE_PANIC,
4554                     "ip_ddi_init: ip_minor_arena_la creation failed\n");
4555         }
4556 #else
4557         if ((ip_minor_arena_sa = inet_minor_create("ip_minor_arena_sa",
4558             INET_MIN_DEV + 2, MAXMIN, KM_SLEEP)) == NULL) {
4559                 cmn_err(CE_PANIC,
4560                     "ip_ddi_init: ip_minor_arena_sa creation failed\n");
4561         }
4562 #endif
4563         ip_poll_normal_ticks = MSEC_TO_TICK_ROUNDUP(ip_poll_normal_ms);
4564 
4565         ipcl_g_init();
4566         ip_ire_g_init();
4567         ip_net_g_init();
4568 
4569 #ifdef DEBUG
4570         tsd_create(&ip_thread_data, ip_thread_exit);
4571         rw_init(&ip_thread_rwlock, NULL, RW_DEFAULT, NULL);
4572         list_create(&ip_thread_list, sizeof (th_hash_t),
4573             offsetof(th_hash_t, thh_link));
4574 #endif
4575         ipsec_policy_g_init();
4576         tcp_ddi_g_init();
4577         sctp_ddi_g_init();
4578         dce_g_init();
4579 
4580         /*
4581          * We want to be informed each time a stack is created or
4582          * destroyed in the kernel, so we can maintain the
4583          * set of udp_stack_t's.
4584          */
4585         netstack_register(NS_IP, ip_stack_init, ip_stack_shutdown,
4586             ip_stack_fini);
4587 
4588         tnet_init();
4589 
4590         udp_ddi_g_init();
4591         rts_ddi_g_init();
4592         icmp_ddi_g_init();
4593         ilb_ddi_g_init();
4594 
4595         /* This needs to be called after all transports are initialized. */
4596         mutex_enter(&cpu_lock);
4597         register_cpu_setup_func(ip_tp_cpu_update, NULL);
4598         mutex_exit(&cpu_lock);
4599 }
4600 
4601 /*
4602  * Initialize the IP stack instance.
4603  */
4604 static void *
4605 ip_stack_init(netstackid_t stackid, netstack_t *ns)
4606 {
4607         ip_stack_t      *ipst;
4608         size_t          arrsz;
4609         major_t         major;
4610 
4611 #ifdef NS_DEBUG
4612         printf("ip_stack_init(stack %d)\n", stackid);
4613 #endif
4614 
4615         ipst = (ip_stack_t *)kmem_zalloc(sizeof (*ipst), KM_SLEEP);
4616         ipst->ips_netstack = ns;
4617 
4618         ipst->ips_ill_g_heads = kmem_zalloc(sizeof (ill_g_head_t) * MAX_G_HEADS,
4619             KM_SLEEP);
4620         ipst->ips_phyint_g_list = kmem_zalloc(sizeof (phyint_list_t),
4621             KM_SLEEP);
4622         ipst->ips_ndp4 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4623         ipst->ips_ndp6 = kmem_zalloc(sizeof (ndp_g_t), KM_SLEEP);
4624         mutex_init(&ipst->ips_ndp4->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4625         mutex_init(&ipst->ips_ndp6->ndp_g_lock, NULL, MUTEX_DEFAULT, NULL);
4626 
4627         mutex_init(&ipst->ips_igmp_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4628         ipst->ips_igmp_deferred_next = INFINITY;
4629         mutex_init(&ipst->ips_mld_timer_lock, NULL, MUTEX_DEFAULT, NULL);
4630         ipst->ips_mld_deferred_next = INFINITY;
4631         mutex_init(&ipst->ips_igmp_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4632         mutex_init(&ipst->ips_mld_slowtimeout_lock, NULL, MUTEX_DEFAULT, NULL);
4633         mutex_init(&ipst->ips_ip_mi_lock, NULL, MUTEX_DEFAULT, NULL);
4634         mutex_init(&ipst->ips_ip_addr_avail_lock, NULL, MUTEX_DEFAULT, NULL);
4635         rw_init(&ipst->ips_ill_g_lock, NULL, RW_DEFAULT, NULL);
4636         rw_init(&ipst->ips_ill_g_usesrc_lock, NULL, RW_DEFAULT, NULL);
4637 
4638         ipcl_init(ipst);
4639         ip_ire_init(ipst);
4640         ip6_asp_init(ipst);
4641         ipif_init(ipst);
4642         conn_drain_init(ipst);
4643         ip_mrouter_stack_init(ipst);
4644         dce_stack_init(ipst);
4645 
4646         ipst->ips_ip_multirt_log_interval = 1000;
4647 
4648         ipst->ips_ill_index = 1;
4649 
4650         ipst->ips_saved_ip_forwarding = -1;
4651         ipst->ips_reg_vif_num = ALL_VIFS;    /* Index to Register vif */
4652 
4653         arrsz = ip_propinfo_count * sizeof (mod_prop_info_t);
4654         ipst->ips_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, KM_SLEEP);
4655         bcopy(ip_propinfo_tbl, ipst->ips_propinfo_tbl, arrsz);
4656 
4657         ipst->ips_ip_mibkp = ip_kstat_init(stackid, ipst);
4658         ipst->ips_icmp_mibkp = icmp_kstat_init(stackid);
4659         ipst->ips_ip_kstat = ip_kstat2_init(stackid, &ipst->ips_ip_statistics);
4660         ipst->ips_ip6_kstat =
4661             ip6_kstat_init(stackid, &ipst->ips_ip6_statistics);
4662 
4663         ipst->ips_ip_src_id = 1;
4664         rw_init(&ipst->ips_srcid_lock, NULL, RW_DEFAULT, NULL);
4665 
4666         ipst->ips_src_generation = SRC_GENERATION_INITIAL;
4667 
4668         ip_net_init(ipst, ns);
4669         ipv4_hook_init(ipst);
4670         ipv6_hook_init(ipst);
4671         arp_hook_init(ipst);
4672         ipmp_init(ipst);
4673         ipobs_init(ipst);
4674 
4675         /*
4676          * Create the taskq dispatcher thread and initialize related stuff.
4677          */
4678         mutex_init(&ipst->ips_capab_taskq_lock, NULL, MUTEX_DEFAULT, NULL);
4679         cv_init(&ipst->ips_capab_taskq_cv, NULL, CV_DEFAULT, NULL);
4680         ipst->ips_capab_taskq_thread = thread_create(NULL, 0,
4681             ill_taskq_dispatch, ipst, 0, &p0, TS_RUN, minclsyspri);
4682 
4683         major = mod_name_to_major(INET_NAME);
4684         (void) ldi_ident_from_major(major, &ipst->ips_ldi_ident);
4685         return (ipst);
4686 }
4687 
4688 /*
4689  * Allocate and initialize a DLPI template of the specified length.  (May be
4690  * called as writer.)
4691  */
4692 mblk_t *
4693 ip_dlpi_alloc(size_t len, t_uscalar_t prim)
4694 {
4695         mblk_t  *mp;
4696 
4697         mp = allocb(len, BPRI_MED);
4698         if (!mp)
4699                 return (NULL);
4700 
4701         /*
4702          * DLPIv2 says that DL_INFO_REQ and DL_TOKEN_REQ (the latter
4703          * of which we don't seem to use) are sent with M_PCPROTO, and
4704          * that other DLPI are M_PROTO.
4705          */
4706         if (prim == DL_INFO_REQ) {
4707                 mp->b_datap->db_type = M_PCPROTO;
4708         } else {
4709                 mp->b_datap->db_type = M_PROTO;
4710         }
4711 
4712         mp->b_wptr = mp->b_rptr + len;
4713         bzero(mp->b_rptr, len);
4714         ((dl_unitdata_req_t *)mp->b_rptr)->dl_primitive = prim;
4715         return (mp);
4716 }
4717 
4718 /*
4719  * Allocate and initialize a DLPI notification.  (May be called as writer.)
4720  */
4721 mblk_t *
4722 ip_dlnotify_alloc(uint_t notification, uint_t data)
4723 {
4724         dl_notify_ind_t *notifyp;
4725         mblk_t          *mp;
4726 
4727         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4728                 return (NULL);
4729 
4730         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4731         notifyp->dl_notification = notification;
4732         notifyp->dl_data = data;
4733         return (mp);
4734 }
4735 
4736 mblk_t *
4737 ip_dlnotify_alloc2(uint_t notification, uint_t data1, uint_t data2)
4738 {
4739         dl_notify_ind_t *notifyp;
4740         mblk_t          *mp;
4741 
4742         if ((mp = ip_dlpi_alloc(DL_NOTIFY_IND_SIZE, DL_NOTIFY_IND)) == NULL)
4743                 return (NULL);
4744 
4745         notifyp = (dl_notify_ind_t *)mp->b_rptr;
4746         notifyp->dl_notification = notification;
4747         notifyp->dl_data1 = data1;
4748         notifyp->dl_data2 = data2;
4749         return (mp);
4750 }
4751 
4752 /*
4753  * Debug formatting routine.  Returns a character string representation of the
4754  * addr in buf, of the form xxx.xxx.xxx.xxx.  This routine takes the address
4755  * in the form of a ipaddr_t and calls ip_dot_saddr with a pointer.
4756  *
4757  * Once the ndd table-printing interfaces are removed, this can be changed to
4758  * standard dotted-decimal form.
4759  */
4760 char *
4761 ip_dot_addr(ipaddr_t addr, char *buf)
4762 {
4763         uint8_t *ap = (uint8_t *)&addr;
4764 
4765         (void) mi_sprintf(buf, "%03d.%03d.%03d.%03d",
4766             ap[0] & 0xFF, ap[1] & 0xFF, ap[2] & 0xFF, ap[3] & 0xFF);
4767         return (buf);
4768 }
4769 
4770 /*
4771  * Write the given MAC address as a printable string in the usual colon-
4772  * separated format.
4773  */
4774 const char *
4775 mac_colon_addr(const uint8_t *addr, size_t alen, char *buf, size_t buflen)
4776 {
4777         char *bp;
4778 
4779         if (alen == 0 || buflen < 4)
4780                 return ("?");
4781         bp = buf;
4782         for (;;) {
4783                 /*
4784                  * If there are more MAC address bytes available, but we won't
4785                  * have any room to print them, then add "..." to the string
4786                  * instead.  See below for the 'magic number' explanation.
4787                  */
4788                 if ((alen == 2 && buflen < 6) || (alen > 2 && buflen < 7)) {
4789                         (void) strcpy(bp, "...");
4790                         break;
4791                 }
4792                 (void) sprintf(bp, "%02x", *addr++);
4793                 bp += 2;
4794                 if (--alen == 0)
4795                         break;
4796                 *bp++ = ':';
4797                 buflen -= 3;
4798                 /*
4799                  * At this point, based on the first 'if' statement above,
4800                  * either alen == 1 and buflen >= 3, or alen > 1 and
4801                  * buflen >= 4.  The first case leaves room for the final "xx"
4802                  * number and trailing NUL byte.  The second leaves room for at
4803                  * least "...".  Thus the apparently 'magic' numbers chosen for
4804                  * that statement.
4805                  */
4806         }
4807         return (buf);
4808 }
4809 
4810 /*
4811  * Called when it is conceptually a ULP that would sent the packet
4812  * e.g., port unreachable and protocol unreachable. Check that the packet
4813  * would have passed the IPsec global policy before sending the error.
4814  *
4815  * Send an ICMP error after patching up the packet appropriately.
4816  * Uses ip_drop_input and bumps the appropriate MIB.
4817  */
4818 void
4819 ip_fanout_send_icmp_v4(mblk_t *mp, uint_t icmp_type, uint_t icmp_code,
4820     ip_recv_attr_t *ira)
4821 {
4822         ipha_t          *ipha;
4823         boolean_t       secure;
4824         ill_t           *ill = ira->ira_ill;
4825         ip_stack_t      *ipst = ill->ill_ipst;
4826         netstack_t      *ns = ipst->ips_netstack;
4827         ipsec_stack_t   *ipss = ns->netstack_ipsec;
4828 
4829         secure = ira->ira_flags & IRAF_IPSEC_SECURE;
4830 
4831         /*
4832          * We are generating an icmp error for some inbound packet.
4833          * Called from all ip_fanout_(udp, tcp, proto) functions.
4834          * Before we generate an error, check with global policy
4835          * to see whether this is allowed to enter the system. As
4836          * there is no "conn", we are checking with global policy.
4837          */
4838         ipha = (ipha_t *)mp->b_rptr;
4839         if (secure || ipss->ipsec_inbound_v4_policy_present) {
4840                 mp = ipsec_check_global_policy(mp, NULL, ipha, NULL, ira, ns);
4841                 if (mp == NULL)
4842                         return;
4843         }
4844 
4845         /* We never send errors for protocols that we do implement */
4846         if (ira->ira_protocol == IPPROTO_ICMP ||
4847             ira->ira_protocol == IPPROTO_IGMP) {
4848                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4849                 ip_drop_input("ip_fanout_send_icmp_v4", mp, ill);
4850                 freemsg(mp);
4851                 return;
4852         }
4853         /*
4854          * Have to correct checksum since
4855          * the packet might have been
4856          * fragmented and the reassembly code in ip_rput
4857          * does not restore the IP checksum.
4858          */
4859         ipha->ipha_hdr_checksum = 0;
4860         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
4861 
4862         switch (icmp_type) {
4863         case ICMP_DEST_UNREACHABLE:
4864                 switch (icmp_code) {
4865                 case ICMP_PROTOCOL_UNREACHABLE:
4866                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInUnknownProtos);
4867                         ip_drop_input("ipIfStatsInUnknownProtos", mp, ill);
4868                         break;
4869                 case ICMP_PORT_UNREACHABLE:
4870                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
4871                         ip_drop_input("ipIfStatsNoPorts", mp, ill);
4872                         break;
4873                 }
4874 
4875                 icmp_unreachable(mp, icmp_code, ira);
4876                 break;
4877         default:
4878 #ifdef DEBUG
4879                 panic("ip_fanout_send_icmp_v4: wrong type");
4880                 /*NOTREACHED*/
4881 #else
4882                 freemsg(mp);
4883                 break;
4884 #endif
4885         }
4886 }
4887 
4888 /*
4889  * Used to send an ICMP error message when a packet is received for
4890  * a protocol that is not supported. The mblk passed as argument
4891  * is consumed by this function.
4892  */
4893 void
4894 ip_proto_not_sup(mblk_t *mp, ip_recv_attr_t *ira)
4895 {
4896         ipha_t          *ipha;
4897 
4898         ipha = (ipha_t *)mp->b_rptr;
4899         if (ira->ira_flags & IRAF_IS_IPV4) {
4900                 ASSERT(IPH_HDR_VERSION(ipha) == IP_VERSION);
4901                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
4902                     ICMP_PROTOCOL_UNREACHABLE, ira);
4903         } else {
4904                 ASSERT(IPH_HDR_VERSION(ipha) == IPV6_VERSION);
4905                 ip_fanout_send_icmp_v6(mp, ICMP6_PARAM_PROB,
4906                     ICMP6_PARAMPROB_NEXTHEADER, ira);
4907         }
4908 }
4909 
4910 /*
4911  * Deliver a rawip packet to the given conn, possibly applying ipsec policy.
4912  * Handles IPv4 and IPv6.
4913  * We are responsible for disposing of mp, such as by freemsg() or putnext()
4914  * Caller is responsible for dropping references to the conn.
4915  */
4916 void
4917 ip_fanout_proto_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
4918     ip_recv_attr_t *ira)
4919 {
4920         ill_t           *ill = ira->ira_ill;
4921         ip_stack_t      *ipst = ill->ill_ipst;
4922         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
4923         boolean_t       secure;
4924         uint_t          protocol = ira->ira_protocol;
4925         iaflags_t       iraflags = ira->ira_flags;
4926         queue_t         *rq;
4927 
4928         secure = iraflags & IRAF_IPSEC_SECURE;
4929 
4930         rq = connp->conn_rq;
4931         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
4932                 switch (protocol) {
4933                 case IPPROTO_ICMPV6:
4934                         BUMP_MIB(ill->ill_icmp6_mib, ipv6IfIcmpInOverflows);
4935                         break;
4936                 case IPPROTO_ICMP:
4937                         BUMP_MIB(&ipst->ips_icmp_mib, icmpInOverflows);
4938                         break;
4939                 default:
4940                         BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
4941                         break;
4942                 }
4943                 freemsg(mp);
4944                 return;
4945         }
4946 
4947         ASSERT(!(IPCL_IS_IPTUN(connp)));
4948 
4949         if (((iraflags & IRAF_IS_IPV4) ?
4950             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
4951             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
4952             secure) {
4953                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
4954                     ip6h, ira);
4955                 if (mp == NULL) {
4956                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
4957                         /* Note that mp is NULL */
4958                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
4959                         return;
4960                 }
4961         }
4962 
4963         if (iraflags & IRAF_ICMP_ERROR) {
4964                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
4965         } else {
4966                 ill_t *rill = ira->ira_rill;
4967 
4968                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
4969                 ira->ira_ill = ira->ira_rill = NULL;
4970                 /* Send it upstream */
4971                 (connp->conn_recv)(connp, mp, NULL, ira);
4972                 ira->ira_ill = ill;
4973                 ira->ira_rill = rill;
4974         }
4975 }
4976 
4977 /*
4978  * Handle protocols with which IP is less intimate.  There
4979  * can be more than one stream bound to a particular
4980  * protocol.  When this is the case, normally each one gets a copy
4981  * of any incoming packets.
4982  *
4983  * IPsec NOTE :
4984  *
4985  * Don't allow a secure packet going up a non-secure connection.
4986  * We don't allow this because
4987  *
4988  * 1) Reply might go out in clear which will be dropped at
4989  *    the sending side.
4990  * 2) If the reply goes out in clear it will give the
4991  *    adversary enough information for getting the key in
4992  *    most of the cases.
4993  *
4994  * Moreover getting a secure packet when we expect clear
4995  * implies that SA's were added without checking for
4996  * policy on both ends. This should not happen once ISAKMP
4997  * is used to negotiate SAs as SAs will be added only after
4998  * verifying the policy.
4999  *
5000  * Zones notes:
5001  * Earlier in ip_input on a system with multiple shared-IP zones we
5002  * duplicate the multicast and broadcast packets and send them up
5003  * with each explicit zoneid that exists on that ill.
5004  * This means that here we can match the zoneid with SO_ALLZONES being special.
5005  */
5006 void
5007 ip_fanout_proto_v4(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
5008 {
5009         mblk_t          *mp1;
5010         ipaddr_t        laddr;
5011         conn_t          *connp, *first_connp, *next_connp;
5012         connf_t         *connfp;
5013         ill_t           *ill = ira->ira_ill;
5014         ip_stack_t      *ipst = ill->ill_ipst;
5015 
5016         laddr = ipha->ipha_dst;
5017 
5018         connfp = &ipst->ips_ipcl_proto_fanout_v4[ira->ira_protocol];
5019         mutex_enter(&connfp->connf_lock);
5020         connp = connfp->connf_head;
5021         for (connp = connfp->connf_head; connp != NULL;
5022             connp = connp->conn_next) {
5023                 /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5024                 if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5025                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5026                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp))) {
5027                         break;
5028                 }
5029         }
5030 
5031         if (connp == NULL) {
5032                 /*
5033                  * No one bound to these addresses.  Is
5034                  * there a client that wants all
5035                  * unclaimed datagrams?
5036                  */
5037                 mutex_exit(&connfp->connf_lock);
5038                 ip_fanout_send_icmp_v4(mp, ICMP_DEST_UNREACHABLE,
5039                     ICMP_PROTOCOL_UNREACHABLE, ira);
5040                 return;
5041         }
5042 
5043         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5044 
5045         CONN_INC_REF(connp);
5046         first_connp = connp;
5047         connp = connp->conn_next;
5048 
5049         for (;;) {
5050                 while (connp != NULL) {
5051                         /* Note: IPCL_PROTO_MATCH includes conn_wantpacket */
5052                         if (IPCL_PROTO_MATCH(connp, ira, ipha) &&
5053                             (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5054                             tsol_receive_local(mp, &laddr, IPV4_VERSION,
5055                             ira, connp)))
5056                                 break;
5057                         connp = connp->conn_next;
5058                 }
5059 
5060                 if (connp == NULL) {
5061                         /* No more interested clients */
5062                         connp = first_connp;
5063                         break;
5064                 }
5065                 if (((mp1 = dupmsg(mp)) == NULL) &&
5066                     ((mp1 = copymsg(mp)) == NULL)) {
5067                         /* Memory allocation failed */
5068                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5069                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5070                         connp = first_connp;
5071                         break;
5072                 }
5073 
5074                 CONN_INC_REF(connp);
5075                 mutex_exit(&connfp->connf_lock);
5076 
5077                 ip_fanout_proto_conn(connp, mp1, (ipha_t *)mp1->b_rptr, NULL,
5078                     ira);
5079 
5080                 mutex_enter(&connfp->connf_lock);
5081                 /* Follow the next pointer before releasing the conn. */
5082                 next_connp = connp->conn_next;
5083                 CONN_DEC_REF(connp);
5084                 connp = next_connp;
5085         }
5086 
5087         /* Last one.  Send it upstream. */
5088         mutex_exit(&connfp->connf_lock);
5089 
5090         ip_fanout_proto_conn(connp, mp, ipha, NULL, ira);
5091 
5092         CONN_DEC_REF(connp);
5093 }
5094 
5095 /*
5096  * If we have a IPsec NAT-Traversal packet, strip the zero-SPI or
5097  * pass it along to ESP if the SPI is non-zero.  Returns the mblk if the mblk
5098  * is not consumed.
5099  *
5100  * One of three things can happen, all of which affect the passed-in mblk:
5101  *
5102  * 1.) The packet is stock UDP and gets its zero-SPI stripped.  Return mblk..
5103  *
5104  * 2.) The packet is ESP-in-UDP, gets transformed into an equivalent
5105  *     ESP packet, and is passed along to ESP for consumption.  Return NULL.
5106  *
5107  * 3.) The packet is an ESP-in-UDP Keepalive.  Drop it and return NULL.
5108  */
5109 mblk_t *
5110 zero_spi_check(mblk_t *mp, ip_recv_attr_t *ira)
5111 {
5112         int shift, plen, iph_len;
5113         ipha_t *ipha;
5114         udpha_t *udpha;
5115         uint32_t *spi;
5116         uint32_t esp_ports;
5117         uint8_t *orptr;
5118         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
5119         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5120 
5121         ipha = (ipha_t *)mp->b_rptr;
5122         iph_len = ira->ira_ip_hdr_length;
5123         plen = ira->ira_pktlen;
5124 
5125         if (plen - iph_len - sizeof (udpha_t) < sizeof (uint32_t)) {
5126                 /*
5127                  * Most likely a keepalive for the benefit of an intervening
5128                  * NAT.  These aren't for us, per se, so drop it.
5129                  *
5130                  * RFC 3947/8 doesn't say for sure what to do for 2-3
5131                  * byte packets (keepalives are 1-byte), but we'll drop them
5132                  * also.
5133                  */
5134                 ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5135                     DROPPER(ipss, ipds_esp_nat_t_ka), &ipss->ipsec_dropper);
5136                 return (NULL);
5137         }
5138 
5139         if (MBLKL(mp) < iph_len + sizeof (udpha_t) + sizeof (*spi)) {
5140                 /* might as well pull it all up - it might be ESP. */
5141                 if (!pullupmsg(mp, -1)) {
5142                         ip_drop_packet(mp, B_TRUE, ira->ira_ill,
5143                             DROPPER(ipss, ipds_esp_nomem),
5144                             &ipss->ipsec_dropper);
5145                         return (NULL);
5146                 }
5147 
5148                 ipha = (ipha_t *)mp->b_rptr;
5149         }
5150         spi = (uint32_t *)(mp->b_rptr + iph_len + sizeof (udpha_t));
5151         if (*spi == 0) {
5152                 /* UDP packet - remove 0-spi. */
5153                 shift = sizeof (uint32_t);
5154         } else {
5155                 /* ESP-in-UDP packet - reduce to ESP. */
5156                 ipha->ipha_protocol = IPPROTO_ESP;
5157                 shift = sizeof (udpha_t);
5158         }
5159 
5160         /* Fix IP header */
5161         ira->ira_pktlen = (plen - shift);
5162         ipha->ipha_length = htons(ira->ira_pktlen);
5163         ipha->ipha_hdr_checksum = 0;
5164 
5165         orptr = mp->b_rptr;
5166         mp->b_rptr += shift;
5167 
5168         udpha = (udpha_t *)(orptr + iph_len);
5169         if (*spi == 0) {
5170                 ASSERT((uint8_t *)ipha == orptr);
5171                 udpha->uha_length = htons(plen - shift - iph_len);
5172                 iph_len += sizeof (udpha_t);    /* For the call to ovbcopy(). */
5173                 esp_ports = 0;
5174         } else {
5175                 esp_ports = *((uint32_t *)udpha);
5176                 ASSERT(esp_ports != 0);
5177         }
5178         ovbcopy(orptr, orptr + shift, iph_len);
5179         if (esp_ports != 0) /* Punt up for ESP processing. */ {
5180                 ipha = (ipha_t *)(orptr + shift);
5181 
5182                 ira->ira_flags |= IRAF_ESP_UDP_PORTS;
5183                 ira->ira_esp_udp_ports = esp_ports;
5184                 ip_fanout_v4(mp, ipha, ira);
5185                 return (NULL);
5186         }
5187         return (mp);
5188 }
5189 
5190 /*
5191  * Deliver a udp packet to the given conn, possibly applying ipsec policy.
5192  * Handles IPv4 and IPv6.
5193  * We are responsible for disposing of mp, such as by freemsg() or putnext()
5194  * Caller is responsible for dropping references to the conn.
5195  */
5196 void
5197 ip_fanout_udp_conn(conn_t *connp, mblk_t *mp, ipha_t *ipha, ip6_t *ip6h,
5198     ip_recv_attr_t *ira)
5199 {
5200         ill_t           *ill = ira->ira_ill;
5201         ip_stack_t      *ipst = ill->ill_ipst;
5202         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
5203         boolean_t       secure;
5204         iaflags_t       iraflags = ira->ira_flags;
5205 
5206         secure = iraflags & IRAF_IPSEC_SECURE;
5207 
5208         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld :
5209             !canputnext(connp->conn_rq)) {
5210                 BUMP_MIB(ill->ill_ip_mib, udpIfStatsInOverflows);
5211                 freemsg(mp);
5212                 return;
5213         }
5214 
5215         if (((iraflags & IRAF_IS_IPV4) ?
5216             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
5217             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
5218             secure) {
5219                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
5220                     ip6h, ira);
5221                 if (mp == NULL) {
5222                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5223                         /* Note that mp is NULL */
5224                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
5225                         return;
5226                 }
5227         }
5228 
5229         /*
5230          * Since this code is not used for UDP unicast we don't need a NAT_T
5231          * check. Only ip_fanout_v4 has that check.
5232          */
5233         if (ira->ira_flags & IRAF_ICMP_ERROR) {
5234                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
5235         } else {
5236                 ill_t *rill = ira->ira_rill;
5237 
5238                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
5239                 ira->ira_ill = ira->ira_rill = NULL;
5240                 /* Send it upstream */
5241                 (connp->conn_recv)(connp, mp, NULL, ira);
5242                 ira->ira_ill = ill;
5243                 ira->ira_rill = rill;
5244         }
5245 }
5246 
5247 /*
5248  * Fanout for UDP packets that are multicast or broadcast, and ICMP errors.
5249  * (Unicast fanout is handled in ip_input_v4.)
5250  *
5251  * If SO_REUSEADDR is set all multicast and broadcast packets
5252  * will be delivered to all conns bound to the same port.
5253  *
5254  * If there is at least one matching AF_INET receiver, then we will
5255  * ignore any AF_INET6 receivers.
5256  * In the special case where an AF_INET socket binds to 0.0.0.0/<port> and an
5257  * AF_INET6 socket binds to ::/<port>, only the AF_INET socket receives the IPv4
5258  * packets.
5259  *
5260  * Zones notes:
5261  * Earlier in ip_input on a system with multiple shared-IP zones we
5262  * duplicate the multicast and broadcast packets and send them up
5263  * with each explicit zoneid that exists on that ill.
5264  * This means that here we can match the zoneid with SO_ALLZONES being special.
5265  */
5266 void
5267 ip_fanout_udp_multi_v4(mblk_t *mp, ipha_t *ipha, uint16_t lport, uint16_t fport,
5268     ip_recv_attr_t *ira)
5269 {
5270         ipaddr_t        laddr;
5271         in6_addr_t      v6faddr;
5272         conn_t          *connp;
5273         connf_t         *connfp;
5274         ipaddr_t        faddr;
5275         ill_t           *ill = ira->ira_ill;
5276         ip_stack_t      *ipst = ill->ill_ipst;
5277 
5278         ASSERT(ira->ira_flags & (IRAF_MULTIBROADCAST|IRAF_ICMP_ERROR));
5279 
5280         laddr = ipha->ipha_dst;
5281         faddr = ipha->ipha_src;
5282 
5283         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5284         mutex_enter(&connfp->connf_lock);
5285         connp = connfp->connf_head;
5286 
5287         /*
5288          * If SO_REUSEADDR has been set on the first we send the
5289          * packet to all clients that have joined the group and
5290          * match the port.
5291          */
5292         while (connp != NULL) {
5293                 if ((IPCL_UDP_MATCH(connp, lport, laddr, fport, faddr)) &&
5294                     conn_wantpacket(connp, ira, ipha) &&
5295                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5296                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5297                         break;
5298                 connp = connp->conn_next;
5299         }
5300 
5301         if (connp == NULL)
5302                 goto notfound;
5303 
5304         CONN_INC_REF(connp);
5305 
5306         if (connp->conn_reuseaddr) {
5307                 conn_t          *first_connp = connp;
5308                 conn_t          *next_connp;
5309                 mblk_t          *mp1;
5310 
5311                 connp = connp->conn_next;
5312                 for (;;) {
5313                         while (connp != NULL) {
5314                                 if (IPCL_UDP_MATCH(connp, lport, laddr,
5315                                     fport, faddr) &&
5316                                     conn_wantpacket(connp, ira, ipha) &&
5317                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5318                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5319                                     ira, connp)))
5320                                         break;
5321                                 connp = connp->conn_next;
5322                         }
5323                         if (connp == NULL) {
5324                                 /* No more interested clients */
5325                                 connp = first_connp;
5326                                 break;
5327                         }
5328                         if (((mp1 = dupmsg(mp)) == NULL) &&
5329                             ((mp1 = copymsg(mp)) == NULL)) {
5330                                 /* Memory allocation failed */
5331                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5332                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5333                                 connp = first_connp;
5334                                 break;
5335                         }
5336                         CONN_INC_REF(connp);
5337                         mutex_exit(&connfp->connf_lock);
5338 
5339                         IP_STAT(ipst, ip_udp_fanmb);
5340                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5341                             NULL, ira);
5342                         mutex_enter(&connfp->connf_lock);
5343                         /* Follow the next pointer before releasing the conn */
5344                         next_connp = connp->conn_next;
5345                         CONN_DEC_REF(connp);
5346                         connp = next_connp;
5347                 }
5348         }
5349 
5350         /* Last one.  Send it upstream. */
5351         mutex_exit(&connfp->connf_lock);
5352         IP_STAT(ipst, ip_udp_fanmb);
5353         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5354         CONN_DEC_REF(connp);
5355         return;
5356 
5357 notfound:
5358         mutex_exit(&connfp->connf_lock);
5359         /*
5360          * IPv6 endpoints bound to multicast IPv4-mapped addresses
5361          * have already been matched above, since they live in the IPv4
5362          * fanout tables. This implies we only need to
5363          * check for IPv6 in6addr_any endpoints here.
5364          * Thus we compare using ipv6_all_zeros instead of the destination
5365          * address, except for the multicast group membership lookup which
5366          * uses the IPv4 destination.
5367          */
5368         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_src, &v6faddr);
5369         connfp = &ipst->ips_ipcl_udp_fanout[IPCL_UDP_HASH(lport, ipst)];
5370         mutex_enter(&connfp->connf_lock);
5371         connp = connfp->connf_head;
5372         /*
5373          * IPv4 multicast packet being delivered to an AF_INET6
5374          * in6addr_any endpoint.
5375          * Need to check conn_wantpacket(). Note that we use conn_wantpacket()
5376          * and not conn_wantpacket_v6() since any multicast membership is
5377          * for an IPv4-mapped multicast address.
5378          */
5379         while (connp != NULL) {
5380                 if (IPCL_UDP_MATCH_V6(connp, lport, ipv6_all_zeros,
5381                     fport, v6faddr) &&
5382                     conn_wantpacket(connp, ira, ipha) &&
5383                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5384                     tsol_receive_local(mp, &laddr, IPV4_VERSION, ira, connp)))
5385                         break;
5386                 connp = connp->conn_next;
5387         }
5388 
5389         if (connp == NULL) {
5390                 /*
5391                  * No one bound to this port.  Is
5392                  * there a client that wants all
5393                  * unclaimed datagrams?
5394                  */
5395                 mutex_exit(&connfp->connf_lock);
5396 
5397                 if (ipst->ips_ipcl_proto_fanout_v4[IPPROTO_UDP].connf_head !=
5398                     NULL) {
5399                         ASSERT(ira->ira_protocol == IPPROTO_UDP);
5400                         ip_fanout_proto_v4(mp, ipha, ira);
5401                 } else {
5402                         /*
5403                          * We used to attempt to send an icmp error here, but
5404                          * since this is known to be a multicast packet
5405                          * and we don't send icmp errors in response to
5406                          * multicast, just drop the packet and give up sooner.
5407                          */
5408                         BUMP_MIB(ill->ill_ip_mib, udpIfStatsNoPorts);
5409                         freemsg(mp);
5410                 }
5411                 return;
5412         }
5413         CONN_INC_REF(connp);
5414         ASSERT(IPCL_IS_NONSTR(connp) || connp->conn_rq != NULL);
5415 
5416         /*
5417          * If SO_REUSEADDR has been set on the first we send the
5418          * packet to all clients that have joined the group and
5419          * match the port.
5420          */
5421         if (connp->conn_reuseaddr) {
5422                 conn_t          *first_connp = connp;
5423                 conn_t          *next_connp;
5424                 mblk_t          *mp1;
5425 
5426                 connp = connp->conn_next;
5427                 for (;;) {
5428                         while (connp != NULL) {
5429                                 if (IPCL_UDP_MATCH_V6(connp, lport,
5430                                     ipv6_all_zeros, fport, v6faddr) &&
5431                                     conn_wantpacket(connp, ira, ipha) &&
5432                                     (!(ira->ira_flags & IRAF_SYSTEM_LABELED) ||
5433                                     tsol_receive_local(mp, &laddr, IPV4_VERSION,
5434                                     ira, connp)))
5435                                         break;
5436                                 connp = connp->conn_next;
5437                         }
5438                         if (connp == NULL) {
5439                                 /* No more interested clients */
5440                                 connp = first_connp;
5441                                 break;
5442                         }
5443                         if (((mp1 = dupmsg(mp)) == NULL) &&
5444                             ((mp1 = copymsg(mp)) == NULL)) {
5445                                 /* Memory allocation failed */
5446                                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
5447                                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
5448                                 connp = first_connp;
5449                                 break;
5450                         }
5451                         CONN_INC_REF(connp);
5452                         mutex_exit(&connfp->connf_lock);
5453 
5454                         IP_STAT(ipst, ip_udp_fanmb);
5455                         ip_fanout_udp_conn(connp, mp1, (ipha_t *)mp1->b_rptr,
5456                             NULL, ira);
5457                         mutex_enter(&connfp->connf_lock);
5458                         /* Follow the next pointer before releasing the conn */
5459                         next_connp = connp->conn_next;
5460                         CONN_DEC_REF(connp);
5461                         connp = next_connp;
5462                 }
5463         }
5464 
5465         /* Last one.  Send it upstream. */
5466         mutex_exit(&connfp->connf_lock);
5467         IP_STAT(ipst, ip_udp_fanmb);
5468         ip_fanout_udp_conn(connp, mp, ipha, NULL, ira);
5469         CONN_DEC_REF(connp);
5470 }
5471 
5472 /*
5473  * Split an incoming packet's IPv4 options into the label and the other options.
5474  * If 'allocate' is set it does memory allocation for the ip_pkt_t, including
5475  * clearing out any leftover label or options.
5476  * Otherwise it just makes ipp point into the packet.
5477  *
5478  * Returns zero if ok; ENOMEM if the buffer couldn't be allocated.
5479  */
5480 int
5481 ip_find_hdr_v4(ipha_t *ipha, ip_pkt_t *ipp, boolean_t allocate)
5482 {
5483         uchar_t         *opt;
5484         uint32_t        totallen;
5485         uint32_t        optval;
5486         uint32_t        optlen;
5487 
5488         ipp->ipp_fields |= IPPF_HOPLIMIT | IPPF_TCLASS | IPPF_ADDR;
5489         ipp->ipp_hoplimit = ipha->ipha_ttl;
5490         ipp->ipp_type_of_service = ipha->ipha_type_of_service;
5491         IN6_IPADDR_TO_V4MAPPED(ipha->ipha_dst, &ipp->ipp_addr);
5492 
5493         /*
5494          * Get length (in 4 byte octets) of IP header options.
5495          */
5496         totallen = ipha->ipha_version_and_hdr_length -
5497             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5498 
5499         if (totallen == 0) {
5500                 if (!allocate)
5501                         return (0);
5502 
5503                 /* Clear out anything from a previous packet */
5504                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5505                         kmem_free(ipp->ipp_ipv4_options,
5506                             ipp->ipp_ipv4_options_len);
5507                         ipp->ipp_ipv4_options = NULL;
5508                         ipp->ipp_ipv4_options_len = 0;
5509                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5510                 }
5511                 if (ipp->ipp_fields & IPPF_LABEL_V4) {
5512                         kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5513                         ipp->ipp_label_v4 = NULL;
5514                         ipp->ipp_label_len_v4 = 0;
5515                         ipp->ipp_fields &= ~IPPF_LABEL_V4;
5516                 }
5517                 return (0);
5518         }
5519 
5520         totallen <<= 2;
5521         opt = (uchar_t *)&ipha[1];
5522         if (!is_system_labeled()) {
5523 
5524         copyall:
5525                 if (!allocate) {
5526                         if (totallen != 0) {
5527                                 ipp->ipp_ipv4_options = opt;
5528                                 ipp->ipp_ipv4_options_len = totallen;
5529                                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5530                         }
5531                         return (0);
5532                 }
5533                 /* Just copy all of options */
5534                 if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
5535                         if (totallen == ipp->ipp_ipv4_options_len) {
5536                                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5537                                 return (0);
5538                         }
5539                         kmem_free(ipp->ipp_ipv4_options,
5540                             ipp->ipp_ipv4_options_len);
5541                         ipp->ipp_ipv4_options = NULL;
5542                         ipp->ipp_ipv4_options_len = 0;
5543                         ipp->ipp_fields &= ~IPPF_IPV4_OPTIONS;
5544                 }
5545                 if (totallen == 0)
5546                         return (0);
5547 
5548                 ipp->ipp_ipv4_options = kmem_alloc(totallen, KM_NOSLEEP);
5549                 if (ipp->ipp_ipv4_options == NULL)
5550                         return (ENOMEM);
5551                 ipp->ipp_ipv4_options_len = totallen;
5552                 ipp->ipp_fields |= IPPF_IPV4_OPTIONS;
5553                 bcopy(opt, ipp->ipp_ipv4_options, totallen);
5554                 return (0);
5555         }
5556 
5557         if (allocate && (ipp->ipp_fields & IPPF_LABEL_V4)) {
5558                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
5559                 ipp->ipp_label_v4 = NULL;
5560                 ipp->ipp_label_len_v4 = 0;
5561                 ipp->ipp_fields &= ~IPPF_LABEL_V4;
5562         }
5563 
5564         /*
5565          * Search for CIPSO option.
5566          * We assume CIPSO is first in options if it is present.
5567          * If it isn't, then ipp_opt_ipv4_options will not include the options
5568          * prior to the CIPSO option.
5569          */
5570         while (totallen != 0) {
5571                 switch (optval = opt[IPOPT_OPTVAL]) {
5572                 case IPOPT_EOL:
5573                         return (0);
5574                 case IPOPT_NOP:
5575                         optlen = 1;
5576                         break;
5577                 default:
5578                         if (totallen <= IPOPT_OLEN)
5579                                 return (EINVAL);
5580                         optlen = opt[IPOPT_OLEN];
5581                         if (optlen < 2)
5582                                 return (EINVAL);
5583                 }
5584                 if (optlen > totallen)
5585                         return (EINVAL);
5586 
5587                 switch (optval) {
5588                 case IPOPT_COMSEC:
5589                         if (!allocate) {
5590                                 ipp->ipp_label_v4 = opt;
5591                                 ipp->ipp_label_len_v4 = optlen;
5592                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5593                         } else {
5594                                 ipp->ipp_label_v4 = kmem_alloc(optlen,
5595                                     KM_NOSLEEP);
5596                                 if (ipp->ipp_label_v4 == NULL)
5597                                         return (ENOMEM);
5598                                 ipp->ipp_label_len_v4 = optlen;
5599                                 ipp->ipp_fields |= IPPF_LABEL_V4;
5600                                 bcopy(opt, ipp->ipp_label_v4, optlen);
5601                         }
5602                         totallen -= optlen;
5603                         opt += optlen;
5604 
5605                         /* Skip padding bytes until we get to a multiple of 4 */
5606                         while ((totallen & 3) != 0 && opt[0] == IPOPT_NOP) {
5607                                 totallen--;
5608                                 opt++;
5609                         }
5610                         /* Remaining as ipp_ipv4_options */
5611                         goto copyall;
5612                 }
5613                 totallen -= optlen;
5614                 opt += optlen;
5615         }
5616         /* No CIPSO found; return everything as ipp_ipv4_options */
5617         totallen = ipha->ipha_version_and_hdr_length -
5618             (uint8_t)((IP_VERSION << 4) + IP_SIMPLE_HDR_LENGTH_IN_WORDS);
5619         totallen <<= 2;
5620         opt = (uchar_t *)&ipha[1];
5621         goto copyall;
5622 }
5623 
5624 /*
5625  * Efficient versions of lookup for an IRE when we only
5626  * match the address.
5627  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5628  * Does not handle multicast addresses.
5629  */
5630 uint_t
5631 ip_type_v4(ipaddr_t addr, ip_stack_t *ipst)
5632 {
5633         ire_t *ire;
5634         uint_t result;
5635 
5636         ire = ire_ftable_lookup_simple_v4(addr, 0, ipst, NULL);
5637         ASSERT(ire != NULL);
5638         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5639                 result = IRE_NOROUTE;
5640         else
5641                 result = ire->ire_type;
5642         ire_refrele(ire);
5643         return (result);
5644 }
5645 
5646 /*
5647  * Efficient versions of lookup for an IRE when we only
5648  * match the address.
5649  * For RTF_REJECT or BLACKHOLE we return IRE_NOROUTE.
5650  * Does not handle multicast addresses.
5651  */
5652 uint_t
5653 ip_type_v6(const in6_addr_t *addr, ip_stack_t *ipst)
5654 {
5655         ire_t *ire;
5656         uint_t result;
5657 
5658         ire = ire_ftable_lookup_simple_v6(addr, 0, ipst, NULL);
5659         ASSERT(ire != NULL);
5660         if (ire->ire_flags & (RTF_REJECT|RTF_BLACKHOLE))
5661                 result = IRE_NOROUTE;
5662         else
5663                 result = ire->ire_type;
5664         ire_refrele(ire);
5665         return (result);
5666 }
5667 
5668 /*
5669  * Nobody should be sending
5670  * packets up this stream
5671  */
5672 static int
5673 ip_lrput(queue_t *q, mblk_t *mp)
5674 {
5675         switch (mp->b_datap->db_type) {
5676         case M_FLUSH:
5677                 /* Turn around */
5678                 if (*mp->b_rptr & FLUSHW) {
5679                         *mp->b_rptr &= ~FLUSHR;
5680                         qreply(q, mp);
5681                         return (0);
5682                 }
5683                 break;
5684         }
5685         freemsg(mp);
5686         return (0);
5687 }
5688 
5689 /* Nobody should be sending packets down this stream */
5690 /* ARGSUSED */
5691 int
5692 ip_lwput(queue_t *q, mblk_t *mp)
5693 {
5694         freemsg(mp);
5695         return (0);
5696 }
5697 
5698 /*
5699  * Move the first hop in any source route to ipha_dst and remove that part of
5700  * the source route.  Called by other protocols.  Errors in option formatting
5701  * are ignored - will be handled by ip_output_options. Return the final
5702  * destination (either ipha_dst or the last entry in a source route.)
5703  */
5704 ipaddr_t
5705 ip_massage_options(ipha_t *ipha, netstack_t *ns)
5706 {
5707         ipoptp_t        opts;
5708         uchar_t         *opt;
5709         uint8_t         optval;
5710         uint8_t         optlen;
5711         ipaddr_t        dst;
5712         int             i;
5713         ip_stack_t      *ipst = ns->netstack_ip;
5714 
5715         ip2dbg(("ip_massage_options\n"));
5716         dst = ipha->ipha_dst;
5717         for (optval = ipoptp_first(&opts, ipha);
5718             optval != IPOPT_EOL;
5719             optval = ipoptp_next(&opts)) {
5720                 opt = opts.ipoptp_cur;
5721                 switch (optval) {
5722                         uint8_t off;
5723                 case IPOPT_SSRR:
5724                 case IPOPT_LSRR:
5725                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
5726                                 ip1dbg(("ip_massage_options: bad src route\n"));
5727                                 break;
5728                         }
5729                         optlen = opts.ipoptp_len;
5730                         off = opt[IPOPT_OFFSET];
5731                         off--;
5732                 redo_srr:
5733                         if (optlen < IP_ADDR_LEN ||
5734                             off > optlen - IP_ADDR_LEN) {
5735                                 /* End of source route */
5736                                 ip1dbg(("ip_massage_options: end of SR\n"));
5737                                 break;
5738                         }
5739                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
5740                         ip1dbg(("ip_massage_options: next hop 0x%x\n",
5741                             ntohl(dst)));
5742                         /*
5743                          * Check if our address is present more than
5744                          * once as consecutive hops in source route.
5745                          * XXX verify per-interface ip_forwarding
5746                          * for source route?
5747                          */
5748                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
5749                                 off += IP_ADDR_LEN;
5750                                 goto redo_srr;
5751                         }
5752                         if (dst == htonl(INADDR_LOOPBACK)) {
5753                                 ip1dbg(("ip_massage_options: loopback addr in "
5754                                     "source route!\n"));
5755                                 break;
5756                         }
5757                         /*
5758                          * Update ipha_dst to be the first hop and remove the
5759                          * first hop from the source route (by overwriting
5760                          * part of the option with NOP options).
5761                          */
5762                         ipha->ipha_dst = dst;
5763                         /* Put the last entry in dst */
5764                         off = ((optlen - IP_ADDR_LEN - 3) & ~(IP_ADDR_LEN-1)) +
5765                             3;
5766                         bcopy(&opt[off], &dst, IP_ADDR_LEN);
5767 
5768                         ip1dbg(("ip_massage_options: last hop 0x%x\n",
5769                             ntohl(dst)));
5770                         /* Move down and overwrite */
5771                         opt[IP_ADDR_LEN] = opt[0];
5772                         opt[IP_ADDR_LEN+1] = opt[IPOPT_OLEN] - IP_ADDR_LEN;
5773                         opt[IP_ADDR_LEN+2] = opt[IPOPT_OFFSET];
5774                         for (i = 0; i < IP_ADDR_LEN; i++)
5775                                 opt[i] = IPOPT_NOP;
5776                         break;
5777                 }
5778         }
5779         return (dst);
5780 }
5781 
5782 /*
5783  * Return the network mask
5784  * associated with the specified address.
5785  */
5786 ipaddr_t
5787 ip_net_mask(ipaddr_t addr)
5788 {
5789         uchar_t *up = (uchar_t *)&addr;
5790         ipaddr_t mask = 0;
5791         uchar_t *maskp = (uchar_t *)&mask;
5792 
5793 #if defined(__i386) || defined(__amd64)
5794 #define TOTALLY_BRAIN_DAMAGED_C_COMPILER
5795 #endif
5796 #ifdef  TOTALLY_BRAIN_DAMAGED_C_COMPILER
5797         maskp[0] = maskp[1] = maskp[2] = maskp[3] = 0;
5798 #endif
5799         if (CLASSD(addr)) {
5800                 maskp[0] = 0xF0;
5801                 return (mask);
5802         }
5803 
5804         /* We assume Class E default netmask to be 32 */
5805         if (CLASSE(addr))
5806                 return (0xffffffffU);
5807 
5808         if (addr == 0)
5809                 return (0);
5810         maskp[0] = 0xFF;
5811         if ((up[0] & 0x80) == 0)
5812                 return (mask);
5813 
5814         maskp[1] = 0xFF;
5815         if ((up[0] & 0xC0) == 0x80)
5816                 return (mask);
5817 
5818         maskp[2] = 0xFF;
5819         if ((up[0] & 0xE0) == 0xC0)
5820                 return (mask);
5821 
5822         /* Otherwise return no mask */
5823         return ((ipaddr_t)0);
5824 }
5825 
5826 /* Name/Value Table Lookup Routine */
5827 char *
5828 ip_nv_lookup(nv_t *nv, int value)
5829 {
5830         if (!nv)
5831                 return (NULL);
5832         for (; nv->nv_name; nv++) {
5833                 if (nv->nv_value == value)
5834                         return (nv->nv_name);
5835         }
5836         return ("unknown");
5837 }
5838 
5839 static int
5840 ip_wait_for_info_ack(ill_t *ill)
5841 {
5842         int err;
5843 
5844         mutex_enter(&ill->ill_lock);
5845         while (ill->ill_state_flags & ILL_LL_SUBNET_PENDING) {
5846                 /*
5847                  * Return value of 0 indicates a pending signal.
5848                  */
5849                 err = cv_wait_sig(&ill->ill_cv, &ill->ill_lock);
5850                 if (err == 0) {
5851                         mutex_exit(&ill->ill_lock);
5852                         return (EINTR);
5853                 }
5854         }
5855         mutex_exit(&ill->ill_lock);
5856         /*
5857          * ip_rput_other could have set an error  in ill_error on
5858          * receipt of M_ERROR.
5859          */
5860         return (ill->ill_error);
5861 }
5862 
5863 /*
5864  * This is a module open, i.e. this is a control stream for access
5865  * to a DLPI device.  We allocate an ill_t as the instance data in
5866  * this case.
5867  */
5868 static int
5869 ip_modopen(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5870 {
5871         ill_t   *ill;
5872         int     err;
5873         zoneid_t zoneid;
5874         netstack_t *ns;
5875         ip_stack_t *ipst;
5876 
5877         /*
5878          * Prevent unprivileged processes from pushing IP so that
5879          * they can't send raw IP.
5880          */
5881         if (secpolicy_net_rawaccess(credp) != 0)
5882                 return (EPERM);
5883 
5884         ns = netstack_find_by_cred(credp);
5885         ASSERT(ns != NULL);
5886         ipst = ns->netstack_ip;
5887         ASSERT(ipst != NULL);
5888 
5889         /*
5890          * For exclusive stacks we set the zoneid to zero
5891          * to make IP operate as if in the global zone.
5892          */
5893         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5894                 zoneid = GLOBAL_ZONEID;
5895         else
5896                 zoneid = crgetzoneid(credp);
5897 
5898         ill = (ill_t *)mi_open_alloc_sleep(sizeof (ill_t));
5899         q->q_ptr = WR(q)->q_ptr = ill;
5900         ill->ill_ipst = ipst;
5901         ill->ill_zoneid = zoneid;
5902 
5903         /*
5904          * ill_init initializes the ill fields and then sends down
5905          * down a DL_INFO_REQ after calling qprocson.
5906          */
5907         err = ill_init(q, ill);
5908 
5909         if (err != 0) {
5910                 mi_free(ill);
5911                 netstack_rele(ipst->ips_netstack);
5912                 q->q_ptr = NULL;
5913                 WR(q)->q_ptr = NULL;
5914                 return (err);
5915         }
5916 
5917         /*
5918          * Wait for the DL_INFO_ACK if a DL_INFO_REQ was sent.
5919          *
5920          * ill_init initializes the ipsq marking this thread as
5921          * writer
5922          */
5923         ipsq_exit(ill->ill_phyint->phyint_ipsq);
5924         err = ip_wait_for_info_ack(ill);
5925         if (err == 0)
5926                 ill->ill_credp = credp;
5927         else
5928                 goto fail;
5929 
5930         crhold(credp);
5931 
5932         mutex_enter(&ipst->ips_ip_mi_lock);
5933         err = mi_open_link(&ipst->ips_ip_g_head, (IDP)q->q_ptr, devp, flag,
5934             sflag, credp);
5935         mutex_exit(&ipst->ips_ip_mi_lock);
5936 fail:
5937         if (err) {
5938                 (void) ip_close(q, 0, credp);
5939                 return (err);
5940         }
5941         return (0);
5942 }
5943 
5944 /* For /dev/ip aka AF_INET open */
5945 int
5946 ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5947 {
5948         return (ip_open(q, devp, flag, sflag, credp, B_FALSE));
5949 }
5950 
5951 /* For /dev/ip6 aka AF_INET6 open */
5952 int
5953 ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp)
5954 {
5955         return (ip_open(q, devp, flag, sflag, credp, B_TRUE));
5956 }
5957 
5958 /* IP open routine. */
5959 int
5960 ip_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp,
5961     boolean_t isv6)
5962 {
5963         conn_t          *connp;
5964         major_t         maj;
5965         zoneid_t        zoneid;
5966         netstack_t      *ns;
5967         ip_stack_t      *ipst;
5968 
5969         /* Allow reopen. */
5970         if (q->q_ptr != NULL)
5971                 return (0);
5972 
5973         if (sflag & MODOPEN) {
5974                 /* This is a module open */
5975                 return (ip_modopen(q, devp, flag, sflag, credp));
5976         }
5977 
5978         if ((flag & ~(FKLYR)) == IP_HELPER_STR) {
5979                 /*
5980                  * Non streams based socket looking for a stream
5981                  * to access IP
5982                  */
5983                 return (ip_helper_stream_setup(q, devp, flag, sflag,
5984                     credp, isv6));
5985         }
5986 
5987         ns = netstack_find_by_cred(credp);
5988         ASSERT(ns != NULL);
5989         ipst = ns->netstack_ip;
5990         ASSERT(ipst != NULL);
5991 
5992         /*
5993          * For exclusive stacks we set the zoneid to zero
5994          * to make IP operate as if in the global zone.
5995          */
5996         if (ipst->ips_netstack->netstack_stackid != GLOBAL_NETSTACKID)
5997                 zoneid = GLOBAL_ZONEID;
5998         else
5999                 zoneid = crgetzoneid(credp);
6000 
6001         /*
6002          * We are opening as a device. This is an IP client stream, and we
6003          * allocate an conn_t as the instance data.
6004          */
6005         connp = ipcl_conn_create(IPCL_IPCCONN, KM_SLEEP, ipst->ips_netstack);
6006 
6007         /*
6008          * ipcl_conn_create did a netstack_hold. Undo the hold that was
6009          * done by netstack_find_by_cred()
6010          */
6011         netstack_rele(ipst->ips_netstack);
6012 
6013         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP | IXAF_SET_ULP_CKSUM;
6014         /* conn_allzones can not be set this early, hence no IPCL_ZONEID */
6015         connp->conn_ixa->ixa_zoneid = zoneid;
6016         connp->conn_zoneid = zoneid;
6017 
6018         connp->conn_rq = q;
6019         q->q_ptr = WR(q)->q_ptr = connp;
6020 
6021         /* Minor tells us which /dev entry was opened */
6022         if (isv6) {
6023                 connp->conn_family = AF_INET6;
6024                 connp->conn_ipversion = IPV6_VERSION;
6025                 connp->conn_ixa->ixa_flags &= ~IXAF_IS_IPV4;
6026                 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT;
6027         } else {
6028                 connp->conn_family = AF_INET;
6029                 connp->conn_ipversion = IPV4_VERSION;
6030                 connp->conn_ixa->ixa_flags |= IXAF_IS_IPV4;
6031         }
6032 
6033         if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) &&
6034             ((connp->conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) {
6035                 connp->conn_minor_arena = ip_minor_arena_la;
6036         } else {
6037                 /*
6038                  * Either minor numbers in the large arena were exhausted
6039                  * or a non socket application is doing the open.
