1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 #include <sys/types.h>
  26 #include <sys/stream.h>
  27 #include <sys/strsun.h>
  28 #include <sys/strsubr.h>
  29 #include <sys/debug.h>
  30 #include <sys/sdt.h>
  31 #include <sys/cmn_err.h>
  32 #include <sys/tihdr.h>
  33 
  34 #include <inet/common.h>
  35 #include <inet/optcom.h>
  36 #include <inet/ip.h>
  37 #include <inet/ip_if.h>
  38 #include <inet/ip_impl.h>
  39 #include <inet/tcp.h>
  40 #include <inet/tcp_impl.h>
  41 #include <inet/ipsec_impl.h>
  42 #include <inet/ipclassifier.h>
  43 #include <inet/ipp_common.h>
  44 #include <inet/ip_if.h>
  45 
  46 /*
  47  * This file implements TCP fusion - a protocol-less data path for TCP
  48  * loopback connections.  The fusion of two local TCP endpoints occurs
  49  * at connection establishment time.  Various conditions (see details
  50  * in tcp_fuse()) need to be met for fusion to be successful.  If it
  51  * fails, we fall back to the regular TCP data path; if it succeeds,
  52  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
  53  * tcp_fuse_output() enqueues application data directly onto the peer's
  54  * receive queue; no protocol processing is involved.
  55  *
  56  * Sychronization is handled by squeue and the mutex tcp_non_sq_lock.
  57  * One of the requirements for fusion to succeed is that both endpoints
  58  * need to be using the same squeue.  This ensures that neither side
  59  * can disappear while the other side is still sending data. Flow
  60  * control information is manipulated outside the squeue, so the
  61  * tcp_non_sq_lock must be held when touching tcp_flow_stopped.
  62  */
  63 
  64 /*
  65  * Setting this to false means we disable fusion altogether and
  66  * loopback connections would go through the protocol paths.
  67  */
  68 boolean_t do_tcp_fusion = B_TRUE;
  69 
  70 /*
  71  * This routine gets called by the eager tcp upon changing state from
  72  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
  73  * and the active connect tcp such that the regular tcp processings
  74  * may be bypassed under allowable circumstances.  Because the fusion
  75  * requires both endpoints to be in the same squeue, it does not work
  76  * for simultaneous active connects because there is no easy way to
  77  * switch from one squeue to another once the connection is created.
  78  * This is different from the eager tcp case where we assign it the
  79  * same squeue as the one given to the active connect tcp during open.
  80  */
  81 void
  82 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcpha_t *tcpha)
  83 {
  84         conn_t          *peer_connp, *connp = tcp->tcp_connp;
  85         tcp_t           *peer_tcp;
  86         tcp_stack_t     *tcps = tcp->tcp_tcps;
  87         netstack_t      *ns;
  88         ip_stack_t      *ipst = tcps->tcps_netstack->netstack_ip;
  89 
  90         ASSERT(!tcp->tcp_fused);
  91         ASSERT(tcp->tcp_loopback);
  92         ASSERT(tcp->tcp_loopback_peer == NULL);
  93         /*
  94          * We need to inherit conn_rcvbuf of the listener tcp,
  95          * but we can't really use tcp_listener since we get here after
  96          * sending up T_CONN_IND and tcp_tli_accept() may be called
  97          * independently, at which point tcp_listener is cleared;
  98          * this is why we use tcp_saved_listener. The listener itself
  99          * is guaranteed to be around until tcp_accept_finish() is called
 100          * on this eager -- this won't happen until we're done since we're
 101          * inside the eager's perimeter now.
 102          */
 103         ASSERT(tcp->tcp_saved_listener != NULL);
 104         /*
 105          * Lookup peer endpoint; search for the remote endpoint having
 106          * the reversed address-port quadruplet in ESTABLISHED state,
 107          * which is guaranteed to be unique in the system.  Zone check
 108          * is applied accordingly for loopback address, but not for
 109          * local address since we want fusion to happen across Zones.
 110          */
 111         if (connp->conn_ipversion == IPV4_VERSION) {
 112                 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
 113                     (ipha_t *)iphdr, tcpha, ipst);
 114         } else {
 115                 peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
 116                     (ip6_t *)iphdr, tcpha, ipst);
 117         }
 118 
 119         /*
 120          * We can only proceed if peer exists, resides in the same squeue
 121          * as our conn and is not raw-socket. We also restrict fusion to
 122          * endpoints of the same type (STREAMS or non-STREAMS). The squeue
 123          * assignment of this eager tcp was done earlier at the time of SYN
 124          * processing in ip_fanout_tcp{_v6}.  Note that similar squeues by
 125          * itself doesn't guarantee a safe condition to fuse, hence we perform
 126          * additional tests below.
