1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, Joyent Inc. All rights reserved. 25 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 27 * Copyright 2014, OmniTI Computer Consulting, Inc. All rights reserved. 28 */ 29 /* Copyright (c) 1990 Mentat Inc. */ 30 31 #include <sys/types.h> 32 #include <sys/stream.h> 33 #include <sys/strsun.h> 34 #include <sys/strsubr.h> 35 #include <sys/stropts.h> 36 #include <sys/strlog.h> 37 #define _SUN_TPI_VERSION 2 38 #include <sys/tihdr.h> 39 #include <sys/timod.h> 40 #include <sys/ddi.h> 41 #include <sys/sunddi.h> 42 #include <sys/suntpi.h> 43 #include <sys/xti_inet.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/sdt.h> 47 #include <sys/vtrace.h> 48 #include <sys/kmem.h> 49 #include <sys/ethernet.h> 50 #include <sys/cpuvar.h> 51 #include <sys/dlpi.h> 52 #include <sys/pattr.h> 53 #include <sys/policy.h> 54 #include <sys/priv.h> 55 #include <sys/zone.h> 56 #include <sys/sunldi.h> 57 58 #include <sys/errno.h> 59 #include <sys/signal.h> 60 #include <sys/socket.h> 61 #include <sys/socketvar.h> 62 #include <sys/sockio.h> 63 #include <sys/isa_defs.h> 64 #include <sys/md5.h> 65 #include <sys/random.h> 66 #include <sys/uio.h> 67 #include <sys/systm.h> 68 #include <netinet/in.h> 69 #include <netinet/tcp.h> 70 #include <netinet/ip6.h> 71 #include <netinet/icmp6.h> 72 #include <net/if.h> 73 #include <net/route.h> 74 #include <inet/ipsec_impl.h> 75 76 #include <inet/common.h> 77 #include <inet/ip.h> 78 #include <inet/ip_impl.h> 79 #include <inet/ip6.h> 80 #include <inet/ip_ndp.h> 81 #include <inet/proto_set.h> 82 #include <inet/mib2.h> 83 #include <inet/optcom.h> 84 #include <inet/snmpcom.h> 85 #include <inet/kstatcom.h> 86 #include <inet/tcp.h> 87 #include <inet/tcp_impl.h> 88 #include <inet/tcp_cluster.h> 89 #include <inet/udp_impl.h> 90 #include <net/pfkeyv2.h> 91 #include <inet/ipdrop.h> 92 93 #include <inet/ipclassifier.h> 94 #include <inet/ip_ire.h> 95 #include <inet/ip_ftable.h> 96 #include <inet/ip_if.h> 97 #include <inet/ipp_common.h> 98 #include <inet/ip_rts.h> 99 #include <inet/ip_netinfo.h> 100 #include <sys/squeue_impl.h> 101 #include <sys/squeue.h> 102 #include <sys/tsol/label.h> 103 #include <sys/tsol/tnet.h> 104 #include <rpc/pmap_prot.h> 105 #include <sys/callo.h> 106 107 /* 108 * TCP Notes: aka FireEngine Phase I (PSARC 2002/433) 109 * 110 * (Read the detailed design doc in PSARC case directory) 111 * 112 * The entire tcp state is contained in tcp_t and conn_t structure 113 * which are allocated in tandem using ipcl_conn_create() and passing 114 * IPCL_TCPCONN as a flag. We use 'conn_ref' and 'conn_lock' to protect 115 * the references on the tcp_t. The tcp_t structure is never compressed 116 * and packets always land on the correct TCP perimeter from the time 117 * eager is created till the time tcp_t dies (as such the old mentat 118 * TCP global queue is not used for detached state and no IPSEC checking 119 * is required). The global queue is still allocated to send out resets 120 * for connection which have no listeners and IP directly calls 121 * tcp_xmit_listeners_reset() which does any policy check. 122 * 123 * Protection and Synchronisation mechanism: 124 * 125 * The tcp data structure does not use any kind of lock for protecting 126 * its state but instead uses 'squeues' for mutual exclusion from various 127 * read and write side threads. To access a tcp member, the thread should 128 * always be behind squeue (via squeue_enter with flags as SQ_FILL, SQ_PROCESS, 129 * or SQ_NODRAIN). Since the squeues allow a direct function call, caller 130 * can pass any tcp function having prototype of edesc_t as argument 131 * (different from traditional STREAMs model where packets come in only 132 * designated entry points). The list of functions that can be directly 133 * called via squeue are listed before the usual function prototype. 134 * 135 * Referencing: 136 * 137 * TCP is MT-Hot and we use a reference based scheme to make sure that the 138 * tcp structure doesn't disappear when its needed. When the application 139 * creates an outgoing connection or accepts an incoming connection, we 140 * start out with 2 references on 'conn_ref'. One for TCP and one for IP. 141 * The IP reference is just a symbolic reference since ip_tcpclose() 142 * looks at tcp structure after tcp_close_output() returns which could 143 * have dropped the last TCP reference. So as long as the connection is 144 * in attached state i.e. !TCP_IS_DETACHED, we have 2 references on the 145 * conn_t. The classifier puts its own reference when the connection is 146 * inserted in listen or connected hash. Anytime a thread needs to enter 147 * the tcp connection perimeter, it retrieves the conn/tcp from q->ptr 148 * on write side or by doing a classify on read side and then puts a 149 * reference on the conn before doing squeue_enter/tryenter/fill. For 150 * read side, the classifier itself puts the reference under fanout lock 151 * to make sure that tcp can't disappear before it gets processed. The 152 * squeue will drop this reference automatically so the called function 153 * doesn't have to do a DEC_REF. 154 * 155 * Opening a new connection: 156 * 157 * The outgoing connection open is pretty simple. tcp_open() does the 158 * work in creating the conn/tcp structure and initializing it. The 159 * squeue assignment is done based on the CPU the application 160 * is running on. So for outbound connections, processing is always done 161 * on application CPU which might be different from the incoming CPU 162 * being interrupted by the NIC. An optimal way would be to figure out 163 * the NIC <-> CPU binding at listen time, and assign the outgoing 164 * connection to the squeue attached to the CPU that will be interrupted 165 * for incoming packets (we know the NIC based on the bind IP address). 166 * This might seem like a problem if more data is going out but the 167 * fact is that in most cases the transmit is ACK driven transmit where 168 * the outgoing data normally sits on TCP's xmit queue waiting to be 169 * transmitted. 170 * 171 * Accepting a connection: 172 * 173 * This is a more interesting case because of various races involved in 174 * establishing a eager in its own perimeter. Read the meta comment on 175 * top of tcp_input_listener(). But briefly, the squeue is picked by 176 * ip_fanout based on the ring or the sender (if loopback). 177 * 178 * Closing a connection: 179 * 180 * The close is fairly straight forward. tcp_close() calls tcp_close_output() 181 * via squeue to do the close and mark the tcp as detached if the connection 182 * was in state TCPS_ESTABLISHED or greater. In the later case, TCP keep its 183 * reference but tcp_close() drop IP's reference always. So if tcp was 184 * not killed, it is sitting in time_wait list with 2 reference - 1 for TCP 185 * and 1 because it is in classifier's connected hash. This is the condition 186 * we use to determine that its OK to clean up the tcp outside of squeue 187 * when time wait expires (check the ref under fanout and conn_lock and 188 * if it is 2, remove it from fanout hash and kill it). 189 * 190 * Although close just drops the necessary references and marks the 191 * tcp_detached state, tcp_close needs to know the tcp_detached has been 192 * set (under squeue) before letting the STREAM go away (because a 193 * inbound packet might attempt to go up the STREAM while the close 194 * has happened and tcp_detached is not set). So a special lock and 195 * flag is used along with a condition variable (tcp_closelock, tcp_closed, 196 * and tcp_closecv) to signal tcp_close that tcp_close_out() has marked 197 * tcp_detached. 198 * 199 * Special provisions and fast paths: 200 * 201 * We make special provisions for sockfs by marking tcp_issocket 202 * whenever we have only sockfs on top of TCP. This allows us to skip 203 * putting the tcp in acceptor hash since a sockfs listener can never 204 * become acceptor and also avoid allocating a tcp_t for acceptor STREAM 205 * since eager has already been allocated and the accept now happens 206 * on acceptor STREAM. There is a big blob of comment on top of 207 * tcp_input_listener explaining the new accept. When socket is POP'd, 208 * sockfs sends us an ioctl to mark the fact and we go back to old 209 * behaviour. Once tcp_issocket is unset, its never set for the 210 * life of that connection. 211 * 212 * IPsec notes : 213 * 214 * Since a packet is always executed on the correct TCP perimeter 215 * all IPsec processing is defered to IP including checking new 216 * connections and setting IPSEC policies for new connection. The 217 * only exception is tcp_xmit_listeners_reset() which is called 218 * directly from IP and needs to policy check to see if TH_RST 219 * can be sent out. 220 */ 221 222 /* 223 * Values for squeue switch: 224 * 1: SQ_NODRAIN 225 * 2: SQ_PROCESS 226 * 3: SQ_FILL 227 */ 228 int tcp_squeue_wput = 2; /* /etc/systems */ 229 int tcp_squeue_flag; 230 231 /* 232 * To prevent memory hog, limit the number of entries in tcp_free_list 233 * to 1% of available memory / number of cpus 234 */ 235 uint_t tcp_free_list_max_cnt = 0; 236 237 #define TIDUSZ 4096 /* transport interface data unit size */ 238 239 /* 240 * Size of acceptor hash list. It has to be a power of 2 for hashing. 241 */ 242 #define TCP_ACCEPTOR_FANOUT_SIZE 512 243 244 #ifdef _ILP32 245 #define TCP_ACCEPTOR_HASH(accid) \ 246 (((uint_t)(accid) >> 8) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 247 #else 248 #define TCP_ACCEPTOR_HASH(accid) \ 249 ((uint_t)(accid) & (TCP_ACCEPTOR_FANOUT_SIZE - 1)) 250 #endif /* _ILP32 */ 251 252 /* 253 * Minimum number of connections which can be created per listener. Used 254 * when the listener connection count is in effect. 255 */ 256 static uint32_t tcp_min_conn_listener = 2; 257 258 uint32_t tcp_early_abort = 30; 259 260 /* TCP Timer control structure */ 261 typedef struct tcpt_s { 262 pfv_t tcpt_pfv; /* The routine we are to call */ 263 tcp_t *tcpt_tcp; /* The parameter we are to pass in */ 264 } tcpt_t; 265 266 /* 267 * Functions called directly via squeue having a prototype of edesc_t. 268 */ 269 void tcp_input_data(void *arg, mblk_t *mp, void *arg2, 270 ip_recv_attr_t *ira); 271 static void tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, 272 ip_recv_attr_t *dummy); 273 274 275 /* Prototype for TCP functions */ 276 static void tcp_random_init(void); 277 int tcp_random(void); 278 static int tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, 279 in_port_t dstport, uint_t srcid); 280 static int tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, 281 in_port_t dstport, uint32_t flowinfo, 282 uint_t srcid, uint32_t scope_id); 283 static void tcp_iss_init(tcp_t *tcp); 284 static void tcp_reinit(tcp_t *tcp); 285 static void tcp_reinit_values(tcp_t *tcp); 286 287 static int tcp_wsrv(queue_t *q); 288 static void tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa); 289 static void tcp_update_zcopy(tcp_t *tcp); 290 static void tcp_notify(void *, ip_xmit_attr_t *, ixa_notify_type_t, 291 ixa_notify_arg_t); 292 static void *tcp_stack_init(netstackid_t stackid, netstack_t *ns); 293 static void tcp_stack_fini(netstackid_t stackid, void *arg); 294 295 static int tcp_squeue_switch(int); 296 297 static int tcp_open(queue_t *, dev_t *, int, int, cred_t *, boolean_t); 298 static int tcp_openv4(queue_t *, dev_t *, int, int, cred_t *); 299 static int tcp_openv6(queue_t *, dev_t *, int, int, cred_t *); 300 301 static void tcp_squeue_add(squeue_t *); 302 303 struct module_info tcp_rinfo = { 304 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, TCP_RECV_HIWATER, TCP_RECV_LOWATER 305 }; 306 307 static struct module_info tcp_winfo = { 308 TCP_MOD_ID, TCP_MOD_NAME, 0, INFPSZ, 127, 16 309 }; 310 311 /* 312 * Entry points for TCP as a device. The normal case which supports 313 * the TCP functionality. 314 * We have separate open functions for the /dev/tcp and /dev/tcp6 devices. 315 */ 316 struct qinit tcp_rinitv4 = { 317 NULL, tcp_rsrv, tcp_openv4, tcp_tpi_close, NULL, &tcp_rinfo 318 }; 319 320 struct qinit tcp_rinitv6 = { 321 NULL, tcp_rsrv, tcp_openv6, tcp_tpi_close, NULL, &tcp_rinfo 322 }; 323 324 struct qinit tcp_winit = { 325 tcp_wput, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 326 }; 327 328 /* Initial entry point for TCP in socket mode. */ 329 struct qinit tcp_sock_winit = { 330 tcp_wput_sock, tcp_wsrv, NULL, NULL, NULL, &tcp_winfo 331 }; 332 333 /* TCP entry point during fallback */ 334 struct qinit tcp_fallback_sock_winit = { 335 tcp_wput_fallback, NULL, NULL, NULL, NULL, &tcp_winfo 336 }; 337 338 /* 339 * Entry points for TCP as a acceptor STREAM opened by sockfs when doing 340 * an accept. Avoid allocating data structures since eager has already 341 * been created. 342 */ 343 struct qinit tcp_acceptor_rinit = { 344 NULL, tcp_rsrv, NULL, tcp_tpi_close_accept, NULL, &tcp_winfo 345 }; 346 347 struct qinit tcp_acceptor_winit = { 348 tcp_tpi_accept, NULL, NULL, NULL, NULL, &tcp_winfo 349 }; 350 351 /* For AF_INET aka /dev/tcp */ 352 struct streamtab tcpinfov4 = { 353 &tcp_rinitv4, &tcp_winit 354 }; 355 356 /* For AF_INET6 aka /dev/tcp6 */ 357 struct streamtab tcpinfov6 = { 358 &tcp_rinitv6, &tcp_winit 359 }; 360 361 /* 362 * Following assumes TPI alignment requirements stay along 32 bit 363 * boundaries 364 */ 365 #define ROUNDUP32(x) \ 366 (((x) + (sizeof (int32_t) - 1)) & ~(sizeof (int32_t) - 1)) 367 368 /* Template for response to info request. */ 369 struct T_info_ack tcp_g_t_info_ack = { 370 T_INFO_ACK, /* PRIM_type */ 371 0, /* TSDU_size */ 372 T_INFINITE, /* ETSDU_size */ 373 T_INVALID, /* CDATA_size */ 374 T_INVALID, /* DDATA_size */ 375 sizeof (sin_t), /* ADDR_size */ 376 0, /* OPT_size - not initialized here */ 377 TIDUSZ, /* TIDU_size */ 378 T_COTS_ORD, /* SERV_type */ 379 TCPS_IDLE, /* CURRENT_state */ 380 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 381 }; 382 383 struct T_info_ack tcp_g_t_info_ack_v6 = { 384 T_INFO_ACK, /* PRIM_type */ 385 0, /* TSDU_size */ 386 T_INFINITE, /* ETSDU_size */ 387 T_INVALID, /* CDATA_size */ 388 T_INVALID, /* DDATA_size */ 389 sizeof (sin6_t), /* ADDR_size */ 390 0, /* OPT_size - not initialized here */ 391 TIDUSZ, /* TIDU_size */ 392 T_COTS_ORD, /* SERV_type */ 393 TCPS_IDLE, /* CURRENT_state */ 394 (XPG4_1|EXPINLINE) /* PROVIDER_flag */ 395 }; 396 397 /* 398 * TCP tunables related declarations. Definitions are in tcp_tunables.c 399 */ 400 extern mod_prop_info_t tcp_propinfo_tbl[]; 401 extern int tcp_propinfo_count; 402 403 #define IS_VMLOANED_MBLK(mp) \ 404 (((mp)->b_datap->db_struioflag & STRUIO_ZC) != 0) 405 406 uint32_t do_tcpzcopy = 1; /* 0: disable, 1: enable, 2: force */ 407 408 /* 409 * Forces all connections to obey the value of the tcps_maxpsz_multiplier 410 * tunable settable via NDD. Otherwise, the per-connection behavior is 411 * determined dynamically during tcp_set_destination(), which is the default. 412 */ 413 boolean_t tcp_static_maxpsz = B_FALSE; 414 415 /* 416 * If the receive buffer size is changed, this function is called to update 417 * the upper socket layer on the new delayed receive wake up threshold. 418 */ 419 static void 420 tcp_set_recv_threshold(tcp_t *tcp, uint32_t new_rcvthresh) 421 { 422 uint32_t default_threshold = SOCKET_RECVHIWATER >> 3; 423 424 if (IPCL_IS_NONSTR(tcp->tcp_connp)) { 425 conn_t *connp = tcp->tcp_connp; 426 struct sock_proto_props sopp; 427 428 /* 429 * only increase rcvthresh upto default_threshold 430 */ 431 if (new_rcvthresh > default_threshold) 432 new_rcvthresh = default_threshold; 433 434 sopp.sopp_flags = SOCKOPT_RCVTHRESH; 435 sopp.sopp_rcvthresh = new_rcvthresh; 436 437 (*connp->conn_upcalls->su_set_proto_props) 438 (connp->conn_upper_handle, &sopp); 439 } 440 } 441 442 /* 443 * Figure out the value of window scale opton. Note that the rwnd is 444 * ASSUMED to be rounded up to the nearest MSS before the calculation. 445 * We cannot find the scale value and then do a round up of tcp_rwnd 446 * because the scale value may not be correct after that. 447 * 448 * Set the compiler flag to make this function inline. 449 */ 450 void 451 tcp_set_ws_value(tcp_t *tcp) 452 { 453 int i; 454 uint32_t rwnd = tcp->tcp_rwnd; 455 456 for (i = 0; rwnd > TCP_MAXWIN && i < TCP_MAX_WINSHIFT; 457 i++, rwnd >>= 1) 458 ; 459 tcp->tcp_rcv_ws = i; 460 } 461 462 /* 463 * Remove cached/latched IPsec references. 464 */ 465 void 466 tcp_ipsec_cleanup(tcp_t *tcp) 467 { 468 conn_t *connp = tcp->tcp_connp; 469 470 ASSERT(connp->conn_flags & IPCL_TCPCONN); 471 472 if (connp->conn_latch != NULL) { 473 IPLATCH_REFRELE(connp->conn_latch); 474 connp->conn_latch = NULL; 475 } 476 if (connp->conn_latch_in_policy != NULL) { 477 IPPOL_REFRELE(connp->conn_latch_in_policy); 478 connp->conn_latch_in_policy = NULL; 479 } 480 if (connp->conn_latch_in_action != NULL) { 481 IPACT_REFRELE(connp->conn_latch_in_action); 482 connp->conn_latch_in_action = NULL; 483 } 484 if (connp->conn_policy != NULL) { 485 IPPH_REFRELE(connp->conn_policy, connp->conn_netstack); 486 connp->conn_policy = NULL; 487 } 488 } 489 490 /* 491 * Cleaup before placing on free list. 492 * Disassociate from the netstack/tcp_stack_t since the freelist 493 * is per squeue and not per netstack. 