1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/stream.h> 27 #include <sys/strsun.h> 28 #include <sys/strsubr.h> 29 #include <sys/debug.h> 30 #include <sys/sdt.h> 31 #include <sys/cmn_err.h> 32 #include <sys/tihdr.h> 33 34 #include <inet/common.h> 35 #include <inet/optcom.h> 36 #include <inet/ip.h> 37 #include <inet/ip_if.h> 38 #include <inet/ip_impl.h> 39 #include <inet/tcp.h> 40 #include <inet/tcp_impl.h> 41 #include <inet/ipsec_impl.h> 42 #include <inet/ipclassifier.h> 43 #include <inet/ipp_common.h> 44 #include <inet/ip_if.h> 45 46 /* 47 * This file implements TCP fusion - a protocol-less data path for TCP 48 * loopback connections. The fusion of two local TCP endpoints occurs 49 * at connection establishment time. Various conditions (see details 50 * in tcp_fuse()) need to be met for fusion to be successful. If it 51 * fails, we fall back to the regular TCP data path; if it succeeds, 52 * both endpoints proceed to use tcp_fuse_output() as the transmit path. 53 * tcp_fuse_output() enqueues application data directly onto the peer's 54 * receive queue; no protocol processing is involved. 55 * 56 * Sychronization is handled by squeue and the mutex tcp_non_sq_lock. 57 * One of the requirements for fusion to succeed is that both endpoints 58 * need to be using the same squeue. This ensures that neither side 59 * can disappear while the other side is still sending data. Flow 60 * control information is manipulated outside the squeue, so the 61 * tcp_non_sq_lock must be held when touching tcp_flow_stopped. 62 */ 63 64 /* 65 * Setting this to false means we disable fusion altogether and 66 * loopback connections would go through the protocol paths. 67 */ 68 boolean_t do_tcp_fusion = B_TRUE; 69 70 /* 71 * This routine gets called by the eager tcp upon changing state from 72 * SYN_RCVD to ESTABLISHED. It fuses a direct path between itself 73 * and the active connect tcp such that the regular tcp processings 74 * may be bypassed under allowable circumstances. Because the fusion 75 * requires both endpoints to be in the same squeue, it does not work 76 * for simultaneous active connects because there is no easy way to 77 * switch from one squeue to another once the connection is created. 78 * This is different from the eager tcp case where we assign it the 79 * same squeue as the one given to the active connect tcp during open. 80 */ 81 void 82 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha) 83 { 84 conn_t *peer_connp, *connp = tcp->tcp_connp; 85 tcp_t *peer_tcp; 86 tcp_stack_t *tcps = tcp->tcp_tcps; 87 netstack_t *ns; 88 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 89 90 ASSERT(!tcp->tcp_fused); 91 ASSERT(tcp->tcp_loopback); 92 ASSERT(tcp->tcp_loopback_peer == NULL); 93 /* 94 * We need to inherit conn_rcvbuf of the listener tcp, 95 * but we can't really use tcp_listener since we get here after 96 * sending up T_CONN_IND and tcp_tli_accept() may be called 97 * independently, at which point tcp_listener is cleared; 98 * this is why we use tcp_saved_listener. The listener itself 99 * is guaranteed to be around until tcp_accept_finish() is called 100 * on this eager -- this won't happen until we're done since we're 101 * inside the eager's perimeter now. 102 */ 103 ASSERT(tcp->tcp_saved_listener != NULL); 104 /* 105 * Lookup peer endpoint; search for the remote endpoint having 106 * the reversed address-port quadruplet in ESTABLISHED state, 107 * which is guaranteed to be unique in the system. Zone check 108 * is applied accordingly for loopback address, but not for 109 * local address since we want fusion to happen across Zones. 