 127          */
 128         ASSERT(peer_connp == NULL || peer_connp != connp);
 129         if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
 130             !IPCL_IS_TCP(peer_connp) ||
 131             IPCL_IS_NONSTR(connp) != IPCL_IS_NONSTR(peer_connp)) {
 132                 if (peer_connp != NULL) {
 133                         TCP_STAT(tcps, tcp_fusion_unqualified);
 134                         CONN_DEC_REF(peer_connp);
 135                 }
 136                 return;
 137         }
 138         peer_tcp = peer_connp->conn_tcp;     /* active connect tcp */
 139 
 140         ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
 141         ASSERT(peer_tcp->tcp_loopback_peer == NULL);
 142         ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
 143 
 144         /*
 145          * Due to IRE changes the peer and us might not agree on tcp_loopback.
 146          * We bail in that case.
 147          */
 148         if (!peer_tcp->tcp_loopback) {
 149                 TCP_STAT(tcps, tcp_fusion_unqualified);
 150                 CONN_DEC_REF(peer_connp);
 151                 return;
 152         }
 153         /*
 154          * Fuse the endpoints; we perform further checks against both
 155          * tcp endpoints to ensure that a fusion is allowed to happen.
 156          */
 157         ns = tcps->tcps_netstack;
 158         ipst = ns->netstack_ip;
 159 
 160         if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
 161             tcp->tcp_xmit_head == NULL && peer_tcp->tcp_xmit_head == NULL) {
 162                 mblk_t *mp;
 163                 queue_t *peer_rq = peer_connp->conn_rq;
 164 
 165                 ASSERT(!TCP_IS_DETACHED(peer_tcp));
 166                 ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
 167                 ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
 168 
 169                 /*
 170                  * We need to drain data on both endpoints during unfuse.
 171                  * If we need to send up SIGURG at the time of draining,
 172                  * we want to be sure that an mblk is readily available.
 173                  * This is why we pre-allocate the M_PCSIG mblks for both
 174                  * endpoints which will only be used during/after unfuse.
 175                  * The mblk might already exist if we are doing a re-fuse.
 176                  */
 177                 if (!IPCL_IS_NONSTR(tcp->tcp_connp)) {
 178                         ASSERT(!IPCL_IS_NONSTR(peer_tcp->tcp_connp));
 179 
 180                         if (tcp->tcp_fused_sigurg_mp == NULL) {
 181                                 if ((mp = allocb(1, BPRI_HI)) == NULL)
 182                                         goto failed;
 183                                 tcp->tcp_fused_sigurg_mp = mp;
 184                         }
 185 
 186                         if (peer_tcp->tcp_fused_sigurg_mp == NULL) {
 187                                 if ((mp = allocb(1, BPRI_HI)) == NULL)
 188                                         goto failed;
 189                                 peer_tcp->tcp_fused_sigurg_mp = mp;
 190                         }
 191 
 192                         if ((mp = allocb(sizeof (struct stroptions),
 193                             BPRI_HI)) == NULL)
 194                                 goto failed;
 195                 }
 196 
 197                 /* Fuse both endpoints */
 198                 peer_tcp->tcp_loopback_peer = tcp;
 199                 tcp->tcp_loopback_peer = peer_tcp;
 200                 peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
 201 
 202                 /*
 203                  * We never use regular tcp paths in fusion and should
 204                  * therefore clear tcp_unsent on both endpoints.  Having
 205                  * them set to non-zero values means asking for trouble
 206                  * especially after unfuse, where we may end up sending
 207                  * through regular tcp paths which expect xmit_list and
 208                  * friends to be correctly setup.
 209                  */
 210                 peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
 211 
 212                 tcp_timers_stop(tcp);
 213                 tcp_timers_stop(peer_tcp);
 214 
 215                 /*
 216                  * Set receive buffer and max packet size for the
 217                  * active open tcp.
 218                  * eager's values will be set in tcp_accept_finish.
 219                  */
 220                 (void) tcp_rwnd_set(peer_tcp, peer_tcp->tcp_connp->conn_rcvbuf);
 221 
 222                 /*
 223                  * Set the write offset value to zero since we won't
 224                  * be needing any room for TCP/IP headers.