494 */ 495 void 496 tcp_cleanup(tcp_t *tcp) 497 { 498 mblk_t *mp; 499 conn_t *connp = tcp->tcp_connp; 500 tcp_stack_t *tcps = tcp->tcp_tcps; 501 netstack_t *ns = tcps->tcps_netstack; 502 mblk_t *tcp_rsrv_mp; 503 504 tcp_bind_hash_remove(tcp); 505 506 /* Cleanup that which needs the netstack first */ 507 tcp_ipsec_cleanup(tcp); 508 ixa_cleanup(connp->conn_ixa); 509 510 if (connp->conn_ht_iphc != NULL) { 511 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 512 connp->conn_ht_iphc = NULL; 513 connp->conn_ht_iphc_allocated = 0; 514 connp->conn_ht_iphc_len = 0; 515 connp->conn_ht_ulp = NULL; 516 connp->conn_ht_ulp_len = 0; 517 tcp->tcp_ipha = NULL; 518 tcp->tcp_ip6h = NULL; 519 tcp->tcp_tcpha = NULL; 520 } 521 522 /* We clear any IP_OPTIONS and extension headers */ 523 ip_pkt_free(&connp->conn_xmit_ipp); 524 525 tcp_free(tcp); 526 527 /* 528 * Since we will bzero the entire structure, we need to 529 * remove it and reinsert it in global hash list. We 530 * know the walkers can't get to this conn because we 531 * had set CONDEMNED flag earlier and checked reference 532 * under conn_lock so walker won't pick it and when we 533 * go the ipcl_globalhash_remove() below, no walker 534 * can get to it. 535 */ 536 ipcl_globalhash_remove(connp); 537 538 /* Save some state */ 539 mp = tcp->tcp_timercache; 540 541 tcp_rsrv_mp = tcp->tcp_rsrv_mp; 542 543 if (connp->conn_cred != NULL) { 544 crfree(connp->conn_cred); 545 connp->conn_cred = NULL; 546 } 547 ipcl_conn_cleanup(connp); 548 connp->conn_flags = IPCL_TCPCONN; 549 550 /* 551 * Now it is safe to decrement the reference counts. 552 * This might be the last reference on the netstack 553 * in which case it will cause the freeing of the IP Instance. 554 */ 555 connp->conn_netstack = NULL; 556 connp->conn_ixa->ixa_ipst = NULL; 557 netstack_rele(ns); 558 ASSERT(tcps != NULL); 559 tcp->tcp_tcps = NULL; 560 561 bzero(tcp, sizeof (tcp_t)); 562 563 /* restore the state */ 564 tcp->tcp_timercache = mp; 565 566 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 567 568 tcp->tcp_connp = connp; 569 570 ASSERT(connp->conn_tcp == tcp); 571 ASSERT(connp->conn_flags & IPCL_TCPCONN); 572 connp->conn_state_flags = CONN_INCIPIENT; 573 ASSERT(connp->conn_proto == IPPROTO_TCP); 574 ASSERT(connp->conn_ref == 1); 575 } 576 577 /* 578 * Adapt to the information, such as rtt and rtt_sd, provided from the 579 * DCE and IRE maintained by IP. 580 * 581 * Checks for multicast and broadcast destination address. 582 * Returns zero if ok; an errno on failure. 583 * 584 * Note that the MSS calculation here is based on the info given in 585 * the DCE and IRE. We do not do any calculation based on TCP options. They 586 * will be handled in tcp_input_data() when TCP knows which options to use. 587 * 588 * Note on how TCP gets its parameters for a connection. 589 * 590 * When a tcp_t structure is allocated, it gets all the default parameters. 591 * In tcp_set_destination(), it gets those metric parameters, like rtt, rtt_sd, 592 * spipe, rpipe, ... from the route metrics. Route metric overrides the 593 * default. 594 * 595 * An incoming SYN with a multicast or broadcast destination address is dropped 596 * in ip_fanout_v4/v6. 597 * 598 * An incoming SYN with a multicast or broadcast source address is always 599 * dropped in tcp_set_destination, since IPDF_ALLOW_MCBC is not set in 600 * conn_connect. 601 * The same logic in tcp_set_destination also serves to 602 * reject an attempt to connect to a broadcast or multicast (destination) 603 * address. 604 */ 605 int 606 tcp_set_destination(tcp_t *tcp) 607 { 608 uint32_t mss_max; 609 uint32_t mss; 610 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 611 conn_t *connp = tcp->tcp_connp; 612 tcp_stack_t *tcps = tcp->tcp_tcps; 613 iulp_t uinfo; 614 int error; 615 uint32_t flags; 616 617 flags = IPDF_LSO | IPDF_ZCOPY; 618 /* 619 * Make sure we have a dce for the destination to avoid dce_ident 620 * contention for connected sockets. 621 */ 622 flags |= IPDF_UNIQUE_DCE; 623 624 if (!tcps->tcps_ignore_path_mtu) 625 connp->conn_ixa->ixa_flags |= IXAF_PMTU_DISCOVERY; 626 627 /* Use conn_lock to satify ASSERT; tcp is already serialized */ 628 mutex_enter(&connp->conn_lock); 629 error = conn_connect(connp, &uinfo, flags); 630 mutex_exit(&connp->conn_lock); 631 if (error != 0) 632 return (error); 633 634 error = tcp_build_hdrs(tcp); 635 if (error != 0) 636 return (error); 637 638 tcp->tcp_localnet = uinfo.iulp_localnet; 639 640 if (uinfo.iulp_rtt != 0) { 641 tcp->tcp_rtt_sa = MSEC2NSEC(uinfo.iulp_rtt); 642 tcp->tcp_rtt_sd = MSEC2NSEC(uinfo.iulp_rtt_sd); 643 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 0); 644 } 645 if (uinfo.iulp_ssthresh != 0) 646 tcp->tcp_cwnd_ssthresh = uinfo.iulp_ssthresh; 647 else 648 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 649 if (uinfo.iulp_spipe > 0) { 650 connp->conn_sndbuf = MIN(uinfo.iulp_spipe, 651 tcps->tcps_max_buf); 652 if (tcps->tcps_snd_lowat_fraction != 0) { 653 connp->conn_sndlowat = connp->conn_sndbuf / 654 tcps->tcps_snd_lowat_fraction; 655 } 656 (void) tcp_maxpsz_set(tcp, B_TRUE); 657 } 658 /* 659 * Note that up till now, acceptor always inherits receive 660 * window from the listener. But if there is a metrics 661 * associated with a host, we should use that instead of 662 * inheriting it from listener. Thus we need to pass this 663 * info back to the caller. 664 */ 665 if (uinfo.iulp_rpipe > 0) { 666 tcp->tcp_rwnd = MIN(uinfo.iulp_rpipe, 667 tcps->tcps_max_buf); 668 } 669 670 if (uinfo.iulp_rtomax > 0) { 671 tcp->tcp_second_timer_threshold = 672 uinfo.iulp_rtomax; 673 } 674 675 /* 676 * Use the metric option settings, iulp_tstamp_ok and 677 * iulp_wscale_ok, only for active open. What this means 678 * is that if the other side uses timestamp or window 679 * scale option, TCP will also use those options. That 680 * is for passive open. If the application sets a 681 * large window, window scale is enabled regardless of 682 * the value in iulp_wscale_ok. This is the behavior 683 * since 2.6. So we keep it. 684 * The only case left in passive open processing is the 685 * check for SACK. 686 * For ECN, it should probably be like SACK. But the 687 * current value is binary, so we treat it like the other 688 * cases. The metric only controls active open.For passive 689 * open, the ndd param, tcp_ecn_permitted, controls the 690 * behavior. 691 */ 692 if (!tcp_detached) { 693 /* 694 * The if check means that the following can only 695 * be turned on by the metrics only IRE, but not off. 696 */ 697 if (uinfo.iulp_tstamp_ok) 698 tcp->tcp_snd_ts_ok = B_TRUE; 699 if (uinfo.iulp_wscale_ok) 700 tcp->tcp_snd_ws_ok = B_TRUE; 701 if (uinfo.iulp_sack == 2) 702 tcp->tcp_snd_sack_ok = B_TRUE; 703 if (uinfo.iulp_ecn_ok) 704 tcp->tcp_ecn_ok = B_TRUE; 705 } else { 706 /* 707 * Passive open. 708 * 709 * As above, the if check means that SACK can only be 710 * turned on by the metric only IRE. 711 */ 712 if (uinfo.iulp_sack > 0) { 713 tcp->tcp_snd_sack_ok = B_TRUE; 714 } 715 } 716 717 /* 718 * XXX Note that currently, iulp_mtu can be as small as 68 719 * because of PMTUd. So tcp_mss may go to negative if combined 720 * length of all those options exceeds 28 bytes. But because 721 * of the tcp_mss_min check below, we may not have a problem if 722 * tcp_mss_min is of a reasonable value. The default is 1 so 723 * the negative problem still exists. And the check defeats PMTUd. 724 * In fact, if PMTUd finds that the MSS should be smaller than 725 * tcp_mss_min, TCP should turn off PMUTd and use the tcp_mss_min 726 * value. 727 * 728 * We do not deal with that now. All those problems related to 729 * PMTUd will be fixed later. 730 */ 731 ASSERT(uinfo.iulp_mtu != 0); 732 mss = tcp->tcp_initial_pmtu = uinfo.iulp_mtu; 733 734 /* Sanity check for MSS value. */ 735 if (connp->conn_ipversion == IPV4_VERSION) 736 mss_max = tcps->tcps_mss_max_ipv4; 737 else 738 mss_max = tcps->tcps_mss_max_ipv6; 739 740 if (tcp->tcp_ipsec_overhead == 0) 741 tcp->tcp_ipsec_overhead = conn_ipsec_length(connp); 742 743 mss -= tcp->tcp_ipsec_overhead; 744 745 if (mss < tcps->tcps_mss_min) 746 mss = tcps->tcps_mss_min; 747 if (mss > mss_max) 748 mss = mss_max; 749 750 /* Note that this is the maximum MSS, excluding all options. */ 751 tcp->tcp_mss = mss; 752 753 /* 754 * Update the tcp connection with LSO capability. 755 */ 756 tcp_update_lso(tcp, connp->conn_ixa); 757 758 /* 759 * Initialize the ISS here now that we have the full connection ID. 760 * The RFC 1948 method of initial sequence number generation requires 761 * knowledge of the full connection ID before setting the ISS. 762 */ 763 tcp_iss_init(tcp); 764 765 tcp->tcp_loopback = (uinfo.iulp_loopback | uinfo.iulp_local); 766 767 /* 768 * Make sure that conn is not marked incipient 769 * for incoming connections. A blind 770 * removal of incipient flag is cheaper than 771 * check and removal. 772 */ 773 mutex_enter(&connp->conn_lock); 774 connp->conn_state_flags &= ~CONN_INCIPIENT; 775 mutex_exit(&connp->conn_lock); 776 return (0); 777 } 778 779 /* 780 * tcp_clean_death / tcp_close_detached must not be called more than once 781 * on a tcp. Thus every function that potentially calls tcp_clean_death 782 * must check for the tcp state before calling tcp_clean_death. 783 * Eg. tcp_input_data, tcp_eager_kill, tcp_clean_death_wrapper, 784 * tcp_timer_handler, all check for the tcp state. 785 */ 786 /* ARGSUSED */ 787 void 788 tcp_clean_death_wrapper(void *arg, mblk_t *mp, void *arg2, 789 ip_recv_attr_t *dummy) 790 { 791 tcp_t *tcp = ((conn_t *)arg)->conn_tcp; 792 793 freemsg(mp); 794 if (tcp->tcp_state > TCPS_BOUND) 795 (void) tcp_clean_death(((conn_t *)arg)->conn_tcp, ETIMEDOUT); 796 } 797 798 /* 799 * We are dying for some reason. Try to do it gracefully. (May be called 800 * as writer.) 801 * 802 * Return -1 if the structure was not cleaned up (if the cleanup had to be 803 * done by a service procedure). 804 * TBD - Should the return value distinguish between the tcp_t being 805 * freed and it being reinitialized? 806 */ 807 int 808 tcp_clean_death(tcp_t *tcp, int err) 809 { 810 mblk_t *mp; 811 queue_t *q; 812 conn_t *connp = tcp->tcp_connp; 813 tcp_stack_t *tcps = tcp->tcp_tcps; 814 815 if (tcp->tcp_fused) 816 tcp_unfuse(tcp); 817 818 if (tcp->tcp_linger_tid != 0 && 819 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 820 tcp_stop_lingering(tcp); 821 } 822 823 ASSERT(tcp != NULL); 824 ASSERT((connp->conn_family == AF_INET && 825 connp->conn_ipversion == IPV4_VERSION) || 826 (connp->conn_family == AF_INET6 && 827 (connp->conn_ipversion == IPV4_VERSION || 828 connp->conn_ipversion == IPV6_VERSION))); 829 830 if (TCP_IS_DETACHED(tcp)) { 831 if (tcp->tcp_hard_binding) { 832 /* 833 * Its an eager that we are dealing with. We close the 834 * eager but in case a conn_ind has already gone to the 835 * listener, let tcp_accept_finish() send a discon_ind 836 * to the listener and drop the last reference. If the 837 * listener doesn't even know about the eager i.e. the 838 * conn_ind hasn't gone up, blow away the eager and drop 839 * the last reference as well. If the conn_ind has gone 840 * up, state should be BOUND. tcp_accept_finish 841 * will figure out that the connection has received a 842 * RST and will send a DISCON_IND to the application. 843 */ 844 tcp_closei_local(tcp); 845 if (!tcp->tcp_tconnind_started) { 846 CONN_DEC_REF(connp); 847 } else { 848 tcp->tcp_state = TCPS_BOUND; 849 DTRACE_TCP6(state__change, void, NULL, 850 ip_xmit_attr_t *, connp->conn_ixa, 851 void, NULL, tcp_t *, tcp, void, NULL, 852 int32_t, TCPS_CLOSED); 853 } 854 } else { 855 tcp_close_detached(tcp); 856 } 857 return (0); 858 } 859 860 TCP_STAT(tcps, tcp_clean_death_nondetached); 861 862 /* 863 * The connection is dead. Decrement listener connection counter if 864 * necessary. 865 */ 866 if (tcp->tcp_listen_cnt != NULL) 867 TCP_DECR_LISTEN_CNT(tcp); 868 869 /* 870 * When a connection is moved to TIME_WAIT state, the connection 871 * counter is already decremented. So no need to decrement here 872 * again. See SET_TIME_WAIT() macro. 873 */ 874 if (tcp->tcp_state >= TCPS_ESTABLISHED && 875 tcp->tcp_state < TCPS_TIME_WAIT) { 876 TCPS_CONN_DEC(tcps); 877 } 878 879 q = connp->conn_rq; 880 881 /* Trash all inbound data */ 882 if (!IPCL_IS_NONSTR(connp)) { 883 ASSERT(q != NULL); 884 flushq(q, FLUSHALL); 885 } 886 887 /* 888 * If we are at least part way open and there is error 889 * (err==0 implies no error) 890 * notify our client by a T_DISCON_IND. 891 */ 892 if ((tcp->tcp_state >= TCPS_SYN_SENT) && err) { 893 if (tcp->tcp_state >= TCPS_ESTABLISHED && 894 !TCP_IS_SOCKET(tcp)) { 895 /* 896 * Send M_FLUSH according to TPI. Because sockets will 897 * (and must) ignore FLUSHR we do that only for TPI 898 * endpoints and sockets in STREAMS mode. 899 */ 900 (void) putnextctl1(q, M_FLUSH, FLUSHR); 901 } 902 if (connp->conn_debug) { 903 (void) strlog(TCP_MOD_ID, 0, 1, SL_TRACE|SL_ERROR, 904 "tcp_clean_death: discon err %d", err); 905 } 906 if (IPCL_IS_NONSTR(connp)) { 907 /* Direct socket, use upcall */ 908 (*connp->conn_upcalls->su_disconnected)( 909 connp->conn_upper_handle, tcp->tcp_connid, err); 910 } else { 911 mp = mi_tpi_discon_ind(NULL, err, 0); 912 if (mp != NULL) { 913 putnext(q, mp); 914 } else { 915 if (connp->conn_debug) { 916 (void) strlog(TCP_MOD_ID, 0, 1, 917 SL_ERROR|SL_TRACE, 918 "tcp_clean_death, sending M_ERROR"); 919 } 920 (void) putnextctl1(q, M_ERROR, EPROTO); 921 } 922 } 923 if (tcp->tcp_state <= TCPS_SYN_RCVD) { 924 /* SYN_SENT or SYN_RCVD */ 925 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 926 } else if (tcp->tcp_state <= TCPS_CLOSE_WAIT) { 927 /* ESTABLISHED or CLOSE_WAIT */ 928 TCPS_BUMP_MIB(tcps, tcpEstabResets); 929 } 930 } 931 932 /* 933 * ESTABLISHED non-STREAMS eagers are not 'detached' because 934 * an upper handle is obtained when the SYN-ACK comes in. So it 935 * should receive the 'disconnected' upcall, but tcp_reinit should 936 * not be called since this is an eager. 937 */ 938 if (tcp->tcp_listener != NULL && IPCL_IS_NONSTR(connp)) { 939 tcp_closei_local(tcp); 940 tcp->tcp_state = TCPS_BOUND; 941 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 942 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 943 int32_t, TCPS_CLOSED); 944 return (0); 945 } 946 947 tcp_reinit(tcp); 948 if (IPCL_IS_NONSTR(connp)) 949 (void) tcp_do_unbind(connp); 950 951 return (-1); 952 } 953 954 /* 955 * In case tcp is in the "lingering state" and waits for the SO_LINGER timeout 956 * to expire, stop the wait and finish the close. 957 */ 958 void 959 tcp_stop_lingering(tcp_t *tcp) 960 { 961 clock_t delta = 0; 962 tcp_stack_t *tcps = tcp->tcp_tcps; 963 conn_t *connp = tcp->tcp_connp; 964 965 tcp->tcp_linger_tid = 0; 966 if (tcp->tcp_state > TCPS_LISTEN) { 967 tcp_acceptor_hash_remove(tcp); 968 mutex_enter(&tcp->tcp_non_sq_lock); 969 if (tcp->tcp_flow_stopped) { 970 tcp_clrqfull(tcp); 971 } 972 mutex_exit(&tcp->tcp_non_sq_lock); 973 974 if (tcp->tcp_timer_tid != 0) { 975 delta = TCP_TIMER_CANCEL(tcp, tcp->tcp_timer_tid); 976 tcp->tcp_timer_tid = 0; 977 } 978 /* 979 * Need to cancel those timers which will not be used when 980 * TCP is detached. This has to be done before the conn_wq 981 * is cleared. 982 */ 983 tcp_timers_stop(tcp); 984 985 tcp->tcp_detached = B_TRUE; 986 connp->conn_rq = NULL; 987 connp->conn_wq = NULL; 988 989 if (tcp->tcp_state == TCPS_TIME_WAIT) { 990 tcp_time_wait_append(tcp); 991 TCP_DBGSTAT(tcps, tcp_detach_time_wait); 992 goto finish; 993 } 994 995 /* 996 * If delta is zero the timer event wasn't executed and was 997 * successfully canceled. In this case we need to restart it 998 * with the minimal delta possible. 999 */ 1000 if (delta >= 0) { 1001 tcp->tcp_timer_tid = TCP_TIMER(tcp, tcp_timer, 1002 delta ? delta : 1); 1003 } 1004 } else { 1005 tcp_closei_local(tcp); 1006 CONN_DEC_REF(connp); 1007 } 1008 finish: 1009 tcp->tcp_detached = B_TRUE; 1010 connp->conn_rq = NULL; 1011 connp->conn_wq = NULL; 1012 1013 /* Signal closing thread that it can complete close */ 1014 mutex_enter(&tcp->tcp_closelock); 1015 tcp->tcp_closed = 1; 1016 cv_signal(&tcp->tcp_closecv); 1017 mutex_exit(&tcp->tcp_closelock); 1018 1019 /* If we have an upper handle (socket), release it */ 1020 if (IPCL_IS_NONSTR(connp)) { 1021 ASSERT(connp->conn_upper_handle != NULL); 1022 (*connp->conn_upcalls->su_closed)(connp->conn_upper_handle); 1023 connp->conn_upper_handle = NULL; 1024 connp->conn_upcalls = NULL; 1025 } 1026 } 1027 1028 void 1029 tcp_close_common(conn_t *connp, int flags) 1030 { 1031 tcp_t *tcp = connp->conn_tcp; 1032 mblk_t *mp = &tcp->tcp_closemp; 1033 boolean_t conn_ioctl_cleanup_reqd = B_FALSE; 1034 mblk_t *bp; 1035 1036 ASSERT(connp->conn_ref >= 2); 1037 1038 /* 1039 * Mark the conn as closing. ipsq_pending_mp_add will not 1040 * add any mp to the pending mp list, after this conn has 1041 * started closing. 1042 */ 1043 mutex_enter(&connp->conn_lock); 1044 connp->conn_state_flags |= CONN_CLOSING; 1045 if (connp->conn_oper_pending_ill != NULL) 1046 conn_ioctl_cleanup_reqd = B_TRUE; 1047 CONN_INC_REF_LOCKED(connp); 1048 mutex_exit(&connp->conn_lock); 1049 tcp->tcp_closeflags = (uint8_t)flags; 1050 ASSERT(connp->conn_ref >= 3); 1051 1052 /* 1053 * tcp_closemp_used is used below without any protection of a lock 1054 * as we don't expect any one else to use it concurrently at this 1055 * point otherwise it would be a major defect. 1056 */ 1057 1058 if (mp->b_prev == NULL) 1059 tcp->tcp_closemp_used = B_TRUE; 1060 else 1061 cmn_err(CE_PANIC, "tcp_close: concurrent use of tcp_closemp: " 1062 "connp %p tcp %p\n", (void *)connp, (void *)tcp); 1063 1064 TCP_DEBUG_GETPCSTACK(tcp->tcmp_stk, 15); 1065 1066 /* 1067 * Cleanup any queued ioctls here. This must be done before the wq/rq 1068 * are re-written by tcp_close_output(). 1069 */ 1070 if (conn_ioctl_cleanup_reqd) 1071 conn_ioctl_cleanup(connp); 1072 1073 /* 1074 * As CONN_CLOSING is set, no further ioctls should be passed down to 1075 * IP for this conn (see the guards in tcp_ioctl, tcp_wput_ioctl and 1076 * tcp_wput_iocdata). If the ioctl was queued on an ipsq, 1077 * conn_ioctl_cleanup should have found it and removed it. If the ioctl 1078 * was still in flight at the time, we wait for it here. See comments 1079 * for CONN_INC_IOCTLREF in ip.h for details. 