110 */ 111 if (connp->conn_ipversion == IPV4_VERSION) { 112 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp, 113 (ipha_t *)iphdr, tcpha, ipst); 114 } else { 115 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp, 116 (ip6_t *)iphdr, tcpha, ipst); 117 } 118 119 /* 120 * We can only proceed if peer exists, resides in the same squeue 121 * as our conn and is not raw-socket. We also restrict fusion to 122 * endpoints of the same type (STREAMS or non-STREAMS). The squeue 123 * assignment of this eager tcp was done earlier at the time of SYN 124 * processing in ip_fanout_tcp{_v6}. Note that similar squeues by 125 * itself doesn't guarantee a safe condition to fuse, hence we perform 126 * additional tests below. 127 */ 128 ASSERT(peer_connp == NULL || peer_connp != connp); 129 if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp || 130 !IPCL_IS_TCP(peer_connp) || 131 IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) { 132 if (peer_connp != NULL) { 133 TCP_STAT(tcps, tcp_fusion_unqualified); 134 CONN_DEC_REF(peer_connp); 135 } 136 return; 137 } 138 peer_tcp = peer_connp->conn_tcp; /* active connect tcp */ 139 140 ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused); 141 ASSERT(peer_tcp->tcp_loopback_peer == NULL); 142 ASSERT(peer_connp->conn_sqp == connp->conn_sqp); 143 144 /* 145 * Due to IRE changes the peer and us might not agree on tcp_loopback. 146 * We bail in that case. 147 */ 148 if (!peer_tcp->tcp_loopback) { 149 TCP_STAT(tcps, tcp_fusion_unqualified); 150 CONN_DEC_REF(peer_connp); 151 return; 152 } 153 /* 154 * Fuse the endpoints; we perform further checks against both 155 * tcp endpoints to ensure that a fusion is allowed to happen. 156 */ 157 ns = tcps->tcps_netstack; 158 ipst = ns->netstack_ip; 159 160 if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable && 161 tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) { 162 mblk_t *mp; 163 queue_t *peer_rq = peer_connp->conn_rq; 164 165 ASSERT(!TCP_IS_DETACHED(peer_tcp)); 166 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 167 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL); 168 169 /* 170 * We need to drain data on both endpoints during unfuse. 171 * If we need to send up SIGURG at the time of draining, 172 * we want to be sure that an mblk is readily available. 173 * This is why we pre-allocate the M_PCSIG mblks for both 174 * endpoints which will only be used during/after unfuse. 175 * The mblk might already exist if we are doing a re-fuse. 176 */ 177 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) { 178 ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp)); 179 180 if (tcp->tcp_fused_sigurg_mp == NULL) { 181 if ((mp = allocb(1, BPRI_HI)) == NULL) 182 goto failed; 183 tcp->tcp_fused_sigurg_mp = mp; 184 } 185 186 if (peer_tcp->tcp_fused_sigurg_mp == NULL) { 187 if ((mp = allocb(1, BPRI_HI)) == NULL) 188 goto failed; 189 peer_tcp->tcp_fused_sigurg_mp = mp; 190 } 191 192 if ((mp = allocb(sizeof (struct stroptions), 193 BPRI_HI)) == NULL) 194 goto failed; 195 } 196 197 /* Fuse both endpoints */ 198 peer_tcp->tcp_loopback_peer = tcp; 199 tcp->tcp_loopback_peer = peer_tcp; 200 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE; 201 202 /* 203 * We never use regular tcp paths in fusion and should 204 * therefore clear tcp_unsent on both endpoints. Having 205 * them set to non-zero values means asking for trouble 206 * especially after unfuse, where we may end up sending 207 * through regular tcp paths which expect xmit_list and 208 * friends to be correctly setup. 209 */ 210 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0; 211 212 tcp_timers_stop(tcp); 213 tcp_timers_stop(peer_tcp); 214 215 /* 216 * Set receive buffer and max packet size for the 217 * active open tcp. 218 * eager's values will be set in tcp_accept_finish. 