1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2015 by Delphix. All rights reserved.
  24  */
  25 
  26 #include <sys/types.h>
  27 #include <sys/stream.h>
  28 #include <sys/strsun.h>
  29 #include <sys/strsubr.h>
  30 #include <sys/debug.h>
  31 #include <sys/sdt.h>
  32 #include <sys/cmn_err.h>
  33 #include <sys/tihdr.h>
  34 
  35 #include <inet/common.h>
  36 #include <inet/optcom.h>
  37 #include <inet/ip.h>
  38 #include <inet/ip_if.h>
  39 #include <inet/ip_impl.h>
  40 #include <inet/tcp.h>
  41 #include <inet/tcp_impl.h>
  42 #include <inet/ipsec_impl.h>
  43 #include <inet/ipclassifier.h>
  44 #include <inet/ipp_common.h>
  45 #include <inet/ip_if.h>
  46 
  47 /*
  48  * This file implements TCP fusion - a protocol-less data path for TCP
  49  * loopback connections.  The fusion of two local TCP endpoints occurs
  50  * at connection establishment time.  Various conditions (see details
  51  * in tcp_fuse()) need to be met for fusion to be successful.  If it
  52  * fails, we fall back to the regular TCP data path; if it succeeds,
  53  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
  54  * tcp_fuse_output() enqueues application data directly onto the peer's
  55  * receive queue; no protocol processing is involved.
  56  *
  57  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
  58  * One of the requirements for fusion to succeed is that both endpoints
  59  * need to be using the same squeue.  This ensures that neither side
  60  * can disappear while the other side is still sending data. Flow
  61  * control information is manipulated outside the squeue, so the
  62  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
  63  */
  64 
  65 /*
  66  * Setting this to false means we disable fusion altogether and
  67  * loopback connections would go through the protocol paths.
  68  */
  69 boolean_t do_tcp_fusion = B_TRUE;
  70 
  71 /*
  72  * This routine gets called by the eager tcp upon changing state from
  73  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
  74  * and the active connect tcp such that the regular tcp processings
  75  * may be bypassed under allowable circumstances.  Because the fusion
  76  * requires both endpoints to be in the same squeue, it does not work
  77  * for simultaneous active connects because there is no easy way to
  78  * switch from one squeue to another once the connection is created.
  79  * This is different from the eager tcp case where we assign it the
  80  * same squeue as the one given to the active connect tcp during open.
  81  */
  82 void
  83 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
  84 {
  85         conn_t          *peer_connp, *connp = tcp->tcp_connp;
  86         tcp_t           *peer_tcp;
  87         tcp_stack_t     *tcps = tcp->tcp_tcps;
  88         netstack_t      *ns;
  89         ip_stack_t      *ipst = tcps->tcps_netstack->netstack_ip;
  90 
  91         ASSERT(!tcp->tcp_fused);
  92         ASSERT(tcp->tcp_loopback);
  93         ASSERT(tcp->tcp_loopback_peer == NULL);
  94         /*
  95          * We need to inherit conn_rcvbuf of the listener tcp,
  96          * but we can't really use tcp_listener since we get here after
  97          * sending up T_CONN_IND and tcp_tli_accept() may be called
  98          * independently, at which point tcp_listener is cleared;
  99          * this is why we use tcp_saved_listener. The listener itself
 100          * is guaranteed to be around until tcp_accept_finish() is called
 101          * on this eager -- this won't happen until we're done since we're
 102          * inside the eager's perimeter now.
 103          */
 104         ASSERT(tcp->tcp_saved_listener != NULL);
 105         /*
 106          * Lookup peer endpoint; search for the remote endpoint having
 107          * the reversed address-port quadruplet in ESTABLISHED state,
 108          * which is guaranteed to be unique in the system.  Zone check
 109          * is applied accordingly for loopback address, but not for
 110          * local address since we want fusion to happen across Zones.
 111          */
 112         if (connp->conn_ipversion == IPV4_VERSION) {
 113                 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
 114                     (ipha_t *)iphdr, tcpha, ipst);
 115         } else {
 116                 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
 117                     (ip6_t *)iphdr, tcpha, ipst);
 118         }
 119 
 120         /*
 121          * We can only proceed if peer exists, resides in the same squeue
 122          * as our conn and is not raw-socket. We also restrict fusion to
 123          * endpoints of the same type (STREAMS or non-STREAMS). The squeue
 124          * assignment of this eager tcp was done earlier at the time of SYN
 125          * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
 126          * itself doesn't guarantee a safe condition to fuse, hence we perform
 127          * additional tests below.