1080 */ 1081 mutex_enter(&connp->conn_lock); 1082 while (connp->conn_ioctlref > 0) 1083 cv_wait(&connp->conn_cv, &connp->conn_lock); 1084 ASSERT(connp->conn_ioctlref == 0); 1085 ASSERT(connp->conn_oper_pending_ill == NULL); 1086 mutex_exit(&connp->conn_lock); 1087 1088 SQUEUE_ENTER_ONE(connp->conn_sqp, mp, tcp_close_output, connp, 1089 NULL, tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1090 1091 /* 1092 * For non-STREAMS sockets, the normal case is that the conn makes 1093 * an upcall when it's finally closed, so there is no need to wait 1094 * in the protocol. But in case of SO_LINGER the thread sleeps here 1095 * so it can properly deal with the thread being interrupted. 1096 */ 1097 if (IPCL_IS_NONSTR(connp) && connp->conn_linger == 0) 1098 goto nowait; 1099 1100 mutex_enter(&tcp->tcp_closelock); 1101 while (!tcp->tcp_closed) { 1102 if (!cv_wait_sig(&tcp->tcp_closecv, &tcp->tcp_closelock)) { 1103 /* 1104 * The cv_wait_sig() was interrupted. We now do the 1105 * following: 1106 * 1107 * 1) If the endpoint was lingering, we allow this 1108 * to be interrupted by cancelling the linger timeout 1109 * and closing normally. 1110 * 1111 * 2) Revert to calling cv_wait() 1112 * 1113 * We revert to using cv_wait() to avoid an 1114 * infinite loop which can occur if the calling 1115 * thread is higher priority than the squeue worker 1116 * thread and is bound to the same cpu. 1117 */ 1118 if (connp->conn_linger && connp->conn_lingertime > 0) { 1119 mutex_exit(&tcp->tcp_closelock); 1120 /* Entering squeue, bump ref count. */ 1121 CONN_INC_REF(connp); 1122 bp = allocb_wait(0, BPRI_HI, STR_NOSIG, NULL); 1123 SQUEUE_ENTER_ONE(connp->conn_sqp, bp, 1124 tcp_linger_interrupted, connp, NULL, 1125 tcp_squeue_flag, SQTAG_IP_TCP_CLOSE); 1126 mutex_enter(&tcp->tcp_closelock); 1127 } 1128 break; 1129 } 1130 } 1131 while (!tcp->tcp_closed) 1132 cv_wait(&tcp->tcp_closecv, &tcp->tcp_closelock); 1133 mutex_exit(&tcp->tcp_closelock); 1134 1135 /* 1136 * In the case of listener streams that have eagers in the q or q0 1137 * we wait for the eagers to drop their reference to us. conn_rq and 1138 * conn_wq of the eagers point to our queues. By waiting for the 1139 * refcnt to drop to 1, we are sure that the eagers have cleaned 1140 * up their queue pointers and also dropped their references to us. 1141 * 1142 * For non-STREAMS sockets we do not have to wait here; the 1143 * listener will instead make a su_closed upcall when the last 1144 * reference is dropped. 1145 */ 1146 if (tcp->tcp_wait_for_eagers && !IPCL_IS_NONSTR(connp)) { 1147 mutex_enter(&connp->conn_lock); 1148 while (connp->conn_ref != 1) { 1149 cv_wait(&connp->conn_cv, &connp->conn_lock); 1150 } 1151 mutex_exit(&connp->conn_lock); 1152 } 1153 1154 nowait: 1155 connp->conn_cpid = NOPID; 1156 } 1157 1158 /* 1159 * Called by tcp_close() routine via squeue when lingering is 1160 * interrupted by a signal. 1161 */ 1162 1163 /* ARGSUSED */ 1164 static void 1165 tcp_linger_interrupted(void *arg, mblk_t *mp, void *arg2, ip_recv_attr_t *dummy) 1166 { 1167 conn_t *connp = (conn_t *)arg; 1168 tcp_t *tcp = connp->conn_tcp; 1169 1170 freeb(mp); 1171 if (tcp->tcp_linger_tid != 0 && 1172 TCP_TIMER_CANCEL(tcp, tcp->tcp_linger_tid) >= 0) { 1173 tcp_stop_lingering(tcp); 1174 tcp->tcp_client_errno = EINTR; 1175 } 1176 } 1177 1178 /* 1179 * Clean up the b_next and b_prev fields of every mblk pointed at by *mpp. 1180 * Some stream heads get upset if they see these later on as anything but NULL. 1181 */ 1182 void 1183 tcp_close_mpp(mblk_t **mpp) 1184 { 1185 mblk_t *mp; 1186 1187 if ((mp = *mpp) != NULL) { 1188 do { 1189 mp->b_next = NULL; 1190 mp->b_prev = NULL; 1191 } while ((mp = mp->b_cont) != NULL); 1192 1193 mp = *mpp; 1194 *mpp = NULL; 1195 freemsg(mp); 1196 } 1197 } 1198 1199 /* Do detached close. */ 1200 void 1201 tcp_close_detached(tcp_t *tcp) 1202 { 1203 if (tcp->tcp_fused) 1204 tcp_unfuse(tcp); 1205 1206 /* 1207 * Clustering code serializes TCP disconnect callbacks and 1208 * cluster tcp list walks by blocking a TCP disconnect callback 1209 * if a cluster tcp list walk is in progress. This ensures 1210 * accurate accounting of TCPs in the cluster code even though 1211 * the TCP list walk itself is not atomic. 1212 */ 1213 tcp_closei_local(tcp); 1214 CONN_DEC_REF(tcp->tcp_connp); 1215 } 1216 1217 /* 1218 * The tcp_t is going away. Remove it from all lists and set it 1219 * to TCPS_CLOSED. The freeing up of memory is deferred until 1220 * tcp_inactive. This is needed since a thread in tcp_rput might have 1221 * done a CONN_INC_REF on this structure before it was removed from the 1222 * hashes. 1223 */ 1224 void 1225 tcp_closei_local(tcp_t *tcp) 1226 { 1227 conn_t *connp = tcp->tcp_connp; 1228 tcp_stack_t *tcps = tcp->tcp_tcps; 1229 int32_t oldstate; 1230 1231 if (!TCP_IS_SOCKET(tcp)) 1232 tcp_acceptor_hash_remove(tcp); 1233 1234 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1235 tcp->tcp_ibsegs = 0; 1236 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1237 tcp->tcp_obsegs = 0; 1238 1239 /* 1240 * This can be called via tcp_time_wait_processing() if TCP gets a 1241 * SYN with sequence number outside the TIME-WAIT connection's 1242 * window. So we need to check for TIME-WAIT state here as the 1243 * connection counter is already decremented. See SET_TIME_WAIT() 1244 * macro 1245 */ 1246 if (tcp->tcp_state >= TCPS_ESTABLISHED && 1247 tcp->tcp_state < TCPS_TIME_WAIT) { 1248 TCPS_CONN_DEC(tcps); 1249 } 1250 1251 /* 1252 * If we are an eager connection hanging off a listener that 1253 * hasn't formally accepted the connection yet, get off its 1254 * list and blow off any data that we have accumulated. 1255 */ 1256 if (tcp->tcp_listener != NULL) { 1257 tcp_t *listener = tcp->tcp_listener; 1258 mutex_enter(&listener->tcp_eager_lock); 1259 /* 1260 * tcp_tconnind_started == B_TRUE means that the 1261 * conn_ind has already gone to listener. At 1262 * this point, eager will be closed but we 1263 * leave it in listeners eager list so that 1264 * if listener decides to close without doing 1265 * accept, we can clean this up. In tcp_tli_accept 1266 * we take care of the case of accept on closed 1267 * eager. 1268 */ 1269 if (!tcp->tcp_tconnind_started) { 1270 tcp_eager_unlink(tcp); 1271 mutex_exit(&listener->tcp_eager_lock); 1272 /* 1273 * We don't want to have any pointers to the 1274 * listener queue, after we have released our 1275 * reference on the listener 1276 */ 1277 ASSERT(tcp->tcp_detached); 1278 connp->conn_rq = NULL; 1279 connp->conn_wq = NULL; 1280 CONN_DEC_REF(listener->tcp_connp); 1281 } else { 1282 mutex_exit(&listener->tcp_eager_lock); 1283 } 1284 } 1285 1286 /* Stop all the timers */ 1287 tcp_timers_stop(tcp); 1288 1289 if (tcp->tcp_state == TCPS_LISTEN) { 1290 if (tcp->tcp_ip_addr_cache) { 1291 kmem_free((void *)tcp->tcp_ip_addr_cache, 1292 IP_ADDR_CACHE_SIZE * sizeof (ipaddr_t)); 1293 tcp->tcp_ip_addr_cache = NULL; 1294 } 1295 } 1296 1297 /* Decrement listerner connection counter if necessary. */ 1298 if (tcp->tcp_listen_cnt != NULL) 1299 TCP_DECR_LISTEN_CNT(tcp); 1300 1301 mutex_enter(&tcp->tcp_non_sq_lock); 1302 if (tcp->tcp_flow_stopped) 1303 tcp_clrqfull(tcp); 1304 mutex_exit(&tcp->tcp_non_sq_lock); 1305 1306 tcp_bind_hash_remove(tcp); 1307 /* 1308 * If the tcp_time_wait_collector (which runs outside the squeue) 1309 * is trying to remove this tcp from the time wait list, we will 1310 * block in tcp_time_wait_remove while trying to acquire the 1311 * tcp_time_wait_lock. The logic in tcp_time_wait_collector also 1312 * requires the ipcl_hash_remove to be ordered after the 1313 * tcp_time_wait_remove for the refcnt checks to work correctly. 1314 */ 1315 if (tcp->tcp_state == TCPS_TIME_WAIT) 1316 (void) tcp_time_wait_remove(tcp, NULL); 1317 CL_INET_DISCONNECT(connp); 1318 ipcl_hash_remove(connp); 1319 oldstate = tcp->tcp_state; 1320 tcp->tcp_state = TCPS_CLOSED; 1321 /* Need to probe before ixa_cleanup() is called */ 1322 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1323 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 1324 int32_t, oldstate); 1325 ixa_cleanup(connp->conn_ixa); 1326 1327 /* 1328 * Mark the conn as CONDEMNED 1329 */ 1330 mutex_enter(&connp->conn_lock); 1331 connp->conn_state_flags |= CONN_CONDEMNED; 1332 mutex_exit(&connp->conn_lock); 1333 1334 ASSERT(tcp->tcp_time_wait_next == NULL); 1335 ASSERT(tcp->tcp_time_wait_prev == NULL); 1336 ASSERT(tcp->tcp_time_wait_expire == 0); 1337 1338 tcp_ipsec_cleanup(tcp); 1339 } 1340 1341 /* 1342 * tcp is dying (called from ipcl_conn_destroy and error cases). 1343 * Free the tcp_t in either case. 1344 */ 1345 void 1346 tcp_free(tcp_t *tcp) 1347 { 1348 mblk_t *mp; 1349 conn_t *connp = tcp->tcp_connp; 1350 1351 ASSERT(tcp != NULL); 1352 ASSERT(tcp->tcp_ptpahn == NULL && tcp->tcp_acceptor_hash == NULL); 1353 1354 connp->conn_rq = NULL; 1355 connp->conn_wq = NULL; 1356 1357 tcp_close_mpp(&tcp->tcp_xmit_head); 1358 tcp_close_mpp(&tcp->tcp_reass_head); 1359 if (tcp->tcp_rcv_list != NULL) { 1360 /* Free b_next chain */ 1361 tcp_close_mpp(&tcp->tcp_rcv_list); 1362 } 1363 if ((mp = tcp->tcp_urp_mp) != NULL) { 1364 freemsg(mp); 1365 } 1366 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1367 freemsg(mp); 1368 } 1369 1370 if (tcp->tcp_fused_sigurg_mp != NULL) { 1371 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1372 freeb(tcp->tcp_fused_sigurg_mp); 1373 tcp->tcp_fused_sigurg_mp = NULL; 1374 } 1375 1376 if (tcp->tcp_ordrel_mp != NULL) { 1377 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1378 freeb(tcp->tcp_ordrel_mp); 1379 tcp->tcp_ordrel_mp = NULL; 1380 } 1381 1382 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 1383 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 1384 1385 if (tcp->tcp_hopopts != NULL) { 1386 mi_free(tcp->tcp_hopopts); 1387 tcp->tcp_hopopts = NULL; 1388 tcp->tcp_hopoptslen = 0; 1389 } 1390 ASSERT(tcp->tcp_hopoptslen == 0); 1391 if (tcp->tcp_dstopts != NULL) { 1392 mi_free(tcp->tcp_dstopts); 1393 tcp->tcp_dstopts = NULL; 1394 tcp->tcp_dstoptslen = 0; 1395 } 1396 ASSERT(tcp->tcp_dstoptslen == 0); 1397 if (tcp->tcp_rthdrdstopts != NULL) { 1398 mi_free(tcp->tcp_rthdrdstopts); 1399 tcp->tcp_rthdrdstopts = NULL; 1400 tcp->tcp_rthdrdstoptslen = 0; 1401 } 1402 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 1403 if (tcp->tcp_rthdr != NULL) { 1404 mi_free(tcp->tcp_rthdr); 1405 tcp->tcp_rthdr = NULL; 1406 tcp->tcp_rthdrlen = 0; 1407 } 1408 ASSERT(tcp->tcp_rthdrlen == 0); 1409 1410 /* 1411 * Following is really a blowing away a union. 1412 * It happens to have exactly two members of identical size 1413 * the following code is enough. 1414 */ 1415 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1416 1417 /* 1418 * If this is a non-STREAM socket still holding on to an upper 1419 * handle, release it. As a result of fallback we might also see 1420 * STREAMS based conns with upper handles, in which case there is 1421 * nothing to do other than clearing the field. 1422 */ 1423 if (connp->conn_upper_handle != NULL) { 1424 if (IPCL_IS_NONSTR(connp)) { 1425 (*connp->conn_upcalls->su_closed)( 1426 connp->conn_upper_handle); 1427 tcp->tcp_detached = B_TRUE; 1428 } 1429 connp->conn_upper_handle = NULL; 1430 connp->conn_upcalls = NULL; 1431 } 1432 } 1433 1434 /* 1435 * tcp_get_conn/tcp_free_conn 1436 * 1437 * tcp_get_conn is used to get a clean tcp connection structure. 1438 * It tries to reuse the connections put on the freelist by the 1439 * time_wait_collector failing which it goes to kmem_cache. This 1440 * way has two benefits compared to just allocating from and 1441 * freeing to kmem_cache. 1442 * 1) The time_wait_collector can free (which includes the cleanup) 1443 * outside the squeue. So when the interrupt comes, we have a clean 1444 * connection sitting in the freelist. Obviously, this buys us 1445 * performance. 1446 * 1447 * 2) Defence against DOS attack. Allocating a tcp/conn in tcp_input_listener 1448 * has multiple disadvantages - tying up the squeue during alloc. 1449 * But allocating the conn/tcp in IP land is also not the best since 1450 * we can't check the 'q' and 'q0' which are protected by squeue and 1451 * blindly allocate memory which might have to be freed here if we are 1452 * not allowed to accept the connection. By using the freelist and 1453 * putting the conn/tcp back in freelist, we don't pay a penalty for 1454 * allocating memory without checking 'q/q0' and freeing it if we can't 1455 * accept the connection. 1456 * 1457 * Care should be taken to put the conn back in the same squeue's freelist 1458 * from which it was allocated. Best results are obtained if conn is 1459 * allocated from listener's squeue and freed to the same. Time wait 1460 * collector will free up the freelist is the connection ends up sitting 1461 * there for too long. 1462 */ 1463 void * 1464 tcp_get_conn(void *arg, tcp_stack_t *tcps) 1465 { 1466 tcp_t *tcp = NULL; 1467 conn_t *connp = NULL; 1468 squeue_t *sqp = (squeue_t *)arg; 1469 tcp_squeue_priv_t *tcp_time_wait; 1470 netstack_t *ns; 1471 mblk_t *tcp_rsrv_mp = NULL; 1472 1473 tcp_time_wait = 1474 *((tcp_squeue_priv_t **)squeue_getprivate(sqp, SQPRIVATE_TCP)); 1475 1476 mutex_enter(&tcp_time_wait->tcp_time_wait_lock); 1477 tcp = tcp_time_wait->tcp_free_list; 1478 ASSERT((tcp != NULL) ^ (tcp_time_wait->tcp_free_list_cnt == 0)); 1479 if (tcp != NULL) { 1480 tcp_time_wait->tcp_free_list = tcp->tcp_time_wait_next; 1481 tcp_time_wait->tcp_free_list_cnt--; 1482 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1483 tcp->tcp_time_wait_next = NULL; 1484 connp = tcp->tcp_connp; 1485 connp->conn_flags |= IPCL_REUSED; 1486 1487 ASSERT(tcp->tcp_tcps == NULL); 1488 ASSERT(connp->conn_netstack == NULL); 1489 ASSERT(tcp->tcp_rsrv_mp != NULL); 1490 ns = tcps->tcps_netstack; 1491 netstack_hold(ns); 1492 connp->conn_netstack = ns; 1493 connp->conn_ixa->ixa_ipst = ns->netstack_ip; 1494 tcp->tcp_tcps = tcps; 1495 ipcl_globalhash_insert(connp); 1496 1497 connp->conn_ixa->ixa_notify_cookie = tcp; 1498 ASSERT(connp->conn_ixa->ixa_notify == tcp_notify); 1499 connp->conn_recv = tcp_input_data; 1500 ASSERT(connp->conn_recvicmp == tcp_icmp_input); 1501 ASSERT(connp->conn_verifyicmp == tcp_verifyicmp); 1502 return ((void *)connp); 1503 } 1504 mutex_exit(&tcp_time_wait->tcp_time_wait_lock); 1505 /* 1506 * Pre-allocate the tcp_rsrv_mp. This mblk will not be freed until 1507 * this conn_t/tcp_t is freed at ipcl_conn_destroy(). 1508 */ 1509 tcp_rsrv_mp = allocb(0, BPRI_HI); 1510 if (tcp_rsrv_mp == NULL) 1511 return (NULL); 1512 1513 if ((connp = ipcl_conn_create(IPCL_TCPCONN, KM_NOSLEEP, 1514 tcps->tcps_netstack)) == NULL) { 1515 freeb(tcp_rsrv_mp); 1516 return (NULL); 1517 } 1518 1519 tcp = connp->conn_tcp; 1520 tcp->tcp_rsrv_mp = tcp_rsrv_mp; 1521 mutex_init(&tcp->tcp_rsrv_mp_lock, NULL, MUTEX_DEFAULT, NULL); 1522 1523 tcp->tcp_tcps = tcps; 1524 1525 connp->conn_recv = tcp_input_data; 1526 connp->conn_recvicmp = tcp_icmp_input; 1527 connp->conn_verifyicmp = tcp_verifyicmp; 1528 1529 /* 1530 * Register tcp_notify to listen to capability changes detected by IP. 1531 * This upcall is made in the context of the call to conn_ip_output 1532 * thus it is inside the squeue. 1533 */ 1534 connp->conn_ixa->ixa_notify = tcp_notify; 1535 connp->conn_ixa->ixa_notify_cookie = tcp; 1536 1537 return ((void *)connp); 1538 } 1539 1540 /* 1541 * Handle connect to IPv4 destinations, including connections for AF_INET6 1542 * sockets connecting to IPv4 mapped IPv6 destinations. 1543 * Returns zero if OK, a positive errno, or a negative TLI error. 1544 */ 1545 static int 1546 tcp_connect_ipv4(tcp_t *tcp, ipaddr_t *dstaddrp, in_port_t dstport, 1547 uint_t srcid) 1548 { 1549 ipaddr_t dstaddr = *dstaddrp; 1550 uint16_t lport; 1551 conn_t *connp = tcp->tcp_connp; 1552 tcp_stack_t *tcps = tcp->tcp_tcps; 1553 int error; 1554 1555 ASSERT(connp->conn_ipversion == IPV4_VERSION); 1556 1557 /* Check for attempt to connect to INADDR_ANY */ 1558 if (dstaddr == INADDR_ANY) { 1559 /* 1560 * SunOS 4.x and 4.3 BSD allow an application 1561 * to connect a TCP socket to INADDR_ANY. 1562 * When they do this, the kernel picks the 1563 * address of one interface and uses it 1564 * instead. The kernel usually ends up 1565 * picking the address of the loopback 1566 * interface. This is an undocumented feature. 1567 * However, we provide the same thing here 1568 * in order to have source and binary 1569 * compatibility with SunOS 4.x. 1570 * Update the T_CONN_REQ (sin/sin6) since it is used to 1571 * generate the T_CONN_CON. 1572 */ 1573 dstaddr = htonl(INADDR_LOOPBACK); 1574 *dstaddrp = dstaddr; 1575 } 1576 1577 /* Handle __sin6_src_id if socket not bound to an IP address */ 1578 if (srcid != 0 && connp->conn_laddr_v4 == INADDR_ANY) { 1579 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1580 IPCL_ZONEID(connp), B_TRUE, tcps->tcps_netstack)) { 1581 /* Mismatch - conn_laddr_v6 would be v6 address. */ 1582 return (EADDRNOTAVAIL); 1583 } 1584 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1585 } 1586 1587 IN6_IPADDR_TO_V4MAPPED(dstaddr, &connp->conn_faddr_v6); 1588 connp->conn_fport = dstport; 1589 1590 /* 1591 * At this point the remote destination address and remote port fields 1592 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1593 * have to see which state tcp was in so we can take appropriate action. 1594 */ 1595 if (tcp->tcp_state == TCPS_IDLE) { 1596 /* 1597 * We support a quick connect capability here, allowing 1598 * clients to transition directly from IDLE to SYN_SENT 1599 * tcp_bindi will pick an unused port, insert the connection 1600 * in the bind hash and transition to BOUND state. 1601 */ 1602 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1603 tcp, B_TRUE); 1604 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1605 B_FALSE, B_FALSE); 1606 if (lport == 0) 1607 return (-TNOADDR); 1608 } 1609 1610 /* 1611 * Lookup the route to determine a source address and the uinfo. 1612 * Setup TCP parameters based on the metrics/DCE. 1613 */ 1614 error = tcp_set_destination(tcp); 1615 if (error != 0) 1616 return (error); 1617 1618 /* 1619 * Don't let an endpoint connect to itself. 