219 */ 220 (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf); 221 222 /* 223 * Set the write offset value to zero since we won't 224 * be needing any room for TCP/IP headers. 225 */ 226 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) { 227 struct stroptions *stropt; 228 229 DB_TYPE(mp) = M_SETOPTS; 230 mp->b_wptr += sizeof (*stropt); 231 232 stropt = (struct stroptions *)mp->b_rptr; 233 stropt->so_flags = SO_WROFF | SO_MAXBLK; 234 stropt->so_wroff = 0; 235 stropt->so_maxblk = INFPSZ; 236 237 /* Send the options up */ 238 putnext(peer_rq, mp); 239 } else { 240 struct sock_proto_props sopp; 241 242 /* The peer is a non-STREAMS end point */ 243 ASSERT(IPCL_IS_TCP(peer_connp)); 244 245 sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK; 246 sopp.sopp_wroff = 0; 247 sopp.sopp_maxblk = INFPSZ; 248 (*peer_connp->conn_upcalls->su_set_proto_props) 249 (peer_connp->conn_upper_handle, &sopp); 250 } 251 } else { 252 TCP_STAT(tcps, tcp_fusion_unqualified); 253 } 254 CONN_DEC_REF(peer_connp); 255 return; 256 257 failed: 258 if (tcp->tcp_fused_sigurg_mp != NULL) { 259 freeb(tcp->tcp_fused_sigurg_mp); 260 tcp->tcp_fused_sigurg_mp = NULL; 261 } 262 if (peer_tcp->tcp_fused_sigurg_mp != NULL) { 263 freeb(peer_tcp->tcp_fused_sigurg_mp); 264 peer_tcp->tcp_fused_sigurg_mp = NULL; 265 } 266 CONN_DEC_REF(peer_connp); 267 } 268 269 /* 270 * Unfuse a previously-fused pair of tcp loopback endpoints. 271 */ 272 void 273 tcp_unfuse(tcp_t *tcp) 274 { 275 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 276 tcp_stack_t *tcps = tcp->tcp_tcps; 277 278 ASSERT(tcp->tcp_fused && peer_tcp != NULL); 279 ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp); 280 ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp); 281 ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0); 282 283 /* 284 * Cancel any pending push timers. 285 */ 286 if (tcp->tcp_push_tid != 0) { 287 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 288 tcp->tcp_push_tid = 0; 289 } 290 if (peer_tcp->tcp_push_tid != 0) { 291 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid); 292 peer_tcp->tcp_push_tid = 0; 293 } 294 295 /* 296 * Drain any pending data; Note that in case of a detached tcp, the 297 * draining will happen later after the tcp is unfused. For non- 298 * urgent data, this can be handled by the regular tcp_rcv_drain(). 299 * If we have urgent data sitting in the receive list, we will 300 * need to send up a SIGURG signal first before draining the data. 301 * All of these will be handled by the code in tcp_fuse_rcv_drain() 302 * when called from tcp_rcv_drain(). 303 */ 304 if (!TCP_IS_DETACHED(tcp)) { 305 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, 306 &tcp->tcp_fused_sigurg_mp); 307 } 308 if (!TCP_IS_DETACHED(peer_tcp)) { 309 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq, 310 peer_tcp, &peer_tcp->tcp_fused_sigurg_mp); 311 } 312 313 /* Lift up any flow-control conditions */ 314 mutex_enter(&tcp->tcp_non_sq_lock); 315 if (tcp->tcp_flow_stopped) { 316 tcp_clrqfull(tcp); 317 TCP_STAT(tcps, tcp_fusion_backenabled); 318 } 319 mutex_exit(&tcp->tcp_non_sq_lock); 320 321 mutex_enter(&peer_tcp->tcp_non_sq_lock); 322 if (peer_tcp->tcp_flow_stopped) { 323 tcp_clrqfull(peer_tcp); 324 TCP_STAT(tcps, tcp_fusion_backenabled); 325 } 326 mutex_exit(&peer_tcp->tcp_non_sq_lock); 327 328 /* 329 * Update tha_seq and tha_ack in the header template 330 */ 331 tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt); 332 tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt); 333 peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt); 334 peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt); 335 336 /* Unfuse the endpoints */ 337 peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE; 338 peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL; 339 } 340 341 /* 342 * Fusion output routine used to handle urgent data sent by STREAMS based 343 * endpoints. This routine is called by tcp_fuse_output() for handling 344 * non-M_DATA mblks. 