6040                  * Try to allocate from the small arena.
6041                  */
6042                 if ((connp->conn_dev =
6043                     inet_minor_alloc(ip_minor_arena_sa)) == 0) {
6044                         /* CONN_DEC_REF takes care of netstack_rele() */
6045                         q->q_ptr = WR(q)->q_ptr = NULL;
6046                         CONN_DEC_REF(connp);
6047                         return (EBUSY);
6048                 }
6049                 connp->conn_minor_arena = ip_minor_arena_sa;
6050         }
6051 
6052         maj = getemajor(*devp);
6053         *devp = makedevice(maj, (minor_t)connp->conn_dev);
6054 
6055         /*
6056          * connp->conn_cred is crfree()ed in ipcl_conn_destroy()
6057          */
6058         connp->conn_cred = credp;
6059         connp->conn_cpid = curproc->p_pid;
6060         /* Cache things in ixa without an extra refhold */
6061         ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED));
6062         connp->conn_ixa->ixa_cred = connp->conn_cred;
6063         connp->conn_ixa->ixa_cpid = connp->conn_cpid;
6064         if (is_system_labeled())
6065                 connp->conn_ixa->ixa_tsl = crgetlabel(connp->conn_cred);
6066 
6067         /*
6068          * Handle IP_IOC_RTS_REQUEST and other ioctls which use conn_recv
6069          */
6070         connp->conn_recv = ip_conn_input;
6071         connp->conn_recvicmp = ip_conn_input_icmp;
6072 
6073         crhold(connp->conn_cred);
6074 
6075         /*
6076          * If the caller has the process-wide flag set, then default to MAC
6077          * exempt mode.  This allows read-down to unlabeled hosts.
6078          */
6079         if (getpflags(NET_MAC_AWARE, credp) != 0)
6080                 connp->conn_mac_mode = CONN_MAC_AWARE;
6081 
6082         connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID);
6083 
6084         connp->conn_rq = q;
6085         connp->conn_wq = WR(q);
6086 
6087         /* Non-zero default values */
6088         connp->conn_ixa->ixa_flags |= IXAF_MULTICAST_LOOP;
6089 
6090         /*
6091          * Make the conn globally visible to walkers
6092          */
6093         ASSERT(connp->conn_ref == 1);
6094         mutex_enter(&connp->conn_lock);
6095         connp->conn_state_flags &= ~CONN_INCIPIENT;
6096         mutex_exit(&connp->conn_lock);
6097 
6098         qprocson(q);
6099 
6100         return (0);
6101 }
6102 
6103 /*
6104  * Set IPsec policy from an ipsec_req_t. If the req is not "zero" and valid,
6105  * all of them are copied to the conn_t. If the req is "zero", the policy is
6106  * zeroed out. A "zero" policy has zero ipsr_{ah,req,self_encap}_req
6107  * fields.
6108  * We keep only the latest setting of the policy and thus policy setting
6109  * is not incremental/cumulative.
6110  *
6111  * Requests to set policies with multiple alternative actions will
6112  * go through a different API.
6113  */
6114 int
6115 ipsec_set_req(cred_t *cr, conn_t *connp, ipsec_req_t *req)
6116 {
6117         uint_t ah_req = 0;
6118         uint_t esp_req = 0;
6119         uint_t se_req = 0;
6120         ipsec_act_t *actp = NULL;
6121         uint_t nact;
6122         ipsec_policy_head_t *ph;
6123         boolean_t is_pol_reset, is_pol_inserted = B_FALSE;
6124         int error = 0;
6125         netstack_t      *ns = connp->conn_netstack;
6126         ip_stack_t      *ipst = ns->netstack_ip;
6127         ipsec_stack_t   *ipss = ns->netstack_ipsec;
6128 
6129 #define REQ_MASK (IPSEC_PREF_REQUIRED|IPSEC_PREF_NEVER)
6130 
6131         /*
6132          * The IP_SEC_OPT option does not allow variable length parameters,
6133          * hence a request cannot be NULL.
6134          */
6135         if (req == NULL)
6136                 return (EINVAL);
6137 
6138         ah_req = req->ipsr_ah_req;
6139         esp_req = req->ipsr_esp_req;
6140         se_req = req->ipsr_self_encap_req;
6141 
6142         /* Don't allow setting self-encap without one or more of AH/ESP. */
6143         if (se_req != 0 && esp_req == 0 && ah_req == 0)
6144                 return (EINVAL);
6145 
6146         /*
6147          * Are we dealing with a request to reset the policy (i.e.
6148          * zero requests).
6149          */
6150         is_pol_reset = ((ah_req & REQ_MASK) == 0 &&
6151             (esp_req & REQ_MASK) == 0 &&
6152             (se_req & REQ_MASK) == 0);
6153 
6154         if (!is_pol_reset) {
6155                 /*
6156                  * If we couldn't load IPsec, fail with "protocol
6157                  * not supported".
6158                  * IPsec may not have been loaded for a request with zero
6159                  * policies, so we don't fail in this case.
6160                  */
6161                 mutex_enter(&ipss->ipsec_loader_lock);
6162                 if (ipss->ipsec_loader_state != IPSEC_LOADER_SUCCEEDED) {
6163                         mutex_exit(&ipss->ipsec_loader_lock);
6164                         return (EPROTONOSUPPORT);
6165                 }
6166                 mutex_exit(&ipss->ipsec_loader_lock);
6167 
6168                 /*
6169                  * Test for valid requests. Invalid algorithms
6170                  * need to be tested by IPsec code because new
6171                  * algorithms can be added dynamically.
6172                  */
6173                 if ((ah_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6174                     (esp_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0 ||
6175                     (se_req & ~(REQ_MASK|IPSEC_PREF_UNIQUE)) != 0) {
6176                         return (EINVAL);
6177                 }
6178 
6179                 /*
6180                  * Only privileged users can issue these
6181                  * requests.
6182                  */
6183                 if (((ah_req & IPSEC_PREF_NEVER) ||
6184                     (esp_req & IPSEC_PREF_NEVER) ||
6185                     (se_req & IPSEC_PREF_NEVER)) &&
6186                     secpolicy_ip_config(cr, B_FALSE) != 0) {
6187                         return (EPERM);
6188                 }
6189 
6190                 /*
6191                  * The IPSEC_PREF_REQUIRED and IPSEC_PREF_NEVER
6192                  * are mutually exclusive.
6193                  */
6194                 if (((ah_req & REQ_MASK) == REQ_MASK) ||
6195                     ((esp_req & REQ_MASK) == REQ_MASK) ||
6196                     ((se_req & REQ_MASK) == REQ_MASK)) {
6197                         /* Both of them are set */
6198                         return (EINVAL);
6199                 }
6200         }
6201 
6202         ASSERT(MUTEX_HELD(&connp->conn_lock));
6203 
6204         /*
6205          * If we have already cached policies in conn_connect(), don't
6206          * let them change now. We cache policies for connections
6207          * whose src,dst [addr, port] is known.
6208          */
6209         if (connp->conn_policy_cached) {
6210                 return (EINVAL);
6211         }
6212 
6213         /*
6214          * We have a zero policies, reset the connection policy if already
6215          * set. This will cause the connection to inherit the
6216          * global policy, if any.
6217          */
6218         if (is_pol_reset) {
6219                 if (connp->conn_policy != NULL) {
6220                         IPPH_REFRELE(connp->conn_policy, ipst->ips_netstack);
6221                         connp->conn_policy = NULL;
6222                 }
6223                 connp->conn_in_enforce_policy = B_FALSE;
6224                 connp->conn_out_enforce_policy = B_FALSE;
6225                 return (0);
6226         }
6227 
6228         ph = connp->conn_policy = ipsec_polhead_split(connp->conn_policy,
6229             ipst->ips_netstack);
6230         if (ph == NULL)
6231                 goto enomem;
6232 
6233         ipsec_actvec_from_req(req, &actp, &nact, ipst->ips_netstack);
6234         if (actp == NULL)
6235                 goto enomem;
6236 
6237         /*
6238          * Always insert IPv4 policy entries, since they can also apply to
6239          * ipv6 sockets being used in ipv4-compat mode.
6240          */
6241         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6242             IPSEC_TYPE_INBOUND, ns))
6243                 goto enomem;
6244         is_pol_inserted = B_TRUE;
6245         if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V4,
6246             IPSEC_TYPE_OUTBOUND, ns))
6247                 goto enomem;
6248 
6249         /*
6250          * We're looking at a v6 socket, also insert the v6-specific
6251          * entries.
6252          */
6253         if (connp->conn_family == AF_INET6) {
6254                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6255                     IPSEC_TYPE_INBOUND, ns))
6256                         goto enomem;
6257                 if (!ipsec_polhead_insert(ph, actp, nact, IPSEC_AF_V6,
6258                     IPSEC_TYPE_OUTBOUND, ns))
6259                         goto enomem;
6260         }
6261 
6262         ipsec_actvec_free(actp, nact);
6263 
6264         /*
6265          * If the requests need security, set enforce_policy.
6266          * If the requests are IPSEC_PREF_NEVER, one should
6267          * still set conn_out_enforce_policy so that ip_set_destination
6268          * marks the ip_xmit_attr_t appropriatly. This is needed so that
6269          * for connections that we don't cache policy in at connect time,
6270          * if global policy matches in ip_output_attach_policy, we
6271          * don't wrongly inherit global policy. Similarly, we need
6272          * to set conn_in_enforce_policy also so that we don't verify
6273          * policy wrongly.
6274          */
6275         if ((ah_req & REQ_MASK) != 0 ||
6276             (esp_req & REQ_MASK) != 0 ||
6277             (se_req & REQ_MASK) != 0) {
6278                 connp->conn_in_enforce_policy = B_TRUE;
6279                 connp->conn_out_enforce_policy = B_TRUE;
6280         }
6281 
6282         return (error);
6283 #undef REQ_MASK
6284 
6285         /*
6286          * Common memory-allocation-failure exit path.
6287          */
6288 enomem:
6289         if (actp != NULL)
6290                 ipsec_actvec_free(actp, nact);
6291         if (is_pol_inserted)
6292                 ipsec_polhead_flush(ph, ns);
6293         return (ENOMEM);
6294 }
6295 
6296 /*
6297  * Set socket options for joining and leaving multicast groups.
6298  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6299  * The caller has already check that the option name is consistent with
6300  * the address family of the socket.
6301  */
6302 int
6303 ip_opt_set_multicast_group(conn_t *connp, t_scalar_t name,
6304     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6305 {
6306         int             *i1 = (int *)invalp;
6307         int             error = 0;
6308         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6309         struct ip_mreq  *v4_mreqp;
6310         struct ipv6_mreq *v6_mreqp;
6311         struct group_req *greqp;
6312         ire_t *ire;
6313         boolean_t done = B_FALSE;
6314         ipaddr_t ifaddr;
6315         in6_addr_t v6group;
6316         uint_t ifindex;
6317         boolean_t mcast_opt = B_TRUE;
6318         mcast_record_t fmode;
6319         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6320             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6321 
6322         switch (name) {
6323         case IP_ADD_MEMBERSHIP:
6324         case IPV6_JOIN_GROUP:
6325                 mcast_opt = B_FALSE;
6326                 /* FALLTHROUGH */
6327         case MCAST_JOIN_GROUP:
6328                 fmode = MODE_IS_EXCLUDE;
6329                 optfn = ip_opt_add_group;
6330                 break;
6331 
6332         case IP_DROP_MEMBERSHIP:
6333         case IPV6_LEAVE_GROUP:
6334                 mcast_opt = B_FALSE;
6335                 /* FALLTHROUGH */
6336         case MCAST_LEAVE_GROUP:
6337                 fmode = MODE_IS_INCLUDE;
6338                 optfn = ip_opt_delete_group;
6339                 break;
6340         default:
6341                 ASSERT(0);
6342         }
6343 
6344         if (mcast_opt) {
6345                 struct sockaddr_in *sin;
6346                 struct sockaddr_in6 *sin6;
6347 
6348                 greqp = (struct group_req *)i1;
6349                 if (greqp->gr_group.ss_family == AF_INET) {
6350                         sin = (struct sockaddr_in *)&(greqp->gr_group);
6351                         IN6_INADDR_TO_V4MAPPED(&sin->sin_addr, &v6group);
6352                 } else {
6353                         if (!inet6)
6354                                 return (EINVAL);        /* Not on INET socket */
6355 
6356                         sin6 = (struct sockaddr_in6 *)&(greqp->gr_group);
6357                         v6group = sin6->sin6_addr;
6358                 }
6359                 ifaddr = INADDR_ANY;
6360                 ifindex = greqp->gr_interface;
6361         } else if (inet6) {
6362                 v6_mreqp = (struct ipv6_mreq *)i1;
6363                 v6group = v6_mreqp->ipv6mr_multiaddr;
6364                 ifaddr = INADDR_ANY;
6365                 ifindex = v6_mreqp->ipv6mr_interface;
6366         } else {
6367                 v4_mreqp = (struct ip_mreq *)i1;
6368                 IN6_INADDR_TO_V4MAPPED(&v4_mreqp->imr_multiaddr, &v6group);
6369                 ifaddr = (ipaddr_t)v4_mreqp->imr_interface.s_addr;
6370                 ifindex = 0;
6371         }
6372 
6373         /*
6374          * In the multirouting case, we need to replicate
6375          * the request on all interfaces that will take part
6376          * in replication.  We do so because multirouting is
6377          * reflective, thus we will probably receive multi-
6378          * casts on those interfaces.
6379          * The ip_multirt_apply_membership() succeeds if
6380          * the operation succeeds on at least one interface.
6381          */
6382         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6383                 ipaddr_t group;
6384 
6385                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6386 
6387                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6388                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6389                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6390         } else {
6391                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6392                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6393                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6394         }
6395         if (ire != NULL) {
6396                 if (ire->ire_flags & RTF_MULTIRT) {
6397                         error = ip_multirt_apply_membership(optfn, ire, connp,
6398                             checkonly, &v6group, fmode, &ipv6_all_zeros);
6399                         done = B_TRUE;
6400                 }
6401                 ire_refrele(ire);
6402         }
6403 
6404         if (!done) {
6405                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6406                     fmode, &ipv6_all_zeros);
6407         }
6408         return (error);
6409 }
6410 
6411 /*
6412  * Set socket options for joining and leaving multicast groups
6413  * for specific sources.
6414  * Common to IPv4 and IPv6; inet6 indicates the type of socket.
6415  * The caller has already check that the option name is consistent with
6416  * the address family of the socket.
6417  */
6418 int
6419 ip_opt_set_multicast_sources(conn_t *connp, t_scalar_t name,
6420     uchar_t *invalp, boolean_t inet6, boolean_t checkonly)
6421 {
6422         int             *i1 = (int *)invalp;
6423         int             error = 0;
6424         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
6425         struct ip_mreq_source *imreqp;
6426         struct group_source_req *gsreqp;
6427         in6_addr_t v6group, v6src;
6428         uint32_t ifindex;
6429         ipaddr_t ifaddr;
6430         boolean_t mcast_opt = B_TRUE;
6431         mcast_record_t fmode;
6432         ire_t *ire;
6433         boolean_t done = B_FALSE;
6434         int (*optfn)(conn_t *, boolean_t, const in6_addr_t *,
6435             ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *);
6436 
6437         switch (name) {
6438         case IP_BLOCK_SOURCE:
6439                 mcast_opt = B_FALSE;
6440                 /* FALLTHROUGH */
6441         case MCAST_BLOCK_SOURCE:
6442                 fmode = MODE_IS_EXCLUDE;
6443                 optfn = ip_opt_add_group;
6444                 break;
6445 
6446         case IP_UNBLOCK_SOURCE:
6447                 mcast_opt = B_FALSE;
6448                 /* FALLTHROUGH */
6449         case MCAST_UNBLOCK_SOURCE:
6450                 fmode = MODE_IS_EXCLUDE;
6451                 optfn = ip_opt_delete_group;
6452                 break;
6453 
6454         case IP_ADD_SOURCE_MEMBERSHIP:
6455                 mcast_opt = B_FALSE;
6456                 /* FALLTHROUGH */
6457         case MCAST_JOIN_SOURCE_GROUP:
6458                 fmode = MODE_IS_INCLUDE;
6459                 optfn = ip_opt_add_group;
6460                 break;
6461 
6462         case IP_DROP_SOURCE_MEMBERSHIP:
6463                 mcast_opt = B_FALSE;
6464                 /* FALLTHROUGH */
6465         case MCAST_LEAVE_SOURCE_GROUP:
6466                 fmode = MODE_IS_INCLUDE;
6467                 optfn = ip_opt_delete_group;
6468                 break;
6469         default:
6470                 ASSERT(0);
6471         }
6472 
6473         if (mcast_opt) {
6474                 gsreqp = (struct group_source_req *)i1;
6475                 ifindex = gsreqp->gsr_interface;
6476                 if (gsreqp->gsr_group.ss_family == AF_INET) {
6477                         struct sockaddr_in *s;
6478                         s = (struct sockaddr_in *)&gsreqp->gsr_group;
6479                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6group);
6480                         s = (struct sockaddr_in *)&gsreqp->gsr_source;
6481                         IN6_INADDR_TO_V4MAPPED(&s->sin_addr, &v6src);
6482                 } else {
6483                         struct sockaddr_in6 *s6;
6484 
6485                         if (!inet6)
6486                                 return (EINVAL);        /* Not on INET socket */
6487 
6488                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_group;
6489                         v6group = s6->sin6_addr;
6490                         s6 = (struct sockaddr_in6 *)&gsreqp->gsr_source;
6491                         v6src = s6->sin6_addr;
6492                 }
6493                 ifaddr = INADDR_ANY;
6494         } else {
6495                 imreqp = (struct ip_mreq_source *)i1;
6496                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_multiaddr, &v6group);
6497                 IN6_INADDR_TO_V4MAPPED(&imreqp->imr_sourceaddr, &v6src);
6498                 ifaddr = (ipaddr_t)imreqp->imr_interface.s_addr;
6499                 ifindex = 0;
6500         }
6501 
6502         /*
6503          * Handle src being mapped INADDR_ANY by changing it to unspecified.
6504          */
6505         if (IN6_IS_ADDR_V4MAPPED_ANY(&v6src))
6506                 v6src = ipv6_all_zeros;
6507 
6508         /*
6509          * In the multirouting case, we need to replicate
6510          * the request as noted in the mcast cases above.
6511          */
6512         if (IN6_IS_ADDR_V4MAPPED(&v6group)) {
6513                 ipaddr_t group;
6514 
6515                 IN6_V4MAPPED_TO_IPADDR(&v6group, group);
6516 
6517                 ire = ire_ftable_lookup_v4(group, IP_HOST_MASK, 0,
6518                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6519                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6520         } else {
6521                 ire = ire_ftable_lookup_v6(&v6group, &ipv6_all_ones, 0,
6522                     IRE_HOST | IRE_INTERFACE, NULL, ALL_ZONES, NULL,
6523                     MATCH_IRE_MASK | MATCH_IRE_TYPE, 0, ipst, NULL);
6524         }
6525         if (ire != NULL) {
6526                 if (ire->ire_flags & RTF_MULTIRT) {
6527                         error = ip_multirt_apply_membership(optfn, ire, connp,
6528                             checkonly, &v6group, fmode, &v6src);
6529                         done = B_TRUE;
6530                 }
6531                 ire_refrele(ire);
6532         }
6533         if (!done) {
6534                 error = optfn(connp, checkonly, &v6group, ifaddr, ifindex,
6535                     fmode, &v6src);
6536         }
6537         return (error);
6538 }
6539 
6540 /*
6541  * Given a destination address and a pointer to where to put the information
6542  * this routine fills in the mtuinfo.
6543  * The socket must be connected.
6544  * For sctp conn_faddr is the primary address.
6545  */
6546 int
6547 ip_fill_mtuinfo(conn_t *connp, ip_xmit_attr_t *ixa, struct ip6_mtuinfo *mtuinfo)
6548 {
6549         uint32_t        pmtu = IP_MAXPACKET;
6550         uint_t          scopeid;
6551 
6552         if (IN6_IS_ADDR_UNSPECIFIED(&connp->conn_faddr_v6))
6553                 return (-1);
6554 
6555         /* In case we never sent or called ip_set_destination_v4/v6 */
6556         if (ixa->ixa_ire != NULL)
6557                 pmtu = ip_get_pmtu(ixa);
6558 
6559         if (ixa->ixa_flags & IXAF_SCOPEID_SET)
6560                 scopeid = ixa->ixa_scopeid;
6561         else
6562                 scopeid = 0;
6563 
6564         bzero(mtuinfo, sizeof (*mtuinfo));
6565         mtuinfo->ip6m_addr.sin6_family = AF_INET6;
6566         mtuinfo->ip6m_addr.sin6_port = connp->conn_fport;
6567         mtuinfo->ip6m_addr.sin6_addr = connp->conn_faddr_v6;
6568         mtuinfo->ip6m_addr.sin6_scope_id = scopeid;
6569         mtuinfo->ip6m_mtu = pmtu;
6570 
6571         return (sizeof (struct ip6_mtuinfo));
6572 }
6573 
6574 /*
6575  * When the src multihoming is changed from weak to [strong, preferred]
6576  * ip_ire_rebind_walker is called to walk the list of all ire_t entries
6577  * and identify routes that were created by user-applications in the
6578  * unbound state (i.e., without RTA_IFP), and for which an ire_ill is not
6579  * currently defined. These routes are then 'rebound', i.e., their ire_ill
6580  * is selected by finding an interface route for the gateway.
6581  */
6582 /* ARGSUSED */
6583 void
6584 ip_ire_rebind_walker(ire_t *ire, void *notused)
6585 {
6586         if (!ire->ire_unbound || ire->ire_ill != NULL)
6587                 return;
6588         ire_rebind(ire);
6589         ire_delete(ire);
6590 }
6591 
6592 /*
6593  * When the src multihoming is changed from  [strong, preferred] to weak,
6594  * ip_ire_unbind_walker is called to walk the list of all ire_t entries, and
6595  * set any entries that were created by user-applications in the unbound state
6596  * (i.e., without RTA_IFP) back to having a NULL ire_ill.
6597  */
6598 /* ARGSUSED */
6599 void
6600 ip_ire_unbind_walker(ire_t *ire, void *notused)
6601 {
6602         ire_t *new_ire;
6603 
6604         if (!ire->ire_unbound || ire->ire_ill == NULL)
6605                 return;
6606         if (ire->ire_ipversion == IPV6_VERSION) {
6607                 new_ire = ire_create_v6(&ire->ire_addr_v6, &ire->ire_mask_v6,
6608                     &ire->ire_gateway_addr_v6, ire->ire_type, NULL,
6609                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6610         } else {
6611                 new_ire = ire_create((uchar_t *)&ire->ire_addr,
6612                     (uchar_t *)&ire->ire_mask,
6613                     (uchar_t *)&ire->ire_gateway_addr, ire->ire_type, NULL,
6614                     ire->ire_zoneid, ire->ire_flags, NULL, ire->ire_ipst);
6615         }
6616         if (new_ire == NULL)
6617                 return;
6618         new_ire->ire_unbound = B_TRUE;
6619         /*
6620          * The bound ire must first be deleted so that we don't return
6621          * the existing one on the attempt to add the unbound new_ire.
6622          */
6623         ire_delete(ire);
6624         new_ire = ire_add(new_ire);
6625         if (new_ire != NULL)
6626                 ire_refrele(new_ire);
6627 }
6628 
6629 /*
6630  * When the settings of ip*_strict_src_multihoming tunables are changed,
6631  * all cached routes need to be recomputed. This recomputation needs to be
6632  * done when going from weaker to stronger modes so that the cached ire
6633  * for the connection does not violate the current ip*_strict_src_multihoming
6634  * setting. It also needs to be done when going from stronger to weaker modes,
6635  * so that we fall back to matching on the longest-matching-route (as opposed
6636  * to a shorter match that may have been selected in the strong mode
6637  * to satisfy src_multihoming settings).
6638  *
6639  * The cached ixa_ire entires for all conn_t entries are marked as
6640  * "verify" so that they will be recomputed for the next packet.
6641  */
6642 void
6643 conn_ire_revalidate(conn_t *connp, void *arg)
6644 {
6645         boolean_t isv6 = (boolean_t)arg;
6646 
6647         if ((isv6 && connp->conn_ipversion != IPV6_VERSION) ||
6648             (!isv6 && connp->conn_ipversion != IPV4_VERSION))
6649                 return;
6650         connp->conn_ixa->ixa_ire_generation = IRE_GENERATION_VERIFY;
6651 }
6652 
6653 /*
6654  * Handles both IPv4 and IPv6 reassembly - doing the out-of-order cases,
6655  * When an ipf is passed here for the first time, if
6656  * we already have in-order fragments on the queue, we convert from the fast-
6657  * path reassembly scheme to the hard-case scheme.  From then on, additional
6658  * fragments are reassembled here.  We keep track of the start and end offsets
6659  * of each piece, and the number of holes in the chain.  When the hole count
6660  * goes to zero, we are done!
6661  *
6662  * The ipf_count will be updated to account for any mblk(s) added (pointed to
6663  * by mp) or subtracted (freeb()ed dups), upon return the caller must update
6664  * ipfb_count and ill_frag_count by the difference of ipf_count before and
6665  * after the call to ip_reassemble().
6666  */
6667 int
6668 ip_reassemble(mblk_t *mp, ipf_t *ipf, uint_t start, boolean_t more, ill_t *ill,
6669     size_t msg_len)
6670 {
6671         uint_t  end;
6672         mblk_t  *next_mp;
6673         mblk_t  *mp1;
6674         uint_t  offset;
6675         boolean_t incr_dups = B_TRUE;
6676         boolean_t offset_zero_seen = B_FALSE;
6677         boolean_t pkt_boundary_checked = B_FALSE;
6678 
6679         /* If start == 0 then ipf_nf_hdr_len has to be set. */
6680         ASSERT(start != 0 || ipf->ipf_nf_hdr_len != 0);
6681 
6682         /* Add in byte count */
6683         ipf->ipf_count += msg_len;
6684         if (ipf->ipf_end) {
6685                 /*
6686                  * We were part way through in-order reassembly, but now there
6687                  * is a hole.  We walk through messages already queued, and
6688                  * mark them for hard case reassembly.  We know that up till
6689                  * now they were in order starting from offset zero.
6690                  */
6691                 offset = 0;
6692                 for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6693                         IP_REASS_SET_START(mp1, offset);
6694                         if (offset == 0) {
6695                                 ASSERT(ipf->ipf_nf_hdr_len != 0);
6696                                 offset = -ipf->ipf_nf_hdr_len;
6697                         }
6698                         offset += mp1->b_wptr - mp1->b_rptr;
6699                         IP_REASS_SET_END(mp1, offset);
6700                 }
6701                 /* One hole at the end. */
6702                 ipf->ipf_hole_cnt = 1;
6703                 /* Brand it as a hard case, forever. */
6704                 ipf->ipf_end = 0;
6705         }
6706         /* Walk through all the new pieces. */
6707         do {
6708                 end = start + (mp->b_wptr - mp->b_rptr);
6709                 /*
6710                  * If start is 0, decrease 'end' only for the first mblk of
6711                  * the fragment. Otherwise 'end' can get wrong value in the
6712                  * second pass of the loop if first mblk is exactly the
6713                  * size of ipf_nf_hdr_len.
6714                  */
6715                 if (start == 0 && !offset_zero_seen) {
6716                         /* First segment */
6717                         ASSERT(ipf->ipf_nf_hdr_len != 0);
6718                         end -= ipf->ipf_nf_hdr_len;
6719                         offset_zero_seen = B_TRUE;
6720                 }
6721                 next_mp = mp->b_cont;
6722                 /*
6723                  * We are checking to see if there is any interesing data
6724                  * to process.  If there isn't and the mblk isn't the
6725                  * one which carries the unfragmentable header then we
6726                  * drop it.  It's possible to have just the unfragmentable
6727                  * header come through without any data.  That needs to be
6728                  * saved.
6729                  *
6730                  * If the assert at the top of this function holds then the
6731                  * term "ipf->ipf_nf_hdr_len != 0" isn't needed.  This code
6732                  * is infrequently traveled enough that the test is left in
6733                  * to protect against future code changes which break that
6734                  * invariant.
6735                  */
6736                 if (start == end && start != 0 && ipf->ipf_nf_hdr_len != 0) {
6737                         /* Empty.  Blast it. */
6738                         IP_REASS_SET_START(mp, 0);
6739                         IP_REASS_SET_END(mp, 0);
6740                         /*
6741                          * If the ipf points to the mblk we are about to free,
6742                          * update ipf to point to the next mblk (or NULL
6743                          * if none).
6744                          */
6745                         if (ipf->ipf_mp->b_cont == mp)
6746                                 ipf->ipf_mp->b_cont = next_mp;
6747                         freeb(mp);
6748                         continue;
6749                 }
6750                 mp->b_cont = NULL;
6751                 IP_REASS_SET_START(mp, start);
6752                 IP_REASS_SET_END(mp, end);
6753                 if (!ipf->ipf_tail_mp) {
6754                         ipf->ipf_tail_mp = mp;
6755                         ipf->ipf_mp->b_cont = mp;
6756                         if (start == 0 || !more) {
6757                                 ipf->ipf_hole_cnt = 1;
6758                                 /*
6759                                  * if the first fragment comes in more than one
6760                                  * mblk, this loop will be executed for each
6761                                  * mblk. Need to adjust hole count so exiting
6762                                  * this routine will leave hole count at 1.
6763                                  */
6764                                 if (next_mp)
6765                                         ipf->ipf_hole_cnt++;
6766                         } else
6767                                 ipf->ipf_hole_cnt = 2;
6768                         continue;
6769                 } else if (ipf->ipf_last_frag_seen && !more &&
6770                     !pkt_boundary_checked) {
6771                         /*
6772                          * We check datagram boundary only if this fragment
6773                          * claims to be the last fragment and we have seen a
6774                          * last fragment in the past too. We do this only
6775                          * once for a given fragment.
6776                          *
6777                          * start cannot be 0 here as fragments with start=0
6778                          * and MF=0 gets handled as a complete packet. These
6779                          * fragments should not reach here.
6780                          */
6781 
6782                         if (start + msgdsize(mp) !=
6783                             IP_REASS_END(ipf->ipf_tail_mp)) {
6784                                 /*
6785                                  * We have two fragments both of which claim
6786                                  * to be the last fragment but gives conflicting
6787                                  * information about the whole datagram size.
6788                                  * Something fishy is going on. Drop the
6789                                  * fragment and free up the reassembly list.
6790                                  */
6791                                 return (IP_REASS_FAILED);
6792                         }
6793 
6794                         /*
6795                          * We shouldn't come to this code block again for this
6796                          * particular fragment.
6797                          */
6798                         pkt_boundary_checked = B_TRUE;
6799                 }
6800 
6801                 /* New stuff at or beyond tail? */
6802                 offset = IP_REASS_END(ipf->ipf_tail_mp);
6803                 if (start >= offset) {
6804                         if (ipf->ipf_last_frag_seen) {
6805                                 /* current fragment is beyond last fragment */
6806                                 return (IP_REASS_FAILED);
6807                         }
6808                         /* Link it on end. */
6809                         ipf->ipf_tail_mp->b_cont = mp;
6810                         ipf->ipf_tail_mp = mp;
6811                         if (more) {
6812                                 if (start != offset)
6813                                         ipf->ipf_hole_cnt++;
6814                         } else if (start == offset && next_mp == NULL)
6815                                         ipf->ipf_hole_cnt--;
6816                         continue;
6817                 }
6818                 mp1 = ipf->ipf_mp->b_cont;
6819                 offset = IP_REASS_START(mp1);
6820                 /* New stuff at the front? */
6821                 if (start < offset) {
6822                         if (start == 0) {
6823                                 if (end >= offset) {
6824                                         /* Nailed the hole at the begining. */
6825                                         ipf->ipf_hole_cnt--;
6826                                 }
6827                         } else if (end < offset) {
6828                                 /*
6829                                  * A hole, stuff, and a hole where there used
6830                                  * to be just a hole.
6831                                  */
6832                                 ipf->ipf_hole_cnt++;
6833                         }
6834                         mp->b_cont = mp1;
6835                         /* Check for overlap. */
6836                         while (end > offset) {
6837                                 if (end < IP_REASS_END(mp1)) {
6838                                         mp->b_wptr -= end - offset;
6839                                         IP_REASS_SET_END(mp, offset);
6840                                         BUMP_MIB(ill->ill_ip_mib,
6841                                             ipIfStatsReasmPartDups);
6842                                         break;
6843                                 }
6844                                 /* Did we cover another hole? */
6845                                 if ((mp1->b_cont &&
6846                                     IP_REASS_END(mp1) !=
6847                                     IP_REASS_START(mp1->b_cont) &&
6848                                     end >= IP_REASS_START(mp1->b_cont)) ||
6849                                     (!ipf->ipf_last_frag_seen && !more)) {
6850                                         ipf->ipf_hole_cnt--;
6851                                 }
6852                                 /* Clip out mp1. */
6853                                 if ((mp->b_cont = mp1->b_cont) == NULL) {
6854                                         /*
6855                                          * After clipping out mp1, this guy
6856                                          * is now hanging off the end.
6857                                          */
6858                                         ipf->ipf_tail_mp = mp;
6859                                 }
6860                                 IP_REASS_SET_START(mp1, 0);
6861                                 IP_REASS_SET_END(mp1, 0);
6862                                 /* Subtract byte count */
6863                                 ipf->ipf_count -= mp1->b_datap->db_lim -
6864                                     mp1->b_datap->db_base;
6865                                 freeb(mp1);
6866                                 BUMP_MIB(ill->ill_ip_mib,
6867                                     ipIfStatsReasmPartDups);
6868                                 mp1 = mp->b_cont;
6869                                 if (!mp1)
6870                                         break;
6871                                 offset = IP_REASS_START(mp1);
6872                         }
6873                         ipf->ipf_mp->b_cont = mp;
6874                         continue;
6875                 }
6876                 /*
6877                  * The new piece starts somewhere between the start of the head
6878                  * and before the end of the tail.
6879                  */
6880                 for (; mp1; mp1 = mp1->b_cont) {
6881                         offset = IP_REASS_END(mp1);
6882                         if (start < offset) {
6883                                 if (end <= offset) {
6884                                         /* Nothing new. */
6885                                         IP_REASS_SET_START(mp, 0);
6886                                         IP_REASS_SET_END(mp, 0);
6887                                         /* Subtract byte count */
6888                                         ipf->ipf_count -= mp->b_datap->db_lim -
6889                                             mp->b_datap->db_base;
6890                                         if (incr_dups) {
6891                                                 ipf->ipf_num_dups++;
6892                                                 incr_dups = B_FALSE;
6893                                         }
6894                                         freeb(mp);
6895                                         BUMP_MIB(ill->ill_ip_mib,
6896                                             ipIfStatsReasmDuplicates);
6897                                         break;
6898                                 }
6899                                 /*
6900                                  * Trim redundant stuff off beginning of new
6901                                  * piece.
6902                                  */
6903                                 IP_REASS_SET_START(mp, offset);
6904                                 mp->b_rptr += offset - start;
6905                                 BUMP_MIB(ill->ill_ip_mib,
6906                                     ipIfStatsReasmPartDups);
6907                                 start = offset;
6908                                 if (!mp1->b_cont) {
6909                                         /*
6910                                          * After trimming, this guy is now
6911                                          * hanging off the end.
6912                                          */
6913                                         mp1->b_cont = mp;
6914                                         ipf->ipf_tail_mp = mp;
6915                                         if (!more) {
6916                                                 ipf->ipf_hole_cnt--;
6917                                         }
6918                                         break;
6919                                 }
6920                         }
6921                         if (start >= IP_REASS_START(mp1->b_cont))
6922                                 continue;
6923                         /* Fill a hole */
6924                         if (start > offset)
6925                                 ipf->ipf_hole_cnt++;
6926                         mp->b_cont = mp1->b_cont;
6927                         mp1->b_cont = mp;
6928                         mp1 = mp->b_cont;
6929                         offset = IP_REASS_START(mp1);
6930                         if (end >= offset) {
6931                                 ipf->ipf_hole_cnt--;
6932                                 /* Check for overlap. */
6933                                 while (end > offset) {
6934                                         if (end < IP_REASS_END(mp1)) {
6935                                                 mp->b_wptr -= end - offset;
6936                                                 IP_REASS_SET_END(mp, offset);
6937                                                 /*
6938                                                  * TODO we might bump
6939                                                  * this up twice if there is
6940                                                  * overlap at both ends.
6941                                                  */
6942                                                 BUMP_MIB(ill->ill_ip_mib,
6943                                                     ipIfStatsReasmPartDups);
6944                                                 break;
6945                                         }
6946                                         /* Did we cover another hole? */
6947                                         if ((mp1->b_cont &&
6948                                             IP_REASS_END(mp1)
6949                                             != IP_REASS_START(mp1->b_cont) &&
6950                                             end >=
6951                                             IP_REASS_START(mp1->b_cont)) ||
6952                                             (!ipf->ipf_last_frag_seen &&
6953                                             !more)) {
6954                                                 ipf->ipf_hole_cnt--;
6955                                         }
6956                                         /* Clip out mp1. */
6957                                         if ((mp->b_cont = mp1->b_cont) ==
6958                                             NULL) {
6959                                                 /*
6960                                                  * After clipping out mp1,
6961                                                  * this guy is now hanging
6962                                                  * off the end.
6963                                                  */
6964                                                 ipf->ipf_tail_mp = mp;
6965                                         }
6966                                         IP_REASS_SET_START(mp1, 0);
6967                                         IP_REASS_SET_END(mp1, 0);
6968                                         /* Subtract byte count */
6969                                         ipf->ipf_count -=
6970                                             mp1->b_datap->db_lim -
6971                                             mp1->b_datap->db_base;
6972                                         freeb(mp1);
6973                                         BUMP_MIB(ill->ill_ip_mib,
6974                                             ipIfStatsReasmPartDups);
6975                                         mp1 = mp->b_cont;
6976                                         if (!mp1)
6977                                                 break;
6978                                         offset = IP_REASS_START(mp1);
6979                                 }
6980                         }
6981                         break;
6982                 }
6983         } while (start = end, mp = next_mp);
6984 
6985         /* Fragment just processed could be the last one. Remember this fact */
6986         if (!more)
6987                 ipf->ipf_last_frag_seen = B_TRUE;
6988 
6989         /* Still got holes? */
6990         if (ipf->ipf_hole_cnt)
6991                 return (IP_REASS_PARTIAL);
6992         /* Clean up overloaded fields to avoid upstream disasters. */
6993         for (mp1 = ipf->ipf_mp->b_cont; mp1; mp1 = mp1->b_cont) {
6994                 IP_REASS_SET_START(mp1, 0);
6995                 IP_REASS_SET_END(mp1, 0);
6996         }
6997         return (IP_REASS_COMPLETE);
6998 }
6999 
7000 /*
7001  * Fragmentation reassembly.  Each ILL has a hash table for
7002  * queuing packets undergoing reassembly for all IPIFs
7003  * associated with the ILL.  The hash is based on the packet
7004  * IP ident field.  The ILL frag hash table was allocated
7005  * as a timer block at the time the ILL was created.  Whenever
7006  * there is anything on the reassembly queue, the timer will
7007  * be running.  Returns the reassembled packet if reassembly completes.
7008  */
7009 mblk_t *
7010 ip_input_fragment(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
7011 {
7012         uint32_t        frag_offset_flags;
7013         mblk_t          *t_mp;
7014         ipaddr_t        dst;
7015         uint8_t         proto = ipha->ipha_protocol;
7016         uint32_t        sum_val;
7017         uint16_t        sum_flags;
7018         ipf_t           *ipf;
7019         ipf_t           **ipfp;
7020         ipfb_t          *ipfb;
7021         uint16_t        ident;
7022         uint32_t        offset;
7023         ipaddr_t        src;
7024         uint_t          hdr_length;
7025         uint32_t        end;
7026         mblk_t          *mp1;
7027         mblk_t          *tail_mp;
7028         size_t          count;
7029         size_t          msg_len;
7030         uint8_t         ecn_info = 0;
7031         uint32_t        packet_size;
7032         boolean_t       pruned = B_FALSE;
7033         ill_t           *ill = ira->ira_ill;
7034         ip_stack_t      *ipst = ill->ill_ipst;
7035 
7036         /*
7037          * Drop the fragmented as early as possible, if
7038          * we don't have resource(s) to re-assemble.
7039          */
7040         if (ipst->ips_ip_reass_queue_bytes == 0) {
7041                 freemsg(mp);
7042                 return (NULL);
7043         }
7044 
7045         /* Check for fragmentation offset; return if there's none */
7046         if ((frag_offset_flags = ntohs(ipha->ipha_fragment_offset_and_flags) &
7047             (IPH_MF | IPH_OFFSET)) == 0)
7048                 return (mp);
7049 
7050         /*
7051          * We utilize hardware computed checksum info only for UDP since
7052          * IP fragmentation is a normal occurrence for the protocol.  In
7053          * addition, checksum offload support for IP fragments carrying
7054          * UDP payload is commonly implemented across network adapters.
7055          */
7056         ASSERT(ira->ira_rill != NULL);
7057         if (proto == IPPROTO_UDP && dohwcksum &&
7058             ILL_HCKSUM_CAPABLE(ira->ira_rill) &&
7059             (DB_CKSUMFLAGS(mp) & (HCK_FULLCKSUM | HCK_PARTIALCKSUM))) {
7060                 mblk_t *mp1 = mp->b_cont;
7061                 int32_t len;
7062 
7063                 /* Record checksum information from the packet */
7064                 sum_val = (uint32_t)DB_CKSUM16(mp);
7065                 sum_flags = DB_CKSUMFLAGS(mp);
7066 
7067                 /* IP payload offset from beginning of mblk */
7068                 offset = ((uchar_t *)ipha + IPH_HDR_LENGTH(ipha)) - mp->b_rptr;
7069 
7070                 if ((sum_flags & HCK_PARTIALCKSUM) &&
7071                     (mp1 == NULL || mp1->b_cont == NULL) &&
7072                     offset >= DB_CKSUMSTART(mp) &&
7073                     ((len = offset - DB_CKSUMSTART(mp)) & 1) == 0) {
7074                         uint32_t adj;
7075                         /*
7076                          * Partial checksum has been calculated by hardware
7077                          * and attached to the packet; in addition, any
7078                          * prepended extraneous data is even byte aligned.
7079                          * If any such data exists, we adjust the checksum;
7080                          * this would also handle any postpended data.
7081                          */
7082                         IP_ADJCKSUM_PARTIAL(mp->b_rptr + DB_CKSUMSTART(mp),
7083                             mp, mp1, len, adj);
7084 
7085                         /* One's complement subtract extraneous checksum */
7086                         if (adj >= sum_val)
7087                                 sum_val = ~(adj - sum_val) & 0xFFFF;
7088                         else
7089                                 sum_val -= adj;
7090                 }
7091         } else {
7092                 sum_val = 0;
7093                 sum_flags = 0;
7094         }
7095 
7096         /* Clear hardware checksumming flag */
7097         DB_CKSUMFLAGS(mp) = 0;
7098 
7099         ident = ipha->ipha_ident;
7100         offset = (frag_offset_flags << 3) & 0xFFFF;
7101         src = ipha->ipha_src;
7102         dst = ipha->ipha_dst;
7103         hdr_length = IPH_HDR_LENGTH(ipha);
7104         end = ntohs(ipha->ipha_length) - hdr_length;
7105 
7106         /* If end == 0 then we have a packet with no data, so just free it */
7107         if (end == 0) {
7108                 freemsg(mp);
7109                 return (NULL);
7110         }
7111 
7112         /* Record the ECN field info. */
7113         ecn_info = (ipha->ipha_type_of_service & 0x3);
7114         if (offset != 0) {
7115                 /*
7116                  * If this isn't the first piece, strip the header, and
7117                  * add the offset to the end value.
7118                  */
7119                 mp->b_rptr += hdr_length;
7120                 end += offset;
7121         }
7122 
7123         /* Handle vnic loopback of fragments */
7124         if (mp->b_datap->db_ref > 2)
7125                 msg_len = 0;
7126         else
7127                 msg_len = MBLKSIZE(mp);
7128 
7129         tail_mp = mp;
7130         while (tail_mp->b_cont != NULL) {
7131                 tail_mp = tail_mp->b_cont;
7132                 if (tail_mp->b_datap->db_ref <= 2)
7133                         msg_len += MBLKSIZE(tail_mp);
7134         }
7135 
7136         /* If the reassembly list for this ILL will get too big, prune it */
7137         if ((msg_len + sizeof (*ipf) + ill->ill_frag_count) >=
7138             ipst->ips_ip_reass_queue_bytes) {
7139                 DTRACE_PROBE3(ip_reass_queue_bytes, uint_t, msg_len,
7140                     uint_t, ill->ill_frag_count,
7141                     uint_t, ipst->ips_ip_reass_queue_bytes);
7142                 ill_frag_prune(ill,
7143                     (ipst->ips_ip_reass_queue_bytes < msg_len) ? 0 :
7144                     (ipst->ips_ip_reass_queue_bytes - msg_len));
7145                 pruned = B_TRUE;
7146         }
7147 
7148         ipfb = &ill->ill_frag_hash_tbl[ILL_FRAG_HASH(src, ident)];
7149         mutex_enter(&ipfb->ipfb_lock);
7150 
7151         ipfp = &ipfb->ipfb_ipf;
7152         /* Try to find an existing fragment queue for this packet. */
7153         for (;;) {
7154                 ipf = ipfp[0];
7155                 if (ipf != NULL) {
7156                         /*
7157                          * It has to match on ident and src/dst address.
7158                          */
7159                         if (ipf->ipf_ident == ident &&
7160                             ipf->ipf_src == src &&
7161                             ipf->ipf_dst == dst &&
7162                             ipf->ipf_protocol == proto) {
7163                                 /*
7164                                  * If we have received too many
7165                                  * duplicate fragments for this packet
7166                                  * free it.
7167                                  */
7168                                 if (ipf->ipf_num_dups > ip_max_frag_dups) {
7169                                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7170                                         freemsg(mp);
7171                                         mutex_exit(&ipfb->ipfb_lock);
7172                                         return (NULL);
7173                                 }
7174                                 /* Found it. */
7175                                 break;
7176                         }
7177                         ipfp = &ipf->ipf_hash_next;
7178                         continue;
7179                 }
7180 
7181                 /*
7182                  * If we pruned the list, do we want to store this new
7183                  * fragment?. We apply an optimization here based on the
7184                  * fact that most fragments will be received in order.
7185                  * So if the offset of this incoming fragment is zero,
7186                  * it is the first fragment of a new packet. We will
7187                  * keep it.  Otherwise drop the fragment, as we have
7188                  * probably pruned the packet already (since the
7189                  * packet cannot be found).
7190                  */
7191                 if (pruned && offset != 0) {
7192                         mutex_exit(&ipfb->ipfb_lock);
7193                         freemsg(mp);
7194                         return (NULL);
7195                 }
7196 
7197                 if (ipfb->ipfb_frag_pkts >= MAX_FRAG_PKTS(ipst))  {
7198                         /*
7199                          * Too many fragmented packets in this hash
7200                          * bucket. Free the oldest.
7201                          */
7202                         ill_frag_free_pkts(ill, ipfb, ipfb->ipfb_ipf, 1);
7203                 }
7204 
7205                 /* New guy.  Allocate a frag message. */
7206                 mp1 = allocb(sizeof (*ipf), BPRI_MED);
7207                 if (mp1 == NULL) {
7208                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7209                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7210                         freemsg(mp);
7211 reass_done:
7212                         mutex_exit(&ipfb->ipfb_lock);
7213                         return (NULL);
7214                 }
7215 
7216                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmReqds);
7217                 mp1->b_cont = mp;
7218 
7219                 /* Initialize the fragment header. */
7220                 ipf = (ipf_t *)mp1->b_rptr;
7221                 ipf->ipf_mp = mp1;
7222                 ipf->ipf_ptphn = ipfp;
7223                 ipfp[0] = ipf;
7224                 ipf->ipf_hash_next = NULL;
7225                 ipf->ipf_ident = ident;
7226                 ipf->ipf_protocol = proto;
7227                 ipf->ipf_src = src;
7228                 ipf->ipf_dst = dst;
7229                 ipf->ipf_nf_hdr_len = 0;
7230                 /* Record reassembly start time. */
7231                 ipf->ipf_timestamp = gethrestime_sec();
7232                 /* Record ipf generation and account for frag header */
7233                 ipf->ipf_gen = ill->ill_ipf_gen++;
7234                 ipf->ipf_count = MBLKSIZE(mp1);
7235                 ipf->ipf_last_frag_seen = B_FALSE;
7236                 ipf->ipf_ecn = ecn_info;
7237                 ipf->ipf_num_dups = 0;
7238                 ipfb->ipfb_frag_pkts++;
7239                 ipf->ipf_checksum = 0;
7240                 ipf->ipf_checksum_flags = 0;
7241 
7242                 /* Store checksum value in fragment header */
7243                 if (sum_flags != 0) {
7244                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7245                         sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7246                         ipf->ipf_checksum = sum_val;
7247                         ipf->ipf_checksum_flags = sum_flags;
7248                 }
7249 
7250                 /*
7251                  * We handle reassembly two ways.  In the easy case,
7252                  * where all the fragments show up in order, we do
7253                  * minimal bookkeeping, and just clip new pieces on
7254                  * the end.  If we ever see a hole, then we go off
7255                  * to ip_reassemble which has to mark the pieces and
7256                  * keep track of the number of holes, etc.  Obviously,
7257                  * the point of having both mechanisms is so we can
7258                  * handle the easy case as efficiently as possible.
7259                  */
7260                 if (offset == 0) {
7261                         /* Easy case, in-order reassembly so far. */
7262                         ipf->ipf_count += msg_len;
7263                         ipf->ipf_tail_mp = tail_mp;
7264                         /*
7265                          * Keep track of next expected offset in
7266                          * ipf_end.
7267                          */
7268                         ipf->ipf_end = end;
7269                         ipf->ipf_nf_hdr_len = hdr_length;
7270                 } else {
7271                         /* Hard case, hole at the beginning. */
7272                         ipf->ipf_tail_mp = NULL;
7273                         /*
7274                          * ipf_end == 0 means that we have given up
7275                          * on easy reassembly.
7276                          */
7277                         ipf->ipf_end = 0;
7278 
7279                         /* Forget checksum offload from now on */
7280                         ipf->ipf_checksum_flags = 0;
7281 
7282                         /*
7283                          * ipf_hole_cnt is set by ip_reassemble.
7284                          * ipf_count is updated by ip_reassemble.
7285                          * No need to check for return value here
7286                          * as we don't expect reassembly to complete
7287                          * or fail for the first fragment itself.
7288                          */
7289                         (void) ip_reassemble(mp, ipf,
7290                             (frag_offset_flags & IPH_OFFSET) << 3,
7291                             (frag_offset_flags & IPH_MF), ill, msg_len);
7292                 }
7293                 /* Update per ipfb and ill byte counts */
7294                 ipfb->ipfb_count += ipf->ipf_count;
7295                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7296                 atomic_add_32(&ill->ill_frag_count, ipf->ipf_count);
7297                 /* If the frag timer wasn't already going, start it. */
7298                 mutex_enter(&ill->ill_lock);
7299                 ill_frag_timer_start(ill);
7300                 mutex_exit(&ill->ill_lock);
7301                 goto reass_done;
7302         }
7303 
7304         /*
7305          * If the packet's flag has changed (it could be coming up
7306          * from an interface different than the previous, therefore
7307          * possibly different checksum capability), then forget about
7308          * any stored checksum states.  Otherwise add the value to
7309          * the existing one stored in the fragment header.
7310          */
7311         if (sum_flags != 0 && sum_flags == ipf->ipf_checksum_flags) {
7312                 sum_val += ipf->ipf_checksum;
7313                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7314                 sum_val = (sum_val & 0xFFFF) + (sum_val >> 16);
7315                 ipf->ipf_checksum = sum_val;
7316         } else if (ipf->ipf_checksum_flags != 0) {
7317                 /* Forget checksum offload from now on */
7318                 ipf->ipf_checksum_flags = 0;
7319         }
7320 
7321         /*
7322          * We have a new piece of a datagram which is already being
7323          * reassembled.  Update the ECN info if all IP fragments
7324          * are ECN capable.  If there is one which is not, clear
7325          * all the info.  If there is at least one which has CE
7326          * code point, IP needs to report that up to transport.
7327          */
7328         if (ecn_info != IPH_ECN_NECT && ipf->ipf_ecn != IPH_ECN_NECT) {
7329                 if (ecn_info == IPH_ECN_CE)
7330                         ipf->ipf_ecn = IPH_ECN_CE;
7331         } else {
7332                 ipf->ipf_ecn = IPH_ECN_NECT;
7333         }
7334         if (offset && ipf->ipf_end == offset) {
7335                 /* The new fragment fits at the end */
7336                 ipf->ipf_tail_mp->b_cont = mp;
7337                 /* Update the byte count */
7338                 ipf->ipf_count += msg_len;
7339                 /* Update per ipfb and ill byte counts */
7340                 ipfb->ipfb_count += msg_len;
7341                 ASSERT(ipfb->ipfb_count > 0);     /* Wraparound */
7342                 atomic_add_32(&ill->ill_frag_count, msg_len);
7343                 if (frag_offset_flags & IPH_MF) {
7344                         /* More to come. */
7345                         ipf->ipf_end = end;
7346                         ipf->ipf_tail_mp = tail_mp;
7347                         goto reass_done;
7348                 }
7349         } else {
7350                 /* Go do the hard cases. */
7351                 int ret;
7352 
7353                 if (offset == 0)
7354                         ipf->ipf_nf_hdr_len = hdr_length;
7355 
7356                 /* Save current byte count */
7357                 count = ipf->ipf_count;
7358                 ret = ip_reassemble(mp, ipf,
7359                     (frag_offset_flags & IPH_OFFSET) << 3,
7360                     (frag_offset_flags & IPH_MF), ill, msg_len);
7361                 /* Count of bytes added and subtracted (freeb()ed) */
7362                 count = ipf->ipf_count - count;
7363                 if (count) {
7364                         /* Update per ipfb and ill byte counts */
7365                         ipfb->ipfb_count += count;
7366                         ASSERT(ipfb->ipfb_count > 0); /* Wraparound */
7367                         atomic_add_32(&ill->ill_frag_count, count);
7368                 }
7369                 if (ret == IP_REASS_PARTIAL) {
7370                         goto reass_done;
7371                 } else if (ret == IP_REASS_FAILED) {
7372                         /* Reassembly failed. Free up all resources */
7373                         ill_frag_free_pkts(ill, ipfb, ipf, 1);
7374                         for (t_mp = mp; t_mp != NULL; t_mp = t_mp->b_cont) {
7375                                 IP_REASS_SET_START(t_mp, 0);
7376                                 IP_REASS_SET_END(t_mp, 0);
7377                         }
7378                         freemsg(mp);
7379                         goto reass_done;
7380                 }
7381                 /* We will reach here iff 'ret' is IP_REASS_COMPLETE */
7382         }
7383         /*
7384          * We have completed reassembly.  Unhook the frag header from
7385          * the reassembly list.
7386          *
7387          * Before we free the frag header, record the ECN info
7388          * to report back to the transport.