1620 */ 1621 if (connp->conn_faddr_v4 == connp->conn_laddr_v4 && 1622 connp->conn_fport == connp->conn_lport) 1623 return (-TBADADDR); 1624 1625 tcp->tcp_state = TCPS_SYN_SENT; 1626 1627 return (ipcl_conn_insert_v4(connp)); 1628 } 1629 1630 /* 1631 * Handle connect to IPv6 destinations. 1632 * Returns zero if OK, a positive errno, or a negative TLI error. 1633 */ 1634 static int 1635 tcp_connect_ipv6(tcp_t *tcp, in6_addr_t *dstaddrp, in_port_t dstport, 1636 uint32_t flowinfo, uint_t srcid, uint32_t scope_id) 1637 { 1638 uint16_t lport; 1639 conn_t *connp = tcp->tcp_connp; 1640 tcp_stack_t *tcps = tcp->tcp_tcps; 1641 int error; 1642 1643 ASSERT(connp->conn_family == AF_INET6); 1644 1645 /* 1646 * If we're here, it means that the destination address is a native 1647 * IPv6 address. Return an error if conn_ipversion is not IPv6. A 1648 * reason why it might not be IPv6 is if the socket was bound to an 1649 * IPv4-mapped IPv6 address. 1650 */ 1651 if (connp->conn_ipversion != IPV6_VERSION) 1652 return (-TBADADDR); 1653 1654 /* 1655 * Interpret a zero destination to mean loopback. 1656 * Update the T_CONN_REQ (sin/sin6) since it is used to 1657 * generate the T_CONN_CON. 1658 */ 1659 if (IN6_IS_ADDR_UNSPECIFIED(dstaddrp)) 1660 *dstaddrp = ipv6_loopback; 1661 1662 /* Handle __sin6_src_id if socket not bound to an IP address */ 1663 if (srcid != 0 && IN6_IS_ADDR_UNSPECIFIED(&connp->conn_laddr_v6)) { 1664 if (!ip_srcid_find_id(srcid, &connp->conn_laddr_v6, 1665 IPCL_ZONEID(connp), B_FALSE, tcps->tcps_netstack)) { 1666 /* Mismatch - conn_laddr_v6 would be v4-mapped. */ 1667 return (EADDRNOTAVAIL); 1668 } 1669 connp->conn_saddr_v6 = connp->conn_laddr_v6; 1670 } 1671 1672 /* 1673 * Take care of the scope_id now. 1674 */ 1675 if (scope_id != 0 && IN6_IS_ADDR_LINKSCOPE(dstaddrp)) { 1676 connp->conn_ixa->ixa_flags |= IXAF_SCOPEID_SET; 1677 connp->conn_ixa->ixa_scopeid = scope_id; 1678 } else { 1679 connp->conn_ixa->ixa_flags &= ~IXAF_SCOPEID_SET; 1680 } 1681 1682 connp->conn_flowinfo = flowinfo; 1683 connp->conn_faddr_v6 = *dstaddrp; 1684 connp->conn_fport = dstport; 1685 1686 /* 1687 * At this point the remote destination address and remote port fields 1688 * in the tcp-four-tuple have been filled in the tcp structure. Now we 1689 * have to see which state tcp was in so we can take appropriate action. 1690 */ 1691 if (tcp->tcp_state == TCPS_IDLE) { 1692 /* 1693 * We support a quick connect capability here, allowing 1694 * clients to transition directly from IDLE to SYN_SENT 1695 * tcp_bindi will pick an unused port, insert the connection 1696 * in the bind hash and transition to BOUND state. 1697 */ 1698 lport = tcp_update_next_port(tcps->tcps_next_port_to_try, 1699 tcp, B_TRUE); 1700 lport = tcp_bindi(tcp, lport, &connp->conn_laddr_v6, 0, B_TRUE, 1701 B_FALSE, B_FALSE); 1702 if (lport == 0) 1703 return (-TNOADDR); 1704 } 1705 1706 /* 1707 * Lookup the route to determine a source address and the uinfo. 1708 * Setup TCP parameters based on the metrics/DCE. 1709 */ 1710 error = tcp_set_destination(tcp); 1711 if (error != 0) 1712 return (error); 1713 1714 /* 1715 * Don't let an endpoint connect to itself. 1716 */ 1717 if (IN6_ARE_ADDR_EQUAL(&connp->conn_faddr_v6, &connp->conn_laddr_v6) && 1718 connp->conn_fport == connp->conn_lport) 1719 return (-TBADADDR); 1720 1721 tcp->tcp_state = TCPS_SYN_SENT; 1722 1723 return (ipcl_conn_insert_v6(connp)); 1724 } 1725 1726 /* 1727 * Disconnect 1728 * Note that unlike other functions this returns a positive tli error 1729 * when it fails; it never returns an errno. 1730 */ 1731 static int 1732 tcp_disconnect_common(tcp_t *tcp, t_scalar_t seqnum) 1733 { 1734 conn_t *lconnp; 1735 tcp_stack_t *tcps = tcp->tcp_tcps; 1736 conn_t *connp = tcp->tcp_connp; 1737 1738 /* 1739 * Right now, upper modules pass down a T_DISCON_REQ to TCP, 1740 * when the stream is in BOUND state. Do not send a reset, 1741 * since the destination IP address is not valid, and it can 1742 * be the initialized value of all zeros (broadcast address). 1743 */ 1744 if (tcp->tcp_state <= TCPS_BOUND) { 1745 if (connp->conn_debug) { 1746 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 1747 "tcp_disconnect: bad state, %d", tcp->tcp_state); 1748 } 1749 return (TOUTSTATE); 1750 } else if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1751 TCPS_CONN_DEC(tcps); 1752 } 1753 1754 if (seqnum == -1 || tcp->tcp_conn_req_max == 0) { 1755 1756 /* 1757 * According to TPI, for non-listeners, ignore seqnum 1758 * and disconnect. 1759 * Following interpretation of -1 seqnum is historical 1760 * and implied TPI ? (TPI only states that for T_CONN_IND, 1761 * a valid seqnum should not be -1). 1762 * 1763 * -1 means disconnect everything 1764 * regardless even on a listener. 1765 */ 1766 1767 int old_state = tcp->tcp_state; 1768 ip_stack_t *ipst = tcps->tcps_netstack->netstack_ip; 1769 1770 /* 1771 * The connection can't be on the tcp_time_wait_head list 1772 * since it is not detached. 1773 */ 1774 ASSERT(tcp->tcp_time_wait_next == NULL); 1775 ASSERT(tcp->tcp_time_wait_prev == NULL); 1776 ASSERT(tcp->tcp_time_wait_expire == 0); 1777 /* 1778 * If it used to be a listener, check to make sure no one else 1779 * has taken the port before switching back to LISTEN state. 1780 */ 1781 if (connp->conn_ipversion == IPV4_VERSION) { 1782 lconnp = ipcl_lookup_listener_v4(connp->conn_lport, 1783 connp->conn_laddr_v4, IPCL_ZONEID(connp), ipst); 1784 } else { 1785 uint_t ifindex = 0; 1786 1787 if (connp->conn_ixa->ixa_flags & IXAF_SCOPEID_SET) 1788 ifindex = connp->conn_ixa->ixa_scopeid; 1789 1790 /* Allow conn_bound_if listeners? */ 1791 lconnp = ipcl_lookup_listener_v6(connp->conn_lport, 1792 &connp->conn_laddr_v6, ifindex, IPCL_ZONEID(connp), 1793 ipst); 1794 } 1795 if (tcp->tcp_conn_req_max && lconnp == NULL) { 1796 tcp->tcp_state = TCPS_LISTEN; 1797 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1798 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1799 NULL, int32_t, old_state); 1800 } else if (old_state > TCPS_BOUND) { 1801 tcp->tcp_conn_req_max = 0; 1802 tcp->tcp_state = TCPS_BOUND; 1803 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 1804 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, 1805 NULL, int32_t, old_state); 1806 1807 /* 1808 * If this end point is not going to become a listener, 1809 * decrement the listener connection count if 1810 * necessary. Note that we do not do this if it is 1811 * going to be a listner (the above if case) since 1812 * then it may remove the counter struct. 1813 */ 1814 if (tcp->tcp_listen_cnt != NULL) 1815 TCP_DECR_LISTEN_CNT(tcp); 1816 } 1817 if (lconnp != NULL) 1818 CONN_DEC_REF(lconnp); 1819 switch (old_state) { 1820 case TCPS_SYN_SENT: 1821 case TCPS_SYN_RCVD: 1822 TCPS_BUMP_MIB(tcps, tcpAttemptFails); 1823 break; 1824 case TCPS_ESTABLISHED: 1825 case TCPS_CLOSE_WAIT: 1826 TCPS_BUMP_MIB(tcps, tcpEstabResets); 1827 break; 1828 } 1829 1830 if (tcp->tcp_fused) 1831 tcp_unfuse(tcp); 1832 1833 mutex_enter(&tcp->tcp_eager_lock); 1834 if ((tcp->tcp_conn_req_cnt_q0 != 0) || 1835 (tcp->tcp_conn_req_cnt_q != 0)) { 1836 tcp_eager_cleanup(tcp, 0); 1837 } 1838 mutex_exit(&tcp->tcp_eager_lock); 1839 1840 tcp_xmit_ctl("tcp_disconnect", tcp, tcp->tcp_snxt, 1841 tcp->tcp_rnxt, TH_RST | TH_ACK); 1842 1843 tcp_reinit(tcp); 1844 1845 return (0); 1846 } else if (!tcp_eager_blowoff(tcp, seqnum)) { 1847 return (TBADSEQ); 1848 } 1849 return (0); 1850 } 1851 1852 /* 1853 * Our client hereby directs us to reject the connection request 1854 * that tcp_input_listener() marked with 'seqnum'. Rejection consists 1855 * of sending the appropriate RST, not an ICMP error. 1856 */ 1857 void 1858 tcp_disconnect(tcp_t *tcp, mblk_t *mp) 1859 { 1860 t_scalar_t seqnum; 1861 int error; 1862 conn_t *connp = tcp->tcp_connp; 1863 1864 ASSERT((uintptr_t)(mp->b_wptr - mp->b_rptr) <= (uintptr_t)INT_MAX); 1865 if ((mp->b_wptr - mp->b_rptr) < sizeof (struct T_discon_req)) { 1866 tcp_err_ack(tcp, mp, TPROTO, 0); 1867 return; 1868 } 1869 seqnum = ((struct T_discon_req *)mp->b_rptr)->SEQ_number; 1870 error = tcp_disconnect_common(tcp, seqnum); 1871 if (error != 0) 1872 tcp_err_ack(tcp, mp, error, 0); 1873 else { 1874 if (tcp->tcp_state >= TCPS_ESTABLISHED) { 1875 /* Send M_FLUSH according to TPI */ 1876 (void) putnextctl1(connp->conn_rq, M_FLUSH, FLUSHRW); 1877 } 1878 mp = mi_tpi_ok_ack_alloc(mp); 1879 if (mp != NULL) 1880 putnext(connp->conn_rq, mp); 1881 } 1882 } 1883 1884 /* 1885 * Handle reinitialization of a tcp structure. 1886 * Maintain "binding state" resetting the state to BOUND, LISTEN, or IDLE. 1887 */ 1888 static void 1889 tcp_reinit(tcp_t *tcp) 1890 { 1891 mblk_t *mp; 1892 tcp_stack_t *tcps = tcp->tcp_tcps; 1893 conn_t *connp = tcp->tcp_connp; 1894 int32_t oldstate; 1895 1896 /* tcp_reinit should never be called for detached tcp_t's */ 1897 ASSERT(tcp->tcp_listener == NULL); 1898 ASSERT((connp->conn_family == AF_INET && 1899 connp->conn_ipversion == IPV4_VERSION) || 1900 (connp->conn_family == AF_INET6 && 1901 (connp->conn_ipversion == IPV4_VERSION || 1902 connp->conn_ipversion == IPV6_VERSION))); 1903 1904 /* Cancel outstanding timers */ 1905 tcp_timers_stop(tcp); 1906 1907 /* 1908 * Reset everything in the state vector, after updating global 1909 * MIB data from instance counters. 1910 */ 1911 TCPS_UPDATE_MIB(tcps, tcpHCInSegs, tcp->tcp_ibsegs); 1912 tcp->tcp_ibsegs = 0; 1913 TCPS_UPDATE_MIB(tcps, tcpHCOutSegs, tcp->tcp_obsegs); 1914 tcp->tcp_obsegs = 0; 1915 1916 tcp_close_mpp(&tcp->tcp_xmit_head); 1917 if (tcp->tcp_snd_zcopy_aware) 1918 tcp_zcopy_notify(tcp); 1919 tcp->tcp_xmit_last = tcp->tcp_xmit_tail = NULL; 1920 tcp->tcp_unsent = tcp->tcp_xmit_tail_unsent = 0; 1921 mutex_enter(&tcp->tcp_non_sq_lock); 1922 if (tcp->tcp_flow_stopped && 1923 TCP_UNSENT_BYTES(tcp) <= connp->conn_sndlowat) { 1924 tcp_clrqfull(tcp); 1925 } 1926 mutex_exit(&tcp->tcp_non_sq_lock); 1927 tcp_close_mpp(&tcp->tcp_reass_head); 1928 tcp->tcp_reass_tail = NULL; 1929 if (tcp->tcp_rcv_list != NULL) { 1930 /* Free b_next chain */ 1931 tcp_close_mpp(&tcp->tcp_rcv_list); 1932 tcp->tcp_rcv_last_head = NULL; 1933 tcp->tcp_rcv_last_tail = NULL; 1934 tcp->tcp_rcv_cnt = 0; 1935 } 1936 tcp->tcp_rcv_last_tail = NULL; 1937 1938 if ((mp = tcp->tcp_urp_mp) != NULL) { 1939 freemsg(mp); 1940 tcp->tcp_urp_mp = NULL; 1941 } 1942 if ((mp = tcp->tcp_urp_mark_mp) != NULL) { 1943 freemsg(mp); 1944 tcp->tcp_urp_mark_mp = NULL; 1945 } 1946 if (tcp->tcp_fused_sigurg_mp != NULL) { 1947 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1948 freeb(tcp->tcp_fused_sigurg_mp); 1949 tcp->tcp_fused_sigurg_mp = NULL; 1950 } 1951 if (tcp->tcp_ordrel_mp != NULL) { 1952 ASSERT(!IPCL_IS_NONSTR(tcp->tcp_connp)); 1953 freeb(tcp->tcp_ordrel_mp); 1954 tcp->tcp_ordrel_mp = NULL; 1955 } 1956 1957 /* 1958 * Following is a union with two members which are 1959 * identical types and size so the following cleanup 1960 * is enough. 1961 */ 1962 tcp_close_mpp(&tcp->tcp_conn.tcp_eager_conn_ind); 1963 1964 CL_INET_DISCONNECT(connp); 1965 1966 /* 1967 * The connection can't be on the tcp_time_wait_head list 1968 * since it is not detached. 1969 */ 1970 ASSERT(tcp->tcp_time_wait_next == NULL); 1971 ASSERT(tcp->tcp_time_wait_prev == NULL); 1972 ASSERT(tcp->tcp_time_wait_expire == 0); 1973 1974 /* 1975 * Reset/preserve other values 1976 */ 1977 tcp_reinit_values(tcp); 1978 ipcl_hash_remove(connp); 1979 /* Note that ixa_cred gets cleared in ixa_cleanup */ 1980 ixa_cleanup(connp->conn_ixa); 1981 tcp_ipsec_cleanup(tcp); 1982 1983 connp->conn_laddr_v6 = connp->conn_bound_addr_v6; 1984 connp->conn_saddr_v6 = connp->conn_bound_addr_v6; 1985 oldstate = tcp->tcp_state; 1986 1987 if (tcp->tcp_conn_req_max != 0) { 1988 /* 1989 * This is the case when a TLI program uses the same 1990 * transport end point to accept a connection. This 1991 * makes the TCP both a listener and acceptor. When 1992 * this connection is closed, we need to set the state 1993 * back to TCPS_LISTEN. Make sure that the eager list 1994 * is reinitialized. 1995 * 1996 * Note that this stream is still bound to the four 1997 * tuples of the previous connection in IP. If a new 1998 * SYN with different foreign address comes in, IP will 1999 * not find it and will send it to the global queue. In 2000 * the global queue, TCP will do a tcp_lookup_listener() 2001 * to find this stream. This works because this stream 2002 * is only removed from connected hash. 2003 * 2004 */ 2005 tcp->tcp_state = TCPS_LISTEN; 2006 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 2007 tcp->tcp_eager_next_drop_q0 = tcp; 2008 tcp->tcp_eager_prev_drop_q0 = tcp; 2009 /* 2010 * Initially set conn_recv to tcp_input_listener_unbound to try 2011 * to pick a good squeue for the listener when the first SYN 2012 * arrives. tcp_input_listener_unbound sets it to 2013 * tcp_input_listener on that first SYN. 2014 */ 2015 connp->conn_recv = tcp_input_listener_unbound; 2016 2017 connp->conn_proto = IPPROTO_TCP; 2018 connp->conn_faddr_v6 = ipv6_all_zeros; 2019 connp->conn_fport = 0; 2020 2021 (void) ipcl_bind_insert(connp); 2022 } else { 2023 tcp->tcp_state = TCPS_BOUND; 2024 } 2025 2026 /* 2027 * Initialize to default values 2028 */ 2029 tcp_init_values(tcp, NULL); 2030 2031 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 2032 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 2033 int32_t, oldstate); 2034 2035 ASSERT(tcp->tcp_ptpbhn != NULL); 2036 tcp->tcp_rwnd = connp->conn_rcvbuf; 2037 tcp->tcp_mss = connp->conn_ipversion != IPV4_VERSION ? 2038 tcps->tcps_mss_def_ipv6 : tcps->tcps_mss_def_ipv4; 2039 } 2040 2041 /* 2042 * Force values to zero that need be zero. 2043 * Do not touch values asociated with the BOUND or LISTEN state 2044 * since the connection will end up in that state after the reinit. 2045 * NOTE: tcp_reinit_values MUST have a line for each field in the tcp_t 2046 * structure! 2047 */ 2048 static void 2049 tcp_reinit_values(tcp_t *tcp) 2050 { 2051 tcp_stack_t *tcps = tcp->tcp_tcps; 2052 conn_t *connp = tcp->tcp_connp; 2053 2054 #ifndef lint 2055 #define DONTCARE(x) 2056 #define PRESERVE(x) 2057 #else 2058 #define DONTCARE(x) ((x) = (x)) 2059 #define PRESERVE(x) ((x) = (x)) 2060 #endif /* lint */ 2061 2062 PRESERVE(tcp->tcp_bind_hash_port); 2063 PRESERVE(tcp->tcp_bind_hash); 2064 PRESERVE(tcp->tcp_ptpbhn); 2065 PRESERVE(tcp->tcp_acceptor_hash); 2066 PRESERVE(tcp->tcp_ptpahn); 2067 2068 /* Should be ASSERT NULL on these with new code! */ 2069 ASSERT(tcp->tcp_time_wait_next == NULL); 2070 ASSERT(tcp->tcp_time_wait_prev == NULL); 2071 ASSERT(tcp->tcp_time_wait_expire == 0); 2072 PRESERVE(tcp->tcp_state); 2073 PRESERVE(connp->conn_rq); 2074 PRESERVE(connp->conn_wq); 2075 2076 ASSERT(tcp->tcp_xmit_head == NULL); 2077 ASSERT(tcp->tcp_xmit_last == NULL); 2078 ASSERT(tcp->tcp_unsent == 0); 2079 ASSERT(tcp->tcp_xmit_tail == NULL); 2080 ASSERT(tcp->tcp_xmit_tail_unsent == 0); 2081 2082 tcp->tcp_snxt = 0; /* Displayed in mib */ 2083 tcp->tcp_suna = 0; /* Displayed in mib */ 2084 tcp->tcp_swnd = 0; 2085 DONTCARE(tcp->tcp_cwnd); /* Init in tcp_process_options */ 2086 2087 ASSERT(tcp->tcp_ibsegs == 0); 2088 ASSERT(tcp->tcp_obsegs == 0); 2089 2090 if (connp->conn_ht_iphc != NULL) { 2091 kmem_free(connp->conn_ht_iphc, connp->conn_ht_iphc_allocated); 2092 connp->conn_ht_iphc = NULL; 2093 connp->conn_ht_iphc_allocated = 0; 2094 connp->conn_ht_iphc_len = 0; 2095 connp->conn_ht_ulp = NULL; 2096 connp->conn_ht_ulp_len = 0; 2097 tcp->tcp_ipha = NULL; 2098 tcp->tcp_ip6h = NULL; 2099 tcp->tcp_tcpha = NULL; 2100 } 2101 2102 /* We clear any IP_OPTIONS and extension headers */ 2103 ip_pkt_free(&connp->conn_xmit_ipp); 2104 2105 DONTCARE(tcp->tcp_naglim); /* Init in tcp_init_values */ 2106 DONTCARE(tcp->tcp_ipha); 2107 DONTCARE(tcp->tcp_ip6h); 2108 DONTCARE(tcp->tcp_tcpha); 2109 tcp->tcp_valid_bits = 0; 2110 2111 DONTCARE(tcp->tcp_timer_backoff); /* Init in tcp_init_values */ 2112 DONTCARE(tcp->tcp_last_recv_time); /* Init in tcp_init_values */ 2113 tcp->tcp_last_rcv_lbolt = 0; 2114 2115 tcp->tcp_init_cwnd = 0; 2116 2117 tcp->tcp_urp_last_valid = 0; 2118 tcp->tcp_hard_binding = 0; 2119 2120 tcp->tcp_fin_acked = 0; 2121 tcp->tcp_fin_rcvd = 0; 2122 tcp->tcp_fin_sent = 0; 2123 tcp->tcp_ordrel_done = 0; 2124 2125 tcp->tcp_detached = 0; 2126 2127 tcp->tcp_snd_ws_ok = B_FALSE; 2128 tcp->tcp_snd_ts_ok = B_FALSE; 2129 tcp->tcp_zero_win_probe = 0; 2130 2131 tcp->tcp_loopback = 0; 2132 tcp->tcp_localnet = 0; 2133 tcp->tcp_syn_defense = 0; 2134 tcp->tcp_set_timer = 0; 2135 2136 tcp->tcp_active_open = 0; 2137 tcp->tcp_rexmit = B_FALSE; 2138 tcp->tcp_xmit_zc_clean = B_FALSE; 2139 2140 tcp->tcp_snd_sack_ok = B_FALSE; 2141 tcp->tcp_hwcksum = B_FALSE; 2142 2143 DONTCARE(tcp->tcp_maxpsz_multiplier); /* Init in tcp_init_values */ 2144 2145 tcp->tcp_conn_def_q0 = 0; 2146 tcp->tcp_ip_forward_progress = B_FALSE; 2147 tcp->tcp_ecn_ok = B_FALSE; 2148 2149 tcp->tcp_cwr = B_FALSE; 2150 tcp->tcp_ecn_echo_on = B_FALSE; 2151 tcp->tcp_is_wnd_shrnk = B_FALSE; 2152 2153 TCP_NOTSACK_REMOVE_ALL(tcp->tcp_notsack_list, tcp); 2154 bzero(&tcp->tcp_sack_info, sizeof (tcp_sack_info_t)); 2155 2156 tcp->tcp_rcv_ws = 0; 2157 tcp->tcp_snd_ws = 0; 2158 tcp->tcp_ts_recent = 0; 2159 tcp->tcp_rnxt = 0; /* Displayed in mib */ 2160 DONTCARE(tcp->tcp_rwnd); /* Set in tcp_reinit() */ 2161 tcp->tcp_initial_pmtu = 0; 2162 2163 ASSERT(tcp->tcp_reass_head == NULL); 2164 ASSERT(tcp->tcp_reass_tail == NULL); 2165 2166 tcp->tcp_cwnd_cnt = 0; 2167 2168 ASSERT(tcp->tcp_rcv_list == NULL); 2169 ASSERT(tcp->tcp_rcv_last_head == NULL); 2170 ASSERT(tcp->tcp_rcv_last_tail == NULL); 2171 ASSERT(tcp->tcp_rcv_cnt == 0); 2172 2173 DONTCARE(tcp->tcp_cwnd_ssthresh); /* Init in tcp_set_destination */ 2174 DONTCARE(tcp->tcp_cwnd_max); /* Init in tcp_init_values */ 2175 tcp->tcp_csuna = 0; 2176 2177 tcp->tcp_rto = 0; /* Displayed in MIB */ 2178 DONTCARE(tcp->tcp_rtt_sa); /* Init in tcp_init_values */ 2179 DONTCARE(tcp->tcp_rtt_sd); /* Init in tcp_init_values */ 2180 