Print this page
11547 Want connstat(1M) command to display per-connection TCP statistics
Portions contributed by: Cody Peter Mello <cody.mello@joyent.com>
Portions contributed by: Ahmed G <ahmedg@delphix.com>
Reviewed by: Jason King <jason.king@joyent.com>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Dan McDonald <danmcd@joyent.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/inet/mib2.h
+++ new/usr/src/uts/common/inet/mib2.h
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 *
21 21 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
22 22 */
23 -/* Copyright (c) 1990 Mentat Inc. */
23 +/*
24 + * Copyright (c) 1990 Mentat Inc.
25 + * Copyright (c) 2015, 2016 by Delphix. All rights reserved.
26 + */
24 27
25 28 #ifndef _INET_MIB2_H
26 29 #define _INET_MIB2_H
27 30
28 31 #include <netinet/in.h> /* For in6_addr_t */
29 32 #include <sys/tsol/label.h> /* For brange_t */
30 33 #include <sys/tsol/label_macro.h> /* For brange_t */
31 34
32 35 #ifdef __cplusplus
33 36 extern "C" {
34 37 #endif
35 38
36 39 /*
37 40 * The IPv6 parts of this are derived from:
38 41 * RFC 2465
39 42 * RFC 2466
40 43 * RFC 2452
41 44 * RFC 2454
42 45 */
43 46
44 47 /*
45 48 * SNMP set/get via M_PROTO T_OPTMGMT_REQ. Structure is that used
46 49 * for [gs]etsockopt() calls. get uses T_CURRENT, set uses T_NEOGTIATE
47 50 * MGMT_flags value. The following definition of opthdr is taken from
48 51 * socket.h:
49 52 *
50 53 * An option specification consists of an opthdr, followed by the value of
51 54 * the option. An options buffer contains one or more options. The len
52 55 * field of opthdr specifies the length of the option value in bytes. This
53 56 * length must be a multiple of sizeof(long) (use OPTLEN macro).
54 57 *
55 58 * struct opthdr {
56 59 * long level; protocol level affected
57 60 * long name; option to modify
58 61 * long len; length of option value
59 62 * };
60 63 *
61 64 * #define OPTLEN(x) ((((x) + sizeof(long) - 1) / sizeof(long)) * sizeof(long))
62 65 * #define OPTVAL(opt) ((char *)(opt + 1))
63 66 *
64 67 * For get requests (T_CURRENT), any MIB2_xxx value can be used (only
65 68 * "get all" is supported, so all modules get a copy of the request to
66 69 * return everything it knows. In general, we use MIB2_IP. There is
67 70 * one exception: in general, IP will not report information related to
68 71 * ire_testhidden and IRE_IF_CLONE routes (e.g., in the MIB2_IP_ROUTE
69 72 * table). However, using the special value EXPER_IP_AND_ALL_IRES will cause
70 73 * all information to be reported. This special value should only be
71 74 * used by IPMP-aware low-level utilities (e.g. in.mpathd).
72 75 *
73 76 * IMPORTANT: some fields are grouped in a different structure than
74 77 * suggested by MIB-II, e.g., checksum error counts. The original MIB-2
75 78 * field name has been retained. Field names beginning with "mi" are not
76 79 * defined in the MIB but contain important & useful information maintained
77 80 * by the corresponding module.
78 81 */
79 82 #ifndef IPPROTO_MAX
80 83 #define IPPROTO_MAX 256
81 84 #endif
82 85
83 86 #define MIB2_SYSTEM (IPPROTO_MAX+1)
84 87 #define MIB2_INTERFACES (IPPROTO_MAX+2)
85 88 #define MIB2_AT (IPPROTO_MAX+3)
86 89 #define MIB2_IP (IPPROTO_MAX+4)
87 90 #define MIB2_ICMP (IPPROTO_MAX+5)
88 91 #define MIB2_TCP (IPPROTO_MAX+6)
89 92 #define MIB2_UDP (IPPROTO_MAX+7)
90 93 #define MIB2_EGP (IPPROTO_MAX+8)
91 94 #define MIB2_CMOT (IPPROTO_MAX+9)
92 95 #define MIB2_TRANSMISSION (IPPROTO_MAX+10)
93 96 #define MIB2_SNMP (IPPROTO_MAX+11)
94 97 #define MIB2_IP6 (IPPROTO_MAX+12)
95 98 #define MIB2_ICMP6 (IPPROTO_MAX+13)
96 99 #define MIB2_TCP6 (IPPROTO_MAX+14)
97 100 #define MIB2_UDP6 (IPPROTO_MAX+15)
98 101 #define MIB2_SCTP (IPPROTO_MAX+16)
99 102
100 103 /*
101 104 * Define range of levels for use with MIB2_*
102 105 */
103 106 #define MIB2_RANGE_START (IPPROTO_MAX+1)
104 107 #define MIB2_RANGE_END (IPPROTO_MAX+16)
105 108
106 109
107 110 #define EXPER 1024 /* experimental - not part of mib */
108 111 #define EXPER_IGMP (EXPER+1)
109 112 #define EXPER_DVMRP (EXPER+2)
110 113 #define EXPER_RAWIP (EXPER+3)
111 114 #define EXPER_IP_AND_ALL_IRES (EXPER+4)
112 115
113 116 /*
114 117 * Define range of levels for experimental use
115 118 */
116 119 #define EXPER_RANGE_START (EXPER+1)
117 120 #define EXPER_RANGE_END (EXPER+4)
118 121
119 122 #define BUMP_MIB(s, x) { \
120 123 extern void __dtrace_probe___mib_##x(int, void *); \
121 124 void *stataddr = &((s)->x); \
122 125 __dtrace_probe___mib_##x(1, stataddr); \
123 126 (s)->x++; \
124 127 }
125 128
126 129 #define UPDATE_MIB(s, x, y) { \
127 130 extern void __dtrace_probe___mib_##x(int, void *); \
128 131 void *stataddr = &((s)->x); \
129 132 __dtrace_probe___mib_##x(y, stataddr); \
130 133 (s)->x += (y); \
131 134 }
132 135
133 136 #define SET_MIB(x, y) x = y
134 137 #define BUMP_LOCAL(x) (x)++
135 138 #define UPDATE_LOCAL(x, y) (x) += (y)
136 139 #define SYNC32_MIB(s, m32, m64) SET_MIB((s)->m32, (s)->m64 & 0xffffffff)
137 140
138 141 /*
139 142 * Each struct that has been extended have a macro (MIB_FIRST_NEW_ELM_type)
140 143 * that is set to the first new element of the extended struct.
141 144 * The LEGACY_MIB_SIZE macro can be used to determine the size of MIB
142 145 * objects that needs to be returned to older applications unaware of
143 146 * these extensions.
144 147 */
145 148 #define MIB_PTRDIFF(s, e) (caddr_t)e - (caddr_t)s
146 149 #define LEGACY_MIB_SIZE(s, t) MIB_PTRDIFF(s, &(s)->MIB_FIRST_NEW_ELM_##t)
147 150
148 151 #define OCTET_LENGTH 32 /* Must be at least LIFNAMSIZ */
149 152 typedef struct Octet_s {
150 153 int o_length;
151 154 char o_bytes[OCTET_LENGTH];
152 155 } Octet_t;
153 156
154 157 typedef uint32_t Counter;
155 158 typedef uint32_t Counter32;
156 159 typedef uint64_t Counter64;
157 160 typedef uint32_t Gauge;
158 161 typedef uint32_t IpAddress;
159 162 typedef struct in6_addr Ip6Address;
160 163 typedef Octet_t DeviceName;
161 164 typedef Octet_t PhysAddress;
162 165 typedef uint32_t DeviceIndex; /* Interface index */
163 166
164 167 #define MIB2_UNKNOWN_INTERFACE 0
165 168 #define MIB2_UNKNOWN_PROCESS 0
166 169
167 170 /*
168 171 * IP group
169 172 */
170 173 #define MIB2_IP_ADDR 20 /* ipAddrEntry */
171 174 #define MIB2_IP_ROUTE 21 /* ipRouteEntry */
172 175 #define MIB2_IP_MEDIA 22 /* ipNetToMediaEntry */
173 176 #define MIB2_IP6_ROUTE 23 /* ipv6RouteEntry */
174 177 #define MIB2_IP6_MEDIA 24 /* ipv6NetToMediaEntry */
175 178 #define MIB2_IP6_ADDR 25 /* ipv6AddrEntry */
176 179 #define MIB2_IP_TRAFFIC_STATS 31 /* ipIfStatsEntry (IPv4) */
177 180 #define EXPER_IP_GROUP_MEMBERSHIP 100
178 181 #define EXPER_IP6_GROUP_MEMBERSHIP 101
179 182 #define EXPER_IP_GROUP_SOURCES 102
180 183 #define EXPER_IP6_GROUP_SOURCES 103
181 184 #define EXPER_IP_RTATTR 104
182 185 #define EXPER_IP_DCE 105
183 186
184 187 /*
185 188 * There can be one of each of these tables per transport (MIB2_* above).
186 189 */
187 190 #define EXPER_XPORT_MLP 105 /* transportMLPEntry */
188 191
189 192 /* Old names retained for compatibility */
190 193 #define MIB2_IP_20 MIB2_IP_ADDR
191 194 #define MIB2_IP_21 MIB2_IP_ROUTE
192 195 #define MIB2_IP_22 MIB2_IP_MEDIA
193 196
194 197 typedef struct mib2_ip {
195 198 /* forwarder? 1 gateway, 2 NOT gateway {ip 1} RW */
196 199 int ipForwarding;
197 200 /* default Time-to-Live for iph {ip 2} RW */
198 201 int ipDefaultTTL;
199 202 /* # of input datagrams {ip 3} */
200 203 Counter ipInReceives;
201 204 /* # of dg discards for iph error {ip 4} */
202 205 Counter ipInHdrErrors;
203 206 /* # of dg discards for bad addr {ip 5} */
204 207 Counter ipInAddrErrors;
205 208 /* # of dg being forwarded {ip 6} */
206 209 Counter ipForwDatagrams;
207 210 /* # of dg discards for unk protocol {ip 7} */
208 211 Counter ipInUnknownProtos;
209 212 /* # of dg discards of good dg's {ip 8} */
210 213 Counter ipInDiscards;
211 214 /* # of dg sent upstream {ip 9} */
212 215 Counter ipInDelivers;
213 216 /* # of outdgs recv'd from upstream {ip 10} */
214 217 Counter ipOutRequests;
215 218 /* # of good outdgs discarded {ip 11} */
216 219 Counter ipOutDiscards;
217 220 /* # of outdg discards: no route found {ip 12} */
218 221 Counter ipOutNoRoutes;
219 222 /* sec's recv'd frags held for reass. {ip 13} */
220 223 int ipReasmTimeout;
221 224 /* # of ip frags needing reassembly {ip 14} */
222 225 Counter ipReasmReqds;
223 226 /* # of dg's reassembled {ip 15} */
224 227 Counter ipReasmOKs;
225 228 /* # of reassembly failures (not dg cnt){ip 16} */
226 229 Counter ipReasmFails;
227 230 /* # of dg's fragged {ip 17} */
228 231 Counter ipFragOKs;
229 232 /* # of dg discards for no frag set {ip 18} */
230 233 Counter ipFragFails;
231 234 /* # of dg frags from fragmentation {ip 19} */
232 235 Counter ipFragCreates;
233 236 /* {ip 20} */
234 237 int ipAddrEntrySize;
235 238 /* {ip 21} */
236 239 int ipRouteEntrySize;
237 240 /* {ip 22} */
238 241 int ipNetToMediaEntrySize;
239 242 /* # of valid route entries discarded {ip 23} */
240 243 Counter ipRoutingDiscards;
241 244 /*
242 245 * following defined in MIB-II as part of TCP & UDP groups:
243 246 */
244 247 /* total # of segments recv'd with error { tcp 14 } */
245 248 Counter tcpInErrs;
246 249 /* # of recv'd dg's not deliverable (no appl.) { udp 2 } */
247 250 Counter udpNoPorts;
248 251 /*
249 252 * In addition to MIB-II
250 253 */
251 254 /* # of bad IP header checksums */
252 255 Counter ipInCksumErrs;
253 256 /* # of complete duplicates in reassembly */
254 257 Counter ipReasmDuplicates;
255 258 /* # of partial duplicates in reassembly */
256 259 Counter ipReasmPartDups;
257 260 /* # of packets not forwarded due to adminstrative reasons */
258 261 Counter ipForwProhibits;
259 262 /* # of UDP packets with bad UDP checksums */
260 263 Counter udpInCksumErrs;
261 264 /* # of UDP packets droped due to queue overflow */
262 265 Counter udpInOverflows;
263 266 /*
264 267 * # of RAW IP packets (all IP protocols except UDP, TCP
265 268 * and ICMP) droped due to queue overflow
266 269 */
267 270 Counter rawipInOverflows;
268 271
269 272 /*
270 273 * Folowing are private IPSEC MIB.