7389          */
7390         ecn_info = ipf->ipf_ecn;
7391         BUMP_MIB(ill->ill_ip_mib, ipIfStatsReasmOKs);
7392         ipfp = ipf->ipf_ptphn;
7393 
7394         /* We need to supply these to caller */
7395         if ((sum_flags = ipf->ipf_checksum_flags) != 0)
7396                 sum_val = ipf->ipf_checksum;
7397         else
7398                 sum_val = 0;
7399 
7400         mp1 = ipf->ipf_mp;
7401         count = ipf->ipf_count;
7402         ipf = ipf->ipf_hash_next;
7403         if (ipf != NULL)
7404                 ipf->ipf_ptphn = ipfp;
7405         ipfp[0] = ipf;
7406         atomic_add_32(&ill->ill_frag_count, -count);
7407         ASSERT(ipfb->ipfb_count >= count);
7408         ipfb->ipfb_count -= count;
7409         ipfb->ipfb_frag_pkts--;
7410         mutex_exit(&ipfb->ipfb_lock);
7411         /* Ditch the frag header. */
7412         mp = mp1->b_cont;
7413 
7414         freeb(mp1);
7415 
7416         /* Restore original IP length in header. */
7417         packet_size = (uint32_t)msgdsize(mp);
7418         if (packet_size > IP_MAXPACKET) {
7419                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7420                 ip_drop_input("Reassembled packet too large", mp, ill);
7421                 freemsg(mp);
7422                 return (NULL);
7423         }
7424 
7425         if (DB_REF(mp) > 1) {
7426                 mblk_t *mp2 = copymsg(mp);
7427 
7428                 if (mp2 == NULL) {
7429                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7430                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7431                         freemsg(mp);
7432                         return (NULL);
7433                 }
7434                 freemsg(mp);
7435                 mp = mp2;
7436         }
7437         ipha = (ipha_t *)mp->b_rptr;
7438 
7439         ipha->ipha_length = htons((uint16_t)packet_size);
7440         /* We're now complete, zip the frag state */
7441         ipha->ipha_fragment_offset_and_flags = 0;
7442         /* Record the ECN info. */
7443         ipha->ipha_type_of_service &= 0xFC;
7444         ipha->ipha_type_of_service |= ecn_info;
7445 
7446         /* Update the receive attributes */
7447         ira->ira_pktlen = packet_size;
7448         ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
7449 
7450         /* Reassembly is successful; set checksum information in packet */
7451         DB_CKSUM16(mp) = (uint16_t)sum_val;
7452         DB_CKSUMFLAGS(mp) = sum_flags;
7453         DB_CKSUMSTART(mp) = ira->ira_ip_hdr_length;
7454 
7455         return (mp);
7456 }
7457 
7458 /*
7459  * Pullup function that should be used for IP input in order to
7460  * ensure we do not loose the L2 source address; we need the l2 source
7461  * address for IP_RECVSLLA and for ndp_input.
7462  *
7463  * We return either NULL or b_rptr.
7464  */
7465 void *
7466 ip_pullup(mblk_t *mp, ssize_t len, ip_recv_attr_t *ira)
7467 {
7468         ill_t           *ill = ira->ira_ill;
7469 
7470         if (ip_rput_pullups++ == 0) {
7471                 (void) mi_strlog(ill->ill_rq, 1, SL_ERROR|SL_TRACE,
7472                     "ip_pullup: %s forced us to "
7473                     " pullup pkt, hdr len %ld, hdr addr %p",
7474                     ill->ill_name, len, (void *)mp->b_rptr);
7475         }
7476         if (!(ira->ira_flags & IRAF_L2SRC_SET))
7477                 ip_setl2src(mp, ira, ira->ira_rill);
7478         ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7479         if (!pullupmsg(mp, len))
7480                 return (NULL);
7481         else
7482                 return (mp->b_rptr);
7483 }
7484 
7485 /*
7486  * Make sure ira_l2src has an address. If we don't have one fill with zeros.
7487  * When called from the ULP ira_rill will be NULL hence the caller has to
7488  * pass in the ill.
7489  */
7490 /* ARGSUSED */
7491 void
7492 ip_setl2src(mblk_t *mp, ip_recv_attr_t *ira, ill_t *ill)
7493 {
7494         const uchar_t *addr;
7495         int alen;
7496 
7497         if (ira->ira_flags & IRAF_L2SRC_SET)
7498                 return;
7499 
7500         ASSERT(ill != NULL);
7501         alen = ill->ill_phys_addr_length;
7502         ASSERT(alen <= sizeof (ira->ira_l2src));
7503         if (ira->ira_mhip != NULL &&
7504             (addr = ira->ira_mhip->mhi_saddr) != NULL) {
7505                 bcopy(addr, ira->ira_l2src, alen);
7506         } else if ((ira->ira_flags & IRAF_L2SRC_LOOPBACK) &&
7507             (addr = ill->ill_phys_addr) != NULL) {
7508                 bcopy(addr, ira->ira_l2src, alen);
7509         } else {
7510                 bzero(ira->ira_l2src, alen);
7511         }
7512         ira->ira_flags |= IRAF_L2SRC_SET;
7513 }
7514 
7515 /*
7516  * check ip header length and align it.
7517  */
7518 mblk_t *
7519 ip_check_and_align_header(mblk_t *mp, uint_t min_size, ip_recv_attr_t *ira)
7520 {
7521         ill_t   *ill = ira->ira_ill;
7522         ssize_t len;
7523 
7524         len = MBLKL(mp);
7525 
7526         if (!OK_32PTR(mp->b_rptr))
7527                 IP_STAT(ill->ill_ipst, ip_notaligned);
7528         else
7529                 IP_STAT(ill->ill_ipst, ip_recv_pullup);
7530 
7531         /* Guard against bogus device drivers */
7532         if (len < 0) {
7533                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7534                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7535                 freemsg(mp);
7536                 return (NULL);
7537         }
7538 
7539         if (len == 0) {
7540                 /* GLD sometimes sends up mblk with b_rptr == b_wptr! */
7541                 mblk_t *mp1 = mp->b_cont;
7542 
7543                 if (!(ira->ira_flags & IRAF_L2SRC_SET))
7544                         ip_setl2src(mp, ira, ira->ira_rill);
7545                 ASSERT(ira->ira_flags & IRAF_L2SRC_SET);
7546 
7547                 freeb(mp);
7548                 mp = mp1;
7549                 if (mp == NULL)
7550                         return (NULL);
7551 
7552                 if (OK_32PTR(mp->b_rptr) && MBLKL(mp) >= min_size)
7553                         return (mp);
7554         }
7555         if (ip_pullup(mp, min_size, ira) == NULL) {
7556                 if (msgdsize(mp) < min_size) {
7557                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7558                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7559                 } else {
7560                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7561                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7562                 }
7563                 freemsg(mp);
7564                 return (NULL);
7565         }
7566         return (mp);
7567 }
7568 
7569 /*
7570  * Common code for IPv4 and IPv6 to check and pullup multi-mblks
7571  */
7572 mblk_t *
7573 ip_check_length(mblk_t *mp, uchar_t *rptr, ssize_t len, uint_t pkt_len,
7574     uint_t min_size, ip_recv_attr_t *ira)
7575 {
7576         ill_t   *ill = ira->ira_ill;
7577 
7578         /*
7579          * Make sure we have data length consistent
7580          * with the IP header.
7581          */
7582         if (mp->b_cont == NULL) {
7583                 /* pkt_len is based on ipha_len, not the mblk length */
7584                 if (pkt_len < min_size) {
7585                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7586                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7587                         freemsg(mp);
7588                         return (NULL);
7589                 }
7590                 if (len < 0) {
7591                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7592                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7593                         freemsg(mp);
7594                         return (NULL);
7595                 }
7596                 /* Drop any pad */
7597                 mp->b_wptr = rptr + pkt_len;
7598         } else if ((len += msgdsize(mp->b_cont)) != 0) {
7599                 ASSERT(pkt_len >= min_size);
7600                 if (pkt_len < min_size) {
7601                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7602                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7603                         freemsg(mp);
7604                         return (NULL);
7605                 }
7606                 if (len < 0) {
7607                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInTruncatedPkts);
7608                         ip_drop_input("ipIfStatsInTruncatedPkts", mp, ill);
7609                         freemsg(mp);
7610                         return (NULL);
7611                 }
7612                 /* Drop any pad */
7613                 (void) adjmsg(mp, -len);
7614                 /*
7615                  * adjmsg may have freed an mblk from the chain, hence
7616                  * invalidate any hw checksum here. This will force IP to
7617                  * calculate the checksum in sw, but only for this packet.
7618                  */
7619                 DB_CKSUMFLAGS(mp) = 0;
7620                 IP_STAT(ill->ill_ipst, ip_multimblk);
7621         }
7622         return (mp);
7623 }
7624 
7625 /*
7626  * Check that the IPv4 opt_len is consistent with the packet and pullup
7627  * the options.
7628  */
7629 mblk_t *
7630 ip_check_optlen(mblk_t *mp, ipha_t *ipha, uint_t opt_len, uint_t pkt_len,
7631     ip_recv_attr_t *ira)
7632 {
7633         ill_t   *ill = ira->ira_ill;
7634         ssize_t len;
7635 
7636         /* Assume no IPv6 packets arrive over the IPv4 queue */
7637         if (IPH_HDR_VERSION(ipha) != IPV4_VERSION) {
7638                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7639                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInWrongIPVersion);
7640                 ip_drop_input("IPvN packet on IPv4 ill", mp, ill);
7641                 freemsg(mp);
7642                 return (NULL);
7643         }
7644 
7645         if (opt_len > (15 - IP_SIMPLE_HDR_LENGTH_IN_WORDS)) {
7646                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7647                 ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7648                 freemsg(mp);
7649                 return (NULL);
7650         }
7651         /*
7652          * Recompute complete header length and make sure we
7653          * have access to all of it.
7654          */
7655         len = ((size_t)opt_len + IP_SIMPLE_HDR_LENGTH_IN_WORDS) << 2;
7656         if (len > (mp->b_wptr - mp->b_rptr)) {
7657                 if (len > pkt_len) {
7658                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInHdrErrors);
7659                         ip_drop_input("ipIfStatsInHdrErrors", mp, ill);
7660                         freemsg(mp);
7661                         return (NULL);
7662                 }
7663                 if (ip_pullup(mp, len, ira) == NULL) {
7664                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
7665                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
7666                         freemsg(mp);
7667                         return (NULL);
7668                 }
7669         }
7670         return (mp);
7671 }
7672 
7673 /*
7674  * Returns a new ire, or the same ire, or NULL.
7675  * If a different IRE is returned, then it is held; the caller
7676  * needs to release it.
7677  * In no case is there any hold/release on the ire argument.
7678  */
7679 ire_t *
7680 ip_check_multihome(void *addr, ire_t *ire, ill_t *ill)
7681 {
7682         ire_t           *new_ire;
7683         ill_t           *ire_ill;
7684         uint_t          ifindex;
7685         ip_stack_t      *ipst = ill->ill_ipst;
7686         boolean_t       strict_check = B_FALSE;
7687 
7688         /*
7689          * IPMP common case: if IRE and ILL are in the same group, there's no
7690          * issue (e.g. packet received on an underlying interface matched an
7691          * IRE_LOCAL on its associated group interface).
7692          */
7693         ASSERT(ire->ire_ill != NULL);
7694         if (IS_IN_SAME_ILLGRP(ill, ire->ire_ill))
7695                 return (ire);
7696 
7697         /*
7698          * Do another ire lookup here, using the ingress ill, to see if the
7699          * interface is in a usesrc group.
7700          * As long as the ills belong to the same group, we don't consider
7701          * them to be arriving on the wrong interface. Thus, if the switch
7702          * is doing inbound load spreading, we won't drop packets when the
7703          * ip*_strict_dst_multihoming switch is on.
7704          * We also need to check for IPIF_UNNUMBERED point2point interfaces
7705          * where the local address may not be unique. In this case we were
7706          * at the mercy of the initial ire lookup and the IRE_LOCAL it
7707          * actually returned. The new lookup, which is more specific, should
7708          * only find the IRE_LOCAL associated with the ingress ill if one
7709          * exists.
7710          */
7711         if (ire->ire_ipversion == IPV4_VERSION) {
7712                 if (ipst->ips_ip_strict_dst_multihoming)
7713                         strict_check = B_TRUE;
7714                 new_ire = ire_ftable_lookup_v4(*((ipaddr_t *)addr), 0, 0,
7715                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7716                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7717         } else {
7718                 ASSERT(!IN6_IS_ADDR_MULTICAST((in6_addr_t *)addr));
7719                 if (ipst->ips_ipv6_strict_dst_multihoming)
7720                         strict_check = B_TRUE;
7721                 new_ire = ire_ftable_lookup_v6((in6_addr_t *)addr, NULL, NULL,
7722                     IRE_LOCAL, ill, ALL_ZONES, NULL,
7723                     (MATCH_IRE_TYPE|MATCH_IRE_ILL), 0, ipst, NULL);
7724         }
7725         /*
7726          * If the same ire that was returned in ip_input() is found then this
7727          * is an indication that usesrc groups are in use. The packet
7728          * arrived on a different ill in the group than the one associated with
7729          * the destination address.  If a different ire was found then the same
7730          * IP address must be hosted on multiple ills. This is possible with
7731          * unnumbered point2point interfaces. We switch to use this new ire in
7732          * order to have accurate interface statistics.
7733          */
7734         if (new_ire != NULL) {
7735                 /* Note: held in one case but not the other? Caller handles */
7736                 if (new_ire != ire)
7737                         return (new_ire);
7738                 /* Unchanged */
7739                 ire_refrele(new_ire);
7740                 return (ire);
7741         }
7742 
7743         /*
7744          * Chase pointers once and store locally.
7745          */
7746         ASSERT(ire->ire_ill != NULL);
7747         ire_ill = ire->ire_ill;
7748         ifindex = ill->ill_usesrc_ifindex;
7749 
7750         /*
7751          * Check if it's a legal address on the 'usesrc' interface.
7752          * For IPMP data addresses the IRE_LOCAL is the upper, hence we
7753          * can just check phyint_ifindex.
7754          */
7755         if (ifindex != 0 && ifindex == ire_ill->ill_phyint->phyint_ifindex) {
7756                 return (ire);
7757         }
7758 
7759         /*
7760          * If the ip*_strict_dst_multihoming switch is on then we can
7761          * only accept this packet if the interface is marked as routing.
7762          */
7763         if (!(strict_check))
7764                 return (ire);
7765 
7766         if ((ill->ill_flags & ire->ire_ill->ill_flags & ILLF_ROUTER) != 0) {
7767                 return (ire);
7768         }
7769         return (NULL);
7770 }
7771 
7772 /*
7773  * This function is used to construct a mac_header_info_s from a
7774  * DL_UNITDATA_IND message.
7775  * The address fields in the mhi structure points into the message,
7776  * thus the caller can't use those fields after freeing the message.
7777  *
7778  * We determine whether the packet received is a non-unicast packet
7779  * and in doing so, determine whether or not it is broadcast vs multicast.
7780  * For it to be a broadcast packet, we must have the appropriate mblk_t
7781  * hanging off the ill_t.  If this is either not present or doesn't match
7782  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7783  * to be multicast.  Thus NICs that have no broadcast address (or no
7784  * capability for one, such as point to point links) cannot return as
7785  * the packet being broadcast.
7786  */
7787 void
7788 ip_dlur_to_mhi(ill_t *ill, mblk_t *mb, struct mac_header_info_s *mhip)
7789 {
7790         dl_unitdata_ind_t *ind = (dl_unitdata_ind_t *)mb->b_rptr;
7791         mblk_t *bmp;
7792         uint_t extra_offset;
7793 
7794         bzero(mhip, sizeof (struct mac_header_info_s));
7795 
7796         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7797 
7798         if (ill->ill_sap_length < 0)
7799                 extra_offset = 0;
7800         else
7801                 extra_offset = ill->ill_sap_length;
7802 
7803         mhip->mhi_daddr = (uchar_t *)ind + ind->dl_dest_addr_offset +
7804             extra_offset;
7805         mhip->mhi_saddr = (uchar_t *)ind + ind->dl_src_addr_offset +
7806             extra_offset;
7807 
7808         if (!ind->dl_group_address)
7809                 return;
7810 
7811         /* Multicast or broadcast */
7812         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7813 
7814         if (ind->dl_dest_addr_offset > sizeof (*ind) &&
7815             ind->dl_dest_addr_offset + ind->dl_dest_addr_length < MBLKL(mb) &&
7816             (bmp = ill->ill_bcast_mp) != NULL) {
7817                 dl_unitdata_req_t *dlur;
7818                 uint8_t *bphys_addr;
7819 
7820                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7821                 bphys_addr = (uchar_t *)dlur + dlur->dl_dest_addr_offset +
7822                     extra_offset;
7823 
7824                 if (bcmp(mhip->mhi_daddr, bphys_addr,
7825                     ind->dl_dest_addr_length) == 0)
7826                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7827         }
7828 }
7829 
7830 /*
7831  * This function is used to construct a mac_header_info_s from a
7832  * M_DATA fastpath message from a DLPI driver.
7833  * The address fields in the mhi structure points into the message,
7834  * thus the caller can't use those fields after freeing the message.
7835  *
7836  * We determine whether the packet received is a non-unicast packet
7837  * and in doing so, determine whether or not it is broadcast vs multicast.
7838  * For it to be a broadcast packet, we must have the appropriate mblk_t
7839  * hanging off the ill_t.  If this is either not present or doesn't match
7840  * the destination mac address in the DL_UNITDATA_IND, the packet is deemed
7841  * to be multicast.  Thus NICs that have no broadcast address (or no
7842  * capability for one, such as point to point links) cannot return as
7843  * the packet being broadcast.
7844  */
7845 void
7846 ip_mdata_to_mhi(ill_t *ill, mblk_t *mp, struct mac_header_info_s *mhip)
7847 {
7848         mblk_t *bmp;
7849         struct ether_header *pether;
7850 
7851         bzero(mhip, sizeof (struct mac_header_info_s));
7852 
7853         mhip->mhi_dsttype = MAC_ADDRTYPE_UNICAST;
7854 
7855         pether = (struct ether_header *)((char *)mp->b_rptr
7856             - sizeof (struct ether_header));
7857 
7858         /*
7859          * Make sure the interface is an ethernet type, since we don't
7860          * know the header format for anything but Ethernet. Also make
7861          * sure we are pointing correctly above db_base.
7862          */
7863         if (ill->ill_type != IFT_ETHER)
7864                 return;
7865 
7866 retry:
7867         if ((uchar_t *)pether < mp->b_datap->db_base)
7868                 return;
7869 
7870         /* Is there a VLAN tag? */
7871         if (ill->ill_isv6) {
7872                 if (pether->ether_type != htons(ETHERTYPE_IPV6)) {
7873                         pether = (struct ether_header *)((char *)pether - 4);
7874                         goto retry;
7875                 }
7876         } else {
7877                 if (pether->ether_type != htons(ETHERTYPE_IP)) {
7878                         pether = (struct ether_header *)((char *)pether - 4);
7879                         goto retry;
7880                 }
7881         }
7882         mhip->mhi_daddr = (uchar_t *)&pether->ether_dhost;
7883         mhip->mhi_saddr = (uchar_t *)&pether->ether_shost;
7884 
7885         if (!(mhip->mhi_daddr[0] & 0x01))
7886                 return;
7887 
7888         /* Multicast or broadcast */
7889         mhip->mhi_dsttype = MAC_ADDRTYPE_MULTICAST;
7890 
7891         if ((bmp = ill->ill_bcast_mp) != NULL) {
7892                 dl_unitdata_req_t *dlur;
7893                 uint8_t *bphys_addr;
7894                 uint_t  addrlen;
7895 
7896                 dlur = (dl_unitdata_req_t *)bmp->b_rptr;
7897                 addrlen = dlur->dl_dest_addr_length;
7898                 if (ill->ill_sap_length < 0) {
7899                         bphys_addr = (uchar_t *)dlur +
7900                             dlur->dl_dest_addr_offset;
7901                         addrlen += ill->ill_sap_length;
7902                 } else {
7903                         bphys_addr = (uchar_t *)dlur +
7904                             dlur->dl_dest_addr_offset +
7905                             ill->ill_sap_length;
7906                         addrlen -= ill->ill_sap_length;
7907                 }
7908                 if (bcmp(mhip->mhi_daddr, bphys_addr, addrlen) == 0)
7909                         mhip->mhi_dsttype = MAC_ADDRTYPE_BROADCAST;
7910         }
7911 }
7912 
7913 /*
7914  * Handle anything but M_DATA messages
7915  * We see the DL_UNITDATA_IND which are part
7916  * of the data path, and also the other messages from the driver.
7917  */
7918 void
7919 ip_rput_notdata(ill_t *ill, mblk_t *mp)
7920 {
7921         mblk_t          *first_mp;
7922         struct iocblk   *iocp;
7923         struct mac_header_info_s mhi;
7924 
7925         switch (DB_TYPE(mp)) {
7926         case M_PROTO:
7927         case M_PCPROTO: {
7928                 if (((dl_unitdata_ind_t *)mp->b_rptr)->dl_primitive !=
7929                     DL_UNITDATA_IND) {
7930                         /* Go handle anything other than data elsewhere. */
7931                         ip_rput_dlpi(ill, mp);
7932                         return;
7933                 }
7934 
7935                 first_mp = mp;
7936                 mp = first_mp->b_cont;
7937                 first_mp->b_cont = NULL;
7938 
7939                 if (mp == NULL) {
7940                         freeb(first_mp);
7941                         return;
7942                 }
7943                 ip_dlur_to_mhi(ill, first_mp, &mhi);
7944                 if (ill->ill_isv6)
7945                         ip_input_v6(ill, NULL, mp, &mhi);
7946                 else
7947                         ip_input(ill, NULL, mp, &mhi);
7948 
7949                 /* Ditch the DLPI header. */
7950                 freeb(first_mp);
7951                 return;
7952         }
7953         case M_IOCACK:
7954                 iocp = (struct iocblk *)mp->b_rptr;
7955                 switch (iocp->ioc_cmd) {
7956                 case DL_IOC_HDR_INFO:
7957                         ill_fastpath_ack(ill, mp);
7958                         return;
7959                 default:
7960                         putnext(ill->ill_rq, mp);
7961                         return;
7962                 }
7963                 /* FALLTHROUGH */
7964         case M_ERROR:
7965         case M_HANGUP:
7966                 mutex_enter(&ill->ill_lock);
7967                 if (ill->ill_state_flags & ILL_CONDEMNED) {
7968                         mutex_exit(&ill->ill_lock);
7969                         freemsg(mp);
7970                         return;
7971                 }
7972                 ill_refhold_locked(ill);
7973                 mutex_exit(&ill->ill_lock);
7974                 qwriter_ip(ill, ill->ill_rq, mp, ip_rput_other, CUR_OP,
7975                     B_FALSE);
7976                 return;
7977         case M_CTL:
7978                 putnext(ill->ill_rq, mp);
7979                 return;
7980         case M_IOCNAK:
7981                 ip1dbg(("got iocnak "));
7982                 iocp = (struct iocblk *)mp->b_rptr;
7983                 switch (iocp->ioc_cmd) {
7984                 case DL_IOC_HDR_INFO:
7985                         ip_rput_other(NULL, ill->ill_rq, mp, NULL);
7986                         return;
7987                 default:
7988                         break;
7989                 }
7990                 /* FALLTHROUGH */
7991         default:
7992                 putnext(ill->ill_rq, mp);
7993                 return;
7994         }
7995 }
7996 
7997 /* Read side put procedure.  Packets coming from the wire arrive here. */
7998 int
7999 ip_rput(queue_t *q, mblk_t *mp)
8000 {
8001         ill_t   *ill;
8002         union DL_primitives *dl;
8003 
8004         ill = (ill_t *)q->q_ptr;
8005 
8006         if (ill->ill_state_flags & (ILL_CONDEMNED | ILL_LL_SUBNET_PENDING)) {
8007                 /*
8008                  * If things are opening or closing, only accept high-priority
8009                  * DLPI messages.  (On open ill->ill_ipif has not yet been
8010                  * created; on close, things hanging off the ill may have been
8011                  * freed already.)
8012                  */
8013                 dl = (union DL_primitives *)mp->b_rptr;
8014                 if (DB_TYPE(mp) != M_PCPROTO ||
8015                     dl->dl_primitive == DL_UNITDATA_IND) {
8016                         inet_freemsg(mp);
8017                         return (0);
8018                 }
8019         }
8020         if (DB_TYPE(mp) == M_DATA) {
8021                 struct mac_header_info_s mhi;
8022 
8023                 ip_mdata_to_mhi(ill, mp, &mhi);
8024                 ip_input(ill, NULL, mp, &mhi);
8025         } else {
8026                 ip_rput_notdata(ill, mp);
8027         }
8028         return (0);
8029 }
8030 
8031 /*
8032  * Move the information to a copy.
8033  */
8034 mblk_t *
8035 ip_fix_dbref(mblk_t *mp, ip_recv_attr_t *ira)
8036 {
8037         mblk_t          *mp1;
8038         ill_t           *ill = ira->ira_ill;
8039         ip_stack_t      *ipst = ill->ill_ipst;
8040 
8041         IP_STAT(ipst, ip_db_ref);
8042 
8043         /* Make sure we have ira_l2src before we loose the original mblk */
8044         if (!(ira->ira_flags & IRAF_L2SRC_SET))
8045                 ip_setl2src(mp, ira, ira->ira_rill);
8046 
8047         mp1 = copymsg(mp);
8048         if (mp1 == NULL) {
8049                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
8050                 ip_drop_input("ipIfStatsInDiscards", mp, ill);
8051                 freemsg(mp);
8052                 return (NULL);
8053         }
8054         /* preserve the hardware checksum flags and data, if present */
8055         if (DB_CKSUMFLAGS(mp) != 0) {
8056                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
8057                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
8058                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
8059                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
8060                 DB_CKSUM16(mp1) = DB_CKSUM16(mp);
8061         }
8062         freemsg(mp);
8063         return (mp1);
8064 }
8065 
8066 static void
8067 ip_dlpi_error(ill_t *ill, t_uscalar_t prim, t_uscalar_t dl_err,
8068     t_uscalar_t err)
8069 {
8070         if (dl_err == DL_SYSERR) {
8071                 (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8072                     "%s: %s failed: DL_SYSERR (errno %u)\n",
8073                     ill->ill_name, dl_primstr(prim), err);
8074                 return;
8075         }
8076 
8077         (void) mi_strlog(ill->ill_rq, 1, SL_CONSOLE|SL_ERROR|SL_TRACE,
8078             "%s: %s failed: %s\n", ill->ill_name, dl_primstr(prim),
8079             dl_errstr(dl_err));
8080 }
8081 
8082 /*
8083  * ip_rput_dlpi is called by ip_rput to handle all DLPI messages other
8084  * than DL_UNITDATA_IND messages. If we need to process this message
8085  * exclusively, we call qwriter_ip, in which case we also need to call
8086  * ill_refhold before that, since qwriter_ip does an ill_refrele.
8087  */
8088 void
8089 ip_rput_dlpi(ill_t *ill, mblk_t *mp)
8090 {
8091         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8092         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8093         queue_t         *q = ill->ill_rq;
8094         t_uscalar_t     prim = dloa->dl_primitive;
8095         t_uscalar_t     reqprim = DL_PRIM_INVAL;
8096 
8097         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi",
8098             char *, dl_primstr(prim), ill_t *, ill);
8099         ip1dbg(("ip_rput_dlpi"));
8100 
8101         /*
8102          * If we received an ACK but didn't send a request for it, then it
8103          * can't be part of any pending operation; discard up-front.
8104          */
8105         switch (prim) {
8106         case DL_ERROR_ACK:
8107                 reqprim = dlea->dl_error_primitive;
8108                 ip2dbg(("ip_rput_dlpi(%s): DL_ERROR_ACK for %s (0x%x): %s "
8109                     "(0x%x), unix %u\n", ill->ill_name, dl_primstr(reqprim),
8110                     reqprim, dl_errstr(dlea->dl_errno), dlea->dl_errno,
8111                     dlea->dl_unix_errno));
8112                 break;
8113         case DL_OK_ACK:
8114                 reqprim = dloa->dl_correct_primitive;
8115                 break;
8116         case DL_INFO_ACK:
8117                 reqprim = DL_INFO_REQ;
8118                 break;
8119         case DL_BIND_ACK:
8120                 reqprim = DL_BIND_REQ;
8121                 break;
8122         case DL_PHYS_ADDR_ACK:
8123                 reqprim = DL_PHYS_ADDR_REQ;
8124                 break;
8125         case DL_NOTIFY_ACK:
8126                 reqprim = DL_NOTIFY_REQ;
8127                 break;
8128         case DL_CAPABILITY_ACK:
8129                 reqprim = DL_CAPABILITY_REQ;
8130                 break;
8131         }
8132 
8133         if (prim != DL_NOTIFY_IND) {
8134                 if (reqprim == DL_PRIM_INVAL ||
8135                     !ill_dlpi_pending(ill, reqprim)) {
8136                         /* Not a DLPI message we support or expected */
8137                         freemsg(mp);
8138                         return;
8139                 }
8140                 ip1dbg(("ip_rput: received %s for %s\n", dl_primstr(prim),
8141                     dl_primstr(reqprim)));
8142         }
8143 
8144         switch (reqprim) {
8145         case DL_UNBIND_REQ:
8146                 /*
8147                  * NOTE: we mark the unbind as complete even if we got a
8148                  * DL_ERROR_ACK, since there's not much else we can do.
8149                  */
8150                 mutex_enter(&ill->ill_lock);
8151                 ill->ill_state_flags &= ~ILL_DL_UNBIND_IN_PROGRESS;
8152                 cv_signal(&ill->ill_cv);
8153                 mutex_exit(&ill->ill_lock);
8154                 break;
8155 
8156         case DL_ENABMULTI_REQ:
8157                 if (prim == DL_OK_ACK) {
8158                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8159                                 ill->ill_dlpi_multicast_state = IDS_OK;
8160                 }
8161                 break;
8162         }
8163 
8164         /*
8165          * The message is one we're waiting for (or DL_NOTIFY_IND), but we
8166          * need to become writer to continue to process it.  Because an
8167          * exclusive operation doesn't complete until replies to all queued
8168          * DLPI messages have been received, we know we're in the middle of an
8169          * exclusive operation and pass CUR_OP (except for DL_NOTIFY_IND).
8170          *
8171          * As required by qwriter_ip(), we refhold the ill; it will refrele.
8172          * Since this is on the ill stream we unconditionally bump up the
8173          * refcount without doing ILL_CAN_LOOKUP().
8174          */
8175         ill_refhold(ill);
8176         if (prim == DL_NOTIFY_IND)
8177                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, NEW_OP, B_FALSE);
8178         else
8179                 qwriter_ip(ill, q, mp, ip_rput_dlpi_writer, CUR_OP, B_FALSE);
8180 }
8181 
8182 /*
8183  * Handling of DLPI messages that require exclusive access to the ipsq.
8184  *
8185  * Need to do ipsq_pending_mp_get on ioctl completion, which could
8186  * happen here. (along with mi_copy_done)
8187  */
8188 /* ARGSUSED */
8189 static void
8190 ip_rput_dlpi_writer(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8191 {
8192         dl_ok_ack_t     *dloa = (dl_ok_ack_t *)mp->b_rptr;
8193         dl_error_ack_t  *dlea = (dl_error_ack_t *)dloa;
8194         int             err = 0;
8195         ill_t           *ill = (ill_t *)q->q_ptr;
8196         ipif_t          *ipif = NULL;
8197         mblk_t          *mp1 = NULL;
8198         conn_t          *connp = NULL;
8199         t_uscalar_t     paddrreq;
8200         mblk_t          *mp_hw;
8201         boolean_t       success;
8202         boolean_t       ioctl_aborted = B_FALSE;
8203         boolean_t       log = B_TRUE;
8204 
8205         DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer",
8206             char *, dl_primstr(dloa->dl_primitive), ill_t *, ill);
8207 
8208         ip1dbg(("ip_rput_dlpi_writer .."));
8209         ASSERT(ipsq->ipsq_xop == ill->ill_phyint->phyint_ipsq->ipsq_xop);
8210         ASSERT(IAM_WRITER_ILL(ill));
8211 
8212         ipif = ipsq->ipsq_xop->ipx_pending_ipif;
8213         /*
8214          * The current ioctl could have been aborted by the user and a new
8215          * ioctl to bring up another ill could have started. We could still
8216          * get a response from the driver later.
8217          */
8218         if (ipif != NULL && ipif->ipif_ill != ill)
8219                 ioctl_aborted = B_TRUE;
8220 
8221         switch (dloa->dl_primitive) {
8222         case DL_ERROR_ACK:
8223                 ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for %s\n",
8224                     dl_primstr(dlea->dl_error_primitive)));
8225 
8226                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer error",
8227                     char *, dl_primstr(dlea->dl_error_primitive),
8228                     ill_t *, ill);
8229 
8230                 switch (dlea->dl_error_primitive) {
8231                 case DL_DISABMULTI_REQ:
8232                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8233                         break;
8234                 case DL_PROMISCON_REQ:
8235                 case DL_PROMISCOFF_REQ:
8236                 case DL_UNBIND_REQ:
8237                 case DL_ATTACH_REQ:
8238                 case DL_INFO_REQ:
8239                         ill_dlpi_done(ill, dlea->dl_error_primitive);
8240                         break;
8241                 case DL_NOTIFY_REQ:
8242                         ill_dlpi_done(ill, DL_NOTIFY_REQ);
8243                         log = B_FALSE;
8244                         break;
8245                 case DL_PHYS_ADDR_REQ:
8246                         /*
8247                          * For IPv6 only, there are two additional
8248                          * phys_addr_req's sent to the driver to get the
8249                          * IPv6 token and lla. This allows IP to acquire
8250                          * the hardware address format for a given interface
8251                          * without having built in knowledge of the hardware
8252                          * address. ill_phys_addr_pend keeps track of the last
8253                          * DL_PAR sent so we know which response we are
8254                          * dealing with. ill_dlpi_done will update
8255                          * ill_phys_addr_pend when it sends the next req.
8256                          * We don't complete the IOCTL until all three DL_PARs
8257                          * have been attempted, so set *_len to 0 and break.
8258                          */
8259                         paddrreq = ill->ill_phys_addr_pend;
8260                         ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8261                         if (paddrreq == DL_IPV6_TOKEN) {
8262                                 ill->ill_token_length = 0;
8263                                 log = B_FALSE;
8264                                 break;
8265                         } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8266                                 ill->ill_nd_lla_len = 0;
8267                                 log = B_FALSE;
8268                                 break;
8269                         }
8270                         /*
8271                          * Something went wrong with the DL_PHYS_ADDR_REQ.
8272                          * We presumably have an IOCTL hanging out waiting
8273                          * for completion. Find it and complete the IOCTL
8274                          * with the error noted.
8275                          * However, ill_dl_phys was called on an ill queue
8276                          * (from SIOCSLIFNAME), thus conn_pending_ill is not
8277                          * set. But the ioctl is known to be pending on ill_wq.
8278                          */
8279                         if (!ill->ill_ifname_pending)
8280                                 break;
8281                         ill->ill_ifname_pending = 0;
8282                         if (!ioctl_aborted)
8283                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8284                         if (mp1 != NULL) {
8285                                 /*
8286                                  * This operation (SIOCSLIFNAME) must have
8287                                  * happened on the ill. Assert there is no conn
8288                                  */
8289                                 ASSERT(connp == NULL);
8290                                 q = ill->ill_wq;
8291                         }
8292                         break;
8293                 case DL_BIND_REQ:
8294                         ill_dlpi_done(ill, DL_BIND_REQ);
8295                         if (ill->ill_ifname_pending)
8296                                 break;
8297                         mutex_enter(&ill->ill_lock);
8298                         ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8299                         mutex_exit(&ill->ill_lock);
8300                         /*
8301                          * Something went wrong with the bind.  We presumably
8302                          * have an IOCTL hanging out waiting for completion.
8303                          * Find it, take down the interface that was coming
8304                          * up, and complete the IOCTL with the error noted.
8305                          */
8306                         if (!ioctl_aborted)
8307                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8308                         if (mp1 != NULL) {
8309                                 /*
8310                                  * This might be a result of a DL_NOTE_REPLUMB
8311                                  * notification. In that case, connp is NULL.
8312                                  */
8313                                 if (connp != NULL)
8314                                         q = CONNP_TO_WQ(connp);
8315 
8316                                 (void) ipif_down(ipif, NULL, NULL);
8317                                 /* error is set below the switch */
8318                         }
8319                         break;
8320                 case DL_ENABMULTI_REQ:
8321                         ill_dlpi_done(ill, DL_ENABMULTI_REQ);
8322 
8323                         if (ill->ill_dlpi_multicast_state == IDS_INPROGRESS)
8324                                 ill->ill_dlpi_multicast_state = IDS_FAILED;
8325                         if (ill->ill_dlpi_multicast_state == IDS_FAILED) {
8326 
8327                                 printf("ip: joining multicasts failed (%d)"
8328                                     " on %s - will use link layer "
8329                                     "broadcasts for multicast\n",
8330                                     dlea->dl_errno, ill->ill_name);
8331 
8332                                 /*
8333                                  * Set up for multi_bcast; We are the
8334                                  * writer, so ok to access ill->ill_ipif
8335                                  * without any lock.
8336                                  */
8337                                 mutex_enter(&ill->ill_phyint->phyint_lock);
8338                                 ill->ill_phyint->phyint_flags |=
8339                                     PHYI_MULTI_BCAST;
8340                                 mutex_exit(&ill->ill_phyint->phyint_lock);
8341 
8342                         }
8343                         freemsg(mp);    /* Don't want to pass this up */
8344                         return;
8345                 case DL_CAPABILITY_REQ:
8346                         ip1dbg(("ip_rput_dlpi_writer: got DL_ERROR_ACK for "
8347                             "DL_CAPABILITY REQ\n"));
8348                         if (ill->ill_dlpi_capab_state == IDCS_PROBE_SENT)
8349                                 ill->ill_dlpi_capab_state = IDCS_FAILED;
8350                         ill_capability_done(ill);
8351                         freemsg(mp);
8352                         return;
8353                 }
8354                 /*
8355                  * Note the error for IOCTL completion (mp1 is set when
8356                  * ready to complete ioctl). If ill_ifname_pending_err is
8357                  * set, an error occured during plumbing (ill_ifname_pending),
8358                  * so we want to report that error.
8359                  *
8360                  * NOTE: there are two addtional DL_PHYS_ADDR_REQ's
8361                  * (DL_IPV6_TOKEN and DL_IPV6_LINK_LAYER_ADDR) that are
8362                  * expected to get errack'd if the driver doesn't support
8363                  * these flags (e.g. ethernet). log will be set to B_FALSE
8364                  * if these error conditions are encountered.
8365                  */
8366                 if (mp1 != NULL) {
8367                         if (ill->ill_ifname_pending_err != 0)  {
8368                                 err = ill->ill_ifname_pending_err;
8369                                 ill->ill_ifname_pending_err = 0;
8370                         } else {
8371                                 err = dlea->dl_unix_errno ?
8372                                     dlea->dl_unix_errno : ENXIO;
8373                         }
8374                 /*
8375                  * If we're plumbing an interface and an error hasn't already
8376                  * been saved, set ill_ifname_pending_err to the error passed
8377                  * up. Ignore the error if log is B_FALSE (see comment above).
8378                  */
8379                 } else if (log && ill->ill_ifname_pending &&
8380                     ill->ill_ifname_pending_err == 0) {
8381                         ill->ill_ifname_pending_err = dlea->dl_unix_errno ?
8382                             dlea->dl_unix_errno : ENXIO;
8383                 }
8384 
8385                 if (log)
8386                         ip_dlpi_error(ill, dlea->dl_error_primitive,
8387                             dlea->dl_errno, dlea->dl_unix_errno);
8388                 break;
8389         case DL_CAPABILITY_ACK:
8390                 ill_capability_ack(ill, mp);
8391                 /*
8392                  * The message has been handed off to ill_capability_ack
8393                  * and must not be freed below
8394                  */
8395                 mp = NULL;
8396                 break;
8397 
8398         case DL_INFO_ACK:
8399                 /* Call a routine to handle this one. */
8400                 ill_dlpi_done(ill, DL_INFO_REQ);
8401                 ip_ll_subnet_defaults(ill, mp);
8402                 ASSERT(!MUTEX_HELD(&ill->ill_phyint->phyint_ipsq->ipsq_lock));
8403                 return;
8404         case DL_BIND_ACK:
8405                 /*
8406                  * We should have an IOCTL waiting on this unless
8407                  * sent by ill_dl_phys, in which case just return
8408                  */
8409                 ill_dlpi_done(ill, DL_BIND_REQ);
8410 
8411                 if (ill->ill_ifname_pending) {
8412                         DTRACE_PROBE2(ip__rput__dlpi__ifname__pending,
8413                             ill_t *, ill, mblk_t *, mp);
8414                         break;
8415                 }
8416                 mutex_enter(&ill->ill_lock);
8417                 ill->ill_dl_up = 1;
8418                 ill->ill_state_flags &= ~ILL_DOWN_IN_PROGRESS;
8419                 mutex_exit(&ill->ill_lock);
8420 
8421                 if (!ioctl_aborted)
8422                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8423                 if (mp1 == NULL) {
8424                         DTRACE_PROBE1(ip__rput__dlpi__no__mblk, ill_t *, ill);
8425                         break;
8426                 }
8427                 /*
8428                  * mp1 was added by ill_dl_up(). if that is a result of
8429                  * a DL_NOTE_REPLUMB notification, connp could be NULL.
8430                  */
8431                 if (connp != NULL)
8432                         q = CONNP_TO_WQ(connp);
8433                 /*
8434                  * We are exclusive. So nothing can change even after
8435                  * we get the pending mp.
8436                  */
8437                 ip1dbg(("ip_rput_dlpi: bind_ack %s\n", ill->ill_name));
8438                 DTRACE_PROBE1(ip__rput__dlpi__bind__ack, ill_t *, ill);
8439                 ill_nic_event_dispatch(ill, 0, NE_UP, NULL, 0);
8440 
8441                 /*
8442                  * Now bring up the resolver; when that is complete, we'll
8443                  * create IREs.  Note that we intentionally mirror what
8444                  * ipif_up() would have done, because we got here by way of
8445                  * ill_dl_up(), which stopped ipif_up()'s processing.
8446                  */
8447                 if (ill->ill_isv6) {
8448                         /*
8449                          * v6 interfaces.
8450                          * Unlike ARP which has to do another bind
8451                          * and attach, once we get here we are
8452                          * done with NDP
8453                          */
8454                         (void) ipif_resolver_up(ipif, Res_act_initial);
8455                         if ((err = ipif_ndp_up(ipif, B_TRUE)) == 0)
8456                                 err = ipif_up_done_v6(ipif);
8457                 } else if (ill->ill_net_type == IRE_IF_RESOLVER) {
8458                         /*
8459                          * ARP and other v4 external resolvers.
8460                          * Leave the pending mblk intact so that
8461                          * the ioctl completes in ip_rput().
8462                          */
8463                         if (connp != NULL)
8464                                 mutex_enter(&connp->conn_lock);
8465                         mutex_enter(&ill->ill_lock);
8466                         success = ipsq_pending_mp_add(connp, ipif, q, mp1, 0);
8467                         mutex_exit(&ill->ill_lock);
8468                         if (connp != NULL)
8469                                 mutex_exit(&connp->conn_lock);
8470                         if (success) {
8471                                 err = ipif_resolver_up(ipif, Res_act_initial);
8472                                 if (err == EINPROGRESS) {
8473                                         freemsg(mp);
8474                                         return;
8475                                 }
8476                                 mp1 = ipsq_pending_mp_get(ipsq, &connp);
8477                         } else {
8478                                 /* The conn has started closing */
8479                                 err = EINTR;
8480                         }
8481                 } else {
8482                         /*
8483                          * This one is complete. Reply to pending ioctl.
8484                          */
8485                         (void) ipif_resolver_up(ipif, Res_act_initial);
8486                         err = ipif_up_done(ipif);
8487                 }
8488 
8489                 if ((err == 0) && (ill->ill_up_ipifs)) {
8490                         err = ill_up_ipifs(ill, q, mp1);
8491                         if (err == EINPROGRESS) {
8492                                 freemsg(mp);
8493                                 return;
8494                         }
8495                 }
8496 
8497                 /*
8498                  * If we have a moved ipif to bring up, and everything has
8499                  * succeeded to this point, bring it up on the IPMP ill.
8500                  * Otherwise, leave it down -- the admin can try to bring it
8501                  * up by hand if need be.
8502                  */
8503                 if (ill->ill_move_ipif != NULL) {
8504                         if (err != 0) {
8505                                 ill->ill_move_ipif = NULL;
8506                         } else {
8507                                 ipif = ill->ill_move_ipif;
8508                                 ill->ill_move_ipif = NULL;
8509                                 err = ipif_up(ipif, q, mp1);
8510                                 if (err == EINPROGRESS) {
8511                                         freemsg(mp);
8512                                         return;
8513                                 }
8514                         }
8515                 }
8516                 break;
8517 
8518         case DL_NOTIFY_IND: {
8519                 dl_notify_ind_t *notify = (dl_notify_ind_t *)mp->b_rptr;
8520                 uint_t orig_mtu, orig_mc_mtu;
8521 
8522                 switch (notify->dl_notification) {
8523                 case DL_NOTE_PHYS_ADDR:
8524                         err = ill_set_phys_addr(ill, mp);
8525                         break;
8526 
8527                 case DL_NOTE_REPLUMB:
8528                         /*
8529                          * Directly return after calling ill_replumb().
8530                          * Note that we should not free mp as it is reused
8531                          * in the ill_replumb() function.
8532                          */
8533                         err = ill_replumb(ill, mp);
8534                         return;
8535 
8536                 case DL_NOTE_FASTPATH_FLUSH:
8537                         nce_flush(ill, B_FALSE);
8538                         break;
8539 
8540                 case DL_NOTE_SDU_SIZE:
8541                 case DL_NOTE_SDU_SIZE2:
8542                         /*
8543                          * The dce and fragmentation code can cope with
8544                          * this changing while packets are being sent.
8545                          * When packets are sent ip_output will discover
8546                          * a change.
8547                          *
8548                          * Change the MTU size of the interface.
8549                          */
8550                         mutex_enter(&ill->ill_lock);
8551                         orig_mtu = ill->ill_mtu;
8552                         orig_mc_mtu = ill->ill_mc_mtu;
8553                         switch (notify->dl_notification) {
8554                         case DL_NOTE_SDU_SIZE:
8555                                 ill->ill_current_frag =
8556                                     (uint_t)notify->dl_data;
8557                                 ill->ill_mc_mtu = (uint_t)notify->dl_data;
8558                                 break;
8559                         case DL_NOTE_SDU_SIZE2:
8560                                 ill->ill_current_frag =
8561                                     (uint_t)notify->dl_data1;
8562                                 ill->ill_mc_mtu = (uint_t)notify->dl_data2;
8563                                 break;
8564                         }
8565                         if (ill->ill_current_frag > ill->ill_max_frag)
8566                                 ill->ill_max_frag = ill->ill_current_frag;
8567 
8568                         if (!(ill->ill_flags & ILLF_FIXEDMTU)) {
8569                                 ill->ill_mtu = ill->ill_current_frag;
8570 
8571                                 /*
8572                                  * If ill_user_mtu was set (via
8573                                  * SIOCSLIFLNKINFO), clamp ill_mtu at it.
8574                                  */
8575                                 if (ill->ill_user_mtu != 0 &&
8576                                     ill->ill_user_mtu < ill->ill_mtu)
8577                                         ill->ill_mtu = ill->ill_user_mtu;
8578 
8579                                 if (ill->ill_user_mtu != 0 &&
8580                                     ill->ill_user_mtu < ill->ill_mc_mtu)
8581                                         ill->ill_mc_mtu = ill->ill_user_mtu;
8582 
8583                                 if (ill->ill_isv6) {
8584                                         if (ill->ill_mtu < IPV6_MIN_MTU)
8585                                                 ill->ill_mtu = IPV6_MIN_MTU;
8586                                         if (ill->ill_mc_mtu < IPV6_MIN_MTU)
8587                                                 ill->ill_mc_mtu = IPV6_MIN_MTU;
8588                                 } else {
8589                                         if (ill->ill_mtu < IP_MIN_MTU)
8590                                                 ill->ill_mtu = IP_MIN_MTU;
8591                                         if (ill->ill_mc_mtu < IP_MIN_MTU)
8592                                                 ill->ill_mc_mtu = IP_MIN_MTU;
8593                                 }
8594                         } else if (ill->ill_mc_mtu > ill->ill_mtu) {
8595                                 ill->ill_mc_mtu = ill->ill_mtu;
8596                         }
8597 
8598                         mutex_exit(&ill->ill_lock);
8599                         /*
8600                          * Make sure all dce_generation checks find out
8601                          * that ill_mtu/ill_mc_mtu has changed.
8602                          */
8603                         if (orig_mtu != ill->ill_mtu ||
8604                             orig_mc_mtu != ill->ill_mc_mtu) {
8605                                 dce_increment_all_generations(ill->ill_isv6,
8606                                     ill->ill_ipst);
8607                         }
8608 
8609                         /*
8610                          * Refresh IPMP meta-interface MTU if necessary.
8611                          */
8612                         if (IS_UNDER_IPMP(ill))
8613                                 ipmp_illgrp_refresh_mtu(ill->ill_grp);
8614                         break;
8615 
8616                 case DL_NOTE_LINK_UP:
8617                 case DL_NOTE_LINK_DOWN: {
8618                         /*
8619                          * We are writer. ill / phyint / ipsq assocs stable.
8620                          * The RUNNING flag reflects the state of the link.
8621                          */
8622                         phyint_t *phyint = ill->ill_phyint;
8623                         uint64_t new_phyint_flags;
8624                         boolean_t changed = B_FALSE;
8625                         boolean_t went_up;
8626 
8627                         went_up = notify->dl_notification == DL_NOTE_LINK_UP;
8628                         mutex_enter(&phyint->phyint_lock);
8629 
8630                         new_phyint_flags = went_up ?
8631                             phyint->phyint_flags | PHYI_RUNNING :
8632                             phyint->phyint_flags & ~PHYI_RUNNING;
8633 
8634                         if (IS_IPMP(ill)) {
8635                                 new_phyint_flags = went_up ?
8636                                     new_phyint_flags & ~PHYI_FAILED :
8637                                     new_phyint_flags | PHYI_FAILED;
8638                         }
8639 
8640                         if (new_phyint_flags != phyint->phyint_flags) {
8641                                 phyint->phyint_flags = new_phyint_flags;
8642                                 changed = B_TRUE;
8643                         }
8644                         mutex_exit(&phyint->phyint_lock);
8645                         /*
8646                          * ill_restart_dad handles the DAD restart and routing
8647                          * socket notification logic.
8648                          */
8649                         if (changed) {
8650                                 ill_restart_dad(phyint->phyint_illv4, went_up);
8651                                 ill_restart_dad(phyint->phyint_illv6, went_up);
8652                         }
8653                         break;
8654                 }
8655                 case DL_NOTE_PROMISC_ON_PHYS: {
8656                         phyint_t *phyint = ill->ill_phyint;
8657 
8658                         mutex_enter(&phyint->phyint_lock);
8659                         phyint->phyint_flags |= PHYI_PROMISC;
8660                         mutex_exit(&phyint->phyint_lock);
8661                         break;
8662                 }
8663                 case DL_NOTE_PROMISC_OFF_PHYS: {
8664                         phyint_t *phyint = ill->ill_phyint;
8665 
8666                         mutex_enter(&phyint->phyint_lock);
8667                         phyint->phyint_flags &= ~PHYI_PROMISC;
8668                         mutex_exit(&phyint->phyint_lock);
8669                         break;
8670                 }
8671                 case DL_NOTE_CAPAB_RENEG:
8672                         /*
8673                          * Something changed on the driver side.
8674                          * It wants us to renegotiate the capabilities
8675                          * on this ill. One possible cause is the aggregation
8676                          * interface under us where a port got added or
8677                          * went away.
8678                          *
8679                          * If the capability negotiation is already done
8680                          * or is in progress, reset the capabilities and
8681                          * mark the ill's ill_capab_reneg to be B_TRUE,
8682                          * so that when the ack comes back, we can start
8683                          * the renegotiation process.
8684                          *
8685                          * Note that if ill_capab_reneg is already B_TRUE
8686                          * (ill_dlpi_capab_state is IDS_UNKNOWN in this case),
8687                          * the capability resetting request has been sent
8688                          * and the renegotiation has not been started yet;
8689                          * nothing needs to be done in this case.
8690                          */
8691                         ipsq_current_start(ipsq, ill->ill_ipif, 0);
8692                         ill_capability_reset(ill, B_TRUE);
8693                         ipsq_current_finish(ipsq);
8694                         break;
8695 
8696                 case DL_NOTE_ALLOWED_IPS:
8697                         ill_set_allowed_ips(ill, mp);
8698                         break;
8699                 default:
8700                         ip0dbg(("ip_rput_dlpi_writer: unknown notification "
8701                             "type 0x%x for DL_NOTIFY_IND\n",
8702                             notify->dl_notification));
8703                         break;
8704                 }
8705 
8706                 /*
8707                  * As this is an asynchronous operation, we
8708                  * should not call ill_dlpi_done
8709                  */
8710                 break;
8711         }
8712         case DL_NOTIFY_ACK: {
8713                 dl_notify_ack_t *noteack = (dl_notify_ack_t *)mp->b_rptr;
8714 
8715                 if (noteack->dl_notifications & DL_NOTE_LINK_UP)
8716                         ill->ill_note_link = 1;
8717                 ill_dlpi_done(ill, DL_NOTIFY_REQ);
8718                 break;
8719         }
8720         case DL_PHYS_ADDR_ACK: {
8721                 /*
8722                  * As part of plumbing the interface via SIOCSLIFNAME,
8723                  * ill_dl_phys() will queue a series of DL_PHYS_ADDR_REQs,
8724                  * whose answers we receive here.  As each answer is received,
8725                  * we call ill_dlpi_done() to dispatch the next request as
8726                  * we're processing the current one.  Once all answers have
8727                  * been received, we use ipsq_pending_mp_get() to dequeue the
8728                  * outstanding IOCTL and reply to it.  (Because ill_dl_phys()
8729                  * is invoked from an ill queue, conn_oper_pending_ill is not
8730                  * available, but we know the ioctl is pending on ill_wq.)
8731                  */
8732                 uint_t  paddrlen, paddroff;
8733                 uint8_t *addr;
8734 
8735                 paddrreq = ill->ill_phys_addr_pend;
8736                 paddrlen = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_length;
8737                 paddroff = ((dl_phys_addr_ack_t *)mp->b_rptr)->dl_addr_offset;
8738                 addr = mp->b_rptr + paddroff;
8739 
8740                 ill_dlpi_done(ill, DL_PHYS_ADDR_REQ);
8741                 if (paddrreq == DL_IPV6_TOKEN) {
8742                         /*
8743                          * bcopy to low-order bits of ill_token
8744                          *
8745                          * XXX Temporary hack - currently, all known tokens
8746                          * are 64 bits, so I'll cheat for the moment.
8747                          */
8748                         bcopy(addr, &ill->ill_token.s6_addr32[2], paddrlen);
8749                         ill->ill_token_length = paddrlen;
8750                         break;
8751                 } else if (paddrreq == DL_IPV6_LINK_LAYER_ADDR) {
8752                         ASSERT(ill->ill_nd_lla_mp == NULL);
8753                         ill_set_ndmp(ill, mp, paddroff, paddrlen);
8754                         mp = NULL;
8755                         break;
8756                 } else if (paddrreq == DL_CURR_DEST_ADDR) {
8757                         ASSERT(ill->ill_dest_addr_mp == NULL);
8758                         ill->ill_dest_addr_mp = mp;
8759                         ill->ill_dest_addr = addr;
8760                         mp = NULL;
8761                         if (ill->ill_isv6) {
8762                                 ill_setdesttoken(ill);
8763                                 ipif_setdestlinklocal(ill->ill_ipif);
8764                         }
8765                         break;
8766                 }
8767 
8768                 ASSERT(paddrreq == DL_CURR_PHYS_ADDR);
8769                 ASSERT(ill->ill_phys_addr_mp == NULL);
8770                 if (!ill->ill_ifname_pending)
8771                         break;
8772                 ill->ill_ifname_pending = 0;
8773                 if (!ioctl_aborted)
8774                         mp1 = ipsq_pending_mp_get(ipsq, &connp);
8775                 if (mp1 != NULL) {
8776                         ASSERT(connp == NULL);
8777                         q = ill->ill_wq;
8778                 }
8779                 /*
8780                  * If any error acks received during the plumbing sequence,
8781                  * ill_ifname_pending_err will be set. Break out and send up
8782                  * the error to the pending ioctl.
8783                  */
8784                 if (ill->ill_ifname_pending_err != 0) {
8785                         err = ill->ill_ifname_pending_err;
8786                         ill->ill_ifname_pending_err = 0;
8787                         break;
8788                 }
8789 
8790                 ill->ill_phys_addr_mp = mp;
8791                 ill->ill_phys_addr = (paddrlen == 0 ? NULL : addr);
8792                 mp = NULL;
8793 
8794                 /*
8795                  * If paddrlen or ill_phys_addr_length is zero, the DLPI
8796                  * provider doesn't support physical addresses.  We check both
8797                  * paddrlen and ill_phys_addr_length because sppp (PPP) does
8798                  * not have physical addresses, but historically adversises a
8799                  * physical address length of 0 in its DL_INFO_ACK, but 6 in
8800                  * its DL_PHYS_ADDR_ACK.