tcp->tcp_rtt_update = 0; 2181 2182 DONTCARE(tcp->tcp_swl1); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2183 DONTCARE(tcp->tcp_swl2); /* Init in case TCPS_LISTEN/TCPS_SYN_SENT */ 2184 2185 tcp->tcp_rack = 0; /* Displayed in mib */ 2186 tcp->tcp_rack_cnt = 0; 2187 tcp->tcp_rack_cur_max = 0; 2188 tcp->tcp_rack_abs_max = 0; 2189 2190 tcp->tcp_max_swnd = 0; 2191 2192 ASSERT(tcp->tcp_listener == NULL); 2193 2194 DONTCARE(tcp->tcp_irs); /* tcp_valid_bits cleared */ 2195 DONTCARE(tcp->tcp_iss); /* tcp_valid_bits cleared */ 2196 DONTCARE(tcp->tcp_fss); /* tcp_valid_bits cleared */ 2197 DONTCARE(tcp->tcp_urg); /* tcp_valid_bits cleared */ 2198 2199 ASSERT(tcp->tcp_conn_req_cnt_q == 0); 2200 ASSERT(tcp->tcp_conn_req_cnt_q0 == 0); 2201 PRESERVE(tcp->tcp_conn_req_max); 2202 PRESERVE(tcp->tcp_conn_req_seqnum); 2203 2204 DONTCARE(tcp->tcp_first_timer_threshold); /* Init in tcp_init_values */ 2205 DONTCARE(tcp->tcp_second_timer_threshold); /* Init in tcp_init_values */ 2206 DONTCARE(tcp->tcp_first_ctimer_threshold); /* Init in tcp_init_values */ 2207 DONTCARE(tcp->tcp_second_ctimer_threshold); /* in tcp_init_values */ 2208 2209 DONTCARE(tcp->tcp_urp_last); /* tcp_urp_last_valid is cleared */ 2210 ASSERT(tcp->tcp_urp_mp == NULL); 2211 ASSERT(tcp->tcp_urp_mark_mp == NULL); 2212 ASSERT(tcp->tcp_fused_sigurg_mp == NULL); 2213 2214 ASSERT(tcp->tcp_eager_next_q == NULL); 2215 ASSERT(tcp->tcp_eager_last_q == NULL); 2216 ASSERT((tcp->tcp_eager_next_q0 == NULL && 2217 tcp->tcp_eager_prev_q0 == NULL) || 2218 tcp->tcp_eager_next_q0 == tcp->tcp_eager_prev_q0); 2219 ASSERT(tcp->tcp_conn.tcp_eager_conn_ind == NULL); 2220 2221 ASSERT((tcp->tcp_eager_next_drop_q0 == NULL && 2222 tcp->tcp_eager_prev_drop_q0 == NULL) || 2223 tcp->tcp_eager_next_drop_q0 == tcp->tcp_eager_prev_drop_q0); 2224 2225 DONTCARE(tcp->tcp_ka_rinterval); /* Init in tcp_init_values */ 2226 DONTCARE(tcp->tcp_ka_abort_thres); /* Init in tcp_init_values */ 2227 DONTCARE(tcp->tcp_ka_cnt); /* Init in tcp_init_values */ 2228 2229 tcp->tcp_client_errno = 0; 2230 2231 DONTCARE(connp->conn_sum); /* Init in tcp_init_values */ 2232 2233 connp->conn_faddr_v6 = ipv6_all_zeros; /* Displayed in MIB */ 2234 2235 PRESERVE(connp->conn_bound_addr_v6); 2236 tcp->tcp_last_sent_len = 0; 2237 tcp->tcp_dupack_cnt = 0; 2238 2239 connp->conn_fport = 0; /* Displayed in MIB */ 2240 PRESERVE(connp->conn_lport); 2241 2242 PRESERVE(tcp->tcp_acceptor_lockp); 2243 2244 ASSERT(tcp->tcp_ordrel_mp == NULL); 2245 PRESERVE(tcp->tcp_acceptor_id); 2246 DONTCARE(tcp->tcp_ipsec_overhead); 2247 2248 PRESERVE(connp->conn_family); 2249 /* Remove any remnants of mapped address binding */ 2250 if (connp->conn_family == AF_INET6) { 2251 connp->conn_ipversion = IPV6_VERSION; 2252 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2253 } else { 2254 connp->conn_ipversion = IPV4_VERSION; 2255 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2256 } 2257 2258 connp->conn_bound_if = 0; 2259 connp->conn_recv_ancillary.crb_all = 0; 2260 tcp->tcp_recvifindex = 0; 2261 tcp->tcp_recvhops = 0; 2262 tcp->tcp_closed = 0; 2263 if (tcp->tcp_hopopts != NULL) { 2264 mi_free(tcp->tcp_hopopts); 2265 tcp->tcp_hopopts = NULL; 2266 tcp->tcp_hopoptslen = 0; 2267 } 2268 ASSERT(tcp->tcp_hopoptslen == 0); 2269 if (tcp->tcp_dstopts != NULL) { 2270 mi_free(tcp->tcp_dstopts); 2271 tcp->tcp_dstopts = NULL; 2272 tcp->tcp_dstoptslen = 0; 2273 } 2274 ASSERT(tcp->tcp_dstoptslen == 0); 2275 if (tcp->tcp_rthdrdstopts != NULL) { 2276 mi_free(tcp->tcp_rthdrdstopts); 2277 tcp->tcp_rthdrdstopts = NULL; 2278 tcp->tcp_rthdrdstoptslen = 0; 2279 } 2280 ASSERT(tcp->tcp_rthdrdstoptslen == 0); 2281 if (tcp->tcp_rthdr != NULL) { 2282 mi_free(tcp->tcp_rthdr); 2283 tcp->tcp_rthdr = NULL; 2284 tcp->tcp_rthdrlen = 0; 2285 } 2286 ASSERT(tcp->tcp_rthdrlen == 0); 2287 2288 /* Reset fusion-related fields */ 2289 tcp->tcp_fused = B_FALSE; 2290 tcp->tcp_unfusable = B_FALSE; 2291 tcp->tcp_fused_sigurg = B_FALSE; 2292 tcp->tcp_loopback_peer = NULL; 2293 2294 tcp->tcp_lso = B_FALSE; 2295 2296 tcp->tcp_in_ack_unsent = 0; 2297 tcp->tcp_cork = B_FALSE; 2298 tcp->tcp_tconnind_started = B_FALSE; 2299 2300 PRESERVE(tcp->tcp_squeue_bytes); 2301 2302 tcp->tcp_closemp_used = B_FALSE; 2303 2304 PRESERVE(tcp->tcp_rsrv_mp); 2305 PRESERVE(tcp->tcp_rsrv_mp_lock); 2306 2307 #ifdef DEBUG 2308 DONTCARE(tcp->tcmp_stk[0]); 2309 #endif 2310 2311 PRESERVE(tcp->tcp_connid); 2312 2313 ASSERT(tcp->tcp_listen_cnt == NULL); 2314 ASSERT(tcp->tcp_reass_tid == 0); 2315 2316 #undef DONTCARE 2317 #undef PRESERVE 2318 } 2319 2320 /* 2321 * Initialize the various fields in tcp_t. If parent (the listener) is non 2322 * NULL, certain values will be inheritted from it. 2323 */ 2324 void 2325 tcp_init_values(tcp_t *tcp, tcp_t *parent) 2326 { 2327 tcp_stack_t *tcps = tcp->tcp_tcps; 2328 conn_t *connp = tcp->tcp_connp; 2329 2330 ASSERT((connp->conn_family == AF_INET && 2331 connp->conn_ipversion == IPV4_VERSION) || 2332 (connp->conn_family == AF_INET6 && 2333 (connp->conn_ipversion == IPV4_VERSION || 2334 connp->conn_ipversion == IPV6_VERSION))); 2335 2336 if (parent == NULL) { 2337 tcp->tcp_naglim = tcps->tcps_naglim_def; 2338 2339 tcp->tcp_rto_initial = tcps->tcps_rexmit_interval_initial; 2340 tcp->tcp_rto_min = tcps->tcps_rexmit_interval_min; 2341 tcp->tcp_rto_max = tcps->tcps_rexmit_interval_max; 2342 2343 tcp->tcp_first_ctimer_threshold = 2344 tcps->tcps_ip_notify_cinterval; 2345 tcp->tcp_second_ctimer_threshold = 2346 tcps->tcps_ip_abort_cinterval; 2347 tcp->tcp_first_timer_threshold = tcps->tcps_ip_notify_interval; 2348 tcp->tcp_second_timer_threshold = tcps->tcps_ip_abort_interval; 2349 2350 tcp->tcp_fin_wait_2_flush_interval = 2351 tcps->tcps_fin_wait_2_flush_interval; 2352 2353 tcp->tcp_ka_interval = tcps->tcps_keepalive_interval; 2354 tcp->tcp_ka_abort_thres = tcps->tcps_keepalive_abort_interval; 2355 tcp->tcp_ka_cnt = 0; 2356 tcp->tcp_ka_rinterval = 0; 2357 2358 /* 2359 * Default value of tcp_init_cwnd is 0, so no need to set here 2360 * if parent is NULL. But we need to inherit it from parent. 2361 */ 2362 } else { 2363 /* Inherit various TCP parameters from the parent. */ 2364 tcp->tcp_naglim = parent->tcp_naglim; 2365 2366 tcp->tcp_rto_initial = parent->tcp_rto_initial; 2367 tcp->tcp_rto_min = parent->tcp_rto_min; 2368 tcp->tcp_rto_max = parent->tcp_rto_max; 2369 2370 tcp->tcp_first_ctimer_threshold = 2371 parent->tcp_first_ctimer_threshold; 2372 tcp->tcp_second_ctimer_threshold = 2373 parent->tcp_second_ctimer_threshold; 2374 tcp->tcp_first_timer_threshold = 2375 parent->tcp_first_timer_threshold; 2376 tcp->tcp_second_timer_threshold = 2377 parent->tcp_second_timer_threshold; 2378 2379 tcp->tcp_fin_wait_2_flush_interval = 2380 parent->tcp_fin_wait_2_flush_interval; 2381 2382 tcp->tcp_ka_interval = parent->tcp_ka_interval; 2383 tcp->tcp_ka_abort_thres = parent->tcp_ka_abort_thres; 2384 tcp->tcp_ka_cnt = parent->tcp_ka_cnt; 2385 tcp->tcp_ka_rinterval = parent->tcp_ka_rinterval; 2386 2387 tcp->tcp_init_cwnd = parent->tcp_init_cwnd; 2388 } 2389 2390 /* 2391 * Initialize tcp_rtt_sa and tcp_rtt_sd so that the calculated RTO 2392 * will be close to tcp_rexmit_interval_initial. By doing this, we 2393 * allow the algorithm to adjust slowly to large fluctuations of RTT 2394 * during first few transmissions of a connection as seen in slow 2395 * links. 2396 */ 2397 tcp->tcp_rtt_sa = MSEC2NSEC(tcp->tcp_rto_initial) << 2; 2398 tcp->tcp_rtt_sd = MSEC2NSEC(tcp->tcp_rto_initial) >> 1; 2399 tcp->tcp_rto = tcp_calculate_rto(tcp, tcps, 2400 tcps->tcps_conn_grace_period); 2401 2402 tcp->tcp_timer_backoff = 0; 2403 tcp->tcp_ms_we_have_waited = 0; 2404 tcp->tcp_last_recv_time = ddi_get_lbolt(); 2405 tcp->tcp_cwnd_max = tcps->tcps_cwnd_max_; 2406 tcp->tcp_cwnd_ssthresh = TCP_MAX_LARGEWIN; 2407 2408 tcp->tcp_maxpsz_multiplier = tcps->tcps_maxpsz_multiplier; 2409 2410 /* NOTE: ISS is now set in tcp_set_destination(). */ 2411 2412 /* Reset fusion-related fields */ 2413 tcp->tcp_fused = B_FALSE; 2414 tcp->tcp_unfusable = B_FALSE; 2415 tcp->tcp_fused_sigurg = B_FALSE; 2416 tcp->tcp_loopback_peer = NULL; 2417 2418 /* We rebuild the header template on the next connect/conn_request */ 2419 2420 connp->conn_mlp_type = mlptSingle; 2421 2422 /* 2423 * Init the window scale to the max so tcp_rwnd_set() won't pare 2424 * down tcp_rwnd. tcp_set_destination() will set the right value later. 2425 */ 2426 tcp->tcp_rcv_ws = TCP_MAX_WINSHIFT; 2427 tcp->tcp_rwnd = connp->conn_rcvbuf; 2428 2429 tcp->tcp_cork = B_FALSE; 2430 /* 2431 * Init the tcp_debug option if it wasn't already set. This value 2432 * determines whether TCP 2433 * calls strlog() to print out debug messages. Doing this 2434 * initialization here means that this value is not inherited thru 2435 * tcp_reinit(). 2436 */ 2437 if (!connp->conn_debug) 2438 connp->conn_debug = tcps->tcps_dbg; 2439 } 2440 2441 /* 2442 * Update the TCP connection according to change of PMTU. 2443 * 2444 * Path MTU might have changed by either increase or decrease, so need to 2445 * adjust the MSS based on the value of ixa_pmtu. No need to handle tiny 2446 * or negative MSS, since tcp_mss_set() will do it. 2447 */ 2448 void 2449 tcp_update_pmtu(tcp_t *tcp, boolean_t decrease_only) 2450 { 2451 uint32_t pmtu; 2452 int32_t mss; 2453 conn_t *connp = tcp->tcp_connp; 2454 ip_xmit_attr_t *ixa = connp->conn_ixa; 2455 iaflags_t ixaflags; 2456 2457 if (tcp->tcp_tcps->tcps_ignore_path_mtu) 2458 return; 2459 2460 if (tcp->tcp_state < TCPS_ESTABLISHED) 2461 return; 2462 2463 /* 2464 * Always call ip_get_pmtu() to make sure that IP has updated 2465 * ixa_flags properly. 2466 */ 2467 pmtu = ip_get_pmtu(ixa); 2468 ixaflags = ixa->ixa_flags; 2469 2470 /* 2471 * Calculate the MSS by decreasing the PMTU by conn_ht_iphc_len and 2472 * IPsec overhead if applied. Make sure to use the most recent 2473 * IPsec information. 2474 */ 2475 mss = pmtu - connp->conn_ht_iphc_len - conn_ipsec_length(connp); 2476 2477 /* 2478 * Nothing to change, so just return. 2479 */ 2480 if (mss == tcp->tcp_mss) 2481 return; 2482 2483 /* 2484 * Currently, for ICMP errors, only PMTU decrease is handled. 2485 */ 2486 if (mss > tcp->tcp_mss && decrease_only) 2487 return; 2488 2489 DTRACE_PROBE2(tcp_update_pmtu, int32_t, tcp->tcp_mss, uint32_t, mss); 2490 2491 /* 2492 * Update ixa_fragsize and ixa_pmtu. 2493 */ 2494 ixa->ixa_fragsize = ixa->ixa_pmtu = pmtu; 2495 2496 /* 2497 * Adjust MSS and all relevant variables. 2498 */ 2499 tcp_mss_set(tcp, mss); 2500 2501 /* 2502 * If the PMTU is below the min size maintained by IP, then ip_get_pmtu 2503 * has set IXAF_PMTU_TOO_SMALL and cleared IXAF_PMTU_IPV4_DF. Since TCP 2504 * has a (potentially different) min size we do the same. Make sure to 2505 * clear IXAF_DONTFRAG, which is used by IP to decide whether to 2506 * fragment the packet. 2507 * 2508 * LSO over IPv6 can not be fragmented. So need to disable LSO 2509 * when IPv6 fragmentation is needed. 2510 */ 2511 if (mss < tcp->tcp_tcps->tcps_mss_min) 2512 ixaflags |= IXAF_PMTU_TOO_SMALL; 2513 2514 if (ixaflags & IXAF_PMTU_TOO_SMALL) 2515 ixaflags &= ~(IXAF_DONTFRAG | IXAF_PMTU_IPV4_DF); 2516 2517 if ((connp->conn_ipversion == IPV4_VERSION) && 2518 !(ixaflags & IXAF_PMTU_IPV4_DF)) { 2519 tcp->tcp_ipha->ipha_fragment_offset_and_flags = 0; 2520 } 2521 ixa->ixa_flags = ixaflags; 2522 } 2523 2524 int 2525 tcp_maxpsz_set(tcp_t *tcp, boolean_t set_maxblk) 2526 { 2527 conn_t *connp = tcp->tcp_connp; 2528 queue_t *q = connp->conn_rq; 2529 int32_t mss = tcp->tcp_mss; 2530 int maxpsz; 2531 2532 if (TCP_IS_DETACHED(tcp)) 2533 return (mss); 2534 if (tcp->tcp_fused) { 2535 maxpsz = tcp_fuse_maxpsz(tcp); 2536 mss = INFPSZ; 2537 } else if (tcp->tcp_maxpsz_multiplier == 0) { 2538 /* 2539 * Set the sd_qn_maxpsz according to the socket send buffer 2540 * size, and sd_maxblk to INFPSZ (-1). This will essentially 2541 * instruct the stream head to copyin user data into contiguous 2542 * kernel-allocated buffers without breaking it up into smaller 2543 * chunks. We round up the buffer size to the nearest SMSS. 2544 */ 2545 maxpsz = MSS_ROUNDUP(connp->conn_sndbuf, mss); 2546 mss = INFPSZ; 2547 } else { 2548 /* 2549 * Set sd_qn_maxpsz to approx half the (receivers) buffer 2550 * (and a multiple of the mss). This instructs the stream 2551 * head to break down larger than SMSS writes into SMSS- 2552 * size mblks, up to tcp_maxpsz_multiplier mblks at a time. 2553 */ 2554 maxpsz = tcp->tcp_maxpsz_multiplier * mss; 2555 if (maxpsz > connp->conn_sndbuf / 2) { 2556 maxpsz = connp->conn_sndbuf / 2; 2557 /* Round up to nearest mss */ 2558 maxpsz = MSS_ROUNDUP(maxpsz, mss); 2559 } 2560 } 2561 2562 (void) proto_set_maxpsz(q, connp, maxpsz); 2563 if (!(IPCL_IS_NONSTR(connp))) 2564 connp->conn_wq->q_maxpsz = maxpsz; 2565 if (set_maxblk) 2566 (void) proto_set_tx_maxblk(q, connp, mss); 2567 return (mss); 2568 } 2569 2570 /* For /dev/tcp aka AF_INET open */ 2571 static int 2572 tcp_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2573 { 2574 return (tcp_open(q, devp, flag, sflag, credp, B_FALSE)); 2575 } 2576 2577 /* For /dev/tcp6 aka AF_INET6 open */ 2578 static int 2579 tcp_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) 2580 { 2581 return (tcp_open(q, devp, flag, sflag, credp, B_TRUE)); 2582 } 2583 2584 conn_t * 2585 tcp_create_common(cred_t *credp, boolean_t isv6, boolean_t issocket, 2586 int *errorp) 2587 { 2588 tcp_t *tcp = NULL; 2589 conn_t *connp; 2590 zoneid_t zoneid; 2591 tcp_stack_t *tcps; 2592 squeue_t *sqp; 2593 2594 ASSERT(errorp != NULL); 2595 /* 2596 * Find the proper zoneid and netstack. 2597 */ 2598 /* 2599 * Special case for install: miniroot needs to be able to 2600 * access files via NFS as though it were always in the 2601 * global zone. 2602 */ 2603 if (credp == kcred && nfs_global_client_only != 0) { 2604 zoneid = GLOBAL_ZONEID; 2605 tcps = netstack_find_by_stackid(GLOBAL_NETSTACKID)-> 2606 netstack_tcp; 2607 ASSERT(tcps != NULL); 2608 } else { 2609 netstack_t *ns; 2610 int err; 2611 2612 if ((err = secpolicy_basic_net_access(credp)) != 0) { 2613 *errorp = err; 2614 return (NULL); 2615 } 2616 2617 ns = netstack_find_by_cred(credp); 2618 ASSERT(ns != NULL); 2619 tcps = ns->netstack_tcp; 2620 ASSERT(tcps != NULL); 2621 2622 /* 2623 * For exclusive stacks we set the zoneid to zero 2624 * to make TCP operate as if in the global zone. 2625 */ 2626 if (tcps->tcps_netstack->netstack_stackid != 2627 GLOBAL_NETSTACKID) 2628 zoneid = GLOBAL_ZONEID; 2629 else 2630 zoneid = crgetzoneid(credp); 2631 } 2632 2633 sqp = IP_SQUEUE_GET((uint_t)gethrtime()); 2634 connp = (conn_t *)tcp_get_conn(sqp, tcps); 2635 /* 2636 * Both tcp_get_conn and netstack_find_by_cred incremented refcnt, 2637 * so we drop it by one. 2638 */ 2639 netstack_rele(tcps->tcps_netstack); 2640 if (connp == NULL) { 2641 *errorp = ENOSR; 2642 return (NULL); 2643 } 2644 ASSERT(connp->conn_ixa->ixa_protocol == connp->conn_proto); 2645 2646 connp->conn_sqp = sqp; 2647 connp->conn_initial_sqp = connp->conn_sqp; 2648 connp->conn_ixa->ixa_sqp = connp->conn_sqp; 2649 tcp = connp->conn_tcp; 2650 2651 /* 2652 * Besides asking IP to set the checksum for us, have conn_ip_output 2653 * to do the following checks when necessary: 2654 * 2655 * IXAF_VERIFY_SOURCE: drop packets when our outer source goes invalid 2656 * IXAF_VERIFY_PMTU: verify PMTU changes 2657 * IXAF_VERIFY_LSO: verify LSO capability changes 2658 */ 2659 connp->conn_ixa->ixa_flags |= IXAF_SET_ULP_CKSUM | IXAF_VERIFY_SOURCE | 2660 IXAF_VERIFY_PMTU | IXAF_VERIFY_LSO; 2661 2662 if (!tcps->tcps_dev_flow_ctl) 2663 connp->conn_ixa->ixa_flags |= IXAF_NO_DEV_FLOW_CTL; 2664 2665 if (isv6) { 2666 connp->conn_ixa->ixa_src_preferences = IPV6_PREFER_SRC_DEFAULT; 2667 connp->conn_ipversion = IPV6_VERSION; 2668 connp->conn_family = AF_INET6; 2669 tcp->tcp_mss = tcps->tcps_mss_def_ipv6; 2670 connp->conn_default_ttl = tcps->tcps_ipv6_hoplimit; 2671 } else { 2672 connp->conn_ipversion = IPV4_VERSION; 2673 connp->conn_family = AF_INET; 2674 tcp->tcp_mss = tcps->tcps_mss_def_ipv4; 2675 connp->conn_default_ttl = tcps->tcps_ipv4_ttl; 2676 } 2677 connp->conn_xmit_ipp.ipp_unicast_hops = connp->conn_default_ttl; 2678 2679 crhold(credp); 2680 connp->conn_cred = credp; 2681 connp->conn_cpid = curproc->p_pid; 2682 connp->conn_open_time = ddi_get_lbolt64(); 2683 2684 /* Cache things in the ixa without any refhold */ 2685 ASSERT(!(connp->conn_ixa->ixa_free_flags & IXA_FREE_CRED)); 2686 connp->conn_ixa->ixa_cred = credp; 2687 connp->conn_ixa->ixa_cpid = connp->conn_cpid; 2688 2689 connp->conn_zoneid = zoneid; 2690 /* conn_allzones can not be set this early, hence no IPCL_ZONEID */ 2691 connp->conn_ixa->ixa_zoneid = zoneid; 2692 connp->conn_mlp_type = mlptSingle; 2693 ASSERT(connp->conn_netstack == tcps->tcps_netstack); 2694 ASSERT(tcp->tcp_tcps == tcps); 2695 2696 /* 2697 * If the caller has the process-wide flag set, then default to MAC 2698 * exempt mode. This allows read-down to unlabeled hosts. 2699 */ 2700 if (getpflags(NET_MAC_AWARE, credp) != 0) 2701 connp->conn_mac_mode = CONN_MAC_AWARE; 2702 2703 connp->conn_zone_is_global = (crgetzoneid(credp) == GLOBAL_ZONEID); 2704 2705 if (issocket) { 2706 tcp->tcp_issocket = 1; 2707 } 2708 2709 connp->conn_rcvbuf = tcps->tcps_recv_hiwat; 2710 connp->conn_sndbuf = tcps->tcps_xmit_hiwat; 2711 if (tcps->tcps_snd_lowat_fraction != 0) { 2712 connp->conn_sndlowat = connp->conn_sndbuf / 2713 tcps->tcps_snd_lowat_fraction; 2714 } else { 2715 connp->conn_sndlowat = tcps->tcps_xmit_lowat; 2716 } 2717 connp->conn_so_type = SOCK_STREAM; 2718 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2719 tcps->tcps_wroff_xtra; 2720 2721 SOCK_CONNID_INIT(tcp->tcp_connid); 2722 /* DTrace ignores this - it isn't a tcp:::state-change */ 2723 tcp->tcp_state = TCPS_IDLE; 2724 tcp_init_values(tcp, NULL); 2725 return (connp); 2726 } 2727 2728 static int 2729 tcp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp, 2730 boolean_t isv6) 2731 { 2732 tcp_t *tcp = NULL; 2733 conn_t *connp = NULL; 2734 int err; 2735 vmem_t *minor_arena = NULL; 2736 dev_t conn_dev; 2737 boolean_t issocket; 2738 2739 if (q->q_ptr != NULL) 2740 return (0); 2741 2742 if (sflag == MODOPEN) 2743 return (EINVAL); 2744 2745 if ((ip_minor_arena_la != NULL) && (flag & SO_SOCKSTR) && 2746 ((conn_dev = inet_minor_alloc(ip_minor_arena_la)) != 0)) { 2747 minor_arena = ip_minor_arena_la; 2748 } else { 2749 /* 2750 * Either minor numbers in the large arena were exhausted 2751 * or a non socket application is doing the open. 2752 * Try to allocate from the small arena. 