 225                  */
 226                 if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp)) {
 227                         struct stroptions *stropt;
 228 
 229                         DB_TYPE(mp) = M_SETOPTS;
 230                         mp->b_wptr += sizeof (*stropt);
 231 
 232                         stropt = (struct stroptions *)mp->b_rptr;
 233                         stropt->so_flags = SO_WROFF | SO_MAXBLK;
 234                         stropt->so_wroff = 0;
 235                         stropt->so_maxblk = INFPSZ;
 236 
 237                         /* Send the options up */
 238                         putnext(peer_rq, mp);
 239                 } else {
 240                         struct sock_proto_props sopp;
 241 
 242                         /* The peer is a non-STREAMS end point */
 243                         ASSERT(IPCL_IS_TCP(peer_connp));
 244 
 245                         sopp.sopp_flags = SOCKOPT_WROFF | SOCKOPT_MAXBLK;
 246                         sopp.sopp_wroff = 0;
 247                         sopp.sopp_maxblk = INFPSZ;
 248                         (*peer_connp->conn_upcalls->su_set_proto_props)
 249                             (peer_connp->conn_upper_handle, &sopp);
 250                 }
 251         } else {
 252                 TCP_STAT(tcps, tcp_fusion_unqualified);
 253         }
 254         CONN_DEC_REF(peer_connp);
 255         return;
 256 
 257 failed:
 258         if (tcp->tcp_fused_sigurg_mp != NULL) {
 259                 freeb(tcp->tcp_fused_sigurg_mp);
 260                 tcp->tcp_fused_sigurg_mp = NULL;
 261         }
 262         if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
 263                 freeb(peer_tcp->tcp_fused_sigurg_mp);
 264                 peer_tcp->tcp_fused_sigurg_mp = NULL;
 265         }
 266         CONN_DEC_REF(peer_connp);
 267 }
 268 
 269 /*
 270  * Unfuse a previously-fused pair of tcp loopback endpoints.
 271  */
 272 void
 273 tcp_unfuse(tcp_t *tcp)
 274 {
 275         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 276         tcp_stack_t *tcps = tcp->tcp_tcps;
 277 
 278         ASSERT(tcp->tcp_fused && peer_tcp != NULL);
 279         ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
 280         ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
 281         ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
 282 
 283         /*
 284          * Cancel any pending push timers.
 285          */
 286         if (tcp->tcp_push_tid != 0) {
 287                 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
 288                 tcp->tcp_push_tid = 0;
 289         }
 290         if (peer_tcp->tcp_push_tid != 0) {
 291                 (void) TCP_TIMER_CANCEL(peer_tcp, peer_tcp->tcp_push_tid);
 292                 peer_tcp->tcp_push_tid = 0;
 293         }
 294 
 295         /*
 296          * Drain any pending data; Note that in case of a detached tcp, the
 297          * draining will happen later after the tcp is unfused.  For non-
 298          * urgent data, this can be handled by the regular tcp_rcv_drain().
 299          * If we have urgent data sitting in the receive list, we will
 300          * need to send up a SIGURG signal first before draining the data.
 301          * All of these will be handled by the code in tcp_fuse_rcv_drain()
 302          * when called from tcp_rcv_drain().
 303          */
 304         if (!TCP_IS_DETACHED(tcp)) {
 305                 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp,
 306                     &tcp->tcp_fused_sigurg_mp);
 307         }
 308         if (!TCP_IS_DETACHED(peer_tcp)) {
 309                 (void) tcp_fuse_rcv_drain(peer_tcp->tcp_connp->conn_rq,
 310                     peer_tcp,  &peer_tcp->tcp_fused_sigurg_mp);
 311         }
 312 
 313         /* Lift up any flow-control conditions */
 314         mutex_enter(&tcp->tcp_non_sq_lock);
 315         if (tcp->tcp_flow_stopped) {
 316                 tcp_clrqfull(tcp);
 317                 TCP_STAT(tcps, tcp_fusion_backenabled);
 318         }
 319         mutex_exit(&tcp->tcp_non_sq_lock);
 320 
 321         mutex_enter(&peer_tcp->tcp_non_sq_lock);
 322         if (peer_tcp->tcp_flow_stopped) {
 323                 tcp_clrqfull(peer_tcp);
 324                 TCP_STAT(tcps, tcp_fusion_backenabled);
 325         }
 326         mutex_exit(&peer_tcp->tcp_non_sq_lock);
 327 
 328         /*
 329          * Update tha_seq and tha_ack in the header template
 330          */
 331         tcp->tcp_tcpha->tha_seq = htonl(tcp->tcp_snxt);
 332         tcp->tcp_tcpha->tha_ack = htonl(tcp->tcp_rnxt);
 333         peer_tcp->tcp_tcpha->tha_seq = htonl(peer_tcp->tcp_snxt);
 334         peer_tcp->tcp_tcpha->tha_ack = htonl(peer_tcp->tcp_rnxt);
 335 
 336         /* Unfuse the endpoints */
 337         peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
 338         peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
 339 }
 340 
 341 /*
 342  * Fusion output routine used to handle urgent data sent by STREAMS based
 343  * endpoints. This routine is called by tcp_fuse_output() for handling
 344  * non-M_DATA mblks.
 345  */
 346 void
 347 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
 348 {
 349         mblk_t *mp1;
 350         struct T_exdata_ind *tei;
 351         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 352         mblk_t *head, *prev_head = NULL;
 353         tcp_stack_t     *tcps = tcp->tcp_tcps;
 354 
 355         ASSERT(tcp->tcp_fused);
 356         ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
 357         ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
 358         ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
 359         ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
 360         ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
 361 
 362         /*
 363          * Urgent data arrives in the form of T_EXDATA_REQ from above.