8801                  */
8802                 if (paddrlen == 0 || ill->ill_phys_addr_length == 0) {
8803                         ill->ill_phys_addr = NULL;
8804                 } else if (paddrlen != ill->ill_phys_addr_length) {
8805                         ip0dbg(("DL_PHYS_ADDR_ACK: got addrlen %d, expected %d",
8806                             paddrlen, ill->ill_phys_addr_length));
8807                         err = EINVAL;
8808                         break;
8809                 }
8810 
8811                 if (ill->ill_nd_lla_mp == NULL) {
8812                         if ((mp_hw = copyb(ill->ill_phys_addr_mp)) == NULL) {
8813                                 err = ENOMEM;
8814                                 break;
8815                         }
8816                         ill_set_ndmp(ill, mp_hw, paddroff, paddrlen);
8817                 }
8818 
8819                 if (ill->ill_isv6) {
8820                         ill_setdefaulttoken(ill);
8821                         ipif_setlinklocal(ill->ill_ipif);
8822                 }
8823                 break;
8824         }
8825         case DL_OK_ACK:
8826                 ip2dbg(("DL_OK_ACK %s (0x%x)\n",
8827                     dl_primstr((int)dloa->dl_correct_primitive),
8828                     dloa->dl_correct_primitive));
8829                 DTRACE_PROBE3(ill__dlpi, char *, "ip_rput_dlpi_writer ok",
8830                     char *, dl_primstr(dloa->dl_correct_primitive),
8831                     ill_t *, ill);
8832 
8833                 switch (dloa->dl_correct_primitive) {
8834                 case DL_ENABMULTI_REQ:
8835                 case DL_DISABMULTI_REQ:
8836                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8837                         break;
8838                 case DL_PROMISCON_REQ:
8839                 case DL_PROMISCOFF_REQ:
8840                 case DL_UNBIND_REQ:
8841                 case DL_ATTACH_REQ:
8842                         ill_dlpi_done(ill, dloa->dl_correct_primitive);
8843                         break;
8844                 }
8845                 break;
8846         default:
8847                 break;
8848         }
8849 
8850         freemsg(mp);
8851         if (mp1 == NULL)
8852                 return;
8853 
8854         /*
8855          * The operation must complete without EINPROGRESS since
8856          * ipsq_pending_mp_get() has removed the mblk (mp1).  Otherwise,
8857          * the operation will be stuck forever inside the IPSQ.
8858          */
8859         ASSERT(err != EINPROGRESS);
8860 
8861         DTRACE_PROBE4(ipif__ioctl, char *, "ip_rput_dlpi_writer finish",
8862             int, ipsq->ipsq_xop->ipx_current_ioctl, ill_t *, ill,
8863             ipif_t *, NULL);
8864 
8865         switch (ipsq->ipsq_xop->ipx_current_ioctl) {
8866         case 0:
8867                 ipsq_current_finish(ipsq);
8868                 break;
8869 
8870         case SIOCSLIFNAME:
8871         case IF_UNITSEL: {
8872                 ill_t *ill_other = ILL_OTHER(ill);
8873 
8874                 /*
8875                  * If SIOCSLIFNAME or IF_UNITSEL is about to succeed, and the
8876                  * ill has a peer which is in an IPMP group, then place ill
8877                  * into the same group.  One catch: although ifconfig plumbs
8878                  * the appropriate IPMP meta-interface prior to plumbing this
8879                  * ill, it is possible for multiple ifconfig applications to
8880                  * race (or for another application to adjust plumbing), in
8881                  * which case the IPMP meta-interface we need will be missing.
8882                  * If so, kick the phyint out of the group.
8883                  */
8884                 if (err == 0 && ill_other != NULL && IS_UNDER_IPMP(ill_other)) {
8885                         ipmp_grp_t      *grp = ill->ill_phyint->phyint_grp;
8886                         ipmp_illgrp_t   *illg;
8887 
8888                         illg = ill->ill_isv6 ? grp->gr_v6 : grp->gr_v4;
8889                         if (illg == NULL)
8890                                 ipmp_phyint_leave_grp(ill->ill_phyint);
8891                         else
8892                                 ipmp_ill_join_illgrp(ill, illg);
8893                 }
8894 
8895                 if (ipsq->ipsq_xop->ipx_current_ioctl == IF_UNITSEL)
8896                         ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8897                 else
8898                         ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8899                 break;
8900         }
8901         case SIOCLIFADDIF:
8902                 ip_ioctl_finish(q, mp1, err, COPYOUT, ipsq);
8903                 break;
8904 
8905         default:
8906                 ip_ioctl_finish(q, mp1, err, NO_COPYOUT, ipsq);
8907                 break;
8908         }
8909 }
8910 
8911 /*
8912  * ip_rput_other is called by ip_rput to handle messages modifying the global
8913  * state in IP.  If 'ipsq' is non-NULL, caller is writer on it.
8914  */
8915 /* ARGSUSED */
8916 void
8917 ip_rput_other(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
8918 {
8919         ill_t           *ill = q->q_ptr;
8920         struct iocblk   *iocp;
8921 
8922         ip1dbg(("ip_rput_other "));
8923         if (ipsq != NULL) {
8924                 ASSERT(IAM_WRITER_IPSQ(ipsq));
8925                 ASSERT(ipsq->ipsq_xop ==
8926                     ill->ill_phyint->phyint_ipsq->ipsq_xop);
8927         }
8928 
8929         switch (mp->b_datap->db_type) {
8930         case M_ERROR:
8931         case M_HANGUP:
8932                 /*
8933                  * The device has a problem.  We force the ILL down.  It can
8934                  * be brought up again manually using SIOCSIFFLAGS (via
8935                  * ifconfig or equivalent).
8936                  */
8937                 ASSERT(ipsq != NULL);
8938                 if (mp->b_rptr < mp->b_wptr)
8939                         ill->ill_error = (int)(*mp->b_rptr & 0xFF);
8940                 if (ill->ill_error == 0)
8941                         ill->ill_error = ENXIO;
8942                 if (!ill_down_start(q, mp))
8943                         return;
8944                 ipif_all_down_tail(ipsq, q, mp, NULL);
8945                 break;
8946         case M_IOCNAK: {
8947                 iocp = (struct iocblk *)mp->b_rptr;
8948 
8949                 ASSERT(iocp->ioc_cmd == DL_IOC_HDR_INFO);
8950                 /*
8951                  * If this was the first attempt, turn off the fastpath
8952                  * probing.
8953                  */
8954                 mutex_enter(&ill->ill_lock);
8955                 if (ill->ill_dlpi_fastpath_state == IDS_INPROGRESS) {
8956                         ill->ill_dlpi_fastpath_state = IDS_FAILED;
8957                         mutex_exit(&ill->ill_lock);
8958                         /*
8959                          * don't flush the nce_t entries: we use them
8960                          * as an index to the ncec itself.
8961                          */
8962                         ip1dbg(("ip_rput: DLPI fastpath off on interface %s\n",
8963                             ill->ill_name));
8964                 } else {
8965                         mutex_exit(&ill->ill_lock);
8966                 }
8967                 freemsg(mp);
8968                 break;
8969         }
8970         default:
8971                 ASSERT(0);
8972                 break;
8973         }
8974 }
8975 
8976 /*
8977  * Update any source route, record route or timestamp options
8978  * When it fails it has consumed the message and BUMPed the MIB.
8979  */
8980 boolean_t
8981 ip_forward_options(mblk_t *mp, ipha_t *ipha, ill_t *dst_ill,
8982     ip_recv_attr_t *ira)
8983 {
8984         ipoptp_t        opts;
8985         uchar_t         *opt;
8986         uint8_t         optval;
8987         uint8_t         optlen;
8988         ipaddr_t        dst;
8989         ipaddr_t        ifaddr;
8990         uint32_t        ts;
8991         timestruc_t     now;
8992         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
8993 
8994         ip2dbg(("ip_forward_options\n"));
8995         dst = ipha->ipha_dst;
8996         for (optval = ipoptp_first(&opts, ipha);
8997             optval != IPOPT_EOL;
8998             optval = ipoptp_next(&opts)) {
8999                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9000                 opt = opts.ipoptp_cur;
9001                 optlen = opts.ipoptp_len;
9002                 ip2dbg(("ip_forward_options: opt %d, len %d\n",
9003                     optval, opts.ipoptp_len));
9004                 switch (optval) {
9005                         uint32_t off;
9006                 case IPOPT_SSRR:
9007                 case IPOPT_LSRR:
9008                         /* Check if adminstratively disabled */
9009                         if (!ipst->ips_ip_forward_src_routed) {
9010                                 BUMP_MIB(dst_ill->ill_ip_mib,
9011                                     ipIfStatsForwProhibits);
9012                                 ip_drop_input("ICMP_SOURCE_ROUTE_FAILED",
9013                                     mp, dst_ill);
9014                                 icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED,
9015                                     ira);
9016                                 return (B_FALSE);
9017                         }
9018                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9019                                 /*
9020                                  * Must be partial since ip_input_options
9021                                  * checked for strict.
9022                                  */
9023                                 break;
9024                         }
9025                         off = opt[IPOPT_OFFSET];
9026                         off--;
9027                 redo_srr:
9028                         if (optlen < IP_ADDR_LEN ||
9029                             off > optlen - IP_ADDR_LEN) {
9030                                 /* End of source route */
9031                                 ip1dbg((
9032                                     "ip_forward_options: end of SR\n"));
9033                                 break;
9034                         }
9035                         /* Pick a reasonable address on the outbound if */
9036                         ASSERT(dst_ill != NULL);
9037                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9038                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9039                             NULL) != 0) {
9040                                 /* No source! Shouldn't happen */
9041                                 ifaddr = INADDR_ANY;
9042                         }
9043                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9044                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9045                         ip1dbg(("ip_forward_options: next hop 0x%x\n",
9046                             ntohl(dst)));
9047 
9048                         /*
9049                          * Check if our address is present more than
9050                          * once as consecutive hops in source route.
9051                          */
9052                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9053                                 off += IP_ADDR_LEN;
9054                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9055                                 goto redo_srr;
9056                         }
9057                         ipha->ipha_dst = dst;
9058                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9059                         break;
9060                 case IPOPT_RR:
9061                         off = opt[IPOPT_OFFSET];
9062                         off--;
9063                         if (optlen < IP_ADDR_LEN ||
9064                             off > optlen - IP_ADDR_LEN) {
9065                                 /* No more room - ignore */
9066                                 ip1dbg((
9067                                     "ip_forward_options: end of RR\n"));
9068                                 break;
9069                         }
9070                         /* Pick a reasonable address on the outbound if */
9071                         ASSERT(dst_ill != NULL);
9072                         if (ip_select_source_v4(dst_ill, INADDR_ANY, dst,
9073                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9074                             NULL) != 0) {
9075                                 /* No source! Shouldn't happen */
9076                                 ifaddr = INADDR_ANY;
9077                         }
9078                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9079                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9080                         break;
9081                 case IPOPT_TS:
9082                         /* Insert timestamp if there is room */
9083                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9084                         case IPOPT_TS_TSONLY:
9085                                 off = IPOPT_TS_TIMELEN;
9086                                 break;
9087                         case IPOPT_TS_PRESPEC:
9088                         case IPOPT_TS_PRESPEC_RFC791:
9089                                 /* Verify that the address matched */
9090                                 off = opt[IPOPT_OFFSET] - 1;
9091                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9092                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9093                                         /* Not for us */
9094                                         break;
9095                                 }
9096                                 /* FALLTHROUGH */
9097                         case IPOPT_TS_TSANDADDR:
9098                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9099                                 break;
9100                         default:
9101                                 /*
9102                                  * ip_*put_options should have already
9103                                  * dropped this packet.
9104                                  */
9105                                 cmn_err(CE_PANIC, "ip_forward_options: "
9106                                     "unknown IT - bug in ip_input_options?\n");
9107                                 return (B_TRUE);        /* Keep "lint" happy */
9108                         }
9109                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9110                                 /* Increase overflow counter */
9111                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9112                                 opt[IPOPT_POS_OV_FLG] =
9113                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9114                                     (off << 4));
9115                                 break;
9116                         }
9117                         off = opt[IPOPT_OFFSET] - 1;
9118                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9119                         case IPOPT_TS_PRESPEC:
9120                         case IPOPT_TS_PRESPEC_RFC791:
9121                         case IPOPT_TS_TSANDADDR:
9122                                 /* Pick a reasonable addr on the outbound if */
9123                                 ASSERT(dst_ill != NULL);
9124                                 if (ip_select_source_v4(dst_ill, INADDR_ANY,
9125                                     dst, INADDR_ANY, ALL_ZONES, ipst, &ifaddr,
9126                                     NULL, NULL) != 0) {
9127                                         /* No source! Shouldn't happen */
9128                                         ifaddr = INADDR_ANY;
9129                                 }
9130                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9131                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9132                                 /* FALLTHROUGH */
9133                         case IPOPT_TS_TSONLY:
9134                                 off = opt[IPOPT_OFFSET] - 1;
9135                                 /* Compute # of milliseconds since midnight */
9136                                 gethrestime(&now);
9137                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9138                                     NSEC2MSEC(now.tv_nsec);
9139                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9140                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9141                                 break;
9142                         }
9143                         break;
9144                 }
9145         }
9146         return (B_TRUE);
9147 }
9148 
9149 /*
9150  * Call ill_frag_timeout to do garbage collection. ill_frag_timeout
9151  * returns 'true' if there are still fragments left on the queue, in
9152  * which case we restart the timer.
9153  */
9154 void
9155 ill_frag_timer(void *arg)
9156 {
9157         ill_t   *ill = (ill_t *)arg;
9158         boolean_t frag_pending;
9159         ip_stack_t *ipst = ill->ill_ipst;
9160         time_t  timeout;
9161 
9162         mutex_enter(&ill->ill_lock);
9163         ASSERT(!ill->ill_fragtimer_executing);
9164         if (ill->ill_state_flags & ILL_CONDEMNED) {
9165                 ill->ill_frag_timer_id = 0;
9166                 mutex_exit(&ill->ill_lock);
9167                 return;
9168         }
9169         ill->ill_fragtimer_executing = 1;
9170         mutex_exit(&ill->ill_lock);
9171 
9172         timeout = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9173             ipst->ips_ip_reassembly_timeout);
9174 
9175         frag_pending = ill_frag_timeout(ill, timeout);
9176 
9177         /*
9178          * Restart the timer, if we have fragments pending or if someone
9179          * wanted us to be scheduled again.
9180          */
9181         mutex_enter(&ill->ill_lock);
9182         ill->ill_fragtimer_executing = 0;
9183         ill->ill_frag_timer_id = 0;
9184         if (frag_pending || ill->ill_fragtimer_needrestart)
9185                 ill_frag_timer_start(ill);
9186         mutex_exit(&ill->ill_lock);
9187 }
9188 
9189 void
9190 ill_frag_timer_start(ill_t *ill)
9191 {
9192         ip_stack_t *ipst = ill->ill_ipst;
9193         clock_t timeo_ms;
9194 
9195         ASSERT(MUTEX_HELD(&ill->ill_lock));
9196 
9197         /* If the ill is closing or opening don't proceed */
9198         if (ill->ill_state_flags & ILL_CONDEMNED)
9199                 return;
9200 
9201         if (ill->ill_fragtimer_executing) {
9202                 /*
9203                  * ill_frag_timer is currently executing. Just record the
9204                  * the fact that we want the timer to be restarted.
9205                  * ill_frag_timer will post a timeout before it returns,
9206                  * ensuring it will be called again.
9207                  */
9208                 ill->ill_fragtimer_needrestart = 1;
9209                 return;
9210         }
9211 
9212         if (ill->ill_frag_timer_id == 0) {
9213                 timeo_ms = (ill->ill_isv6 ? ipst->ips_ipv6_reassembly_timeout :
9214                     ipst->ips_ip_reassembly_timeout) * SECONDS;
9215 
9216                 /*
9217                  * The timer is neither running nor is the timeout handler
9218                  * executing. Post a timeout so that ill_frag_timer will be
9219                  * called
9220                  */
9221                 ill->ill_frag_timer_id = timeout(ill_frag_timer, ill,
9222                     MSEC_TO_TICK(timeo_ms >> 1));
9223                 ill->ill_fragtimer_needrestart = 0;
9224         }
9225 }
9226 
9227 /*
9228  * Update any source route, record route or timestamp options.
9229  * Check that we are at end of strict source route.
9230  * The options have already been checked for sanity in ip_input_options().
9231  */
9232 boolean_t
9233 ip_input_local_options(mblk_t *mp, ipha_t *ipha, ip_recv_attr_t *ira)
9234 {
9235         ipoptp_t        opts;
9236         uchar_t         *opt;
9237         uint8_t         optval;
9238         uint8_t         optlen;
9239         ipaddr_t        dst;
9240         ipaddr_t        ifaddr;
9241         uint32_t        ts;
9242         timestruc_t     now;
9243         ill_t           *ill = ira->ira_ill;
9244         ip_stack_t      *ipst = ill->ill_ipst;
9245 
9246         ip2dbg(("ip_input_local_options\n"));
9247 
9248         for (optval = ipoptp_first(&opts, ipha);
9249             optval != IPOPT_EOL;
9250             optval = ipoptp_next(&opts)) {
9251                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
9252                 opt = opts.ipoptp_cur;
9253                 optlen = opts.ipoptp_len;
9254                 ip2dbg(("ip_input_local_options: opt %d, len %d\n",
9255                     optval, optlen));
9256                 switch (optval) {
9257                         uint32_t off;
9258                 case IPOPT_SSRR:
9259                 case IPOPT_LSRR:
9260                         off = opt[IPOPT_OFFSET];
9261                         off--;
9262                         if (optlen < IP_ADDR_LEN ||
9263                             off > optlen - IP_ADDR_LEN) {
9264                                 /* End of source route */
9265                                 ip1dbg(("ip_input_local_options: end of SR\n"));
9266                                 break;
9267                         }
9268                         /*
9269                          * This will only happen if two consecutive entries
9270                          * in the source route contains our address or if
9271                          * it is a packet with a loose source route which
9272                          * reaches us before consuming the whole source route
9273                          */
9274                         ip1dbg(("ip_input_local_options: not end of SR\n"));
9275                         if (optval == IPOPT_SSRR) {
9276                                 goto bad_src_route;
9277                         }
9278                         /*
9279                          * Hack: instead of dropping the packet truncate the
9280                          * source route to what has been used by filling the
9281                          * rest with IPOPT_NOP.
9282                          */
9283                         opt[IPOPT_OLEN] = (uint8_t)off;
9284                         while (off < optlen) {
9285                                 opt[off++] = IPOPT_NOP;
9286                         }
9287                         break;
9288                 case IPOPT_RR:
9289                         off = opt[IPOPT_OFFSET];
9290                         off--;
9291                         if (optlen < IP_ADDR_LEN ||
9292                             off > optlen - IP_ADDR_LEN) {
9293                                 /* No more room - ignore */
9294                                 ip1dbg((
9295                                     "ip_input_local_options: end of RR\n"));
9296                                 break;
9297                         }
9298                         /* Pick a reasonable address on the outbound if */
9299                         if (ip_select_source_v4(ill, INADDR_ANY, ipha->ipha_dst,
9300                             INADDR_ANY, ALL_ZONES, ipst, &ifaddr, NULL,
9301                             NULL) != 0) {
9302                                 /* No source! Shouldn't happen */
9303                                 ifaddr = INADDR_ANY;
9304                         }
9305                         bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9306                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9307                         break;
9308                 case IPOPT_TS:
9309                         /* Insert timestamp if there is romm */
9310                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9311                         case IPOPT_TS_TSONLY:
9312                                 off = IPOPT_TS_TIMELEN;
9313                                 break;
9314                         case IPOPT_TS_PRESPEC:
9315                         case IPOPT_TS_PRESPEC_RFC791:
9316                                 /* Verify that the address matched */
9317                                 off = opt[IPOPT_OFFSET] - 1;
9318                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9319                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9320                                         /* Not for us */
9321                                         break;
9322                                 }
9323                                 /* FALLTHROUGH */
9324                         case IPOPT_TS_TSANDADDR:
9325                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9326                                 break;
9327                         default:
9328                                 /*
9329                                  * ip_*put_options should have already
9330                                  * dropped this packet.
9331                                  */
9332                                 cmn_err(CE_PANIC, "ip_input_local_options: "
9333                                     "unknown IT - bug in ip_input_options?\n");
9334                                 return (B_TRUE);        /* Keep "lint" happy */
9335                         }
9336                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
9337                                 /* Increase overflow counter */
9338                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
9339                                 opt[IPOPT_POS_OV_FLG] =
9340                                     (uint8_t)((opt[IPOPT_POS_OV_FLG] & 0x0F) |
9341                                     (off << 4));
9342                                 break;
9343                         }
9344                         off = opt[IPOPT_OFFSET] - 1;
9345                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9346                         case IPOPT_TS_PRESPEC:
9347                         case IPOPT_TS_PRESPEC_RFC791:
9348                         case IPOPT_TS_TSANDADDR:
9349                                 /* Pick a reasonable addr on the outbound if */
9350                                 if (ip_select_source_v4(ill, INADDR_ANY,
9351                                     ipha->ipha_dst, INADDR_ANY, ALL_ZONES, ipst,
9352                                     &ifaddr, NULL, NULL) != 0) {
9353                                         /* No source! Shouldn't happen */
9354                                         ifaddr = INADDR_ANY;
9355                                 }
9356                                 bcopy(&ifaddr, (char *)opt + off, IP_ADDR_LEN);
9357                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
9358                                 /* FALLTHROUGH */
9359                         case IPOPT_TS_TSONLY:
9360                                 off = opt[IPOPT_OFFSET] - 1;
9361                                 /* Compute # of milliseconds since midnight */
9362                                 gethrestime(&now);
9363                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
9364                                     NSEC2MSEC(now.tv_nsec);
9365                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
9366                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
9367                                 break;
9368                         }
9369                         break;
9370                 }
9371         }
9372         return (B_TRUE);
9373 
9374 bad_src_route:
9375         /* make sure we clear any indication of a hardware checksum */
9376         DB_CKSUMFLAGS(mp) = 0;
9377         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
9378         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9379         return (B_FALSE);
9380 
9381 }
9382 
9383 /*
9384  * Process IP options in an inbound packet.  Always returns the nexthop.
9385  * Normally this is the passed in nexthop, but if there is an option
9386  * that effects the nexthop (such as a source route) that will be returned.
9387  * Sets *errorp if there is an error, in which case an ICMP error has been sent
9388  * and mp freed.
9389  */
9390 ipaddr_t
9391 ip_input_options(ipha_t *ipha, ipaddr_t dst, mblk_t *mp,
9392     ip_recv_attr_t *ira, int *errorp)
9393 {
9394         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
9395         ipoptp_t        opts;
9396         uchar_t         *opt;
9397         uint8_t         optval;
9398         uint8_t         optlen;
9399         intptr_t        code = 0;
9400         ire_t           *ire;
9401 
9402         ip2dbg(("ip_input_options\n"));
9403         *errorp = 0;
9404         for (optval = ipoptp_first(&opts, ipha);
9405             optval != IPOPT_EOL;
9406             optval = ipoptp_next(&opts)) {
9407                 opt = opts.ipoptp_cur;
9408                 optlen = opts.ipoptp_len;
9409                 ip2dbg(("ip_input_options: opt %d, len %d\n",
9410                     optval, optlen));
9411                 /*
9412                  * Note: we need to verify the checksum before we
9413                  * modify anything thus this routine only extracts the next
9414                  * hop dst from any source route.
9415                  */
9416                 switch (optval) {
9417                         uint32_t off;
9418                 case IPOPT_SSRR:
9419                 case IPOPT_LSRR:
9420                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
9421                                 if (optval == IPOPT_SSRR) {
9422                                         ip1dbg(("ip_input_options: not next"
9423                                             " strict source route 0x%x\n",
9424                                             ntohl(dst)));
9425                                         code = (char *)&ipha->ipha_dst -
9426                                             (char *)ipha;
9427                                         goto param_prob; /* RouterReq's */
9428                                 }
9429                                 ip2dbg(("ip_input_options: "
9430                                     "not next source route 0x%x\n",
9431                                     ntohl(dst)));
9432                                 break;
9433                         }
9434 
9435                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9436                                 ip1dbg((
9437                                     "ip_input_options: bad option offset\n"));
9438                                 code = (char *)&opt[IPOPT_OLEN] -
9439                                     (char *)ipha;
9440                                 goto param_prob;
9441                         }
9442                         off = opt[IPOPT_OFFSET];
9443                         off--;
9444                 redo_srr:
9445                         if (optlen < IP_ADDR_LEN ||
9446                             off > optlen - IP_ADDR_LEN) {
9447                                 /* End of source route */
9448                                 ip1dbg(("ip_input_options: end of SR\n"));
9449                                 break;
9450                         }
9451                         bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
9452                         ip1dbg(("ip_input_options: next hop 0x%x\n",
9453                             ntohl(dst)));
9454 
9455                         /*
9456                          * Check if our address is present more than
9457                          * once as consecutive hops in source route.
9458                          * XXX verify per-interface ip_forwarding
9459                          * for source route?
9460                          */
9461                         if (ip_type_v4(dst, ipst) == IRE_LOCAL) {
9462                                 off += IP_ADDR_LEN;
9463                                 goto redo_srr;
9464                         }
9465 
9466                         if (dst == htonl(INADDR_LOOPBACK)) {
9467                                 ip1dbg(("ip_input_options: loopback addr in "
9468                                     "source route!\n"));
9469                                 goto bad_src_route;
9470                         }
9471                         /*
9472                          * For strict: verify that dst is directly
9473                          * reachable.
9474                          */
9475                         if (optval == IPOPT_SSRR) {
9476                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
9477                                     IRE_INTERFACE, NULL, ALL_ZONES,
9478                                     ira->ira_tsl,
9479                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
9480                                     NULL);
9481                                 if (ire == NULL) {
9482                                         ip1dbg(("ip_input_options: SSRR not "
9483                                             "directly reachable: 0x%x\n",
9484                                             ntohl(dst)));
9485                                         goto bad_src_route;
9486                                 }
9487                                 ire_refrele(ire);
9488                         }
9489                         /*
9490                          * Defer update of the offset and the record route
9491                          * until the packet is forwarded.
9492                          */
9493                         break;
9494                 case IPOPT_RR:
9495                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9496                                 ip1dbg((
9497                                     "ip_input_options: bad option offset\n"));
9498                                 code = (char *)&opt[IPOPT_OLEN] -
9499                                     (char *)ipha;
9500                                 goto param_prob;
9501                         }
9502                         break;
9503                 case IPOPT_TS:
9504                         /*
9505                          * Verify that length >= 5 and that there is either
9506                          * room for another timestamp or that the overflow
9507                          * counter is not maxed out.
9508                          */
9509                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
9510                         if (optlen < IPOPT_MINLEN_IT) {
9511                                 goto param_prob;
9512                         }
9513                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
9514                                 ip1dbg((
9515                                     "ip_input_options: bad option offset\n"));
9516                                 code = (char *)&opt[IPOPT_OFFSET] -
9517                                     (char *)ipha;
9518                                 goto param_prob;
9519                         }
9520                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
9521                         case IPOPT_TS_TSONLY:
9522                                 off = IPOPT_TS_TIMELEN;
9523                                 break;
9524                         case IPOPT_TS_TSANDADDR:
9525                         case IPOPT_TS_PRESPEC:
9526                         case IPOPT_TS_PRESPEC_RFC791:
9527                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
9528                                 break;
9529                         default:
9530                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
9531                                     (char *)ipha;
9532                                 goto param_prob;
9533                         }
9534                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
9535                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
9536                                 /*
9537                                  * No room and the overflow counter is 15
9538                                  * already.
9539                                  */
9540                                 goto param_prob;
9541                         }
9542                         break;
9543                 }
9544         }
9545 
9546         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0) {
9547                 return (dst);
9548         }
9549 
9550         ip1dbg(("ip_input_options: error processing IP options."));
9551         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
9552 
9553 param_prob:
9554         /* make sure we clear any indication of a hardware checksum */
9555         DB_CKSUMFLAGS(mp) = 0;
9556         ip_drop_input("ICMP_PARAM_PROBLEM", mp, ira->ira_ill);
9557         icmp_param_problem(mp, (uint8_t)code, ira);
9558         *errorp = -1;
9559         return (dst);
9560 
9561 bad_src_route:
9562         /* make sure we clear any indication of a hardware checksum */
9563         DB_CKSUMFLAGS(mp) = 0;
9564         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ira->ira_ill);
9565         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, ira);
9566         *errorp = -1;
9567         return (dst);
9568 }
9569 
9570 /*
9571  * IP & ICMP info in >=14 msg's ...
9572  *  - ip fixed part (mib2_ip_t)
9573  *  - icmp fixed part (mib2_icmp_t)
9574  *  - ipAddrEntryTable (ip 20)          all IPv4 ipifs
9575  *  - ipRouteEntryTable (ip 21)         all IPv4 IREs
9576  *  - ipNetToMediaEntryTable (ip 22)    all IPv4 Neighbor Cache entries
9577  *  - ipRouteAttributeTable (ip 102)    labeled routes
9578  *  - ip multicast membership (ip_member_t)
9579  *  - ip multicast source filtering (ip_grpsrc_t)
9580  *  - igmp fixed part (struct igmpstat)
9581  *  - multicast routing stats (struct mrtstat)
9582  *  - multicast routing vifs (array of struct vifctl)
9583  *  - multicast routing routes (array of struct mfcctl)
9584  *  - ip6 fixed part (mib2_ipv6IfStatsEntry_t)
9585  *                                      One per ill plus one generic
9586  *  - icmp6 fixed part (mib2_ipv6IfIcmpEntry_t)
9587  *                                      One per ill plus one generic
9588  *  - ipv6RouteEntry                    all IPv6 IREs
9589  *  - ipv6RouteAttributeTable (ip6 102) labeled routes
9590  *  - ipv6NetToMediaEntry               all IPv6 Neighbor Cache entries
9591  *  - ipv6AddrEntry                     all IPv6 ipifs
9592  *  - ipv6 multicast membership (ipv6_member_t)
9593  *  - ipv6 multicast source filtering (ipv6_grpsrc_t)
9594  *
9595  * NOTE: original mpctl is copied for msg's 2..N, since its ctl part is
9596  * already filled in by the caller.
9597  * If legacy_req is true then MIB structures needs to be truncated to their
9598  * legacy sizes before being returned.
9599  * Return value of 0 indicates that no messages were sent and caller
9600  * should free mpctl.
9601  */
9602 int
9603 ip_snmp_get(queue_t *q, mblk_t *mpctl, int level, boolean_t legacy_req)
9604 {
9605         ip_stack_t *ipst;
9606         sctp_stack_t *sctps;
9607 
9608         if (q->q_next != NULL) {
9609                 ipst = ILLQ_TO_IPST(q);
9610         } else {
9611                 ipst = CONNQ_TO_IPST(q);
9612         }
9613         ASSERT(ipst != NULL);
9614         sctps = ipst->ips_netstack->netstack_sctp;
9615 
9616         if (mpctl == NULL || mpctl->b_cont == NULL) {
9617                 return (0);
9618         }
9619 
9620         /*
9621          * For the purposes of the (broken) packet shell use
9622          * of the level we make sure MIB2_TCP/MIB2_UDP can be used
9623          * to make TCP and UDP appear first in the list of mib items.
9624          * TBD: We could expand this and use it in netstat so that
9625          * the kernel doesn't have to produce large tables (connections,
9626          * routes, etc) when netstat only wants the statistics or a particular
9627          * table.
9628          */
9629         if (!(level == MIB2_TCP || level == MIB2_UDP)) {
9630                 if ((mpctl = icmp_snmp_get(q, mpctl)) == NULL) {
9631                         return (1);
9632                 }
9633         }
9634 
9635         if (level != MIB2_TCP) {
9636                 if ((mpctl = udp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9637                         return (1);
9638                 }
9639                 if (level == MIB2_UDP) {
9640                         goto done;
9641                 }
9642         }
9643 
9644         if (level != MIB2_UDP) {
9645                 if ((mpctl = tcp_snmp_get(q, mpctl, legacy_req)) == NULL) {
9646                         return (1);
9647                 }
9648                 if (level == MIB2_TCP) {
9649                         goto done;
9650                 }
9651         }
9652 
9653         if ((mpctl = ip_snmp_get_mib2_ip_traffic_stats(q, mpctl,
9654             ipst, legacy_req)) == NULL) {
9655                 return (1);
9656         }
9657 
9658         if ((mpctl = ip_snmp_get_mib2_ip6(q, mpctl, ipst,
9659             legacy_req)) == NULL) {
9660                 return (1);
9661         }
9662 
9663         if ((mpctl = ip_snmp_get_mib2_icmp(q, mpctl, ipst)) == NULL) {
9664                 return (1);
9665         }
9666 
9667         if ((mpctl = ip_snmp_get_mib2_icmp6(q, mpctl, ipst)) == NULL) {
9668                 return (1);
9669         }
9670 
9671         if ((mpctl = ip_snmp_get_mib2_igmp(q, mpctl, ipst)) == NULL) {
9672                 return (1);
9673         }
9674 
9675         if ((mpctl = ip_snmp_get_mib2_multi(q, mpctl, ipst)) == NULL) {
9676                 return (1);
9677         }
9678 
9679         if ((mpctl = ip_snmp_get_mib2_ip_addr(q, mpctl, ipst,
9680             legacy_req)) == NULL) {
9681                 return (1);
9682         }
9683 
9684         if ((mpctl = ip_snmp_get_mib2_ip6_addr(q, mpctl, ipst,
9685             legacy_req)) == NULL) {
9686                 return (1);
9687         }
9688 
9689         if ((mpctl = ip_snmp_get_mib2_ip_group_mem(q, mpctl, ipst)) == NULL) {
9690                 return (1);
9691         }
9692 
9693         if ((mpctl = ip_snmp_get_mib2_ip6_group_mem(q, mpctl, ipst)) == NULL) {
9694                 return (1);
9695         }
9696 
9697         if ((mpctl = ip_snmp_get_mib2_ip_group_src(q, mpctl, ipst)) == NULL) {
9698                 return (1);
9699         }
9700 
9701         if ((mpctl = ip_snmp_get_mib2_ip6_group_src(q, mpctl, ipst)) == NULL) {
9702                 return (1);
9703         }
9704 
9705         if ((mpctl = ip_snmp_get_mib2_virt_multi(q, mpctl, ipst)) == NULL) {
9706                 return (1);
9707         }
9708 
9709         if ((mpctl = ip_snmp_get_mib2_multi_rtable(q, mpctl, ipst)) == NULL) {
9710                 return (1);
9711         }
9712 
9713         mpctl = ip_snmp_get_mib2_ip_route_media(q, mpctl, level, ipst);
9714         if (mpctl == NULL)
9715                 return (1);
9716 
9717         mpctl = ip_snmp_get_mib2_ip6_route_media(q, mpctl, level, ipst);
9718         if (mpctl == NULL)
9719                 return (1);
9720 
9721         if ((mpctl = sctp_snmp_get_mib2(q, mpctl, sctps)) == NULL) {
9722                 return (1);
9723         }
9724         if ((mpctl = ip_snmp_get_mib2_ip_dce(q, mpctl, ipst)) == NULL) {
9725                 return (1);
9726         }
9727 done:
9728         freemsg(mpctl);
9729         return (1);
9730 }
9731 
9732 /* Get global (legacy) IPv4 statistics */
9733 static mblk_t *
9734 ip_snmp_get_mib2_ip(queue_t *q, mblk_t *mpctl, mib2_ipIfStatsEntry_t *ipmib,
9735     ip_stack_t *ipst, boolean_t legacy_req)
9736 {
9737         mib2_ip_t               old_ip_mib;
9738         struct opthdr           *optp;
9739         mblk_t                  *mp2ctl;
9740         mib2_ipAddrEntry_t      mae;
9741 
9742         /*
9743          * make a copy of the original message
9744          */
9745         mp2ctl = copymsg(mpctl);
9746 
9747         /* fixed length IP structure... */
9748         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9749         optp->level = MIB2_IP;
9750         optp->name = 0;
9751         SET_MIB(old_ip_mib.ipForwarding,
9752             (WE_ARE_FORWARDING(ipst) ? 1 : 2));
9753         SET_MIB(old_ip_mib.ipDefaultTTL,
9754             (uint32_t)ipst->ips_ip_def_ttl);
9755         SET_MIB(old_ip_mib.ipReasmTimeout,
9756             ipst->ips_ip_reassembly_timeout);
9757         SET_MIB(old_ip_mib.ipAddrEntrySize,
9758             (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
9759             sizeof (mib2_ipAddrEntry_t));
9760         SET_MIB(old_ip_mib.ipRouteEntrySize,
9761             sizeof (mib2_ipRouteEntry_t));
9762         SET_MIB(old_ip_mib.ipNetToMediaEntrySize,
9763             sizeof (mib2_ipNetToMediaEntry_t));
9764         SET_MIB(old_ip_mib.ipMemberEntrySize, sizeof (ip_member_t));
9765         SET_MIB(old_ip_mib.ipGroupSourceEntrySize, sizeof (ip_grpsrc_t));
9766         SET_MIB(old_ip_mib.ipRouteAttributeSize,
9767             sizeof (mib2_ipAttributeEntry_t));
9768         SET_MIB(old_ip_mib.transportMLPSize, sizeof (mib2_transportMLPEntry_t));
9769         SET_MIB(old_ip_mib.ipDestEntrySize, sizeof (dest_cache_entry_t));
9770 
9771         /*
9772          * Grab the statistics from the new IP MIB
9773          */
9774         SET_MIB(old_ip_mib.ipInReceives,
9775             (uint32_t)ipmib->ipIfStatsHCInReceives);
9776         SET_MIB(old_ip_mib.ipInHdrErrors, ipmib->ipIfStatsInHdrErrors);
9777         SET_MIB(old_ip_mib.ipInAddrErrors, ipmib->ipIfStatsInAddrErrors);
9778         SET_MIB(old_ip_mib.ipForwDatagrams,
9779             (uint32_t)ipmib->ipIfStatsHCOutForwDatagrams);
9780         SET_MIB(old_ip_mib.ipInUnknownProtos,
9781             ipmib->ipIfStatsInUnknownProtos);
9782         SET_MIB(old_ip_mib.ipInDiscards, ipmib->ipIfStatsInDiscards);
9783         SET_MIB(old_ip_mib.ipInDelivers,
9784             (uint32_t)ipmib->ipIfStatsHCInDelivers);
9785         SET_MIB(old_ip_mib.ipOutRequests,
9786             (uint32_t)ipmib->ipIfStatsHCOutRequests);
9787         SET_MIB(old_ip_mib.ipOutDiscards, ipmib->ipIfStatsOutDiscards);
9788         SET_MIB(old_ip_mib.ipOutNoRoutes, ipmib->ipIfStatsOutNoRoutes);
9789         SET_MIB(old_ip_mib.ipReasmReqds, ipmib->ipIfStatsReasmReqds);
9790         SET_MIB(old_ip_mib.ipReasmOKs, ipmib->ipIfStatsReasmOKs);
9791         SET_MIB(old_ip_mib.ipReasmFails, ipmib->ipIfStatsReasmFails);
9792         SET_MIB(old_ip_mib.ipFragOKs, ipmib->ipIfStatsOutFragOKs);
9793         SET_MIB(old_ip_mib.ipFragFails, ipmib->ipIfStatsOutFragFails);
9794         SET_MIB(old_ip_mib.ipFragCreates, ipmib->ipIfStatsOutFragCreates);
9795 
9796         /* ipRoutingDiscards is not being used */
9797         SET_MIB(old_ip_mib.ipRoutingDiscards, 0);
9798         SET_MIB(old_ip_mib.tcpInErrs, ipmib->tcpIfStatsInErrs);
9799         SET_MIB(old_ip_mib.udpNoPorts, ipmib->udpIfStatsNoPorts);
9800         SET_MIB(old_ip_mib.ipInCksumErrs, ipmib->ipIfStatsInCksumErrs);
9801         SET_MIB(old_ip_mib.ipReasmDuplicates,
9802             ipmib->ipIfStatsReasmDuplicates);
9803         SET_MIB(old_ip_mib.ipReasmPartDups, ipmib->ipIfStatsReasmPartDups);
9804         SET_MIB(old_ip_mib.ipForwProhibits, ipmib->ipIfStatsForwProhibits);
9805         SET_MIB(old_ip_mib.udpInCksumErrs, ipmib->udpIfStatsInCksumErrs);
9806         SET_MIB(old_ip_mib.udpInOverflows, ipmib->udpIfStatsInOverflows);
9807         SET_MIB(old_ip_mib.rawipInOverflows,
9808             ipmib->rawipIfStatsInOverflows);
9809 
9810         SET_MIB(old_ip_mib.ipsecInSucceeded, ipmib->ipsecIfStatsInSucceeded);
9811         SET_MIB(old_ip_mib.ipsecInFailed, ipmib->ipsecIfStatsInFailed);
9812         SET_MIB(old_ip_mib.ipInIPv6, ipmib->ipIfStatsInWrongIPVersion);
9813         SET_MIB(old_ip_mib.ipOutIPv6, ipmib->ipIfStatsOutWrongIPVersion);
9814         SET_MIB(old_ip_mib.ipOutSwitchIPv6,
9815             ipmib->ipIfStatsOutSwitchIPVersion);
9816 
9817         if (!snmp_append_data(mpctl->b_cont, (char *)&old_ip_mib,
9818             (int)sizeof (old_ip_mib))) {
9819                 ip1dbg(("ip_snmp_get_mib2_ip: failed to allocate %u bytes\n",
9820                     (uint_t)sizeof (old_ip_mib)));
9821         }
9822 
9823         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9824         ip3dbg(("ip_snmp_get_mib2_ip: level %d, name %d, len %d\n",
9825             (int)optp->level, (int)optp->name, (int)optp->len));
9826         qreply(q, mpctl);
9827         return (mp2ctl);
9828 }
9829 
9830 /* Per interface IPv4 statistics */
9831 static mblk_t *
9832 ip_snmp_get_mib2_ip_traffic_stats(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
9833     boolean_t legacy_req)
9834 {
9835         struct opthdr           *optp;
9836         mblk_t                  *mp2ctl;
9837         ill_t                   *ill;
9838         ill_walk_context_t      ctx;
9839         mblk_t                  *mp_tail = NULL;
9840         mib2_ipIfStatsEntry_t   global_ip_mib;
9841         mib2_ipAddrEntry_t      mae;
9842 
9843         /*
9844          * Make a copy of the original message
9845          */
9846         mp2ctl = copymsg(mpctl);
9847 
9848         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9849         optp->level = MIB2_IP;
9850         optp->name = MIB2_IP_TRAFFIC_STATS;
9851         /* Include "unknown interface" ip_mib */
9852         ipst->ips_ip_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv4;
9853         ipst->ips_ip_mib.ipIfStatsIfIndex =
9854             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
9855         SET_MIB(ipst->ips_ip_mib.ipIfStatsForwarding,
9856             (ipst->ips_ip_forwarding ? 1 : 2));
9857         SET_MIB(ipst->ips_ip_mib.ipIfStatsDefaultTTL,
9858             (uint32_t)ipst->ips_ip_def_ttl);
9859         SET_MIB(ipst->ips_ip_mib.ipIfStatsEntrySize,
9860             sizeof (mib2_ipIfStatsEntry_t));
9861         SET_MIB(ipst->ips_ip_mib.ipIfStatsAddrEntrySize,
9862             sizeof (mib2_ipAddrEntry_t));
9863         SET_MIB(ipst->ips_ip_mib.ipIfStatsRouteEntrySize,
9864             sizeof (mib2_ipRouteEntry_t));
9865         SET_MIB(ipst->ips_ip_mib.ipIfStatsNetToMediaEntrySize,
9866             sizeof (mib2_ipNetToMediaEntry_t));
9867         SET_MIB(ipst->ips_ip_mib.ipIfStatsMemberEntrySize,
9868             sizeof (ip_member_t));
9869         SET_MIB(ipst->ips_ip_mib.ipIfStatsGroupSourceEntrySize,
9870             sizeof (ip_grpsrc_t));
9871 
9872         bcopy(&ipst->ips_ip_mib, &global_ip_mib, sizeof (global_ip_mib));
9873 
9874         if (legacy_req) {
9875                 SET_MIB(global_ip_mib.ipIfStatsAddrEntrySize,
9876                     LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t));
9877         }
9878 
9879         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9880             (char *)&global_ip_mib, (int)sizeof (global_ip_mib))) {
9881                 ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9882                     "failed to allocate %u bytes\n",
9883                     (uint_t)sizeof (global_ip_mib)));
9884         }
9885 
9886         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
9887         ill = ILL_START_WALK_V4(&ctx, ipst);
9888         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
9889                 ill->ill_ip_mib->ipIfStatsIfIndex =
9890                     ill->ill_phyint->phyint_ifindex;
9891                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
9892                     (ipst->ips_ip_forwarding ? 1 : 2));
9893                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultTTL,
9894                     (uint32_t)ipst->ips_ip_def_ttl);
9895 
9896                 ip_mib2_add_ip_stats(&global_ip_mib, ill->ill_ip_mib);
9897                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
9898                     (char *)ill->ill_ip_mib,
9899                     (int)sizeof (*ill->ill_ip_mib))) {
9900                         ip1dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9901                             "failed to allocate %u bytes\n",
9902                             (uint_t)sizeof (*ill->ill_ip_mib)));
9903                 }
9904         }
9905         rw_exit(&ipst->ips_ill_g_lock);
9906 
9907         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9908         ip3dbg(("ip_snmp_get_mib2_ip_traffic_stats: "
9909             "level %d, name %d, len %d\n",
9910             (int)optp->level, (int)optp->name, (int)optp->len));
9911         qreply(q, mpctl);
9912 
9913         if (mp2ctl == NULL)
9914                 return (NULL);
9915 
9916         return (ip_snmp_get_mib2_ip(q, mp2ctl, &global_ip_mib, ipst,
9917             legacy_req));
9918 }
9919 
9920 /* Global IPv4 ICMP statistics */
9921 static mblk_t *
9922 ip_snmp_get_mib2_icmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9923 {
9924         struct opthdr           *optp;
9925         mblk_t                  *mp2ctl;
9926 
9927         /*
9928          * Make a copy of the original message
9929          */
9930         mp2ctl = copymsg(mpctl);
9931 
9932         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9933         optp->level = MIB2_ICMP;
9934         optp->name = 0;
9935         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_icmp_mib,
9936             (int)sizeof (ipst->ips_icmp_mib))) {
9937                 ip1dbg(("ip_snmp_get_mib2_icmp: failed to allocate %u bytes\n",
9938                     (uint_t)sizeof (ipst->ips_icmp_mib)));
9939         }
9940         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9941         ip3dbg(("ip_snmp_get_mib2_icmp: level %d, name %d, len %d\n",
9942             (int)optp->level, (int)optp->name, (int)optp->len));
9943         qreply(q, mpctl);
9944         return (mp2ctl);
9945 }
9946 
9947 /* Global IPv4 IGMP statistics */
9948 static mblk_t *
9949 ip_snmp_get_mib2_igmp(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9950 {
9951         struct opthdr           *optp;
9952         mblk_t                  *mp2ctl;
9953 
9954         /*
9955          * make a copy of the original message
9956          */
9957         mp2ctl = copymsg(mpctl);
9958 
9959         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9960         optp->level = EXPER_IGMP;
9961         optp->name = 0;
9962         if (!snmp_append_data(mpctl->b_cont, (char *)&ipst->ips_igmpstat,
9963             (int)sizeof (ipst->ips_igmpstat))) {
9964                 ip1dbg(("ip_snmp_get_mib2_igmp: failed to allocate %u bytes\n",
9965                     (uint_t)sizeof (ipst->ips_igmpstat)));
9966         }
9967         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9968         ip3dbg(("ip_snmp_get_mib2_igmp: level %d, name %d, len %d\n",
9969             (int)optp->level, (int)optp->name, (int)optp->len));
9970         qreply(q, mpctl);
9971         return (mp2ctl);
9972 }
9973 
9974 /* Global IPv4 Multicast Routing statistics */
9975 static mblk_t *
9976 ip_snmp_get_mib2_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
9977 {
9978         struct opthdr           *optp;
9979         mblk_t                  *mp2ctl;
9980 
9981         /*
9982          * make a copy of the original message
9983          */
9984         mp2ctl = copymsg(mpctl);
9985 
9986         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
9987         optp->level = EXPER_DVMRP;
9988         optp->name = 0;
9989         if (!ip_mroute_stats(mpctl->b_cont, ipst)) {
9990                 ip0dbg(("ip_mroute_stats: failed\n"));
9991         }
9992         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
9993         ip3dbg(("ip_snmp_get_mib2_multi: level %d, name %d, len %d\n",
9994             (int)optp->level, (int)optp->name, (int)optp->len));
9995         qreply(q, mpctl);
9996         return (mp2ctl);
9997 }
9998 
9999 /* IPv4 address information */
10000 static mblk_t *
10001 ip_snmp_get_mib2_ip_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10002     boolean_t legacy_req)
10003 {
10004         struct opthdr           *optp;
10005         mblk_t                  *mp2ctl;
10006         mblk_t                  *mp_tail = NULL;
10007         ill_t                   *ill;
10008         ipif_t                  *ipif;
10009         uint_t                  bitval;
10010         mib2_ipAddrEntry_t      mae;
10011         size_t                  mae_size;
10012         zoneid_t                zoneid;
10013         ill_walk_context_t      ctx;
10014 
10015         /*
10016          * make a copy of the original message
10017          */
10018         mp2ctl = copymsg(mpctl);
10019 
10020         mae_size = (legacy_req) ? LEGACY_MIB_SIZE(&mae, mib2_ipAddrEntry_t) :
10021             sizeof (mib2_ipAddrEntry_t);
10022 
10023         /* ipAddrEntryTable */
10024 
10025         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10026         optp->level = MIB2_IP;
10027         optp->name = MIB2_IP_ADDR;
10028         zoneid = Q_TO_CONN(q)->conn_zoneid;
10029 
10030         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10031         ill = ILL_START_WALK_V4(&ctx, ipst);
10032         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10033                 for (ipif = ill->ill_ipif; ipif != NULL;
10034                     ipif = ipif->ipif_next) {
10035                         if (ipif->ipif_zoneid != zoneid &&
10036                             ipif->ipif_zoneid != ALL_ZONES)
10037                                 continue;
10038                         /* Sum of count from dead IRE_LO* and our current */
10039                         mae.ipAdEntInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10040                         if (ipif->ipif_ire_local != NULL) {
10041                                 mae.ipAdEntInfo.ae_ibcnt +=
10042                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10043                         }
10044                         mae.ipAdEntInfo.ae_obcnt = 0;
10045                         mae.ipAdEntInfo.ae_focnt = 0;
10046 
10047                         ipif_get_name(ipif, mae.ipAdEntIfIndex.o_bytes,
10048                             OCTET_LENGTH);
10049                         mae.ipAdEntIfIndex.o_length =
10050                             mi_strlen(mae.ipAdEntIfIndex.o_bytes);
10051                         mae.ipAdEntAddr = ipif->ipif_lcl_addr;
10052                         mae.ipAdEntNetMask = ipif->ipif_net_mask;
10053                         mae.ipAdEntInfo.ae_subnet = ipif->ipif_subnet;
10054                         mae.ipAdEntInfo.ae_subnet_len =
10055                             ip_mask_to_plen(ipif->ipif_net_mask);
10056                         mae.ipAdEntInfo.ae_src_addr = ipif->ipif_lcl_addr;
10057                         for (bitval = 1;
10058                             bitval &&
10059                             !(bitval & ipif->ipif_brd_addr);
10060                             bitval <<= 1)
10061                                 noop;
10062                         mae.ipAdEntBcastAddr = bitval;
10063                         mae.ipAdEntReasmMaxSize = IP_MAXPACKET;
10064                         mae.ipAdEntInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10065                         mae.ipAdEntInfo.ae_metric  = ipif->ipif_ill->ill_metric;
10066                         mae.ipAdEntInfo.ae_broadcast_addr =
10067                             ipif->ipif_brd_addr;
10068                         mae.ipAdEntInfo.ae_pp_dst_addr =
10069                             ipif->ipif_pp_dst_addr;
10070                         mae.ipAdEntInfo.ae_flags = ipif->ipif_flags |
10071                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10072                         mae.ipAdEntRetransmitTime =
10073                             ill->ill_reachable_retrans_time;
10074 
10075                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10076                             (char *)&mae, (int)mae_size)) {
10077                                 ip1dbg(("ip_snmp_get_mib2_ip_addr: failed to "
10078                                     "allocate %u bytes\n", (uint_t)mae_size));
10079                         }
10080                 }
10081         }
10082         rw_exit(&ipst->ips_ill_g_lock);
10083 
10084         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10085         ip3dbg(("ip_snmp_get_mib2_ip_addr: level %d, name %d, len %d\n",
10086             (int)optp->level, (int)optp->name, (int)optp->len));
10087         qreply(q, mpctl);
10088         return (mp2ctl);
10089 }
10090 
10091 /* IPv6 address information */
10092 static mblk_t *
10093 ip_snmp_get_mib2_ip6_addr(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10094     boolean_t legacy_req)
10095 {
10096         struct opthdr           *optp;
10097         mblk_t                  *mp2ctl;
10098         mblk_t                  *mp_tail = NULL;
10099         ill_t                   *ill;
10100         ipif_t                  *ipif;
10101         mib2_ipv6AddrEntry_t    mae6;
10102         size_t                  mae6_size;
10103         zoneid_t                zoneid;
10104         ill_walk_context_t      ctx;
10105 
10106         /*
10107          * make a copy of the original message
10108          */
10109         mp2ctl = copymsg(mpctl);
10110 
10111         mae6_size = (legacy_req) ?