2753 */ 2754 if ((conn_dev = inet_minor_alloc(ip_minor_arena_sa)) == 0) { 2755 return (EBUSY); 2756 } 2757 minor_arena = ip_minor_arena_sa; 2758 } 2759 2760 ASSERT(minor_arena != NULL); 2761 2762 *devp = makedevice(getmajor(*devp), (minor_t)conn_dev); 2763 2764 if (flag & SO_FALLBACK) { 2765 /* 2766 * Non streams socket needs a stream to fallback to 2767 */ 2768 RD(q)->q_ptr = (void *)conn_dev; 2769 WR(q)->q_qinfo = &tcp_fallback_sock_winit; 2770 WR(q)->q_ptr = (void *)minor_arena; 2771 qprocson(q); 2772 return (0); 2773 } else if (flag & SO_ACCEPTOR) { 2774 q->q_qinfo = &tcp_acceptor_rinit; 2775 /* 2776 * the conn_dev and minor_arena will be subsequently used by 2777 * tcp_tli_accept() and tcp_tpi_close_accept() to figure out 2778 * the minor device number for this connection from the q_ptr. 2779 */ 2780 RD(q)->q_ptr = (void *)conn_dev; 2781 WR(q)->q_qinfo = &tcp_acceptor_winit; 2782 WR(q)->q_ptr = (void *)minor_arena; 2783 qprocson(q); 2784 return (0); 2785 } 2786 2787 issocket = flag & SO_SOCKSTR; 2788 connp = tcp_create_common(credp, isv6, issocket, &err); 2789 2790 if (connp == NULL) { 2791 inet_minor_free(minor_arena, conn_dev); 2792 q->q_ptr = WR(q)->q_ptr = NULL; 2793 return (err); 2794 } 2795 2796 connp->conn_rq = q; 2797 connp->conn_wq = WR(q); 2798 q->q_ptr = WR(q)->q_ptr = connp; 2799 2800 connp->conn_dev = conn_dev; 2801 connp->conn_minor_arena = minor_arena; 2802 2803 ASSERT(q->q_qinfo == &tcp_rinitv4 || q->q_qinfo == &tcp_rinitv6); 2804 ASSERT(WR(q)->q_qinfo == &tcp_winit); 2805 2806 tcp = connp->conn_tcp; 2807 2808 if (issocket) { 2809 WR(q)->q_qinfo = &tcp_sock_winit; 2810 } else { 2811 #ifdef _ILP32 2812 tcp->tcp_acceptor_id = (t_uscalar_t)RD(q); 2813 #else 2814 tcp->tcp_acceptor_id = conn_dev; 2815 #endif /* _ILP32 */ 2816 tcp_acceptor_hash_insert(tcp->tcp_acceptor_id, tcp); 2817 } 2818 2819 /* 2820 * Put the ref for TCP. Ref for IP was already put 2821 * by ipcl_conn_create. Also Make the conn_t globally 2822 * visible to walkers 2823 */ 2824 mutex_enter(&connp->conn_lock); 2825 CONN_INC_REF_LOCKED(connp); 2826 ASSERT(connp->conn_ref == 2); 2827 connp->conn_state_flags &= ~CONN_INCIPIENT; 2828 mutex_exit(&connp->conn_lock); 2829 2830 qprocson(q); 2831 return (0); 2832 } 2833 2834 /* 2835 * Build/update the tcp header template (in conn_ht_iphc) based on 2836 * conn_xmit_ipp. The headers include ip6_t, any extension 2837 * headers, and the maximum size tcp header (to avoid reallocation 2838 * on the fly for additional tcp options). 2839 * 2840 * Assumes the caller has already set conn_{faddr,laddr,fport,lport,flowinfo}. 2841 * Returns failure if can't allocate memory. 2842 */ 2843 int 2844 tcp_build_hdrs(tcp_t *tcp) 2845 { 2846 tcp_stack_t *tcps = tcp->tcp_tcps; 2847 conn_t *connp = tcp->tcp_connp; 2848 char buf[TCP_MAX_HDR_LENGTH]; 2849 uint_t buflen; 2850 uint_t ulplen = TCP_MIN_HEADER_LENGTH; 2851 uint_t extralen = TCP_MAX_TCP_OPTIONS_LENGTH; 2852 tcpha_t *tcpha; 2853 uint32_t cksum; 2854 int error; 2855 2856 /* 2857 * We might be called after the connection is set up, and we might 2858 * have TS options already in the TCP header. Thus we save any 2859 * existing tcp header. 2860 */ 2861 buflen = connp->conn_ht_ulp_len; 2862 if (buflen != 0) { 2863 bcopy(connp->conn_ht_ulp, buf, buflen); 2864 extralen -= buflen - ulplen; 2865 ulplen = buflen; 2866 } 2867 2868 /* Grab lock to satisfy ASSERT; TCP is serialized using squeue */ 2869 mutex_enter(&connp->conn_lock); 2870 error = conn_build_hdr_template(connp, ulplen, extralen, 2871 &connp->conn_laddr_v6, &connp->conn_faddr_v6, connp->conn_flowinfo); 2872 mutex_exit(&connp->conn_lock); 2873 if (error != 0) 2874 return (error); 2875 2876 /* 2877 * Any routing header/option has been massaged. The checksum difference 2878 * is stored in conn_sum for later use. 2879 */ 2880 tcpha = (tcpha_t *)connp->conn_ht_ulp; 2881 tcp->tcp_tcpha = tcpha; 2882 2883 /* restore any old tcp header */ 2884 if (buflen != 0) { 2885 bcopy(buf, connp->conn_ht_ulp, buflen); 2886 } else { 2887 tcpha->tha_sum = 0; 2888 tcpha->tha_urp = 0; 2889 tcpha->tha_ack = 0; 2890 tcpha->tha_offset_and_reserved = (5 << 4); 2891 tcpha->tha_lport = connp->conn_lport; 2892 tcpha->tha_fport = connp->conn_fport; 2893 } 2894 2895 /* 2896 * IP wants our header length in the checksum field to 2897 * allow it to perform a single pseudo-header+checksum 2898 * calculation on behalf of TCP. 2899 * Include the adjustment for a source route once IP_OPTIONS is set. 2900 */ 2901 cksum = sizeof (tcpha_t) + connp->conn_sum; 2902 cksum = (cksum >> 16) + (cksum & 0xFFFF); 2903 ASSERT(cksum < 0x10000); 2904 tcpha->tha_sum = htons(cksum); 2905 2906 if (connp->conn_ipversion == IPV4_VERSION) 2907 tcp->tcp_ipha = (ipha_t *)connp->conn_ht_iphc; 2908 else 2909 tcp->tcp_ip6h = (ip6_t *)connp->conn_ht_iphc; 2910 2911 if (connp->conn_ht_iphc_allocated + tcps->tcps_wroff_xtra > 2912 connp->conn_wroff) { 2913 connp->conn_wroff = connp->conn_ht_iphc_allocated + 2914 tcps->tcps_wroff_xtra; 2915 (void) proto_set_tx_wroff(connp->conn_rq, connp, 2916 connp->conn_wroff); 2917 } 2918 return (0); 2919 } 2920 2921 /* 2922 * tcp_rwnd_set() is called to adjust the receive window to a desired value. 2923 * We do not allow the receive window to shrink. After setting rwnd, 2924 * set the flow control hiwat of the stream. 2925 * 2926 * This function is called in 2 cases: 2927 * 2928 * 1) Before data transfer begins, in tcp_input_listener() for accepting a 2929 * connection (passive open) and in tcp_input_data() for active connect. 2930 * This is called after tcp_mss_set() when the desired MSS value is known. 2931 * This makes sure that our window size is a mutiple of the other side's 2932 * MSS. 2933 * 2) Handling SO_RCVBUF option. 2934 * 2935 * It is ASSUMED that the requested size is a multiple of the current MSS. 2936 * 2937 * XXX - Should allow a lower rwnd than tcp_recv_hiwat_minmss * mss if the 2938 * user requests so. 2939 */ 2940 int 2941 tcp_rwnd_set(tcp_t *tcp, uint32_t rwnd) 2942 { 2943 uint32_t mss = tcp->tcp_mss; 2944 uint32_t old_max_rwnd; 2945 uint32_t max_transmittable_rwnd; 2946 boolean_t tcp_detached = TCP_IS_DETACHED(tcp); 2947 tcp_stack_t *tcps = tcp->tcp_tcps; 2948 conn_t *connp = tcp->tcp_connp; 2949 2950 /* 2951 * Insist on a receive window that is at least 2952 * tcp_recv_hiwat_minmss * MSS (default 4 * MSS) to avoid 2953 * funny TCP interactions of Nagle algorithm, SWS avoidance 2954 * and delayed acknowledgement. 2955 */ 2956 rwnd = MAX(rwnd, tcps->tcps_recv_hiwat_minmss * mss); 2957 2958 if (tcp->tcp_fused) { 2959 size_t sth_hiwat; 2960 tcp_t *peer_tcp = tcp->tcp_loopback_peer; 2961 2962 ASSERT(peer_tcp != NULL); 2963 sth_hiwat = tcp_fuse_set_rcv_hiwat(tcp, rwnd); 2964 if (!tcp_detached) { 2965 (void) proto_set_rx_hiwat(connp->conn_rq, connp, 2966 sth_hiwat); 2967 tcp_set_recv_threshold(tcp, sth_hiwat >> 3); 2968 } 2969 2970 /* Caller could have changed tcp_rwnd; update tha_win */ 2971 if (tcp->tcp_tcpha != NULL) { 2972 tcp->tcp_tcpha->tha_win = 2973 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 2974 } 2975 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 2976 tcp->tcp_cwnd_max = rwnd; 2977 2978 /* 2979 * In the fusion case, the maxpsz stream head value of 2980 * our peer is set according to its send buffer size 2981 * and our receive buffer size; since the latter may 2982 * have changed we need to update the peer's maxpsz. 2983 */ 2984 (void) tcp_maxpsz_set(peer_tcp, B_TRUE); 2985 return (sth_hiwat); 2986 } 2987 2988 if (tcp_detached) 2989 old_max_rwnd = tcp->tcp_rwnd; 2990 else 2991 old_max_rwnd = connp->conn_rcvbuf; 2992 2993 2994 /* 2995 * If window size info has already been exchanged, TCP should not 2996 * shrink the window. Shrinking window is doable if done carefully. 2997 * We may add that support later. But so far there is not a real 2998 * need to do that. 2999 */ 3000 if (rwnd < old_max_rwnd && tcp->tcp_state > TCPS_SYN_SENT) { 3001 /* MSS may have changed, do a round up again. */ 3002 rwnd = MSS_ROUNDUP(old_max_rwnd, mss); 3003 } 3004 3005 /* 3006 * tcp_rcv_ws starts with TCP_MAX_WINSHIFT so the following check 3007 * can be applied even before the window scale option is decided. 3008 */ 3009 max_transmittable_rwnd = TCP_MAXWIN << tcp->tcp_rcv_ws; 3010 if (rwnd > max_transmittable_rwnd) { 3011 rwnd = max_transmittable_rwnd - 3012 (max_transmittable_rwnd % mss); 3013 if (rwnd < mss) 3014 rwnd = max_transmittable_rwnd; 3015 /* 3016 * If we're over the limit we may have to back down tcp_rwnd. 3017 * The increment below won't work for us. So we set all three 3018 * here and the increment below will have no effect. 3019 */ 3020 tcp->tcp_rwnd = old_max_rwnd = rwnd; 3021 } 3022 if (tcp->tcp_localnet) { 3023 tcp->tcp_rack_abs_max = 3024 MIN(tcps->tcps_local_dacks_max, rwnd / mss / 2); 3025 } else { 3026 /* 3027 * For a remote host on a different subnet (through a router), 3028 * we ack every other packet to be conforming to RFC1122. 3029 * tcp_deferred_acks_max is default to 2. 3030 */ 3031 tcp->tcp_rack_abs_max = 3032 MIN(tcps->tcps_deferred_acks_max, rwnd / mss / 2); 3033 } 3034 if (tcp->tcp_rack_cur_max > tcp->tcp_rack_abs_max) 3035 tcp->tcp_rack_cur_max = tcp->tcp_rack_abs_max; 3036 else 3037 tcp->tcp_rack_cur_max = 0; 3038 /* 3039 * Increment the current rwnd by the amount the maximum grew (we 3040 * can not overwrite it since we might be in the middle of a 3041 * connection.) 3042 */ 3043 tcp->tcp_rwnd += rwnd - old_max_rwnd; 3044 connp->conn_rcvbuf = rwnd; 3045 3046 /* Are we already connected? */ 3047 if (tcp->tcp_tcpha != NULL) { 3048 tcp->tcp_tcpha->tha_win = 3049 htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 3050 } 3051 3052 if ((tcp->tcp_rcv_ws > 0) && rwnd > tcp->tcp_cwnd_max) 3053 tcp->tcp_cwnd_max = rwnd; 3054 3055 if (tcp_detached) 3056 return (rwnd); 3057 3058 tcp_set_recv_threshold(tcp, rwnd >> 3); 3059 3060 (void) proto_set_rx_hiwat(connp->conn_rq, connp, rwnd); 3061 return (rwnd); 3062 } 3063 3064 int 3065 tcp_do_unbind(conn_t *connp) 3066 { 3067 tcp_t *tcp = connp->conn_tcp; 3068 int32_t oldstate; 3069 3070 switch (tcp->tcp_state) { 3071 case TCPS_BOUND: 3072 case TCPS_LISTEN: 3073 break; 3074 default: 3075 return (-TOUTSTATE); 3076 } 3077 3078 /* 3079 * Need to clean up all the eagers since after the unbind, segments 3080 * will no longer be delivered to this listener stream. 3081 */ 3082 mutex_enter(&tcp->tcp_eager_lock); 3083 if (tcp->tcp_conn_req_cnt_q0 != 0 || tcp->tcp_conn_req_cnt_q != 0) { 3084 tcp_eager_cleanup(tcp, 0); 3085 } 3086 mutex_exit(&tcp->tcp_eager_lock); 3087 3088 /* Clean up the listener connection counter if necessary. */ 3089 if (tcp->tcp_listen_cnt != NULL) 3090 TCP_DECR_LISTEN_CNT(tcp); 3091 connp->conn_laddr_v6 = ipv6_all_zeros; 3092 connp->conn_saddr_v6 = ipv6_all_zeros; 3093 tcp_bind_hash_remove(tcp); 3094 oldstate = tcp->tcp_state; 3095 tcp->tcp_state = TCPS_IDLE; 3096 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 3097 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 3098 int32_t, oldstate); 3099 3100 ip_unbind(connp); 3101 bzero(&connp->conn_ports, sizeof (connp->conn_ports)); 3102 3103 return (0); 3104 } 3105 3106 /* 3107 * Collect protocol properties to send to the upper handle. 3108 */ 3109 void 3110 tcp_get_proto_props(tcp_t *tcp, struct sock_proto_props *sopp) 3111 { 3112 conn_t *connp = tcp->tcp_connp; 3113 3114 sopp->sopp_flags = SOCKOPT_RCVHIWAT | SOCKOPT_MAXBLK | SOCKOPT_WROFF; 3115 sopp->sopp_maxblk = tcp_maxpsz_set(tcp, B_FALSE); 3116 3117 sopp->sopp_rxhiwat = tcp->tcp_fused ? 3118 tcp_fuse_set_rcv_hiwat(tcp, connp->conn_rcvbuf) : 3119 connp->conn_rcvbuf; 3120 /* 3121 * Determine what write offset value to use depending on SACK and 3122 * whether the endpoint is fused or not. 3123 */ 3124 if (tcp->tcp_fused) { 3125 ASSERT(tcp->tcp_loopback); 3126 ASSERT(tcp->tcp_loopback_peer != NULL); 3127 /* 3128 * For fused tcp loopback, set the stream head's write 3129 * offset value to zero since we won't be needing any room 3130 * for TCP/IP headers. This would also improve performance 3131 * since it would reduce the amount of work done by kmem. 3132 * Non-fused tcp loopback case is handled separately below. 3133 */ 3134 sopp->sopp_wroff = 0; 3135 /* 3136 * Update the peer's transmit parameters according to 3137 * our recently calculated high water mark value. 3138 */ 3139 (void) tcp_maxpsz_set(tcp->tcp_loopback_peer, B_TRUE); 3140 } else if (tcp->tcp_snd_sack_ok) { 3141 sopp->sopp_wroff = connp->conn_ht_iphc_allocated + 3142 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3143 } else { 3144 sopp->sopp_wroff = connp->conn_ht_iphc_len + 3145 (tcp->tcp_loopback ? 0 : tcp->tcp_tcps->tcps_wroff_xtra); 3146 } 3147 3148 if (tcp->tcp_loopback) { 3149 sopp->sopp_flags |= SOCKOPT_LOOPBACK; 3150 sopp->sopp_loopback = B_TRUE; 3151 } 3152 } 3153 3154 /* 3155 * Check the usability of ZEROCOPY. It's instead checking the flag set by IP. 3156 */ 3157 boolean_t 3158 tcp_zcopy_check(tcp_t *tcp) 3159 { 3160 conn_t *connp = tcp->tcp_connp; 3161 ip_xmit_attr_t *ixa = connp->conn_ixa; 3162 boolean_t zc_enabled = B_FALSE; 3163 tcp_stack_t *tcps = tcp->tcp_tcps; 3164 3165 if (do_tcpzcopy == 2) 3166 zc_enabled = B_TRUE; 3167 else if ((do_tcpzcopy == 1) && (ixa->ixa_flags & IXAF_ZCOPY_CAPAB)) 3168 zc_enabled = B_TRUE; 3169 3170 tcp->tcp_snd_zcopy_on = zc_enabled; 3171 if (!TCP_IS_DETACHED(tcp)) { 3172 if (zc_enabled) { 3173 ixa->ixa_flags |= IXAF_VERIFY_ZCOPY; 3174 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3175 ZCVMSAFE); 3176 TCP_STAT(tcps, tcp_zcopy_on); 3177 } else { 3178 ixa->ixa_flags &= ~IXAF_VERIFY_ZCOPY; 3179 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3180 ZCVMUNSAFE); 3181 TCP_STAT(tcps, tcp_zcopy_off); 3182 } 3183 } 3184 return (zc_enabled); 3185 } 3186 3187 /* 3188 * Backoff from a zero-copy message by copying data to a new allocated 3189 * message and freeing the original desballoca'ed segmapped message. 3190 * 3191 * This function is called by following two callers: 3192 * 1. tcp_timer: fix_xmitlist is set to B_TRUE, because it's safe to free 3193 * the origial desballoca'ed message and notify sockfs. This is in re- 3194 * transmit state. 3195 * 2. tcp_output: fix_xmitlist is set to B_FALSE. Flag STRUIO_ZCNOTIFY need 3196 * to be copied to new message. 3197 */ 3198 mblk_t * 3199 tcp_zcopy_backoff(tcp_t *tcp, mblk_t *bp, boolean_t fix_xmitlist) 3200 { 3201 mblk_t *nbp; 3202 mblk_t *head = NULL; 3203 mblk_t *tail = NULL; 3204 tcp_stack_t *tcps = tcp->tcp_tcps; 3205 3206 ASSERT(bp != NULL); 3207 while (bp != NULL) { 3208 if (IS_VMLOANED_MBLK(bp)) { 3209 TCP_STAT(tcps, tcp_zcopy_backoff); 3210 if ((nbp = copyb(bp)) == NULL) { 3211 tcp->tcp_xmit_zc_clean = B_FALSE; 3212 if (tail != NULL) 3213 tail->b_cont = bp; 3214 return ((head == NULL) ? bp : head); 3215 } 3216 3217 if (bp->b_datap->db_struioflag & STRUIO_ZCNOTIFY) { 3218 if (fix_xmitlist) 3219 tcp_zcopy_notify(tcp); 3220 else 3221 nbp->b_datap->db_struioflag |= 3222 STRUIO_ZCNOTIFY; 3223 } 3224 nbp->b_cont = bp->b_cont; 3225 3226 /* 3227 * Copy saved information and adjust tcp_xmit_tail 3228 * if needed. 3229 */ 3230 if (fix_xmitlist) { 3231 nbp->b_prev = bp->b_prev; 3232 nbp->b_next = bp->b_next; 3233 3234 if (tcp->tcp_xmit_tail == bp) 3235 tcp->tcp_xmit_tail = nbp; 3236 } 3237 3238 /* Free the original message. */ 3239 bp->b_prev = NULL; 3240 bp->b_next = NULL; 3241 freeb(bp); 3242 3243 bp = nbp; 3244 } 3245 3246 if (head == NULL) { 3247 head = bp; 3248 } 3249 if (tail == NULL) { 3250 tail = bp; 3251 } else { 3252 tail->b_cont = bp; 3253 tail = bp; 3254 } 3255 3256 /* Move forward. */ 3257 bp = bp->b_cont; 3258 } 3259 3260 if (fix_xmitlist) { 3261 tcp->tcp_xmit_last = tail; 3262 tcp->tcp_xmit_zc_clean = B_TRUE; 3263 } 3264 3265 return (head); 3266 } 3267 3268 void 3269 tcp_zcopy_notify(tcp_t *tcp) 3270 { 3271 struct stdata *stp; 3272 conn_t *connp; 3273 3274 if (tcp->tcp_detached) 3275 return; 3276 connp = tcp->tcp_connp; 3277 if (IPCL_IS_NONSTR(connp)) { 3278 (*connp->conn_upcalls->su_zcopy_notify) 3279 (connp->conn_upper_handle); 3280 return; 3281 } 3282 stp = STREAM(connp->conn_rq); 3283 mutex_enter(&stp->sd_lock); 3284 stp->sd_flag |= STZCNOTIFY; 3285 cv_broadcast(&stp->sd_zcopy_wait); 3286 mutex_exit(&stp->sd_lock); 3287 } 3288 3289 /* 3290 * Update the TCP connection according to change of LSO capability. 3291 */ 3292 static void 3293 tcp_update_lso(tcp_t *tcp, ip_xmit_attr_t *ixa) 3294 { 3295 /* 3296 * We check against IPv4 header length to preserve the old behavior 3297 * of only enabling LSO when there are no IP options. 3298 * But this restriction might not be necessary at all. Before removing 3299 * it, need to verify how LSO is handled for source routing case, with 3300 * which IP does software checksum. 3301 * 3302 * For IPv6, whenever any extension header is needed, LSO is supressed. 3303 */ 3304 if (ixa->ixa_ip_hdr_length != ((ixa->ixa_flags & IXAF_IS_IPV4) ? 3305 IP_SIMPLE_HDR_LENGTH : IPV6_HDR_LEN)) 3306 return; 3307 3308 /* 3309 * Either the LSO capability newly became usable, or it has changed. 3310 */ 3311 if (ixa->ixa_flags & IXAF_LSO_CAPAB) { 3312 ill_lso_capab_t *lsoc = &ixa->ixa_lso_capab; 3313 3314 ASSERT(lsoc->ill_lso_max > 0); 3315 tcp->tcp_lso_max = MIN(TCP_MAX_LSO_LENGTH, lsoc->ill_lso_max); 3316 3317 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3318 boolean_t, B_TRUE, uint32_t, tcp->tcp_lso_max); 3319 3320 /* 3321 * If LSO to be enabled, notify the STREAM header with larger 3322 * data block. 