345 */ 346 void 347 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp) 348 { 349 mblk_t *mp1; 350 struct T_exdata_ind *tei; 351 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 352 mblk_t *head, *prev_head = NULL; 353 tcp_stack_t *tcps = tcp->tcp_tcps; 354 355 ASSERT(tcp->tcp_fused); 356 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 357 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 358 ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO); 359 ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA); 360 ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0); 361 362 /* 363 * Urgent data arrives in the form of T_EXDATA_REQ from above. 364 * Each occurence denotes a new urgent pointer. For each new 365 * urgent pointer we signal (SIGURG) the receiving app to indicate 366 * that it needs to go into urgent mode. This is similar to the 367 * urgent data handling in the regular tcp. We don't need to keep 368 * track of where the urgent pointer is, because each T_EXDATA_REQ 369 * "advances" the urgent pointer for us. 370 * 371 * The actual urgent data carried by T_EXDATA_REQ is then prepended 372 * by a T_EXDATA_IND before being enqueued behind any existing data 373 * destined for the receiving app. There is only a single urgent 374 * pointer (out-of-band mark) for a given tcp. If the new urgent 375 * data arrives before the receiving app reads some existing urgent 376 * data, the previous marker is lost. This behavior is emulated 377 * accordingly below, by removing any existing T_EXDATA_IND messages 378 * and essentially converting old urgent data into non-urgent. 379 */ 380 ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID); 381 /* Let sender get out of urgent mode */ 382 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 383 384 /* 385 * This flag indicates that a signal needs to be sent up. 386 * This flag will only get cleared once SIGURG is delivered and 387 * is not affected by the tcp_fused flag -- delivery will still 388 * happen even after an endpoint is unfused, to handle the case 389 * where the sending endpoint immediately closes/unfuses after 390 * sending urgent data and the accept is not yet finished. 391 */ 392 peer_tcp->tcp_fused_sigurg = B_TRUE; 393 394 /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */ 395 DB_TYPE(mp) = M_PROTO; 396 tei = (struct T_exdata_ind *)mp->b_rptr; 397 tei->PRIM_type = T_EXDATA_IND; 398 tei->MORE_flag = 0; 399 mp->b_wptr = (uchar_t *)&tei[1]; 400 401 TCP_STAT(tcps, tcp_fusion_urg); 402 TCPS_BUMP_MIB(tcps, tcpOutUrg); 403 404 head = peer_tcp->tcp_rcv_list; 405 while (head != NULL) { 406 /* 407 * Remove existing T_EXDATA_IND, keep the data which follows 408 * it and relink our list. Note that we don't modify the 409 * tcp_rcv_last_tail since it never points to T_EXDATA_IND. 410 */ 411 if (DB_TYPE(head) != M_DATA) { 412 mp1 = head; 413 414 ASSERT(DB_TYPE(mp1->b_cont) == M_DATA); 415 head = mp1->b_cont; 416 mp1->b_cont = NULL; 417 head->b_next = mp1->b_next; 418 mp1->b_next = NULL; 419 if (prev_head != NULL) 420 prev_head->b_next = head; 421 if (peer_tcp->tcp_rcv_list == mp1) 422 peer_tcp->tcp_rcv_list = head; 423 if (peer_tcp->tcp_rcv_last_head == mp1) 424 peer_tcp->tcp_rcv_last_head = head; 425 freeb(mp1); 426 } 427 prev_head = head; 428 head = head->b_next; 429 } 430 } 431 432 /* 433 * Fusion output routine, called by tcp_output() and tcp_wput_proto(). 