10112             LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t) :
10113             sizeof (mib2_ipv6AddrEntry_t);
10114 
10115         /* ipv6AddrEntryTable */
10116 
10117         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10118         optp->level = MIB2_IP6;
10119         optp->name = MIB2_IP6_ADDR;
10120         zoneid = Q_TO_CONN(q)->conn_zoneid;
10121 
10122         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10123         ill = ILL_START_WALK_V6(&ctx, ipst);
10124         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10125                 for (ipif = ill->ill_ipif; ipif != NULL;
10126                     ipif = ipif->ipif_next) {
10127                         if (ipif->ipif_zoneid != zoneid &&
10128                             ipif->ipif_zoneid != ALL_ZONES)
10129                                 continue;
10130                         /* Sum of count from dead IRE_LO* and our current */
10131                         mae6.ipv6AddrInfo.ae_ibcnt = ipif->ipif_ib_pkt_count;
10132                         if (ipif->ipif_ire_local != NULL) {
10133                                 mae6.ipv6AddrInfo.ae_ibcnt +=
10134                                     ipif->ipif_ire_local->ire_ib_pkt_count;
10135                         }
10136                         mae6.ipv6AddrInfo.ae_obcnt = 0;
10137                         mae6.ipv6AddrInfo.ae_focnt = 0;
10138 
10139                         ipif_get_name(ipif, mae6.ipv6AddrIfIndex.o_bytes,
10140                             OCTET_LENGTH);
10141                         mae6.ipv6AddrIfIndex.o_length =
10142                             mi_strlen(mae6.ipv6AddrIfIndex.o_bytes);
10143                         mae6.ipv6AddrAddress = ipif->ipif_v6lcl_addr;
10144                         mae6.ipv6AddrPfxLength =
10145                             ip_mask_to_plen_v6(&ipif->ipif_v6net_mask);
10146                         mae6.ipv6AddrInfo.ae_subnet = ipif->ipif_v6subnet;
10147                         mae6.ipv6AddrInfo.ae_subnet_len =
10148                             mae6.ipv6AddrPfxLength;
10149                         mae6.ipv6AddrInfo.ae_src_addr = ipif->ipif_v6lcl_addr;
10150 
10151                         /* Type: stateless(1), stateful(2), unknown(3) */
10152                         if (ipif->ipif_flags & IPIF_ADDRCONF)
10153                                 mae6.ipv6AddrType = 1;
10154                         else
10155                                 mae6.ipv6AddrType = 2;
10156                         /* Anycast: true(1), false(2) */
10157                         if (ipif->ipif_flags & IPIF_ANYCAST)
10158                                 mae6.ipv6AddrAnycastFlag = 1;
10159                         else
10160                                 mae6.ipv6AddrAnycastFlag = 2;
10161 
10162                         /*
10163                          * Address status: preferred(1), deprecated(2),
10164                          * invalid(3), inaccessible(4), unknown(5)
10165                          */
10166                         if (ipif->ipif_flags & IPIF_NOLOCAL)
10167                                 mae6.ipv6AddrStatus = 3;
10168                         else if (ipif->ipif_flags & IPIF_DEPRECATED)
10169                                 mae6.ipv6AddrStatus = 2;
10170                         else
10171                                 mae6.ipv6AddrStatus = 1;
10172                         mae6.ipv6AddrInfo.ae_mtu = ipif->ipif_ill->ill_mtu;
10173                         mae6.ipv6AddrInfo.ae_metric  =
10174                             ipif->ipif_ill->ill_metric;
10175                         mae6.ipv6AddrInfo.ae_pp_dst_addr =
10176                             ipif->ipif_v6pp_dst_addr;
10177                         mae6.ipv6AddrInfo.ae_flags = ipif->ipif_flags |
10178                             ill->ill_flags | ill->ill_phyint->phyint_flags;
10179                         mae6.ipv6AddrReasmMaxSize = IP_MAXPACKET;
10180                         mae6.ipv6AddrIdentifier = ill->ill_token;
10181                         mae6.ipv6AddrIdentifierLen = ill->ill_token_length;
10182                         mae6.ipv6AddrReachableTime = ill->ill_reachable_time;
10183                         mae6.ipv6AddrRetransmitTime =
10184                             ill->ill_reachable_retrans_time;
10185                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10186                             (char *)&mae6, (int)mae6_size)) {
10187                                 ip1dbg(("ip_snmp_get_mib2_ip6_addr: failed to "
10188                                     "allocate %u bytes\n",
10189                                     (uint_t)mae6_size));
10190                         }
10191                 }
10192         }
10193         rw_exit(&ipst->ips_ill_g_lock);
10194 
10195         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10196         ip3dbg(("ip_snmp_get_mib2_ip6_addr: level %d, name %d, len %d\n",
10197             (int)optp->level, (int)optp->name, (int)optp->len));
10198         qreply(q, mpctl);
10199         return (mp2ctl);
10200 }
10201 
10202 /* IPv4 multicast group membership. */
10203 static mblk_t *
10204 ip_snmp_get_mib2_ip_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10205 {
10206         struct opthdr           *optp;
10207         mblk_t                  *mp2ctl;
10208         ill_t                   *ill;
10209         ipif_t                  *ipif;
10210         ilm_t                   *ilm;
10211         ip_member_t             ipm;
10212         mblk_t                  *mp_tail = NULL;
10213         ill_walk_context_t      ctx;
10214         zoneid_t                zoneid;
10215 
10216         /*
10217          * make a copy of the original message
10218          */
10219         mp2ctl = copymsg(mpctl);
10220         zoneid = Q_TO_CONN(q)->conn_zoneid;
10221 
10222         /* ipGroupMember table */
10223         optp = (struct opthdr *)&mpctl->b_rptr[
10224             sizeof (struct T_optmgmt_ack)];
10225         optp->level = MIB2_IP;
10226         optp->name = EXPER_IP_GROUP_MEMBERSHIP;
10227 
10228         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10229         ill = ILL_START_WALK_V4(&ctx, ipst);
10230         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10231                 /* Make sure the ill isn't going away. */
10232                 if (!ill_check_and_refhold(ill))
10233                         continue;
10234                 rw_exit(&ipst->ips_ill_g_lock);
10235                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10236                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10237                         if (ilm->ilm_zoneid != zoneid &&
10238                             ilm->ilm_zoneid != ALL_ZONES)
10239                                 continue;
10240 
10241                         /* Is there an ipif for ilm_ifaddr? */
10242                         for (ipif = ill->ill_ipif; ipif != NULL;
10243                             ipif = ipif->ipif_next) {
10244                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10245                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10246                                     ilm->ilm_ifaddr != INADDR_ANY)
10247                                         break;
10248                         }
10249                         if (ipif != NULL) {
10250                                 ipif_get_name(ipif,
10251                                     ipm.ipGroupMemberIfIndex.o_bytes,
10252                                     OCTET_LENGTH);
10253                         } else {
10254                                 ill_get_name(ill,
10255                                     ipm.ipGroupMemberIfIndex.o_bytes,
10256                                     OCTET_LENGTH);
10257                         }
10258                         ipm.ipGroupMemberIfIndex.o_length =
10259                             mi_strlen(ipm.ipGroupMemberIfIndex.o_bytes);
10260 
10261                         ipm.ipGroupMemberAddress = ilm->ilm_addr;
10262                         ipm.ipGroupMemberRefCnt = ilm->ilm_refcnt;
10263                         ipm.ipGroupMemberFilterMode = ilm->ilm_fmode;
10264                         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10265                             (char *)&ipm, (int)sizeof (ipm))) {
10266                                 ip1dbg(("ip_snmp_get_mib2_ip_group: "
10267                                     "failed to allocate %u bytes\n",
10268                                     (uint_t)sizeof (ipm)));
10269                         }
10270                 }
10271                 rw_exit(&ill->ill_mcast_lock);
10272                 ill_refrele(ill);
10273                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10274         }
10275         rw_exit(&ipst->ips_ill_g_lock);
10276         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10277         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10278             (int)optp->level, (int)optp->name, (int)optp->len));
10279         qreply(q, mpctl);
10280         return (mp2ctl);
10281 }
10282 
10283 /* IPv6 multicast group membership. */
10284 static mblk_t *
10285 ip_snmp_get_mib2_ip6_group_mem(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10286 {
10287         struct opthdr           *optp;
10288         mblk_t                  *mp2ctl;
10289         ill_t                   *ill;
10290         ilm_t                   *ilm;
10291         ipv6_member_t           ipm6;
10292         mblk_t                  *mp_tail = NULL;
10293         ill_walk_context_t      ctx;
10294         zoneid_t                zoneid;
10295 
10296         /*
10297          * make a copy of the original message
10298          */
10299         mp2ctl = copymsg(mpctl);
10300         zoneid = Q_TO_CONN(q)->conn_zoneid;
10301 
10302         /* ip6GroupMember table */
10303         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10304         optp->level = MIB2_IP6;
10305         optp->name = EXPER_IP6_GROUP_MEMBERSHIP;
10306 
10307         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10308         ill = ILL_START_WALK_V6(&ctx, ipst);
10309         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10310                 /* Make sure the ill isn't going away. */
10311                 if (!ill_check_and_refhold(ill))
10312                         continue;
10313                 rw_exit(&ipst->ips_ill_g_lock);
10314                 /*
10315                  * Normally we don't have any members on under IPMP interfaces.
10316                  * We report them as a debugging aid.
10317                  */
10318                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10319                 ipm6.ipv6GroupMemberIfIndex = ill->ill_phyint->phyint_ifindex;
10320                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10321                         if (ilm->ilm_zoneid != zoneid &&
10322                             ilm->ilm_zoneid != ALL_ZONES)
10323                                 continue;       /* not this zone */
10324                         ipm6.ipv6GroupMemberAddress = ilm->ilm_v6addr;
10325                         ipm6.ipv6GroupMemberRefCnt = ilm->ilm_refcnt;
10326                         ipm6.ipv6GroupMemberFilterMode = ilm->ilm_fmode;
10327                         if (!snmp_append_data2(mpctl->b_cont,
10328                             &mp_tail,
10329                             (char *)&ipm6, (int)sizeof (ipm6))) {
10330                                 ip1dbg(("ip_snmp_get_mib2_ip6_group: "
10331                                     "failed to allocate %u bytes\n",
10332                                     (uint_t)sizeof (ipm6)));
10333                         }
10334                 }
10335                 rw_exit(&ill->ill_mcast_lock);
10336                 ill_refrele(ill);
10337                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10338         }
10339         rw_exit(&ipst->ips_ill_g_lock);
10340 
10341         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10342         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10343             (int)optp->level, (int)optp->name, (int)optp->len));
10344         qreply(q, mpctl);
10345         return (mp2ctl);
10346 }
10347 
10348 /* IP multicast filtered sources */
10349 static mblk_t *
10350 ip_snmp_get_mib2_ip_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10351 {
10352         struct opthdr           *optp;
10353         mblk_t                  *mp2ctl;
10354         ill_t                   *ill;
10355         ipif_t                  *ipif;
10356         ilm_t                   *ilm;
10357         ip_grpsrc_t             ips;
10358         mblk_t                  *mp_tail = NULL;
10359         ill_walk_context_t      ctx;
10360         zoneid_t                zoneid;
10361         int                     i;
10362         slist_t                 *sl;
10363 
10364         /*
10365          * make a copy of the original message
10366          */
10367         mp2ctl = copymsg(mpctl);
10368         zoneid = Q_TO_CONN(q)->conn_zoneid;
10369 
10370         /* ipGroupSource table */
10371         optp = (struct opthdr *)&mpctl->b_rptr[
10372             sizeof (struct T_optmgmt_ack)];
10373         optp->level = MIB2_IP;
10374         optp->name = EXPER_IP_GROUP_SOURCES;
10375 
10376         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10377         ill = ILL_START_WALK_V4(&ctx, ipst);
10378         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10379                 /* Make sure the ill isn't going away. */
10380                 if (!ill_check_and_refhold(ill))
10381                         continue;
10382                 rw_exit(&ipst->ips_ill_g_lock);
10383                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10384                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10385                         sl = ilm->ilm_filter;
10386                         if (ilm->ilm_zoneid != zoneid &&
10387                             ilm->ilm_zoneid != ALL_ZONES)
10388                                 continue;
10389                         if (SLIST_IS_EMPTY(sl))
10390                                 continue;
10391 
10392                         /* Is there an ipif for ilm_ifaddr? */
10393                         for (ipif = ill->ill_ipif; ipif != NULL;
10394                             ipif = ipif->ipif_next) {
10395                                 if (!IPIF_IS_CONDEMNED(ipif) &&
10396                                     ipif->ipif_lcl_addr == ilm->ilm_ifaddr &&
10397                                     ilm->ilm_ifaddr != INADDR_ANY)
10398                                         break;
10399                         }
10400                         if (ipif != NULL) {
10401                                 ipif_get_name(ipif,
10402                                     ips.ipGroupSourceIfIndex.o_bytes,
10403                                     OCTET_LENGTH);
10404                         } else {
10405                                 ill_get_name(ill,
10406                                     ips.ipGroupSourceIfIndex.o_bytes,
10407                                     OCTET_LENGTH);
10408                         }
10409                         ips.ipGroupSourceIfIndex.o_length =
10410                             mi_strlen(ips.ipGroupSourceIfIndex.o_bytes);
10411 
10412                         ips.ipGroupSourceGroup = ilm->ilm_addr;
10413                         for (i = 0; i < sl->sl_numsrc; i++) {
10414                                 if (!IN6_IS_ADDR_V4MAPPED(&sl->sl_addr[i]))
10415                                         continue;
10416                                 IN6_V4MAPPED_TO_IPADDR(&sl->sl_addr[i],
10417                                     ips.ipGroupSourceAddress);
10418                                 if (snmp_append_data2(mpctl->b_cont, &mp_tail,
10419                                     (char *)&ips, (int)sizeof (ips)) == 0) {
10420                                         ip1dbg(("ip_snmp_get_mib2_ip_group_src:"
10421                                             " failed to allocate %u bytes\n",
10422                                             (uint_t)sizeof (ips)));
10423                                 }
10424                         }
10425                 }
10426                 rw_exit(&ill->ill_mcast_lock);
10427                 ill_refrele(ill);
10428                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10429         }
10430         rw_exit(&ipst->ips_ill_g_lock);
10431         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10432         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10433             (int)optp->level, (int)optp->name, (int)optp->len));
10434         qreply(q, mpctl);
10435         return (mp2ctl);
10436 }
10437 
10438 /* IPv6 multicast filtered sources. */
10439 static mblk_t *
10440 ip_snmp_get_mib2_ip6_group_src(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10441 {
10442         struct opthdr           *optp;
10443         mblk_t                  *mp2ctl;
10444         ill_t                   *ill;
10445         ilm_t                   *ilm;
10446         ipv6_grpsrc_t           ips6;
10447         mblk_t                  *mp_tail = NULL;
10448         ill_walk_context_t      ctx;
10449         zoneid_t                zoneid;
10450         int                     i;
10451         slist_t                 *sl;
10452 
10453         /*
10454          * make a copy of the original message
10455          */
10456         mp2ctl = copymsg(mpctl);
10457         zoneid = Q_TO_CONN(q)->conn_zoneid;
10458 
10459         /* ip6GroupMember table */
10460         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10461         optp->level = MIB2_IP6;
10462         optp->name = EXPER_IP6_GROUP_SOURCES;
10463 
10464         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10465         ill = ILL_START_WALK_V6(&ctx, ipst);
10466         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10467                 /* Make sure the ill isn't going away. */
10468                 if (!ill_check_and_refhold(ill))
10469                         continue;
10470                 rw_exit(&ipst->ips_ill_g_lock);
10471                 /*
10472                  * Normally we don't have any members on under IPMP interfaces.
10473                  * We report them as a debugging aid.
10474                  */
10475                 rw_enter(&ill->ill_mcast_lock, RW_READER);
10476                 ips6.ipv6GroupSourceIfIndex = ill->ill_phyint->phyint_ifindex;
10477                 for (ilm = ill->ill_ilm; ilm; ilm = ilm->ilm_next) {
10478                         sl = ilm->ilm_filter;
10479                         if (ilm->ilm_zoneid != zoneid &&
10480                             ilm->ilm_zoneid != ALL_ZONES)
10481                                 continue;
10482                         if (SLIST_IS_EMPTY(sl))
10483                                 continue;
10484                         ips6.ipv6GroupSourceGroup = ilm->ilm_v6addr;
10485                         for (i = 0; i < sl->sl_numsrc; i++) {
10486                                 ips6.ipv6GroupSourceAddress = sl->sl_addr[i];
10487                                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10488                                     (char *)&ips6, (int)sizeof (ips6))) {
10489                                         ip1dbg(("ip_snmp_get_mib2_ip6_"
10490                                             "group_src: failed to allocate "
10491                                             "%u bytes\n",
10492                                             (uint_t)sizeof (ips6)));
10493                                 }
10494                         }
10495                 }
10496                 rw_exit(&ill->ill_mcast_lock);
10497                 ill_refrele(ill);
10498                 rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10499         }
10500         rw_exit(&ipst->ips_ill_g_lock);
10501 
10502         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10503         ip3dbg(("ip_snmp_get: level %d, name %d, len %d\n",
10504             (int)optp->level, (int)optp->name, (int)optp->len));
10505         qreply(q, mpctl);
10506         return (mp2ctl);
10507 }
10508 
10509 /* Multicast routing virtual interface table. */
10510 static mblk_t *
10511 ip_snmp_get_mib2_virt_multi(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10512 {
10513         struct opthdr           *optp;
10514         mblk_t                  *mp2ctl;
10515 
10516         /*
10517          * make a copy of the original message
10518          */
10519         mp2ctl = copymsg(mpctl);
10520 
10521         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10522         optp->level = EXPER_DVMRP;
10523         optp->name = EXPER_DVMRP_VIF;
10524         if (!ip_mroute_vif(mpctl->b_cont, ipst)) {
10525                 ip0dbg(("ip_mroute_vif: failed\n"));
10526         }
10527         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10528         ip3dbg(("ip_snmp_get_mib2_virt_multi: level %d, name %d, len %d\n",
10529             (int)optp->level, (int)optp->name, (int)optp->len));
10530         qreply(q, mpctl);
10531         return (mp2ctl);
10532 }
10533 
10534 /* Multicast routing table. */
10535 static mblk_t *
10536 ip_snmp_get_mib2_multi_rtable(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10537 {
10538         struct opthdr           *optp;
10539         mblk_t                  *mp2ctl;
10540 
10541         /*
10542          * make a copy of the original message
10543          */
10544         mp2ctl = copymsg(mpctl);
10545 
10546         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10547         optp->level = EXPER_DVMRP;
10548         optp->name = EXPER_DVMRP_MRT;
10549         if (!ip_mroute_mrt(mpctl->b_cont, ipst)) {
10550                 ip0dbg(("ip_mroute_mrt: failed\n"));
10551         }
10552         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10553         ip3dbg(("ip_snmp_get_mib2_multi_rtable: level %d, name %d, len %d\n",
10554             (int)optp->level, (int)optp->name, (int)optp->len));
10555         qreply(q, mpctl);
10556         return (mp2ctl);
10557 }
10558 
10559 /*
10560  * Return ipRouteEntryTable, ipNetToMediaEntryTable, and ipRouteAttributeTable
10561  * in one IRE walk.
10562  */
10563 static mblk_t *
10564 ip_snmp_get_mib2_ip_route_media(queue_t *q, mblk_t *mpctl, int level,
10565     ip_stack_t *ipst)
10566 {
10567         struct opthdr   *optp;
10568         mblk_t          *mp2ctl;        /* Returned */
10569         mblk_t          *mp3ctl;        /* nettomedia */
10570         mblk_t          *mp4ctl;        /* routeattrs */
10571         iproutedata_t   ird;
10572         zoneid_t        zoneid;
10573 
10574         /*
10575          * make copies of the original message
10576          *      - mp2ctl is returned unchanged to the caller for its use
10577          *      - mpctl is sent upstream as ipRouteEntryTable
10578          *      - mp3ctl is sent upstream as ipNetToMediaEntryTable
10579          *      - mp4ctl is sent upstream as ipRouteAttributeTable
10580          */
10581         mp2ctl = copymsg(mpctl);
10582         mp3ctl = copymsg(mpctl);
10583         mp4ctl = copymsg(mpctl);
10584         if (mp3ctl == NULL || mp4ctl == NULL) {
10585                 freemsg(mp4ctl);
10586                 freemsg(mp3ctl);
10587                 freemsg(mp2ctl);
10588                 freemsg(mpctl);
10589                 return (NULL);
10590         }
10591 
10592         bzero(&ird, sizeof (ird));
10593 
10594         ird.ird_route.lp_head = mpctl->b_cont;
10595         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10596         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10597         /*
10598          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10599          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10600          * intended a temporary solution until a proper MIB API is provided
10601          * that provides complete filtering/caller-opt-in.
10602          */
10603         if (level == EXPER_IP_AND_ALL_IRES)
10604                 ird.ird_flags |= IRD_REPORT_ALL;
10605 
10606         zoneid = Q_TO_CONN(q)->conn_zoneid;
10607         ire_walk_v4(ip_snmp_get2_v4, &ird, zoneid, ipst);
10608 
10609         /* ipRouteEntryTable in mpctl */
10610         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10611         optp->level = MIB2_IP;
10612         optp->name = MIB2_IP_ROUTE;
10613         optp->len = msgdsize(ird.ird_route.lp_head);
10614         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10615             (int)optp->level, (int)optp->name, (int)optp->len));
10616         qreply(q, mpctl);
10617 
10618         /* ipNetToMediaEntryTable in mp3ctl */
10619         ncec_walk(NULL, ip_snmp_get2_v4_media, &ird, ipst);
10620 
10621         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10622         optp->level = MIB2_IP;
10623         optp->name = MIB2_IP_MEDIA;
10624         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10625         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10626             (int)optp->level, (int)optp->name, (int)optp->len));
10627         qreply(q, mp3ctl);
10628 
10629         /* ipRouteAttributeTable in mp4ctl */
10630         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10631         optp->level = MIB2_IP;
10632         optp->name = EXPER_IP_RTATTR;
10633         optp->len = msgdsize(ird.ird_attrs.lp_head);
10634         ip3dbg(("ip_snmp_get_mib2_ip_route_media: level %d, name %d, len %d\n",
10635             (int)optp->level, (int)optp->name, (int)optp->len));
10636         if (optp->len == 0)
10637                 freemsg(mp4ctl);
10638         else
10639                 qreply(q, mp4ctl);
10640 
10641         return (mp2ctl);
10642 }
10643 
10644 /*
10645  * Return ipv6RouteEntryTable and ipv6RouteAttributeTable in one IRE walk, and
10646  * ipv6NetToMediaEntryTable in an NDP walk.
10647  */
10648 static mblk_t *
10649 ip_snmp_get_mib2_ip6_route_media(queue_t *q, mblk_t *mpctl, int level,
10650     ip_stack_t *ipst)
10651 {
10652         struct opthdr   *optp;
10653         mblk_t          *mp2ctl;        /* Returned */
10654         mblk_t          *mp3ctl;        /* nettomedia */
10655         mblk_t          *mp4ctl;        /* routeattrs */
10656         iproutedata_t   ird;
10657         zoneid_t        zoneid;
10658 
10659         /*
10660          * make copies of the original message
10661          *      - mp2ctl is returned unchanged to the caller for its use
10662          *      - mpctl is sent upstream as ipv6RouteEntryTable
10663          *      - mp3ctl is sent upstream as ipv6NetToMediaEntryTable
10664          *      - mp4ctl is sent upstream as ipv6RouteAttributeTable
10665          */
10666         mp2ctl = copymsg(mpctl);
10667         mp3ctl = copymsg(mpctl);
10668         mp4ctl = copymsg(mpctl);
10669         if (mp3ctl == NULL || mp4ctl == NULL) {
10670                 freemsg(mp4ctl);
10671                 freemsg(mp3ctl);
10672                 freemsg(mp2ctl);
10673                 freemsg(mpctl);
10674                 return (NULL);
10675         }
10676 
10677         bzero(&ird, sizeof (ird));
10678 
10679         ird.ird_route.lp_head = mpctl->b_cont;
10680         ird.ird_netmedia.lp_head = mp3ctl->b_cont;
10681         ird.ird_attrs.lp_head = mp4ctl->b_cont;
10682         /*
10683          * If the level has been set the special EXPER_IP_AND_ALL_IRES value,
10684          * then also include ire_testhidden IREs and IRE_IF_CLONE.  This is
10685          * intended a temporary solution until a proper MIB API is provided
10686          * that provides complete filtering/caller-opt-in.
10687          */
10688         if (level == EXPER_IP_AND_ALL_IRES)
10689                 ird.ird_flags |= IRD_REPORT_ALL;
10690 
10691         zoneid = Q_TO_CONN(q)->conn_zoneid;
10692         ire_walk_v6(ip_snmp_get2_v6_route, &ird, zoneid, ipst);
10693 
10694         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10695         optp->level = MIB2_IP6;
10696         optp->name = MIB2_IP6_ROUTE;
10697         optp->len = msgdsize(ird.ird_route.lp_head);
10698         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10699             (int)optp->level, (int)optp->name, (int)optp->len));
10700         qreply(q, mpctl);
10701 
10702         /* ipv6NetToMediaEntryTable in mp3ctl */
10703         ncec_walk(NULL, ip_snmp_get2_v6_media, &ird, ipst);
10704 
10705         optp = (struct opthdr *)&mp3ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10706         optp->level = MIB2_IP6;
10707         optp->name = MIB2_IP6_MEDIA;
10708         optp->len = msgdsize(ird.ird_netmedia.lp_head);
10709         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10710             (int)optp->level, (int)optp->name, (int)optp->len));
10711         qreply(q, mp3ctl);
10712 
10713         /* ipv6RouteAttributeTable in mp4ctl */
10714         optp = (struct opthdr *)&mp4ctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10715         optp->level = MIB2_IP6;
10716         optp->name = EXPER_IP_RTATTR;
10717         optp->len = msgdsize(ird.ird_attrs.lp_head);
10718         ip3dbg(("ip_snmp_get_mib2_ip6_route_media: level %d, name %d, len %d\n",
10719             (int)optp->level, (int)optp->name, (int)optp->len));
10720         if (optp->len == 0)
10721                 freemsg(mp4ctl);
10722         else
10723                 qreply(q, mp4ctl);
10724 
10725         return (mp2ctl);
10726 }
10727 
10728 /*
10729  * IPv6 mib: One per ill
10730  */
10731 static mblk_t *
10732 ip_snmp_get_mib2_ip6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst,
10733     boolean_t legacy_req)
10734 {
10735         struct opthdr           *optp;
10736         mblk_t                  *mp2ctl;
10737         ill_t                   *ill;
10738         ill_walk_context_t      ctx;
10739         mblk_t                  *mp_tail = NULL;
10740         mib2_ipv6AddrEntry_t    mae6;
10741         mib2_ipIfStatsEntry_t   *ise;
10742         size_t                  ise_size, iae_size;
10743 
10744         /*
10745          * Make a copy of the original message
10746          */
10747         mp2ctl = copymsg(mpctl);
10748 
10749         /* fixed length IPv6 structure ... */
10750 
10751         if (legacy_req) {
10752                 ise_size = LEGACY_MIB_SIZE(&ipst->ips_ip6_mib,
10753                     mib2_ipIfStatsEntry_t);
10754                 iae_size = LEGACY_MIB_SIZE(&mae6, mib2_ipv6AddrEntry_t);
10755         } else {
10756                 ise_size = sizeof (mib2_ipIfStatsEntry_t);
10757                 iae_size = sizeof (mib2_ipv6AddrEntry_t);
10758         }
10759 
10760         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10761         optp->level = MIB2_IP6;
10762         optp->name = 0;
10763         /* Include "unknown interface" ip6_mib */
10764         ipst->ips_ip6_mib.ipIfStatsIPVersion = MIB2_INETADDRESSTYPE_ipv6;
10765         ipst->ips_ip6_mib.ipIfStatsIfIndex =
10766             MIB2_UNKNOWN_INTERFACE; /* Flag to netstat */
10767         SET_MIB(ipst->ips_ip6_mib.ipIfStatsForwarding,
10768             ipst->ips_ipv6_forwarding ? 1 : 2);
10769         SET_MIB(ipst->ips_ip6_mib.ipIfStatsDefaultHopLimit,
10770             ipst->ips_ipv6_def_hops);
10771         SET_MIB(ipst->ips_ip6_mib.ipIfStatsEntrySize,
10772             sizeof (mib2_ipIfStatsEntry_t));
10773         SET_MIB(ipst->ips_ip6_mib.ipIfStatsAddrEntrySize,
10774             sizeof (mib2_ipv6AddrEntry_t));
10775         SET_MIB(ipst->ips_ip6_mib.ipIfStatsRouteEntrySize,
10776             sizeof (mib2_ipv6RouteEntry_t));
10777         SET_MIB(ipst->ips_ip6_mib.ipIfStatsNetToMediaEntrySize,
10778             sizeof (mib2_ipv6NetToMediaEntry_t));
10779         SET_MIB(ipst->ips_ip6_mib.ipIfStatsMemberEntrySize,
10780             sizeof (ipv6_member_t));
10781         SET_MIB(ipst->ips_ip6_mib.ipIfStatsGroupSourceEntrySize,
10782             sizeof (ipv6_grpsrc_t));
10783 
10784         /*
10785          * Synchronize 64- and 32-bit counters
10786          */
10787         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInReceives,
10788             ipIfStatsHCInReceives);
10789         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInDelivers,
10790             ipIfStatsHCInDelivers);
10791         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutRequests,
10792             ipIfStatsHCOutRequests);
10793         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutForwDatagrams,
10794             ipIfStatsHCOutForwDatagrams);
10795         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsOutMcastPkts,
10796             ipIfStatsHCOutMcastPkts);
10797         SYNC32_MIB(&ipst->ips_ip6_mib, ipIfStatsInMcastPkts,
10798             ipIfStatsHCInMcastPkts);
10799 
10800         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10801             (char *)&ipst->ips_ip6_mib, (int)ise_size)) {
10802                 ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate %u bytes\n",
10803                     (uint_t)ise_size));
10804         } else if (legacy_req) {
10805                 /* Adjust the EntrySize fields for legacy requests. */
10806                 ise =
10807                     (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr - (int)ise_size);
10808                 SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10809                 SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10810         }
10811 
10812         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10813         ill = ILL_START_WALK_V6(&ctx, ipst);
10814         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10815                 ill->ill_ip_mib->ipIfStatsIfIndex =
10816                     ill->ill_phyint->phyint_ifindex;
10817                 SET_MIB(ill->ill_ip_mib->ipIfStatsForwarding,
10818                     ipst->ips_ipv6_forwarding ? 1 : 2);
10819                 SET_MIB(ill->ill_ip_mib->ipIfStatsDefaultHopLimit,
10820                     ill->ill_max_hops);
10821 
10822                 /*
10823                  * Synchronize 64- and 32-bit counters
10824                  */
10825                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInReceives,
10826                     ipIfStatsHCInReceives);
10827                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInDelivers,
10828                     ipIfStatsHCInDelivers);
10829                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutRequests,
10830                     ipIfStatsHCOutRequests);
10831                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutForwDatagrams,
10832                     ipIfStatsHCOutForwDatagrams);
10833                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsOutMcastPkts,
10834                     ipIfStatsHCOutMcastPkts);
10835                 SYNC32_MIB(ill->ill_ip_mib, ipIfStatsInMcastPkts,
10836                     ipIfStatsHCInMcastPkts);
10837 
10838                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10839                     (char *)ill->ill_ip_mib, (int)ise_size)) {
10840                         ip1dbg(("ip_snmp_get_mib2_ip6: failed to allocate "
10841                         "%u bytes\n", (uint_t)ise_size));
10842                 } else if (legacy_req) {
10843                         /* Adjust the EntrySize fields for legacy requests. */
10844                         ise = (mib2_ipIfStatsEntry_t *)(mp_tail->b_wptr -
10845                             (int)ise_size);
10846                         SET_MIB(ise->ipIfStatsEntrySize, ise_size);
10847                         SET_MIB(ise->ipIfStatsAddrEntrySize, iae_size);
10848                 }
10849         }
10850         rw_exit(&ipst->ips_ill_g_lock);
10851 
10852         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10853         ip3dbg(("ip_snmp_get_mib2_ip6: level %d, name %d, len %d\n",
10854             (int)optp->level, (int)optp->name, (int)optp->len));
10855         qreply(q, mpctl);
10856         return (mp2ctl);
10857 }
10858 
10859 /*
10860  * ICMPv6 mib: One per ill
10861  */
10862 static mblk_t *
10863 ip_snmp_get_mib2_icmp6(queue_t *q, mblk_t *mpctl, ip_stack_t *ipst)
10864 {
10865         struct opthdr           *optp;
10866         mblk_t                  *mp2ctl;
10867         ill_t                   *ill;
10868         ill_walk_context_t      ctx;
10869         mblk_t                  *mp_tail = NULL;
10870         /*
10871          * Make a copy of the original message
10872          */
10873         mp2ctl = copymsg(mpctl);
10874 
10875         /* fixed length ICMPv6 structure ... */
10876 
10877         optp = (struct opthdr *)&mpctl->b_rptr[sizeof (struct T_optmgmt_ack)];
10878         optp->level = MIB2_ICMP6;
10879         optp->name = 0;
10880         /* Include "unknown interface" icmp6_mib */
10881         ipst->ips_icmp6_mib.ipv6IfIcmpIfIndex =
10882             MIB2_UNKNOWN_INTERFACE; /* netstat flag */
10883         ipst->ips_icmp6_mib.ipv6IfIcmpEntrySize =
10884             sizeof (mib2_ipv6IfIcmpEntry_t);
10885         if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10886             (char *)&ipst->ips_icmp6_mib,
10887             (int)sizeof (ipst->ips_icmp6_mib))) {
10888                 ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate %u bytes\n",
10889                     (uint_t)sizeof (ipst->ips_icmp6_mib)));
10890         }
10891 
10892         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
10893         ill = ILL_START_WALK_V6(&ctx, ipst);
10894         for (; ill != NULL; ill = ill_next(&ctx, ill)) {
10895                 ill->ill_icmp6_mib->ipv6IfIcmpIfIndex =
10896                     ill->ill_phyint->phyint_ifindex;
10897                 if (!snmp_append_data2(mpctl->b_cont, &mp_tail,
10898                     (char *)ill->ill_icmp6_mib,
10899                     (int)sizeof (*ill->ill_icmp6_mib))) {
10900                         ip1dbg(("ip_snmp_get_mib2_icmp6: failed to allocate "
10901                             "%u bytes\n",
10902                             (uint_t)sizeof (*ill->ill_icmp6_mib)));
10903                 }
10904         }
10905         rw_exit(&ipst->ips_ill_g_lock);
10906 
10907         optp->len = (t_uscalar_t)msgdsize(mpctl->b_cont);
10908         ip3dbg(("ip_snmp_get_mib2_icmp6: level %d, name %d, len %d\n",
10909             (int)optp->level, (int)optp->name, (int)optp->len));
10910         qreply(q, mpctl);
10911         return (mp2ctl);
10912 }
10913 
10914 /*
10915  * ire_walk routine to create both ipRouteEntryTable and
10916  * ipRouteAttributeTable in one IRE walk
10917  */
10918 static void
10919 ip_snmp_get2_v4(ire_t *ire, iproutedata_t *ird)
10920 {
10921         ill_t                           *ill;
10922         mib2_ipRouteEntry_t             *re;
10923         mib2_ipAttributeEntry_t         iaes;
10924         tsol_ire_gw_secattr_t           *attrp;
10925         tsol_gc_t                       *gc = NULL;
10926         tsol_gcgrp_t                    *gcgrp = NULL;
10927         ip_stack_t                      *ipst = ire->ire_ipst;
10928 
10929         ASSERT(ire->ire_ipversion == IPV4_VERSION);
10930 
10931         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
10932                 if (ire->ire_testhidden)
10933                         return;
10934                 if (ire->ire_type & IRE_IF_CLONE)
10935                         return;
10936         }
10937 
10938         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
10939                 return;
10940 
10941         if ((attrp = ire->ire_gw_secattr) != NULL) {
10942                 mutex_enter(&attrp->igsa_lock);
10943                 if ((gc = attrp->igsa_gc) != NULL) {
10944                         gcgrp = gc->gc_grp;
10945                         ASSERT(gcgrp != NULL);
10946                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
10947                 }
10948                 mutex_exit(&attrp->igsa_lock);
10949         }
10950         /*
10951          * Return all IRE types for route table... let caller pick and choose
10952          */
10953         re->ipRouteDest = ire->ire_addr;
10954         ill = ire->ire_ill;
10955         re->ipRouteIfIndex.o_length = 0;
10956         if (ill != NULL) {
10957                 ill_get_name(ill, re->ipRouteIfIndex.o_bytes, OCTET_LENGTH);
10958                 re->ipRouteIfIndex.o_length =
10959                     mi_strlen(re->ipRouteIfIndex.o_bytes);
10960         }
10961         re->ipRouteMetric1 = -1;
10962         re->ipRouteMetric2 = -1;
10963         re->ipRouteMetric3 = -1;
10964         re->ipRouteMetric4 = -1;
10965 
10966         re->ipRouteNextHop = ire->ire_gateway_addr;
10967         /* indirect(4), direct(3), or invalid(2) */
10968         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
10969                 re->ipRouteType = 2;
10970         else if (ire->ire_type & IRE_ONLINK)
10971                 re->ipRouteType = 3;
10972         else
10973                 re->ipRouteType = 4;
10974 
10975         re->ipRouteProto = -1;
10976         re->ipRouteAge = gethrestime_sec() - ire->ire_create_time;
10977         re->ipRouteMask = ire->ire_mask;
10978         re->ipRouteMetric5 = -1;
10979         re->ipRouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
10980         if (ire->ire_ill != NULL && re->ipRouteInfo.re_max_frag == 0)
10981                 re->ipRouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
10982 
10983         re->ipRouteInfo.re_frag_flag = 0;
10984         re->ipRouteInfo.re_rtt               = 0;
10985         re->ipRouteInfo.re_src_addr  = 0;
10986         re->ipRouteInfo.re_ref               = ire->ire_refcnt;
10987         re->ipRouteInfo.re_obpkt     = ire->ire_ob_pkt_count;
10988         re->ipRouteInfo.re_ibpkt     = ire->ire_ib_pkt_count;
10989         re->ipRouteInfo.re_flags     = ire->ire_flags;
10990 
10991         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
10992         if (ire->ire_type & IRE_INTERFACE) {
10993                 ire_t *child;
10994 
10995                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
10996                 child = ire->ire_dep_children;
10997                 while (child != NULL) {
10998                         re->ipRouteInfo.re_obpkt += child->ire_ob_pkt_count;
10999                         re->ipRouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11000                         child = child->ire_dep_sib_next;
11001                 }
11002                 rw_exit(&ipst->ips_ire_dep_lock);
11003         }
11004 
11005         if (ire->ire_flags & RTF_DYNAMIC) {
11006                 re->ipRouteInfo.re_ire_type  = IRE_HOST_REDIRECT;
11007         } else {
11008                 re->ipRouteInfo.re_ire_type  = ire->ire_type;
11009         }
11010 
11011         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11012             (char *)re, (int)sizeof (*re))) {
11013                 ip1dbg(("ip_snmp_get2_v4: failed to allocate %u bytes\n",
11014                     (uint_t)sizeof (*re)));
11015         }
11016 
11017         if (gc != NULL) {
11018                 iaes.iae_routeidx = ird->ird_idx;
11019                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11020                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11021 
11022                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11023                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11024                         ip1dbg(("ip_snmp_get2_v4: failed to allocate %u "
11025                             "bytes\n", (uint_t)sizeof (iaes)));
11026                 }
11027         }
11028 
11029         /* bump route index for next pass */
11030         ird->ird_idx++;
11031 
11032         kmem_free(re, sizeof (*re));
11033         if (gcgrp != NULL)
11034                 rw_exit(&gcgrp->gcgrp_rwlock);
11035 }
11036 
11037 /*
11038  * ire_walk routine to create ipv6RouteEntryTable and ipRouteEntryTable.
11039  */
11040 static void
11041 ip_snmp_get2_v6_route(ire_t *ire, iproutedata_t *ird)
11042 {
11043         ill_t                           *ill;
11044         mib2_ipv6RouteEntry_t           *re;
11045         mib2_ipAttributeEntry_t         iaes;
11046         tsol_ire_gw_secattr_t           *attrp;
11047         tsol_gc_t                       *gc = NULL;
11048         tsol_gcgrp_t                    *gcgrp = NULL;
11049         ip_stack_t                      *ipst = ire->ire_ipst;
11050 
11051         ASSERT(ire->ire_ipversion == IPV6_VERSION);
11052 
11053         if (!(ird->ird_flags & IRD_REPORT_ALL)) {
11054                 if (ire->ire_testhidden)
11055                         return;
11056                 if (ire->ire_type & IRE_IF_CLONE)
11057                         return;
11058         }
11059 
11060         if ((re = kmem_zalloc(sizeof (*re), KM_NOSLEEP)) == NULL)
11061                 return;
11062 
11063         if ((attrp = ire->ire_gw_secattr) != NULL) {
11064                 mutex_enter(&attrp->igsa_lock);
11065                 if ((gc = attrp->igsa_gc) != NULL) {
11066                         gcgrp = gc->gc_grp;
11067                         ASSERT(gcgrp != NULL);
11068                         rw_enter(&gcgrp->gcgrp_rwlock, RW_READER);
11069                 }
11070                 mutex_exit(&attrp->igsa_lock);
11071         }
11072         /*
11073          * Return all IRE types for route table... let caller pick and choose
11074          */
11075         re->ipv6RouteDest = ire->ire_addr_v6;
11076         re->ipv6RoutePfxLength = ip_mask_to_plen_v6(&ire->ire_mask_v6);
11077         re->ipv6RouteIndex = 0;      /* Unique when multiple with same dest/plen */
11078         re->ipv6RouteIfIndex.o_length = 0;
11079         ill = ire->ire_ill;
11080         if (ill != NULL) {
11081                 ill_get_name(ill, re->ipv6RouteIfIndex.o_bytes, OCTET_LENGTH);
11082                 re->ipv6RouteIfIndex.o_length =
11083                     mi_strlen(re->ipv6RouteIfIndex.o_bytes);
11084         }
11085 
11086         ASSERT(!(ire->ire_type & IRE_BROADCAST));
11087 
11088         mutex_enter(&ire->ire_lock);
11089         re->ipv6RouteNextHop = ire->ire_gateway_addr_v6;
11090         mutex_exit(&ire->ire_lock);
11091 
11092         /* remote(4), local(3), or discard(2) */
11093         if (ire->ire_flags & (RTF_REJECT | RTF_BLACKHOLE))
11094                 re->ipv6RouteType = 2;
11095         else if (ire->ire_type & IRE_ONLINK)
11096                 re->ipv6RouteType = 3;
11097         else
11098                 re->ipv6RouteType = 4;
11099 
11100         re->ipv6RouteProtocol        = -1;
11101         re->ipv6RoutePolicy  = 0;
11102         re->ipv6RouteAge     = gethrestime_sec() - ire->ire_create_time;
11103         re->ipv6RouteNextHopRDI      = 0;
11104         re->ipv6RouteWeight  = 0;
11105         re->ipv6RouteMetric  = 0;
11106         re->ipv6RouteInfo.re_max_frag = ire->ire_metrics.iulp_mtu;
11107         if (ire->ire_ill != NULL && re->ipv6RouteInfo.re_max_frag == 0)
11108                 re->ipv6RouteInfo.re_max_frag = ire->ire_ill->ill_mtu;
11109 
11110         re->ipv6RouteInfo.re_frag_flag       = 0;
11111         re->ipv6RouteInfo.re_rtt     = 0;
11112         re->ipv6RouteInfo.re_src_addr        = ipv6_all_zeros;
11113         re->ipv6RouteInfo.re_obpkt   = ire->ire_ob_pkt_count;
11114         re->ipv6RouteInfo.re_ibpkt   = ire->ire_ib_pkt_count;
11115         re->ipv6RouteInfo.re_ref     = ire->ire_refcnt;
11116         re->ipv6RouteInfo.re_flags   = ire->ire_flags;
11117 
11118         /* Add the IRE_IF_CLONE's counters to their parent IRE_INTERFACE */
11119         if (ire->ire_type & IRE_INTERFACE) {
11120                 ire_t *child;
11121 
11122                 rw_enter(&ipst->ips_ire_dep_lock, RW_READER);
11123                 child = ire->ire_dep_children;
11124                 while (child != NULL) {
11125                         re->ipv6RouteInfo.re_obpkt += child->ire_ob_pkt_count;
11126                         re->ipv6RouteInfo.re_ibpkt += child->ire_ib_pkt_count;
11127                         child = child->ire_dep_sib_next;
11128                 }
11129                 rw_exit(&ipst->ips_ire_dep_lock);
11130         }
11131         if (ire->ire_flags & RTF_DYNAMIC) {
11132                 re->ipv6RouteInfo.re_ire_type        = IRE_HOST_REDIRECT;
11133         } else {
11134                 re->ipv6RouteInfo.re_ire_type        = ire->ire_type;
11135         }
11136 
11137         if (!snmp_append_data2(ird->ird_route.lp_head, &ird->ird_route.lp_tail,
11138             (char *)re, (int)sizeof (*re))) {
11139                 ip1dbg(("ip_snmp_get2_v6: failed to allocate %u bytes\n",
11140                     (uint_t)sizeof (*re)));
11141         }
11142 
11143         if (gc != NULL) {
11144                 iaes.iae_routeidx = ird->ird_idx;
11145                 iaes.iae_doi = gc->gc_db->gcdb_doi;
11146                 iaes.iae_slrange = gc->gc_db->gcdb_slrange;
11147 
11148                 if (!snmp_append_data2(ird->ird_attrs.lp_head,
11149                     &ird->ird_attrs.lp_tail, (char *)&iaes, sizeof (iaes))) {
11150                         ip1dbg(("ip_snmp_get2_v6: failed to allocate %u "
11151                             "bytes\n", (uint_t)sizeof (iaes)));
11152                 }
11153         }
11154 
11155         /* bump route index for next pass */
11156         ird->ird_idx++;
11157 
11158         kmem_free(re, sizeof (*re));
11159         if (gcgrp != NULL)
11160                 rw_exit(&gcgrp->gcgrp_rwlock);
11161 }
11162 
11163 /*
11164  * ncec_walk routine to create ipv6NetToMediaEntryTable
11165  */
11166 static void
11167 ip_snmp_get2_v6_media(ncec_t *ncec, void *ptr)
11168 {
11169         iproutedata_t *ird              = ptr;
11170         ill_t                           *ill;
11171         mib2_ipv6NetToMediaEntry_t      ntme;
11172 
11173         ill = ncec->ncec_ill;
11174         /* skip arpce entries, and loopback ncec entries */
11175         if (ill->ill_isv6 == B_FALSE || ill->ill_net_type == IRE_LOOPBACK)
11176                 return;
11177         /*
11178          * Neighbor cache entry attached to IRE with on-link
11179          * destination.
11180          * We report all IPMP groups on ncec_ill which is normally the upper.
11181          */
11182         ntme.ipv6NetToMediaIfIndex = ill->ill_phyint->phyint_ifindex;
11183         ntme.ipv6NetToMediaNetAddress = ncec->ncec_addr;
11184         ntme.ipv6NetToMediaPhysAddress.o_length = ill->ill_phys_addr_length;
11185         if (ncec->ncec_lladdr != NULL) {
11186                 bcopy(ncec->ncec_lladdr, ntme.ipv6NetToMediaPhysAddress.o_bytes,
11187                     ntme.ipv6NetToMediaPhysAddress.o_length);
11188         }
11189         /*
11190          * Note: Returns ND_* states. Should be:
11191          * reachable(1), stale(2), delay(3), probe(4),
11192          * invalid(5), unknown(6)
11193          */
11194         ntme.ipv6NetToMediaState = ncec->ncec_state;
11195         ntme.ipv6NetToMediaLastUpdated = 0;
11196 
11197         /* other(1), dynamic(2), static(3), local(4) */
11198         if (NCE_MYADDR(ncec)) {
11199                 ntme.ipv6NetToMediaType = 4;
11200         } else if (ncec->ncec_flags & NCE_F_PUBLISH) {
11201                 ntme.ipv6NetToMediaType = 1; /* proxy */
11202         } else if (ncec->ncec_flags & NCE_F_STATIC) {
11203                 ntme.ipv6NetToMediaType = 3;
11204         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST)) {
11205                 ntme.ipv6NetToMediaType = 1;
11206         } else {
11207                 ntme.ipv6NetToMediaType = 2;
11208         }
11209 
11210         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11211             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11212                 ip1dbg(("ip_snmp_get2_v6_media: failed to allocate %u bytes\n",
11213                     (uint_t)sizeof (ntme)));
11214         }
11215 }
11216 
11217 int
11218 nce2ace(ncec_t *ncec)
11219 {
11220         int flags = 0;
11221 
11222         if (NCE_ISREACHABLE(ncec))
11223                 flags |= ACE_F_RESOLVED;
11224         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11225                 flags |= ACE_F_AUTHORITY;
11226         if (ncec->ncec_flags & NCE_F_PUBLISH)
11227                 flags |= ACE_F_PUBLISH;
11228         if ((ncec->ncec_flags & NCE_F_NONUD) != 0)
11229                 flags |= ACE_F_PERMANENT;
11230         if (NCE_MYADDR(ncec))
11231                 flags |= (ACE_F_MYADDR | ACE_F_AUTHORITY);
11232         if (ncec->ncec_flags & NCE_F_UNVERIFIED)
11233                 flags |= ACE_F_UNVERIFIED;
11234         if (ncec->ncec_flags & NCE_F_AUTHORITY)
11235                 flags |= ACE_F_AUTHORITY;
11236         if (ncec->ncec_flags & NCE_F_DELAYED)
11237                 flags |= ACE_F_DELAYED;
11238         return (flags);
11239 }
11240 
11241 /*
11242  * ncec_walk routine to create ipNetToMediaEntryTable
11243  */
11244 static void
11245 ip_snmp_get2_v4_media(ncec_t *ncec, void *ptr)
11246 {
11247         iproutedata_t *ird              = ptr;
11248         ill_t                           *ill;
11249         mib2_ipNetToMediaEntry_t        ntme;
11250         const char                      *name = "unknown";
11251         ipaddr_t                        ncec_addr;
11252 
11253         ill = ncec->ncec_ill;
11254         if (ill->ill_isv6 || (ncec->ncec_flags & NCE_F_BCAST) ||
11255             ill->ill_net_type == IRE_LOOPBACK)
11256                 return;
11257 
11258         /* We report all IPMP groups on ncec_ill which is normally the upper. */
11259         name = ill->ill_name;
11260         /* Based on RFC 4293: other(1), inval(2), dyn(3), stat(4) */
11261         if (NCE_MYADDR(ncec)) {
11262                 ntme.ipNetToMediaType = 4;
11263         } else if (ncec->ncec_flags & (NCE_F_MCAST|NCE_F_BCAST|NCE_F_PUBLISH)) {
11264                 ntme.ipNetToMediaType = 1;
11265         } else {
11266                 ntme.ipNetToMediaType = 3;
11267         }
11268         ntme.ipNetToMediaIfIndex.o_length = MIN(OCTET_LENGTH, strlen(name));
11269         bcopy(name, ntme.ipNetToMediaIfIndex.o_bytes,
11270             ntme.ipNetToMediaIfIndex.o_length);
11271 
11272         IN6_V4MAPPED_TO_IPADDR(&ncec->ncec_addr, ncec_addr);
11273         bcopy(&ncec_addr, &ntme.ipNetToMediaNetAddress, sizeof (ncec_addr));
11274 
11275         ntme.ipNetToMediaInfo.ntm_mask.o_length = sizeof (ipaddr_t);
11276         ncec_addr = INADDR_BROADCAST;
11277         bcopy(&ncec_addr, ntme.ipNetToMediaInfo.ntm_mask.o_bytes,
11278             sizeof (ncec_addr));
11279         /*
11280          * map all the flags to the ACE counterpart.
11281          */
11282         ntme.ipNetToMediaInfo.ntm_flags = nce2ace(ncec);
11283 
11284         ntme.ipNetToMediaPhysAddress.o_length =
11285             MIN(OCTET_LENGTH, ill->ill_phys_addr_length);
11286 
11287         if (!NCE_ISREACHABLE(ncec))
11288                 ntme.ipNetToMediaPhysAddress.o_length = 0;
11289         else {
11290                 if (ncec->ncec_lladdr != NULL) {
11291                         bcopy(ncec->ncec_lladdr,
11292                             ntme.ipNetToMediaPhysAddress.o_bytes,
11293                             ntme.ipNetToMediaPhysAddress.o_length);
11294                 }
11295         }
11296 
11297         if (!snmp_append_data2(ird->ird_netmedia.lp_head,
11298             &ird->ird_netmedia.lp_tail, (char *)&ntme, sizeof (ntme))) {
11299                 ip1dbg(("ip_snmp_get2_v4_media: failed to allocate %u bytes\n",
11300                     (uint_t)sizeof (ntme)));
11301         }
11302 }
11303 
11304 /*
11305  * return (0) if invalid set request, 1 otherwise, including non-tcp requests
11306  */
11307 /* ARGSUSED */
11308 int
11309 ip_snmp_set(queue_t *q, int level, int name, uchar_t *ptr, int len)
11310 {
11311         switch (level) {
11312         case MIB2_IP:
11313         case MIB2_ICMP:
11314                 switch (name) {
11315                 default:
11316                         break;
11317                 }
11318                 return (1);
11319         default:
11320                 return (1);
11321         }
11322 }
11323 
11324 /*
11325  * When there exists both a 64- and 32-bit counter of a particular type
11326  * (i.e., InReceives), only the 64-bit counters are added.