3323 */ 3324 if (!tcp->tcp_lso) 3325 tcp->tcp_maxpsz_multiplier = 0; 3326 3327 tcp->tcp_lso = B_TRUE; 3328 TCP_STAT(tcp->tcp_tcps, tcp_lso_enabled); 3329 } else { /* LSO capability is not usable any more. */ 3330 DTRACE_PROBE3(tcp_update_lso, boolean_t, tcp->tcp_lso, 3331 boolean_t, B_FALSE, uint32_t, tcp->tcp_lso_max); 3332 3333 /* 3334 * If LSO to be disabled, notify the STREAM header with smaller 3335 * data block. And need to restore fragsize to PMTU. 3336 */ 3337 if (tcp->tcp_lso) { 3338 tcp->tcp_maxpsz_multiplier = 3339 tcp->tcp_tcps->tcps_maxpsz_multiplier; 3340 ixa->ixa_fragsize = ixa->ixa_pmtu; 3341 tcp->tcp_lso = B_FALSE; 3342 TCP_STAT(tcp->tcp_tcps, tcp_lso_disabled); 3343 } 3344 } 3345 3346 (void) tcp_maxpsz_set(tcp, B_TRUE); 3347 } 3348 3349 /* 3350 * Update the TCP connection according to change of ZEROCOPY capability. 3351 */ 3352 static void 3353 tcp_update_zcopy(tcp_t *tcp) 3354 { 3355 conn_t *connp = tcp->tcp_connp; 3356 tcp_stack_t *tcps = tcp->tcp_tcps; 3357 3358 if (tcp->tcp_snd_zcopy_on) { 3359 tcp->tcp_snd_zcopy_on = B_FALSE; 3360 if (!TCP_IS_DETACHED(tcp)) { 3361 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3362 ZCVMUNSAFE); 3363 TCP_STAT(tcps, tcp_zcopy_off); 3364 } 3365 } else { 3366 tcp->tcp_snd_zcopy_on = B_TRUE; 3367 if (!TCP_IS_DETACHED(tcp)) { 3368 (void) proto_set_tx_copyopt(connp->conn_rq, connp, 3369 ZCVMSAFE); 3370 TCP_STAT(tcps, tcp_zcopy_on); 3371 } 3372 } 3373 } 3374 3375 /* 3376 * Notify function registered with ip_xmit_attr_t. It's called in the squeue 3377 * so it's safe to update the TCP connection. 3378 */ 3379 /* ARGSUSED1 */ 3380 static void 3381 tcp_notify(void *arg, ip_xmit_attr_t *ixa, ixa_notify_type_t ntype, 3382 ixa_notify_arg_t narg) 3383 { 3384 tcp_t *tcp = (tcp_t *)arg; 3385 conn_t *connp = tcp->tcp_connp; 3386 3387 switch (ntype) { 3388 case IXAN_LSO: 3389 tcp_update_lso(tcp, connp->conn_ixa); 3390 break; 3391 case IXAN_PMTU: 3392 tcp_update_pmtu(tcp, B_FALSE); 3393 break; 3394 case IXAN_ZCOPY: 3395 tcp_update_zcopy(tcp); 3396 break; 3397 default: 3398 break; 3399 } 3400 } 3401 3402 /* 3403 * The TCP write service routine should never be called... 3404 */ 3405 /* ARGSUSED */ 3406 static int 3407 tcp_wsrv(queue_t *q) 3408 { 3409 tcp_stack_t *tcps = Q_TO_TCP(q)->tcp_tcps; 3410 3411 TCP_STAT(tcps, tcp_wsrv_called); 3412 return (0); 3413 } 3414 3415 /* 3416 * Hash list lookup routine for tcp_t structures. 3417 * Returns with a CONN_INC_REF tcp structure. Caller must do a CONN_DEC_REF. 3418 */ 3419 tcp_t * 3420 tcp_acceptor_hash_lookup(t_uscalar_t id, tcp_stack_t *tcps) 3421 { 3422 tf_t *tf; 3423 tcp_t *tcp; 3424 3425 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3426 mutex_enter(&tf->tf_lock); 3427 for (tcp = tf->tf_tcp; tcp != NULL; 3428 tcp = tcp->tcp_acceptor_hash) { 3429 if (tcp->tcp_acceptor_id == id) { 3430 CONN_INC_REF(tcp->tcp_connp); 3431 mutex_exit(&tf->tf_lock); 3432 return (tcp); 3433 } 3434 } 3435 mutex_exit(&tf->tf_lock); 3436 return (NULL); 3437 } 3438 3439 /* 3440 * Hash list insertion routine for tcp_t structures. 3441 */ 3442 void 3443 tcp_acceptor_hash_insert(t_uscalar_t id, tcp_t *tcp) 3444 { 3445 tf_t *tf; 3446 tcp_t **tcpp; 3447 tcp_t *tcpnext; 3448 tcp_stack_t *tcps = tcp->tcp_tcps; 3449 3450 tf = &tcps->tcps_acceptor_fanout[TCP_ACCEPTOR_HASH(id)]; 3451 3452 if (tcp->tcp_ptpahn != NULL) 3453 tcp_acceptor_hash_remove(tcp); 3454 tcpp = &tf->tf_tcp; 3455 mutex_enter(&tf->tf_lock); 3456 tcpnext = tcpp[0]; 3457 if (tcpnext) 3458 tcpnext->tcp_ptpahn = &tcp->tcp_acceptor_hash; 3459 tcp->tcp_acceptor_hash = tcpnext; 3460 tcp->tcp_ptpahn = tcpp; 3461 tcpp[0] = tcp; 3462 tcp->tcp_acceptor_lockp = &tf->tf_lock; /* For tcp_*_hash_remove */ 3463 mutex_exit(&tf->tf_lock); 3464 } 3465 3466 /* 3467 * Hash list removal routine for tcp_t structures. 3468 */ 3469 void 3470 tcp_acceptor_hash_remove(tcp_t *tcp) 3471 { 3472 tcp_t *tcpnext; 3473 kmutex_t *lockp; 3474 3475 /* 3476 * Extract the lock pointer in case there are concurrent 3477 * hash_remove's for this instance. 3478 */ 3479 lockp = tcp->tcp_acceptor_lockp; 3480 3481 if (tcp->tcp_ptpahn == NULL) 3482 return; 3483 3484 ASSERT(lockp != NULL); 3485 mutex_enter(lockp); 3486 if (tcp->tcp_ptpahn) { 3487 tcpnext = tcp->tcp_acceptor_hash; 3488 if (tcpnext) { 3489 tcpnext->tcp_ptpahn = tcp->tcp_ptpahn; 3490 tcp->tcp_acceptor_hash = NULL; 3491 } 3492 *tcp->tcp_ptpahn = tcpnext; 3493 tcp->tcp_ptpahn = NULL; 3494 } 3495 mutex_exit(lockp); 3496 tcp->tcp_acceptor_lockp = NULL; 3497 } 3498 3499 /* 3500 * Type three generator adapted from the random() function in 4.4 BSD: 3501 */ 3502 3503 /* 3504 * Copyright (c) 1983, 1993 3505 * The Regents of the University of California. All rights reserved. 3506 * 3507 * Redistribution and use in source and binary forms, with or without 3508 * modification, are permitted provided that the following conditions 3509 * are met: 3510 * 1. Redistributions of source code must retain the above copyright 3511 * notice, this list of conditions and the following disclaimer. 3512 * 2. Redistributions in binary form must reproduce the above copyright 3513 * notice, this list of conditions and the following disclaimer in the 3514 * documentation and/or other materials provided with the distribution. 3515 * 3. All advertising materials mentioning features or use of this software 3516 * must display the following acknowledgement: 3517 * This product includes software developed by the University of 3518 * California, Berkeley and its contributors. 3519 * 4. Neither the name of the University nor the names of its contributors 3520 * may be used to endorse or promote products derived from this software 3521 * without specific prior written permission. 3522 * 3523 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 3524 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 3525 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 3526 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 3527 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 3528 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 3529 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 3530 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 3531 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 3532 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 3533 * SUCH DAMAGE. 3534 */ 3535 3536 /* Type 3 -- x**31 + x**3 + 1 */ 3537 #define DEG_3 31 3538 #define SEP_3 3 3539 3540 3541 /* Protected by tcp_random_lock */ 3542 static int tcp_randtbl[DEG_3 + 1]; 3543 3544 static int *tcp_random_fptr = &tcp_randtbl[SEP_3 + 1]; 3545 static int *tcp_random_rptr = &tcp_randtbl[1]; 3546 3547 static int *tcp_random_state = &tcp_randtbl[1]; 3548 static int *tcp_random_end_ptr = &tcp_randtbl[DEG_3 + 1]; 3549 3550 kmutex_t tcp_random_lock; 3551 3552 void 3553 tcp_random_init(void) 3554 { 3555 int i; 3556 hrtime_t hrt; 3557 time_t wallclock; 3558 uint64_t result; 3559 3560 /* 3561 * Use high-res timer and current time for seed. Gethrtime() returns 3562 * a longlong, which may contain resolution down to nanoseconds. 3563 * The current time will either be a 32-bit or a 64-bit quantity. 3564 * XOR the two together in a 64-bit result variable. 3565 * Convert the result to a 32-bit value by multiplying the high-order 3566 * 32-bits by the low-order 32-bits. 3567 */ 3568 3569 hrt = gethrtime(); 3570 (void) drv_getparm(TIME, &wallclock); 3571 result = (uint64_t)wallclock ^ (uint64_t)hrt; 3572 mutex_enter(&tcp_random_lock); 3573 tcp_random_state[0] = ((result >> 32) & 0xffffffff) * 3574 (result & 0xffffffff); 3575 3576 for (i = 1; i < DEG_3; i++) 3577 tcp_random_state[i] = 1103515245 * tcp_random_state[i - 1] 3578 + 12345; 3579 tcp_random_fptr = &tcp_random_state[SEP_3]; 3580 tcp_random_rptr = &tcp_random_state[0]; 3581 mutex_exit(&tcp_random_lock); 3582 for (i = 0; i < 10 * DEG_3; i++) 3583 (void) tcp_random(); 3584 } 3585 3586 /* 3587 * tcp_random: Return a random number in the range [1 - (128K + 1)]. 3588 * This range is selected to be approximately centered on TCP_ISS / 2, 3589 * and easy to compute. We get this value by generating a 32-bit random 3590 * number, selecting out the high-order 17 bits, and then adding one so 3591 * that we never return zero. 3592 */ 3593 int 3594 tcp_random(void) 3595 { 3596 int i; 3597 3598 mutex_enter(&tcp_random_lock); 3599 *tcp_random_fptr += *tcp_random_rptr; 3600 3601 /* 3602 * The high-order bits are more random than the low-order bits, 3603 * so we select out the high-order 17 bits and add one so that 3604 * we never return zero. 3605 */ 3606 i = ((*tcp_random_fptr >> 15) & 0x1ffff) + 1; 3607 if (++tcp_random_fptr >= tcp_random_end_ptr) { 3608 tcp_random_fptr = tcp_random_state; 3609 ++tcp_random_rptr; 3610 } else if (++tcp_random_rptr >= tcp_random_end_ptr) 3611 tcp_random_rptr = tcp_random_state; 3612 3613 mutex_exit(&tcp_random_lock); 3614 return (i); 3615 } 3616 3617 /* 3618 * Split this function out so that if the secret changes, I'm okay. 3619 * 3620 * Initialize the tcp_iss_cookie and tcp_iss_key. 3621 */ 3622 3623 #define PASSWD_SIZE 16 /* MUST be multiple of 4 */ 3624 3625 void 3626 tcp_iss_key_init(uint8_t *phrase, int len, tcp_stack_t *tcps) 3627 { 3628 struct { 3629 int32_t current_time; 3630 uint32_t randnum; 3631 uint16_t pad; 3632 uint8_t ether[6]; 3633 uint8_t passwd[PASSWD_SIZE]; 3634 } tcp_iss_cookie; 3635 time_t t; 3636 3637 /* 3638 * Start with the current absolute time. 3639 */ 3640 (void) drv_getparm(TIME, &t); 3641 tcp_iss_cookie.current_time = t; 3642 3643 /* 3644 * XXX - Need a more random number per RFC 1750, not this crap. 3645 * OTOH, if what follows is pretty random, then I'm in better shape. 3646 */ 3647 tcp_iss_cookie.randnum = (uint32_t)(gethrtime() + tcp_random()); 3648 tcp_iss_cookie.pad = 0x365c; /* Picked from HMAC pad values. */ 3649 3650 /* 3651 * The cpu_type_info is pretty non-random. Ugggh. It does serve 3652 * as a good template. 3653 */ 3654 bcopy(&cpu_list->cpu_type_info, &tcp_iss_cookie.passwd, 3655 min(PASSWD_SIZE, sizeof (cpu_list->cpu_type_info))); 3656 3657 /* 3658 * The pass-phrase. Normally this is supplied by user-called NDD. 3659 */ 3660 bcopy(phrase, &tcp_iss_cookie.passwd, min(PASSWD_SIZE, len)); 3661 3662 /* 3663 * See 4010593 if this section becomes a problem again, 3664 * but the local ethernet address is useful here. 3665 */ 3666 (void) localetheraddr(NULL, 3667 (struct ether_addr *)&tcp_iss_cookie.ether); 3668 3669 /* 3670 * Hash 'em all together. The MD5Final is called per-connection. 3671 */ 3672 mutex_enter(&tcps->tcps_iss_key_lock); 3673 MD5Init(&tcps->tcps_iss_key); 3674 MD5Update(&tcps->tcps_iss_key, (uchar_t *)&tcp_iss_cookie, 3675 sizeof (tcp_iss_cookie)); 3676 mutex_exit(&tcps->tcps_iss_key_lock); 3677 } 3678 3679 /* 3680 * Called by IP when IP is loaded into the kernel 3681 */ 3682 void 3683 tcp_ddi_g_init(void) 3684 { 3685 tcp_timercache = kmem_cache_create("tcp_timercache", 3686 sizeof (tcp_timer_t) + sizeof (mblk_t), 0, 3687 NULL, NULL, NULL, NULL, NULL, 0); 3688 3689 tcp_notsack_blk_cache = kmem_cache_create("tcp_notsack_blk_cache", 3690 sizeof (notsack_blk_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 3691 3692 mutex_init(&tcp_random_lock, NULL, MUTEX_DEFAULT, NULL); 3693 3694 /* Initialize the random number generator */ 3695 tcp_random_init(); 3696 3697 /* A single callback independently of how many netstacks we have */ 3698 ip_squeue_init(tcp_squeue_add); 3699 3700 tcp_g_kstat = tcp_g_kstat_init(&tcp_g_statistics); 3701 3702 tcp_squeue_flag = tcp_squeue_switch(tcp_squeue_wput); 3703 3704 /* 3705 * We want to be informed each time a stack is created or 3706 * destroyed in the kernel, so we can maintain the 3707 * set of tcp_stack_t's. 3708 */ 3709 netstack_register(NS_TCP, tcp_stack_init, NULL, tcp_stack_fini); 3710 } 3711 3712 3713 #define INET_NAME "ip" 3714 3715 /* 3716 * Initialize the TCP stack instance. 3717 */ 3718 static void * 3719 tcp_stack_init(netstackid_t stackid, netstack_t *ns) 3720 { 3721 tcp_stack_t *tcps; 3722 int i; 3723 int error = 0; 3724 major_t major; 3725 size_t arrsz; 3726 3727 tcps = (tcp_stack_t *)kmem_zalloc(sizeof (*tcps), KM_SLEEP); 3728 tcps->tcps_netstack = ns; 3729 3730 /* Initialize locks */ 3731 mutex_init(&tcps->tcps_iss_key_lock, NULL, MUTEX_DEFAULT, NULL); 3732 mutex_init(&tcps->tcps_epriv_port_lock, NULL, MUTEX_DEFAULT, NULL); 3733 3734 tcps->tcps_g_num_epriv_ports = TCP_NUM_EPRIV_PORTS; 3735 tcps->tcps_g_epriv_ports[0] = ULP_DEF_EPRIV_PORT1; 3736 tcps->tcps_g_epriv_ports[1] = ULP_DEF_EPRIV_PORT2; 3737 tcps->tcps_min_anonpriv_port = 512; 3738 3739 tcps->tcps_bind_fanout = kmem_zalloc(sizeof (tf_t) * 3740 TCP_BIND_FANOUT_SIZE, KM_SLEEP); 3741 tcps->tcps_acceptor_fanout = kmem_zalloc(sizeof (tf_t) * 3742 TCP_ACCEPTOR_FANOUT_SIZE, KM_SLEEP); 3743 3744 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3745 mutex_init(&tcps->tcps_bind_fanout[i].tf_lock, NULL, 3746 MUTEX_DEFAULT, NULL); 3747 } 3748 3749 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3750 mutex_init(&tcps->tcps_acceptor_fanout[i].tf_lock, NULL, 3751 MUTEX_DEFAULT, NULL); 3752 } 3753 3754 /* TCP's IPsec code calls the packet dropper. */ 3755 ip_drop_register(&tcps->tcps_dropper, "TCP IPsec policy enforcement"); 3756 3757 arrsz = tcp_propinfo_count * sizeof (mod_prop_info_t); 3758 tcps->tcps_propinfo_tbl = (mod_prop_info_t *)kmem_alloc(arrsz, 3759 KM_SLEEP); 3760 bcopy(tcp_propinfo_tbl, tcps->tcps_propinfo_tbl, arrsz); 3761 3762 /* 3763 * Note: To really walk the device tree you need the devinfo 3764 * pointer to your device which is only available after probe/attach. 3765 * The following is safe only because it uses ddi_root_node() 3766 */ 3767 tcp_max_optsize = optcom_max_optsize(tcp_opt_obj.odb_opt_des_arr, 3768 tcp_opt_obj.odb_opt_arr_cnt); 3769 3770 /* 3771 * Initialize RFC 1948 secret values. This will probably be reset once 3772 * by the boot scripts. 3773 * 3774 * Use NULL name, as the name is caught by the new lockstats. 3775 * 3776 * Initialize with some random, non-guessable string, like the global 3777 * T_INFO_ACK. 3778 */ 3779 3780 tcp_iss_key_init((uint8_t *)&tcp_g_t_info_ack, 3781 sizeof (tcp_g_t_info_ack), tcps); 3782 3783 tcps->tcps_kstat = tcp_kstat2_init(stackid); 3784 tcps->tcps_mibkp = tcp_kstat_init(stackid); 3785 3786 major = mod_name_to_major(INET_NAME); 3787 error = ldi_ident_from_major(major, &tcps->tcps_ldi_ident); 3788 ASSERT(error == 0); 3789 tcps->tcps_ixa_cleanup_mp = allocb_wait(0, BPRI_MED, STR_NOSIG, NULL); 3790 ASSERT(tcps->tcps_ixa_cleanup_mp != NULL); 3791 cv_init(&tcps->tcps_ixa_cleanup_ready_cv, NULL, CV_DEFAULT, NULL); 3792 cv_init(&tcps->tcps_ixa_cleanup_done_cv, NULL, CV_DEFAULT, NULL); 3793 mutex_init(&tcps->tcps_ixa_cleanup_lock, NULL, MUTEX_DEFAULT, NULL); 3794 3795 mutex_init(&tcps->tcps_reclaim_lock, NULL, MUTEX_DEFAULT, NULL); 3796 tcps->tcps_reclaim = B_FALSE; 3797 tcps->tcps_reclaim_tid = 0; 3798 tcps->tcps_reclaim_period = tcps->tcps_rexmit_interval_max; 3799 3800 /* 3801 * ncpus is the current number of CPUs, which can be bigger than 3802 * boot_ncpus. But we don't want to use ncpus to allocate all the 3803 * tcp_stats_cpu_t at system boot up time since it will be 1. While 3804 * we handle adding CPU in tcp_cpu_update(), it will be slow if 3805 * there are many CPUs as we will be adding them 1 by 1. 3806 * 3807 * Note that tcps_sc_cnt never decreases and the tcps_sc[x] pointers 3808 * are not freed until the stack is going away. So there is no need 3809 * to grab a lock to access the per CPU tcps_sc[x] pointer. 3810 */ 3811 mutex_enter(&cpu_lock); 3812 tcps->tcps_sc_cnt = MAX(ncpus, boot_ncpus); 3813 mutex_exit(&cpu_lock); 3814 tcps->tcps_sc = kmem_zalloc(max_ncpus * sizeof (tcp_stats_cpu_t *), 3815 KM_SLEEP); 3816 for (i = 0; i < tcps->tcps_sc_cnt; i++) { 3817 tcps->tcps_sc[i] = kmem_zalloc(sizeof (tcp_stats_cpu_t), 3818 KM_SLEEP); 3819 } 3820 3821 mutex_init(&tcps->tcps_listener_conf_lock, NULL, MUTEX_DEFAULT, NULL); 3822 list_create(&tcps->tcps_listener_conf, sizeof (tcp_listener_t), 3823 offsetof(tcp_listener_t, tl_link)); 3824 3825 return (tcps); 3826 } 3827 3828 /* 3829 * Called when the IP module is about to be unloaded. 3830 */ 3831 void 3832 tcp_ddi_g_destroy(void) 3833 { 3834 tcp_g_kstat_fini(tcp_g_kstat); 3835 tcp_g_kstat = NULL; 3836 bzero(&tcp_g_statistics, sizeof (tcp_g_statistics)); 3837 3838 mutex_destroy(&tcp_random_lock); 3839 3840 kmem_cache_destroy(tcp_timercache); 3841 kmem_cache_destroy(tcp_notsack_blk_cache); 3842 3843 netstack_unregister(NS_TCP); 3844 } 3845 3846 /* 3847 * Free the TCP stack instance. 3848 */ 3849 static void 3850 tcp_stack_fini(netstackid_t stackid, void *arg) 3851 { 3852 tcp_stack_t *tcps = (tcp_stack_t *)arg; 3853 int i; 3854 3855 freeb(tcps->tcps_ixa_cleanup_mp); 3856 tcps->tcps_ixa_cleanup_mp = NULL; 3857 cv_destroy(&tcps->tcps_ixa_cleanup_ready_cv); 3858 cv_destroy(&tcps->tcps_ixa_cleanup_done_cv); 3859 mutex_destroy(&tcps->tcps_ixa_cleanup_lock); 3860 3861 /* 3862 * Set tcps_reclaim to false tells tcp_reclaim_timer() not to restart 3863 * the timer. 