271 274 */
272 275 /* # of incoming packets that succeeded policy checks */
273 276 Counter ipsecInSucceeded;
274 277 /* # of incoming packets that failed policy checks */
275 278 Counter ipsecInFailed;
276 279 /* Compatible extensions added here */
277 280 int ipMemberEntrySize; /* Size of ip_member_t */
278 281 int ipGroupSourceEntrySize; /* Size of ip_grpsrc_t */
279 282
280 283 Counter ipInIPv6; /* # of IPv6 packets received by IPv4 and dropped */
281 284 Counter ipOutIPv6; /* No longer used */
282 285 Counter ipOutSwitchIPv6; /* No longer used */
283 286
284 287 int ipRouteAttributeSize; /* Size of mib2_ipAttributeEntry_t */
285 288 int transportMLPSize; /* Size of mib2_transportMLPEntry_t */
286 289 int ipDestEntrySize; /* Size of dest_cache_entry_t */
287 290 } mib2_ip_t;
288 291
289 292 /*
290 293 * ipv6IfStatsEntry OBJECT-TYPE
291 294 * SYNTAX Ipv6IfStatsEntry
292 295 * MAX-ACCESS not-accessible
293 296 * STATUS current
294 297 * DESCRIPTION
295 298 * "An interface statistics entry containing objects
296 299 * at a particular IPv6 interface."
297 300 * AUGMENTS { ipv6IfEntry }
298 301 * ::= { ipv6IfStatsTable 1 }
299 302 *
300 303 * Per-interface IPv6 statistics table
301 304 */
302 305
303 306 typedef struct mib2_ipv6IfStatsEntry {
304 307 /* Local ifindex to identify the interface */
305 308 DeviceIndex ipv6IfIndex;
306 309
307 310 /* forwarder? 1 gateway, 2 NOT gateway {ipv6MIBObjects 1} RW */
308 311 int ipv6Forwarding;
309 312 /* default Hoplimit for IPv6 {ipv6MIBObjects 2} RW */
310 313 int ipv6DefaultHopLimit;
311 314
312 315 int ipv6IfStatsEntrySize;
313 316 int ipv6AddrEntrySize;
314 317 int ipv6RouteEntrySize;
315 318 int ipv6NetToMediaEntrySize;
316 319 int ipv6MemberEntrySize; /* Size of ipv6_member_t */
317 320 int ipv6GroupSourceEntrySize; /* Size of ipv6_grpsrc_t */
318 321
319 322 /* # input datagrams (incl errors) { ipv6IfStatsEntry 1 } */
320 323 Counter ipv6InReceives;
321 324 /* # errors in IPv6 headers and options { ipv6IfStatsEntry 2 } */
322 325 Counter ipv6InHdrErrors;
323 326 /* # exceeds outgoing link MTU { ipv6IfStatsEntry 3 } */
324 327 Counter ipv6InTooBigErrors;
325 328 /* # discarded due to no route to dest { ipv6IfStatsEntry 4 } */
326 329 Counter ipv6InNoRoutes;
327 330 /* # invalid or unsupported addresses { ipv6IfStatsEntry 5 } */
328 331 Counter ipv6InAddrErrors;
329 332 /* # unknown next header { ipv6IfStatsEntry 6 } */
330 333 Counter ipv6InUnknownProtos;
331 334 /* # too short packets { ipv6IfStatsEntry 7 } */
332 335 Counter ipv6InTruncatedPkts;
333 336 /* # discarded e.g. due to no buffers { ipv6IfStatsEntry 8 } */
334 337 Counter ipv6InDiscards;
335 338 /* # delivered to upper layer protocols { ipv6IfStatsEntry 9 } */
336 339 Counter ipv6InDelivers;
337 340 /* # forwarded out interface { ipv6IfStatsEntry 10 } */
338 341 Counter ipv6OutForwDatagrams;
339 342 /* # originated out interface { ipv6IfStatsEntry 11 } */
340 343 Counter ipv6OutRequests;
341 344 /* # discarded e.g. due to no buffers { ipv6IfStatsEntry 12 } */
342 345 Counter ipv6OutDiscards;
343 346 /* # sucessfully fragmented packets { ipv6IfStatsEntry 13 } */
344 347 Counter ipv6OutFragOKs;
345 348 /* # fragmentation failed { ipv6IfStatsEntry 14 } */
346 349 Counter ipv6OutFragFails;
347 350 /* # fragments created { ipv6IfStatsEntry 15 } */
348 351 Counter ipv6OutFragCreates;
349 352 /* # fragments to reassemble { ipv6IfStatsEntry 16 } */
350 353 Counter ipv6ReasmReqds;
351 354 /* # packets after reassembly { ipv6IfStatsEntry 17 } */
352 355 Counter ipv6ReasmOKs;
353 356 /* # reassembly failed { ipv6IfStatsEntry 18 } */
354 357 Counter ipv6ReasmFails;
355 358 /* # received multicast packets { ipv6IfStatsEntry 19 } */
356 359 Counter ipv6InMcastPkts;
357 360 /* # transmitted multicast packets { ipv6IfStatsEntry 20 } */
358 361 Counter ipv6OutMcastPkts;
359 362 /*
360 363 * In addition to defined MIBs
361 364 */
362 365 /* # discarded due to no route to dest */
363 366 Counter ipv6OutNoRoutes;
364 367 /* # of complete duplicates in reassembly */
365 368 Counter ipv6ReasmDuplicates;
366 369 /* # of partial duplicates in reassembly */
367 370 Counter ipv6ReasmPartDups;
368 371 /* # of packets not forwarded due to adminstrative reasons */
369 372 Counter ipv6ForwProhibits;
370 373 /* # of UDP packets with bad UDP checksums */
371 374 Counter udpInCksumErrs;
372 375 /* # of UDP packets droped due to queue overflow */
373 376 Counter udpInOverflows;
374 377 /*
375 378 * # of RAW IPv6 packets (all IPv6 protocols except UDP, TCP
376 379 * and ICMPv6) droped due to queue overflow
377 380 */
378 381 Counter rawipInOverflows;
379 382
380 383 /* # of IPv4 packets received by IPv6 and dropped */
381 384 Counter ipv6InIPv4;
382 385 /* # of IPv4 packets transmitted by ip_wput_wput */
383 386 Counter ipv6OutIPv4;
384 387 /* # of times ip_wput_v6 has switched to become ip_wput */
385 388 Counter ipv6OutSwitchIPv4;
386 389 } mib2_ipv6IfStatsEntry_t;
387 390
388 391 /*
389 392 * Per interface IP statistics, both v4 and v6.
390 393 *
391 394 * Some applications expect to get mib2_ipv6IfStatsEntry_t structs back when
392 395 * making a request. To ensure backwards compatability, the first
393 396 * sizeof(mib2_ipv6IfStatsEntry_t) bytes of the structure is identical to
394 397 * mib2_ipv6IfStatsEntry_t. This should work as long the application is
395 398 * written correctly (i.e., using ipv6IfStatsEntrySize to get the size of
396 399 * the struct)
397 400 *
398 401 * RFC4293 introduces several new counters, as well as defining 64-bit
399 402 * versions of existing counters. For a new counters, if they have both 32-
400 403 * and 64-bit versions, then we only added the latter. However, for already
401 404 * existing counters, we have added the 64-bit versions without removing the
402 405 * old (32-bit) ones. The 64- and 32-bit counters will only be synchronized
403 406 * when the structure contains IPv6 statistics, which is done to ensure
404 407 * backwards compatibility.
405 408 */
406 409
407 410 /* The following are defined in RFC 4001 and are used for ipIfStatsIPVersion */
408 411 #define MIB2_INETADDRESSTYPE_unknown 0
409 412 #define MIB2_INETADDRESSTYPE_ipv4 1
410 413 #define MIB2_INETADDRESSTYPE_ipv6 2
411 414
412 415 /*
413 416 * On amd64, the alignment requirements for long long's is different for
414 417 * 32 and 64 bits. If we have a struct containing long long's that is being
415 418 * passed between a 64-bit kernel to a 32-bit application, then it is very
416 419 * likely that the size of the struct will differ due to padding. Therefore, we
417 420 * pack the data to ensure that the struct size is the same for 32- and
418 421 * 64-bits.