 364          * Each occurence denotes a new urgent pointer.  For each new
 365          * urgent pointer we signal (SIGURG) the receiving app to indicate
 366          * that it needs to go into urgent mode.  This is similar to the
 367          * urgent data handling in the regular tcp.  We don't need to keep
 368          * track of where the urgent pointer is, because each T_EXDATA_REQ
 369          * "advances" the urgent pointer for us.
 370          *
 371          * The actual urgent data carried by T_EXDATA_REQ is then prepended
 372          * by a T_EXDATA_IND before being enqueued behind any existing data
 373          * destined for the receiving app.  There is only a single urgent
 374          * pointer (out-of-band mark) for a given tcp.  If the new urgent
 375          * data arrives before the receiving app reads some existing urgent
 376          * data, the previous marker is lost.  This behavior is emulated
 377          * accordingly below, by removing any existing T_EXDATA_IND messages
 378          * and essentially converting old urgent data into non-urgent.
 379          */
 380         ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
 381         /* Let sender get out of urgent mode */
 382         tcp->tcp_valid_bits &= ~TCP_URG_VALID;
 383 
 384         /*
 385          * This flag indicates that a signal needs to be sent up.
 386          * This flag will only get cleared once SIGURG is delivered and
 387          * is not affected by the tcp_fused flag -- delivery will still
 388          * happen even after an endpoint is unfused, to handle the case
 389          * where the sending endpoint immediately closes/unfuses after
 390          * sending urgent data and the accept is not yet finished.
 391          */
 392         peer_tcp->tcp_fused_sigurg = B_TRUE;
 393 
 394         /* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
 395         DB_TYPE(mp) = M_PROTO;
 396         tei = (struct T_exdata_ind *)mp->b_rptr;
 397         tei->PRIM_type = T_EXDATA_IND;
 398         tei->MORE_flag = 0;
 399         mp->b_wptr = (uchar_t *)&tei[1];
 400 
 401         TCP_STAT(tcps, tcp_fusion_urg);
 402         TCPS_BUMP_MIB(tcps, tcpOutUrg);
 403 
 404         head = peer_tcp->tcp_rcv_list;
 405         while (head != NULL) {
 406                 /*
 407                  * Remove existing T_EXDATA_IND, keep the data which follows
 408                  * it and relink our list.  Note that we don't modify the
 409                  * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
 410                  */
 411                 if (DB_TYPE(head) != M_DATA) {
 412                         mp1 = head;
 413 
 414                         ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
 415                         head = mp1->b_cont;
 416                         mp1->b_cont = NULL;
 417                         head->b_next = mp1->b_next;
 418                         mp1->b_next = NULL;
 419                         if (prev_head != NULL)
 420                                 prev_head->b_next = head;
 421                         if (peer_tcp->tcp_rcv_list == mp1)
 422                                 peer_tcp->tcp_rcv_list = head;
 423                         if (peer_tcp->tcp_rcv_last_head == mp1)
 424                                 peer_tcp->tcp_rcv_last_head = head;
 425                         freeb(mp1);
 426                 }
 427                 prev_head = head;
 428                 head = head->b_next;
 429         }
 430 }
 431 
 432 /*
 433  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
 434  * If we are modifying any member that can be changed outside the squeue,
 435  * like tcp_flow_stopped, we need to take tcp_non_sq_lock.
 436  */
 437 boolean_t
 438 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
 439 {
 440         conn_t          *connp = tcp->tcp_connp;
 441         tcp_t           *peer_tcp = tcp->tcp_loopback_peer;
 442         conn_t          *peer_connp = peer_tcp->tcp_connp;
 443         boolean_t       flow_stopped, peer_data_queued = B_FALSE;
 444         boolean_t       urgent = (DB_TYPE(mp) != M_DATA);
 445         boolean_t       push = B_TRUE;
 446         mblk_t          *mp1 = mp;
 447         uint_t          ip_hdr_len;
 448         uint32_t        recv_size = send_size;
 449         tcp_stack_t     *tcps = tcp->tcp_tcps;
 450         netstack_t      *ns = tcps->tcps_netstack;
 451         ip_stack_t      *ipst = ns->netstack_ip;
 452         ipsec_stack_t   *ipss = ns->netstack_ipsec;
 453         iaflags_t       ixaflags = connp->conn_ixa->ixa_flags;
 454         boolean_t       do_ipsec, hooks_out, hooks_in, ipobs_enabled;
 455 
 456         ASSERT(tcp->tcp_fused);
 457         ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
 458         ASSERT(connp->conn_sqp == peer_connp->conn_sqp);
 459         ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
 460             DB_TYPE(mp) == M_PCPROTO);
 461 
 462         if (send_size == 0) {
 463                 freemsg(mp);
 464                 return (B_TRUE);
 465         }
 466 
 467         /*
 468          * Handle urgent data; we either send up SIGURG to the peer now
 469          * or do it later when we drain, in case the peer is detached
 470          * or if we're short of memory for M_PCSIG mblk.