 128          */
 129         ASSERT(peer_connp == NULL || peer_connp != connp);
 130         if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
 131             !IPCL_IS_TCP(peer_connp) ||
 132             IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
 133                 if (peer_connp != NULL) {
 134                         TCP_STAT(tcps, tcp_fusion_unqualified);
 135                         CONN_DEC_REF(peer_connp);
 136                 }
 137                 return;
 138         }
 139         peer_tcp = peer_connp->conn_tcp;     /* active connect tcp */
 140 
 141         ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
 142         ASSERT(peer_tcp->tcp_loopback_peer == NULL);
 143         ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
 144 
 145         /*
 146          * Due to IRE changes the peer and us might not agree on tcp_loopback.
 147          * We bail in that case.
 148          */
 149         if (!peer_tcp->tcp_loopback) {
 150                 TCP_STAT(tcps, tcp_fusion_unqualified);
 151                 CONN_DEC_REF(peer_connp);
 152                 return;
 153         }
 154         /*
 155          * Fuse the endpoints; we perform further checks against both
 156          * tcp endpoints to ensure that a fusion is allowed to happen.
 157          */
 158         ns = tcps->tcps_netstack;
 159         ipst = ns->netstack_ip;
 160 
 161         if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
 162             tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) {
 163                 mblk_t *mp;
 164                 queue_t *peer_rq = peer_connp->conn_rq;
 165 
 166                 ASSERT(!TCP_IS_DETACHED(peer_tcp));
 167                 ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
 168                 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
 169 
 170                 /*
 171                  * We need to drain data on both endpoints during unfuse.
 172                  * If we need to send up SIGURG at the time of draining,
 173                  * we want to be sure that an mblk is readily available.
 174                  * This is why we pre-allocate the M_PCSIG mblks for both
 175                  * endpoints which will only be used during/after unfuse.
 176                  * The mblk might already exist if we are doing a re-fuse.
 177                  */
 178                 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
 179                         ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
 180 
 181                         if (tcp->tcp_fused_sigurg_mp == NULL) {
 182                                 if ((mp = allocb(1, BPRI_HI)) == NULL)
 183                                         goto failed;
 184                                 tcp->tcp_fused_sigurg_mp = mp;
 185                         }
 186 
 187                         if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
 188                                 if ((mp = allocb(1, BPRI_HI)) == NULL)
 189                                         goto failed;
 190                                 peer_tcp->tcp_fused_sigurg_mp = mp;
 191                         }
 192 
 193                         if ((mp = allocb(sizeof (struct stroptions),
 194                             BPRI_HI)) == NULL)
 195                                 goto failed;
 196                 }
 197 
 198                 /* Fuse both endpoints */
 199                 peer_tcp->tcp_loopback_peer = tcp;
 200                 tcp->tcp_loopback_peer = peer_tcp;
 201                 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
 202 
 203                 /*
 204                  * We never use regular tcp paths in fusion and should
 205                  * therefore clear tcp_unsent on both endpoints.  Having
 206                  * them set to non-zero values means asking for trouble
 207                  * especially after unfuse, where we may end up sending
 208                  * through regular tcp paths which expect xmit_list and
 209                  * friends to be correctly setup.
 210                  */
 211                 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
 212 
 213                 tcp_timers_stop(tcp);
 214                 tcp_timers_stop(peer_tcp);
 215 
 216                 /*
 217                  * Set receive buffer and max packet size for the
 218                  * active open tcp.
 219                  * eager's values will be set in tcp_accept_finish.
 220                  */
 221                 (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);
 222 
 223                 /*
 224                  * Set the write offset value to zero since we won't
 225                  * be needing any room for TCP/IP headers.