419 422 */
420 423 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
421 424 #pragma pack(4)
422 425 #endif
423 426
424 427 typedef struct mib2_ipIfStatsEntry {
425 428
426 429 /* Local ifindex to identify the interface */
427 430 DeviceIndex ipIfStatsIfIndex;
428 431
429 432 /* forwarder? 1 gateway, 2 NOT gateway { ipv6MIBObjects 1} RW */
430 433 int ipIfStatsForwarding;
431 434 /* default Hoplimit for IPv6 { ipv6MIBObjects 2} RW */
432 435 int ipIfStatsDefaultHopLimit;
433 436 #define ipIfStatsDefaultTTL ipIfStatsDefaultHopLimit
434 437
435 438 int ipIfStatsEntrySize;
436 439 int ipIfStatsAddrEntrySize;
437 440 int ipIfStatsRouteEntrySize;
438 441 int ipIfStatsNetToMediaEntrySize;
439 442 int ipIfStatsMemberEntrySize;
440 443 int ipIfStatsGroupSourceEntrySize;
441 444
442 445 /* # input datagrams (incl errors) { ipIfStatsEntry 3 } */
443 446 Counter ipIfStatsInReceives;
444 447 /* # errors in IP headers and options { ipIfStatsEntry 7 } */
445 448 Counter ipIfStatsInHdrErrors;
446 449 /* # exceeds outgoing link MTU(v6 only) { ipv6IfStatsEntry 3 } */
447 450 Counter ipIfStatsInTooBigErrors;
448 451 /* # discarded due to no route to dest { ipIfStatsEntry 8 } */
449 452 Counter ipIfStatsInNoRoutes;
450 453 /* # invalid or unsupported addresses { ipIfStatsEntry 9 } */
451 454 Counter ipIfStatsInAddrErrors;
452 455 /* # unknown next header { ipIfStatsEntry 10 } */
453 456 Counter ipIfStatsInUnknownProtos;
454 457 /* # too short packets { ipIfStatsEntry 11 } */
455 458 Counter ipIfStatsInTruncatedPkts;
456 459 /* # discarded e.g. due to no buffers { ipIfStatsEntry 17 } */
457 460 Counter ipIfStatsInDiscards;
458 461 /* # delivered to upper layer protocols { ipIfStatsEntry 18 } */
459 462 Counter ipIfStatsInDelivers;
460 463 /* # forwarded out interface { ipIfStatsEntry 23 } */
461 464 Counter ipIfStatsOutForwDatagrams;
462 465 /* # originated out interface { ipIfStatsEntry 20 } */
463 466 Counter ipIfStatsOutRequests;
464 467 /* # discarded e.g. due to no buffers { ipIfStatsEntry 25 } */
465 468 Counter ipIfStatsOutDiscards;
466 469 /* # sucessfully fragmented packets { ipIfStatsEntry 27 } */
467 470 Counter ipIfStatsOutFragOKs;
468 471 /* # fragmentation failed { ipIfStatsEntry 28 } */
469 472 Counter ipIfStatsOutFragFails;
470 473 /* # fragments created { ipIfStatsEntry 29 } */
471 474 Counter ipIfStatsOutFragCreates;
472 475 /* # fragments to reassemble { ipIfStatsEntry 14 } */
473 476 Counter ipIfStatsReasmReqds;
474 477 /* # packets after reassembly { ipIfStatsEntry 15 } */
475 478 Counter ipIfStatsReasmOKs;
476 479 /* # reassembly failed { ipIfStatsEntry 16 } */
477 480 Counter ipIfStatsReasmFails;
478 481 /* # received multicast packets { ipIfStatsEntry 34 } */
479 482 Counter ipIfStatsInMcastPkts;
480 483 /* # transmitted multicast packets { ipIfStatsEntry 38 } */
481 484 Counter ipIfStatsOutMcastPkts;
482 485
483 486 /*
484 487 * In addition to defined MIBs
485 488 */
486 489
487 490 /* # discarded due to no route to dest { ipSystemStatsEntry 22 } */
488 491 Counter ipIfStatsOutNoRoutes;
489 492 /* # of complete duplicates in reassembly */
490 493 Counter ipIfStatsReasmDuplicates;
491 494 /* # of partial duplicates in reassembly */
492 495 Counter ipIfStatsReasmPartDups;
493 496 /* # of packets not forwarded due to adminstrative reasons */
494 497 Counter ipIfStatsForwProhibits;
495 498 /* # of UDP packets with bad UDP checksums */
496 499 Counter udpInCksumErrs;
497 500 #define udpIfStatsInCksumErrs udpInCksumErrs
498 501 /* # of UDP packets droped due to queue overflow */
499 502 Counter udpInOverflows;
500 503 #define udpIfStatsInOverflows udpInOverflows
501 504 /*
502 505 * # of RAW IP packets (all IP protocols except UDP, TCP
503 506 * and ICMP) droped due to queue overflow
504 507 */
505 508 Counter rawipInOverflows;
506 509 #define rawipIfStatsInOverflows rawipInOverflows
507 510
508 511 /*
509 512 * # of IP packets received with the wrong version (i.e., not equal
510 513 * to ipIfStatsIPVersion) and that were dropped.
511 514 */
512 515 Counter ipIfStatsInWrongIPVersion;
513 516 /*
514 517 * This counter is no longer used
515 518 */
516 519 Counter ipIfStatsOutWrongIPVersion;
517 520 /*
518 521 * This counter is no longer used
519 522 */
520 523 Counter ipIfStatsOutSwitchIPVersion;
521 524
522 525 /*
523 526 * Fields defined in RFC 4293
524 527 */
525 528
526 529 /* ip version { ipIfStatsEntry 1 } */
527 530 int ipIfStatsIPVersion;
528 531 /* # input datagrams (incl errors) { ipIfStatsEntry 4 } */
529 532 Counter64 ipIfStatsHCInReceives;
530 533 /* # input octets (incl errors) { ipIfStatsEntry 6 } */
531 534 Counter64 ipIfStatsHCInOctets;
532 535 /*
533 536 * { ipIfStatsEntry 13 }
534 537 * # input datagrams for which a forwarding attempt was made
535 538 */
536 539 Counter64 ipIfStatsHCInForwDatagrams;
537 540 /* # delivered to upper layer protocols { ipIfStatsEntry 19 } */
538 541 Counter64 ipIfStatsHCInDelivers;
539 542 /* # originated out interface { ipIfStatsEntry 21 } */
540 543 Counter64 ipIfStatsHCOutRequests;
541 544 /* # forwarded out interface { ipIfStatsEntry 23 } */
542 545 Counter64 ipIfStatsHCOutForwDatagrams;
543 546 /* # dg's requiring fragmentation { ipIfStatsEntry 26 } */
544 547 Counter ipIfStatsOutFragReqds;
545 548 /* # output datagrams { ipIfStatsEntry 31 } */
546 549 Counter64 ipIfStatsHCOutTransmits;
547 550 /* # output octets { ipIfStatsEntry 33 } */
548 551 Counter64 ipIfStatsHCOutOctets;
549 552 /* # received multicast datagrams { ipIfStatsEntry 35 } */
550 553 Counter64 ipIfStatsHCInMcastPkts;
551 554 /* # received multicast octets { ipIfStatsEntry 37 } */
552 555 Counter64 ipIfStatsHCInMcastOctets;
553 556 /* # transmitted multicast datagrams { ipIfStatsEntry 39 } */
554 557 Counter64 ipIfStatsHCOutMcastPkts;
555 558 /* # transmitted multicast octets { ipIfStatsEntry 41 } */
556 559 Counter64 ipIfStatsHCOutMcastOctets;
557 560 /* # received broadcast datagrams { ipIfStatsEntry 43 } */
558 561 Counter64 ipIfStatsHCInBcastPkts;
559 562 /* # transmitted broadcast datagrams { ipIfStatsEntry 45 } */
560 563 Counter64 ipIfStatsHCOutBcastPkts;
561 564
562 565 /*
563 566 * Fields defined in mib2_ip_t
564 567 */
565 568
566 569 /* # of incoming packets that succeeded policy checks */
567 570 Counter ipsecInSucceeded;
568 571 #define ipsecIfStatsInSucceeded ipsecInSucceeded
569 572 /* # of incoming packets that failed policy checks */
570 573 Counter ipsecInFailed;
571 574 #define ipsecIfStatsInFailed ipsecInFailed
572 575 /* # of bad IP header checksums */
573 576 Counter ipInCksumErrs;
574 577 #define ipIfStatsInCksumErrs ipInCksumErrs
575 578 /* total # of segments recv'd with error { tcp 14 } */
576 579 Counter tcpInErrs;
577 580 #define tcpIfStatsInErrs tcpInErrs
578 581 /* # of recv'd dg's not deliverable (no appl.) { udp 2 } */
579 582 Counter udpNoPorts;
580 583 #define udpIfStatsNoPorts udpNoPorts
581 584 } mib2_ipIfStatsEntry_t;
582 585 #define MIB_FIRST_NEW_ELM_mib2_ipIfStatsEntry_t ipIfStatsIPVersion
583 586
584 587 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
585 588 #pragma pack()
586 589 #endif
587 590
588 591 /*
589 592 * The IP address table contains this entity's IP addressing information.
590 593 *
591 594 * ipAddrTable OBJECT-TYPE
592 595 * SYNTAX SEQUENCE OF IpAddrEntry
593 596 * ACCESS not-accessible
594 597 * STATUS mandatory
595 598 * DESCRIPTION
596 599 * "The table of addressing information relevant to
597 600 * this entity's IP addresses."
598 601 * ::= { ip 20 }
599 602 */
600 603
601 604 typedef struct mib2_ipAddrEntry {
602 605 /* IP address of this entry {ipAddrEntry 1} */
603 606 IpAddress ipAdEntAddr;
604 607 /* Unique interface index {ipAddrEntry 2} */
605 608 DeviceName ipAdEntIfIndex;
606 609 /* Subnet mask for this IP addr {ipAddrEntry 3} */
607 610 IpAddress ipAdEntNetMask;
608 611 /* 2^lsb of IP broadcast addr {ipAddrEntry 4} */
609 612 int ipAdEntBcastAddr;
610 613 /* max size for dg reassembly {ipAddrEntry 5} */
611 614 int ipAdEntReasmMaxSize;
612 615 /* additional ipif_t fields */
613 616 struct ipAdEntInfo_s {
614 617 Gauge ae_mtu;
615 618 /* BSD if metric */
616 619 int ae_metric;
617 620 /* ipif broadcast addr. relation to above?? */
618 621 IpAddress ae_broadcast_addr;
619 622 /* point-point dest addr */
620 623 IpAddress ae_pp_dst_addr;
621 624 int ae_flags; /* IFF_* flags in if.h */
622 625 Counter ae_ibcnt; /* Inbound packets */
623 626 Counter ae_obcnt; /* Outbound packets */
624 627 Counter ae_focnt; /* Forwarded packets */
625 628 IpAddress ae_subnet; /* Subnet prefix */
626 629 int ae_subnet_len; /* Subnet prefix length */
627 630 IpAddress ae_src_addr; /* Source address */
628 631 } ipAdEntInfo;
629 632 uint32_t ipAdEntRetransmitTime; /* ipInterfaceRetransmitTime */
630 633 } mib2_ipAddrEntry_t;
631 634 #define MIB_FIRST_NEW_ELM_mib2_ipAddrEntry_t ipAdEntRetransmitTime
632 635
633 636 /*
634 637 * ipv6AddrTable OBJECT-TYPE
635 638 * SYNTAX SEQUENCE OF Ipv6AddrEntry
636 639 * MAX-ACCESS not-accessible
637 640 * STATUS current
638 641 * DESCRIPTION
639 642 * "The table of addressing information relevant to
640 643 * this node's interface addresses."
641 644 * ::= { ipv6MIBObjects 8 }
642 645 */
643 646
644 647 typedef struct mib2_ipv6AddrEntry {
645 648 /* Unique interface index { Part of INDEX } */
646 649 DeviceName ipv6AddrIfIndex;
647 650
648 651 /* IPv6 address of this entry { ipv6AddrEntry 1 } */
649 652 Ip6Address ipv6AddrAddress;
650 653 /* Prefix length { ipv6AddrEntry 2 } */
651 654 uint_t ipv6AddrPfxLength;
652 655 /* Type: stateless(1), stateful(2), unknown(3) { ipv6AddrEntry 3 } */
653 656 uint_t ipv6AddrType;
654 657 /* Anycast: true(1), false(2) { ipv6AddrEntry 4 } */
655 658 uint_t ipv6AddrAnycastFlag;
656 659 /*
657 660 * Address status: preferred(1), deprecated(2), invalid(3),
658 661 * inaccessible(4), unknown(5) { ipv6AddrEntry 5 }
659 662 */
660 663 uint_t ipv6AddrStatus;
661 664 struct ipv6AddrInfo_s {
662 665 Gauge ae_mtu;
663 666 /* BSD if metric */
664 667 int ae_metric;
665 668 /* point-point dest addr */
666 669 Ip6Address ae_pp_dst_addr;
667 670 int ae_flags; /* IFF_* flags in if.h */
668 671 Counter ae_ibcnt; /* Inbound packets */
669 672 Counter ae_obcnt; /* Outbound packets */
670 673 Counter ae_focnt; /* Forwarded packets */
671 674 Ip6Address ae_subnet; /* Subnet prefix */
672 675 int ae_subnet_len; /* Subnet prefix length */
673 676 Ip6Address ae_src_addr; /* Source address */
674 677 } ipv6AddrInfo;
675 678 uint32_t ipv6AddrReasmMaxSize; /* InterfaceReasmMaxSize */
676 679 Ip6Address ipv6AddrIdentifier; /* InterfaceIdentifier */
677 680 uint32_t ipv6AddrIdentifierLen;
678 681 uint32_t ipv6AddrReachableTime; /* InterfaceReachableTime */
679 682 uint32_t ipv6AddrRetransmitTime; /* InterfaceRetransmitTime */
680 683 } mib2_ipv6AddrEntry_t;
681 684 #define MIB_FIRST_NEW_ELM_mib2_ipv6AddrEntry_t ipv6AddrReasmMaxSize
682 685
683 686 /*
684 687 * The IP routing table contains an entry for each route presently known to
685 688 * this entity. (for IPv4 routes)
686 689 *
687 690 * ipRouteTable OBJECT-TYPE
688 691 * SYNTAX SEQUENCE OF IpRouteEntry
689 692 * ACCESS not-accessible
690 693 * STATUS mandatory
691 694 * DESCRIPTION
692 695 * "This entity's IP Routing table."