 471          */
 472         if (urgent) {
 473                 tcp_fuse_output_urg(tcp, mp);
 474 
 475                 mp1 = mp->b_cont;
 476         }
 477 
 478         /*
 479          * Check that we are still using an IRE_LOCAL or IRE_LOOPBACK before
 480          * further processes.
 481          */
 482         if (!ip_output_verify_local(connp->conn_ixa))
 483                 goto unfuse;
 484 
 485         /*
 486          * Build IP and TCP header in case we have something that needs the
 487          * headers. Those cases are:
 488          * 1. IPsec
 489          * 2. IPobs
 490          * 3. FW_HOOKS
 491          *
 492          * If tcp_xmit_mp() fails to dupb() the message, unfuse the connection
 493          * and back to regular path.
 494          */
 495         if (ixaflags & IXAF_IS_IPV4) {
 496                 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
 497                     CONN_INBOUND_POLICY_PRESENT(peer_connp, ipss);
 498 
 499                 hooks_out = HOOKS4_INTERESTED_LOOPBACK_OUT(ipst);
 500                 hooks_in = HOOKS4_INTERESTED_LOOPBACK_IN(ipst);
 501                 ipobs_enabled = (ipst->ips_ip4_observe.he_interested != 0);
 502         } else {
 503                 do_ipsec = (ixaflags & IXAF_IPSEC_SECURE) ||
 504                     CONN_INBOUND_POLICY_PRESENT_V6(peer_connp, ipss);
 505 
 506                 hooks_out = HOOKS6_INTERESTED_LOOPBACK_OUT(ipst);
 507                 hooks_in = HOOKS6_INTERESTED_LOOPBACK_IN(ipst);
 508                 ipobs_enabled = (ipst->ips_ip6_observe.he_interested != 0);
 509         }
 510 
 511         /* We do logical 'or' for efficiency */
 512         if (ipobs_enabled | do_ipsec | hooks_in | hooks_out) {
 513                 if ((mp1 = tcp_xmit_mp(tcp, mp1, tcp->tcp_mss, NULL, NULL,
 514                     tcp->tcp_snxt, B_TRUE, NULL, B_FALSE)) == NULL)
 515                         /* If tcp_xmit_mp fails, use regular path */
 516                         goto unfuse;
 517 
 518                 /*
 519                  * Leave all IP relevant processes to ip_output_process_local(),
 520                  * which handles IPsec, IPobs, and FW_HOOKS.
 521                  */
 522                 mp1 = ip_output_process_local(mp1, connp->conn_ixa, hooks_out,
 523                     hooks_in, do_ipsec ? peer_connp : NULL);
 524 
 525                 /* If the message is dropped for any reason. */
 526                 if (mp1 == NULL)
 527                         goto unfuse;
 528 
 529                 /*
 530                  * Data length might have been changed by FW_HOOKS.
 531                  * We assume that the first mblk contains the TCP/IP headers.
 532                  */
 533                 if (hooks_in || hooks_out) {
 534                         tcpha_t *tcpha;
 535 
 536                         ip_hdr_len = (ixaflags & IXAF_IS_IPV4) ?
 537                             IPH_HDR_LENGTH((ipha_t *)mp1->b_rptr) :
 538                             ip_hdr_length_v6(mp1, (ip6_t *)mp1->b_rptr);
 539 
 540                         tcpha = (tcpha_t *)&mp1->b_rptr[ip_hdr_len];
 541                         ASSERT((uchar_t *)tcpha + sizeof (tcpha_t) <=
 542                             mp1->b_wptr);
 543                         recv_size += htonl(tcpha->tha_seq) - tcp->tcp_snxt;
 544 
 545                 }
 546 
 547                 /*
 548                  * The message duplicated by tcp_xmit_mp is freed.
 549                  * Note: the original message passed in remains unchanged.
 550                  */
 551                 freemsg(mp1);
 552         }
 553 
 554         /*
 555          * Enqueue data into the peer's receive list; we may or may not
 556          * drain the contents depending on the conditions below.
 557          *
 558          * For non-STREAMS sockets we normally queue data directly in the
 559          * socket by calling the su_recv upcall. However, if the peer is
 560          * detached we use tcp_rcv_enqueue() instead. Queued data will be
 561          * drained when the accept completes (in tcp_accept_finish()).