434 * If we are modifying any member that can be changed outside the squeue, 435 * like tcp_flow_stopped, we need to take tcp_non_sq_lock. 436 */ 437 boolean_t 438 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size) 439 { 440 conn_t *connp = tcp->tcp_connp; 441 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 442 conn_t *peer_connp = peer_tcp->tcp_connp; 443 boolean_t flow_stopped, peer_data_queued = B_FALSE; 444 boolean_t urgent = (DB_TYPE(mp) != M_DATA); 445 boolean_t push = B_TRUE; 446 mblk_t *mp1 = mp; 447 uint_t ip_hdr_len; 448 uint32_t recv_size = send_size; 449 tcp_stack_t *tcps = tcp->tcp_tcps; 450 netstack_t *ns = tcps->tcps_netstack; 451 ip_stack_t *ipst = ns->netstack_ip; 452 ipsec_stack_t *ipss = ns->netstack_ipsec; 453 iaflags_t ixaflags = connp->conn_ixa->ixa_flags; 454 boolean_t do_ipsec, hooks_out, hooks_in, ipobs_enabled; 455 456 ASSERT(tcp->tcp_fused); 457 ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp); 458 ASSERT(connp->conn_sqp == peer_connp->conn_sqp); 459 ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO || 460 DB_TYPE(mp) == M_PCPROTO); 461 462 if (send_size == 0) { 463 freemsg(mp); 464 return (B_TRUE); 465 } 466 467 /* 468 * Handle urgent data; we either send up SIGURG to the peer now 469 * or do it later when we drain, in case the peer is detached 470 * or if we're short of memory for M_PCSIG mblk. 471 */ 472 if (urgent) { 473 tcp_fuse_output_urg(tcp, mp); 474 475 mp1 = mp->b_cont; 476 } 477 478 /* 479 * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before 480 * further processes. 481 */ 482 if (!ip_output_verify_local(connp->conn_ixa)) 483 goto unfuse; 484 485 /* 486 * Build IP and TCP header in case we have something that needs the 487 * headers. Those cases are: 488 * 1. IPsec 489 * 2. IPobs 490 * 3. FW_HOOKS 491 * 492 * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection 493 * and back to regular path. 494 */ 495 if (ixaflags & IXAF_IS_IPV4) { 496 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 497 CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss); 498 499 hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst); 500 hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst); 501 ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0); 502 } else { 503 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) || 504 CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss); 505 506 hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst); 507 hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst); 508 ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0); 509 } 510 511 /* We do logical 'or' for efficiency */ 512 if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) { 513 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL, 514 tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL) 515 /* If tcp_xmit_mp fails, use regular path */ 516 goto unfuse; 517 518 /* 519 * Leave all IP relevant processes to ip_output_process_local(), 520 * which handles IPsec, IPobs, and FW_HOOKS. 521 */ 522 mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out, 523 hooks_in, do_ipsec ? peer_connp : NULL); 524 525 /* If the message is dropped for any reason. */ 526 if (mp1 == NULL) 527 goto unfuse; 528 529 /* 530 * Data length might have been changed by FW_HOOKS. 531 * We assume that the first mblk contains the TCP/IP headers. 532 */ 533 if (hooks_in || hooks_out) { 534 tcpha_t *tcpha; 535 536 ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ? 537 IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) : 538 ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr); 539 540 tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len]; 541 ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <= 542 mp1->b_wptr); 543 recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt; 544 545 } 546 547 /* 548 * The message duplicated by tcp_xmit_mp is freed. 