693 696 * ::= { ip 21 }
694 697 */
695 698
696 699 typedef struct mib2_ipRouteEntry {
697 700 /* dest ip addr for this route {ipRouteEntry 1 } RW */
698 701 IpAddress ipRouteDest;
699 702 /* unique interface index for this hop {ipRouteEntry 2 } RW */
700 703 DeviceName ipRouteIfIndex;
701 704 /* primary route metric {ipRouteEntry 3 } RW */
702 705 int ipRouteMetric1;
703 706 /* alternate route metric {ipRouteEntry 4 } RW */
704 707 int ipRouteMetric2;
705 708 /* alternate route metric {ipRouteEntry 5 } RW */
706 709 int ipRouteMetric3;
707 710 /* alternate route metric {ipRouteEntry 6 } RW */
708 711 int ipRouteMetric4;
709 712 /* ip addr of next hop on this route {ipRouteEntry 7 } RW */
710 713 IpAddress ipRouteNextHop;
711 714 /* other(1), inval(2), dir(3), indir(4) {ipRouteEntry 8 } RW */
712 715 int ipRouteType;
713 716 /* mechanism by which route was learned {ipRouteEntry 9 } */
714 717 int ipRouteProto;
715 718 /* sec's since last update of route {ipRouteEntry 10} RW */
716 719 int ipRouteAge;
717 720 /* {ipRouteEntry 11} RW */
718 721 IpAddress ipRouteMask;
719 722 /* alternate route metric {ipRouteEntry 12} RW */
720 723 int ipRouteMetric5;
721 724 /* additional info from ire's {ipRouteEntry 13 } */
722 725 struct ipRouteInfo_s {
723 726 Gauge re_max_frag;
724 727 Gauge re_rtt;
725 728 Counter re_ref;
726 729 int re_frag_flag;
727 730 IpAddress re_src_addr;
728 731 int re_ire_type;
729 732 Counter re_obpkt;
730 733 Counter re_ibpkt;
731 734 int re_flags;
732 735 /*
733 736 * The following two elements (re_in_ill and re_in_src_addr)
734 737 * are no longer used but are left here for the benefit of
735 738 * old Apps that won't be able to handle the change in the
736 739 * size of this struct. These elements will always be
737 740 * set to zeroes.
738 741 */
739 742 DeviceName re_in_ill; /* Input interface */
740 743 IpAddress re_in_src_addr; /* Input source address */
741 744 } ipRouteInfo;
742 745 } mib2_ipRouteEntry_t;
743 746
744 747 /*
745 748 * The IPv6 routing table contains an entry for each route presently known to
746 749 * this entity.
747 750 *
748 751 * ipv6RouteTable OBJECT-TYPE
749 752 * SYNTAX SEQUENCE OF IpRouteEntry
750 753 * ACCESS not-accessible
751 754 * STATUS current
752 755 * DESCRIPTION
753 756 * "IPv6 Routing table. This table contains
754 757 * an entry for each valid IPv6 unicast route
755 758 * that can be used for packet forwarding
756 759 * determination."
757 760 * ::= { ipv6MIBObjects 11 }
758 761 */
759 762
760 763 typedef struct mib2_ipv6RouteEntry {
761 764 /* dest ip addr for this route { ipv6RouteEntry 1 } */
762 765 Ip6Address ipv6RouteDest;
763 766 /* prefix length { ipv6RouteEntry 2 } */
764 767 int ipv6RoutePfxLength;
765 768 /* unique route index { ipv6RouteEntry 3 } */
766 769 unsigned ipv6RouteIndex;
767 770 /* unique interface index for this hop { ipv6RouteEntry 4 } */
768 771 DeviceName ipv6RouteIfIndex;
769 772 /* IPv6 addr of next hop on this route { ipv6RouteEntry 5 } */
770 773 Ip6Address ipv6RouteNextHop;
771 774 /* other(1), discard(2), local(3), remote(4) */
772 775 /* { ipv6RouteEntry 6 } */
773 776 int ipv6RouteType;
774 777 /* mechanism by which route was learned { ipv6RouteEntry 7 } */
775 778 /*
776 779 * other(1), local(2), netmgmt(3), ndisc(4), rip(5), ospf(6),
777 780 * bgp(7), idrp(8), igrp(9)
778 781 */
779 782 int ipv6RouteProtocol;
780 783 /* policy hook or traffic class { ipv6RouteEntry 8 } */
781 784 unsigned ipv6RoutePolicy;
782 785 /* sec's since last update of route { ipv6RouteEntry 9} */
783 786 int ipv6RouteAge;
784 787 /* Routing domain ID of the next hop { ipv6RouteEntry 10 } */
785 788 unsigned ipv6RouteNextHopRDI;
786 789 /* route metric { ipv6RouteEntry 11 } */
787 790 unsigned ipv6RouteMetric;
788 791 /* preference (impl specific) { ipv6RouteEntry 12 } */
789 792 unsigned ipv6RouteWeight;
790 793 /* additional info from ire's { } */
791 794 struct ipv6RouteInfo_s {
792 795 Gauge re_max_frag;
793 796 Gauge re_rtt;
794 797 Counter re_ref;
795 798 int re_frag_flag;
796 799 Ip6Address re_src_addr;
797 800 int re_ire_type;
798 801 Counter re_obpkt;
799 802 Counter re_ibpkt;
800 803 int re_flags;
801 804 } ipv6RouteInfo;
802 805 } mib2_ipv6RouteEntry_t;
803 806
804 807 /*
805 808 * The IPv4 and IPv6 routing table entries on a trusted system also have
806 809 * security attributes in the form of label ranges. This experimental
807 810 * interface provides information about these labels.
808 811 *
809 812 * Each entry in this table contains a label range and an index that refers
810 813 * back to the entry in the routing table to which it applies. There may be 0,
811 814 * 1, or many label ranges for each routing table entry.
812 815 *
813 816 * (opthdr.level is set to MIB2_IP for IPv4 entries and MIB2_IP6 for IPv6.
814 817 * opthdr.name is set to EXPER_IP_GWATTR.)
815 818 *
816 819 * ipRouteAttributeTable OBJECT-TYPE
817 820 * SYNTAX SEQUENCE OF IpAttributeEntry
818 821 * ACCESS not-accessible
819 822 * STATUS current
820 823 * DESCRIPTION
821 824 * "IPv4 routing attributes table. This table contains
822 825 * an entry for each valid trusted label attached to a
823 826 * route in the system."
824 827 * ::= { ip 102 }
825 828 *
826 829 * ipv6RouteAttributeTable OBJECT-TYPE
827 830 * SYNTAX SEQUENCE OF IpAttributeEntry
828 831 * ACCESS not-accessible
829 832 * STATUS current
830 833 * DESCRIPTION
831 834 * "IPv6 routing attributes table. This table contains
832 835 * an entry for each valid trusted label attached to a
833 836 * route in the system."
834 837 * ::= { ip6 102 }
835 838 */
836 839
837 840 typedef struct mib2_ipAttributeEntry {
838 841 uint_t iae_routeidx;
839 842 int iae_doi;
840 843 brange_t iae_slrange;
841 844 } mib2_ipAttributeEntry_t;
842 845
843 846 /*
844 847 * The IP address translation table contain the IpAddress to
845 848 * `physical' address equivalences. Some interfaces do not
846 849 * use translation tables for determining address
847 850 * equivalences (e.g., DDN-X.25 has an algorithmic method);
848 851 * if all interfaces are of this type, then the Address
849 852 * Translation table is empty, i.e., has zero entries.
850 853 *
851 854 * ipNetToMediaTable OBJECT-TYPE
852 855 * SYNTAX SEQUENCE OF IpNetToMediaEntry
853 856 * ACCESS not-accessible
854 857 * STATUS mandatory
855 858 * DESCRIPTION
856 859 * "The IP Address Translation table used for mapping
857 860 * from IP addresses to physical addresses."
858 861 * ::= { ip 22 }
859 862 */
860 863
861 864 typedef struct mib2_ipNetToMediaEntry {
862 865 /* Unique interface index { ipNetToMediaEntry 1 } RW */
863 866 DeviceName ipNetToMediaIfIndex;
864 867 /* Media dependent physical addr { ipNetToMediaEntry 2 } RW */
865 868 PhysAddress ipNetToMediaPhysAddress;
866 869 /* ip addr for this physical addr { ipNetToMediaEntry 3 } RW */
867 870 IpAddress ipNetToMediaNetAddress;
868 871 /* other(1), inval(2), dyn(3), stat(4) { ipNetToMediaEntry 4 } RW */
869 872 int ipNetToMediaType;
870 873 struct ipNetToMediaInfo_s {
871 874 PhysAddress ntm_mask; /* subnet mask for entry */
872 875 int ntm_flags; /* ACE_F_* flags in arp.h */
873 876 } ipNetToMediaInfo;
874 877 } mib2_ipNetToMediaEntry_t;
875 878
876 879 /*
877 880 * ipv6NetToMediaTable OBJECT-TYPE
878 881 * SYNTAX SEQUENCE OF Ipv6NetToMediaEntry
879 882 * MAX-ACCESS not-accessible
880 883 * STATUS current
881 884 * DESCRIPTION
882 885 * "The IPv6 Address Translation table used for
883 886 * mapping from IPv6 addresses to physical addresses.
884 887 *
885 888 * The IPv6 address translation table contain the
886 889 * Ipv6Address to `physical' address equivalencies.
887 890 * Some interfaces do not use translation tables
888 891 * for determining address equivalencies; if all
889 892 * interfaces are of this type, then the Address
890 893 * Translation table is empty, i.e., has zero
891 894 * entries."
892 895 * ::= { ipv6MIBObjects 12 }
893 896 */
894 897
895 898 typedef struct mib2_ipv6NetToMediaEntry {
896 899 /* Unique interface index { Part of INDEX } */
897 900 DeviceIndex ipv6NetToMediaIfIndex;
898 901
899 902 /* ip addr for this physical addr { ipv6NetToMediaEntry 1 } */
900 903 Ip6Address ipv6NetToMediaNetAddress;
901 904 /* Media dependent physical addr { ipv6NetToMediaEntry 2 } */
902 905 PhysAddress ipv6NetToMediaPhysAddress;
903 906 /*
904 907 * Type of mapping
905 908 * other(1), dynamic(2), static(3), local(4)
906 909 * { ipv6NetToMediaEntry 3 }
907 910 */
908 911 int ipv6NetToMediaType;
909 912 /*
910 913 * NUD state
911 914 * reachable(1), stale(2), delay(3), probe(4), invalid(5), unknown(6)
912 915 * Note: The kernel returns ND_* states.