 562          */
 563         if (IPCL_IS_NONSTR(peer_connp) &&
 564             !TCP_IS_DETACHED(peer_tcp)) {
 565                 int error;
 566                 int flags = 0;
 567 
 568                 if ((tcp->tcp_valid_bits & TCP_URG_VALID) &&
 569                     (tcp->tcp_urg == tcp->tcp_snxt)) {
 570                         flags = MSG_OOB;
 571                         (*peer_connp->conn_upcalls->su_signal_oob)
 572                             (peer_connp->conn_upper_handle, 0);
 573                         tcp->tcp_valid_bits &= ~TCP_URG_VALID;
 574                 }
 575                 if ((*peer_connp->conn_upcalls->su_recv)(
 576                     peer_connp->conn_upper_handle, mp, recv_size,
 577                     flags, &error, &push) < 0) {
 578                         ASSERT(error != EOPNOTSUPP);
 579                         peer_data_queued = B_TRUE;
 580                 }
 581         } else {
 582                 if (IPCL_IS_NONSTR(peer_connp) &&
 583                     (tcp->tcp_valid_bits & TCP_URG_VALID) &&
 584                     (tcp->tcp_urg == tcp->tcp_snxt)) {
 585                         /*
 586                          * Can not deal with urgent pointers
 587                          * that arrive before the connection has been
 588                          * accept()ed.
 589                          */
 590                         tcp->tcp_valid_bits &= ~TCP_URG_VALID;
 591                         freemsg(mp);
 592                         return (B_TRUE);
 593                 }
 594 
 595                 tcp_rcv_enqueue(peer_tcp, mp, recv_size,
 596                     tcp->tcp_connp->conn_cred);
 597 
 598                 /* In case it wrapped around and also to keep it constant */
 599                 peer_tcp->tcp_rwnd += recv_size;
 600         }
 601 
 602         /*
 603          * Exercise flow-control when needed; we will get back-enabled
 604          * in either tcp_accept_finish(), tcp_unfuse(), or when data is
 605          * consumed. If peer endpoint is detached, we emulate streams flow
 606          * control by checking the peer's queue size and high water mark;
 607          * otherwise we simply use canputnext() to decide if we need to stop
 608          * our flow.
 609          *
 610          * Since we are accessing our tcp_flow_stopped and might modify it,
 611          * we need to take tcp->tcp_non_sq_lock.
 612          */
 613         mutex_enter(&tcp->tcp_non_sq_lock);
 614         flow_stopped = tcp->tcp_flow_stopped;
 615         if ((TCP_IS_DETACHED(peer_tcp) &&
 616             (peer_tcp->tcp_rcv_cnt >= peer_connp->conn_rcvbuf)) ||
 617             (!TCP_IS_DETACHED(peer_tcp) &&
 618             !IPCL_IS_NONSTR(peer_connp) && !canputnext(peer_connp->conn_rq))) {
 619                 peer_data_queued = B_TRUE;
 620         }
 621 
 622         if (!flow_stopped && (peer_data_queued ||
 623             (TCP_UNSENT_BYTES(tcp) >= connp->conn_sndbuf))) {
 624                 tcp_setqfull(tcp);
 625                 flow_stopped = B_TRUE;
 626                 TCP_STAT(tcps, tcp_fusion_flowctl);
 627                 DTRACE_PROBE3(tcp__fuse__output__flowctl, tcp_t *, tcp,
 628                     uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt);
 629         } else if (flow_stopped && !peer_data_queued &&
 630             (TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat)) {
 631                 tcp_clrqfull(tcp);
 632                 TCP_STAT(tcps, tcp_fusion_backenabled);
 633                 flow_stopped = B_FALSE;
 634         }
 635         mutex_exit(&tcp->tcp_non_sq_lock);
 636 
 637         ipst->ips_loopback_packets++;
 638         tcp->tcp_last_sent_len = send_size;
 639 
 640         /* Need to adjust the following SNMP MIB-related variables */
 641         tcp->tcp_snxt += send_size;
 642         tcp->tcp_suna = tcp->tcp_snxt;
 643         peer_tcp->tcp_rnxt += recv_size;
 644         peer_tcp->tcp_last_recv_len = recv_size;
 645         peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
 646 
 647         TCPS_BUMP_MIB(tcps, tcpOutDataSegs);
 648         TCPS_UPDATE_MIB(tcps, tcpOutDataBytes, send_size);
 649 
 650         TCPS_BUMP_MIB(tcps, tcpHCInSegs);
 651         TCPS_BUMP_MIB(tcps, tcpInDataInorderSegs);
 652         TCPS_UPDATE_MIB(tcps, tcpInDataInorderBytes, send_size);
 653 
 654         BUMP_LOCAL(tcp->tcp_obsegs);
 655         BUMP_LOCAL(peer_tcp->tcp_ibsegs);
 656 
 657         DTRACE_TCP5(send, void, NULL, ip_xmit_attr_t *, connp->conn_ixa,
 658             __dtrace_tcp_void_ip_t *, NULL, tcp_t *, tcp,
 659             __dtrace_tcp_tcph_t *, NULL);
 660         DTRACE_TCP5(receive, void, NULL, ip_xmit_attr_t *,
 661             peer_connp->conn_ixa, __dtrace_tcp_void_ip_t *, NULL,
 662             tcp_t *, peer_tcp, __dtrace_tcp_tcph_t *, NULL);
 663 
 664         if (!IPCL_IS_NONSTR(peer_tcp->tcp_connp) &&
 665             !TCP_IS_DETACHED(peer_tcp)) {
 666                 /*
 667                  * Drain the peer's receive queue it has urgent data or if
 668                  * we're not flow-controlled.