549 * Note: the original message passed in remains unchanged. 550 */ 551 freemsg(mp1); 552 } 553 554 /* 555 * Enqueue data into the peer's receive list; we may or may not 556 * drain the contents depending on the conditions below. 557 * 558 * For non-STREAMS sockets we normally queue data directly in the 559 * socket by calling the su_recv upcall. However, if the peer is 560 * detached we use tcp_rcv_enqueue() instead. Queued data will be 561 * drained when the accept completes (in tcp_accept_finish()). 562 */ 563 if (IPCL_IS_NONSTR(peer_connp) && 564 !TCP_IS_DETACHED(peer_tcp)) { 565 int error; 566 int flags = 0; 567 568 if ((tcp->tcp_valid_bits & TCP_URG_VALID) && 569 (tcp->tcp_urg == tcp->tcp_snxt)) { 570 flags = MSG_OOB; 571 (*peer_connp->conn_upcalls->su_signal_oob) 572 (peer_connp->conn_upper_handle, 0); 573 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 574 } 575 if ((*peer_connp->conn_upcalls->su_recv)( 576 peer_connp->conn_upper_handle, mp, recv_size, 577 flags, &error, &push) < 0) { 578 ASSERT(error != EOPNOTSUPP); 579 peer_data_queued = B_TRUE; 580 } 581 } else { 582 if (IPCL_IS_NONSTR(peer_connp) && 583 (tcp->tcp_valid_bits & TCP_URG_VALID) && 584 (tcp->tcp_urg == tcp->tcp_snxt)) { 585 /* 586 * Can not deal with urgent pointers 587 * that arrive before the connection has been 588 * accept()ed. 589 */ 590 tcp->tcp_valid_bits &= ~TCP_URG_VALID; 591 freemsg(mp); 592 return (B_TRUE); 593 } 594 595 tcp_rcv_enqueue(peer_tcp, mp, recv_size, 596 tcp->tcp_connp->conn_cred); 597 598 /* In case it wrapped around and also to keep it constant */ 599 peer_tcp->tcp_rwnd += recv_size; 600 } 601 602 /* 603 * Exercise flow-control when needed; we will get back-enabled 604 * in either tcp_accept_finish(), tcp_unfuse(), or when data is 605 * consumed. If peer endpoint is detached, we emulate streams flow 606 * control by checking the peer's queue size and high water mark; 607 * otherwise we simply use canputnext() to decide if we need to stop 608 * our flow. 609 * 610 * Since we are accessing our tcp_flow_stopped and might modify it, 611 * we need to take tcp->tcp_non_sq_lock. 612 */ 613 mutex_enter(&tcp->tcp_non_sq_lock); 614 flow_stopped = tcp->tcp_flow_stopped; 615 if ((TCP_IS_DETACHED(peer_tcp) && 616 (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) || 617 (!TCP_IS_DETACHED(peer_tcp) && 618 !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) { 619 peer_data_queued = B_TRUE; 620 } 621 622 if (!flow_stopped && (peer_data_queued || 623 (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) { 624 tcp_setqfull(tcp); 625 flow_stopped = B_TRUE; 626 TCP_STAT(tcps, tcp_fusion_flowctl); 627 DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp, 628 uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt); 629 } else if (flow_stopped && !peer_data_queued && 630 (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) { 631 tcp_clrqfull(tcp); 632 TCP_STAT(tcps, tcp_fusion_backenabled); 633 flow_stopped = B_FALSE; 634 } 635 mutex_exit(&tcp->tcp_non_sq_lock); 636 637 ipst->ips_loopback_packets++; 638 tcp->tcp_last_sent_len = send_size; 639 640 /* Need to adjust the following SNMP MIB-related variables */ 641 tcp->tcp_snxt += send_size; 642 tcp->tcp_suna = tcp->tcp_snxt; 643 peer_tcp->tcp_rnxt += recv_size; 644 peer_tcp->tcp_last_recv_len = recv_size; 645 peer_tcp->tcp_rack = peer_tcp->tcp_rnxt; 646 647 TCPS_BUMP_MIB(tcps, tcpOutDataSegs); 648 TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size); 649 650 TCPS_BUMP_MIB(tcps, tcpHCInSegs); 