11327  */
11328 void
11329 ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *o1, mib2_ipIfStatsEntry_t *o2)
11330 {
11331         UPDATE_MIB(o1, ipIfStatsInHdrErrors, o2->ipIfStatsInHdrErrors);
11332         UPDATE_MIB(o1, ipIfStatsInTooBigErrors, o2->ipIfStatsInTooBigErrors);
11333         UPDATE_MIB(o1, ipIfStatsInNoRoutes, o2->ipIfStatsInNoRoutes);
11334         UPDATE_MIB(o1, ipIfStatsInAddrErrors, o2->ipIfStatsInAddrErrors);
11335         UPDATE_MIB(o1, ipIfStatsInUnknownProtos, o2->ipIfStatsInUnknownProtos);
11336         UPDATE_MIB(o1, ipIfStatsInTruncatedPkts, o2->ipIfStatsInTruncatedPkts);
11337         UPDATE_MIB(o1, ipIfStatsInDiscards, o2->ipIfStatsInDiscards);
11338         UPDATE_MIB(o1, ipIfStatsOutDiscards, o2->ipIfStatsOutDiscards);
11339         UPDATE_MIB(o1, ipIfStatsOutFragOKs, o2->ipIfStatsOutFragOKs);
11340         UPDATE_MIB(o1, ipIfStatsOutFragFails, o2->ipIfStatsOutFragFails);
11341         UPDATE_MIB(o1, ipIfStatsOutFragCreates, o2->ipIfStatsOutFragCreates);
11342         UPDATE_MIB(o1, ipIfStatsReasmReqds, o2->ipIfStatsReasmReqds);
11343         UPDATE_MIB(o1, ipIfStatsReasmOKs, o2->ipIfStatsReasmOKs);
11344         UPDATE_MIB(o1, ipIfStatsReasmFails, o2->ipIfStatsReasmFails);
11345         UPDATE_MIB(o1, ipIfStatsOutNoRoutes, o2->ipIfStatsOutNoRoutes);
11346         UPDATE_MIB(o1, ipIfStatsReasmDuplicates, o2->ipIfStatsReasmDuplicates);
11347         UPDATE_MIB(o1, ipIfStatsReasmPartDups, o2->ipIfStatsReasmPartDups);
11348         UPDATE_MIB(o1, ipIfStatsForwProhibits, o2->ipIfStatsForwProhibits);
11349         UPDATE_MIB(o1, udpInCksumErrs, o2->udpInCksumErrs);
11350         UPDATE_MIB(o1, udpInOverflows, o2->udpInOverflows);
11351         UPDATE_MIB(o1, rawipInOverflows, o2->rawipInOverflows);
11352         UPDATE_MIB(o1, ipIfStatsInWrongIPVersion,
11353             o2->ipIfStatsInWrongIPVersion);
11354         UPDATE_MIB(o1, ipIfStatsOutWrongIPVersion,
11355             o2->ipIfStatsInWrongIPVersion);
11356         UPDATE_MIB(o1, ipIfStatsOutSwitchIPVersion,
11357             o2->ipIfStatsOutSwitchIPVersion);
11358         UPDATE_MIB(o1, ipIfStatsHCInReceives, o2->ipIfStatsHCInReceives);
11359         UPDATE_MIB(o1, ipIfStatsHCInOctets, o2->ipIfStatsHCInOctets);
11360         UPDATE_MIB(o1, ipIfStatsHCInForwDatagrams,
11361             o2->ipIfStatsHCInForwDatagrams);
11362         UPDATE_MIB(o1, ipIfStatsHCInDelivers, o2->ipIfStatsHCInDelivers);
11363         UPDATE_MIB(o1, ipIfStatsHCOutRequests, o2->ipIfStatsHCOutRequests);
11364         UPDATE_MIB(o1, ipIfStatsHCOutForwDatagrams,
11365             o2->ipIfStatsHCOutForwDatagrams);
11366         UPDATE_MIB(o1, ipIfStatsOutFragReqds, o2->ipIfStatsOutFragReqds);
11367         UPDATE_MIB(o1, ipIfStatsHCOutTransmits, o2->ipIfStatsHCOutTransmits);
11368         UPDATE_MIB(o1, ipIfStatsHCOutOctets, o2->ipIfStatsHCOutOctets);
11369         UPDATE_MIB(o1, ipIfStatsHCInMcastPkts, o2->ipIfStatsHCInMcastPkts);
11370         UPDATE_MIB(o1, ipIfStatsHCInMcastOctets, o2->ipIfStatsHCInMcastOctets);
11371         UPDATE_MIB(o1, ipIfStatsHCOutMcastPkts, o2->ipIfStatsHCOutMcastPkts);
11372         UPDATE_MIB(o1, ipIfStatsHCOutMcastOctets,
11373             o2->ipIfStatsHCOutMcastOctets);
11374         UPDATE_MIB(o1, ipIfStatsHCInBcastPkts, o2->ipIfStatsHCInBcastPkts);
11375         UPDATE_MIB(o1, ipIfStatsHCOutBcastPkts, o2->ipIfStatsHCOutBcastPkts);
11376         UPDATE_MIB(o1, ipsecInSucceeded, o2->ipsecInSucceeded);
11377         UPDATE_MIB(o1, ipsecInFailed, o2->ipsecInFailed);
11378         UPDATE_MIB(o1, ipInCksumErrs, o2->ipInCksumErrs);
11379         UPDATE_MIB(o1, tcpInErrs, o2->tcpInErrs);
11380         UPDATE_MIB(o1, udpNoPorts, o2->udpNoPorts);
11381 }
11382 
11383 void
11384 ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *o1, mib2_ipv6IfIcmpEntry_t *o2)
11385 {
11386         UPDATE_MIB(o1, ipv6IfIcmpInMsgs, o2->ipv6IfIcmpInMsgs);
11387         UPDATE_MIB(o1, ipv6IfIcmpInErrors, o2->ipv6IfIcmpInErrors);
11388         UPDATE_MIB(o1, ipv6IfIcmpInDestUnreachs, o2->ipv6IfIcmpInDestUnreachs);
11389         UPDATE_MIB(o1, ipv6IfIcmpInAdminProhibs, o2->ipv6IfIcmpInAdminProhibs);
11390         UPDATE_MIB(o1, ipv6IfIcmpInTimeExcds, o2->ipv6IfIcmpInTimeExcds);
11391         UPDATE_MIB(o1, ipv6IfIcmpInParmProblems, o2->ipv6IfIcmpInParmProblems);
11392         UPDATE_MIB(o1, ipv6IfIcmpInPktTooBigs, o2->ipv6IfIcmpInPktTooBigs);
11393         UPDATE_MIB(o1, ipv6IfIcmpInEchos, o2->ipv6IfIcmpInEchos);
11394         UPDATE_MIB(o1, ipv6IfIcmpInEchoReplies, o2->ipv6IfIcmpInEchoReplies);
11395         UPDATE_MIB(o1, ipv6IfIcmpInRouterSolicits,
11396             o2->ipv6IfIcmpInRouterSolicits);
11397         UPDATE_MIB(o1, ipv6IfIcmpInRouterAdvertisements,
11398             o2->ipv6IfIcmpInRouterAdvertisements);
11399         UPDATE_MIB(o1, ipv6IfIcmpInNeighborSolicits,
11400             o2->ipv6IfIcmpInNeighborSolicits);
11401         UPDATE_MIB(o1, ipv6IfIcmpInNeighborAdvertisements,
11402             o2->ipv6IfIcmpInNeighborAdvertisements);
11403         UPDATE_MIB(o1, ipv6IfIcmpInRedirects, o2->ipv6IfIcmpInRedirects);
11404         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembQueries,
11405             o2->ipv6IfIcmpInGroupMembQueries);
11406         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembResponses,
11407             o2->ipv6IfIcmpInGroupMembResponses);
11408         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembReductions,
11409             o2->ipv6IfIcmpInGroupMembReductions);
11410         UPDATE_MIB(o1, ipv6IfIcmpOutMsgs, o2->ipv6IfIcmpOutMsgs);
11411         UPDATE_MIB(o1, ipv6IfIcmpOutErrors, o2->ipv6IfIcmpOutErrors);
11412         UPDATE_MIB(o1, ipv6IfIcmpOutDestUnreachs,
11413             o2->ipv6IfIcmpOutDestUnreachs);
11414         UPDATE_MIB(o1, ipv6IfIcmpOutAdminProhibs,
11415             o2->ipv6IfIcmpOutAdminProhibs);
11416         UPDATE_MIB(o1, ipv6IfIcmpOutTimeExcds, o2->ipv6IfIcmpOutTimeExcds);
11417         UPDATE_MIB(o1, ipv6IfIcmpOutParmProblems,
11418             o2->ipv6IfIcmpOutParmProblems);
11419         UPDATE_MIB(o1, ipv6IfIcmpOutPktTooBigs, o2->ipv6IfIcmpOutPktTooBigs);
11420         UPDATE_MIB(o1, ipv6IfIcmpOutEchos, o2->ipv6IfIcmpOutEchos);
11421         UPDATE_MIB(o1, ipv6IfIcmpOutEchoReplies, o2->ipv6IfIcmpOutEchoReplies);
11422         UPDATE_MIB(o1, ipv6IfIcmpOutRouterSolicits,
11423             o2->ipv6IfIcmpOutRouterSolicits);
11424         UPDATE_MIB(o1, ipv6IfIcmpOutRouterAdvertisements,
11425             o2->ipv6IfIcmpOutRouterAdvertisements);
11426         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborSolicits,
11427             o2->ipv6IfIcmpOutNeighborSolicits);
11428         UPDATE_MIB(o1, ipv6IfIcmpOutNeighborAdvertisements,
11429             o2->ipv6IfIcmpOutNeighborAdvertisements);
11430         UPDATE_MIB(o1, ipv6IfIcmpOutRedirects, o2->ipv6IfIcmpOutRedirects);
11431         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembQueries,
11432             o2->ipv6IfIcmpOutGroupMembQueries);
11433         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembResponses,
11434             o2->ipv6IfIcmpOutGroupMembResponses);
11435         UPDATE_MIB(o1, ipv6IfIcmpOutGroupMembReductions,
11436             o2->ipv6IfIcmpOutGroupMembReductions);
11437         UPDATE_MIB(o1, ipv6IfIcmpInOverflows, o2->ipv6IfIcmpInOverflows);
11438         UPDATE_MIB(o1, ipv6IfIcmpBadHoplimit, o2->ipv6IfIcmpBadHoplimit);
11439         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborAdvertisements,
11440             o2->ipv6IfIcmpInBadNeighborAdvertisements);
11441         UPDATE_MIB(o1, ipv6IfIcmpInBadNeighborSolicitations,
11442             o2->ipv6IfIcmpInBadNeighborSolicitations);
11443         UPDATE_MIB(o1, ipv6IfIcmpInBadRedirects, o2->ipv6IfIcmpInBadRedirects);
11444         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembTotal,
11445             o2->ipv6IfIcmpInGroupMembTotal);
11446         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadQueries,
11447             o2->ipv6IfIcmpInGroupMembBadQueries);
11448         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembBadReports,
11449             o2->ipv6IfIcmpInGroupMembBadReports);
11450         UPDATE_MIB(o1, ipv6IfIcmpInGroupMembOurReports,
11451             o2->ipv6IfIcmpInGroupMembOurReports);
11452 }
11453 
11454 /*
11455  * Called before the options are updated to check if this packet will
11456  * be source routed from here.
11457  * This routine assumes that the options are well formed i.e. that they
11458  * have already been checked.
11459  */
11460 boolean_t
11461 ip_source_routed(ipha_t *ipha, ip_stack_t *ipst)
11462 {
11463         ipoptp_t        opts;
11464         uchar_t         *opt;
11465         uint8_t         optval;
11466         uint8_t         optlen;
11467         ipaddr_t        dst;
11468 
11469         if (IS_SIMPLE_IPH(ipha)) {
11470                 ip2dbg(("not source routed\n"));
11471                 return (B_FALSE);
11472         }
11473         dst = ipha->ipha_dst;
11474         for (optval = ipoptp_first(&opts, ipha);
11475             optval != IPOPT_EOL;
11476             optval = ipoptp_next(&opts)) {
11477                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11478                 opt = opts.ipoptp_cur;
11479                 optlen = opts.ipoptp_len;
11480                 ip2dbg(("ip_source_routed: opt %d, len %d\n",
11481                     optval, optlen));
11482                 switch (optval) {
11483                         uint32_t off;
11484                 case IPOPT_SSRR:
11485                 case IPOPT_LSRR:
11486                         /*
11487                          * If dst is one of our addresses and there are some
11488                          * entries left in the source route return (true).
11489                          */
11490                         if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
11491                                 ip2dbg(("ip_source_routed: not next"
11492                                     " source route 0x%x\n",
11493                                     ntohl(dst)));
11494                                 return (B_FALSE);
11495                         }
11496                         off = opt[IPOPT_OFFSET];
11497                         off--;
11498                         if (optlen < IP_ADDR_LEN ||
11499                             off > optlen - IP_ADDR_LEN) {
11500                                 /* End of source route */
11501                                 ip1dbg(("ip_source_routed: end of SR\n"));
11502                                 return (B_FALSE);
11503                         }
11504                         return (B_TRUE);
11505                 }
11506         }
11507         ip2dbg(("not source routed\n"));
11508         return (B_FALSE);
11509 }
11510 
11511 /*
11512  * ip_unbind is called by the transports to remove a conn from
11513  * the fanout table.
11514  */
11515 void
11516 ip_unbind(conn_t *connp)
11517 {
11518 
11519         ASSERT(!MUTEX_HELD(&connp->conn_lock));
11520 
11521         if (is_system_labeled() && connp->conn_anon_port) {
11522                 (void) tsol_mlp_anon(crgetzone(connp->conn_cred),
11523                     connp->conn_mlp_type, connp->conn_proto,
11524                     ntohs(connp->conn_lport), B_FALSE);
11525                 connp->conn_anon_port = 0;
11526         }
11527         connp->conn_mlp_type = mlptSingle;
11528 
11529         ipcl_hash_remove(connp);
11530 }
11531 
11532 /*
11533  * Used for deciding the MSS size for the upper layer. Thus
11534  * we need to check the outbound policy values in the conn.
11535  */
11536 int
11537 conn_ipsec_length(conn_t *connp)
11538 {
11539         ipsec_latch_t *ipl;
11540 
11541         ipl = connp->conn_latch;
11542         if (ipl == NULL)
11543                 return (0);
11544 
11545         if (connp->conn_ixa->ixa_ipsec_policy == NULL)
11546                 return (0);
11547 
11548         return (connp->conn_ixa->ixa_ipsec_policy->ipsp_act->ipa_ovhd);
11549 }
11550 
11551 /*
11552  * Returns an estimate of the IPsec headers size. This is used if
11553  * we don't want to call into IPsec to get the exact size.
11554  */
11555 int
11556 ipsec_out_extra_length(ip_xmit_attr_t *ixa)
11557 {
11558         ipsec_action_t *a;
11559 
11560         if (!(ixa->ixa_flags & IXAF_IPSEC_SECURE))
11561                 return (0);
11562 
11563         a = ixa->ixa_ipsec_action;
11564         if (a == NULL) {
11565                 ASSERT(ixa->ixa_ipsec_policy != NULL);
11566                 a = ixa->ixa_ipsec_policy->ipsp_act;
11567         }
11568         ASSERT(a != NULL);
11569 
11570         return (a->ipa_ovhd);
11571 }
11572 
11573 /*
11574  * If there are any source route options, return the true final
11575  * destination. Otherwise, return the destination.
11576  */
11577 ipaddr_t
11578 ip_get_dst(ipha_t *ipha)
11579 {
11580         ipoptp_t        opts;
11581         uchar_t         *opt;
11582         uint8_t         optval;
11583         uint8_t         optlen;
11584         ipaddr_t        dst;
11585         uint32_t off;
11586 
11587         dst = ipha->ipha_dst;
11588 
11589         if (IS_SIMPLE_IPH(ipha))
11590                 return (dst);
11591 
11592         for (optval = ipoptp_first(&opts, ipha);
11593             optval != IPOPT_EOL;
11594             optval = ipoptp_next(&opts)) {
11595                 opt = opts.ipoptp_cur;
11596                 optlen = opts.ipoptp_len;
11597                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11598                 switch (optval) {
11599                 case IPOPT_SSRR:
11600                 case IPOPT_LSRR:
11601                         off = opt[IPOPT_OFFSET];
11602                         /*
11603                          * If one of the conditions is true, it means
11604                          * end of options and dst already has the right
11605                          * value.
11606                          */
11607                         if (!(optlen < IP_ADDR_LEN || off > optlen - 3)) {
11608                                 off = optlen - IP_ADDR_LEN;
11609                                 bcopy(&opt[off], &dst, IP_ADDR_LEN);
11610                         }
11611                         return (dst);
11612                 default:
11613                         break;
11614                 }
11615         }
11616 
11617         return (dst);
11618 }
11619 
11620 /*
11621  * Outbound IP fragmentation routine.
11622  * Assumes the caller has checked whether or not fragmentation should
11623  * be allowed. Here we copy the DF bit from the header to all the generated
11624  * fragments.
11625  */
11626 int
11627 ip_fragment_v4(mblk_t *mp_orig, nce_t *nce, iaflags_t ixaflags,
11628     uint_t pkt_len, uint32_t max_frag, uint32_t xmit_hint, zoneid_t szone,
11629     zoneid_t nolzid, pfirepostfrag_t postfragfn, uintptr_t *ixa_cookie)
11630 {
11631         int             i1;
11632         int             hdr_len;
11633         mblk_t          *hdr_mp;
11634         ipha_t          *ipha;
11635         int             ip_data_end;
11636         int             len;
11637         mblk_t          *mp = mp_orig;
11638         int             offset;
11639         ill_t           *ill = nce->nce_ill;
11640         ip_stack_t      *ipst = ill->ill_ipst;
11641         mblk_t          *carve_mp;
11642         uint32_t        frag_flag;
11643         uint_t          priority = mp->b_band;
11644         int             error = 0;
11645 
11646         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragReqds);
11647 
11648         if (pkt_len != msgdsize(mp)) {
11649                 ip0dbg(("Packet length mismatch: %d, %ld\n",
11650                     pkt_len, msgdsize(mp)));
11651                 freemsg(mp);
11652                 return (EINVAL);
11653         }
11654 
11655         if (max_frag == 0) {
11656                 ip1dbg(("ip_fragment_v4: max_frag is zero. Dropping packet\n"));
11657                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11658                 ip_drop_output("FragFails: zero max_frag", mp, ill);
11659                 freemsg(mp);
11660                 return (EINVAL);
11661         }
11662 
11663         ASSERT(MBLKL(mp) >= sizeof (ipha_t));
11664         ipha = (ipha_t *)mp->b_rptr;
11665         ASSERT(ntohs(ipha->ipha_length) == pkt_len);
11666         frag_flag = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_DF;
11667 
11668         /*
11669          * Establish the starting offset.  May not be zero if we are fragging
11670          * a fragment that is being forwarded.
11671          */
11672         offset = ntohs(ipha->ipha_fragment_offset_and_flags) & IPH_OFFSET;
11673 
11674         /* TODO why is this test needed? */
11675         if (((max_frag - ntohs(ipha->ipha_length)) & ~7) < 8) {
11676                 /* TODO: notify ulp somehow */
11677                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11678                 ip_drop_output("FragFails: bad starting offset", mp, ill);
11679                 freemsg(mp);
11680                 return (EINVAL);
11681         }
11682 
11683         hdr_len = IPH_HDR_LENGTH(ipha);
11684         ipha->ipha_hdr_checksum = 0;
11685 
11686         /*
11687          * Establish the number of bytes maximum per frag, after putting
11688          * in the header.
11689          */
11690         len = (max_frag - hdr_len) & ~7;
11691 
11692         /* Get a copy of the header for the trailing frags */
11693         hdr_mp = ip_fragment_copyhdr((uchar_t *)ipha, hdr_len, offset, ipst,
11694             mp);
11695         if (hdr_mp == NULL) {
11696                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11697                 ip_drop_output("FragFails: no hdr_mp", mp, ill);
11698                 freemsg(mp);
11699                 return (ENOBUFS);
11700         }
11701 
11702         /* Store the starting offset, with the MoreFrags flag. */
11703         i1 = offset | IPH_MF | frag_flag;
11704         ipha->ipha_fragment_offset_and_flags = htons((uint16_t)i1);
11705 
11706         /* Establish the ending byte offset, based on the starting offset. */
11707         offset <<= 3;
11708         ip_data_end = offset + ntohs(ipha->ipha_length) - hdr_len;
11709 
11710         /* Store the length of the first fragment in the IP header. */
11711         i1 = len + hdr_len;
11712         ASSERT(i1 <= IP_MAXPACKET);
11713         ipha->ipha_length = htons((uint16_t)i1);
11714 
11715         /*
11716          * Compute the IP header checksum for the first frag.  We have to
11717          * watch out that we stop at the end of the header.
11718          */
11719         ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11720 
11721         /*
11722          * Now carve off the first frag.  Note that this will include the
11723          * original IP header.
11724          */
11725         if (!(mp = ip_carve_mp(&mp_orig, i1))) {
11726                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11727                 ip_drop_output("FragFails: could not carve mp", mp_orig, ill);
11728                 freeb(hdr_mp);
11729                 freemsg(mp_orig);
11730                 return (ENOBUFS);
11731         }
11732 
11733         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11734 
11735         error = postfragfn(mp, nce, ixaflags, i1, xmit_hint, szone, nolzid,
11736             ixa_cookie);
11737         if (error != 0 && error != EWOULDBLOCK) {
11738                 /* No point in sending the other fragments */
11739                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11740                 ip_drop_output("FragFails: postfragfn failed", mp_orig, ill);
11741                 freeb(hdr_mp);
11742                 freemsg(mp_orig);
11743                 return (error);
11744         }
11745 
11746         /* No need to redo state machine in loop */
11747         ixaflags &= ~IXAF_REACH_CONF;
11748 
11749         /* Advance the offset to the second frag starting point. */
11750         offset += len;
11751         /*
11752          * Update hdr_len from the copied header - there might be less options
11753          * in the later fragments.
11754          */
11755         hdr_len = IPH_HDR_LENGTH(hdr_mp->b_rptr);
11756         /* Loop until done. */
11757         for (;;) {
11758                 uint16_t        offset_and_flags;
11759                 uint16_t        ip_len;
11760 
11761                 if (ip_data_end - offset > len) {
11762                         /*
11763                          * Carve off the appropriate amount from the original
11764                          * datagram.
11765                          */
11766                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11767                                 mp = NULL;
11768                                 break;
11769                         }
11770                         /*
11771                          * More frags after this one.  Get another copy
11772                          * of the header.
11773                          */
11774                         if (carve_mp->b_datap->db_ref == 1 &&
11775                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11776                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11777                                 /* Inline IP header */
11778                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11779                                     hdr_mp->b_rptr;
11780                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11781                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11782                                 mp = carve_mp;
11783                         } else {
11784                                 if (!(mp = copyb(hdr_mp))) {
11785                                         freemsg(carve_mp);
11786                                         break;
11787                                 }
11788                                 /* Get priority marking, if any. */
11789                                 mp->b_band = priority;
11790                                 mp->b_cont = carve_mp;
11791                         }
11792                         ipha = (ipha_t *)mp->b_rptr;
11793                         offset_and_flags = IPH_MF;
11794                 } else {
11795                         /*
11796                          * Last frag.  Consume the header. Set len to
11797                          * the length of this last piece.
11798                          */
11799                         len = ip_data_end - offset;
11800 
11801                         /*
11802                          * Carve off the appropriate amount from the original
11803                          * datagram.
11804                          */
11805                         if (!(carve_mp = ip_carve_mp(&mp_orig, len))) {
11806                                 mp = NULL;
11807                                 break;
11808                         }
11809                         if (carve_mp->b_datap->db_ref == 1 &&
11810                             hdr_mp->b_wptr - hdr_mp->b_rptr <
11811                             carve_mp->b_rptr - carve_mp->b_datap->db_base) {
11812                                 /* Inline IP header */
11813                                 carve_mp->b_rptr -= hdr_mp->b_wptr -
11814                                     hdr_mp->b_rptr;
11815                                 bcopy(hdr_mp->b_rptr, carve_mp->b_rptr,
11816                                     hdr_mp->b_wptr - hdr_mp->b_rptr);
11817                                 mp = carve_mp;
11818                                 freeb(hdr_mp);
11819                                 hdr_mp = mp;
11820                         } else {
11821                                 mp = hdr_mp;
11822                                 /* Get priority marking, if any. */
11823                                 mp->b_band = priority;
11824                                 mp->b_cont = carve_mp;
11825                         }
11826                         ipha = (ipha_t *)mp->b_rptr;
11827                         /* A frag of a frag might have IPH_MF non-zero */
11828                         offset_and_flags =
11829                             ntohs(ipha->ipha_fragment_offset_and_flags) &
11830                             IPH_MF;
11831                 }
11832                 offset_and_flags |= (uint16_t)(offset >> 3);
11833                 offset_and_flags |= (uint16_t)frag_flag;
11834                 /* Store the offset and flags in the IP header. */
11835                 ipha->ipha_fragment_offset_and_flags = htons(offset_and_flags);
11836 
11837                 /* Store the length in the IP header. */
11838                 ip_len = (uint16_t)(len + hdr_len);
11839                 ipha->ipha_length = htons(ip_len);
11840 
11841                 /*
11842                  * Set the IP header checksum.  Note that mp is just
11843                  * the header, so this is easy to pass to ip_csum.
11844                  */
11845                 ipha->ipha_hdr_checksum = ip_csum_hdr(ipha);
11846 
11847                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragCreates);
11848 
11849                 error = postfragfn(mp, nce, ixaflags, ip_len, xmit_hint, szone,
11850                     nolzid, ixa_cookie);
11851                 /* All done if we just consumed the hdr_mp. */
11852                 if (mp == hdr_mp) {
11853                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragOKs);
11854                         return (error);
11855                 }
11856                 if (error != 0 && error != EWOULDBLOCK) {
11857                         DTRACE_PROBE2(ip__xmit__frag__fail, ill_t *, ill,
11858                             mblk_t *, hdr_mp);
11859                         /* No point in sending the other fragments */
11860                         break;
11861                 }
11862 
11863                 /* Otherwise, advance and loop. */
11864                 offset += len;
11865         }
11866         /* Clean up following allocation failure. */
11867         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutFragFails);
11868         ip_drop_output("FragFails: loop ended", NULL, ill);
11869         if (mp != hdr_mp)
11870                 freeb(hdr_mp);
11871         if (mp != mp_orig)
11872                 freemsg(mp_orig);
11873         return (error);
11874 }
11875 
11876 /*
11877  * Copy the header plus those options which have the copy bit set
11878  */
11879 static mblk_t *
11880 ip_fragment_copyhdr(uchar_t *rptr, int hdr_len, int offset, ip_stack_t *ipst,
11881     mblk_t *src)
11882 {
11883         mblk_t  *mp;
11884         uchar_t *up;
11885 
11886         /*
11887          * Quick check if we need to look for options without the copy bit
11888          * set
11889          */
11890         mp = allocb_tmpl(ipst->ips_ip_wroff_extra + hdr_len, src);
11891         if (!mp)
11892                 return (mp);
11893         mp->b_rptr += ipst->ips_ip_wroff_extra;
11894         if (hdr_len == IP_SIMPLE_HDR_LENGTH || offset != 0) {
11895                 bcopy(rptr, mp->b_rptr, hdr_len);
11896                 mp->b_wptr += hdr_len + ipst->ips_ip_wroff_extra;
11897                 return (mp);
11898         }
11899         up  = mp->b_rptr;
11900         bcopy(rptr, up, IP_SIMPLE_HDR_LENGTH);
11901         up += IP_SIMPLE_HDR_LENGTH;
11902         rptr += IP_SIMPLE_HDR_LENGTH;
11903         hdr_len -= IP_SIMPLE_HDR_LENGTH;
11904         while (hdr_len > 0) {
11905                 uint32_t optval;
11906                 uint32_t optlen;
11907 
11908                 optval = *rptr;
11909                 if (optval == IPOPT_EOL)
11910                         break;
11911                 if (optval == IPOPT_NOP)
11912                         optlen = 1;
11913                 else
11914                         optlen = rptr[1];
11915                 if (optval & IPOPT_COPY) {
11916                         bcopy(rptr, up, optlen);
11917                         up += optlen;
11918                 }
11919                 rptr += optlen;
11920                 hdr_len -= optlen;
11921         }
11922         /*
11923          * Make sure that we drop an even number of words by filling
11924          * with EOL to the next word boundary.
11925          */
11926         for (hdr_len = up - (mp->b_rptr + IP_SIMPLE_HDR_LENGTH);
11927             hdr_len & 0x3; hdr_len++)
11928                 *up++ = IPOPT_EOL;
11929         mp->b_wptr = up;
11930         /* Update header length */
11931         mp->b_rptr[0] = (uint8_t)((IP_VERSION << 4) | ((up - mp->b_rptr) >> 2));
11932         return (mp);
11933 }
11934 
11935 /*
11936  * Update any source route, record route, or timestamp options when
11937  * sending a packet back to ourselves.
11938  * Check that we are at end of strict source route.
11939  * The options have been sanity checked by ip_output_options().
11940  */
11941 void
11942 ip_output_local_options(ipha_t *ipha, ip_stack_t *ipst)
11943 {
11944         ipoptp_t        opts;
11945         uchar_t         *opt;
11946         uint8_t         optval;
11947         uint8_t         optlen;
11948         ipaddr_t        dst;
11949         uint32_t        ts;
11950         timestruc_t     now;
11951 
11952         for (optval = ipoptp_first(&opts, ipha);
11953             optval != IPOPT_EOL;
11954             optval = ipoptp_next(&opts)) {
11955                 opt = opts.ipoptp_cur;
11956                 optlen = opts.ipoptp_len;
11957                 ASSERT((opts.ipoptp_flags & IPOPTP_ERROR) == 0);
11958                 switch (optval) {
11959                         uint32_t off;
11960                 case IPOPT_SSRR:
11961                 case IPOPT_LSRR:
11962                         off = opt[IPOPT_OFFSET];
11963                         off--;
11964                         if (optlen < IP_ADDR_LEN ||
11965                             off > optlen - IP_ADDR_LEN) {
11966                                 /* End of source route */
11967                                 break;
11968                         }
11969                         /*
11970                          * This will only happen if two consecutive entries
11971                          * in the source route contains our address or if
11972                          * it is a packet with a loose source route which
11973                          * reaches us before consuming the whole source route
11974                          */
11975 
11976                         if (optval == IPOPT_SSRR) {
11977                                 return;
11978                         }
11979                         /*
11980                          * Hack: instead of dropping the packet truncate the
11981                          * source route to what has been used by filling the
11982                          * rest with IPOPT_NOP.
11983                          */
11984                         opt[IPOPT_OLEN] = (uint8_t)off;
11985                         while (off < optlen) {
11986                                 opt[off++] = IPOPT_NOP;
11987                         }
11988                         break;
11989                 case IPOPT_RR:
11990                         off = opt[IPOPT_OFFSET];
11991                         off--;
11992                         if (optlen < IP_ADDR_LEN ||
11993                             off > optlen - IP_ADDR_LEN) {
11994                                 /* No more room - ignore */
11995                                 ip1dbg((
11996                                     "ip_output_local_options: end of RR\n"));
11997                                 break;
11998                         }
11999                         dst = htonl(INADDR_LOOPBACK);
12000                         bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12001                         opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12002                         break;
12003                 case IPOPT_TS:
12004                         /* Insert timestamp if there is romm */
12005                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12006                         case IPOPT_TS_TSONLY:
12007                                 off = IPOPT_TS_TIMELEN;
12008                                 break;
12009                         case IPOPT_TS_PRESPEC:
12010                         case IPOPT_TS_PRESPEC_RFC791:
12011                                 /* Verify that the address matched */
12012                                 off = opt[IPOPT_OFFSET] - 1;
12013                                 bcopy((char *)opt + off, &dst, IP_ADDR_LEN);
12014                                 if (ip_type_v4(dst, ipst) != IRE_LOCAL) {
12015                                         /* Not for us */
12016                                         break;
12017                                 }
12018                                 /* FALLTHROUGH */
12019                         case IPOPT_TS_TSANDADDR:
12020                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
12021                                 break;
12022                         default:
12023                                 /*
12024                                  * ip_*put_options should have already
12025                                  * dropped this packet.
12026                                  */
12027                                 cmn_err(CE_PANIC, "ip_output_local_options: "
12028                                     "unknown IT - bug in ip_output_options?\n");
12029                                 return; /* Keep "lint" happy */
12030                         }
12031                         if (opt[IPOPT_OFFSET] - 1 + off > optlen) {
12032                                 /* Increase overflow counter */
12033                                 off = (opt[IPOPT_POS_OV_FLG] >> 4) + 1;
12034                                 opt[IPOPT_POS_OV_FLG] = (uint8_t)
12035                                     (opt[IPOPT_POS_OV_FLG] & 0x0F) |
12036                                     (off << 4);
12037                                 break;
12038                         }
12039                         off = opt[IPOPT_OFFSET] - 1;
12040                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
12041                         case IPOPT_TS_PRESPEC:
12042                         case IPOPT_TS_PRESPEC_RFC791:
12043                         case IPOPT_TS_TSANDADDR:
12044                                 dst = htonl(INADDR_LOOPBACK);
12045                                 bcopy(&dst, (char *)opt + off, IP_ADDR_LEN);
12046                                 opt[IPOPT_OFFSET] += IP_ADDR_LEN;
12047                                 /* FALLTHROUGH */
12048                         case IPOPT_TS_TSONLY:
12049                                 off = opt[IPOPT_OFFSET] - 1;
12050                                 /* Compute # of milliseconds since midnight */
12051                                 gethrestime(&now);
12052                                 ts = (now.tv_sec % (24 * 60 * 60)) * 1000 +
12053                                     NSEC2MSEC(now.tv_nsec);
12054                                 bcopy(&ts, (char *)opt + off, IPOPT_TS_TIMELEN);
12055                                 opt[IPOPT_OFFSET] += IPOPT_TS_TIMELEN;
12056                                 break;
12057                         }
12058                         break;
12059                 }
12060         }
12061 }
12062 
12063 /*
12064  * Prepend an M_DATA fastpath header, and if none present prepend a
12065  * DL_UNITDATA_REQ. Frees the mblk on failure.
12066  *
12067  * nce_dlur_mp and nce_fp_mp can not disappear once they have been set.
12068  * If there is a change to them, the nce will be deleted (condemned) and
12069  * a new nce_t will be created when packets are sent. Thus we need no locks
12070  * to access those fields.
12071  *
12072  * We preserve b_band to support IPQoS. If a DL_UNITDATA_REQ is prepended
12073  * we place b_band in dl_priority.dl_max.
12074  */
12075 static mblk_t *
12076 ip_xmit_attach_llhdr(mblk_t *mp, nce_t *nce)
12077 {
12078         uint_t  hlen;
12079         mblk_t *mp1;
12080         uint_t  priority;
12081         uchar_t *rptr;
12082 
12083         rptr = mp->b_rptr;
12084 
12085         ASSERT(DB_TYPE(mp) == M_DATA);
12086         priority = mp->b_band;
12087 
12088         ASSERT(nce != NULL);
12089         if ((mp1 = nce->nce_fp_mp) != NULL) {
12090                 hlen = MBLKL(mp1);
12091                 /*
12092                  * Check if we have enough room to prepend fastpath
12093                  * header
12094                  */
12095                 if (hlen != 0 && (rptr - mp->b_datap->db_base) >= hlen) {
12096                         rptr -= hlen;
12097                         bcopy(mp1->b_rptr, rptr, hlen);
12098                         /*
12099                          * Set the b_rptr to the start of the link layer
12100                          * header
12101                          */
12102                         mp->b_rptr = rptr;
12103                         return (mp);
12104                 }
12105                 mp1 = copyb(mp1);
12106                 if (mp1 == NULL) {
12107                         ill_t *ill = nce->nce_ill;
12108 
12109                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12110                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12111                         freemsg(mp);
12112                         return (NULL);
12113                 }
12114                 mp1->b_band = priority;
12115                 mp1->b_cont = mp;
12116                 DB_CKSUMSTART(mp1) = DB_CKSUMSTART(mp);
12117                 DB_CKSUMSTUFF(mp1) = DB_CKSUMSTUFF(mp);
12118                 DB_CKSUMEND(mp1) = DB_CKSUMEND(mp);
12119                 DB_CKSUMFLAGS(mp1) = DB_CKSUMFLAGS(mp);
12120                 DB_LSOMSS(mp1) = DB_LSOMSS(mp);
12121                 DTRACE_PROBE1(ip__xmit__copyb, (mblk_t *), mp1);
12122                 /*
12123                  * XXX disable ICK_VALID and compute checksum
12124                  * here; can happen if nce_fp_mp changes and
12125                  * it can't be copied now due to insufficient
12126                  * space. (unlikely, fp mp can change, but it
12127                  * does not increase in length)
12128                  */
12129                 return (mp1);
12130         }
12131         mp1 = copyb(nce->nce_dlur_mp);
12132 
12133         if (mp1 == NULL) {
12134                 ill_t *ill = nce->nce_ill;
12135 
12136                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12137                 ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12138                 freemsg(mp);
12139                 return (NULL);
12140         }
12141         mp1->b_cont = mp;
12142         if (priority != 0) {
12143                 mp1->b_band = priority;
12144                 ((dl_unitdata_req_t *)(mp1->b_rptr))->dl_priority.dl_max =
12145                     priority;
12146         }
12147         return (mp1);
12148 }
12149 
12150 /*
12151  * Finish the outbound IPsec processing. This function is called from
12152  * ipsec_out_process() if the IPsec packet was processed
12153  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12154  * asynchronously.
12155  *
12156  * This is common to IPv4 and IPv6.
12157  */
12158 int
12159 ip_output_post_ipsec(mblk_t *mp, ip_xmit_attr_t *ixa)
12160 {
12161         iaflags_t       ixaflags = ixa->ixa_flags;
12162         uint_t          pktlen;
12163 
12164 
12165         /* AH/ESP don't update ixa_pktlen when they modify the packet */
12166         if (ixaflags & IXAF_IS_IPV4) {
12167                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12168 
12169                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12170                 pktlen = ntohs(ipha->ipha_length);
12171         } else {
12172                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12173 
12174                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12175                 pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12176         }
12177 
12178         /*
12179          * We release any hard reference on the SAs here to make
12180          * sure the SAs can be garbage collected. ipsr_sa has a soft reference
12181          * on the SAs.
12182          * If in the future we want the hard latching of the SAs in the
12183          * ip_xmit_attr_t then we should remove this.
12184          */
12185         if (ixa->ixa_ipsec_esp_sa != NULL) {
12186                 IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12187                 ixa->ixa_ipsec_esp_sa = NULL;
12188         }
12189         if (ixa->ixa_ipsec_ah_sa != NULL) {
12190                 IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12191                 ixa->ixa_ipsec_ah_sa = NULL;
12192         }
12193 
12194         /* Do we need to fragment? */
12195         if ((ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR) ||
12196             pktlen > ixa->ixa_fragsize) {
12197                 if (ixaflags & IXAF_IS_IPV4) {
12198                         ASSERT(!(ixa->ixa_flags & IXAF_IPV6_ADD_FRAGHDR));
12199                         /*
12200                          * We check for the DF case in ipsec_out_process
12201                          * hence this only handles the non-DF case.
12202                          */
12203                         return (ip_fragment_v4(mp, ixa->ixa_nce, ixa->ixa_flags,
12204                             pktlen, ixa->ixa_fragsize,
12205                             ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12206                             ixa->ixa_no_loop_zoneid, ixa->ixa_postfragfn,
12207                             &ixa->ixa_cookie));
12208                 } else {
12209                         mp = ip_fraghdr_add_v6(mp, ixa->ixa_ident, ixa);
12210                         if (mp == NULL) {
12211                                 /* MIB and ip_drop_output already done */
12212                                 return (ENOMEM);
12213                         }
12214                         pktlen += sizeof (ip6_frag_t);
12215                         if (pktlen > ixa->ixa_fragsize) {
12216                                 return (ip_fragment_v6(mp, ixa->ixa_nce,
12217                                     ixa->ixa_flags, pktlen,
12218                                     ixa->ixa_fragsize, ixa->ixa_xmit_hint,
12219                                     ixa->ixa_zoneid, ixa->ixa_no_loop_zoneid,
12220                                     ixa->ixa_postfragfn, &ixa->ixa_cookie));
12221                         }
12222                 }
12223         }
12224         return ((ixa->ixa_postfragfn)(mp, ixa->ixa_nce, ixa->ixa_flags,
12225             pktlen, ixa->ixa_xmit_hint, ixa->ixa_zoneid,
12226             ixa->ixa_no_loop_zoneid, NULL));
12227 }
12228 
12229 /*
12230  * Finish the inbound IPsec processing. This function is called from
12231  * ipsec_out_process() if the IPsec packet was processed
12232  * synchronously, or from {ah,esp}_kcf_callback_outbound() if it was processed
12233  * asynchronously.
12234  *
12235  * This is common to IPv4 and IPv6.
12236  */
12237 void
12238 ip_input_post_ipsec(mblk_t *mp, ip_recv_attr_t *ira)
12239 {
12240         iaflags_t       iraflags = ira->ira_flags;
12241 
12242         /* Length might have changed */
12243         if (iraflags & IRAF_IS_IPV4) {
12244                 ipha_t          *ipha = (ipha_t *)mp->b_rptr;
12245 
12246                 ASSERT(IPH_HDR_VERSION(ipha) == IPV4_VERSION);
12247                 ira->ira_pktlen = ntohs(ipha->ipha_length);
12248                 ira->ira_ip_hdr_length = IPH_HDR_LENGTH(ipha);
12249                 ira->ira_protocol = ipha->ipha_protocol;
12250 
12251                 ip_fanout_v4(mp, ipha, ira);
12252         } else {
12253                 ip6_t           *ip6h = (ip6_t *)mp->b_rptr;
12254                 uint8_t         *nexthdrp;
12255 
12256                 ASSERT(IPH_HDR_VERSION(mp->b_rptr) == IPV6_VERSION);
12257                 ira->ira_pktlen = ntohs(ip6h->ip6_plen) + IPV6_HDR_LEN;
12258                 if (!ip_hdr_length_nexthdr_v6(mp, ip6h, &ira->ira_ip_hdr_length,
12259                     &nexthdrp)) {
12260                         /* Malformed packet */
12261                         BUMP_MIB(ira->ira_ill->ill_ip_mib, ipIfStatsInDiscards);
12262                         ip_drop_input("ipIfStatsInDiscards", mp, ira->ira_ill);
12263                         freemsg(mp);
12264                         return;
12265                 }
12266                 ira->ira_protocol = *nexthdrp;
12267                 ip_fanout_v6(mp, ip6h, ira);
12268         }
12269 }
12270 
12271 /*
12272  * Select which AH & ESP SA's to use (if any) for the outbound packet.
12273  *
12274  * If this function returns B_TRUE, the requested SA's have been filled
12275  * into the ixa_ipsec_*_sa pointers.
12276  *
12277  * If the function returns B_FALSE, the packet has been "consumed", most
12278  * likely by an ACQUIRE sent up via PF_KEY to a key management daemon.
12279  *
12280  * The SA references created by the protocol-specific "select"
12281  * function will be released in ip_output_post_ipsec.
12282  */
12283 static boolean_t
12284 ipsec_out_select_sa(mblk_t *mp, ip_xmit_attr_t *ixa)
12285 {
12286         boolean_t need_ah_acquire = B_FALSE, need_esp_acquire = B_FALSE;
12287         ipsec_policy_t *pp;
12288         ipsec_action_t *ap;
12289 
12290         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12291         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12292             (ixa->ixa_ipsec_action != NULL));
12293 
12294         ap = ixa->ixa_ipsec_action;
12295         if (ap == NULL) {
12296                 pp = ixa->ixa_ipsec_policy;
12297                 ASSERT(pp != NULL);
12298                 ap = pp->ipsp_act;
12299                 ASSERT(ap != NULL);
12300         }
12301 
12302         /*
12303          * We have an action.  now, let's select SA's.
12304          * A side effect of setting ixa_ipsec_*_sa is that it will
12305          * be cached in the conn_t.
12306          */
12307         if (ap->ipa_want_esp) {
12308                 if (ixa->ixa_ipsec_esp_sa == NULL) {
12309                         need_esp_acquire = !ipsec_outbound_sa(mp, ixa,
12310                             IPPROTO_ESP);
12311                 }
12312                 ASSERT(need_esp_acquire || ixa->ixa_ipsec_esp_sa != NULL);
12313         }
12314 
12315         if (ap->ipa_want_ah) {
12316                 if (ixa->ixa_ipsec_ah_sa == NULL) {
12317                         need_ah_acquire = !ipsec_outbound_sa(mp, ixa,
12318                             IPPROTO_AH);
12319                 }
12320                 ASSERT(need_ah_acquire || ixa->ixa_ipsec_ah_sa != NULL);
12321                 /*
12322                  * The ESP and AH processing order needs to be preserved
12323                  * when both protocols are required (ESP should be applied
12324                  * before AH for an outbound packet). Force an ESP ACQUIRE
12325                  * when both ESP and AH are required, and an AH ACQUIRE
12326                  * is needed.
12327                  */
12328                 if (ap->ipa_want_esp && need_ah_acquire)
12329                         need_esp_acquire = B_TRUE;
12330         }
12331 
12332         /*
12333          * Send an ACQUIRE (extended, regular, or both) if we need one.
12334          * Release SAs that got referenced, but will not be used until we
12335          * acquire _all_ of the SAs we need.
12336          */
12337         if (need_ah_acquire || need_esp_acquire) {
12338                 if (ixa->ixa_ipsec_ah_sa != NULL) {
12339                         IPSA_REFRELE(ixa->ixa_ipsec_ah_sa);
12340                         ixa->ixa_ipsec_ah_sa = NULL;
12341                 }
12342                 if (ixa->ixa_ipsec_esp_sa != NULL) {
12343                         IPSA_REFRELE(ixa->ixa_ipsec_esp_sa);
12344                         ixa->ixa_ipsec_esp_sa = NULL;
12345                 }
12346 
12347                 sadb_acquire(mp, ixa, need_ah_acquire, need_esp_acquire);
12348                 return (B_FALSE);
12349         }
12350 
12351         return (B_TRUE);
12352 }
12353 
12354 /*
12355  * Handle IPsec output processing.
12356  * This function is only entered once for a given packet.
12357  * We try to do things synchronously, but if we need to have user-level
12358  * set up SAs, or ESP or AH uses asynchronous kEF, then the operation
12359  * will be completed
12360  *  - when the SAs are added in esp_add_sa_finish/ah_add_sa_finish
12361  *  - when asynchronous ESP is done it will do AH
12362  *
12363  * In all cases we come back in ip_output_post_ipsec() to fragment and
12364  * send out the packet.
12365  */
12366 int
12367 ipsec_out_process(mblk_t *mp, ip_xmit_attr_t *ixa)
12368 {
12369         ill_t           *ill = ixa->ixa_nce->nce_ill;
12370         ip_stack_t      *ipst = ixa->ixa_ipst;
12371         ipsec_stack_t   *ipss;
12372         ipsec_policy_t  *pp;
12373         ipsec_action_t  *ap;
12374 
12375         ASSERT(ixa->ixa_flags & IXAF_IPSEC_SECURE);
12376 
12377         ASSERT((ixa->ixa_ipsec_policy != NULL) ||
12378             (ixa->ixa_ipsec_action != NULL));
12379 
12380         ipss = ipst->ips_netstack->netstack_ipsec;
12381         if (!ipsec_loaded(ipss)) {
12382                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12383                 ip_drop_packet(mp, B_TRUE, ill,
12384                     DROPPER(ipss, ipds_ip_ipsec_not_loaded),
12385                     &ipss->ipsec_dropper);
12386                 return (ENOTSUP);
12387         }
12388 
12389         ap = ixa->ixa_ipsec_action;
12390         if (ap == NULL) {
12391                 pp = ixa->ixa_ipsec_policy;
12392                 ASSERT(pp != NULL);
12393                 ap = pp->ipsp_act;
12394                 ASSERT(ap != NULL);
12395         }
12396 
12397         /* Handle explicit drop action and bypass. */
12398         switch (ap->ipa_act.ipa_type) {
12399         case IPSEC_ACT_DISCARD:
12400         case IPSEC_ACT_REJECT:
12401                 ip_drop_packet(mp, B_FALSE, ill,
12402                     DROPPER(ipss, ipds_spd_explicit), &ipss->ipsec_spd_dropper);
12403                 return (EHOSTUNREACH);  /* IPsec policy failure */
12404         case IPSEC_ACT_BYPASS:
12405                 return (ip_output_post_ipsec(mp, ixa));
12406         }
12407 
12408         /*
12409          * The order of processing is first insert a IP header if needed.
12410          * Then insert the ESP header and then the AH header.
12411          */
12412         if ((ixa->ixa_flags & IXAF_IS_IPV4) && ap->ipa_want_se) {
12413                 /*
12414                  * First get the outer IP header before sending
12415                  * it to ESP.
12416                  */
12417                 ipha_t *oipha, *iipha;
12418                 mblk_t *outer_mp, *inner_mp;
12419 
12420                 if ((outer_mp = allocb(sizeof (ipha_t), BPRI_HI)) == NULL) {
12421                         (void) mi_strlog(ill->ill_rq, 0,
12422                             SL_ERROR|SL_TRACE|SL_CONSOLE,
12423                             "ipsec_out_process: "
12424                             "Self-Encapsulation failed: Out of memory\n");
12425                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
12426                         ip_drop_output("ipIfStatsOutDiscards", mp, ill);
12427                         freemsg(mp);
12428                         return (ENOBUFS);
12429                 }
12430                 inner_mp = mp;
12431                 ASSERT(inner_mp->b_datap->db_type == M_DATA);
12432                 oipha = (ipha_t *)outer_mp->b_rptr;
12433                 iipha = (ipha_t *)inner_mp->b_rptr;
12434                 *oipha = *iipha;
12435                 outer_mp->b_wptr += sizeof (ipha_t);
12436                 oipha->ipha_length = htons(ntohs(iipha->ipha_length) +
12437                     sizeof (ipha_t));
12438                 oipha->ipha_protocol = IPPROTO_ENCAP;
12439                 oipha->ipha_version_and_hdr_length =
12440                     IP_SIMPLE_HDR_VERSION;
12441                 oipha->ipha_hdr_checksum = 0;
12442                 oipha->ipha_hdr_checksum = ip_csum_hdr(oipha);
12443                 outer_mp->b_cont = inner_mp;
12444                 mp = outer_mp;
12445 
12446                 ixa->ixa_flags |= IXAF_IPSEC_TUNNEL;
12447         }
12448 
12449         /* If we need to wait for a SA then we can't return any errno */
12450         if (((ap->ipa_want_ah && (ixa->ixa_ipsec_ah_sa == NULL)) ||
12451             (ap->ipa_want_esp && (ixa->ixa_ipsec_esp_sa == NULL))) &&
12452             !ipsec_out_select_sa(mp, ixa))
12453                 return (0);
12454 
12455         /*
12456          * By now, we know what SA's to use.  Toss over to ESP & AH
12457          * to do the heavy lifting.
12458          */
12459         if (ap->ipa_want_esp) {
12460                 ASSERT(ixa->ixa_ipsec_esp_sa != NULL);
12461 
12462                 mp = ixa->ixa_ipsec_esp_sa->ipsa_output_func(mp, ixa);
12463                 if (mp == NULL) {
12464                         /*
12465                          * Either it failed or is pending. In the former case
12466                          * ipIfStatsInDiscards was increased.
12467                          */
12468                         return (0);
12469                 }
12470         }
12471 
12472         if (ap->ipa_want_ah) {
12473                 ASSERT(ixa->ixa_ipsec_ah_sa != NULL);
12474 
12475                 mp = ixa->ixa_ipsec_ah_sa->ipsa_output_func(mp, ixa);
12476                 if (mp == NULL) {
12477                         /*
12478                          * Either it failed or is pending. In the former case
12479                          * ipIfStatsInDiscards was increased.
12480                          */
12481                         return (0);
12482                 }
12483         }
12484         /*
12485          * We are done with IPsec processing. Send it over
12486          * the wire.
12487          */
12488         return (ip_output_post_ipsec(mp, ixa));
12489 }
12490 
12491 /*
12492  * ioctls that go through a down/up sequence may need to wait for the down
12493  * to complete. This involves waiting for the ire and ipif refcnts to go down
12494  * to zero. Subsequently the ioctl is restarted from ipif_ill_refrele_tail.
12495  */
12496 /* ARGSUSED */
12497 void
12498 ip_reprocess_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *dummy_arg)
12499 {
12500         struct iocblk *iocp;
12501         mblk_t *mp1;
12502         ip_ioctl_cmd_t *ipip;
12503         int err;
12504         sin_t   *sin;
12505         struct lifreq *lifr;
12506         struct ifreq *ifr;
12507 
12508         iocp = (struct iocblk *)mp->b_rptr;
12509         ASSERT(ipsq != NULL);
12510         /* Existence of mp1 verified in ip_wput_nondata */
12511         mp1 = mp->b_cont->b_cont;
12512         ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12513         if (ipip->ipi_cmd == SIOCSLIFNAME || ipip->ipi_cmd == IF_UNITSEL) {
12514                 /*
12515                  * Special case where ipx_current_ipif is not set:
12516                  * ill_phyint_reinit merged the v4 and v6 into a single ipsq.
12517                  * We are here as were not able to complete the operation in
12518                  * ipif_set_values because we could not become exclusive on
12519                  * the new ipsq.
12520                  */
12521                 ill_t *ill = q->q_ptr;
12522                 ipsq_current_start(ipsq, ill->ill_ipif, ipip->ipi_cmd);
12523         }
12524         ASSERT(ipsq->ipsq_xop->ipx_current_ipif != NULL);
12525 
12526         if (ipip->ipi_cmd_type == IF_CMD) {
12527                 /* This a old style SIOC[GS]IF* command */
12528                 ifr = (struct ifreq *)mp1->b_rptr;
12529                 sin = (sin_t *)&ifr->ifr_addr;
12530         } else if (ipip->ipi_cmd_type == LIF_CMD) {
12531                 /* This a new style SIOC[GS]LIF* command */
12532                 lifr = (struct lifreq *)mp1->b_rptr;
12533                 sin = (sin_t *)&lifr->lifr_addr;
12534         } else {
12535                 sin = NULL;
12536         }
12537 
12538         err = (*ipip->ipi_func_restart)(ipsq->ipsq_xop->ipx_current_ipif, sin,
12539             q, mp, ipip, mp1->b_rptr);
12540 
12541         DTRACE_PROBE4(ipif__ioctl, char *, "ip_reprocess_ioctl finish",
12542             int, ipip->ipi_cmd,
12543             ill_t *, ipsq->ipsq_xop->ipx_current_ipif->ipif_ill,
12544             ipif_t *, ipsq->ipsq_xop->ipx_current_ipif);
12545 
12546         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12547 }
12548 
12549 /*
12550  * ioctl processing
12551  *
12552  * ioctl processing starts with ip_sioctl_copyin_setup(), which looks up
12553  * the ioctl command in the ioctl tables, determines the copyin data size
12554  * from the ipi_copyin_size field, and does an mi_copyin() of that size.
12555  *
12556  * ioctl processing then continues when the M_IOCDATA makes its way down to
12557  * ip_wput_nondata().  The ioctl is looked up again in the ioctl table, its
12558  * associated 'conn' is refheld till the end of the ioctl and the general
12559  * ioctl processing function ip_process_ioctl() is called to extract the
12560  * arguments and process the ioctl.  To simplify extraction, ioctl commands
12561  * are "typed" based on the arguments they take (e.g., LIF_CMD which takes a
12562  * `struct lifreq'), and a common extract function (e.g., ip_extract_lifreq())
12563  * is used to extract the ioctl's arguments.
12564  *
12565  * ip_process_ioctl determines if the ioctl needs to be serialized, and if
12566  * so goes thru the serialization primitive ipsq_try_enter. Then the
12567  * appropriate function to handle the ioctl is called based on the entry in
12568  * the ioctl table. ioctl completion is encapsulated in ip_ioctl_finish
12569  * which also refreleases the 'conn' that was refheld at the start of the
12570  * ioctl. Finally ipsq_exit is called if needed to exit the ipsq.
12571  *
12572  * Many exclusive ioctls go thru an internal down up sequence as part of
12573  * the operation. For example an attempt to change the IP address of an
12574  * ipif entails ipif_down, set address, ipif_up. Bringing down the interface
12575  * does all the cleanup such as deleting all ires that use this address.
12576  * Then we need to wait till all references to the interface go away.
12577  */
12578 void
12579 ip_process_ioctl(ipsq_t *ipsq, queue_t *q, mblk_t *mp, void *arg)
12580 {
12581         struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
12582         ip_ioctl_cmd_t *ipip = arg;
12583         ip_extract_func_t *extract_funcp;
12584         cmd_info_t ci;
12585         int err;
12586         boolean_t entered_ipsq = B_FALSE;
12587 
12588         ip3dbg(("ip_process_ioctl: ioctl %X\n", iocp->ioc_cmd));
12589 
12590         if (ipip == NULL)
12591                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12592 
12593         /*
12594          * SIOCLIFADDIF needs to go thru a special path since the
12595          * ill may not exist yet. This happens in the case of lo0
12596          * which is created using this ioctl.
12597          */
12598         if (ipip->ipi_cmd == SIOCLIFADDIF) {
12599                 err = ip_sioctl_addif(NULL, NULL, q, mp, NULL, NULL);
12600                 DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish",
12601                     int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12602                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12603                 return;
12604         }
12605 
12606         ci.ci_ipif = NULL;
12607         switch (ipip->ipi_cmd_type) {
12608         case MISC_CMD:
12609         case MSFILT_CMD:
12610                 /*
12611                  * All MISC_CMD ioctls come in here -- e.g. SIOCGLIFCONF.
12612                  */
12613                 if (ipip->ipi_cmd == IF_UNITSEL) {
12614                         /* ioctl comes down the ill */
12615                         ci.ci_ipif = ((ill_t *)q->q_ptr)->ill_ipif;
12616                         ipif_refhold(ci.ci_ipif);
12617                 }
12618                 err = 0;
12619                 ci.ci_sin = NULL;
12620                 ci.ci_sin6 = NULL;
12621                 ci.ci_lifr = NULL;
12622                 extract_funcp = NULL;
12623                 break;
12624 
12625         case IF_CMD:
12626         case LIF_CMD:
12627                 extract_funcp = ip_extract_lifreq;
12628                 break;
12629 
12630         case ARP_CMD:
12631         case XARP_CMD:
12632                 extract_funcp = ip_extract_arpreq;
12633                 break;
12634 
12635         default:
12636                 ASSERT(0);
12637         }
12638 
12639         if (extract_funcp != NULL) {
12640                 err = (*extract_funcp)(q, mp, ipip, &ci);
12641                 if (err != 0) {
12642                         DTRACE_PROBE4(ipif__ioctl,
12643                             char *, "ip_process_ioctl finish err",
12644                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12645                         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12646                         return;
12647                 }
12648 
12649                 /*
12650                  * All of the extraction functions return a refheld ipif.
12651                  */
12652                 ASSERT(ci.ci_ipif != NULL);
12653         }
12654 
12655         if (!(ipip->ipi_flags & IPI_WR)) {
12656                 /*
12657                  * A return value of EINPROGRESS means the ioctl is
12658                  * either queued and waiting for some reason or has
12659                  * already completed.
12660                  */
12661                 err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip,
12662                     ci.ci_lifr);
12663                 if (ci.ci_ipif != NULL) {
12664                         DTRACE_PROBE4(ipif__ioctl,
12665                             char *, "ip_process_ioctl finish RD",
12666                             int, ipip->ipi_cmd, ill_t *, ci.ci_ipif->ipif_ill,
12667                             ipif_t *, ci.ci_ipif);
12668                         ipif_refrele(ci.ci_ipif);
12669                 } else {
12670                         DTRACE_PROBE4(ipif__ioctl,
12671                             char *, "ip_process_ioctl finish RD",
12672                             int, ipip->ipi_cmd, ill_t *, NULL, ipif_t *, NULL);
12673                 }
12674                 ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), NULL);
12675                 return;
12676         }
12677 
12678         ASSERT(ci.ci_ipif != NULL);
12679 
12680         /*
12681          * If ipsq is non-NULL, we are already being called exclusively
12682          */
12683         ASSERT(ipsq == NULL || IAM_WRITER_IPSQ(ipsq));
12684         if (ipsq == NULL) {
12685                 ipsq = ipsq_try_enter(ci.ci_ipif, NULL, q, mp, ip_process_ioctl,
12686                     NEW_OP, B_TRUE);
12687                 if (ipsq == NULL) {
12688                         ipif_refrele(ci.ci_ipif);
12689                         return;
12690                 }
12691                 entered_ipsq = B_TRUE;
12692         }
12693         /*
12694          * Release the ipif so that ipif_down and friends that wait for
12695          * references to go away are not misled about the current ipif_refcnt
12696          * values. We are writer so we can access the ipif even after releasing
12697          * the ipif.