 226                  */
 227                 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
 228                         struct stroptions *stropt;
 229 
 230                         DB_TYPE(mp) = M_SETOPTS;
 231                         mp->b_wptr += sizeof (*stropt);
 232 
 233                         stropt = (struct stroptions *)mp->b_rptr;
 234                         stropt->so_flags = SO_WROFF | SO_MAXBLK;
 235                         stropt->so_wroff = 0;
 236                         stropt->so_maxblk = INFPSZ;
 237 
 238                         /* Send the options up */
 239                         putnext(peer_rq, mp);
 240                 } else {
 241                         struct sock_proto_props sopp;
 242 
 243                         /* The peer is a non-STREAMS end point */
 244                         ASSERT(IPCL_IS_TCP(peer_connp));
 245 
 246                         sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK;
 247                         sopp.sopp_wroff = 0;
 248                         sopp.sopp_maxblk = INFPSZ;
 249                         (*peer_connp->conn_upcalls->su_set_proto_props)
 250                             (peer_connp->conn_upper_handle, &sopp);
 251                 }
 252         } else {
 253                 TCP_STAT(tcps, tcp_fusion_unqualified);
 254         }
 255         CONN_DEC_REF(peer_connp);
 256         return;
 257 
 258 failed:
 259         if (tcp->tcp_fused_sigurg_mp != NULL) {
 260                 freeb(tcp->tcp_fused_sigurg_mp);
 261                 tcp->tcp_fused_sigurg_mp = NULL;
 262         }
 263         if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
 264                 freeb(peer_tcp->tcp_fused_sigurg_mp);
 265                 peer_tcp->tcp_fused_sigurg_mp = NULL;
 266         }
 267         CONN_DEC_REF(peer_connp);
 268 }
 269 
 270 /*
 271  * Unfuse a previously-fused pair of tcp loopback endpoints.
 272  */
 273 void
 274 tcp_unfuse(tcp_t *tcp)
 275 {
 276         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 277         tcp_stack_t *tcps = tcp->tcp_tcps;
 278 
 279         ASSERT(tcp->tcp_fused && peer_tcp != NULL);
 280         ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
 281         ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
 282         ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
 283 
 284         /*
 285          * Cancel any pending push timers.
 286          */
 287         if (tcp->tcp_push_tid != 0) {
 288                 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
 289                 tcp->tcp_push_tid = 0;
 290         }
 291         if (peer_tcp->tcp_push_tid != 0) {
 292                 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
 293                 peer_tcp->tcp_push_tid = 0;
 294         }
 295 
 296         /*
 297          * Drain any pending data; Note that in case of a detached tcp, the
 298          * draining will happen later after the tcp is unfused.  For non-
 299          * urgent data, this can be handled by the regular tcp_rcv_drain().
 300          * If we have urgent data sitting in the receive list, we will
 301          * need to send up a SIGURG signal first before draining the data.
 302          * All of these will be handled by the code in tcp_fuse_rcv_drain()
 303          * when called from tcp_rcv_drain().
 304          */
 305         if (!TCP_IS_DETACHED(tcp)) {
 306                 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
 307                     &tcp->tcp_fused_sigurg_mp);
 308         }
 309         if (!TCP_IS_DETACHED(peer_tcp)) {
 310                 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
 311                     peer_tcp,  &peer_tcp->tcp_fused_sigurg_mp);
 312         }
 313 
 314         /* Lift up any flow-control conditions */
 315         mutex_enter(&tcp->tcp_non_sq_lock);
 316         if (tcp->tcp_flow_stopped) {
 317                 tcp_clrqfull(tcp);
 318                 TCP_STAT(tcps, tcp_fusion_backenabled);
 319         }
 320         mutex_exit(&tcp->tcp_non_sq_lock);
 321 
 322         mutex_enter(&peer_tcp->tcp_non_sq_lock);
 323         if (peer_tcp->tcp_flow_stopped) {
 324                 tcp_clrqfull(peer_tcp);
 325                 TCP_STAT(tcps, tcp_fusion_backenabled);
 326         }
 327         mutex_exit(&peer_tcp->tcp_non_sq_lock);
 328 
 329         /*
 330          * Update tha_seq and tha_ack in the header template
 331          */
 332         tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
 333         tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
 334         peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
 335         peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);
 336 
 337         /* Unfuse the endpoints */
 338         peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
 339         peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
 340 }
 341 
 342 /*
 343  * Fusion output routine used to handle urgent data sent by STREAMS based
 344  * endpoints. This routine is called by tcp_fuse_output() for handling
 345  * non-M_DATA mblks.