651 TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs); 652 TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size); 653 654 BUMP_LOCAL(tcp->tcp_obsegs); 655 BUMP_LOCAL(peer_tcp->tcp_ibsegs); 656 657 DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa, 658 __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp, 659 __dtrace_tcp_tcph_t *, NULL); 660 DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *, 661 peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL, 662 tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL); 663 664 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) && 665 !TCP_IS_DETACHED(peer_tcp)) { 666 /* 667 * Drain the peer's receive queue it has urgent data or if 668 * we're not flow-controlled. 669 */ 670 if (urgent || !flow_stopped) { 671 ASSERT(peer_tcp->tcp_rcv_list != NULL); 672 /* 673 * For TLI-based streams, a thread in tcp_accept_swap() 674 * can race with us. That thread will ensure that the 675 * correct peer_connp->conn_rq is globally visible 676 * before peer_tcp->tcp_detached is visible as clear, 677 * but we must also ensure that the load of conn_rq 678 * cannot be reordered to be before the tcp_detached 679 * check. 680 */ 681 membar_consumer(); 682 (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp, 683 NULL); 684 } 685 } 686 return (B_TRUE); 687 unfuse: 688 tcp_unfuse(tcp); 689 return (B_FALSE); 690 } 691 692 /* 693 * This routine gets called to deliver data upstream on a fused or 694 * previously fused tcp loopback endpoint; the latter happens only 695 * when there is a pending SIGURG signal plus urgent data that can't 696 * be sent upstream in the past. 697 */ 698 boolean_t 699 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp) 700 { 701 mblk_t *mp; 702 conn_t *connp = tcp->tcp_connp; 703 704 #ifdef DEBUG 705 uint_t cnt = 0; 706 #endif 707 tcp_stack_t *tcps = tcp->tcp_tcps; 708 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 709 710 ASSERT(tcp->tcp_loopback); 711 ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg); 712 ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL); 713 ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused); 714 715 /* No need for the push timer now, in case it was scheduled */ 716 if (tcp->tcp_push_tid != 0) { 717 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid); 718 tcp->tcp_push_tid = 0; 719 } 720 /* 721 * If there's urgent data sitting in receive list and we didn't 722 * get a chance to send up a SIGURG signal, make sure we send 723 * it first before draining in order to ensure that SIOCATMARK 724 * works properly. 725 */ 726 if (tcp->tcp_fused_sigurg) { 727 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 728 729 tcp->tcp_fused_sigurg = B_FALSE; 730 /* 731 * sigurg_mpp is normally NULL, i.e. when we're still 732 * fused and didn't get here because of tcp_unfuse(). 733 * In this case try hard to allocate the M_PCSIG mblk. 734 */ 735 if (sigurg_mpp == NULL && 736 (mp = allocb(1, BPRI_HI)) == NULL && 737 (mp = allocb_tryhard(1)) == NULL) { 738 /* Alloc failed; try again next time */ 739 tcp->tcp_push_tid = TCP_TIMER(tcp, 740 tcp_push_timer, tcps->tcps_push_timer_interval); 741 return (B_TRUE); 742 } else if (sigurg_mpp != NULL) { 743 /* 744 * Use the supplied M_PCSIG mblk; it means we're 745 * either unfused or in the process of unfusing, 746 * and the drain must happen now. 747 */ 748 mp = *sigurg_mpp; 749 *sigurg_mpp = NULL; 750 } 751 ASSERT(mp != NULL); 752 753 /* Send up the signal */ 754 DB_TYPE(mp) = M_PCSIG; 755 *mp->b_wptr++ = (uchar_t)SIGURG; 756 putnext(q, mp); 757 758 /* 759 * Let the regular tcp_rcv_drain() path handle 760 * draining the data if we're no longer fused. 