 669                  */
 670                 if (urgent || !flow_stopped) {
 671                         ASSERT(peer_tcp->tcp_rcv_list != NULL);
 672                         /*
 673                          * For TLI-based streams, a thread in tcp_accept_swap()
 674                          * can race with us.  That thread will ensure that the
 675                          * correct peer_connp->conn_rq is globally visible
 676                          * before peer_tcp->tcp_detached is visible as clear,
 677                          * but we must also ensure that the load of conn_rq
 678                          * cannot be reordered to be before the tcp_detached
 679                          * check.
 680                          */
 681                         membar_consumer();
 682                         (void) tcp_fuse_rcv_drain(peer_connp->conn_rq, peer_tcp,
 683                             NULL);
 684                 }
 685         }
 686         return (B_TRUE);
 687 unfuse:
 688         tcp_unfuse(tcp);
 689         return (B_FALSE);
 690 }
 691 
 692 /*
 693  * This routine gets called to deliver data upstream on a fused or
 694  * previously fused tcp loopback endpoint; the latter happens only
 695  * when there is a pending SIGURG signal plus urgent data that can't
 696  * be sent upstream in the past.
 697  */
 698 boolean_t
 699 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
 700 {
 701         mblk_t *mp;
 702         conn_t  *connp = tcp->tcp_connp;
 703 
 704 #ifdef DEBUG
 705         uint_t cnt = 0;
 706 #endif
 707         tcp_stack_t     *tcps = tcp->tcp_tcps;
 708         tcp_t           *peer_tcp = tcp->tcp_loopback_peer;
 709 
 710         ASSERT(tcp->tcp_loopback);
 711         ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
 712         ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
 713         ASSERT(IPCL_IS_NONSTR(connp) || sigurg_mpp != NULL || tcp->tcp_fused);
 714 
 715         /* No need for the push timer now, in case it was scheduled */
 716         if (tcp->tcp_push_tid != 0) {
 717                 (void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
 718                 tcp->tcp_push_tid = 0;
 719         }
 720         /*
 721          * If there's urgent data sitting in receive list and we didn't
 722          * get a chance to send up a SIGURG signal, make sure we send
 723          * it first before draining in order to ensure that SIOCATMARK
 724          * works properly.
 725          */
 726         if (tcp->tcp_fused_sigurg) {
 727                 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp));
 728 
 729                 tcp->tcp_fused_sigurg = B_FALSE;
 730                 /*
 731                  * sigurg_mpp is normally NULL, i.e. when we're still
 732                  * fused and didn't get here because of tcp_unfuse().
 733                  * In this case try hard to allocate the M_PCSIG mblk.
 734                  */
 735                 if (sigurg_mpp == NULL &&
 736                     (mp = allocb(1, BPRI_HI)) == NULL &&
 737                     (mp = allocb_tryhard(1)) == NULL) {
 738                         /* Alloc failed; try again next time */
 739                         tcp->tcp_push_tid = TCP_TIMER(tcp,
 740                             tcp_push_timer, tcps->tcps_push_timer_interval);
 741                         return (B_TRUE);
 742                 } else if (sigurg_mpp != NULL) {
 743                         /*
 744                          * Use the supplied M_PCSIG mblk; it means we're
 745                          * either unfused or in the process of unfusing,
 746                          * and the drain must happen now.
 747                          */
 748                         mp = *sigurg_mpp;
 749                         *sigurg_mpp = NULL;
 750                 }
 751                 ASSERT(mp != NULL);
 752 
 753                 /* Send up the signal */
 754                 DB_TYPE(mp) = M_PCSIG;
 755                 *mp->b_wptr++ = (uchar_t)SIGURG;
 756                 putnext(q, mp);
 757 
 758                 /*
 759                  * Let the regular tcp_rcv_drain() path handle
 760                  * draining the data if we're no longer fused.