 346  */
 347 void
 348 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
 349 {
 350         mblk_t *mp1;
 351         struct T_exdata_ind *tei;
 352         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 353         mblk_t *head, *prev_head = NULL;
 354         tcp_stack_t     *tcps = tcp->tcp_tcps;
 355 
 356         ASSERT(tcp->tcp_fused);
 357         ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
 358         ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
 359         ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
 360         ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
 361         ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
 362 
 363         /*
 364          * Urgent data arrives in the form of T_EXDATA_REQ from above.
 365          * Each occurence denotes a new urgent pointer.  For each new
 366          * urgent pointer we signal (SIGURG) the receiving app to indicate
 367          * that it needs to go into urgent mode.  This is similar to the
 368          * urgent data handling in the regular tcp.  We don't need to keep
 369          * track of where the urgent pointer is, because each T_EXDATA_REQ
 370          * "advances" the urgent pointer for us.
 371          *
 372          * The actual urgent data carried by T_EXDATA_REQ is then prepended
 373          * by a T_EXDATA_IND before being enqueued behind any existing data
 374          * destined for the receiving app.  There is only a single urgent
 375          * pointer (out-of-band mark) for a given tcp.  If the new urgent
 376          * data arrives before the receiving app reads some existing urgent
 377          * data, the previous marker is lost.  This behavior is emulated
 378          * accordingly below, by removing any existing T_EXDATA_IND messages
 379          * and essentially converting old urgent data into non-urgent.
 380          */
 381         ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
 382         /* Let sender get out of urgent mode */
 383         tcp->tcp_valid_bits &= ~TCP_URG_VALID;
 384 
 385         /*
 386          * This flag indicates that a signal needs to be sent up.
 387          * This flag will only get cleared once SIGURG is delivered and
 388          * is not affected by the tcp_fused flag -- delivery will still
 389          * happen even after an endpoint is unfused, to handle the case
 390          * where the sending endpoint immediately closes/unfuses after
 391          * sending urgent data and the accept is not yet finished.
 392          */
 393         peer_tcp->tcp_fused_sigurg = B_TRUE;
 394 
 395         /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
 396         DB_TYPE(mp) = M_PROTO;
 397         tei = (struct T_exdata_ind *)mp->b_rptr;
 398         tei->PRIM_type = T_EXDATA_IND;
 399         tei->MORE_flag = 0;
 400         mp->b_wptr = (uchar_t *)&tei[1];
 401 
 402         TCP_STAT(tcps, tcp_fusion_urg);
 403         TCPS_BUMP_MIB(tcps, tcpOutUrg);
 404 
 405         head = peer_tcp->tcp_rcv_list;
 406         while (head != NULL) {
 407                 /*
 408                  * Remove existing T_EXDATA_IND, keep the data which follows
 409                  * it and relink our list.  Note that we don't modify the
 410                  * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
 411                  */
 412                 if (DB_TYPE(head) != M_DATA) {
 413                         mp1 = head;
 414 
 415                         ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
 416                         head = mp1->b_cont;
 417                         mp1->b_cont = NULL;
 418                         head->b_next = mp1->b_next;
 419                         mp1->b_next = NULL;
 420                         if (prev_head != NULL)
 421                                 prev_head->b_next = head;
 422                         if (peer_tcp->tcp_rcv_list == mp1)
 423                                 peer_tcp->tcp_rcv_list = head;
 424                         if (peer_tcp->tcp_rcv_last_head == mp1)
 425                                 peer_tcp->tcp_rcv_last_head = head;
 426                         freeb(mp1);
 427                 }
 428                 prev_head = head;
 429                 head = head->b_next;
 430         }
 431 }
 432 
 433 /*
 434  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
 435  * If we are modifying any member that can be changed outside the squeue,
 436  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
 437  */
 438 boolean_t
 439 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
 440 {
 441         conn_t          *connp = tcp->tcp_connp;
 442         tcp_t           *peer_tcp = tcp->tcp_loopback_peer;
 443         conn_t          *peer_connp = peer_tcp->tcp_connp;
 444         boolean_t       flow_stopped, peer_data_queued = B_FALSE;
 445         boolean_t       urgent = (DB_TYPE(mp) != M_DATA);
 446         boolean_t       push = B_TRUE;
 447         mblk_t          *mp1 = mp;
 448         uint_t          ip_hdr_len;
 449         uint32_t        recv_size = send_size;
 450         tcp_stack_t     *tcps = tcp->tcp_tcps;
 451         netstack_t      *ns = tcps->tcps_netstack;
 452         ip_stack_t      *ipst = ns->netstack_ip;
 453         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 454         iaflags_t       ixaflags = connp->conn_ixa->ixa_flags;
 455         boolean_t       do_ipsec, hooks_out, hooks_in, ipobs_enabled;
 456 
 457         ASSERT(tcp->tcp_fused);
 458         ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
 459         ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
 460         ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
 461             DB_TYPE(mp) == M_PCPROTO);
 462 
 463         if (send_size == 0) {
 464                 freemsg(mp);
 465                 return (B_TRUE);
 466         }
 467 
 468         /*
 469          * Handle urgent data; we either send up SIGURG to the peer now
 470          * or do it later when we drain, in case the peer is detached
 471          * or if we're short of memory for M_PCSIG mblk.