12698          */
12699         ipif_refrele(ci.ci_ipif);
12700 
12701         ipsq_current_start(ipsq, ci.ci_ipif, ipip->ipi_cmd);
12702 
12703         /*
12704          * A return value of EINPROGRESS means the ioctl is
12705          * either queued and waiting for some reason or has
12706          * already completed.
12707          */
12708         err = (*ipip->ipi_func)(ci.ci_ipif, ci.ci_sin, q, mp, ipip, ci.ci_lifr);
12709 
12710         DTRACE_PROBE4(ipif__ioctl, char *, "ip_process_ioctl finish WR",
12711             int, ipip->ipi_cmd,
12712             ill_t *, ci.ci_ipif == NULL ? NULL : ci.ci_ipif->ipif_ill,
12713             ipif_t *, ci.ci_ipif);
12714         ip_ioctl_finish(q, mp, err, IPI2MODE(ipip), ipsq);
12715 
12716         if (entered_ipsq)
12717                 ipsq_exit(ipsq);
12718 }
12719 
12720 /*
12721  * Complete the ioctl. Typically ioctls use the mi package and need to
12722  * do mi_copyout/mi_copy_done.
12723  */
12724 void
12725 ip_ioctl_finish(queue_t *q, mblk_t *mp, int err, int mode, ipsq_t *ipsq)
12726 {
12727         conn_t  *connp = NULL;
12728 
12729         if (err == EINPROGRESS)
12730                 return;
12731 
12732         if (CONN_Q(q)) {
12733                 connp = Q_TO_CONN(q);
12734                 ASSERT(connp->conn_ref >= 2);
12735         }
12736 
12737         switch (mode) {
12738         case COPYOUT:
12739                 if (err == 0)
12740                         mi_copyout(q, mp);
12741                 else
12742                         mi_copy_done(q, mp, err);
12743                 break;
12744 
12745         case NO_COPYOUT:
12746                 mi_copy_done(q, mp, err);
12747                 break;
12748 
12749         default:
12750                 ASSERT(mode == CONN_CLOSE);     /* aborted through CONN_CLOSE */
12751                 break;
12752         }
12753 
12754         /*
12755          * The conn refhold and ioctlref placed on the conn at the start of the
12756          * ioctl are released here.
12757          */
12758         if (connp != NULL) {
12759                 CONN_DEC_IOCTLREF(connp);
12760                 CONN_OPER_PENDING_DONE(connp);
12761         }
12762 
12763         if (ipsq != NULL)
12764                 ipsq_current_finish(ipsq);
12765 }
12766 
12767 /* Handles all non data messages */
12768 int
12769 ip_wput_nondata(queue_t *q, mblk_t *mp)
12770 {
12771         mblk_t          *mp1;
12772         struct iocblk   *iocp;
12773         ip_ioctl_cmd_t  *ipip;
12774         conn_t          *connp;
12775         cred_t          *cr;
12776         char            *proto_str;
12777 
12778         if (CONN_Q(q))
12779                 connp = Q_TO_CONN(q);
12780         else
12781                 connp = NULL;
12782 
12783         switch (DB_TYPE(mp)) {
12784         case M_IOCTL:
12785                 /*
12786                  * IOCTL processing begins in ip_sioctl_copyin_setup which
12787                  * will arrange to copy in associated control structures.
12788                  */
12789                 ip_sioctl_copyin_setup(q, mp);
12790                 return (0);
12791         case M_IOCDATA:
12792                 /*
12793                  * Ensure that this is associated with one of our trans-
12794                  * parent ioctls.  If it's not ours, discard it if we're
12795                  * running as a driver, or pass it on if we're a module.
12796                  */
12797                 iocp = (struct iocblk *)mp->b_rptr;
12798                 ipip = ip_sioctl_lookup(iocp->ioc_cmd);
12799                 if (ipip == NULL) {
12800                         if (q->q_next == NULL) {
12801                                 goto nak;
12802                         } else {
12803                                 putnext(q, mp);
12804                         }
12805                         return (0);
12806                 }
12807                 if ((q->q_next != NULL) && !(ipip->ipi_flags & IPI_MODOK)) {
12808                         /*
12809                          * The ioctl is one we recognise, but is not consumed
12810                          * by IP as a module and we are a module, so we drop
12811                          */
12812                         goto nak;
12813                 }
12814 
12815                 /* IOCTL continuation following copyin or copyout. */
12816                 if (mi_copy_state(q, mp, NULL) == -1) {
12817                         /*
12818                          * The copy operation failed.  mi_copy_state already
12819                          * cleaned up, so we're out of here.
12820                          */
12821                         return (0);
12822                 }
12823                 /*
12824                  * If we just completed a copy in, we become writer and
12825                  * continue processing in ip_sioctl_copyin_done.  If it
12826                  * was a copy out, we call mi_copyout again.  If there is
12827                  * nothing more to copy out, it will complete the IOCTL.
12828                  */
12829                 if (MI_COPY_DIRECTION(mp) == MI_COPY_IN) {
12830                         if (!(mp1 = mp->b_cont) || !(mp1 = mp1->b_cont)) {
12831                                 mi_copy_done(q, mp, EPROTO);
12832                                 return (0);
12833                         }
12834                         /*
12835                          * Check for cases that need more copying.  A return
12836                          * value of 0 means a second copyin has been started,
12837                          * so we return; a return value of 1 means no more
12838                          * copying is needed, so we continue.
12839                          */
12840                         if (ipip->ipi_cmd_type == MSFILT_CMD &&
12841                             MI_COPY_COUNT(mp) == 1) {
12842                                 if (ip_copyin_msfilter(q, mp) == 0)
12843                                         return (0);
12844                         }
12845                         /*
12846                          * Refhold the conn, till the ioctl completes. This is
12847                          * needed in case the ioctl ends up in the pending mp
12848                          * list. Every mp in the ipx_pending_mp list must have
12849                          * a refhold on the conn to resume processing. The
12850                          * refhold is released when the ioctl completes
12851                          * (whether normally or abnormally). An ioctlref is also
12852                          * placed on the conn to prevent TCP from removing the
12853                          * queue needed to send the ioctl reply back.
12854                          * In all cases ip_ioctl_finish is called to finish
12855                          * the ioctl and release the refholds.
12856                          */
12857                         if (connp != NULL) {
12858                                 /* This is not a reentry */
12859                                 CONN_INC_REF(connp);
12860                                 CONN_INC_IOCTLREF(connp);
12861                         } else {
12862                                 if (!(ipip->ipi_flags & IPI_MODOK)) {
12863                                         mi_copy_done(q, mp, EINVAL);
12864                                         return (0);
12865                                 }
12866                         }
12867 
12868                         ip_process_ioctl(NULL, q, mp, ipip);
12869 
12870                 } else {
12871                         mi_copyout(q, mp);
12872                 }
12873                 return (0);
12874 
12875         case M_IOCNAK:
12876                 /*
12877                  * The only way we could get here is if a resolver didn't like
12878                  * an IOCTL we sent it.  This shouldn't happen.
12879                  */
12880                 (void) mi_strlog(q, 1, SL_ERROR|SL_TRACE,
12881                     "ip_wput_nondata: unexpected M_IOCNAK, ioc_cmd 0x%x",
12882                     ((struct iocblk *)mp->b_rptr)->ioc_cmd);
12883                 freemsg(mp);
12884                 return (0);
12885         case M_IOCACK:
12886                 /* /dev/ip shouldn't see this */
12887                 goto nak;
12888         case M_FLUSH:
12889                 if (*mp->b_rptr & FLUSHW)
12890                         flushq(q, FLUSHALL);
12891                 if (q->q_next) {
12892                         putnext(q, mp);
12893                         return (0);
12894                 }
12895                 if (*mp->b_rptr & FLUSHR) {
12896                         *mp->b_rptr &= ~FLUSHW;
12897                         qreply(q, mp);
12898                         return (0);
12899                 }
12900                 freemsg(mp);
12901                 return (0);
12902         case M_CTL:
12903                 break;
12904         case M_PROTO:
12905         case M_PCPROTO:
12906                 /*
12907                  * The only PROTO messages we expect are SNMP-related.
12908                  */
12909                 switch (((union T_primitives *)mp->b_rptr)->type) {
12910                 case T_SVR4_OPTMGMT_REQ:
12911                         ip2dbg(("ip_wput_nondata: T_SVR4_OPTMGMT_REQ "
12912                             "flags %x\n",
12913                             ((struct T_optmgmt_req *)mp->b_rptr)->MGMT_flags));
12914 
12915                         if (connp == NULL) {
12916                                 proto_str = "T_SVR4_OPTMGMT_REQ";
12917                                 goto protonak;
12918                         }
12919 
12920                         /*
12921                          * All Solaris components should pass a db_credp
12922                          * for this TPI message, hence we ASSERT.
12923                          * But in case there is some other M_PROTO that looks
12924                          * like a TPI message sent by some other kernel
12925                          * component, we check and return an error.
12926                          */
12927                         cr = msg_getcred(mp, NULL);
12928                         ASSERT(cr != NULL);
12929                         if (cr == NULL) {
12930                                 mp = mi_tpi_err_ack_alloc(mp, TSYSERR, EINVAL);
12931                                 if (mp != NULL)
12932                                         qreply(q, mp);
12933                                 return (0);
12934                         }
12935 
12936                         if (!snmpcom_req(q, mp, ip_snmp_set, ip_snmp_get, cr)) {
12937                                 proto_str = "Bad SNMPCOM request?";
12938                                 goto protonak;
12939                         }
12940                         return (0);
12941                 default:
12942                         ip1dbg(("ip_wput_nondata: dropping M_PROTO prim %u\n",
12943                             (int)*(uint_t *)mp->b_rptr));
12944                         freemsg(mp);
12945                         return (0);
12946                 }
12947         default:
12948                 break;
12949         }
12950         if (q->q_next) {
12951                 putnext(q, mp);
12952         } else
12953                 freemsg(mp);
12954         return (0);
12955 
12956 nak:
12957         iocp->ioc_error = EINVAL;
12958         mp->b_datap->db_type = M_IOCNAK;
12959         iocp->ioc_count = 0;
12960         qreply(q, mp);
12961         return (0);
12962 
12963 protonak:
12964         cmn_err(CE_NOTE, "IP doesn't process %s as a module", proto_str);
12965         if ((mp = mi_tpi_err_ack_alloc(mp, TPROTO, EINVAL)) != NULL)
12966                 qreply(q, mp);
12967         return (0);
12968 }
12969 
12970 /*
12971  * Process IP options in an outbound packet.  Verify that the nexthop in a
12972  * strict source route is onlink.
12973  * Returns non-zero if something fails in which case an ICMP error has been
12974  * sent and mp freed.
12975  *
12976  * Assumes the ULP has called ip_massage_options to move nexthop into ipha_dst.
12977  */
12978 int
12979 ip_output_options(mblk_t *mp, ipha_t *ipha, ip_xmit_attr_t *ixa, ill_t *ill)
12980 {
12981         ipoptp_t        opts;
12982         uchar_t         *opt;
12983         uint8_t         optval;
12984         uint8_t         optlen;
12985         ipaddr_t        dst;
12986         intptr_t        code = 0;
12987         ire_t           *ire;
12988         ip_stack_t      *ipst = ixa->ixa_ipst;
12989         ip_recv_attr_t  iras;
12990 
12991         ip2dbg(("ip_output_options\n"));
12992 
12993         dst = ipha->ipha_dst;
12994         for (optval = ipoptp_first(&opts, ipha);
12995             optval != IPOPT_EOL;
12996             optval = ipoptp_next(&opts)) {
12997                 opt = opts.ipoptp_cur;
12998                 optlen = opts.ipoptp_len;
12999                 ip2dbg(("ip_output_options: opt %d, len %d\n",
13000                     optval, optlen));
13001                 switch (optval) {
13002                         uint32_t off;
13003                 case IPOPT_SSRR:
13004                 case IPOPT_LSRR:
13005                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13006                                 ip1dbg((
13007                                     "ip_output_options: bad option offset\n"));
13008                                 code = (char *)&opt[IPOPT_OLEN] -
13009                                     (char *)ipha;
13010                                 goto param_prob;
13011                         }
13012                         off = opt[IPOPT_OFFSET];
13013                         ip1dbg(("ip_output_options: next hop 0x%x\n",
13014                             ntohl(dst)));
13015                         /*
13016                          * For strict: verify that dst is directly
13017                          * reachable.
13018                          */
13019                         if (optval == IPOPT_SSRR) {
13020                                 ire = ire_ftable_lookup_v4(dst, 0, 0,
13021                                     IRE_INTERFACE, NULL, ALL_ZONES,
13022                                     ixa->ixa_tsl,
13023                                     MATCH_IRE_TYPE | MATCH_IRE_SECATTR, 0, ipst,
13024                                     NULL);
13025                                 if (ire == NULL) {
13026                                         ip1dbg(("ip_output_options: SSRR not"
13027                                             " directly reachable: 0x%x\n",
13028                                             ntohl(dst)));
13029                                         goto bad_src_route;
13030                                 }
13031                                 ire_refrele(ire);
13032                         }
13033                         break;
13034                 case IPOPT_RR:
13035                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13036                                 ip1dbg((
13037                                     "ip_output_options: bad option offset\n"));
13038                                 code = (char *)&opt[IPOPT_OLEN] -
13039                                     (char *)ipha;
13040                                 goto param_prob;
13041                         }
13042                         break;
13043                 case IPOPT_TS:
13044                         /*
13045                          * Verify that length >=5 and that there is either
13046                          * room for another timestamp or that the overflow
13047                          * counter is not maxed out.
13048                          */
13049                         code = (char *)&opt[IPOPT_OLEN] - (char *)ipha;
13050                         if (optlen < IPOPT_MINLEN_IT) {
13051                                 goto param_prob;
13052                         }
13053                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
13054                                 ip1dbg((
13055                                     "ip_output_options: bad option offset\n"));
13056                                 code = (char *)&opt[IPOPT_OFFSET] -
13057                                     (char *)ipha;
13058                                 goto param_prob;
13059                         }
13060                         switch (opt[IPOPT_POS_OV_FLG] & 0x0F) {
13061                         case IPOPT_TS_TSONLY:
13062                                 off = IPOPT_TS_TIMELEN;
13063                                 break;
13064                         case IPOPT_TS_TSANDADDR:
13065                         case IPOPT_TS_PRESPEC:
13066                         case IPOPT_TS_PRESPEC_RFC791:
13067                                 off = IP_ADDR_LEN + IPOPT_TS_TIMELEN;
13068                                 break;
13069                         default:
13070                                 code = (char *)&opt[IPOPT_POS_OV_FLG] -
13071                                     (char *)ipha;
13072                                 goto param_prob;
13073                         }
13074                         if (opt[IPOPT_OFFSET] - 1 + off > optlen &&
13075                             (opt[IPOPT_POS_OV_FLG] & 0xF0) == 0xF0) {
13076                                 /*
13077                                  * No room and the overflow counter is 15
13078                                  * already.
13079                                  */
13080                                 goto param_prob;
13081                         }
13082                         break;
13083                 }
13084         }
13085 
13086         if ((opts.ipoptp_flags & IPOPTP_ERROR) == 0)
13087                 return (0);
13088 
13089         ip1dbg(("ip_output_options: error processing IP options."));
13090         code = (char *)&opt[IPOPT_OFFSET] - (char *)ipha;
13091 
13092 param_prob:
13093         bzero(&iras, sizeof (iras));
13094         iras.ira_ill = iras.ira_rill = ill;
13095         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13096         iras.ira_rifindex = iras.ira_ruifindex;
13097         iras.ira_flags = IRAF_IS_IPV4;
13098 
13099         ip_drop_output("ip_output_options", mp, ill);
13100         icmp_param_problem(mp, (uint8_t)code, &iras);
13101         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13102         return (-1);
13103 
13104 bad_src_route:
13105         bzero(&iras, sizeof (iras));
13106         iras.ira_ill = iras.ira_rill = ill;
13107         iras.ira_ruifindex = ill->ill_phyint->phyint_ifindex;
13108         iras.ira_rifindex = iras.ira_ruifindex;
13109         iras.ira_flags = IRAF_IS_IPV4;
13110 
13111         ip_drop_input("ICMP_SOURCE_ROUTE_FAILED", mp, ill);
13112         icmp_unreachable(mp, ICMP_SOURCE_ROUTE_FAILED, &iras);
13113         ASSERT(!(iras.ira_flags & IRAF_IPSEC_SECURE));
13114         return (-1);
13115 }
13116 
13117 /*
13118  * The maximum value of conn_drain_list_cnt is CONN_MAXDRAINCNT.
13119  * conn_drain_list_cnt can be changed by setting conn_drain_nthreads
13120  * thru /etc/system.
13121  */
13122 #define CONN_MAXDRAINCNT        64
13123 
13124 static void
13125 conn_drain_init(ip_stack_t *ipst)
13126 {
13127         int i, j;
13128         idl_tx_list_t *itl_tx;
13129 
13130         ipst->ips_conn_drain_list_cnt = conn_drain_nthreads;
13131 
13132         if ((ipst->ips_conn_drain_list_cnt == 0) ||
13133             (ipst->ips_conn_drain_list_cnt > CONN_MAXDRAINCNT)) {
13134                 /*
13135                  * Default value of the number of drainers is the
13136                  * number of cpus, subject to maximum of 8 drainers.
13137                  */
13138                 if (boot_max_ncpus != -1)
13139                         ipst->ips_conn_drain_list_cnt = MIN(boot_max_ncpus, 8);
13140                 else
13141                         ipst->ips_conn_drain_list_cnt = MIN(max_ncpus, 8);
13142         }
13143 
13144         ipst->ips_idl_tx_list =
13145             kmem_zalloc(TX_FANOUT_SIZE * sizeof (idl_tx_list_t), KM_SLEEP);
13146         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13147                 itl_tx =  &ipst->ips_idl_tx_list[i];
13148                 itl_tx->txl_drain_list =
13149                     kmem_zalloc(ipst->ips_conn_drain_list_cnt *
13150                     sizeof (idl_t), KM_SLEEP);
13151                 mutex_init(&itl_tx->txl_lock, NULL, MUTEX_DEFAULT, NULL);
13152                 for (j = 0; j < ipst->ips_conn_drain_list_cnt; j++) {
13153                         mutex_init(&itl_tx->txl_drain_list[j].idl_lock, NULL,
13154                             MUTEX_DEFAULT, NULL);
13155                         itl_tx->txl_drain_list[j].idl_itl = itl_tx;
13156                 }
13157         }
13158 }
13159 
13160 static void
13161 conn_drain_fini(ip_stack_t *ipst)
13162 {
13163         int i;
13164         idl_tx_list_t *itl_tx;
13165 
13166         for (i = 0; i < TX_FANOUT_SIZE; i++) {
13167                 itl_tx =  &ipst->ips_idl_tx_list[i];
13168                 kmem_free(itl_tx->txl_drain_list,
13169                     ipst->ips_conn_drain_list_cnt * sizeof (idl_t));
13170         }
13171         kmem_free(ipst->ips_idl_tx_list,
13172             TX_FANOUT_SIZE * sizeof (idl_tx_list_t));
13173         ipst->ips_idl_tx_list = NULL;
13174 }
13175 
13176 /*
13177  * Flow control has blocked us from proceeding.  Insert the given conn in one
13178  * of the conn drain lists.  When flow control is unblocked, either ip_wsrv()
13179  * (STREAMS) or ill_flow_enable() (direct) will be called back, which in turn
13180  * will call conn_walk_drain().  See the flow control notes at the top of this
13181  * file for more details.
13182  */
13183 void
13184 conn_drain_insert(conn_t *connp, idl_tx_list_t *tx_list)
13185 {
13186         idl_t   *idl = tx_list->txl_drain_list;
13187         uint_t  index;
13188         ip_stack_t      *ipst = connp->conn_netstack->netstack_ip;
13189 
13190         mutex_enter(&connp->conn_lock);
13191         if (connp->conn_state_flags & CONN_CLOSING) {
13192                 /*
13193                  * The conn is closing as a result of which CONN_CLOSING
13194                  * is set. Return.
13195                  */
13196                 mutex_exit(&connp->conn_lock);
13197                 return;
13198         } else if (connp->conn_idl == NULL) {
13199                 /*
13200                  * Assign the next drain list round robin. We dont' use
13201                  * a lock, and thus it may not be strictly round robin.
13202                  * Atomicity of load/stores is enough to make sure that
13203                  * conn_drain_list_index is always within bounds.
13204                  */
13205                 index = tx_list->txl_drain_index;
13206                 ASSERT(index < ipst->ips_conn_drain_list_cnt);
13207                 connp->conn_idl = &tx_list->txl_drain_list[index];
13208                 index++;
13209                 if (index == ipst->ips_conn_drain_list_cnt)
13210                         index = 0;
13211                 tx_list->txl_drain_index = index;
13212         } else {
13213                 ASSERT(connp->conn_idl->idl_itl == tx_list);
13214         }
13215         mutex_exit(&connp->conn_lock);
13216 
13217         idl = connp->conn_idl;
13218         mutex_enter(&idl->idl_lock);
13219         if ((connp->conn_drain_prev != NULL) ||
13220             (connp->conn_state_flags & CONN_CLOSING)) {
13221                 /*
13222                  * The conn is either already in the drain list or closing.
13223                  * (We needed to check for CONN_CLOSING again since close can
13224                  * sneak in between dropping conn_lock and acquiring idl_lock.)
13225                  */
13226                 mutex_exit(&idl->idl_lock);
13227                 return;
13228         }
13229 
13230         /*
13231          * The conn is not in the drain list. Insert it at the
13232          * tail of the drain list. The drain list is circular
13233          * and doubly linked. idl_conn points to the 1st element
13234          * in the list.
13235          */
13236         if (idl->idl_conn == NULL) {
13237                 idl->idl_conn = connp;
13238                 connp->conn_drain_next = connp;
13239                 connp->conn_drain_prev = connp;
13240         } else {
13241                 conn_t *head = idl->idl_conn;
13242 
13243                 connp->conn_drain_next = head;
13244                 connp->conn_drain_prev = head->conn_drain_prev;
13245                 head->conn_drain_prev->conn_drain_next = connp;
13246                 head->conn_drain_prev = connp;
13247         }
13248         /*
13249          * For non streams based sockets assert flow control.
13250          */
13251         conn_setqfull(connp, NULL);
13252         mutex_exit(&idl->idl_lock);
13253 }
13254 
13255 static void
13256 conn_drain_remove(conn_t *connp)
13257 {
13258         idl_t *idl = connp->conn_idl;
13259 
13260         if (idl != NULL) {
13261                 /*
13262                  * Remove ourself from the drain list.
13263                  */
13264                 if (connp->conn_drain_next == connp) {
13265                         /* Singleton in the list */
13266                         ASSERT(connp->conn_drain_prev == connp);
13267                         idl->idl_conn = NULL;
13268                 } else {
13269                         connp->conn_drain_prev->conn_drain_next =
13270                             connp->conn_drain_next;
13271                         connp->conn_drain_next->conn_drain_prev =
13272                             connp->conn_drain_prev;
13273                         if (idl->idl_conn == connp)
13274                                 idl->idl_conn = connp->conn_drain_next;
13275                 }
13276 
13277                 /*
13278                  * NOTE: because conn_idl is associated with a specific drain
13279                  * list which in turn is tied to the index the TX ring
13280                  * (txl_cookie) hashes to, and because the TX ring can change
13281                  * over the lifetime of the conn_t, we must clear conn_idl so
13282                  * a subsequent conn_drain_insert() will set conn_idl again
13283                  * based on the latest txl_cookie.
13284                  */
13285                 connp->conn_idl = NULL;
13286         }
13287         connp->conn_drain_next = NULL;
13288         connp->conn_drain_prev = NULL;
13289 
13290         conn_clrqfull(connp, NULL);
13291         /*
13292          * For streams based sockets open up flow control.
13293          */
13294         if (!IPCL_IS_NONSTR(connp))
13295                 enableok(connp->conn_wq);
13296 }
13297 
13298 /*
13299  * This conn is closing, and we are called from ip_close. OR
13300  * this conn is draining because flow-control on the ill has been relieved.
13301  *
13302  * We must also need to remove conn's on this idl from the list, and also
13303  * inform the sockfs upcalls about the change in flow-control.
13304  */
13305 static void
13306 conn_drain(conn_t *connp, boolean_t closing)
13307 {
13308         idl_t *idl;
13309         conn_t *next_connp;
13310 
13311         /*
13312          * connp->conn_idl is stable at this point, and no lock is needed
13313          * to check it. If we are called from ip_close, close has already
13314          * set CONN_CLOSING, thus freezing the value of conn_idl, and
13315          * called us only because conn_idl is non-null. If we are called thru
13316          * service, conn_idl could be null, but it cannot change because
13317          * service is single-threaded per queue, and there cannot be another
13318          * instance of service trying to call conn_drain_insert on this conn
13319          * now.
13320          */
13321         ASSERT(!closing || connp == NULL || connp->conn_idl != NULL);
13322 
13323         /*
13324          * If the conn doesn't exist or is not on a drain list, bail.
13325          */
13326         if (connp == NULL || connp->conn_idl == NULL ||
13327             connp->conn_drain_prev == NULL) {
13328                 return;
13329         }
13330 
13331         idl = connp->conn_idl;
13332         ASSERT(MUTEX_HELD(&idl->idl_lock));
13333 
13334         if (!closing) {
13335                 next_connp = connp->conn_drain_next;
13336                 while (next_connp != connp) {
13337                         conn_t *delconnp = next_connp;
13338 
13339                         next_connp = next_connp->conn_drain_next;
13340                         conn_drain_remove(delconnp);
13341                 }
13342                 ASSERT(connp->conn_drain_next == idl->idl_conn);
13343         }
13344         conn_drain_remove(connp);
13345 }
13346 
13347 /*
13348  * Write service routine. Shared perimeter entry point.
13349  * The device queue's messages has fallen below the low water mark and STREAMS
13350  * has backenabled the ill_wq. Send sockfs notification about flow-control on
13351  * each waiting conn.
13352  */
13353 int
13354 ip_wsrv(queue_t *q)
13355 {
13356         ill_t   *ill;
13357 
13358         ill = (ill_t *)q->q_ptr;
13359         if (ill->ill_state_flags == 0) {
13360                 ip_stack_t *ipst = ill->ill_ipst;
13361 
13362                 /*
13363                  * The device flow control has opened up.
13364                  * Walk through conn drain lists and qenable the
13365                  * first conn in each list. This makes sense only
13366                  * if the stream is fully plumbed and setup.
13367                  * Hence the ill_state_flags check above.
13368                  */
13369                 ip1dbg(("ip_wsrv: walking\n"));
13370                 conn_walk_drain(ipst, &ipst->ips_idl_tx_list[0]);
13371                 enableok(ill->ill_wq);
13372         }
13373         return (0);
13374 }
13375 
13376 /*
13377  * Callback to disable flow control in IP.
13378  *
13379  * This is a mac client callback added when the DLD_CAPAB_DIRECT capability
13380  * is enabled.
13381  *
13382  * When MAC_TX() is not able to send any more packets, dld sets its queue
13383  * to QFULL and enable the STREAMS flow control. Later, when the underlying
13384  * driver is able to continue to send packets, it calls mac_tx_(ring_)update()
13385  * function and wakes up corresponding mac worker threads, which in turn
13386  * calls this callback function, and disables flow control.
13387  */
13388 void
13389 ill_flow_enable(void *arg, ip_mac_tx_cookie_t cookie)
13390 {
13391         ill_t *ill = (ill_t *)arg;
13392         ip_stack_t *ipst = ill->ill_ipst;
13393         idl_tx_list_t *idl_txl;
13394 
13395         idl_txl = &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];
13396         mutex_enter(&idl_txl->txl_lock);
13397         /* add code to to set a flag to indicate idl_txl is enabled */
13398         conn_walk_drain(ipst, idl_txl);
13399         mutex_exit(&idl_txl->txl_lock);
13400 }
13401 
13402 /*
13403  * Flow control has been relieved and STREAMS has backenabled us; drain
13404  * all the conn lists on `tx_list'.
13405  */
13406 static void
13407 conn_walk_drain(ip_stack_t *ipst, idl_tx_list_t *tx_list)
13408 {
13409         int i;
13410         idl_t *idl;
13411 
13412         IP_STAT(ipst, ip_conn_walk_drain);
13413 
13414         for (i = 0; i < ipst->ips_conn_drain_list_cnt; i++) {
13415                 idl = &tx_list->txl_drain_list[i];
13416                 mutex_enter(&idl->idl_lock);
13417                 conn_drain(idl->idl_conn, B_FALSE);
13418                 mutex_exit(&idl->idl_lock);
13419         }
13420 }
13421 
13422 /*
13423  * Determine if the ill and multicast aspects of that packets
13424  * "matches" the conn.
13425  */
13426 boolean_t
13427 conn_wantpacket(conn_t *connp, ip_recv_attr_t *ira, ipha_t *ipha)
13428 {
13429         ill_t           *ill = ira->ira_rill;
13430         zoneid_t        zoneid = ira->ira_zoneid;
13431         uint_t          in_ifindex;
13432         ipaddr_t        dst, src;
13433 
13434         dst = ipha->ipha_dst;
13435         src = ipha->ipha_src;
13436 
13437         /*
13438          * conn_incoming_ifindex is set by IP_BOUND_IF which limits
13439          * unicast, broadcast and multicast reception to
13440          * conn_incoming_ifindex.
13441          * conn_wantpacket is called for unicast, broadcast and
13442          * multicast packets.
13443          */
13444         in_ifindex = connp->conn_incoming_ifindex;
13445 
13446         /* mpathd can bind to the under IPMP interface, which we allow */
13447         if (in_ifindex != 0 && in_ifindex != ill->ill_phyint->phyint_ifindex) {
13448                 if (!IS_UNDER_IPMP(ill))
13449                         return (B_FALSE);
13450 
13451                 if (in_ifindex != ipmp_ill_get_ipmp_ifindex(ill))
13452                         return (B_FALSE);
13453         }
13454 
13455         if (!IPCL_ZONE_MATCH(connp, zoneid))
13456                 return (B_FALSE);
13457 
13458         if (!(ira->ira_flags & IRAF_MULTICAST))
13459                 return (B_TRUE);
13460 
13461         if (connp->conn_multi_router) {
13462                 /* multicast packet and multicast router socket: send up */
13463                 return (B_TRUE);
13464         }
13465 
13466         if (ipha->ipha_protocol == IPPROTO_PIM ||
13467             ipha->ipha_protocol == IPPROTO_RSVP)
13468                 return (B_TRUE);
13469 
13470         return (conn_hasmembers_ill_withsrc_v4(connp, dst, src, ira->ira_ill));
13471 }
13472 
13473 void
13474 conn_setqfull(conn_t *connp, boolean_t *flow_stopped)
13475 {
13476         if (IPCL_IS_NONSTR(connp)) {
13477                 (*connp->conn_upcalls->su_txq_full)
13478                     (connp->conn_upper_handle, B_TRUE);
13479                 if (flow_stopped != NULL)
13480                         *flow_stopped = B_TRUE;
13481         } else {
13482                 queue_t *q = connp->conn_wq;
13483 
13484                 ASSERT(q != NULL);
13485                 if (!(q->q_flag & QFULL)) {
13486                         mutex_enter(QLOCK(q));
13487                         if (!(q->q_flag & QFULL)) {
13488                                 /* still need to set QFULL */
13489                                 q->q_flag |= QFULL;
13490                                 /* set flow_stopped to true under QLOCK */
13491                                 if (flow_stopped != NULL)
13492                                         *flow_stopped = B_TRUE;
13493                                 mutex_exit(QLOCK(q));
13494                         } else {
13495                                 /* flow_stopped is left unchanged */
13496                                 mutex_exit(QLOCK(q));
13497                         }
13498                 }
13499         }
13500 }
13501 
13502 void
13503 conn_clrqfull(conn_t *connp, boolean_t *flow_stopped)
13504 {
13505         if (IPCL_IS_NONSTR(connp)) {
13506                 (*connp->conn_upcalls->su_txq_full)
13507                     (connp->conn_upper_handle, B_FALSE);
13508                 if (flow_stopped != NULL)
13509                         *flow_stopped = B_FALSE;
13510         } else {
13511                 queue_t *q = connp->conn_wq;
13512 
13513                 ASSERT(q != NULL);
13514                 if (q->q_flag & QFULL) {
13515                         mutex_enter(QLOCK(q));
13516                         if (q->q_flag & QFULL) {
13517                                 q->q_flag &= ~QFULL;
13518                                 /* set flow_stopped to false under QLOCK */
13519                                 if (flow_stopped != NULL)
13520                                         *flow_stopped = B_FALSE;
13521                                 mutex_exit(QLOCK(q));
13522                                 if (q->q_flag & QWANTW)
13523                                         qbackenable(q, 0);
13524                         } else {
13525                                 /* flow_stopped is left unchanged */
13526                                 mutex_exit(QLOCK(q));
13527                         }
13528                 }
13529         }
13530 
13531         mutex_enter(&connp->conn_lock);
13532         connp->conn_blocked = B_FALSE;
13533         mutex_exit(&connp->conn_lock);
13534 }
13535 
13536 /*
13537  * Return the length in bytes of the IPv4 headers (base header, label, and
13538  * other IP options) that will be needed based on the
13539  * ip_pkt_t structure passed by the caller.
13540  *
13541  * The returned length does not include the length of the upper level
13542  * protocol (ULP) header.
13543  * The caller needs to check that the length doesn't exceed the max for IPv4.
13544  */
13545 int
13546 ip_total_hdrs_len_v4(const ip_pkt_t *ipp)
13547 {
13548         int len;
13549 
13550         len = IP_SIMPLE_HDR_LENGTH;
13551         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13552                 ASSERT(ipp->ipp_label_len_v4 != 0);
13553                 /* We need to round up here */
13554                 len += (ipp->ipp_label_len_v4 + 3) & ~3;
13555         }
13556 
13557         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13558                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13559                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13560                 len += ipp->ipp_ipv4_options_len;
13561         }
13562         return (len);
13563 }
13564 
13565 /*
13566  * All-purpose routine to build an IPv4 header with options based
13567  * on the abstract ip_pkt_t.
13568  *
13569  * The caller has to set the source and destination address as well as
13570  * ipha_length. The caller has to massage any source route and compensate
13571  * for the ULP pseudo-header checksum due to the source route.
13572  */
13573 void
13574 ip_build_hdrs_v4(uchar_t *buf, uint_t buf_len, const ip_pkt_t *ipp,
13575     uint8_t protocol)
13576 {
13577         ipha_t  *ipha = (ipha_t *)buf;
13578         uint8_t *cp;
13579 
13580         /* Initialize IPv4 header */
13581         ipha->ipha_type_of_service = ipp->ipp_type_of_service;
13582         ipha->ipha_length = 0;       /* Caller will set later */
13583         ipha->ipha_ident = 0;
13584         ipha->ipha_fragment_offset_and_flags = 0;
13585         ipha->ipha_ttl = ipp->ipp_unicast_hops;
13586         ipha->ipha_protocol = protocol;
13587         ipha->ipha_hdr_checksum = 0;
13588 
13589         if ((ipp->ipp_fields & IPPF_ADDR) &&
13590             IN6_IS_ADDR_V4MAPPED(&ipp->ipp_addr))
13591                 ipha->ipha_src = ipp->ipp_addr_v4;
13592 
13593         cp = (uint8_t *)&ipha[1];
13594         if (ipp->ipp_fields & IPPF_LABEL_V4) {
13595                 ASSERT(ipp->ipp_label_len_v4 != 0);
13596                 bcopy(ipp->ipp_label_v4, cp, ipp->ipp_label_len_v4);
13597                 cp += ipp->ipp_label_len_v4;
13598                 /* We need to round up here */
13599                 while ((uintptr_t)cp & 0x3) {
13600                         *cp++ = IPOPT_NOP;
13601                 }
13602         }
13603 
13604         if (ipp->ipp_fields & IPPF_IPV4_OPTIONS) {
13605                 ASSERT(ipp->ipp_ipv4_options_len != 0);
13606                 ASSERT((ipp->ipp_ipv4_options_len & 3) == 0);
13607                 bcopy(ipp->ipp_ipv4_options, cp, ipp->ipp_ipv4_options_len);
13608                 cp += ipp->ipp_ipv4_options_len;
13609         }
13610         ipha->ipha_version_and_hdr_length =
13611             (uint8_t)((IP_VERSION << 4) + buf_len / 4);
13612 
13613         ASSERT((int)(cp - buf) == buf_len);
13614 }
13615 
13616 /* Allocate the private structure */
13617 static int
13618 ip_priv_alloc(void **bufp)
13619 {
13620         void    *buf;
13621 
13622         if ((buf = kmem_alloc(sizeof (ip_priv_t), KM_NOSLEEP)) == NULL)
13623                 return (ENOMEM);
13624 
13625         *bufp = buf;
13626         return (0);
13627 }
13628 
13629 /* Function to delete the private structure */
13630 void
13631 ip_priv_free(void *buf)
13632 {
13633         ASSERT(buf != NULL);
13634         kmem_free(buf, sizeof (ip_priv_t));
13635 }
13636 
13637 /*
13638  * The entry point for IPPF processing.
13639  * If the classifier (IPGPC_CLASSIFY) is not loaded and configured, the
13640  * routine just returns.
13641  *
13642  * When called, ip_process generates an ipp_packet_t structure
13643  * which holds the state information for this packet and invokes the
13644  * the classifier (via ipp_packet_process). The classification, depending on
13645  * configured filters, results in a list of actions for this packet. Invoking
13646  * an action may cause the packet to be dropped, in which case we return NULL.
13647  * proc indicates the callout position for
13648  * this packet and ill is the interface this packet arrived on or will leave
13649  * on (inbound and outbound resp.).
13650  *
13651  * We do the processing on the rill (mapped to the upper if ipmp), but MIB
13652  * on the ill corrsponding to the destination IP address.
13653  */
13654 mblk_t *
13655 ip_process(ip_proc_t proc, mblk_t *mp, ill_t *rill, ill_t *ill)
13656 {
13657         ip_priv_t       *priv;
13658         ipp_action_id_t aid;
13659         int             rc = 0;
13660         ipp_packet_t    *pp;
13661 
13662         /* If the classifier is not loaded, return  */
13663         if ((aid = ipp_action_lookup(IPGPC_CLASSIFY)) == IPP_ACTION_INVAL) {
13664                 return (mp);
13665         }
13666 
13667         ASSERT(mp != NULL);
13668 
13669         /* Allocate the packet structure */
13670         rc = ipp_packet_alloc(&pp, "ip", aid);
13671         if (rc != 0)
13672                 goto drop;
13673 
13674         /* Allocate the private structure */
13675         rc = ip_priv_alloc((void **)&priv);
13676         if (rc != 0) {
13677                 ipp_packet_free(pp);
13678                 goto drop;
13679         }
13680         priv->proc = proc;
13681         priv->ill_index = ill_get_upper_ifindex(rill);
13682 
13683         ipp_packet_set_private(pp, priv, ip_priv_free);
13684         ipp_packet_set_data(pp, mp);
13685 
13686         /* Invoke the classifier */
13687         rc = ipp_packet_process(&pp);
13688         if (pp != NULL) {
13689                 mp = ipp_packet_get_data(pp);
13690                 ipp_packet_free(pp);
13691                 if (rc != 0)
13692                         goto drop;
13693                 return (mp);
13694         } else {
13695                 /* No mp to trace in ip_drop_input/ip_drop_output  */
13696                 mp = NULL;
13697         }
13698 drop:
13699         if (proc == IPP_LOCAL_IN || proc == IPP_FWD_IN) {
13700                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
13701                 ip_drop_input("ip_process", mp, ill);
13702         } else {
13703                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
13704                 ip_drop_output("ip_process", mp, ill);
13705         }
13706         freemsg(mp);
13707         return (NULL);
13708 }
13709 
13710 /*
13711  * Propagate a multicast group membership operation (add/drop) on
13712  * all the interfaces crossed by the related multirt routes.
13713  * The call is considered successful if the operation succeeds
13714  * on at least one interface.
13715  *
13716  * This assumes that a set of IRE_HOST/RTF_MULTIRT has been created for the
13717  * multicast addresses with the ire argument being the first one.
13718  * We walk the bucket to find all the of those.
13719  *
13720  * Common to IPv4 and IPv6.
13721  */
13722 static int
13723 ip_multirt_apply_membership(int (*fn)(conn_t *, boolean_t,
13724     const in6_addr_t *, ipaddr_t, uint_t, mcast_record_t, const in6_addr_t *),
13725     ire_t *ire, conn_t *connp, boolean_t checkonly, const in6_addr_t *v6group,
13726     mcast_record_t fmode, const in6_addr_t *v6src)
13727 {
13728         ire_t           *ire_gw;
13729         irb_t           *irb;
13730         int             ifindex;
13731         int             error = 0;
13732         int             result;
13733         ip_stack_t      *ipst = ire->ire_ipst;
13734         ipaddr_t        group;
13735         boolean_t       isv6;
13736         int             match_flags;
13737 
13738         if (IN6_IS_ADDR_V4MAPPED(v6group)) {
13739                 IN6_V4MAPPED_TO_IPADDR(v6group, group);
13740                 isv6 = B_FALSE;
13741         } else {
13742                 isv6 = B_TRUE;
13743         }
13744 
13745         irb = ire->ire_bucket;
13746         ASSERT(irb != NULL);
13747 
13748         result = 0;
13749         irb_refhold(irb);
13750         for (; ire != NULL; ire = ire->ire_next) {
13751                 if ((ire->ire_flags & RTF_MULTIRT) == 0)
13752                         continue;
13753 
13754                 /* We handle -ifp routes by matching on the ill if set */
13755                 match_flags = MATCH_IRE_TYPE;
13756                 if (ire->ire_ill != NULL)
13757                         match_flags |= MATCH_IRE_ILL;
13758 
13759                 if (isv6) {
13760                         if (!IN6_ARE_ADDR_EQUAL(&ire->ire_addr_v6, v6group))
13761                                 continue;
13762 
13763                         ire_gw = ire_ftable_lookup_v6(&ire->ire_gateway_addr_v6,
13764                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13765                             match_flags, 0, ipst, NULL);
13766                 } else {
13767                         if (ire->ire_addr != group)
13768                                 continue;
13769 
13770                         ire_gw = ire_ftable_lookup_v4(ire->ire_gateway_addr,
13771                             0, 0, IRE_INTERFACE, ire->ire_ill, ALL_ZONES, NULL,
13772                             match_flags, 0, ipst, NULL);
13773                 }
13774                 /* No interface route exists for the gateway; skip this ire. */
13775                 if (ire_gw == NULL)
13776                         continue;
13777                 if (ire_gw->ire_flags & (RTF_REJECT|RTF_BLACKHOLE)) {
13778                         ire_refrele(ire_gw);
13779                         continue;
13780                 }
13781                 ASSERT(ire_gw->ire_ill != NULL);     /* IRE_INTERFACE */
13782                 ifindex = ire_gw->ire_ill->ill_phyint->phyint_ifindex;
13783 
13784                 /*
13785                  * The operation is considered a success if
13786                  * it succeeds at least once on any one interface.
13787                  */
13788                 error = fn(connp, checkonly, v6group, INADDR_ANY, ifindex,
13789                     fmode, v6src);
13790                 if (error == 0)
13791                         result = CGTP_MCAST_SUCCESS;
13792 
13793                 ire_refrele(ire_gw);
13794         }
13795         irb_refrele(irb);
13796         /*
13797          * Consider the call as successful if we succeeded on at least
13798          * one interface. Otherwise, return the last encountered error.
13799          */
13800         return (result == CGTP_MCAST_SUCCESS ? 0 : error);
13801 }
13802 
13803 /*
13804  * Return the expected CGTP hooks version number.
13805  */
13806 int
13807 ip_cgtp_filter_supported(void)
13808 {
13809         return (ip_cgtp_filter_rev);
13810 }
13811 
13812 /*
13813  * CGTP hooks can be registered by invoking this function.
13814  * Checks that the version number matches.
13815  */
13816 int
13817 ip_cgtp_filter_register(netstackid_t stackid, cgtp_filter_ops_t *ops)
13818 {
13819         netstack_t *ns;
13820         ip_stack_t *ipst;
13821 
13822         if (ops->cfo_filter_rev != CGTP_FILTER_REV)
13823                 return (ENOTSUP);
13824 
13825         ns = netstack_find_by_stackid(stackid);
13826         if (ns == NULL)
13827                 return (EINVAL);
13828         ipst = ns->netstack_ip;
13829         ASSERT(ipst != NULL);
13830 
13831         if (ipst->ips_ip_cgtp_filter_ops != NULL) {
13832                 netstack_rele(ns);
13833                 return (EALREADY);
13834         }
13835 
13836         ipst->ips_ip_cgtp_filter_ops = ops;
13837 
13838         ill_set_inputfn_all(ipst);
13839 
13840         netstack_rele(ns);
13841         return (0);
13842 }
13843 
13844 /*
13845  * CGTP hooks can be unregistered by invoking this function.
13846  * Returns ENXIO if there was no registration.
13847  * Returns EBUSY if the ndd variable has not been turned off.
13848  */
13849 int
13850 ip_cgtp_filter_unregister(netstackid_t stackid)
13851 {
13852         netstack_t *ns;
13853         ip_stack_t *ipst;
13854 
13855         ns = netstack_find_by_stackid(stackid);
13856         if (ns == NULL)
13857                 return (EINVAL);
13858         ipst = ns->netstack_ip;
13859         ASSERT(ipst != NULL);
13860 
13861         if (ipst->ips_ip_cgtp_filter) {
13862                 netstack_rele(ns);
13863                 return (EBUSY);
13864         }
13865 
13866         if (ipst->ips_ip_cgtp_filter_ops == NULL) {
13867                 netstack_rele(ns);
13868                 return (ENXIO);
13869         }
13870         ipst->ips_ip_cgtp_filter_ops = NULL;
13871 
13872         ill_set_inputfn_all(ipst);
13873 
13874         netstack_rele(ns);
13875         return (0);
13876 }
13877 
13878 /*
13879  * Check whether there is a CGTP filter registration.
13880  * Returns non-zero if there is a registration, otherwise returns zero.
13881  * Note: returns zero if bad stackid.