761 */ 762 if (!tcp->tcp_fused) 763 return (B_FALSE); 764 } 765 766 /* Drain the data */ 767 while ((mp = tcp->tcp_rcv_list) != NULL) { 768 tcp->tcp_rcv_list = mp->b_next; 769 mp->b_next = NULL; 770 #ifdef DEBUG 771 cnt += msgdsize(mp); 772 #endif 773 ASSERT(!IPCL_IS_NONSTR(connp)); 774 putnext(q, mp); 775 TCP_STAT(tcps, tcp_fusion_putnext); 776 } 777 778 #ifdef DEBUG 779 ASSERT(cnt == tcp->tcp_rcv_cnt); 780 #endif 781 tcp->tcp_rcv_last_head = NULL; 782 tcp->tcp_rcv_last_tail = NULL; 783 tcp->tcp_rcv_cnt = 0; 784 tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf; 785 786 mutex_enter(&peer_tcp->tcp_non_sq_lock); 787 if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <= 788 peer_tcp->tcp_connp->conn_sndlowat)) { 789 tcp_clrqfull(peer_tcp); 790 TCP_STAT(tcps, tcp_fusion_backenabled); 791 } 792 mutex_exit(&peer_tcp->tcp_non_sq_lock); 793 794 return (B_TRUE); 795 } 796 797 /* 798 * Calculate the size of receive buffer for a fused tcp endpoint. 799 */ 800 size_t 801 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd) 802 { 803 tcp_stack_t *tcps = tcp->tcp_tcps; 804 uint32_t max_win; 805 806 ASSERT(tcp->tcp_fused); 807 808 /* Ensure that value is within the maximum upper bound */ 809 if (rwnd > tcps->tcps_max_buf) 810 rwnd = tcps->tcps_max_buf; 811 /* 812 * Round up to system page size in case SO_RCVBUF is modified 813 * after SO_SNDBUF; the latter is also similarly rounded up. 814 */ 815 rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t); 816 max_win = TCP_MAXWIN << tcp->tcp_rcv_ws; 817 if (rwnd > max_win) { 818 rwnd = max_win - (max_win % tcp->tcp_mss); 819 if (rwnd < tcp->tcp_mss) 820 rwnd = max_win; 821 } 822 823 /* 824 * Record high water mark, this is used for flow-control 825 * purposes in tcp_fuse_output(). 826 */ 827 tcp->tcp_connp->conn_rcvbuf = rwnd; 828 tcp->tcp_rwnd = rwnd; 829 return (rwnd); 830 } 831 832 /* 833 * Calculate the maximum outstanding unread data block for a fused tcp endpoint. 834 */ 835 int 836 tcp_fuse_maxpsz(tcp_t *tcp) 837 { 838 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 839 conn_t *connp = tcp->tcp_connp; 840 uint_t sndbuf = connp->conn_sndbuf; 841 uint_t maxpsz = sndbuf; 842 843 ASSERT(tcp->tcp_fused); 844 ASSERT(peer_tcp != NULL); 845 ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0); 846 /* 847 * In the fused loopback case, we want the stream head to split 848 * up larger writes into smaller chunks for a more accurate flow- 849 * control accounting. Our maxpsz is half of the sender's send 850 * buffer or the receiver's receive buffer, whichever is smaller. 851 * We round up the buffer to system page size due to the lack of 852 * TCP MSS concept in Fusion. 853 */ 854 if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf) 855 maxpsz = peer_tcp->tcp_connp->conn_rcvbuf; 856 maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1; 857 858 return (maxpsz); 859 } 860 861 /* 862 * Called to release flow control. 863 */ 864 void 865 tcp_fuse_backenable(tcp_t *tcp) 866 { 867 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 868 869 ASSERT(tcp->tcp_fused); 870 ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused); 871 ASSERT(peer_tcp->tcp_loopback_peer == tcp); 872 ASSERT(!TCP_IS_DETACHED(tcp)); 873 ASSERT(tcp->tcp_connp->conn_sqp == 874 peer_tcp->tcp_connp->conn_sqp); 875 876 if (tcp->tcp_rcv_list != NULL) 877 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL); 878 879 mutex_enter(&peer_tcp->tcp_non_sq_lock); 880 if (peer_tcp->tcp_flow_stopped && 881 (TCP_UNSENT_BYTES(peer_tcp) <= 882 peer_tcp->tcp_connp->conn_sndlowat)) { 883 tcp_clrqfull(peer_tcp); 884 } 885 mutex_exit(&peer_tcp->tcp_non_sq_lock); 886 887 TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled); 888 }