 472          */
 473         if (urgent) {
 474                 tcp_fuse_output_urg(tcp, mp);
 475 
 476                 mp1 = mp->b_cont;
 477         }
 478 
 479         /*
 480          * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
 481          * further processes.
 482          */
 483         if (!ip_output_verify_local(connp->conn_ixa))
 484                 goto unfuse;
 485 
 486         /*
 487          * Build IP and TCP header in case we have something that needs the
 488          * headers. Those cases are:
 489          * 1. IPsec
 490          * 2. IPobs
 491          * 3. FW_HOOKS
 492          *
 493          * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
 494          * and back to regular path.
 495          */
 496         if (ixaflags & IXAF_IS_IPV4) {
 497                 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
 498                     CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);
 499 
 500                 hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
 501                 hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
 502                 ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
 503         } else {
 504                 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
 505                     CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);
 506 
 507                 hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
 508                 hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
 509                 ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
 510         }
 511 
 512         /* We do logical 'or' for efficiency */
 513         if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
 514                 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
 515                     tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
 516                         /* If tcp_xmit_mp fails, use regular path */
 517                         goto unfuse;
 518 
 519                 /*
 520                  * Leave all IP relevant processes to ip_output_process_local(),
 521                  * which handles IPsec, IPobs, and FW_HOOKS.
 522                  */
 523                 mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
 524                     hooks_in, do_ipsec ? peer_connp : NULL);
 525 
 526                 /* If the message is dropped for any reason. */
 527                 if (mp1 == NULL)
 528                         goto unfuse;
 529 
 530                 /*
 531                  * Data length might have been changed by FW_HOOKS.
 532                  * We assume that the first mblk contains the TCP/IP headers.
 533                  */
 534                 if (hooks_in || hooks_out) {
 535                         tcpha_t *tcpha;
 536 
 537                         ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
 538                             IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
 539                             ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);
 540 
 541                         tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
 542                         ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
 543                             mp1->b_wptr);
 544                         recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;
 545 
 546                 }
 547 
 548                 /*
 549                  * The message duplicated by tcp_xmit_mp is freed.
 550                  * Note: the original message passed in remains unchanged.
 551                  */
 552                 freemsg(mp1);
 553         }
 554 
 555         /*
 556          * Enqueue data into the peer's receive list; we may or may not
 557          * drain the contents depending on the conditions below.
 558          *
 559          * For non-STREAMS sockets we normally queue data directly in the
 560          * socket by calling the su_recv upcall. However, if the peer is
 561          * detached we use tcp_rcv_enqueue() instead. Queued data will be
 562          * drained when the accept completes (in tcp_accept_finish()).