 761                  */
 762                 if (!tcp->tcp_fused)
 763                         return (B_FALSE);
 764         }
 765 
 766         /* Drain the data */
 767         while ((mp = tcp->tcp_rcv_list) != NULL) {
 768                 tcp->tcp_rcv_list = mp->b_next;
 769                 mp->b_next = NULL;
 770 #ifdef DEBUG
 771                 cnt += msgdsize(mp);
 772 #endif
 773                 ASSERT(!IPCL_IS_NONSTR(connp));
 774                 putnext(q, mp);
 775                 TCP_STAT(tcps, tcp_fusion_putnext);
 776         }
 777 
 778 #ifdef DEBUG
 779         ASSERT(cnt == tcp->tcp_rcv_cnt);
 780 #endif
 781         tcp->tcp_rcv_last_head = NULL;
 782         tcp->tcp_rcv_last_tail = NULL;
 783         tcp->tcp_rcv_cnt = 0;
 784         tcp->tcp_rwnd = tcp->tcp_connp->conn_rcvbuf;
 785 
 786         mutex_enter(&peer_tcp->tcp_non_sq_lock);
 787         if (peer_tcp->tcp_flow_stopped && (TCP_UNSENT_BYTES(peer_tcp) <=
 788             peer_tcp->tcp_connp->conn_sndlowat)) {
 789                 tcp_clrqfull(peer_tcp);
 790                 TCP_STAT(tcps, tcp_fusion_backenabled);
 791         }
 792         mutex_exit(&peer_tcp->tcp_non_sq_lock);
 793 
 794         return (B_TRUE);
 795 }
 796 
 797 /*
 798  * Calculate the size of receive buffer for a fused tcp endpoint.
 799  */
 800 size_t
 801 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
 802 {
 803         tcp_stack_t     *tcps = tcp->tcp_tcps;
 804         uint32_t        max_win;
 805 
 806         ASSERT(tcp->tcp_fused);
 807 
 808         /* Ensure that value is within the maximum upper bound */
 809         if (rwnd > tcps->tcps_max_buf)
 810                 rwnd = tcps->tcps_max_buf;
 811         /*
 812          * Round up to system page size in case SO_RCVBUF is modified
 813          * after SO_SNDBUF; the latter is also similarly rounded up.
 814          */
 815         rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
 816         max_win = TCP_MAXWIN << tcp->tcp_rcv_ws;
 817         if (rwnd > max_win) {
 818                 rwnd = max_win - (max_win % tcp->tcp_mss);
 819                 if (rwnd < tcp->tcp_mss)
 820                         rwnd = max_win;
 821         }
 822 
 823         /*
 824          * Record high water mark, this is used for flow-control
 825          * purposes in tcp_fuse_output().
 826          */
 827         tcp->tcp_connp->conn_rcvbuf = rwnd;
 828         tcp->tcp_rwnd = rwnd;
 829         return (rwnd);
 830 }
 831 
 832 /*
 833  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
 834  */
 835 int
 836 tcp_fuse_maxpsz(tcp_t *tcp)
 837 {
 838         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 839         conn_t *connp = tcp->tcp_connp;
 840         uint_t sndbuf = connp->conn_sndbuf;
 841         uint_t maxpsz = sndbuf;
 842 
 843         ASSERT(tcp->tcp_fused);
 844         ASSERT(peer_tcp != NULL);
 845         ASSERT(peer_tcp->tcp_connp->conn_rcvbuf != 0);
 846         /*
 847          * In the fused loopback case, we want the stream head to split
 848          * up larger writes into smaller chunks for a more accurate flow-
 849          * control accounting.  Our maxpsz is half of the sender's send
 850          * buffer or the receiver's receive buffer, whichever is smaller.
 851          * We round up the buffer to system page size due to the lack of
 852          * TCP MSS concept in Fusion.
 853          */
 854         if (maxpsz > peer_tcp->tcp_connp->conn_rcvbuf)
 855                 maxpsz = peer_tcp->tcp_connp->conn_rcvbuf;
 856         maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
 857 
 858         return (maxpsz);
 859 }
 860 
 861 /*
 862  * Called to release flow control.
 863  */
 864 void
 865 tcp_fuse_backenable(tcp_t *tcp)
 866 {
 867         tcp_t *peer_tcp = tcp->tcp_loopback_peer;
 868 
 869         ASSERT(tcp->tcp_fused);
 870         ASSERT(peer_tcp != NULL && peer_tcp->tcp_fused);
 871         ASSERT(peer_tcp->tcp_loopback_peer == tcp);
 872         ASSERT(!TCP_IS_DETACHED(tcp));
 873         ASSERT(tcp->tcp_connp->conn_sqp ==
 874             peer_tcp->tcp_connp->conn_sqp);
 875 
 876         if (tcp->tcp_rcv_list != NULL)
 877                 (void) tcp_fuse_rcv_drain(tcp->tcp_connp->conn_rq, tcp, NULL);
 878 
 879         mutex_enter(&peer_tcp->tcp_non_sq_lock);
 880         if (peer_tcp->tcp_flow_stopped &&
 881             (TCP_UNSENT_BYTES(peer_tcp) <=
 882             peer_tcp->tcp_connp->conn_sndlowat)) {
 883                 tcp_clrqfull(peer_tcp);
 884         }
 885         mutex_exit(&peer_tcp->tcp_non_sq_lock);
 886 
 887         TCP_STAT(tcp->tcp_tcps, tcp_fusion_backenabled);
 888 }