13882  */
13883 int
13884 ip_cgtp_filter_is_registered(netstackid_t stackid)
13885 {
13886         netstack_t *ns;
13887         ip_stack_t *ipst;
13888         int ret;
13889 
13890         ns = netstack_find_by_stackid(stackid);
13891         if (ns == NULL)
13892                 return (0);
13893         ipst = ns->netstack_ip;
13894         ASSERT(ipst != NULL);
13895 
13896         if (ipst->ips_ip_cgtp_filter_ops != NULL)
13897                 ret = 1;
13898         else
13899                 ret = 0;
13900 
13901         netstack_rele(ns);
13902         return (ret);
13903 }
13904 
13905 static int
13906 ip_squeue_switch(int val)
13907 {
13908         int rval;
13909 
13910         switch (val) {
13911         case IP_SQUEUE_ENTER_NODRAIN:
13912                 rval = SQ_NODRAIN;
13913                 break;
13914         case IP_SQUEUE_ENTER:
13915                 rval = SQ_PROCESS;
13916                 break;
13917         case IP_SQUEUE_FILL:
13918         default:
13919                 rval = SQ_FILL;
13920                 break;
13921         }
13922         return (rval);
13923 }
13924 
13925 static void *
13926 ip_kstat2_init(netstackid_t stackid, ip_stat_t *ip_statisticsp)
13927 {
13928         kstat_t *ksp;
13929 
13930         ip_stat_t template = {
13931                 { "ip_udp_fannorm",             KSTAT_DATA_UINT64 },
13932                 { "ip_udp_fanmb",               KSTAT_DATA_UINT64 },
13933                 { "ip_recv_pullup",             KSTAT_DATA_UINT64 },
13934                 { "ip_db_ref",                  KSTAT_DATA_UINT64 },
13935                 { "ip_notaligned",              KSTAT_DATA_UINT64 },
13936                 { "ip_multimblk",               KSTAT_DATA_UINT64 },
13937                 { "ip_opt",                     KSTAT_DATA_UINT64 },
13938                 { "ipsec_proto_ahesp",          KSTAT_DATA_UINT64 },
13939                 { "ip_conn_flputbq",            KSTAT_DATA_UINT64 },
13940                 { "ip_conn_walk_drain",         KSTAT_DATA_UINT64 },
13941                 { "ip_out_sw_cksum",            KSTAT_DATA_UINT64 },
13942                 { "ip_out_sw_cksum_bytes",      KSTAT_DATA_UINT64 },
13943                 { "ip_in_sw_cksum",             KSTAT_DATA_UINT64 },
13944                 { "ip_ire_reclaim_calls",       KSTAT_DATA_UINT64 },
13945                 { "ip_ire_reclaim_deleted",     KSTAT_DATA_UINT64 },
13946                 { "ip_nce_reclaim_calls",       KSTAT_DATA_UINT64 },
13947                 { "ip_nce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13948                 { "ip_nce_mcast_reclaim_calls", KSTAT_DATA_UINT64 },
13949                 { "ip_nce_mcast_reclaim_deleted",       KSTAT_DATA_UINT64 },
13950                 { "ip_nce_mcast_reclaim_tqfail",        KSTAT_DATA_UINT64 },
13951                 { "ip_dce_reclaim_calls",       KSTAT_DATA_UINT64 },
13952                 { "ip_dce_reclaim_deleted",     KSTAT_DATA_UINT64 },
13953                 { "ip_tcp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13954                 { "ip_tcp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13955                 { "ip_tcp_in_sw_cksum_err",             KSTAT_DATA_UINT64 },
13956                 { "ip_udp_in_full_hw_cksum_err",        KSTAT_DATA_UINT64 },
13957                 { "ip_udp_in_part_hw_cksum_err",        KSTAT_DATA_UINT64 },
13958                 { "ip_udp_in_sw_cksum_err",     KSTAT_DATA_UINT64 },
13959                 { "conn_in_recvdstaddr",        KSTAT_DATA_UINT64 },
13960                 { "conn_in_recvopts",           KSTAT_DATA_UINT64 },
13961                 { "conn_in_recvif",             KSTAT_DATA_UINT64 },
13962                 { "conn_in_recvslla",           KSTAT_DATA_UINT64 },
13963                 { "conn_in_recvucred",          KSTAT_DATA_UINT64 },
13964                 { "conn_in_recvttl",            KSTAT_DATA_UINT64 },
13965                 { "conn_in_recvhopopts",        KSTAT_DATA_UINT64 },
13966                 { "conn_in_recvhoplimit",       KSTAT_DATA_UINT64 },
13967                 { "conn_in_recvdstopts",        KSTAT_DATA_UINT64 },
13968                 { "conn_in_recvrthdrdstopts",   KSTAT_DATA_UINT64 },
13969                 { "conn_in_recvrthdr",          KSTAT_DATA_UINT64 },
13970                 { "conn_in_recvpktinfo",        KSTAT_DATA_UINT64 },
13971                 { "conn_in_recvtclass",         KSTAT_DATA_UINT64 },
13972                 { "conn_in_timestamp",          KSTAT_DATA_UINT64 },
13973         };
13974 
13975         ksp = kstat_create_netstack("ip", 0, "ipstat", "net",
13976             KSTAT_TYPE_NAMED, sizeof (template) / sizeof (kstat_named_t),
13977             KSTAT_FLAG_VIRTUAL, stackid);
13978 
13979         if (ksp == NULL)
13980                 return (NULL);
13981 
13982         bcopy(&template, ip_statisticsp, sizeof (template));
13983         ksp->ks_data = (void *)ip_statisticsp;
13984         ksp->ks_private = (void *)(uintptr_t)stackid;
13985 
13986         kstat_install(ksp);
13987         return (ksp);
13988 }
13989 
13990 static void
13991 ip_kstat2_fini(netstackid_t stackid, kstat_t *ksp)
13992 {
13993         if (ksp != NULL) {
13994                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
13995                 kstat_delete_netstack(ksp, stackid);
13996         }
13997 }
13998 
13999 static void *
14000 ip_kstat_init(netstackid_t stackid, ip_stack_t *ipst)
14001 {
14002         kstat_t *ksp;
14003 
14004         ip_named_kstat_t template = {
14005                 { "forwarding",         KSTAT_DATA_UINT32, 0 },
14006                 { "defaultTTL",         KSTAT_DATA_UINT32, 0 },
14007                 { "inReceives",         KSTAT_DATA_UINT64, 0 },
14008                 { "inHdrErrors",        KSTAT_DATA_UINT32, 0 },
14009                 { "inAddrErrors",       KSTAT_DATA_UINT32, 0 },
14010                 { "forwDatagrams",      KSTAT_DATA_UINT64, 0 },
14011                 { "inUnknownProtos",    KSTAT_DATA_UINT32, 0 },
14012                 { "inDiscards",         KSTAT_DATA_UINT32, 0 },
14013                 { "inDelivers",         KSTAT_DATA_UINT64, 0 },
14014                 { "outRequests",        KSTAT_DATA_UINT64, 0 },
14015                 { "outDiscards",        KSTAT_DATA_UINT32, 0 },
14016                 { "outNoRoutes",        KSTAT_DATA_UINT32, 0 },
14017                 { "reasmTimeout",       KSTAT_DATA_UINT32, 0 },
14018                 { "reasmReqds",         KSTAT_DATA_UINT32, 0 },
14019                 { "reasmOKs",           KSTAT_DATA_UINT32, 0 },
14020                 { "reasmFails",         KSTAT_DATA_UINT32, 0 },
14021                 { "fragOKs",            KSTAT_DATA_UINT32, 0 },
14022                 { "fragFails",          KSTAT_DATA_UINT32, 0 },
14023                 { "fragCreates",        KSTAT_DATA_UINT32, 0 },
14024                 { "addrEntrySize",      KSTAT_DATA_INT32, 0 },
14025                 { "routeEntrySize",     KSTAT_DATA_INT32, 0 },
14026                 { "netToMediaEntrySize",        KSTAT_DATA_INT32, 0 },
14027                 { "routingDiscards",    KSTAT_DATA_UINT32, 0 },
14028                 { "inErrs",             KSTAT_DATA_UINT32, 0 },
14029                 { "noPorts",            KSTAT_DATA_UINT32, 0 },
14030                 { "inCksumErrs",        KSTAT_DATA_UINT32, 0 },
14031                 { "reasmDuplicates",    KSTAT_DATA_UINT32, 0 },
14032                 { "reasmPartDups",      KSTAT_DATA_UINT32, 0 },
14033                 { "forwProhibits",      KSTAT_DATA_UINT32, 0 },
14034                 { "udpInCksumErrs",     KSTAT_DATA_UINT32, 0 },
14035                 { "udpInOverflows",     KSTAT_DATA_UINT32, 0 },
14036                 { "rawipInOverflows",   KSTAT_DATA_UINT32, 0 },
14037                 { "ipsecInSucceeded",   KSTAT_DATA_UINT32, 0 },
14038                 { "ipsecInFailed",      KSTAT_DATA_INT32, 0 },
14039                 { "memberEntrySize",    KSTAT_DATA_INT32, 0 },
14040                 { "inIPv6",             KSTAT_DATA_UINT32, 0 },
14041                 { "outIPv6",            KSTAT_DATA_UINT32, 0 },
14042                 { "outSwitchIPv6",      KSTAT_DATA_UINT32, 0 },
14043         };
14044 
14045         ksp = kstat_create_netstack("ip", 0, "ip", "mib2", KSTAT_TYPE_NAMED,
14046             NUM_OF_FIELDS(ip_named_kstat_t), 0, stackid);
14047         if (ksp == NULL || ksp->ks_data == NULL)
14048                 return (NULL);
14049 
14050         template.forwarding.value.ui32 = WE_ARE_FORWARDING(ipst) ? 1:2;
14051         template.defaultTTL.value.ui32 = (uint32_t)ipst->ips_ip_def_ttl;
14052         template.reasmTimeout.value.ui32 = ipst->ips_ip_reassembly_timeout;
14053         template.addrEntrySize.value.i32 = sizeof (mib2_ipAddrEntry_t);
14054         template.routeEntrySize.value.i32 = sizeof (mib2_ipRouteEntry_t);
14055 
14056         template.netToMediaEntrySize.value.i32 =
14057             sizeof (mib2_ipNetToMediaEntry_t);
14058 
14059         template.memberEntrySize.value.i32 = sizeof (ipv6_member_t);
14060 
14061         bcopy(&template, ksp->ks_data, sizeof (template));
14062         ksp->ks_update = ip_kstat_update;
14063         ksp->ks_private = (void *)(uintptr_t)stackid;
14064 
14065         kstat_install(ksp);
14066         return (ksp);
14067 }
14068 
14069 static void
14070 ip_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14071 {
14072         if (ksp != NULL) {
14073                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14074                 kstat_delete_netstack(ksp, stackid);
14075         }
14076 }
14077 
14078 static int
14079 ip_kstat_update(kstat_t *kp, int rw)
14080 {
14081         ip_named_kstat_t *ipkp;
14082         mib2_ipIfStatsEntry_t ipmib;
14083         ill_walk_context_t ctx;
14084         ill_t *ill;
14085         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14086         netstack_t      *ns;
14087         ip_stack_t      *ipst;
14088 
14089         if (kp->ks_data == NULL)
14090                 return (EIO);
14091 
14092         if (rw == KSTAT_WRITE)
14093                 return (EACCES);
14094 
14095         ns = netstack_find_by_stackid(stackid);
14096         if (ns == NULL)
14097                 return (-1);
14098         ipst = ns->netstack_ip;
14099         if (ipst == NULL) {
14100                 netstack_rele(ns);
14101                 return (-1);
14102         }
14103         ipkp = (ip_named_kstat_t *)kp->ks_data;
14104 
14105         bcopy(&ipst->ips_ip_mib, &ipmib, sizeof (ipmib));
14106         rw_enter(&ipst->ips_ill_g_lock, RW_READER);
14107         ill = ILL_START_WALK_V4(&ctx, ipst);
14108         for (; ill != NULL; ill = ill_next(&ctx, ill))
14109                 ip_mib2_add_ip_stats(&ipmib, ill->ill_ip_mib);
14110         rw_exit(&ipst->ips_ill_g_lock);
14111 
14112         ipkp->forwarding.value.ui32 =                ipmib.ipIfStatsForwarding;
14113         ipkp->defaultTTL.value.ui32 =                ipmib.ipIfStatsDefaultTTL;
14114         ipkp->inReceives.value.ui64 =                ipmib.ipIfStatsHCInReceives;
14115         ipkp->inHdrErrors.value.ui32 =               ipmib.ipIfStatsInHdrErrors;
14116         ipkp->inAddrErrors.value.ui32 =              ipmib.ipIfStatsInAddrErrors;
14117         ipkp->forwDatagrams.value.ui64 = ipmib.ipIfStatsHCOutForwDatagrams;
14118         ipkp->inUnknownProtos.value.ui32 =   ipmib.ipIfStatsInUnknownProtos;
14119         ipkp->inDiscards.value.ui32 =                ipmib.ipIfStatsInDiscards;
14120         ipkp->inDelivers.value.ui64 =                ipmib.ipIfStatsHCInDelivers;
14121         ipkp->outRequests.value.ui64 =               ipmib.ipIfStatsHCOutRequests;
14122         ipkp->outDiscards.value.ui32 =               ipmib.ipIfStatsOutDiscards;
14123         ipkp->outNoRoutes.value.ui32 =               ipmib.ipIfStatsOutNoRoutes;
14124         ipkp->reasmTimeout.value.ui32 =              ipst->ips_ip_reassembly_timeout;
14125         ipkp->reasmReqds.value.ui32 =                ipmib.ipIfStatsReasmReqds;
14126         ipkp->reasmOKs.value.ui32 =          ipmib.ipIfStatsReasmOKs;
14127         ipkp->reasmFails.value.ui32 =                ipmib.ipIfStatsReasmFails;
14128         ipkp->fragOKs.value.ui32 =           ipmib.ipIfStatsOutFragOKs;
14129         ipkp->fragFails.value.ui32 =         ipmib.ipIfStatsOutFragFails;
14130         ipkp->fragCreates.value.ui32 =               ipmib.ipIfStatsOutFragCreates;
14131 
14132         ipkp->routingDiscards.value.ui32 =   0;
14133         ipkp->inErrs.value.ui32 =            ipmib.tcpIfStatsInErrs;
14134         ipkp->noPorts.value.ui32 =           ipmib.udpIfStatsNoPorts;
14135         ipkp->inCksumErrs.value.ui32 =               ipmib.ipIfStatsInCksumErrs;
14136         ipkp->reasmDuplicates.value.ui32 =   ipmib.ipIfStatsReasmDuplicates;
14137         ipkp->reasmPartDups.value.ui32 =     ipmib.ipIfStatsReasmPartDups;
14138         ipkp->forwProhibits.value.ui32 =     ipmib.ipIfStatsForwProhibits;
14139         ipkp->udpInCksumErrs.value.ui32 =    ipmib.udpIfStatsInCksumErrs;
14140         ipkp->udpInOverflows.value.ui32 =    ipmib.udpIfStatsInOverflows;
14141         ipkp->rawipInOverflows.value.ui32 =  ipmib.rawipIfStatsInOverflows;
14142         ipkp->ipsecInSucceeded.value.ui32 =  ipmib.ipsecIfStatsInSucceeded;
14143         ipkp->ipsecInFailed.value.i32 =              ipmib.ipsecIfStatsInFailed;
14144 
14145         ipkp->inIPv6.value.ui32 =    ipmib.ipIfStatsInWrongIPVersion;
14146         ipkp->outIPv6.value.ui32 =   ipmib.ipIfStatsOutWrongIPVersion;
14147         ipkp->outSwitchIPv6.value.ui32 = ipmib.ipIfStatsOutSwitchIPVersion;
14148 
14149         netstack_rele(ns);
14150 
14151         return (0);
14152 }
14153 
14154 static void *
14155 icmp_kstat_init(netstackid_t stackid)
14156 {
14157         kstat_t *ksp;
14158 
14159         icmp_named_kstat_t template = {
14160                 { "inMsgs",             KSTAT_DATA_UINT32 },
14161                 { "inErrors",           KSTAT_DATA_UINT32 },
14162                 { "inDestUnreachs",     KSTAT_DATA_UINT32 },
14163                 { "inTimeExcds",        KSTAT_DATA_UINT32 },
14164                 { "inParmProbs",        KSTAT_DATA_UINT32 },
14165                 { "inSrcQuenchs",       KSTAT_DATA_UINT32 },
14166                 { "inRedirects",        KSTAT_DATA_UINT32 },
14167                 { "inEchos",            KSTAT_DATA_UINT32 },
14168                 { "inEchoReps",         KSTAT_DATA_UINT32 },
14169                 { "inTimestamps",       KSTAT_DATA_UINT32 },
14170                 { "inTimestampReps",    KSTAT_DATA_UINT32 },
14171                 { "inAddrMasks",        KSTAT_DATA_UINT32 },
14172                 { "inAddrMaskReps",     KSTAT_DATA_UINT32 },
14173                 { "outMsgs",            KSTAT_DATA_UINT32 },
14174                 { "outErrors",          KSTAT_DATA_UINT32 },
14175                 { "outDestUnreachs",    KSTAT_DATA_UINT32 },
14176                 { "outTimeExcds",       KSTAT_DATA_UINT32 },
14177                 { "outParmProbs",       KSTAT_DATA_UINT32 },
14178                 { "outSrcQuenchs",      KSTAT_DATA_UINT32 },
14179                 { "outRedirects",       KSTAT_DATA_UINT32 },
14180                 { "outEchos",           KSTAT_DATA_UINT32 },
14181                 { "outEchoReps",        KSTAT_DATA_UINT32 },
14182                 { "outTimestamps",      KSTAT_DATA_UINT32 },
14183                 { "outTimestampReps",   KSTAT_DATA_UINT32 },
14184                 { "outAddrMasks",       KSTAT_DATA_UINT32 },
14185                 { "outAddrMaskReps",    KSTAT_DATA_UINT32 },
14186                 { "inChksumErrs",       KSTAT_DATA_UINT32 },
14187                 { "inUnknowns",         KSTAT_DATA_UINT32 },
14188                 { "inFragNeeded",       KSTAT_DATA_UINT32 },
14189                 { "outFragNeeded",      KSTAT_DATA_UINT32 },
14190                 { "outDrops",           KSTAT_DATA_UINT32 },
14191                 { "inOverFlows",        KSTAT_DATA_UINT32 },
14192                 { "inBadRedirects",     KSTAT_DATA_UINT32 },
14193         };
14194 
14195         ksp = kstat_create_netstack("ip", 0, "icmp", "mib2", KSTAT_TYPE_NAMED,
14196             NUM_OF_FIELDS(icmp_named_kstat_t), 0, stackid);
14197         if (ksp == NULL || ksp->ks_data == NULL)
14198                 return (NULL);
14199 
14200         bcopy(&template, ksp->ks_data, sizeof (template));
14201 
14202         ksp->ks_update = icmp_kstat_update;
14203         ksp->ks_private = (void *)(uintptr_t)stackid;
14204 
14205         kstat_install(ksp);
14206         return (ksp);
14207 }
14208 
14209 static void
14210 icmp_kstat_fini(netstackid_t stackid, kstat_t *ksp)
14211 {
14212         if (ksp != NULL) {
14213                 ASSERT(stackid == (netstackid_t)(uintptr_t)ksp->ks_private);
14214                 kstat_delete_netstack(ksp, stackid);
14215         }
14216 }
14217 
14218 static int
14219 icmp_kstat_update(kstat_t *kp, int rw)
14220 {
14221         icmp_named_kstat_t *icmpkp;
14222         netstackid_t    stackid = (zoneid_t)(uintptr_t)kp->ks_private;
14223         netstack_t      *ns;
14224         ip_stack_t      *ipst;
14225 
14226         if (kp->ks_data == NULL)
14227                 return (EIO);
14228 
14229         if (rw == KSTAT_WRITE)
14230                 return (EACCES);
14231 
14232         ns = netstack_find_by_stackid(stackid);
14233         if (ns == NULL)
14234                 return (-1);
14235         ipst = ns->netstack_ip;
14236         if (ipst == NULL) {
14237                 netstack_rele(ns);
14238                 return (-1);
14239         }
14240         icmpkp = (icmp_named_kstat_t *)kp->ks_data;
14241 
14242         icmpkp->inMsgs.value.ui32 =      ipst->ips_icmp_mib.icmpInMsgs;
14243         icmpkp->inErrors.value.ui32 =            ipst->ips_icmp_mib.icmpInErrors;
14244         icmpkp->inDestUnreachs.value.ui32 =
14245             ipst->ips_icmp_mib.icmpInDestUnreachs;
14246         icmpkp->inTimeExcds.value.ui32 =    ipst->ips_icmp_mib.icmpInTimeExcds;
14247         icmpkp->inParmProbs.value.ui32 =    ipst->ips_icmp_mib.icmpInParmProbs;
14248         icmpkp->inSrcQuenchs.value.ui32 =   ipst->ips_icmp_mib.icmpInSrcQuenchs;
14249         icmpkp->inRedirects.value.ui32 =    ipst->ips_icmp_mib.icmpInRedirects;
14250         icmpkp->inEchos.value.ui32 =     ipst->ips_icmp_mib.icmpInEchos;
14251         icmpkp->inEchoReps.value.ui32 =          ipst->ips_icmp_mib.icmpInEchoReps;
14252         icmpkp->inTimestamps.value.ui32 =   ipst->ips_icmp_mib.icmpInTimestamps;
14253         icmpkp->inTimestampReps.value.ui32 =
14254             ipst->ips_icmp_mib.icmpInTimestampReps;
14255         icmpkp->inAddrMasks.value.ui32 =    ipst->ips_icmp_mib.icmpInAddrMasks;
14256         icmpkp->inAddrMaskReps.value.ui32 =
14257             ipst->ips_icmp_mib.icmpInAddrMaskReps;
14258         icmpkp->outMsgs.value.ui32 =     ipst->ips_icmp_mib.icmpOutMsgs;
14259         icmpkp->outErrors.value.ui32 =           ipst->ips_icmp_mib.icmpOutErrors;
14260         icmpkp->outDestUnreachs.value.ui32 =
14261             ipst->ips_icmp_mib.icmpOutDestUnreachs;
14262         icmpkp->outTimeExcds.value.ui32 =   ipst->ips_icmp_mib.icmpOutTimeExcds;
14263         icmpkp->outParmProbs.value.ui32 =   ipst->ips_icmp_mib.icmpOutParmProbs;
14264         icmpkp->outSrcQuenchs.value.ui32 =
14265             ipst->ips_icmp_mib.icmpOutSrcQuenchs;
14266         icmpkp->outRedirects.value.ui32 =   ipst->ips_icmp_mib.icmpOutRedirects;
14267         icmpkp->outEchos.value.ui32 =            ipst->ips_icmp_mib.icmpOutEchos;
14268         icmpkp->outEchoReps.value.ui32 =    ipst->ips_icmp_mib.icmpOutEchoReps;
14269         icmpkp->outTimestamps.value.ui32 =
14270             ipst->ips_icmp_mib.icmpOutTimestamps;
14271         icmpkp->outTimestampReps.value.ui32 =
14272             ipst->ips_icmp_mib.icmpOutTimestampReps;
14273         icmpkp->outAddrMasks.value.ui32 =
14274             ipst->ips_icmp_mib.icmpOutAddrMasks;
14275         icmpkp->outAddrMaskReps.value.ui32 =
14276             ipst->ips_icmp_mib.icmpOutAddrMaskReps;
14277         icmpkp->inCksumErrs.value.ui32 =    ipst->ips_icmp_mib.icmpInCksumErrs;
14278         icmpkp->inUnknowns.value.ui32 =          ipst->ips_icmp_mib.icmpInUnknowns;
14279         icmpkp->inFragNeeded.value.ui32 =   ipst->ips_icmp_mib.icmpInFragNeeded;
14280         icmpkp->outFragNeeded.value.ui32 =
14281             ipst->ips_icmp_mib.icmpOutFragNeeded;
14282         icmpkp->outDrops.value.ui32 =            ipst->ips_icmp_mib.icmpOutDrops;
14283         icmpkp->inOverflows.value.ui32 =    ipst->ips_icmp_mib.icmpInOverflows;
14284         icmpkp->inBadRedirects.value.ui32 =
14285             ipst->ips_icmp_mib.icmpInBadRedirects;
14286 
14287         netstack_rele(ns);
14288         return (0);
14289 }
14290 
14291 /*
14292  * This is the fanout function for raw socket opened for SCTP.  Note
14293  * that it is called after SCTP checks that there is no socket which
14294  * wants a packet.  Then before SCTP handles this out of the blue packet,
14295  * this function is called to see if there is any raw socket for SCTP.
14296  * If there is and it is bound to the correct address, the packet will
14297  * be sent to that socket.  Note that only one raw socket can be bound to
14298  * a port.  This is assured in ipcl_sctp_hash_insert();
14299  */
14300 void
14301 ip_fanout_sctp_raw(mblk_t *mp, ipha_t *ipha, ip6_t *ip6h, uint32_t ports,
14302     ip_recv_attr_t *ira)
14303 {
14304         conn_t          *connp;
14305         queue_t         *rq;
14306         boolean_t       secure;
14307         ill_t           *ill = ira->ira_ill;
14308         ip_stack_t      *ipst = ill->ill_ipst;
14309         ipsec_stack_t   *ipss = ipst->ips_netstack->netstack_ipsec;
14310         sctp_stack_t    *sctps = ipst->ips_netstack->netstack_sctp;
14311         iaflags_t       iraflags = ira->ira_flags;
14312         ill_t           *rill = ira->ira_rill;
14313 
14314         secure = iraflags & IRAF_IPSEC_SECURE;
14315 
14316         connp = ipcl_classify_raw(mp, IPPROTO_SCTP, ports, ipha, ip6h,
14317             ira, ipst);
14318         if (connp == NULL) {
14319                 /*
14320                  * Although raw sctp is not summed, OOB chunks must be.
14321                  * Drop the packet here if the sctp checksum failed.
14322                  */
14323                 if (iraflags & IRAF_SCTP_CSUM_ERR) {
14324                         SCTPS_BUMP_MIB(sctps, sctpChecksumError);
14325                         freemsg(mp);
14326                         return;
14327                 }
14328                 ira->ira_ill = ira->ira_rill = NULL;
14329                 sctp_ootb_input(mp, ira, ipst);
14330                 ira->ira_ill = ill;
14331                 ira->ira_rill = rill;
14332                 return;
14333         }
14334         rq = connp->conn_rq;
14335         if (IPCL_IS_NONSTR(connp) ? connp->conn_flow_cntrld : !canputnext(rq)) {
14336                 CONN_DEC_REF(connp);
14337                 BUMP_MIB(ill->ill_ip_mib, rawipIfStatsInOverflows);
14338                 freemsg(mp);
14339                 return;
14340         }
14341         if (((iraflags & IRAF_IS_IPV4) ?
14342             CONN_INBOUND_POLICY_PRESENT(connp, ipss) :
14343             CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss)) ||
14344             secure) {
14345                 mp = ipsec_check_inbound_policy(mp, connp, ipha,
14346                     ip6h, ira);
14347                 if (mp == NULL) {
14348                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsInDiscards);
14349                         /* Note that mp is NULL */
14350                         ip_drop_input("ipIfStatsInDiscards", mp, ill);
14351                         CONN_DEC_REF(connp);
14352                         return;
14353                 }
14354         }
14355 
14356         if (iraflags & IRAF_ICMP_ERROR) {
14357                 (connp->conn_recvicmp)(connp, mp, NULL, ira);
14358         } else {
14359                 ill_t *rill = ira->ira_rill;
14360 
14361                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCInDelivers);
14362                 /* This is the SOCK_RAW, IPPROTO_SCTP case. */
14363                 ira->ira_ill = ira->ira_rill = NULL;
14364                 (connp->conn_recv)(connp, mp, NULL, ira);
14365                 ira->ira_ill = ill;
14366                 ira->ira_rill = rill;
14367         }
14368         CONN_DEC_REF(connp);
14369 }
14370 
14371 /*
14372  * Free a packet that has the link-layer dl_unitdata_req_t or fast-path
14373  * header before the ip payload.
14374  */
14375 static void
14376 ip_xmit_flowctl_drop(ill_t *ill, mblk_t *mp, boolean_t is_fp_mp, int fp_mp_len)
14377 {
14378         int len = (mp->b_wptr - mp->b_rptr);
14379         mblk_t *ip_mp;
14380 
14381         BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14382         if (is_fp_mp || len != fp_mp_len) {
14383                 if (len > fp_mp_len) {
14384                         /*
14385                          * fastpath header and ip header in the first mblk
14386                          */
14387                         mp->b_rptr += fp_mp_len;
14388                 } else {
14389                         /*
14390                          * ip_xmit_attach_llhdr had to prepend an mblk to
14391                          * attach the fastpath header before ip header.
14392                          */
14393                         ip_mp = mp->b_cont;
14394                         freeb(mp);
14395                         mp = ip_mp;
14396                         mp->b_rptr += (fp_mp_len - len);
14397                 }
14398         } else {
14399                 ip_mp = mp->b_cont;
14400                 freeb(mp);
14401                 mp = ip_mp;
14402         }
14403         ip_drop_output("ipIfStatsOutDiscards - flow ctl", mp, ill);
14404         freemsg(mp);
14405 }
14406 
14407 /*
14408  * Normal post fragmentation function.
14409  *
14410  * Send a packet using the passed in nce. This handles both IPv4 and IPv6
14411  * using the same state machine.
14412  *
14413  * We return an error on failure. In particular we return EWOULDBLOCK
14414  * when the driver flow controls. In that case this ensures that ip_wsrv runs
14415  * (currently by canputnext failure resulting in backenabling from GLD.)
14416  * This allows the callers of conn_ip_output() to use EWOULDBLOCK as an
14417  * indication that they can flow control until ip_wsrv() tells then to restart.
14418  *
14419  * If the nce passed by caller is incomplete, this function
14420  * queues the packet and if necessary, sends ARP request and bails.
14421  * If the Neighbor Cache passed is fully resolved, we simply prepend
14422  * the link-layer header to the packet, do ipsec hw acceleration
14423  * work if necessary, and send the packet out on the wire.
14424  */
14425 /* ARGSUSED6 */
14426 int
14427 ip_xmit(mblk_t *mp, nce_t *nce, iaflags_t ixaflags, uint_t pkt_len,
14428     uint32_t xmit_hint, zoneid_t szone, zoneid_t nolzid, uintptr_t *ixacookie)
14429 {
14430         queue_t         *wq;
14431         ill_t           *ill = nce->nce_ill;
14432         ip_stack_t      *ipst = ill->ill_ipst;
14433         uint64_t        delta;
14434         boolean_t       isv6 = ill->ill_isv6;
14435         boolean_t       fp_mp;
14436         ncec_t          *ncec = nce->nce_common;
14437         int64_t         now = LBOLT_FASTPATH64;
14438         boolean_t       is_probe;
14439 
14440         DTRACE_PROBE1(ip__xmit, nce_t *, nce);
14441 
14442         ASSERT(mp != NULL);
14443         ASSERT(mp->b_datap->db_type == M_DATA);
14444         ASSERT(pkt_len == msgdsize(mp));
14445 
14446         /*
14447          * If we have already been here and are coming back after ARP/ND.
14448          * the IXAF_NO_TRACE flag is set. We skip FW_HOOKS, DTRACE and ipobs
14449          * in that case since they have seen the packet when it came here
14450          * the first time.
14451          */
14452         if (ixaflags & IXAF_NO_TRACE)
14453                 goto sendit;
14454 
14455         if (ixaflags & IXAF_IS_IPV4) {
14456                 ipha_t *ipha = (ipha_t *)mp->b_rptr;
14457 
14458                 ASSERT(!isv6);
14459                 ASSERT(pkt_len == ntohs(((ipha_t *)mp->b_rptr)->ipha_length));
14460                 if (HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) &&
14461                     !(ixaflags & IXAF_NO_PFHOOK)) {
14462                         int     error;
14463 
14464                         FW_HOOKS(ipst->ips_ip4_physical_out_event,
14465                             ipst->ips_ipv4firewall_physical_out,
14466                             NULL, ill, ipha, mp, mp, 0, ipst, error);
14467                         DTRACE_PROBE1(ip4__physical__out__end,
14468                             mblk_t *, mp);
14469                         if (mp == NULL)
14470                                 return (error);
14471 
14472                         /* The length could have changed */
14473                         pkt_len = msgdsize(mp);
14474                 }
14475                 if (ipst->ips_ip4_observe.he_interested) {
14476                         /*
14477                          * Note that for TX the zoneid is the sending
14478                          * zone, whether or not MLP is in play.
14479                          * Since the szone argument is the IP zoneid (i.e.,
14480                          * zero for exclusive-IP zones) and ipobs wants
14481                          * the system zoneid, we map it here.
14482                          */
14483                         szone = IP_REAL_ZONEID(szone, ipst);
14484 
14485                         /*
14486                          * On the outbound path the destination zone will be
14487                          * unknown as we're sending this packet out on the
14488                          * wire.
14489                          */
14490                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14491                             ill, ipst);
14492                 }
14493                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14494                     void_ip_t *, ipha,  __dtrace_ipsr_ill_t *, ill,
14495                     ipha_t *, ipha, ip6_t *, NULL, int, 0);
14496         } else {
14497                 ip6_t *ip6h = (ip6_t *)mp->b_rptr;
14498 
14499                 ASSERT(isv6);
14500                 ASSERT(pkt_len ==
14501                     ntohs(((ip6_t *)mp->b_rptr)->ip6_plen) + IPV6_HDR_LEN);
14502                 if (HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) &&
14503                     !(ixaflags & IXAF_NO_PFHOOK)) {
14504                         int     error;
14505 
14506                         FW_HOOKS6(ipst->ips_ip6_physical_out_event,
14507                             ipst->ips_ipv6firewall_physical_out,
14508                             NULL, ill, ip6h, mp, mp, 0, ipst, error);
14509                         DTRACE_PROBE1(ip6__physical__out__end,
14510                             mblk_t *, mp);
14511                         if (mp == NULL)
14512                                 return (error);
14513 
14514                         /* The length could have changed */
14515                         pkt_len = msgdsize(mp);
14516                 }
14517                 if (ipst->ips_ip6_observe.he_interested) {
14518                         /* See above */
14519                         szone = IP_REAL_ZONEID(szone, ipst);
14520 
14521                         ipobs_hook(mp, IPOBS_HOOK_OUTBOUND, szone, ALL_ZONES,
14522                             ill, ipst);
14523                 }
14524                 DTRACE_IP7(send, mblk_t *, mp,  conn_t *, NULL,
14525                     void_ip_t *, ip6h,  __dtrace_ipsr_ill_t *, ill,
14526                     ipha_t *, NULL, ip6_t *, ip6h, int, 0);
14527         }
14528 
14529 sendit:
14530         /*
14531          * We check the state without a lock because the state can never
14532          * move "backwards" to initial or incomplete.
14533          */
14534         switch (ncec->ncec_state) {
14535         case ND_REACHABLE:
14536         case ND_STALE:
14537         case ND_DELAY:
14538         case ND_PROBE:
14539                 mp = ip_xmit_attach_llhdr(mp, nce);
14540                 if (mp == NULL) {
14541                         /*
14542                          * ip_xmit_attach_llhdr has increased
14543                          * ipIfStatsOutDiscards and called ip_drop_output()
14544                          */
14545                         return (ENOBUFS);
14546                 }
14547                 /*
14548                  * check if nce_fastpath completed and we tagged on a
14549                  * copy of nce_fp_mp in ip_xmit_attach_llhdr().
14550                  */
14551                 fp_mp = (mp->b_datap->db_type == M_DATA);
14552 
14553                 if (fp_mp &&
14554                     (ill->ill_capabilities & ILL_CAPAB_DLD_DIRECT)) {
14555                         ill_dld_direct_t *idd;
14556 
14557                         idd = &ill->ill_dld_capab->idc_direct;
14558                         /*
14559                          * Send the packet directly to DLD, where it
14560                          * may be queued depending on the availability
14561                          * of transmit resources at the media layer.
14562                          * Return value should be taken into
14563                          * account and flow control the TCP.
14564                          */
14565                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14566                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14567                             pkt_len);
14568 
14569                         if (ixaflags & IXAF_NO_DEV_FLOW_CTL) {
14570                                 (void) idd->idd_tx_df(idd->idd_tx_dh, mp,
14571                                     (uintptr_t)xmit_hint, IP_DROP_ON_NO_DESC);
14572                         } else {
14573                                 uintptr_t cookie;
14574 
14575                                 if ((cookie = idd->idd_tx_df(idd->idd_tx_dh,
14576                                     mp, (uintptr_t)xmit_hint, 0)) != 0) {
14577                                         if (ixacookie != NULL)
14578                                                 *ixacookie = cookie;
14579                                         return (EWOULDBLOCK);
14580                                 }
14581                         }
14582                 } else {
14583                         wq = ill->ill_wq;
14584 
14585                         if (!(ixaflags & IXAF_NO_DEV_FLOW_CTL) &&
14586                             !canputnext(wq)) {
14587                                 if (ixacookie != NULL)
14588                                         *ixacookie = 0;
14589                                 ip_xmit_flowctl_drop(ill, mp, fp_mp,
14590                                     nce->nce_fp_mp != NULL ?
14591                                     MBLKL(nce->nce_fp_mp) : 0);
14592                                 return (EWOULDBLOCK);
14593                         }
14594                         BUMP_MIB(ill->ill_ip_mib, ipIfStatsHCOutTransmits);
14595                         UPDATE_MIB(ill->ill_ip_mib, ipIfStatsHCOutOctets,
14596                             pkt_len);
14597                         putnext(wq, mp);
14598                 }
14599 
14600                 /*
14601                  * The rest of this function implements Neighbor Unreachability
14602                  * detection. Determine if the ncec is eligible for NUD.
14603                  */
14604                 if (ncec->ncec_flags & NCE_F_NONUD)
14605                         return (0);
14606 
14607                 ASSERT(ncec->ncec_state != ND_INCOMPLETE);
14608 
14609                 /*
14610                  * Check for upper layer advice
14611                  */
14612                 if (ixaflags & IXAF_REACH_CONF) {
14613                         timeout_id_t tid;
14614 
14615                         /*
14616                          * It should be o.k. to check the state without
14617                          * a lock here, at most we lose an advice.
14618                          */
14619                         ncec->ncec_last = TICK_TO_MSEC(now);
14620                         if (ncec->ncec_state != ND_REACHABLE) {
14621                                 mutex_enter(&ncec->ncec_lock);
14622                                 ncec->ncec_state = ND_REACHABLE;
14623                                 tid = ncec->ncec_timeout_id;
14624                                 ncec->ncec_timeout_id = 0;
14625                                 mutex_exit(&ncec->ncec_lock);
14626                                 (void) untimeout(tid);
14627                                 if (ip_debug > 2) {
14628                                         /* ip1dbg */
14629                                         pr_addr_dbg("ip_xmit: state"
14630                                             " for %s changed to"
14631                                             " REACHABLE\n", AF_INET6,
14632                                             &ncec->ncec_addr);
14633                                 }
14634                         }
14635                         return (0);
14636                 }
14637 
14638                 delta =  TICK_TO_MSEC(now) - ncec->ncec_last;
14639                 ip1dbg(("ip_xmit: delta = %" PRId64
14640                     " ill_reachable_time = %d \n", delta,
14641                     ill->ill_reachable_time));
14642                 if (delta > (uint64_t)ill->ill_reachable_time) {
14643                         mutex_enter(&ncec->ncec_lock);
14644                         switch (ncec->ncec_state) {
14645                         case ND_REACHABLE:
14646                                 ASSERT((ncec->ncec_flags & NCE_F_NONUD) == 0);
14647                                 /* FALLTHROUGH */
14648                         case ND_STALE:
14649                                 /*
14650                                  * ND_REACHABLE is identical to
14651                                  * ND_STALE in this specific case. If
14652                                  * reachable time has expired for this
14653                                  * neighbor (delta is greater than
14654                                  * reachable time), conceptually, the
14655                                  * neighbor cache is no longer in
14656                                  * REACHABLE state, but already in
14657                                  * STALE state.  So the correct
14658                                  * transition here is to ND_DELAY.
14659                                  */
14660                                 ncec->ncec_state = ND_DELAY;
14661                                 mutex_exit(&ncec->ncec_lock);
14662                                 nce_restart_timer(ncec,
14663                                     ipst->ips_delay_first_probe_time);
14664                                 if (ip_debug > 3) {
14665                                         /* ip2dbg */
14666                                         pr_addr_dbg("ip_xmit: state"
14667                                             " for %s changed to"
14668                                             " DELAY\n", AF_INET6,
14669                                             &ncec->ncec_addr);
14670                                 }
14671                                 break;
14672                         case ND_DELAY:
14673                         case ND_PROBE:
14674                                 mutex_exit(&ncec->ncec_lock);
14675                                 /* Timers have already started */
14676                                 break;
14677                         case ND_UNREACHABLE:
14678                                 /*
14679                                  * nce_timer has detected that this ncec
14680                                  * is unreachable and initiated deleting
14681                                  * this ncec.
14682                                  * This is a harmless race where we found the
14683                                  * ncec before it was deleted and have
14684                                  * just sent out a packet using this
14685                                  * unreachable ncec.
14686                                  */
14687                                 mutex_exit(&ncec->ncec_lock);
14688                                 break;
14689                         default:
14690                                 ASSERT(0);
14691                                 mutex_exit(&ncec->ncec_lock);
14692                         }
14693                 }
14694                 return (0);
14695 
14696         case ND_INCOMPLETE:
14697                 /*
14698                  * the state could have changed since we didn't hold the lock.
14699                  * Re-verify state under lock.
14700                  */
14701                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14702                 mutex_enter(&ncec->ncec_lock);
14703                 if (NCE_ISREACHABLE(ncec)) {
14704                         mutex_exit(&ncec->ncec_lock);
14705                         goto sendit;
14706                 }
14707                 /* queue the packet */
14708                 nce_queue_mp(ncec, mp, is_probe);
14709                 mutex_exit(&ncec->ncec_lock);
14710                 DTRACE_PROBE2(ip__xmit__incomplete,
14711                     (ncec_t *), ncec, (mblk_t *), mp);
14712                 return (0);
14713 
14714         case ND_INITIAL:
14715                 /*
14716                  * State could have changed since we didn't hold the lock, so
14717                  * re-verify state.
14718                  */
14719                 is_probe = ipmp_packet_is_probe(mp, nce->nce_ill);
14720                 mutex_enter(&ncec->ncec_lock);
14721                 if (NCE_ISREACHABLE(ncec))  {
14722                         mutex_exit(&ncec->ncec_lock);
14723                         goto sendit;
14724                 }
14725                 nce_queue_mp(ncec, mp, is_probe);
14726                 if (ncec->ncec_state == ND_INITIAL) {
14727                         ncec->ncec_state = ND_INCOMPLETE;
14728                         mutex_exit(&ncec->ncec_lock);
14729                         /*
14730                          * figure out the source we want to use
14731                          * and resolve it.
14732                          */
14733                         ip_ndp_resolve(ncec);
14734                 } else  {
14735                         mutex_exit(&ncec->ncec_lock);
14736                 }
14737                 return (0);
14738 
14739         case ND_UNREACHABLE:
14740                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14741                 ip_drop_output("ipIfStatsOutDiscards - ND_UNREACHABLE",
14742                     mp, ill);
14743                 freemsg(mp);
14744                 return (0);
14745 
14746         default:
14747                 ASSERT(0);
14748                 BUMP_MIB(ill->ill_ip_mib, ipIfStatsOutDiscards);
14749                 ip_drop_output("ipIfStatsOutDiscards - ND_other",
14750                     mp, ill);
14751                 freemsg(mp);
14752                 return (ENETUNREACH);
14753         }
14754 }
14755 
14756 /*
14757  * Return B_TRUE if the buffers differ in length or content.
14758  * This is used for comparing extension header buffers.
14759  * Note that an extension header would be declared different
14760  * even if all that changed was the next header value in that header i.e.
14761  * what really changed is the next extension header.
14762  */
14763 boolean_t
14764 ip_cmpbuf(const void *abuf, uint_t alen, boolean_t b_valid, const void *bbuf,
14765     uint_t blen)
14766 {
14767         if (!b_valid)
14768                 blen = 0;
14769 
14770         if (alen != blen)
14771                 return (B_TRUE);
14772         if (alen == 0)
14773                 return (B_FALSE);       /* Both zero length */
14774         return (bcmp(abuf, bbuf, alen));
14775 }
14776 
14777 /*
14778  * Preallocate memory for ip_savebuf(). Returns B_TRUE if ok.
14779  * Return B_FALSE if memory allocation fails - don't change any state!
14780  */
14781 boolean_t
14782 ip_allocbuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14783     const void *src, uint_t srclen)
14784 {
14785         void *dst;
14786 
14787         if (!src_valid)
14788                 srclen = 0;
14789 
14790         ASSERT(*dstlenp == 0);
14791         if (src != NULL && srclen != 0) {
14792                 dst = mi_alloc(srclen, BPRI_MED);
14793                 if (dst == NULL)
14794                         return (B_FALSE);
14795         } else {
14796                 dst = NULL;
14797         }
14798         if (*dstp != NULL)
14799                 mi_free(*dstp);
14800         *dstp = dst;
14801         *dstlenp = dst == NULL ? 0 : srclen;
14802         return (B_TRUE);
14803 }
14804 
14805 /*
14806  * Replace what is in *dst, *dstlen with the source.
14807  * Assumes ip_allocbuf has already been called.
14808  */
14809 void
14810 ip_savebuf(void **dstp, uint_t *dstlenp, boolean_t src_valid,
14811     const void *src, uint_t srclen)
14812 {
14813         if (!src_valid)
14814                 srclen = 0;
14815 
14816         ASSERT(*dstlenp == srclen);
14817         if (src != NULL && srclen != 0)
14818                 bcopy(src, *dstp, srclen);
14819 }
14820 
14821 /*
14822  * Free the storage pointed to by the members of an ip_pkt_t.
14823  */
14824 void
14825 ip_pkt_free(ip_pkt_t *ipp)
14826 {
14827         uint_t  fields = ipp->ipp_fields;
14828 
14829         if (fields & IPPF_HOPOPTS) {
14830                 kmem_free(ipp->ipp_hopopts, ipp->ipp_hopoptslen);
14831                 ipp->ipp_hopopts = NULL;
14832                 ipp->ipp_hopoptslen = 0;
14833         }
14834         if (fields & IPPF_RTHDRDSTOPTS) {
14835                 kmem_free(ipp->ipp_rthdrdstopts, ipp->ipp_rthdrdstoptslen);
14836                 ipp->ipp_rthdrdstopts = NULL;
14837                 ipp->ipp_rthdrdstoptslen = 0;
14838         }
14839         if (fields & IPPF_DSTOPTS) {
14840                 kmem_free(ipp->ipp_dstopts, ipp->ipp_dstoptslen);
14841                 ipp->ipp_dstopts = NULL;
14842                 ipp->ipp_dstoptslen = 0;
14843         }
14844         if (fields & IPPF_RTHDR) {
14845                 kmem_free(ipp->ipp_rthdr, ipp->ipp_rthdrlen);
14846                 ipp->ipp_rthdr = NULL;
14847                 ipp->ipp_rthdrlen = 0;
14848         }
14849         if (fields & IPPF_IPV4_OPTIONS) {
14850                 kmem_free(ipp->ipp_ipv4_options, ipp->ipp_ipv4_options_len);
14851                 ipp->ipp_ipv4_options = NULL;
14852                 ipp->ipp_ipv4_options_len = 0;
14853         }
14854         if (fields & IPPF_LABEL_V4) {
14855                 kmem_free(ipp->ipp_label_v4, ipp->ipp_label_len_v4);
14856                 ipp->ipp_label_v4 = NULL;
14857                 ipp->ipp_label_len_v4 = 0;
14858         }
14859         if (fields & IPPF_LABEL_V6) {
14860                 kmem_free(ipp->ipp_label_v6, ipp->ipp_label_len_v6);
14861                 ipp->ipp_label_v6 = NULL;
14862                 ipp->ipp_label_len_v6 = 0;
14863         }
14864         ipp->ipp_fields &= ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14865             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14866 }
14867 
14868 /*
14869  * Copy from src to dst and allocate as needed.
14870  * Returns zero or ENOMEM.
14871  *
14872  * The caller must initialize dst to zero.
14873  */
14874 int
14875 ip_pkt_copy(ip_pkt_t *src, ip_pkt_t *dst, int kmflag)
14876 {
14877         uint_t  fields = src->ipp_fields;
14878 
14879         /* Start with fields that don't require memory allocation */
14880         dst->ipp_fields = fields &
14881             ~(IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14882             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6);
14883 
14884         dst->ipp_addr = src->ipp_addr;
14885         dst->ipp_unicast_hops = src->ipp_unicast_hops;
14886         dst->ipp_hoplimit = src->ipp_hoplimit;
14887         dst->ipp_tclass = src->ipp_tclass;
14888         dst->ipp_type_of_service = src->ipp_type_of_service;
14889 
14890         if (!(fields & (IPPF_HOPOPTS | IPPF_RTHDRDSTOPTS | IPPF_DSTOPTS |
14891             IPPF_RTHDR | IPPF_IPV4_OPTIONS | IPPF_LABEL_V4 | IPPF_LABEL_V6)))
14892                 return (0);
14893 
14894         if (fields & IPPF_HOPOPTS) {
14895                 dst->ipp_hopopts = kmem_alloc(src->ipp_hopoptslen, kmflag);
14896                 if (dst->ipp_hopopts == NULL) {
14897                         ip_pkt_free(dst);
14898                         return (ENOMEM);
14899                 }
14900                 dst->ipp_fields |= IPPF_HOPOPTS;
14901                 bcopy(src->ipp_hopopts, dst->ipp_hopopts,
14902                     src->ipp_hopoptslen);
14903                 dst->ipp_hopoptslen = src->ipp_hopoptslen;
14904         }
14905         if (fields & IPPF_RTHDRDSTOPTS) {
14906                 dst->ipp_rthdrdstopts = kmem_alloc(src->ipp_rthdrdstoptslen,
14907                     kmflag);
14908                 if (dst->ipp_rthdrdstopts == NULL) {
14909                         ip_pkt_free(dst);
14910                         return (ENOMEM);
14911                 }
14912                 dst->ipp_fields |= IPPF_RTHDRDSTOPTS;
14913                 bcopy(src->ipp_rthdrdstopts, dst->ipp_rthdrdstopts,
14914                     src->ipp_rthdrdstoptslen);
14915                 dst->ipp_rthdrdstoptslen = src->ipp_rthdrdstoptslen;
14916         }
14917         if (fields & IPPF_DSTOPTS) {
14918                 dst->ipp_dstopts = kmem_alloc(src->ipp_dstoptslen, kmflag);
14919                 if (dst->ipp_dstopts == NULL) {
14920                         ip_pkt_free(dst);
14921                         return (ENOMEM);
14922                 }
14923                 dst->ipp_fields |= IPPF_DSTOPTS;
14924                 bcopy(src->ipp_dstopts, dst->ipp_dstopts,
14925                     src->ipp_dstoptslen);
14926                 dst->ipp_dstoptslen = src->ipp_dstoptslen;
14927         }
14928         if (fields & IPPF_RTHDR) {
14929                 dst->ipp_rthdr = kmem_alloc(src->ipp_rthdrlen, kmflag);
14930                 if (dst->ipp_rthdr == NULL) {
14931                         ip_pkt_free(dst);
14932                         return (ENOMEM);
14933                 }
14934                 dst->ipp_fields |= IPPF_RTHDR;
14935                 bcopy(src->ipp_rthdr, dst->ipp_rthdr,
14936                     src->ipp_rthdrlen);
14937                 dst->ipp_rthdrlen = src->ipp_rthdrlen;
14938         }
14939         if (fields & IPPF_IPV4_OPTIONS) {
14940                 dst->ipp_ipv4_options = kmem_alloc(src->ipp_ipv4_options_len,
14941                     kmflag);
14942                 if (dst->ipp_ipv4_options == NULL) {
14943                         ip_pkt_free(dst);
14944                         return (ENOMEM);
14945                 }
14946                 dst->ipp_fields |= IPPF_IPV4_OPTIONS;
14947                 bcopy(src->ipp_ipv4_options, dst->ipp_ipv4_options,
14948                     src->ipp_ipv4_options_len);
14949                 dst->ipp_ipv4_options_len = src->ipp_ipv4_options_len;
14950         }
14951         if (fields & IPPF_LABEL_V4) {
14952                 dst->ipp_label_v4 = kmem_alloc(src->ipp_label_len_v4, kmflag);
14953                 if (dst->ipp_label_v4 == NULL) {
14954                         ip_pkt_free(dst);
14955                         return (ENOMEM);
14956                 }
14957                 dst->ipp_fields |= IPPF_LABEL_V4;
14958                 bcopy(src->ipp_label_v4, dst->ipp_label_v4,
14959                     src->ipp_label_len_v4);
14960                 dst->ipp_label_len_v4 = src->ipp_label_len_v4;
14961         }
14962         if (fields & IPPF_LABEL_V6) {
14963                 dst->ipp_label_v6 = kmem_alloc(src->ipp_label_len_v6, kmflag);
14964                 if (dst->ipp_label_v6 == NULL) {
14965                         ip_pkt_free(dst);
14966                         return (ENOMEM);
14967                 }
14968                 dst->ipp_fields |= IPPF_LABEL_V6;
14969                 bcopy(src->ipp_label_v6, dst->ipp_label_v6,
14970                     src->ipp_label_len_v6);
14971                 dst->ipp_label_len_v6 = src->ipp_label_len_v6;
14972         }
14973         if (fields & IPPF_FRAGHDR) {
14974                 dst->ipp_fraghdr = kmem_alloc(src->ipp_fraghdrlen, kmflag);
14975                 if (dst->ipp_fraghdr == NULL) {
14976                         ip_pkt_free(dst);
14977                         return (ENOMEM);
14978                 }
14979                 dst->ipp_fields |= IPPF_FRAGHDR;
14980                 bcopy(src->ipp_fraghdr, dst->ipp_fraghdr,
14981                     src->ipp_fraghdrlen);
14982                 dst->ipp_fraghdrlen = src->ipp_fraghdrlen;
14983         }
14984         return (0);
14985 }
14986 
14987 /*
14988  * Returns INADDR_ANY if no source route
14989  */
14990 ipaddr_t
14991 ip_pkt_source_route_v4(const ip_pkt_t *ipp)
14992 {
14993         ipaddr_t        nexthop = INADDR_ANY;
14994         ipoptp_t        opts;
14995         uchar_t         *opt;
14996         uint8_t         optval;
14997         uint8_t         optlen;
14998         uint32_t        totallen;
14999 
15000         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15001                 return (INADDR_ANY);
15002 
15003         totallen = ipp->ipp_ipv4_options_len;
15004         if (totallen & 0x3)
15005                 return (INADDR_ANY);
15006 
15007         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15008             optval != IPOPT_EOL;
15009             optval = ipoptp_next(&opts)) {
15010                 opt = opts.ipoptp_cur;
15011                 switch (optval) {
15012                         uint8_t off;
15013                 case IPOPT_SSRR:
15014                 case IPOPT_LSRR:
15015                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15016                                 break;
15017                         }
15018                         optlen = opts.ipoptp_len;
15019                         off = opt[IPOPT_OFFSET];
15020                         off--;
15021                         if (optlen < IP_ADDR_LEN ||
15022                             off > optlen - IP_ADDR_LEN) {
15023                                 /* End of source route */
15024                                 break;
15025                         }
15026                         bcopy((char *)opt + off, &nexthop, IP_ADDR_LEN);
15027                         if (nexthop == htonl(INADDR_LOOPBACK)) {
15028                                 /* Ignore */
15029                                 nexthop = INADDR_ANY;
15030                                 break;
15031                         }
15032                         break;
15033                 }
15034         }
15035         return (nexthop);
15036 }
15037 
15038 /*
15039  * Reverse a source route.
15040  */
15041 void
15042 ip_pkt_source_route_reverse_v4(ip_pkt_t *ipp)
15043 {
15044         ipaddr_t        tmp;
15045         ipoptp_t        opts;
15046         uchar_t         *opt;
15047         uint8_t         optval;
15048         uint32_t        totallen;
15049 
15050         if (!(ipp->ipp_fields & IPPF_IPV4_OPTIONS))
15051                 return;
15052 
15053         totallen = ipp->ipp_ipv4_options_len;
15054         if (totallen & 0x3)
15055                 return;
15056 
15057         for (optval = ipoptp_first2(&opts, totallen, ipp->ipp_ipv4_options);
15058             optval != IPOPT_EOL;
15059             optval = ipoptp_next(&opts)) {
15060                 uint8_t off1, off2;
15061 
15062                 opt = opts.ipoptp_cur;
15063                 switch (optval) {
15064                 case IPOPT_SSRR:
15065                 case IPOPT_LSRR:
15066                         if ((opts.ipoptp_flags & IPOPTP_ERROR) != 0) {
15067                                 break;
15068                         }
15069                         off1 = IPOPT_MINOFF_SR - 1;
15070                         off2 = opt[IPOPT_OFFSET] - IP_ADDR_LEN - 1;
15071                         while (off2 > off1) {
15072                                 bcopy(opt + off2, &tmp, IP_ADDR_LEN);
15073                                 bcopy(opt + off1, opt + off2, IP_ADDR_LEN);
15074                                 bcopy(&tmp, opt + off2, IP_ADDR_LEN);
15075                                 off2 -= IP_ADDR_LEN;
15076                                 off1 += IP_ADDR_LEN;
15077                         }
15078                         opt[IPOPT_OFFSET] = IPOPT_MINOFF_SR;
15079                         break;
15080                 }
15081         }
15082 }
15083 
15084 /*
15085  * Returns NULL if no routing header
15086  */
15087 in6_addr_t *
15088 ip_pkt_source_route_v6(const ip_pkt_t *ipp)
15089 {
15090         in6_addr_t      *nexthop = NULL;
15091         ip6_rthdr0_t    *rthdr;
15092 
15093         if (!(ipp->ipp_fields & IPPF_RTHDR))
15094                 return (NULL);
15095 
15096         rthdr = (ip6_rthdr0_t *)ipp->ipp_rthdr;
15097         if (rthdr->ip6r0_segleft == 0)
15098                 return (NULL);
15099 
15100         nexthop = (in6_addr_t *)((char *)rthdr + sizeof (*rthdr));
15101         return (nexthop);
15102 }
15103 
15104 zoneid_t
15105 ip_get_zoneid_v4(ipaddr_t addr, mblk_t *mp, ip_recv_attr_t *ira,
15106     zoneid_t lookup_zoneid)
15107 {
15108         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15109         ire_t           *ire;
15110         int             ire_flags = MATCH_IRE_TYPE;
15111         zoneid_t        zoneid = ALL_ZONES;
15112 
15113         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15114                 return (ALL_ZONES);
15115 
15116         if (lookup_zoneid != ALL_ZONES)
15117                 ire_flags |= MATCH_IRE_ZONEONLY;
15118         ire = ire_ftable_lookup_v4(addr, 0, 0, IRE_LOCAL | IRE_LOOPBACK,
15119             NULL, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15120         if (ire != NULL) {
15121                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15122                 ire_refrele(ire);
15123         }
15124         return (zoneid);
15125 }
15126 
15127 zoneid_t
15128 ip_get_zoneid_v6(in6_addr_t *addr, mblk_t *mp, const ill_t *ill,
15129     ip_recv_attr_t *ira, zoneid_t lookup_zoneid)
15130 {
15131         ip_stack_t      *ipst = ira->ira_ill->ill_ipst;
15132         ire_t           *ire;
15133         int             ire_flags = MATCH_IRE_TYPE;
15134         zoneid_t        zoneid = ALL_ZONES;
15135 
15136         if (is_system_labeled() && !tsol_can_accept_raw(mp, ira, B_FALSE))
15137                 return (ALL_ZONES);
15138 
15139         if (IN6_IS_ADDR_LINKLOCAL(addr))
15140                 ire_flags |= MATCH_IRE_ILL;
15141 
15142         if (lookup_zoneid != ALL_ZONES)
15143                 ire_flags |= MATCH_IRE_ZONEONLY;
15144         ire = ire_ftable_lookup_v6(addr, NULL, NULL, IRE_LOCAL | IRE_LOOPBACK,
15145             ill, lookup_zoneid, NULL, ire_flags, 0, ipst, NULL);
15146         if (ire != NULL) {
15147                 zoneid = IP_REAL_ZONEID(ire->ire_zoneid, ipst);
15148                 ire_refrele(ire);
15149         }
15150         return (zoneid);
15151 }
15152 
15153 /*
15154  * IP obserability hook support functions.
15155  */
15156 static void
15157 ipobs_init(ip_stack_t *ipst)
15158 {
15159         netid_t id;
15160 
15161         id = net_getnetidbynetstackid(ipst->ips_netstack->netstack_stackid);
15162 
15163         ipst->ips_ip4_observe_pr = net_protocol_lookup(id, NHF_INET);
15164         VERIFY(ipst->ips_ip4_observe_pr != NULL);
15165 
15166         ipst->ips_ip6_observe_pr = net_protocol_lookup(id, NHF_INET6);
15167         VERIFY(ipst->ips_ip6_observe_pr != NULL);
15168 }
15169 
15170 static void
15171 ipobs_fini(ip_stack_t *ipst)
15172 {
15173 
15174         VERIFY(net_protocol_release(ipst->ips_ip4_observe_pr) == 0);
15175         VERIFY(net_protocol_release(ipst->ips_ip6_observe_pr) == 0);
15176 }
15177 
15178 /*
15179  * hook_pkt_observe_t is composed in network byte order so that the
15180  * entire mblk_t chain handed into hook_run can be used as-is.
15181  * The caveat is that use of the fields, such as the zone fields,
15182  * requires conversion into host byte order first.
15183  */
15184 void
15185 ipobs_hook(mblk_t *mp, int htype, zoneid_t zsrc, zoneid_t zdst,
15186     const ill_t *ill, ip_stack_t *ipst)
15187 {
15188         hook_pkt_observe_t *hdr;
15189         uint64_t grifindex;
15190         mblk_t *imp;
15191 
15192         imp = allocb(sizeof (*hdr), BPRI_HI);
15193         if (imp == NULL)
15194                 return;
15195 
15196         hdr = (hook_pkt_observe_t *)imp->b_rptr;
15197         /*
15198          * b_wptr is set to make the apparent size of the data in the mblk_t
15199          * to exclude the pointers at the end of hook_pkt_observer_t.
15200          */
15201         imp->b_wptr = imp->b_rptr + sizeof (dl_ipnetinfo_t);
15202         imp->b_cont = mp;
15203 
15204         ASSERT(DB_TYPE(mp) == M_DATA);
15205 
15206         if (IS_UNDER_IPMP(ill))
15207                 grifindex = ipmp_ill_get_ipmp_ifindex(ill);
15208         else
15209                 grifindex = 0;
15210 
15211         hdr->hpo_version = 1;
15212         hdr->hpo_htype = htons(htype);
15213         hdr->hpo_pktlen = htonl((ulong_t)msgdsize(mp));
15214         hdr->hpo_ifindex = htonl(ill->ill_phyint->phyint_ifindex);
15215         hdr->hpo_grifindex = htonl(grifindex);
15216         hdr->hpo_zsrc = htonl(zsrc);
15217         hdr->hpo_zdst = htonl(zdst);
15218         hdr->hpo_pkt = imp;
15219         hdr->hpo_ctx = ipst->ips_netstack;
15220 
15221         if (ill->ill_isv6) {
15222                 hdr->hpo_family = AF_INET6;
15223                 (void) hook_run(ipst->ips_ipv6_net_data->netd_hooks,
15224                     ipst->ips_ipv6observing, (hook_data_t)hdr);
15225         } else {
15226                 hdr->hpo_family = AF_INET;
15227                 (void) hook_run(ipst->ips_ipv4_net_data->netd_hooks,
15228                     ipst->ips_ipv4observing, (hook_data_t)hdr);
15229         }
15230 
15231         imp->b_cont = NULL;
15232         freemsg(imp);
15233 }
15234 
15235 /*
15236  * Utility routine that checks if `v4srcp' is a valid address on underlying
15237  * interface `ill'.  If `ipifp' is non-NULL, it's set to a held ipif
15238  * associated with `v4srcp' on success.  NOTE: if this is not called from
15239  * inside the IPSQ (ill_g_lock is not held), `ill' may be removed from the
15240  * group during or after this lookup.
15241  */
15242 boolean_t
15243 ipif_lookup_testaddr_v4(ill_t *ill, const in_addr_t *v4srcp, ipif_t **ipifp)
15244 {
15245         ipif_t *ipif;
15246 
15247         ipif = ipif_lookup_addr_exact(*v4srcp, ill, ill->ill_ipst);
15248         if (ipif != NULL) {
15249                 if (ipifp != NULL)
15250                         *ipifp = ipif;
15251                 else
15252                         ipif_refrele(ipif);
15253                 return (B_TRUE);
15254         }
15255 
15256         ip1dbg(("ipif_lookup_testaddr_v4: cannot find ipif for src %x\n",
15257             *v4srcp));
15258         return (B_FALSE);
15259 }
15260 
15261 /*
15262  * Transport protocol call back function for CPU state change.
15263  */
15264 /* ARGSUSED */
15265 static int
15266 ip_tp_cpu_update(cpu_setup_t what, int id, void *arg)
15267 {
15268         processorid_t cpu_seqid;
15269         netstack_handle_t nh;
15270         netstack_t *ns;
15271 
15272         ASSERT(MUTEX_HELD(&cpu_lock));
15273 
15274         switch (what) {
15275         case CPU_CONFIG:
15276         case CPU_ON:
15277         case CPU_INIT:
15278         case CPU_CPUPART_IN:
15279                 cpu_seqid = cpu[id]->cpu_seqid;
15280                 netstack_next_init(&nh);
15281                 while ((ns = netstack_next(&nh)) != NULL) {
15282                         tcp_stack_cpu_add(ns->netstack_tcp, cpu_seqid);
15283                         sctp_stack_cpu_add(ns->netstack_sctp, cpu_seqid);
15284                         udp_stack_cpu_add(ns->netstack_udp, cpu_seqid);
15285                         netstack_rele(ns);
15286                 }
15287                 netstack_next_fini(&nh);
15288                 break;
15289         case CPU_UNCONFIG:
15290         case CPU_OFF:
15291         case CPU_CPUPART_OUT:
15292                 /*
15293                  * Nothing to do.  We don't remove the per CPU stats from
15294                  * the IP stack even when the CPU goes offline.
15295                  */
15296                 break;
15297         default:
15298                 break;
15299         }
15300         return (0);
15301 }