 563          */
 564         if (IPCL_IS_NONSTR(peer_connp) &&
 565             !TCP_IS_DETACHED(peer_tcp)) {
 566                 int error;
 567                 int flags = 0;
 568 
 569                 if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
 570                     (tcp->tcp_urg == tcp->tcp_snxt)) {
 571                         flags = MSG_OOB;
 572                         (*peer_connp->conn_upcalls->su_signal_oob)
 573                             (peer_connp->conn_upper_handle, 0);
 574                         tcp->tcp_valid_bits &= ~TCP_URG_VALID;
 575                 }
 576                 if ((*peer_connp->conn_upcalls->su_recv)(
 577                     peer_connp->conn_upper_handle, mp, recv_size,
 578                     flags, &error, &push) < 0) {
 579                         ASSERT(error != EOPNOTSUPP);
 580                         peer_data_queued = B_TRUE;
 581                 }
 582         } else {
 583                 if (IPCL_IS_NONSTR(peer_connp) &&
 584                     (tcp->tcp_valid_bits & TCP_URG_VALID) &&
 585                     (tcp->tcp_urg == tcp->tcp_snxt)) {
 586                         /*
 587                          * Can not deal with urgent pointers
 588                          * that arrive before the connection has been
 589                          * accept()ed.
 590                          */
 591                         tcp->tcp_valid_bits &= ~TCP_URG_VALID;
 592                         freemsg(mp);
 593                         return (B_TRUE);
 594                 }
 595 
 596                 tcp_rcv_enqueue(peer_tcp, mp, recv_size,
 597                     tcp->tcp_connp->conn_cred);
 598 
 599                 /* In case it wrapped around and also to keep it constant */
 600                 peer_tcp->tcp_rwnd += recv_size;
 601         }
 602 
 603         /*
 604          * Exercise flow-control when needed; we will get back-enabled
 605          * in either tcp_accept_finish(), tcp_unfuse(), or when data is
 606          * consumed. If peer endpoint is detached, we emulate streams flow
 607          * control by checking the peer's queue size and high water mark;
 608          * otherwise we simply use canputnext() to decide if we need to stop
 609          * our flow.
 610          *
 611          * Since we are accessing our tcp_flow_stopped and might modify it,
 612          * we need to take tcp->tcp_non_sq_lock.
 613          */
 614         mutex_enter(&tcp->tcp_non_sq_lock);
 615         flow_stopped = tcp->tcp_flow_stopped;
 616         if ((TCP_IS_DETACHED(peer_tcp) &&
 617             (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
 618             (!TCP_IS_DETACHED(peer_tcp) &&
 619             !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
 620                 peer_data_queued = B_TRUE;
 621         }
 622 
 623         if (!flow_stopped && (peer_data_queued ||
 624             (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
 625                 tcp_setqfull(tcp);
 626                 flow_stopped = B_TRUE;
 627                 TCP_STAT(tcps, tcp_fusion_flowctl);
 628                 DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
 629                     uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
 630         } else if (flow_stopped && !peer_data_queued &&
 631             (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
 632                 tcp_clrqfull(tcp);
 633                 TCP_STAT(tcps, tcp_fusion_backenabled);
 634                 flow_stopped = B_FALSE;
 635         }
 636         mutex_exit(&tcp->tcp_non_sq_lock);
 637 
 638         ipst->ips_loopback_packets++;
 639         tcp->tcp_last_sent_len = send_size;
 640 
 641         /* Need to adjust the following SNMP MIB-related variables */
 642         tcp->tcp_snxt += send_size;
 643         tcp->tcp_suna = tcp->tcp_snxt;
 644         peer_tcp->tcp_rnxt += recv_size;
 645         peer_tcp->tcp_last_recv_len = recv_size;
 646         peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
 647 
 648         TCPS_BUMP_MIB(tcps, tcpOutDataSegs);
 649         TCPS_BUMP_MIB(tcps, tcpHCOutSegs);
 650         TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size);
 651         tcp->tcp_cs.tcp_out_data_bytes += send_size;
 652         tcp->tcp_cs.tcp_out_data_segs++;
 653 
 654         TCPS_BUMP_MIB(tcps, tcpHCInSegs);
 655         TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
 656         TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size);
 657         peer_tcp->tcp_cs.tcp_in_data_inorder_bytes += send_size;
 658         peer_tcp->tcp_cs.tcp_in_data_inorder_segs++;
 659 
 660         DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa,
 661             __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp,
 662             __dtrace_tcp_tcph_t *, NULL);
 663         DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *,
 664             peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL,
 665             tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL);
 666 
 667         if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
 668             !TCP_IS_DETACHED(peer_tcp)) {
 669                 /*
 670                  * Drain the peer's receive queue it has urgent data or if
 671                  * we're not flow-controlled.