913 916 * { ipv6NetToMediaEntry 4 }
914 917 */
915 918 int ipv6NetToMediaState;
916 919 /* sysUpTime last time entry was updated { ipv6NetToMediaEntry 5 } */
917 920 int ipv6NetToMediaLastUpdated;
918 921 } mib2_ipv6NetToMediaEntry_t;
919 922
920 923
921 924 /*
922 925 * List of group members per interface
923 926 */
924 927 typedef struct ip_member {
925 928 /* Interface index */
926 929 DeviceName ipGroupMemberIfIndex;
927 930 /* IP Multicast address */
928 931 IpAddress ipGroupMemberAddress;
929 932 /* Number of member sockets */
930 933 Counter ipGroupMemberRefCnt;
931 934 /* Filter mode: 1 => include, 2 => exclude */
932 935 int ipGroupMemberFilterMode;
933 936 } ip_member_t;
934 937
935 938
936 939 /*
937 940 * List of IPv6 group members per interface
938 941 */
939 942 typedef struct ipv6_member {
940 943 /* Interface index */
941 944 DeviceIndex ipv6GroupMemberIfIndex;
942 945 /* IP Multicast address */
943 946 Ip6Address ipv6GroupMemberAddress;
944 947 /* Number of member sockets */
945 948 Counter ipv6GroupMemberRefCnt;
946 949 /* Filter mode: 1 => include, 2 => exclude */
947 950 int ipv6GroupMemberFilterMode;
948 951 } ipv6_member_t;
949 952
950 953 /*
951 954 * This is used to mark transport layer entities (e.g., TCP connections) that
952 955 * are capable of receiving packets from a range of labels. 'level' is set to
953 956 * the protocol of interest (e.g., MIB2_TCP), and 'name' is set to
954 957 * EXPER_XPORT_MLP. The tme_connidx refers back to the entry in MIB2_TCP_CONN,
955 958 * MIB2_TCP6_CONN, or MIB2_SCTP_CONN.
956 959 *
957 960 * It is also used to report connections that receive packets at a single label
958 961 * that's other than the zone's label. This is the case when a TCP connection
959 962 * is accepted from a particular peer using an MLP listener.
960 963 */
961 964 typedef struct mib2_transportMLPEntry {
962 965 uint_t tme_connidx;
963 966 uint_t tme_flags;
964 967 int tme_doi;
965 968 bslabel_t tme_label;
966 969 } mib2_transportMLPEntry_t;
967 970
968 971 #define MIB2_TMEF_PRIVATE 0x00000001 /* MLP on private addresses */
969 972 #define MIB2_TMEF_SHARED 0x00000002 /* MLP on shared addresses */
970 973 #define MIB2_TMEF_ANONMLP 0x00000004 /* Anonymous MLP port */
971 974 #define MIB2_TMEF_MACEXEMPT 0x00000008 /* MAC-Exempt port */
972 975 #define MIB2_TMEF_IS_LABELED 0x00000010 /* tme_doi & tme_label exists */
973 976 #define MIB2_TMEF_MACIMPLICIT 0x00000020 /* MAC-Implicit */
974 977 /*
975 978 * List of IPv4 source addresses being filtered per interface
976 979 */
977 980 typedef struct ip_grpsrc {
978 981 /* Interface index */
979 982 DeviceName ipGroupSourceIfIndex;
980 983 /* IP Multicast address */
981 984 IpAddress ipGroupSourceGroup;
982 985 /* IP Source address */
983 986 IpAddress ipGroupSourceAddress;
984 987 } ip_grpsrc_t;
985 988
986 989
987 990 /*
988 991 * List of IPv6 source addresses being filtered per interface
989 992 */
990 993 typedef struct ipv6_grpsrc {
991 994 /* Interface index */
992 995 DeviceIndex ipv6GroupSourceIfIndex;
993 996 /* IP Multicast address */
994 997 Ip6Address ipv6GroupSourceGroup;
995 998 /* IP Source address */
996 999 Ip6Address ipv6GroupSourceAddress;
997 1000 } ipv6_grpsrc_t;
998 1001
999 1002
1000 1003 /*
1001 1004 * List of destination cache entries
1002 1005 */
1003 1006 typedef struct dest_cache_entry {
1004 1007 /* IP Multicast address */
1005 1008 IpAddress DestIpv4Address;
1006 1009 Ip6Address DestIpv6Address;
1007 1010 uint_t DestFlags; /* DCEF_* */
1008 1011 uint32_t DestPmtu; /* Path MTU if DCEF_PMTU */
1009 1012 uint32_t DestIdent; /* Per destination IP ident. */
1010 1013 DeviceIndex DestIfindex; /* For IPv6 link-locals */
1011 1014 uint32_t DestAge; /* Age of MTU info in seconds */
1012 1015 } dest_cache_entry_t;
1013 1016
1014 1017
1015 1018 /*
1016 1019 * ICMP Group
1017 1020 */
1018 1021 typedef struct mib2_icmp {
1019 1022 /* total # of recv'd ICMP msgs { icmp 1 } */
1020 1023 Counter icmpInMsgs;
1021 1024 /* recv'd ICMP msgs with errors { icmp 2 } */
1022 1025 Counter icmpInErrors;
1023 1026 /* recv'd "dest unreachable" msg's { icmp 3 } */
1024 1027 Counter icmpInDestUnreachs;
1025 1028 /* recv'd "time exceeded" msg's { icmp 4 } */
1026 1029 Counter icmpInTimeExcds;
1027 1030 /* recv'd "parameter problem" msg's { icmp 5 } */
1028 1031 Counter icmpInParmProbs;
1029 1032 /* recv'd "source quench" msg's { icmp 6 } */
1030 1033 Counter icmpInSrcQuenchs;
1031 1034 /* recv'd "ICMP redirect" msg's { icmp 7 } */
1032 1035 Counter icmpInRedirects;
1033 1036 /* recv'd "echo request" msg's { icmp 8 } */
1034 1037 Counter icmpInEchos;
1035 1038 /* recv'd "echo reply" msg's { icmp 9 } */
1036 1039 Counter icmpInEchoReps;
1037 1040 /* recv'd "timestamp" msg's { icmp 10 } */
1038 1041 Counter icmpInTimestamps;
1039 1042 /* recv'd "timestamp reply" msg's { icmp 11 } */
1040 1043 Counter icmpInTimestampReps;
1041 1044 /* recv'd "address mask request" msg's { icmp 12 } */
1042 1045 Counter icmpInAddrMasks;
1043 1046 /* recv'd "address mask reply" msg's { icmp 13 } */
1044 1047 Counter icmpInAddrMaskReps;
1045 1048 /* total # of sent ICMP msg's { icmp 14 } */
1046 1049 Counter icmpOutMsgs;
1047 1050 /* # of msg's not sent for internal icmp errors { icmp 15 } */
1048 1051 Counter icmpOutErrors;
1049 1052 /* # of "dest unreachable" msg's sent { icmp 16 } */
1050 1053 Counter icmpOutDestUnreachs;
1051 1054 /* # of "time exceeded" msg's sent { icmp 17 } */
1052 1055 Counter icmpOutTimeExcds;
1053 1056 /* # of "parameter problme" msg's sent { icmp 18 } */
1054 1057 Counter icmpOutParmProbs;
1055 1058 /* # of "source quench" msg's sent { icmp 19 } */
1056 1059 Counter icmpOutSrcQuenchs;
1057 1060 /* # of "ICMP redirect" msg's sent { icmp 20 } */
1058 1061 Counter icmpOutRedirects;
1059 1062 /* # of "Echo request" msg's sent { icmp 21 } */
1060 1063 Counter icmpOutEchos;
1061 1064 /* # of "Echo reply" msg's sent { icmp 22 } */
1062 1065 Counter icmpOutEchoReps;
1063 1066 /* # of "timestamp request" msg's sent { icmp 23 } */
1064 1067 Counter icmpOutTimestamps;
1065 1068 /* # of "timestamp reply" msg's sent { icmp 24 } */
1066 1069 Counter icmpOutTimestampReps;
1067 1070 /* # of "address mask request" msg's sent { icmp 25 } */
1068 1071 Counter icmpOutAddrMasks;
1069 1072 /* # of "address mask reply" msg's sent { icmp 26 } */
1070 1073 Counter icmpOutAddrMaskReps;
1071 1074 /*
1072 1075 * In addition to MIB-II
1073 1076 */
1074 1077 /* # of received packets with checksum errors */
1075 1078 Counter icmpInCksumErrs;
1076 1079 /* # of received packets with unknow codes */
1077 1080 Counter icmpInUnknowns;
1078 1081 /* # of received unreachables with "fragmentation needed" */
1079 1082 Counter icmpInFragNeeded;
1080 1083 /* # of sent unreachables with "fragmentation needed" */
1081 1084 Counter icmpOutFragNeeded;
1082 1085 /*
1083 1086 * # of msg's not sent since original packet was broadcast/multicast
1084 1087 * or an ICMP error packet
1085 1088 */
1086 1089 Counter icmpOutDrops;
1087 1090 /* # of ICMP packets droped due to queue overflow */
1088 1091 Counter icmpInOverflows;
1089 1092 /* recv'd "ICMP redirect" msg's that are bad thus ignored */
1090 1093 Counter icmpInBadRedirects;
1091 1094 } mib2_icmp_t;
1092 1095
1093 1096
1094 1097 /*
1095 1098 * ipv6IfIcmpEntry OBJECT-TYPE
1096 1099 * SYNTAX Ipv6IfIcmpEntry
1097 1100 * MAX-ACCESS not-accessible
1098 1101 * STATUS current
1099 1102 * DESCRIPTION
1100 1103 * "An ICMPv6 statistics entry containing
1101 1104 * objects at a particular IPv6 interface.
1102 1105 *
1103 1106 * Note that a receiving interface is
1104 1107 * the interface to which a given ICMPv6 message
1105 1108 * is addressed which may not be necessarily
1106 1109 * the input interface for the message.
1107 1110 *
1108 1111 * Similarly, the sending interface is
1109 1112 * the interface that sources a given
1110 1113 * ICMP message which is usually but not
1111 1114 * necessarily the output interface for the message."
1112 1115 * AUGMENTS { ipv6IfEntry }
1113 1116 * ::= { ipv6IfIcmpTable 1 }
1114 1117 *
1115 1118 * Per-interface ICMPv6 statistics table
1116 1119 */
1117 1120
1118 1121 typedef struct mib2_ipv6IfIcmpEntry {
1119 1122 /* Local ifindex to identify the interface */
1120 1123 DeviceIndex ipv6IfIcmpIfIndex;
1121 1124
1122 1125 int ipv6IfIcmpEntrySize; /* Size of ipv6IfIcmpEntry */
1123 1126
1124 1127 /* The total # ICMP msgs rcvd includes ipv6IfIcmpInErrors */
1125 1128 Counter32 ipv6IfIcmpInMsgs;
1126 1129 /* # ICMP with ICMP-specific errors (bad checkum, length, etc) */
1127 1130 Counter32 ipv6IfIcmpInErrors;
1128 1131 /* # ICMP Destination Unreachable */
1129 1132 Counter32 ipv6IfIcmpInDestUnreachs;
1130 1133 /* # ICMP destination unreachable/communication admin prohibited */
1131 1134 Counter32 ipv6IfIcmpInAdminProhibs;
1132 1135 Counter32 ipv6IfIcmpInTimeExcds;
1133 1136 Counter32 ipv6IfIcmpInParmProblems;
1134 1137 Counter32 ipv6IfIcmpInPktTooBigs;
1135 1138 Counter32 ipv6IfIcmpInEchos;
1136 1139 Counter32 ipv6IfIcmpInEchoReplies;
1137 1140 Counter32 ipv6IfIcmpInRouterSolicits;
1138 1141 Counter32 ipv6IfIcmpInRouterAdvertisements;
1139 1142 Counter32 ipv6IfIcmpInNeighborSolicits;
1140 1143 Counter32 ipv6IfIcmpInNeighborAdvertisements;
1141 1144 Counter32 ipv6IfIcmpInRedirects;
1142 1145 Counter32 ipv6IfIcmpInGroupMembQueries;
1143 1146 Counter32 ipv6IfIcmpInGroupMembResponses;
1144 1147 Counter32 ipv6IfIcmpInGroupMembReductions;
1145 1148 /* Total # ICMP messages attempted to send (includes OutErrors) */
1146 1149 Counter32 ipv6IfIcmpOutMsgs;
1147 1150 /* # ICMP messages not sent due to ICMP problems (e.g. no buffers) */
1148 1151 Counter32 ipv6IfIcmpOutErrors;
1149 1152 Counter32 ipv6IfIcmpOutDestUnreachs;
1150 1153 Counter32 ipv6IfIcmpOutAdminProhibs;
1151 1154 Counter32 ipv6IfIcmpOutTimeExcds;
1152 1155 Counter32 ipv6IfIcmpOutParmProblems;
1153 1156 Counter32 ipv6IfIcmpOutPktTooBigs;
1154 1157 Counter32 ipv6IfIcmpOutEchos;
1155 1158 Counter32 ipv6IfIcmpOutEchoReplies;
1156 1159 Counter32 ipv6IfIcmpOutRouterSolicits;
1157 1160 Counter32 ipv6IfIcmpOutRouterAdvertisements;
1158 1161 Counter32 ipv6IfIcmpOutNeighborSolicits;
1159 1162 Counter32 ipv6IfIcmpOutNeighborAdvertisements;
1160 1163 Counter32 ipv6IfIcmpOutRedirects;
1161 1164 Counter32 ipv6IfIcmpOutGroupMembQueries;
1162 1165 Counter32 ipv6IfIcmpOutGroupMembResponses;
1163 1166 Counter32 ipv6IfIcmpOutGroupMembReductions;
1164 1167 /* Additions beyond the MIB */
1165 1168 Counter32 ipv6IfIcmpInOverflows;
1166 1169 /* recv'd "ICMPv6 redirect" msg's that are bad thus ignored */
1167 1170 Counter32 ipv6IfIcmpBadHoplimit;
1168 1171 Counter32 ipv6IfIcmpInBadNeighborAdvertisements;
1169 1172 Counter32 ipv6IfIcmpInBadNeighborSolicitations;
1170 1173 Counter32 ipv6IfIcmpInBadRedirects;
1171 1174 Counter32 ipv6IfIcmpInGroupMembTotal;
1172 1175 Counter32 ipv6IfIcmpInGroupMembBadQueries;
1173 1176 Counter32 ipv6IfIcmpInGroupMembBadReports;
1174 1177 Counter32 ipv6IfIcmpInGroupMembOurReports;
1175 1178 } mib2_ipv6IfIcmpEntry_t;
1176 1179
1177 1180 /*
1178 1181 * the TCP group
1179 1182 *
1180 1183 * Note that instances of object types that represent
1181 1184 * information about a particular TCP connection are
1182 1185 * transient; they persist only as long as the connection
1183 1186 * in question.