3864 */ 3865 mutex_enter(&tcps->tcps_reclaim_lock); 3866 tcps->tcps_reclaim = B_FALSE; 3867 mutex_exit(&tcps->tcps_reclaim_lock); 3868 if (tcps->tcps_reclaim_tid != 0) 3869 (void) untimeout(tcps->tcps_reclaim_tid); 3870 mutex_destroy(&tcps->tcps_reclaim_lock); 3871 3872 tcp_listener_conf_cleanup(tcps); 3873 3874 for (i = 0; i < tcps->tcps_sc_cnt; i++) 3875 kmem_free(tcps->tcps_sc[i], sizeof (tcp_stats_cpu_t)); 3876 kmem_free(tcps->tcps_sc, max_ncpus * sizeof (tcp_stats_cpu_t *)); 3877 3878 kmem_free(tcps->tcps_propinfo_tbl, 3879 tcp_propinfo_count * sizeof (mod_prop_info_t)); 3880 tcps->tcps_propinfo_tbl = NULL; 3881 3882 for (i = 0; i < TCP_BIND_FANOUT_SIZE; i++) { 3883 ASSERT(tcps->tcps_bind_fanout[i].tf_tcp == NULL); 3884 mutex_destroy(&tcps->tcps_bind_fanout[i].tf_lock); 3885 } 3886 3887 for (i = 0; i < TCP_ACCEPTOR_FANOUT_SIZE; i++) { 3888 ASSERT(tcps->tcps_acceptor_fanout[i].tf_tcp == NULL); 3889 mutex_destroy(&tcps->tcps_acceptor_fanout[i].tf_lock); 3890 } 3891 3892 kmem_free(tcps->tcps_bind_fanout, sizeof (tf_t) * TCP_BIND_FANOUT_SIZE); 3893 tcps->tcps_bind_fanout = NULL; 3894 3895 kmem_free(tcps->tcps_acceptor_fanout, sizeof (tf_t) * 3896 TCP_ACCEPTOR_FANOUT_SIZE); 3897 tcps->tcps_acceptor_fanout = NULL; 3898 3899 mutex_destroy(&tcps->tcps_iss_key_lock); 3900 mutex_destroy(&tcps->tcps_epriv_port_lock); 3901 3902 ip_drop_unregister(&tcps->tcps_dropper); 3903 3904 tcp_kstat2_fini(stackid, tcps->tcps_kstat); 3905 tcps->tcps_kstat = NULL; 3906 3907 tcp_kstat_fini(stackid, tcps->tcps_mibkp); 3908 tcps->tcps_mibkp = NULL; 3909 3910 ldi_ident_release(tcps->tcps_ldi_ident); 3911 kmem_free(tcps, sizeof (*tcps)); 3912 } 3913 3914 /* 3915 * Generate ISS, taking into account NDD changes may happen halfway through. 3916 * (If the iss is not zero, set it.) 3917 */ 3918 3919 static void 3920 tcp_iss_init(tcp_t *tcp) 3921 { 3922 MD5_CTX context; 3923 struct { uint32_t ports; in6_addr_t src; in6_addr_t dst; } arg; 3924 uint32_t answer[4]; 3925 tcp_stack_t *tcps = tcp->tcp_tcps; 3926 conn_t *connp = tcp->tcp_connp; 3927 3928 tcps->tcps_iss_incr_extra += (tcps->tcps_iss_incr >> 1); 3929 tcp->tcp_iss = tcps->tcps_iss_incr_extra; 3930 switch (tcps->tcps_strong_iss) { 3931 case 2: 3932 mutex_enter(&tcps->tcps_iss_key_lock); 3933 context = tcps->tcps_iss_key; 3934 mutex_exit(&tcps->tcps_iss_key_lock); 3935 arg.ports = connp->conn_ports; 3936 arg.src = connp->conn_laddr_v6; 3937 arg.dst = connp->conn_faddr_v6; 3938 MD5Update(&context, (uchar_t *)&arg, sizeof (arg)); 3939 MD5Final((uchar_t *)answer, &context); 3940 tcp->tcp_iss += answer[0] ^ answer[1] ^ answer[2] ^ answer[3]; 3941 /* 3942 * Now that we've hashed into a unique per-connection sequence 3943 * space, add a random increment per strong_iss == 1. So I 3944 * guess we'll have to... 3945 */ 3946 /* FALLTHRU */ 3947 case 1: 3948 tcp->tcp_iss += (gethrtime() >> ISS_NSEC_SHT) + tcp_random(); 3949 break; 3950 default: 3951 tcp->tcp_iss += (uint32_t)gethrestime_sec() * 3952 tcps->tcps_iss_incr; 3953 break; 3954 } 3955 tcp->tcp_valid_bits = TCP_ISS_VALID; 3956 tcp->tcp_fss = tcp->tcp_iss - 1; 3957 tcp->tcp_suna = tcp->tcp_iss; 3958 tcp->tcp_snxt = tcp->tcp_iss + 1; 3959 tcp->tcp_rexmit_nxt = tcp->tcp_snxt; 3960 tcp->tcp_csuna = tcp->tcp_snxt; 3961 } 3962 3963 /* 3964 * tcp_{set,clr}qfull() functions are used to either set or clear QFULL 3965 * on the specified backing STREAMS q. Note, the caller may make the 3966 * decision to call based on the tcp_t.tcp_flow_stopped value which 3967 * when check outside the q's lock is only an advisory check ... 3968 */ 3969 void 3970 tcp_setqfull(tcp_t *tcp) 3971 { 3972 tcp_stack_t *tcps = tcp->tcp_tcps; 3973 conn_t *connp = tcp->tcp_connp; 3974 3975 if (tcp->tcp_closed) 3976 return; 3977 3978 conn_setqfull(connp, &tcp->tcp_flow_stopped); 3979 if (tcp->tcp_flow_stopped) 3980 TCP_STAT(tcps, tcp_flwctl_on); 3981 } 3982 3983 void 3984 tcp_clrqfull(tcp_t *tcp) 3985 { 3986 conn_t *connp = tcp->tcp_connp; 3987 3988 if (tcp->tcp_closed) 3989 return; 3990 conn_clrqfull(connp, &tcp->tcp_flow_stopped); 3991 } 3992 3993 static int 3994 tcp_squeue_switch(int val) 3995 { 3996 int rval = SQ_FILL; 3997 3998 switch (val) { 3999 case 1: 4000 rval = SQ_NODRAIN; 4001 break; 4002 case 2: 4003 rval = SQ_PROCESS; 4004 break; 4005 default: 4006 break; 4007 } 4008 return (rval); 4009 } 4010 4011 /* 4012 * This is called once for each squeue - globally for all stack 4013 * instances. 4014 */ 4015 static void 4016 tcp_squeue_add(squeue_t *sqp) 4017 { 4018 tcp_squeue_priv_t *tcp_time_wait = kmem_zalloc( 4019 sizeof (tcp_squeue_priv_t), KM_SLEEP); 4020 4021 *squeue_getprivate(sqp, SQPRIVATE_TCP) = (intptr_t)tcp_time_wait; 4022 if (tcp_free_list_max_cnt == 0) { 4023 int tcp_ncpus = ((boot_max_ncpus == -1) ? 4024 max_ncpus : boot_max_ncpus); 4025 4026 /* 4027 * Limit number of entries to 1% of availble memory / tcp_ncpus 4028 */ 4029 tcp_free_list_max_cnt = (freemem * PAGESIZE) / 4030 (tcp_ncpus * sizeof (tcp_t) * 100); 4031 } 4032 tcp_time_wait->tcp_free_list_cnt = 0; 4033 } 4034 /* 4035 * Return unix error is tli error is TSYSERR, otherwise return a negative 4036 * tli error. 4037 */ 4038 int 4039 tcp_do_bind(conn_t *connp, struct sockaddr *sa, socklen_t len, cred_t *cr, 4040 boolean_t bind_to_req_port_only) 4041 { 4042 int error; 4043 tcp_t *tcp = connp->conn_tcp; 4044 4045 if (tcp->tcp_state >= TCPS_BOUND) { 4046 if (connp->conn_debug) { 4047 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4048 "tcp_bind: bad state, %d", tcp->tcp_state); 4049 } 4050 return (-TOUTSTATE); 4051 } 4052 4053 error = tcp_bind_check(connp, sa, len, cr, bind_to_req_port_only); 4054 if (error != 0) 4055 return (error); 4056 4057 ASSERT(tcp->tcp_state == TCPS_BOUND); 4058 tcp->tcp_conn_req_max = 0; 4059 return (0); 4060 } 4061 4062 /* 4063 * If the return value from this function is positive, it's a UNIX error. 4064 * Otherwise, if it's negative, then the absolute value is a TLI error. 4065 * the TPI routine tcp_tpi_connect() is a wrapper function for this. 4066 */ 4067 int 4068 tcp_do_connect(conn_t *connp, const struct sockaddr *sa, socklen_t len, 4069 cred_t *cr, pid_t pid) 4070 { 4071 tcp_t *tcp = connp->conn_tcp; 4072 sin_t *sin = (sin_t *)sa; 4073 sin6_t *sin6 = (sin6_t *)sa; 4074 ipaddr_t *dstaddrp; 4075 in_port_t dstport; 4076 uint_t srcid; 4077 int error; 4078 uint32_t mss; 4079 mblk_t *syn_mp; 4080 tcp_stack_t *tcps = tcp->tcp_tcps; 4081 int32_t oldstate; 4082 ip_xmit_attr_t *ixa = connp->conn_ixa; 4083 4084 oldstate = tcp->tcp_state; 4085 4086 switch (len) { 4087 default: 4088 /* 4089 * Should never happen 4090 */ 4091 return (EINVAL); 4092 4093 case sizeof (sin_t): 4094 sin = (sin_t *)sa; 4095 if (sin->sin_port == 0) { 4096 return (-TBADADDR); 4097 } 4098 if (connp->conn_ipv6_v6only) { 4099 return (EAFNOSUPPORT); 4100 } 4101 break; 4102 4103 case sizeof (sin6_t): 4104 sin6 = (sin6_t *)sa; 4105 if (sin6->sin6_port == 0) { 4106 return (-TBADADDR); 4107 } 4108 break; 4109 } 4110 /* 4111 * If we're connecting to an IPv4-mapped IPv6 address, we need to 4112 * make sure that the conn_ipversion is IPV4_VERSION. We 4113 * need to this before we call tcp_bindi() so that the port lookup 4114 * code will look for ports in the correct port space (IPv4 and 4115 * IPv6 have separate port spaces). 4116 */ 4117 if (connp->conn_family == AF_INET6 && 4118 connp->conn_ipversion == IPV6_VERSION && 4119 IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4120 if (connp->conn_ipv6_v6only) 4121 return (EADDRNOTAVAIL); 4122 4123 connp->conn_ipversion = IPV4_VERSION; 4124 } 4125 4126 switch (tcp->tcp_state) { 4127 case TCPS_LISTEN: 4128 /* 4129 * Listening sockets are not allowed to issue connect(). 4130 */ 4131 if (IPCL_IS_NONSTR(connp)) 4132 return (EOPNOTSUPP); 4133 /* FALLTHRU */ 4134 case TCPS_IDLE: 4135 /* 4136 * We support quick connect, refer to comments in 4137 * tcp_connect_*() 4138 */ 4139 /* FALLTHRU */ 4140 case TCPS_BOUND: 4141 break; 4142 default: 4143 return (-TOUTSTATE); 4144 } 4145 4146 /* 4147 * We update our cred/cpid based on the caller of connect 4148 */ 4149 if (connp->conn_cred != cr) { 4150 crhold(cr); 4151 crfree(connp->conn_cred); 4152 connp->conn_cred = cr; 4153 } 4154 connp->conn_cpid = pid; 4155 4156 /* Cache things in the ixa without any refhold */ 4157 ASSERT(!(ixa->ixa_free_flags & IXA_FREE_CRED)); 4158 ixa->ixa_cred = cr; 4159 ixa->ixa_cpid = pid; 4160 if (is_system_labeled()) { 4161 /* We need to restart with a label based on the cred */ 4162 ip_xmit_attr_restore_tsl(ixa, ixa->ixa_cred); 4163 } 4164 4165 if (connp->conn_family == AF_INET6) { 4166 if (!IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { 4167 error = tcp_connect_ipv6(tcp, &sin6->sin6_addr, 4168 sin6->sin6_port, sin6->sin6_flowinfo, 4169 sin6->__sin6_src_id, sin6->sin6_scope_id); 4170 } else { 4171 /* 4172 * Destination adress is mapped IPv6 address. 4173 * Source bound address should be unspecified or 4174 * IPv6 mapped address as well. 4175 */ 4176 if (!IN6_IS_ADDR_UNSPECIFIED( 4177 &connp->conn_bound_addr_v6) && 4178 !IN6_IS_ADDR_V4MAPPED(&connp->conn_bound_addr_v6)) { 4179 return (EADDRNOTAVAIL); 4180 } 4181 dstaddrp = &V4_PART_OF_V6((sin6->sin6_addr)); 4182 dstport = sin6->sin6_port; 4183 srcid = sin6->__sin6_src_id; 4184 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, 4185 srcid); 4186 } 4187 } else { 4188 dstaddrp = &sin->sin_addr.s_addr; 4189 dstport = sin->sin_port; 4190 srcid = 0; 4191 error = tcp_connect_ipv4(tcp, dstaddrp, dstport, srcid); 4192 } 4193 4194 if (error != 0) 4195 goto connect_failed; 4196 4197 CL_INET_CONNECT(connp, B_TRUE, error); 4198 if (error != 0) 4199 goto connect_failed; 4200 4201 /* connect succeeded */ 4202 TCPS_BUMP_MIB(tcps, tcpActiveOpens); 4203 tcp->tcp_active_open = 1; 4204 4205 /* 4206 * tcp_set_destination() does not adjust for TCP/IP header length. 4207 */ 4208 mss = tcp->tcp_mss - connp->conn_ht_iphc_len; 4209 4210 /* 4211 * Just make sure our rwnd is at least rcvbuf * MSS large, and round up 4212 * to the nearest MSS. 4213 * 4214 * We do the round up here because we need to get the interface MTU 4215 * first before we can do the round up. 4216 */ 4217 tcp->tcp_rwnd = connp->conn_rcvbuf; 4218 tcp->tcp_rwnd = MAX(MSS_ROUNDUP(tcp->tcp_rwnd, mss), 4219 tcps->tcps_recv_hiwat_minmss * mss); 4220 connp->conn_rcvbuf = tcp->tcp_rwnd; 4221 tcp_set_ws_value(tcp); 4222 tcp->tcp_tcpha->tha_win = htons(tcp->tcp_rwnd >> tcp->tcp_rcv_ws); 4223 if (tcp->tcp_rcv_ws > 0 || tcps->tcps_wscale_always) 4224 tcp->tcp_snd_ws_ok = B_TRUE; 4225 4226 /* 4227 * Set tcp_snd_ts_ok to true 4228 * so that tcp_xmit_mp will 4229 * include the timestamp 4230 * option in the SYN segment. 4231 */ 4232 if (tcps->tcps_tstamp_always || 4233 (tcp->tcp_rcv_ws && tcps->tcps_tstamp_if_wscale)) { 4234 tcp->tcp_snd_ts_ok = B_TRUE; 4235 } 4236 4237 /* 4238 * Note that tcp_snd_sack_ok can be set in tcp_set_destination() if 4239 * the SACK metric is set. So here we just check the per stack SACK 4240 * permitted param. 4241 */ 4242 if (tcps->tcps_sack_permitted == 2) { 4243 ASSERT(tcp->tcp_num_sack_blk == 0); 4244 ASSERT(tcp->tcp_notsack_list == NULL); 4245 tcp->tcp_snd_sack_ok = B_TRUE; 4246 } 4247 4248 /* 4249 * Should we use ECN? Note that the current 4250 * default value (SunOS 5.9) of tcp_ecn_permitted 4251 * is 1. The reason for doing this is that there 4252 * are equipments out there that will drop ECN 4253 * enabled IP packets. Setting it to 1 avoids 4254 * compatibility problems. 4255 */ 4256 if (tcps->tcps_ecn_permitted == 2) 4257 tcp->tcp_ecn_ok = B_TRUE; 4258 4259 /* Trace change from BOUND -> SYN_SENT here */ 4260 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4261 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4262 int32_t, TCPS_BOUND); 4263 4264 TCP_TIMER_RESTART(tcp, tcp->tcp_rto); 4265 syn_mp = tcp_xmit_mp(tcp, NULL, 0, NULL, NULL, 4266 tcp->tcp_iss, B_FALSE, NULL, B_FALSE); 4267 if (syn_mp != NULL) { 4268 /* 4269 * We must bump the generation before sending the syn 4270 * to ensure that we use the right generation in case 4271 * this thread issues a "connected" up call. 4272 */ 4273 SOCK_CONNID_BUMP(tcp->tcp_connid); 4274 /* 4275 * DTrace sending the first SYN as a 4276 * tcp:::connect-request event. 4277 */ 4278 DTRACE_TCP5(connect__request, mblk_t *, NULL, 4279 ip_xmit_attr_t *, connp->conn_ixa, 4280 void_ip_t *, syn_mp->b_rptr, tcp_t *, tcp, 4281 tcph_t *, 4282 &syn_mp->b_rptr[connp->conn_ixa->ixa_ip_hdr_length]); 4283 tcp_send_data(tcp, syn_mp); 4284 } 4285 4286 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4287 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4288 return (0); 4289 4290 connect_failed: 4291 connp->conn_faddr_v6 = ipv6_all_zeros; 4292 connp->conn_fport = 0; 4293 tcp->tcp_state = oldstate; 4294 if (tcp->tcp_conn.tcp_opts_conn_req != NULL) 4295 tcp_close_mpp(&tcp->tcp_conn.tcp_opts_conn_req); 4296 return (error); 4297 } 4298 4299 int 4300 tcp_do_listen(conn_t *connp, struct sockaddr *sa, socklen_t len, 4301 int backlog, cred_t *cr, boolean_t bind_to_req_port_only) 4302 { 4303 tcp_t *tcp = connp->conn_tcp; 4304 int error = 0; 4305 tcp_stack_t *tcps = tcp->tcp_tcps; 4306 int32_t oldstate; 4307 4308 /* All Solaris components should pass a cred for this operation. */ 4309 ASSERT(cr != NULL); 4310 4311 if (tcp->tcp_state >= TCPS_BOUND) { 4312 if ((tcp->tcp_state == TCPS_BOUND || 4313 tcp->tcp_state == TCPS_LISTEN) && backlog > 0) { 4314 /* 4315 * Handle listen() increasing backlog. 4316 * This is more "liberal" then what the TPI spec 4317 * requires but is needed to avoid a t_unbind 4318 * when handling listen() since the port number 4319 * might be "stolen" between the unbind and bind. 4320 */ 4321 goto do_listen; 4322 } 4323 if (connp->conn_debug) { 4324 (void) strlog(TCP_MOD_ID, 0, 1, SL_ERROR|SL_TRACE, 4325 "tcp_listen: bad state, %d", tcp->tcp_state); 4326 } 4327 return (-TOUTSTATE); 4328 } else { 4329 if (sa == NULL) { 4330 sin6_t addr; 4331 sin_t *sin; 4332 sin6_t *sin6; 4333 4334 ASSERT(IPCL_IS_NONSTR(connp)); 4335 /* Do an implicit bind: Request for a generic port. */ 4336 if (connp->conn_family == AF_INET) { 4337 len = sizeof (sin_t); 4338 sin = (sin_t *)&addr; 4339 *sin = sin_null; 4340 sin->sin_family = AF_INET; 4341 } else { 4342 ASSERT(connp->conn_family == AF_INET6); 4343 len = sizeof (sin6_t); 4344 sin6 = (sin6_t *)&addr; 4345 *sin6 = sin6_null; 4346 sin6->sin6_family = AF_INET6; 4347 } 4348 sa = (struct sockaddr *)&addr; 4349 } 4350 4351 error = tcp_bind_check(connp, sa, len, cr, 4352 bind_to_req_port_only); 4353 if (error) 4354 return (error); 4355 /* Fall through and do the fanout insertion */ 4356 } 4357 4358 do_listen: 4359 ASSERT(tcp->tcp_state == TCPS_BOUND || tcp->tcp_state == TCPS_LISTEN); 4360 tcp->tcp_conn_req_max = backlog; 4361 if (tcp->tcp_conn_req_max) { 4362 if (tcp->tcp_conn_req_max < tcps->tcps_conn_req_min) 4363 tcp->tcp_conn_req_max = tcps->tcps_conn_req_min; 4364 if (tcp->tcp_conn_req_max > tcps->tcps_conn_req_max_q) 4365 tcp->tcp_conn_req_max = tcps->tcps_conn_req_max_q; 4366 /* 4367 * If this is a listener, do not reset the eager list 4368 * and other stuffs. Note that we don't check if the 4369 * existing eager list meets the new tcp_conn_req_max 4370 * requirement. 4371 */ 4372 if (tcp->tcp_state != TCPS_LISTEN) { 4373 tcp->tcp_state = TCPS_LISTEN; 4374 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4375 connp->conn_ixa, void, NULL, tcp_t *, tcp, 4376 void, NULL, int32_t, TCPS_BOUND); 4377 /* Initialize the chain. Don't need the eager_lock */ 4378 tcp->tcp_eager_next_q0 = tcp->tcp_eager_prev_q0 = tcp; 4379 tcp->tcp_eager_next_drop_q0 = tcp; 4380 tcp->tcp_eager_prev_drop_q0 = tcp; 4381 tcp->tcp_second_ctimer_threshold = 4382 tcps->tcps_ip_abort_linterval; 4383 } 4384 } 4385 4386 /* 4387 * We need to make sure that the conn_recv is set to a non-null 4388 * value before we insert the conn into the classifier table. 4389 * This is to avoid a race with an incoming packet which does an 4390 * ipcl_classify(). 4391 * We initially set it to tcp_input_listener_unbound to try to 4392 * pick a good squeue for the listener when the first SYN arrives. 4393 * tcp_input_listener_unbound sets it to tcp_input_listener on that 4394 * first SYN. 4395 */ 4396 connp->conn_recv = tcp_input_listener_unbound; 4397 4398 /* Insert the listener in the classifier table */ 4399 error = ip_laddr_fanout_insert(connp); 4400 if (error != 0) { 4401 /* Undo the bind - release the port number */ 4402 oldstate = tcp->tcp_state; 4403 tcp->tcp_state = TCPS_IDLE; 4404 DTRACE_TCP6(state__change, void, NULL, ip_xmit_attr_t *, 4405 connp->conn_ixa, void, NULL, tcp_t *, tcp, void, NULL, 4406 int32_t, oldstate); 4407 connp->conn_bound_addr_v6 = ipv6_all_zeros; 4408 4409 connp->conn_laddr_v6 = ipv6_all_zeros; 4410 connp->conn_saddr_v6 = ipv6_all_zeros; 4411 connp->conn_ports = 0; 4412 4413 if (connp->conn_anon_port) { 4414 zone_t *zone; 4415 4416 zone = crgetzone(cr); 4417 connp->conn_anon_port = B_FALSE; 4418 (void) tsol_mlp_anon(zone, connp->conn_mlp_type, 4419 connp->conn_proto, connp->conn_lport, B_FALSE); 4420 } 4421 connp->conn_mlp_type = mlptSingle; 4422 4423 tcp_bind_hash_remove(tcp); 4424 return (error); 4425 } else { 4426 /* 4427 * If there is a connection limit, allocate and initialize 4428 * the counter struct. Note that since listen can be called 4429 * multiple times, the struct may have been allready allocated. 4430 */ 4431 if (!list_is_empty(&tcps->tcps_listener_conf) && 4432 tcp->tcp_listen_cnt == NULL) { 4433 tcp_listen_cnt_t *tlc; 4434 uint32_t ratio; 4435 4436 ratio = tcp_find_listener_conf(tcps, 4437 ntohs(connp->conn_lport)); 4438 if (ratio != 0) { 4439 uint32_t mem_ratio, tot_buf; 4440 4441 tlc = kmem_alloc(sizeof (tcp_listen_cnt_t), 4442 KM_SLEEP); 4443 /* 4444 * Calculate the connection limit based on 4445 * the configured ratio and maxusers. Maxusers 4446 * are calculated based on memory size, 4447 * ~ 1 user per MB. Note that the conn_rcvbuf 4448 * and conn_sndbuf may change after a 4449 * connection is accepted. So what we have 4450 * is only an approximation. 4451 */ 4452 if ((tot_buf = connp->conn_rcvbuf + 4453 connp->conn_sndbuf) < MB) { 4454 mem_ratio = MB / tot_buf; 4455 tlc->tlc_max = maxusers / ratio * 4456 mem_ratio; 4457 } else { 4458 mem_ratio = tot_buf / MB; 4459 tlc->tlc_max = maxusers / ratio / 4460 mem_ratio; 4461 } 4462 /* At least we should allow two connections! */ 4463 if (tlc->tlc_max <= tcp_min_conn_listener) 4464 tlc->tlc_max = tcp_min_conn_listener; 4465 tlc->tlc_cnt = 1; 4466 tlc->tlc_drop = 0; 4467 tcp->tcp_listen_cnt = tlc; 4468 } 4469 } 4470 } 4471 return (error); 4472 }