 672                  */
 673                 if (urgent || !flow_stopped) {
 674                         ASSERT(peer_tcp->tcp_rcv_list != NULL);
 675                         /*
 676                          * For TLI-based streams, a thread in tcp_accept_swap()
 677                          * can race with us.  That thread will ensure that the
 678                          * correct peer_connp->conn_rq is globally visible
 679                          * before peer_tcp->tcp_detached is visible as clear,
 680                          * but we must also ensure that the load of conn_rq
 681                          * cannot be reordered to be before the tcp_detached
 682                          * check.
 683                          */
 684                         membar_consumer();
 685                         (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
 686                             NULL);
 687                 }
 688         }
 689         return (B_TRUE);
 690 unfuse:
 691         tcp_unfuse(tcp);
 692         return (B_FALSE);
 693 }
 694 
 695 /*
 696  * This routine gets called to deliver data upstream on a fused or
 697  * previously fused tcp loopback endpoint; the latter happens only
 698  * when there is a pending SIGURG signal plus urgent data that can't
 699  * be sent upstream in the past.
 700  */
 701 boolean_t
 702 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
 703 {
 704         mblk_t *mp;
 705         conn_t  *connp = tcp->tcp_connp;
 706 
 707 #ifdef DEBUG
 708         uint_t cnt = 0;
 709 #endif
 710         tcp_stack_t     *tcps = tcp->tcp_tcps;
 711         tcp_t           *peer_tcp = tcp->tcp_loopback_peer;
 712 
 713         ASSERT(tcp->tcp_loopback);
 714         ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
 715         ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
 716         ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
 717 
 718         /* No need for the push timer now, in case it was scheduled */
 719         if (tcp->tcp_push_tid != 0) {
 720                 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
 721                 tcp->tcp_push_tid = 0;
 722         }
 723         /*
 724          * If there's urgent data sitting in receive list and we didn't
 725          * get a chance to send up a SIGURG signal, make sure we send
 726          * it first before draining in order to ensure that SIOCATMARK
 727          * works properly.
 728          */
 729         if (tcp->tcp_fused_sigurg) {
 730                 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
 731 
 732                 tcp->tcp_fused_sigurg = B_FALSE;
 733                 /*
 734                  * sigurg_mpp is normally NULL, i.e. when we're still
 735                  * fused and didn't get here because of tcp_unfuse().
 736                  * In this case try hard to allocate the M_PCSIG mblk.
 737                  */
 738                 if (sigurg_mpp == NULL &&
 739                     (mp = allocb(1, BPRI_HI)) == NULL &&
 740                     (mp = allocb_tryhard(1)) == NULL) {
 741                         /* Alloc failed; try again next time */
 742                         tcp->tcp_push_tid = TCP_TIMER(tcp,
 743                             tcp_push_timer, tcps->tcps_push_timer_interval);
 744                         return (B_TRUE);
 745                 } else if (sigurg_mpp != NULL) {
 746                         /*
 747                          * Use the supplied M_PCSIG mblk; it means we're
 748                          * either unfused or in the process of unfusing,
 749                          * and the drain must happen now.
 750                          */
 751                         mp = *sigurg_mpp;
 752                         *sigurg_mpp = NULL;
 753                 }
 754                 ASSERT(mp != NULL);
 755 
 756                 /* Send up the signal */
 757                 DB_TYPE(mp) = M_PCSIG;
 758                 *mp->b_wptr++ = (uchar_t)SIGURG;
 759                 putnext(q, mp);
 760 
 761                 /*
 762                  * Let the regular tcp_rcv_drain() path handle
 763                  * draining the data if we're no longer fused.