1184 1187 */
1185 1188 #define MIB2_TCP_CONN 13 /* tcpConnEntry */
1186 1189 #define MIB2_TCP6_CONN 14 /* tcp6ConnEntry */
1187 1190
1188 1191 /* Old name retained for compatibility */
1189 1192 #define MIB2_TCP_13 MIB2_TCP_CONN
1190 1193
1191 1194 /* Pack data in mib2_tcp to make struct size the same for 32- and 64-bits */
1192 1195 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1193 1196 #pragma pack(4)
1194 1197 #endif
1195 1198 typedef struct mib2_tcp {
1196 1199 /* algorithm used for transmit timeout value { tcp 1 } */
1197 1200 int tcpRtoAlgorithm;
1198 1201 /* minimum retransmit timeout (ms) { tcp 2 } */
1199 1202 int tcpRtoMin;
1200 1203 /* maximum retransmit timeout (ms) { tcp 3 } */
1201 1204 int tcpRtoMax;
1202 1205 /* maximum # of connections supported { tcp 4 } */
1203 1206 int tcpMaxConn;
1204 1207 /* # of direct transitions CLOSED -> SYN-SENT { tcp 5 } */
1205 1208 Counter tcpActiveOpens;
1206 1209 /* # of direct transitions LISTEN -> SYN-RCVD { tcp 6 } */
1207 1210 Counter tcpPassiveOpens;
1208 1211 /* # of direct SIN-SENT/RCVD -> CLOSED/LISTEN { tcp 7 } */
1209 1212 Counter tcpAttemptFails;
1210 1213 /* # of direct ESTABLISHED/CLOSE-WAIT -> CLOSED { tcp 8 } */
1211 1214 Counter tcpEstabResets;
1212 1215 /* # of connections ESTABLISHED or CLOSE-WAIT { tcp 9 } */
1213 1216 Gauge tcpCurrEstab;
1214 1217 /* total # of segments recv'd { tcp 10 } */
1215 1218 Counter tcpInSegs;
1216 1219 /* total # of segments sent { tcp 11 } */
1217 1220 Counter tcpOutSegs;
1218 1221 /* total # of segments retransmitted { tcp 12 } */
1219 1222 Counter tcpRetransSegs;
1220 1223 /* {tcp 13} */
1221 1224 int tcpConnTableSize; /* Size of tcpConnEntry_t */
1222 1225 /* in ip {tcp 14} */
1223 1226 /* # of segments sent with RST flag { tcp 15 } */
1224 1227 Counter tcpOutRsts;
1225 1228 /* In addition to MIB-II */
1226 1229 /* Sender */
1227 1230 /* total # of data segments sent */
1228 1231 Counter tcpOutDataSegs;
1229 1232 /* total # of bytes in data segments sent */
1230 1233 Counter tcpOutDataBytes;
1231 1234 /* total # of bytes in segments retransmitted */
1232 1235 Counter tcpRetransBytes;
1233 1236 /* total # of acks sent */
1234 1237 Counter tcpOutAck;
1235 1238 /* total # of delayed acks sent */
1236 1239 Counter tcpOutAckDelayed;
1237 1240 /* total # of segments sent with the urg flag on */
1238 1241 Counter tcpOutUrg;
1239 1242 /* total # of window updates sent */
1240 1243 Counter tcpOutWinUpdate;
1241 1244 /* total # of zero window probes sent */
1242 1245 Counter tcpOutWinProbe;
1243 1246 /* total # of control segments sent (syn, fin, rst) */
1244 1247 Counter tcpOutControl;
1245 1248 /* total # of segments sent due to "fast retransmit" */
1246 1249 Counter tcpOutFastRetrans;
1247 1250 /* Receiver */
1248 1251 /* total # of ack segments received */
1249 1252 Counter tcpInAckSegs;
1250 1253 /* total # of bytes acked */
1251 1254 Counter tcpInAckBytes;
1252 1255 /* total # of duplicate acks */
1253 1256 Counter tcpInDupAck;
1254 1257 /* total # of acks acking unsent data */
1255 1258 Counter tcpInAckUnsent;
1256 1259 /* total # of data segments received in order */
1257 1260 Counter tcpInDataInorderSegs;
1258 1261 /* total # of data bytes received in order */
1259 1262 Counter tcpInDataInorderBytes;
1260 1263 /* total # of data segments received out of order */
1261 1264 Counter tcpInDataUnorderSegs;
1262 1265 /* total # of data bytes received out of order */
1263 1266 Counter tcpInDataUnorderBytes;
1264 1267 /* total # of complete duplicate data segments received */
1265 1268 Counter tcpInDataDupSegs;
1266 1269 /* total # of bytes in the complete duplicate data segments received */
1267 1270 Counter tcpInDataDupBytes;
1268 1271 /* total # of partial duplicate data segments received */
1269 1272 Counter tcpInDataPartDupSegs;
1270 1273 /* total # of bytes in the partial duplicate data segments received */
1271 1274 Counter tcpInDataPartDupBytes;
1272 1275 /* total # of data segments received past the window */
1273 1276 Counter tcpInDataPastWinSegs;
1274 1277 /* total # of data bytes received part the window */
1275 1278 Counter tcpInDataPastWinBytes;
1276 1279 /* total # of zero window probes received */
1277 1280 Counter tcpInWinProbe;
1278 1281 /* total # of window updates received */
1279 1282 Counter tcpInWinUpdate;
1280 1283 /* total # of data segments received after the connection has closed */
1281 1284 Counter tcpInClosed;
1282 1285 /* Others */
1283 1286 /* total # of failed attempts to update the rtt estimate */
1284 1287 Counter tcpRttNoUpdate;
1285 1288 /* total # of successful attempts to update the rtt estimate */
1286 1289 Counter tcpRttUpdate;
1287 1290 /* total # of retransmit timeouts */
1288 1291 Counter tcpTimRetrans;
1289 1292 /* total # of retransmit timeouts dropping the connection */
1290 1293 Counter tcpTimRetransDrop;
1291 1294 /* total # of keepalive timeouts */
1292 1295 Counter tcpTimKeepalive;
1293 1296 /* total # of keepalive timeouts sending a probe */
1294 1297 Counter tcpTimKeepaliveProbe;
1295 1298 /* total # of keepalive timeouts dropping the connection */
1296 1299 Counter tcpTimKeepaliveDrop;
1297 1300 /* total # of connections refused due to backlog full on listen */
1298 1301 Counter tcpListenDrop;
1299 1302 /* total # of connections refused due to half-open queue (q0) full */
1300 1303 Counter tcpListenDropQ0;
1301 1304 /* total # of connections dropped from a full half-open queue (q0) */
1302 1305 Counter tcpHalfOpenDrop;
1303 1306 /* total # of retransmitted segments by SACK retransmission */
1304 1307 Counter tcpOutSackRetransSegs;
1305 1308
1306 1309 int tcp6ConnTableSize; /* Size of tcp6ConnEntry_t */
1307 1310
1308 1311 /*
1309 1312 * fields from RFC 4022
1310 1313 */
1311 1314
1312 1315 /* total # of segments recv'd { tcp 17 } */
1313 1316 Counter64 tcpHCInSegs;
1314 1317 /* total # of segments sent { tcp 18 } */
1315 1318 Counter64 tcpHCOutSegs;
1316 1319 } mib2_tcp_t;
1317 1320 #define MIB_FIRST_NEW_ELM_mib2_tcp_t tcpHCInSegs
1318 1321
1319 1322 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1320 1323 #pragma pack()
1321 1324 #endif
1322 1325
1323 1326 /*
1324 1327 * The TCP/IPv4 connection table {tcp 13} contains information about this
1325 1328 * entity's existing TCP connections over IPv4.