 764                  */
 765                 if (!tcp->tcp_fused)
 766                         return (B_FALSE);
 767         }
 768 
 769         /* Drain the data */
 770         while ((mp = tcp->tcp_rcv_list) != NULL) {
 771                 tcp->tcp_rcv_list = mp->b_next;
 772                 mp->b_next = NULL;
 773 #ifdef DEBUG
 774                 cnt += msgdsize(mp);
 775 #endif
 776                 ASSERT(!IPCL_IS_NONSTR(connp));
 777                 putnext(q, mp);
 778                 TCP_STAT(tcps, tcp_fusion_putnext);
 779         }
 780 
 781 #ifdef DEBUG
 782         ASSERT(cnt == tcp->tcp_rcv_cnt);
 783 #endif
 784         tcp->tcp_rcv_last_head = NULL;
 785         tcp->tcp_rcv_last_tail = NULL;
 786         tcp->tcp_rcv_cnt = 0;
 787         tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;
 788 
 789         mutex_enter(&peer_tcp->tcp_non_sq_lock);
 790         if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
 791             peer_tcp->tcp_connp->conn_sndlowat)) {
 792                 tcp_clrqfull(peer_tcp);
 793                 TCP_STAT(tcps, tcp_fusion_backenabled);
 794         }
 795         mutex_exit(&peer_tcp->tcp_non_sq_lock);
 796 
 797         return (B_TRUE);
 798 }
 799 
 800 /*
 801  * Calculate the size of receive buffer for a fused tcp endpoint.
 802  */
 803 size_t
 804 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
 805 {
 806         tcp_stack_t     *tcps = tcp->tcp_tcps;
 807         uint32_t        max_win;
 808 
 809         ASSERT(tcp->tcp_fused);
 810 
 811         /* Ensure that value is within the maximum upper bound */
 812         if (rwnd > tcps->tcps_max_buf)
 813                 rwnd = tcps->tcps_max_buf;
 814         /*
 815          * Round up to system page size in case SO_RCVBUF is modified
 816          * after SO_SNDBUF; the latter is also similarly rounded up.
 817          */
 818         rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
 819         max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
 820         if (rwnd > max_win) {
 821                 rwnd = max_win - (max_win % tcp->tcp_mss);
 822                 if (rwnd < tcp->tcp_mss)
 823                         rwnd = max_win;
 824         }
 825 
 826         /*
 827          * Record high water mark, this is used for flow-control
 828          * purposes in tcp_fuse_output().
 829          */
 830         tcp->tcp_connp->conn_rcvbuf = rwnd;
 831         tcp->tcp_rwnd = rwnd;
 832         return (rwnd);
 833 }
 834 
 835 /*
 836  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
 837  */
 838 int
 839 tcp_fuse_maxpsz(tcp_t *tcp)
 840 {
 841         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 842         conn_t *connp = tcp->tcp_connp;
 843         uint_t sndbuf = connp->conn_sndbuf;
 844         uint_t maxpsz = sndbuf;
 845 
 846         ASSERT(tcp->tcp_fused);
 847         ASSERT(peer_tcp != NULL);
 848         ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
 849         /*
 850          * In the fused loopback case, we want the stream head to split
 851          * up larger writes into smaller chunks for a more accurate flow-
 852          * control accounting.  Our maxpsz is half of the sender's send
 853          * buffer or the receiver's receive buffer, whichever is smaller.
 854          * We round up the buffer to system page size due to the lack of
 855          * TCP MSS concept in Fusion.
 856          */
 857         if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
 858                 maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
 859         maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
 860 
 861         return (maxpsz);
 862 }
 863 
 864 /*
 865  * Called to release flow control.
 866  */
 867 void
 868 tcp_fuse_backenable(tcp_t *tcp)
 869 {
 870         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 871 
 872         ASSERT(tcp->tcp_fused);
 873         ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
 874         ASSERT(peer_tcp->tcp_loopback_peer == tcp);
 875         ASSERT(!TCP_IS_DETACHED(tcp));
 876         ASSERT(tcp->tcp_connp->conn_sqp ==
 877             peer_tcp->tcp_connp->conn_sqp);
 878 
 879         if (tcp->tcp_rcv_list != NULL)
 880                 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);
 881 
 882         mutex_enter(&peer_tcp->tcp_non_sq_lock);
 883         if (peer_tcp->tcp_flow_stopped &&
 884             (TCP_UNSENT_BYTES(peer_tcp) <=
 885             peer_tcp->tcp_connp->conn_sndlowat)) {
 886                 tcp_clrqfull(peer_tcp);
 887         }
 888         mutex_exit(&peer_tcp->tcp_non_sq_lock);
 889 
 890         TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
 891 }