1326 1329 */
1327 1330 /* For tcpConnState and tcp6ConnState */
1328 1331 #define MIB2_TCP_closed 1
1329 1332 #define MIB2_TCP_listen 2
1330 1333 #define MIB2_TCP_synSent 3
1331 1334 #define MIB2_TCP_synReceived 4
1332 1335 #define MIB2_TCP_established 5
1333 1336 #define MIB2_TCP_finWait1 6
1334 1337 #define MIB2_TCP_finWait2 7
1335 1338 #define MIB2_TCP_closeWait 8
1336 1339 #define MIB2_TCP_lastAck 9
1337 1340 #define MIB2_TCP_closing 10
1338 1341 #define MIB2_TCP_timeWait 11
1339 1342 #define MIB2_TCP_deleteTCB 12 /* only writeable value */
1340 1343
1341 1344 /* Pack data to make struct size the same for 32- and 64-bits */
1342 1345 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1343 1346 #pragma pack(4)
1344 1347 #endif
1345 1348 typedef struct mib2_tcpConnEntry {
1346 1349 /* state of tcp connection { tcpConnEntry 1} RW */
↓ open down ↓ |
1313 lines elided |
↑ open up ↑ |
1347 1350 int tcpConnState;
1348 1351 /* local ip addr for this connection { tcpConnEntry 2 } */
1349 1352 IpAddress tcpConnLocalAddress;
1350 1353 /* local port for this connection { tcpConnEntry 3 } */
1351 1354 int tcpConnLocalPort; /* In host byte order */
1352 1355 /* remote ip addr for this connection { tcpConnEntry 4 } */
1353 1356 IpAddress tcpConnRemAddress;
1354 1357 /* remote port for this connection { tcpConnEntry 5 } */
1355 1358 int tcpConnRemPort; /* In host byte order */
1356 1359 struct tcpConnEntryInfo_s {
1357 - /* seq # of next segment to send */
1360 + Counter64 ce_in_data_inorder_bytes;
1361 + Counter64 ce_in_data_inorder_segs;
1362 + Counter64 ce_in_data_unorder_bytes;
1363 + Counter64 ce_in_data_unorder_segs;
1364 + Counter64 ce_in_zwnd_probes;
1365 +
1366 + Counter64 ce_out_data_bytes;
1367 + Counter64 ce_out_data_segs;
1368 + Counter64 ce_out_retrans_bytes;
1369 + Counter64 ce_out_retrans_segs;
1370 + Counter64 ce_out_zwnd_probes;
1371 + Counter64 ce_rtt_sum;
1372 +
1373 + /* seq # of next segment to send */
1358 1374 Gauge ce_snxt;
1359 1375 /* seq # of of last segment unacknowledged */
1360 1376 Gauge ce_suna;
1361 - /* currect send window size */
1377 + /* current send window size */
1362 1378 Gauge ce_swnd;
1379 + /* current congestion window size */
1380 + Gauge ce_cwnd;
1363 1381 /* seq # of next expected segment */
1364 1382 Gauge ce_rnxt;
1365 1383 /* seq # of last ack'd segment */
1366 1384 Gauge ce_rack;
1367 - /* currenct receive window size */
1385 + /* # of unsent bytes in the xmit queue */
1386 + Gauge ce_unsent;
1387 + /* current receive window size */
1368 1388 Gauge ce_rwnd;
1369 - /* current rto (retransmit timeout) */
1389 + /* round-trip time smoothed average (us) */
1390 + Gauge ce_rtt_sa;
1391 + /* current rto (retransmit timeout) */
1370 1392 Gauge ce_rto;
1371 - /* current max segment size */
1393 + /* round-trip time count */
1394 + Gauge ce_rtt_cnt;
1395 + /* current max segment size */
1372 1396 Gauge ce_mss;
1373 1397 /* actual internal state */
1374 1398 int ce_state;
1375 - } tcpConnEntryInfo;
1399 + } tcpConnEntryInfo;
1376 1400
1377 1401 /* pid of the processes that created this connection */
1378 1402 uint32_t tcpConnCreationProcess;
1379 1403 /* system uptime when the connection was created */
1380 1404 uint64_t tcpConnCreationTime;
1381 1405 } mib2_tcpConnEntry_t;
1382 1406 #define MIB_FIRST_NEW_ELM_mib2_tcpConnEntry_t tcpConnCreationProcess
1383 1407
1384 1408 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1385 1409 #pragma pack()
1386 1410 #endif
1387 1411
1388 1412
1389 1413 /*
1390 1414 * The TCP/IPv6 connection table {tcp 14} contains information about this
1391 1415 * entity's existing TCP connections over IPv6.
1392 1416 */
1393 1417
1394 1418 /* Pack data to make struct size the same for 32- and 64-bits */
1395 1419 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1396 1420 #pragma pack(4)
1397 1421 #endif
1398 1422 typedef struct mib2_tcp6ConnEntry {
1399 1423 /* local ip addr for this connection { ipv6TcpConnEntry 1 } */
1400 1424 Ip6Address tcp6ConnLocalAddress;
↓ open down ↓ |
15 lines elided |
↑ open up ↑ |
1401 1425 /* local port for this connection { ipv6TcpConnEntry 2 } */
1402 1426 int tcp6ConnLocalPort;
1403 1427 /* remote ip addr for this connection { ipv6TcpConnEntry 3 } */
1404 1428 Ip6Address tcp6ConnRemAddress;
1405 1429 /* remote port for this connection { ipv6TcpConnEntry 4 } */
1406 1430 int tcp6ConnRemPort;
1407 1431 /* interface index or zero { ipv6TcpConnEntry 5 } */
1408 1432 DeviceIndex tcp6ConnIfIndex;
1409 1433 /* state of tcp6 connection { ipv6TcpConnEntry 6 } RW */
1410 1434 int tcp6ConnState;
1411 - struct tcp6ConnEntryInfo_s {
1412 - /* seq # of next segment to send */
1413 - Gauge ce_snxt;
1414 - /* seq # of of last segment unacknowledged */
1415 - Gauge ce_suna;
1416 - /* currect send window size */
1417 - Gauge ce_swnd;
1418 - /* seq # of next expected segment */
1419 - Gauge ce_rnxt;
1420 - /* seq # of last ack'd segment */
1421 - Gauge ce_rack;
1422 - /* currenct receive window size */
1423 - Gauge ce_rwnd;
1424 - /* current rto (retransmit timeout) */
1425 - Gauge ce_rto;
1426 - /* current max segment size */
1427 - Gauge ce_mss;
1428 - /* actual internal state */
1429 - int ce_state;
1430 - } tcp6ConnEntryInfo;
1435 + struct tcpConnEntryInfo_s tcp6ConnEntryInfo;
1431 1436
1432 1437 /* pid of the processes that created this connection */
1433 1438 uint32_t tcp6ConnCreationProcess;
1434 1439 /* system uptime when the connection was created */
1435 1440 uint64_t tcp6ConnCreationTime;
1436 1441 } mib2_tcp6ConnEntry_t;
1437 1442 #define MIB_FIRST_NEW_ELM_mib2_tcp6ConnEntry_t tcp6ConnCreationProcess
1438 1443
1439 1444 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1440 1445 #pragma pack()
1441 1446 #endif
1442 1447
1443 1448 /*
1444 1449 * the UDP group
1445 1450 */
1446 1451 #define MIB2_UDP_ENTRY 5 /* udpEntry */
1447 1452 #define MIB2_UDP6_ENTRY 6 /* udp6Entry */
1448 1453
1449 1454 /* Old name retained for compatibility */
1450 1455 #define MIB2_UDP_5 MIB2_UDP_ENTRY
1451 1456
1452 1457 /* Pack data to make struct size the same for 32- and 64-bits */
1453 1458 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1454 1459 #pragma pack(4)
1455 1460 #endif
1456 1461 typedef struct mib2_udp {
1457 1462 /* total # of UDP datagrams sent upstream { udp 1 } */
1458 1463 Counter udpInDatagrams;
1459 1464 /* in ip { udp 2 } */
1460 1465 /* # of recv'd dg's not deliverable (other) { udp 3 } */
1461 1466 Counter udpInErrors;
1462 1467 /* total # of dg's sent { udp 4 } */
1463 1468 Counter udpOutDatagrams;
1464 1469 /* { udp 5 } */
1465 1470 int udpEntrySize; /* Size of udpEntry_t */
1466 1471 int udp6EntrySize; /* Size of udp6Entry_t */
1467 1472 Counter udpOutErrors;
1468 1473
1469 1474 /*
1470 1475 * fields from RFC 4113
1471 1476 */
1472 1477
1473 1478 /* total # of UDP datagrams sent upstream { udp 8 } */
1474 1479 Counter64 udpHCInDatagrams;
1475 1480 /* total # of dg's sent { udp 9 } */
1476 1481 Counter64 udpHCOutDatagrams;
1477 1482 } mib2_udp_t;
1478 1483 #define MIB_FIRST_NEW_ELM_mib2_udp_t udpHCInDatagrams
1479 1484
1480 1485 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1481 1486 #pragma pack()
1482 1487 #endif
1483 1488
1484 1489 /*
1485 1490 * The UDP listener table contains information about this entity's UDP
1486 1491 * end-points on which a local application is currently accepting datagrams.
1487 1492 */
1488 1493
1489 1494 /* For both IPv4 and IPv6 ue_state: */
1490 1495 #define MIB2_UDP_unbound 1
1491 1496 #define MIB2_UDP_idle 2
1492 1497 #define MIB2_UDP_connected 3
1493 1498 #define MIB2_UDP_unknown 4
1494 1499
1495 1500 /* Pack data to make struct size the same for 32- and 64-bits */
1496 1501 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1497 1502 #pragma pack(4)
1498 1503 #endif
1499 1504 typedef struct mib2_udpEntry {
1500 1505 /* local ip addr of listener { udpEntry 1 } */
1501 1506 IpAddress udpLocalAddress;
1502 1507 /* local port of listener { udpEntry 2 } */
1503 1508 int udpLocalPort; /* In host byte order */
1504 1509 struct udpEntryInfo_s {
1505 1510 int ue_state;
1506 1511 IpAddress ue_RemoteAddress;
1507 1512 int ue_RemotePort; /* In host byte order */
1508 1513 } udpEntryInfo;
1509 1514
1510 1515 /*
1511 1516 * RFC 4113
1512 1517 */
1513 1518
1514 1519 /* Unique id for this 4-tuple { udpEndpointEntry 7 } */
1515 1520 uint32_t udpInstance;
1516 1521 /* pid of the processes that created this endpoint */
1517 1522 uint32_t udpCreationProcess;
1518 1523 /* system uptime when the endpoint was created */
1519 1524 uint64_t udpCreationTime;
1520 1525 } mib2_udpEntry_t;
1521 1526 #define MIB_FIRST_NEW_ELM_mib2_udpEntry_t udpInstance
1522 1527
1523 1528 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1524 1529 #pragma pack()
1525 1530 #endif
1526 1531
1527 1532 /*
1528 1533 * The UDP (for IPv6) listener table contains information about this
1529 1534 * entity's UDP end-points on which a local application is
1530 1535 * currently accepting datagrams.
1531 1536 */
1532 1537
1533 1538 /* Pack data to make struct size the same for 32- and 64-bits */
1534 1539 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1535 1540 #pragma pack(4)
1536 1541 #endif
1537 1542 typedef struct mib2_udp6Entry {
1538 1543 /* local ip addr of listener { ipv6UdpEntry 1 } */
1539 1544 Ip6Address udp6LocalAddress;
1540 1545 /* local port of listener { ipv6UdpEntry 2 } */
1541 1546 int udp6LocalPort; /* In host byte order */
1542 1547 /* interface index or zero { ipv6UdpEntry 3 } */
1543 1548 DeviceIndex udp6IfIndex;
1544 1549 struct udp6EntryInfo_s {
1545 1550 int ue_state;
1546 1551 Ip6Address ue_RemoteAddress;
1547 1552 int ue_RemotePort; /* In host byte order */
1548 1553 } udp6EntryInfo;
1549 1554
1550 1555 /*
1551 1556 * RFC 4113
1552 1557 */
1553 1558
1554 1559 /* Unique id for this 4-tuple { udpEndpointEntry 7 } */
1555 1560 uint32_t udp6Instance;
1556 1561 /* pid of the processes that created this endpoint */
1557 1562 uint32_t udp6CreationProcess;
1558 1563 /* system uptime when the endpoint was created */
1559 1564 uint64_t udp6CreationTime;
1560 1565 } mib2_udp6Entry_t;
1561 1566 #define MIB_FIRST_NEW_ELM_mib2_udp6Entry_t udp6Instance
1562 1567
1563 1568 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1564 1569 #pragma pack()
1565 1570 #endif
1566 1571
1567 1572 /*
1568 1573 * the RAWIP group
1569 1574 */
1570 1575 typedef struct mib2_rawip {
1571 1576 /* total # of RAWIP datagrams sent upstream */
1572 1577 Counter rawipInDatagrams;
1573 1578 /* # of RAWIP packets with bad IPV6_CHECKSUM checksums */
1574 1579 Counter rawipInCksumErrs;
1575 1580 /* # of recv'd dg's not deliverable (other) */
1576 1581 Counter rawipInErrors;
1577 1582 /* total # of dg's sent */
1578 1583 Counter rawipOutDatagrams;
1579 1584 /* total # of dg's not sent (e.g. no memory) */
1580 1585 Counter rawipOutErrors;
1581 1586 } mib2_rawip_t;
1582 1587
1583 1588 /* DVMRP group */
1584 1589 #define EXPER_DVMRP_VIF 1
1585 1590 #define EXPER_DVMRP_MRT 2
1586 1591
1587 1592
1588 1593 /*
1589 1594 * The SCTP group
1590 1595 */
1591 1596 #define MIB2_SCTP_CONN 15
1592 1597 #define MIB2_SCTP_CONN_LOCAL 16
1593 1598 #define MIB2_SCTP_CONN_REMOTE 17
1594 1599
1595 1600 #define MIB2_SCTP_closed 1
1596 1601 #define MIB2_SCTP_cookieWait 2
1597 1602 #define MIB2_SCTP_cookieEchoed 3
1598 1603 #define MIB2_SCTP_established 4
1599 1604 #define MIB2_SCTP_shutdownPending 5
1600 1605 #define MIB2_SCTP_shutdownSent 6
1601 1606 #define MIB2_SCTP_shutdownReceived 7
1602 1607 #define MIB2_SCTP_shutdownAckSent 8
1603 1608 #define MIB2_SCTP_deleteTCB 9
1604 1609 #define MIB2_SCTP_listen 10 /* Not in the MIB */
1605 1610
1606 1611 #define MIB2_SCTP_ACTIVE 1
1607 1612 #define MIB2_SCTP_INACTIVE 2
1608 1613
1609 1614 #define MIB2_SCTP_ADDR_V4 1
1610 1615 #define MIB2_SCTP_ADDR_V6 2
1611 1616
1612 1617 #define MIB2_SCTP_RTOALGO_OTHER 1
1613 1618 #define MIB2_SCTP_RTOALGO_VANJ 2
1614 1619
1615 1620 typedef struct mib2_sctpConnEntry {
1616 1621 /* connection identifier { sctpAssocEntry 1 } */
1617 1622 uint32_t sctpAssocId;
1618 1623 /* remote hostname (not used) { sctpAssocEntry 2 } */
1619 1624 Octet_t sctpAssocRemHostName;
1620 1625 /* local port number { sctpAssocEntry 3 } */
1621 1626 uint32_t sctpAssocLocalPort;
1622 1627 /* remote port number { sctpAssocEntry 4 } */
1623 1628 uint32_t sctpAssocRemPort;
1624 1629 /* type of primary remote addr { sctpAssocEntry 5 } */
1625 1630 int sctpAssocRemPrimAddrType;
1626 1631 /* primary remote address { sctpAssocEntry 6 } */
1627 1632 Ip6Address sctpAssocRemPrimAddr;
1628 1633 /* local address */
1629 1634 Ip6Address sctpAssocLocPrimAddr;
1630 1635 /* current heartbeat interval { sctpAssocEntry 7 } */
1631 1636 uint32_t sctpAssocHeartBeatInterval;
1632 1637 /* state of this association { sctpAssocEntry 8 } */
1633 1638 int sctpAssocState;
1634 1639 /* # of inbound streams { sctpAssocEntry 9 } */
1635 1640 uint32_t sctpAssocInStreams;
1636 1641 /* # of outbound streams { sctpAssocEntry 10 } */
1637 1642 uint32_t sctpAssocOutStreams;
1638 1643 /* max # of data retans { sctpAssocEntry 11 } */
1639 1644 uint32_t sctpAssocMaxRetr;
1640 1645 /* sysId for assoc owner { sctpAssocEntry 12 } */
1641 1646 uint32_t sctpAssocPrimProcess;
1642 1647 /* # of rxmit timeouts during hanshake */
1643 1648 Counter32 sctpAssocT1expired; /* { sctpAssocEntry 13 } */
1644 1649 /* # of rxmit timeouts during shutdown */
1645 1650 Counter32 sctpAssocT2expired; /* { sctpAssocEntry 14 } */
1646 1651 /* # of rxmit timeouts during data transfer */
1647 1652 Counter32 sctpAssocRtxChunks; /* { sctpAssocEntry 15 } */
1648 1653 /* assoc start-up time { sctpAssocEntry 16 } */
1649 1654 uint32_t sctpAssocStartTime;
1650 1655 struct sctpConnEntryInfo_s {
1651 1656 /* amount of data in send Q */
1652 1657 Gauge ce_sendq;
1653 1658 /* amount of data in recv Q */
1654 1659 Gauge ce_recvq;
1655 1660 /* currect send window size */
1656 1661 Gauge ce_swnd;
1657 1662 /* currenct receive window size */
1658 1663 Gauge ce_rwnd;
1659 1664 /* current max segment size */
1660 1665 Gauge ce_mss;
1661 1666 } sctpConnEntryInfo;
1662 1667 } mib2_sctpConnEntry_t;
1663 1668
1664 1669 typedef struct mib2_sctpConnLocalAddrEntry {
1665 1670 /* connection identifier */
1666 1671 uint32_t sctpAssocId;
1667 1672 /* type of local addr { sctpAssocLocalEntry 1 } */
1668 1673 int sctpAssocLocalAddrType;
1669 1674 /* local address { sctpAssocLocalEntry 2 } */
1670 1675 Ip6Address sctpAssocLocalAddr;
1671 1676 } mib2_sctpConnLocalEntry_t;
1672 1677
1673 1678 typedef struct mib2_sctpConnRemoteAddrEntry {
1674 1679 /* connection identier */
1675 1680 uint32_t sctpAssocId;
1676 1681 /* remote addr type { sctpAssocRemEntry 1 } */
1677 1682 int sctpAssocRemAddrType;
1678 1683 /* remote address { sctpAssocRemEntry 2 } */
1679 1684 Ip6Address sctpAssocRemAddr;
1680 1685 /* is the address active { sctpAssocRemEntry 3 } */
1681 1686 int sctpAssocRemAddrActive;
1682 1687 /* whether hearbeat is active { sctpAssocRemEntry 4 } */
1683 1688 int sctpAssocRemAddrHBActive;
1684 1689 /* current RTO { sctpAssocRemEntry 5 } */
1685 1690 uint32_t sctpAssocRemAddrRTO;
1686 1691 /* max # of rexmits before becoming inactive */
1687 1692 uint32_t sctpAssocRemAddrMaxPathRtx; /* {sctpAssocRemEntry 6} */
1688 1693 /* # of rexmits to this dest { sctpAssocRemEntry 7 } */
1689 1694 uint32_t sctpAssocRemAddrRtx;
1690 1695 } mib2_sctpConnRemoteEntry_t;
1691 1696
1692 1697
1693 1698
1694 1699 /* Pack data in mib2_sctp to make struct size the same for 32- and 64-bits */
1695 1700 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1696 1701 #pragma pack(4)
1697 1702 #endif
1698 1703
1699 1704 typedef struct mib2_sctp {
1700 1705 /* algorithm used to determine rto { sctpParams 1 } */
1701 1706 int sctpRtoAlgorithm;
1702 1707 /* min RTO in msecs { sctpParams 2 } */
1703 1708 uint32_t sctpRtoMin;
1704 1709 /* max RTO in msecs { sctpParams 3 } */
1705 1710 uint32_t sctpRtoMax;
1706 1711 /* initial RTO in msecs { sctpParams 4 } */
1707 1712 uint32_t sctpRtoInitial;
1708 1713 /* max # of assocs { sctpParams 5 } */
1709 1714 int32_t sctpMaxAssocs;
1710 1715 /* cookie lifetime in msecs { sctpParams 6 } */
1711 1716 uint32_t sctpValCookieLife;
1712 1717 /* max # of retrans in startup { sctpParams 7 } */
1713 1718 uint32_t sctpMaxInitRetr;
1714 1719 /* # of conns ESTABLISHED, SHUTDOWN-RECEIVED or SHUTDOWN-PENDING */
1715 1720 Counter32 sctpCurrEstab; /* { sctpStats 1 } */
1716 1721 /* # of active opens { sctpStats 2 } */
1717 1722 Counter32 sctpActiveEstab;
1718 1723 /* # of passive opens { sctpStats 3 } */
1719 1724 Counter32 sctpPassiveEstab;
1720 1725 /* # of aborted conns { sctpStats 4 } */
1721 1726 Counter32 sctpAborted;
1722 1727 /* # of graceful shutdowns { sctpStats 5 } */
1723 1728 Counter32 sctpShutdowns;
1724 1729 /* # of OOB packets { sctpStats 6 } */
1725 1730 Counter32 sctpOutOfBlue;
1726 1731 /* # of packets discarded due to cksum { sctpStats 7 } */
1727 1732 Counter32 sctpChecksumError;
1728 1733 /* # of control chunks sent { sctpStats 8 } */
1729 1734 Counter64 sctpOutCtrlChunks;
1730 1735 /* # of ordered data chunks sent { sctpStats 9 } */
1731 1736 Counter64 sctpOutOrderChunks;
1732 1737 /* # of unordered data chunks sent { sctpStats 10 } */
1733 1738 Counter64 sctpOutUnorderChunks;
1734 1739 /* # of retransmitted data chunks */
1735 1740 Counter64 sctpRetransChunks;
1736 1741 /* # of SACK chunks sent */
1737 1742 Counter sctpOutAck;
1738 1743 /* # of delayed ACK timeouts */
1739 1744 Counter sctpOutAckDelayed;
1740 1745 /* # of SACK chunks sent to update window */
1741 1746 Counter sctpOutWinUpdate;
1742 1747 /* # of fast retransmits */
1743 1748 Counter sctpOutFastRetrans;
1744 1749 /* # of window probes sent */
1745 1750 Counter sctpOutWinProbe;
1746 1751 /* # of control chunks received { sctpStats 11 } */
1747 1752 Counter64 sctpInCtrlChunks;
1748 1753 /* # of ordered data chunks rcvd { sctpStats 12 } */
1749 1754 Counter64 sctpInOrderChunks;
1750 1755 /* # of unord data chunks rcvd { sctpStats 13 } */
1751 1756 Counter64 sctpInUnorderChunks;
1752 1757 /* # of received SACK chunks */
1753 1758 Counter sctpInAck;
1754 1759 /* # of received SACK chunks with duplicate TSN */
1755 1760 Counter sctpInDupAck;
1756 1761 /* # of SACK chunks acking unsent data */
1757 1762 Counter sctpInAckUnsent;
1758 1763 /* # of Fragmented User Messages { sctpStats 14 } */
1759 1764 Counter64 sctpFragUsrMsgs;
1760 1765 /* # of Reassembled User Messages { sctpStats 15 } */
1761 1766 Counter64 sctpReasmUsrMsgs;
1762 1767 /* # of Sent SCTP Packets { sctpStats 16 } */
1763 1768 Counter64 sctpOutSCTPPkts;
1764 1769 /* # of Received SCTP Packets { sctpStats 17 } */
1765 1770 Counter64 sctpInSCTPPkts;
1766 1771 /* # of invalid cookies received */
1767 1772 Counter sctpInInvalidCookie;
1768 1773 /* total # of retransmit timeouts */
1769 1774 Counter sctpTimRetrans;
1770 1775 /* total # of retransmit timeouts dropping the connection */
1771 1776 Counter sctpTimRetransDrop;
1772 1777 /* total # of heartbeat probes */
1773 1778 Counter sctpTimHeartBeatProbe;
1774 1779 /* total # of heartbeat timeouts dropping the connection */
1775 1780 Counter sctpTimHeartBeatDrop;
1776 1781 /* total # of conns refused due to backlog full on listen */
1777 1782 Counter sctpListenDrop;
1778 1783 /* total # of pkts received after the association has closed */
1779 1784 Counter sctpInClosed;
1780 1785 int sctpEntrySize;
1781 1786 int sctpLocalEntrySize;
1782 1787 int sctpRemoteEntrySize;
1783 1788 } mib2_sctp_t;
1784 1789
1785 1790 #if _LONG_LONG_ALIGNMENT == 8 && _LONG_LONG_ALIGNMENT_32 == 4
1786 1791 #pragma pack()
1787 1792 #endif
1788 1793
1789 1794
1790 1795 #ifdef __cplusplus
1791 1796 }
1792 1797 #endif
1793 1798
1794 1799 #endif /* _INET_MIB2_H */
↓ open down ↓ |
354 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX