1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /* Portions Copyright 2010 Robert Milkowski */
  26 
  27 #include <sys/types.h>
  28 #include <sys/param.h>
  29 #include <sys/systm.h>
  30 #include <sys/sysmacros.h>
  31 #include <sys/kmem.h>
  32 #include <sys/pathname.h>
  33 #include <sys/vnode.h>
  34 #include <sys/vfs.h>
  35 #include <sys/vfs_opreg.h>
  36 #include <sys/mntent.h>
  37 #include <sys/mount.h>
  38 #include <sys/cmn_err.h>
  39 #include "fs/fs_subr.h"
  40 #include <sys/zfs_znode.h>
  41 #include <sys/zfs_dir.h>
  42 #include <sys/zil.h>
  43 #include <sys/fs/zfs.h>
  44 #include <sys/dmu.h>
  45 #include <sys/dsl_prop.h>
  46 #include <sys/dsl_dataset.h>
  47 #include <sys/dsl_deleg.h>
  48 #include <sys/spa.h>
  49 #include <sys/zap.h>
  50 #include <sys/sa.h>
  51 #include <sys/varargs.h>
  52 #include <sys/policy.h>
  53 #include <sys/atomic.h>
  54 #include <sys/mkdev.h>
  55 #include <sys/modctl.h>
  56 #include <sys/refstr.h>
  57 #include <sys/zfs_ioctl.h>
  58 #include <sys/zfs_ctldir.h>
  59 #include <sys/zfs_fuid.h>
  60 #include <sys/bootconf.h>
  61 #include <sys/sunddi.h>
  62 #include <sys/dnlc.h>
  63 #include <sys/dmu_objset.h>
  64 #include <sys/spa_boot.h>
  65 #include <sys/sa.h>
  66 #include "zfs_comutil.h"
  67 
  68 int zfsfstype;
  69 vfsops_t *zfs_vfsops = NULL;
  70 static major_t zfs_major;
  71 static minor_t zfs_minor;
  72 static kmutex_t zfs_dev_mtx;
  73 
  74 extern int sys_shutdown;
  75 
  76 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
  77 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
  78 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
  79 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
  80 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
  81 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
  82 static void zfs_freevfs(vfs_t *vfsp);
  83 
  84 static const fs_operation_def_t zfs_vfsops_template[] = {
  85         VFSNAME_MOUNT,          { .vfs_mount = zfs_mount },
  86         VFSNAME_MOUNTROOT,      { .vfs_mountroot = zfs_mountroot },
  87         VFSNAME_UNMOUNT,        { .vfs_unmount = zfs_umount },
  88         VFSNAME_ROOT,           { .vfs_root = zfs_root },
  89         VFSNAME_STATVFS,        { .vfs_statvfs = zfs_statvfs },
  90         VFSNAME_SYNC,           { .vfs_sync = zfs_sync },
  91         VFSNAME_VGET,           { .vfs_vget = zfs_vget },
  92         VFSNAME_FREEVFS,        { .vfs_freevfs = zfs_freevfs },
  93         NULL,                   NULL
  94 };
  95 
  96 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
  97         VFSNAME_FREEVFS,        { .vfs_freevfs =  zfs_freevfs },
  98         NULL,                   NULL
  99 };
 100 
 101 /*
 102  * We need to keep a count of active fs's.
 103  * This is necessary to prevent our module
 104  * from being unloaded after a umount -f
 105  */
 106 static uint32_t zfs_active_fs_count = 0;
 107 
 108 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
 109 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
 110 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
 111 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
 112 
 113 /*
 114  * MO_DEFAULT is not used since the default value is determined
 115  * by the equivalent property.
 116  */
 117 static mntopt_t mntopts[] = {
 118         { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
 119         { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
 120         { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
 121         { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
 122 };
 123 
 124 static mntopts_t zfs_mntopts = {
 125         sizeof (mntopts) / sizeof (mntopt_t),
 126         mntopts
 127 };
 128 
 129 /*ARGSUSED*/
 130 int
 131 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
 132 {
 133         /*
 134          * Data integrity is job one.  We don't want a compromised kernel
 135          * writing to the storage pool, so we never sync during panic.
 136          */
 137         if (panicstr)
 138                 return (0);
 139 
 140         /*
 141          * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
 142          * to sync metadata, which they would otherwise cache indefinitely.
 143          * Semantically, the only requirement is that the sync be initiated.
 144          * The DMU syncs out txgs frequently, so there's nothing to do.
 145          */
 146         if (flag & SYNC_ATTR)
 147                 return (0);
 148 
 149         if (vfsp != NULL) {
 150                 /*
 151                  * Sync a specific filesystem.
 152                  */
 153                 zfsvfs_t *zfsvfs = vfsp->vfs_data;
 154                 dsl_pool_t *dp;
 155 
 156                 ZFS_ENTER(zfsvfs);
 157                 dp = dmu_objset_pool(zfsvfs->z_os);
 158 
 159                 /*
 160                  * If the system is shutting down, then skip any
 161                  * filesystems which may exist on a suspended pool.
 162                  */
 163                 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
 164                         ZFS_EXIT(zfsvfs);
 165                         return (0);
 166                 }
 167 
 168                 if (zfsvfs->z_log != NULL)
 169                         zil_commit(zfsvfs->z_log, 0);
 170 
 171                 ZFS_EXIT(zfsvfs);
 172         } else {
 173                 /*
 174                  * Sync all ZFS filesystems.  This is what happens when you
 175                  * run sync(1M).  Unlike other filesystems, ZFS honors the
 176                  * request by waiting for all pools to commit all dirty data.
 177                  */
 178                 spa_sync_allpools();
 179         }
 180 
 181         return (0);
 182 }
 183 
 184 static int
 185 zfs_create_unique_device(dev_t *dev)
 186 {
 187         major_t new_major;
 188 
 189         do {
 190                 ASSERT3U(zfs_minor, <=, MAXMIN32);
 191                 minor_t start = zfs_minor;
 192                 do {
 193                         mutex_enter(&zfs_dev_mtx);
 194                         if (zfs_minor >= MAXMIN32) {
 195                                 /*
 196                                  * If we're still using the real major
 197                                  * keep out of /dev/zfs and /dev/zvol minor
 198                                  * number space.  If we're using a getudev()'ed
 199                                  * major number, we can use all of its minors.
 200                                  */
 201                                 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
 202                                         zfs_minor = ZFS_MIN_MINOR;
 203                                 else
 204                                         zfs_minor = 0;
 205                         } else {
 206                                 zfs_minor++;
 207                         }
 208                         *dev = makedevice(zfs_major, zfs_minor);
 209                         mutex_exit(&zfs_dev_mtx);
 210                 } while (vfs_devismounted(*dev) && zfs_minor != start);
 211                 if (zfs_minor == start) {
 212                         /*
 213                          * We are using all ~262,000 minor numbers for the
 214                          * current major number.  Create a new major number.
 215                          */
 216                         if ((new_major = getudev()) == (major_t)-1) {
 217                                 cmn_err(CE_WARN,
 218                                     "zfs_mount: Can't get unique major "
 219                                     "device number.");
 220                                 return (-1);
 221                         }
 222                         mutex_enter(&zfs_dev_mtx);
 223                         zfs_major = new_major;
 224                         zfs_minor = 0;
 225 
 226                         mutex_exit(&zfs_dev_mtx);
 227                 } else {
 228                         break;
 229                 }
 230                 /* CONSTANTCONDITION */
 231         } while (1);
 232 
 233         return (0);
 234 }
 235 
 236 static void
 237 atime_changed_cb(void *arg, uint64_t newval)
 238 {
 239         zfsvfs_t *zfsvfs = arg;
 240 
 241         if (newval == TRUE) {
 242                 zfsvfs->z_atime = TRUE;
 243                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
 244                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
 245         } else {
 246                 zfsvfs->z_atime = FALSE;
 247                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
 248                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
 249         }
 250 }
 251 
 252 static void
 253 xattr_changed_cb(void *arg, uint64_t newval)
 254 {
 255         zfsvfs_t *zfsvfs = arg;
 256 
 257         if (newval == TRUE) {
 258                 /* XXX locking on vfs_flag? */
 259                 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
 260                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
 261                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
 262         } else {
 263                 /* XXX locking on vfs_flag? */
 264                 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
 265                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
 266                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
 267         }
 268 }
 269 
 270 static void
 271 blksz_changed_cb(void *arg, uint64_t newval)
 272 {
 273         zfsvfs_t *zfsvfs = arg;
 274 
 275         if (newval < SPA_MINBLOCKSIZE ||
 276             newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
 277                 newval = SPA_MAXBLOCKSIZE;
 278 
 279         zfsvfs->z_max_blksz = newval;
 280         zfsvfs->z_vfs->vfs_bsize = newval;
 281 }
 282 
 283 static void
 284 readonly_changed_cb(void *arg, uint64_t newval)
 285 {
 286         zfsvfs_t *zfsvfs = arg;
 287 
 288         if (newval) {
 289                 /* XXX locking on vfs_flag? */
 290                 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
 291                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
 292                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
 293         } else {
 294                 /* XXX locking on vfs_flag? */
 295                 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
 296                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
 297                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
 298         }
 299 }
 300 
 301 static void
 302 devices_changed_cb(void *arg, uint64_t newval)
 303 {
 304         zfsvfs_t *zfsvfs = arg;
 305 
 306         if (newval == FALSE) {
 307                 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
 308                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
 309                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
 310         } else {
 311                 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
 312                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
 313                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
 314         }
 315 }
 316 
 317 static void
 318 setuid_changed_cb(void *arg, uint64_t newval)
 319 {
 320         zfsvfs_t *zfsvfs = arg;
 321 
 322         if (newval == FALSE) {
 323                 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
 324                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
 325                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
 326         } else {
 327                 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
 328                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
 329                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
 330         }
 331 }
 332 
 333 static void
 334 exec_changed_cb(void *arg, uint64_t newval)
 335 {
 336         zfsvfs_t *zfsvfs = arg;
 337 
 338         if (newval == FALSE) {
 339                 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
 340                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
 341                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
 342         } else {
 343                 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
 344                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
 345                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
 346         }
 347 }
 348 
 349 /*
 350  * The nbmand mount option can be changed at mount time.
 351  * We can't allow it to be toggled on live file systems or incorrect
 352  * behavior may be seen from cifs clients
 353  *
 354  * This property isn't registered via dsl_prop_register(), but this callback
 355  * will be called when a file system is first mounted
 356  */
 357 static void
 358 nbmand_changed_cb(void *arg, uint64_t newval)
 359 {
 360         zfsvfs_t *zfsvfs = arg;
 361         if (newval == FALSE) {
 362                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
 363                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
 364         } else {
 365                 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
 366                 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
 367         }
 368 }
 369 
 370 static void
 371 snapdir_changed_cb(void *arg, uint64_t newval)
 372 {
 373         zfsvfs_t *zfsvfs = arg;
 374 
 375         zfsvfs->z_show_ctldir = newval;
 376 }
 377 
 378 static void
 379 vscan_changed_cb(void *arg, uint64_t newval)
 380 {
 381         zfsvfs_t *zfsvfs = arg;
 382 
 383         zfsvfs->z_vscan = newval;
 384 }
 385 
 386 static void
 387 acl_mode_changed_cb(void *arg, uint64_t newval)
 388 {
 389         zfsvfs_t *zfsvfs = arg;
 390 
 391         zfsvfs->z_acl_mode = newval;
 392 }
 393 
 394 static void
 395 acl_inherit_changed_cb(void *arg, uint64_t newval)
 396 {
 397         zfsvfs_t *zfsvfs = arg;
 398 
 399         zfsvfs->z_acl_inherit = newval;
 400 }
 401 
 402 static int
 403 zfs_register_callbacks(vfs_t *vfsp)
 404 {
 405         struct dsl_dataset *ds = NULL;
 406         objset_t *os = NULL;
 407         zfsvfs_t *zfsvfs = NULL;
 408         uint64_t nbmand;
 409         int readonly, do_readonly = B_FALSE;
 410         int setuid, do_setuid = B_FALSE;
 411         int exec, do_exec = B_FALSE;
 412         int devices, do_devices = B_FALSE;
 413         int xattr, do_xattr = B_FALSE;
 414         int atime, do_atime = B_FALSE;
 415         int error = 0;
 416 
 417         ASSERT(vfsp);
 418         zfsvfs = vfsp->vfs_data;
 419         ASSERT(zfsvfs);
 420         os = zfsvfs->z_os;
 421 
 422         /*
 423          * The act of registering our callbacks will destroy any mount
 424          * options we may have.  In order to enable temporary overrides
 425          * of mount options, we stash away the current values and
 426          * restore them after we register the callbacks.
 427          */
 428         if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
 429             !spa_writeable(dmu_objset_spa(os))) {
 430                 readonly = B_TRUE;
 431                 do_readonly = B_TRUE;
 432         } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
 433                 readonly = B_FALSE;
 434                 do_readonly = B_TRUE;
 435         }
 436         if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
 437                 devices = B_FALSE;
 438                 setuid = B_FALSE;
 439                 do_devices = B_TRUE;
 440                 do_setuid = B_TRUE;
 441         } else {
 442                 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
 443                         devices = B_FALSE;
 444                         do_devices = B_TRUE;
 445                 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
 446                         devices = B_TRUE;
 447                         do_devices = B_TRUE;
 448                 }
 449 
 450                 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
 451                         setuid = B_FALSE;
 452                         do_setuid = B_TRUE;
 453                 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
 454                         setuid = B_TRUE;
 455                         do_setuid = B_TRUE;
 456                 }
 457         }
 458         if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
 459                 exec = B_FALSE;
 460                 do_exec = B_TRUE;
 461         } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
 462                 exec = B_TRUE;
 463                 do_exec = B_TRUE;
 464         }
 465         if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
 466                 xattr = B_FALSE;
 467                 do_xattr = B_TRUE;
 468         } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
 469                 xattr = B_TRUE;
 470                 do_xattr = B_TRUE;
 471         }
 472         if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
 473                 atime = B_FALSE;
 474                 do_atime = B_TRUE;
 475         } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
 476                 atime = B_TRUE;
 477                 do_atime = B_TRUE;
 478         }
 479 
 480         /*
 481          * nbmand is a special property.  It can only be changed at
 482          * mount time.
 483          *
 484          * This is weird, but it is documented to only be changeable
 485          * at mount time.
 486          */
 487         if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
 488                 nbmand = B_FALSE;
 489         } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
 490                 nbmand = B_TRUE;
 491         } else {
 492                 char osname[MAXNAMELEN];
 493 
 494                 dmu_objset_name(os, osname);
 495                 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
 496                     NULL)) {
 497                         return (error);
 498                 }
 499         }
 500 
 501         /*
 502          * Register property callbacks.
 503          *
 504          * It would probably be fine to just check for i/o error from
 505          * the first prop_register(), but I guess I like to go
 506          * overboard...
 507          */
 508         ds = dmu_objset_ds(os);
 509         error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
 510         error = error ? error : dsl_prop_register(ds,
 511             "xattr", xattr_changed_cb, zfsvfs);
 512         error = error ? error : dsl_prop_register(ds,
 513             "recordsize", blksz_changed_cb, zfsvfs);
 514         error = error ? error : dsl_prop_register(ds,
 515             "readonly", readonly_changed_cb, zfsvfs);
 516         error = error ? error : dsl_prop_register(ds,
 517             "devices", devices_changed_cb, zfsvfs);
 518         error = error ? error : dsl_prop_register(ds,
 519             "setuid", setuid_changed_cb, zfsvfs);
 520         error = error ? error : dsl_prop_register(ds,
 521             "exec", exec_changed_cb, zfsvfs);
 522         error = error ? error : dsl_prop_register(ds,
 523             "snapdir", snapdir_changed_cb, zfsvfs);
 524         error = error ? error : dsl_prop_register(ds,
 525             "aclmode", acl_mode_changed_cb, zfsvfs);
 526         error = error ? error : dsl_prop_register(ds,
 527             "aclinherit", acl_inherit_changed_cb, zfsvfs);
 528         error = error ? error : dsl_prop_register(ds,
 529             "vscan", vscan_changed_cb, zfsvfs);
 530         if (error)
 531                 goto unregister;
 532 
 533         /*
 534          * Invoke our callbacks to restore temporary mount options.
 535          */
 536         if (do_readonly)
 537                 readonly_changed_cb(zfsvfs, readonly);
 538         if (do_setuid)
 539                 setuid_changed_cb(zfsvfs, setuid);
 540         if (do_exec)
 541                 exec_changed_cb(zfsvfs, exec);
 542         if (do_devices)
 543                 devices_changed_cb(zfsvfs, devices);
 544         if (do_xattr)
 545                 xattr_changed_cb(zfsvfs, xattr);
 546         if (do_atime)
 547                 atime_changed_cb(zfsvfs, atime);
 548 
 549         nbmand_changed_cb(zfsvfs, nbmand);
 550 
 551         return (0);
 552 
 553 unregister:
 554         /*
 555          * We may attempt to unregister some callbacks that are not
 556          * registered, but this is OK; it will simply return ENOMSG,
 557          * which we will ignore.
 558          */
 559         (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
 560         (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
 561         (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
 562         (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
 563         (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
 564         (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
 565         (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
 566         (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
 567         (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
 568         (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
 569             zfsvfs);
 570         (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
 571         return (error);
 572 
 573 }
 574 
 575 static int
 576 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
 577     uint64_t *userp, uint64_t *groupp)
 578 {
 579         znode_phys_t *znp = data;
 580         int error = 0;
 581 
 582         /*
 583          * Is it a valid type of object to track?
 584          */
 585         if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
 586                 return (ENOENT);
 587 
 588         /*
 589          * If we have a NULL data pointer
 590          * then assume the id's aren't changing and
 591          * return EEXIST to the dmu to let it know to
 592          * use the same ids
 593          */
 594         if (data == NULL)
 595                 return (EEXIST);
 596 
 597         if (bonustype == DMU_OT_ZNODE) {
 598                 *userp = znp->zp_uid;
 599                 *groupp = znp->zp_gid;
 600         } else {
 601                 int hdrsize;
 602 
 603                 ASSERT(bonustype == DMU_OT_SA);
 604                 hdrsize = sa_hdrsize(data);
 605 
 606                 if (hdrsize != 0) {
 607                         *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
 608                             SA_UID_OFFSET));
 609                         *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
 610                             SA_GID_OFFSET));
 611                 } else {
 612                         /*
 613                          * This should only happen for newly created
 614                          * files that haven't had the znode data filled
 615                          * in yet.
 616                          */
 617                         *userp = 0;
 618                         *groupp = 0;
 619                 }
 620         }
 621         return (error);
 622 }
 623 
 624 static void
 625 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
 626     char *domainbuf, int buflen, uid_t *ridp)
 627 {
 628         uint64_t fuid;
 629         const char *domain;
 630 
 631         fuid = strtonum(fuidstr, NULL);
 632 
 633         domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
 634         if (domain)
 635                 (void) strlcpy(domainbuf, domain, buflen);
 636         else
 637                 domainbuf[0] = '\0';
 638         *ridp = FUID_RID(fuid);
 639 }
 640 
 641 static uint64_t
 642 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
 643 {
 644         switch (type) {
 645         case ZFS_PROP_USERUSED:
 646                 return (DMU_USERUSED_OBJECT);
 647         case ZFS_PROP_GROUPUSED:
 648                 return (DMU_GROUPUSED_OBJECT);
 649         case ZFS_PROP_USERQUOTA:
 650                 return (zfsvfs->z_userquota_obj);
 651         case ZFS_PROP_GROUPQUOTA:
 652                 return (zfsvfs->z_groupquota_obj);
 653         }
 654         return (0);
 655 }
 656 
 657 int
 658 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 659     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
 660 {
 661         int error;
 662         zap_cursor_t zc;
 663         zap_attribute_t za;
 664         zfs_useracct_t *buf = vbuf;
 665         uint64_t obj;
 666 
 667         if (!dmu_objset_userspace_present(zfsvfs->z_os))
 668                 return (ENOTSUP);
 669 
 670         obj = zfs_userquota_prop_to_obj(zfsvfs, type);
 671         if (obj == 0) {
 672                 *bufsizep = 0;
 673                 return (0);
 674         }
 675 
 676         for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
 677             (error = zap_cursor_retrieve(&zc, &za)) == 0;
 678             zap_cursor_advance(&zc)) {
 679                 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
 680                     *bufsizep)
 681                         break;
 682 
 683                 fuidstr_to_sid(zfsvfs, za.za_name,
 684                     buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
 685 
 686                 buf->zu_space = za.za_first_integer;
 687                 buf++;
 688         }
 689         if (error == ENOENT)
 690                 error = 0;
 691 
 692         ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
 693         *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
 694         *cookiep = zap_cursor_serialize(&zc);
 695         zap_cursor_fini(&zc);
 696         return (error);
 697 }
 698 
 699 /*
 700  * buf must be big enough (eg, 32 bytes)
 701  */
 702 static int
 703 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
 704     char *buf, boolean_t addok)
 705 {
 706         uint64_t fuid;
 707         int domainid = 0;
 708 
 709         if (domain && domain[0]) {
 710                 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
 711                 if (domainid == -1)
 712                         return (ENOENT);
 713         }
 714         fuid = FUID_ENCODE(domainid, rid);
 715         (void) sprintf(buf, "%llx", (longlong_t)fuid);
 716         return (0);
 717 }
 718 
 719 int
 720 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 721     const char *domain, uint64_t rid, uint64_t *valp)
 722 {
 723         char buf[32];
 724         int err;
 725         uint64_t obj;
 726 
 727         *valp = 0;
 728 
 729         if (!dmu_objset_userspace_present(zfsvfs->z_os))
 730                 return (ENOTSUP);
 731 
 732         obj = zfs_userquota_prop_to_obj(zfsvfs, type);
 733         if (obj == 0)
 734                 return (0);
 735 
 736         err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
 737         if (err)
 738                 return (err);
 739 
 740         err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
 741         if (err == ENOENT)
 742                 err = 0;
 743         return (err);
 744 }
 745 
 746 int
 747 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
 748     const char *domain, uint64_t rid, uint64_t quota)
 749 {
 750         char buf[32];
 751         int err;
 752         dmu_tx_t *tx;
 753         uint64_t *objp;
 754         boolean_t fuid_dirtied;
 755 
 756         if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
 757                 return (EINVAL);
 758 
 759         if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
 760                 return (ENOTSUP);
 761 
 762         objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
 763             &zfsvfs->z_groupquota_obj;
 764 
 765         err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
 766         if (err)
 767                 return (err);
 768         fuid_dirtied = zfsvfs->z_fuid_dirty;
 769 
 770         tx = dmu_tx_create(zfsvfs->z_os);
 771         dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
 772         if (*objp == 0) {
 773                 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
 774                     zfs_userquota_prop_prefixes[type]);
 775         }
 776         if (fuid_dirtied)
 777                 zfs_fuid_txhold(zfsvfs, tx);
 778         err = dmu_tx_assign(tx, TXG_WAIT);
 779         if (err) {
 780                 dmu_tx_abort(tx);
 781                 return (err);
 782         }
 783 
 784         mutex_enter(&zfsvfs->z_lock);
 785         if (*objp == 0) {
 786                 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
 787                     DMU_OT_NONE, 0, tx);
 788                 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
 789                     zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
 790         }
 791         mutex_exit(&zfsvfs->z_lock);
 792 
 793         if (quota == 0) {
 794                 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
 795                 if (err == ENOENT)
 796                         err = 0;
 797         } else {
 798                 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
 799         }
 800         ASSERT(err == 0);
 801         if (fuid_dirtied)
 802                 zfs_fuid_sync(zfsvfs, tx);
 803         dmu_tx_commit(tx);
 804         return (err);
 805 }
 806 
 807 boolean_t
 808 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
 809 {
 810         char buf[32];
 811         uint64_t used, quota, usedobj, quotaobj;
 812         int err;
 813 
 814         usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
 815         quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
 816 
 817         if (quotaobj == 0 || zfsvfs->z_replay)
 818                 return (B_FALSE);
 819 
 820         (void) sprintf(buf, "%llx", (longlong_t)fuid);
 821         err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
 822         if (err != 0)
 823                 return (B_FALSE);
 824 
 825         err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
 826         if (err != 0)
 827                 return (B_FALSE);
 828         return (used >= quota);
 829 }
 830 
 831 boolean_t
 832 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
 833 {
 834         uint64_t fuid;
 835         uint64_t quotaobj;
 836 
 837         quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
 838 
 839         fuid = isgroup ? zp->z_gid : zp->z_uid;
 840 
 841         if (quotaobj == 0 || zfsvfs->z_replay)
 842                 return (B_FALSE);
 843 
 844         return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
 845 }
 846 
 847 int
 848 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
 849 {
 850         objset_t *os;
 851         zfsvfs_t *zfsvfs;
 852         uint64_t zval;
 853         int i, error;
 854         uint64_t sa_obj;
 855 
 856         zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
 857 
 858         /*
 859          * We claim to always be readonly so we can open snapshots;
 860          * other ZPL code will prevent us from writing to snapshots.
 861          */
 862         error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
 863         if (error) {
 864                 kmem_free(zfsvfs, sizeof (zfsvfs_t));
 865                 return (error);
 866         }
 867 
 868         /*
 869          * Initialize the zfs-specific filesystem structure.
 870          * Should probably make this a kmem cache, shuffle fields,
 871          * and just bzero up to z_hold_mtx[].
 872          */
 873         zfsvfs->z_vfs = NULL;
 874         zfsvfs->z_parent = zfsvfs;
 875         zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
 876         zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
 877         zfsvfs->z_os = os;
 878 
 879         error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
 880         if (error) {
 881                 goto out;
 882         } else if (zfsvfs->z_version >
 883             zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
 884                 (void) printf("Can't mount a version %lld file system "
 885                     "on a version %lld pool\n. Pool must be upgraded to mount "
 886                     "this file system.", (u_longlong_t)zfsvfs->z_version,
 887                     (u_longlong_t)spa_version(dmu_objset_spa(os)));
 888                 error = ENOTSUP;
 889                 goto out;
 890         }
 891         if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
 892                 goto out;
 893         zfsvfs->z_norm = (int)zval;
 894 
 895         if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
 896                 goto out;
 897         zfsvfs->z_utf8 = (zval != 0);
 898 
 899         if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
 900                 goto out;
 901         zfsvfs->z_case = (uint_t)zval;
 902 
 903         /*
 904          * Fold case on file systems that are always or sometimes case
 905          * insensitive.
 906          */
 907         if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
 908             zfsvfs->z_case == ZFS_CASE_MIXED)
 909                 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
 910 
 911         zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
 912         zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
 913 
 914         if (zfsvfs->z_use_sa) {
 915                 /* should either have both of these objects or none */
 916                 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
 917                     &sa_obj);
 918                 if (error)
 919                         return (error);
 920         } else {
 921                 /*
 922                  * Pre SA versions file systems should never touch
 923                  * either the attribute registration or layout objects.
 924                  */
 925                 sa_obj = 0;
 926         }
 927 
 928         error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
 929             &zfsvfs->z_attr_table);
 930         if (error)
 931                 goto out;
 932 
 933         if (zfsvfs->z_version >= ZPL_VERSION_SA)
 934                 sa_register_update_callback(os, zfs_sa_upgrade);
 935 
 936         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
 937             &zfsvfs->z_root);
 938         if (error)
 939                 goto out;
 940         ASSERT(zfsvfs->z_root != 0);
 941 
 942         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
 943             &zfsvfs->z_unlinkedobj);
 944         if (error)
 945                 goto out;
 946 
 947         error = zap_lookup(os, MASTER_NODE_OBJ,
 948             zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
 949             8, 1, &zfsvfs->z_userquota_obj);
 950         if (error && error != ENOENT)
 951                 goto out;
 952 
 953         error = zap_lookup(os, MASTER_NODE_OBJ,
 954             zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
 955             8, 1, &zfsvfs->z_groupquota_obj);
 956         if (error && error != ENOENT)
 957                 goto out;
 958 
 959         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
 960             &zfsvfs->z_fuid_obj);
 961         if (error && error != ENOENT)
 962                 goto out;
 963 
 964         error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
 965             &zfsvfs->z_shares_dir);
 966         if (error && error != ENOENT)
 967                 goto out;
 968 
 969         mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
 970         mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
 971         list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
 972             offsetof(znode_t, z_link_node));
 973         rrw_init(&zfsvfs->z_teardown_lock);
 974         rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
 975         rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
 976         for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
 977                 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
 978 
 979         *zfvp = zfsvfs;
 980         return (0);
 981 
 982 out:
 983         dmu_objset_disown(os, zfsvfs);
 984         *zfvp = NULL;
 985         kmem_free(zfsvfs, sizeof (zfsvfs_t));
 986         return (error);
 987 }
 988 
 989 static int
 990 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
 991 {
 992         int error;
 993 
 994         error = zfs_register_callbacks(zfsvfs->z_vfs);
 995         if (error)
 996                 return (error);
 997 
 998         /*
 999          * Set the objset user_ptr to track its zfsvfs.
1000          */
1001         mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1002         dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1003         mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1004 
1005         zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1006 
1007         /*
1008          * If we are not mounting (ie: online recv), then we don't
1009          * have to worry about replaying the log as we blocked all
1010          * operations out since we closed the ZIL.
1011          */
1012         if (mounting) {
1013                 boolean_t readonly;
1014 
1015                 /*
1016                  * During replay we remove the read only flag to
1017                  * allow replays to succeed.
1018                  */
1019                 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1020                 if (readonly != 0)
1021                         zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1022                 else
1023                         zfs_unlinked_drain(zfsvfs);
1024 
1025                 /*
1026                  * Parse and replay the intent log.
1027                  *
1028                  * Because of ziltest, this must be done after
1029                  * zfs_unlinked_drain().  (Further note: ziltest
1030                  * doesn't use readonly mounts, where
1031                  * zfs_unlinked_drain() isn't called.)  This is because
1032                  * ziltest causes spa_sync() to think it's committed,
1033                  * but actually it is not, so the intent log contains
1034                  * many txg's worth of changes.
1035                  *
1036                  * In particular, if object N is in the unlinked set in
1037                  * the last txg to actually sync, then it could be
1038                  * actually freed in a later txg and then reallocated
1039                  * in a yet later txg.  This would write a "create
1040                  * object N" record to the intent log.  Normally, this
1041                  * would be fine because the spa_sync() would have
1042                  * written out the fact that object N is free, before
1043                  * we could write the "create object N" intent log
1044                  * record.
1045                  *
1046                  * But when we are in ziltest mode, we advance the "open
1047                  * txg" without actually spa_sync()-ing the changes to
1048                  * disk.  So we would see that object N is still
1049                  * allocated and in the unlinked set, and there is an
1050                  * intent log record saying to allocate it.
1051                  */
1052                 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1053                         if (zil_replay_disable) {
1054                                 zil_destroy(zfsvfs->z_log, B_FALSE);
1055                         } else {
1056                                 zfsvfs->z_replay = B_TRUE;
1057                                 zil_replay(zfsvfs->z_os, zfsvfs,
1058                                     zfs_replay_vector);
1059                                 zfsvfs->z_replay = B_FALSE;
1060                         }
1061                 }
1062                 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1063         }
1064 
1065         return (0);
1066 }
1067 
1068 void
1069 zfsvfs_free(zfsvfs_t *zfsvfs)
1070 {
1071         int i;
1072         extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1073 
1074         /*
1075          * This is a barrier to prevent the filesystem from going away in
1076          * zfs_znode_move() until we can safely ensure that the filesystem is
1077          * not unmounted. We consider the filesystem valid before the barrier
1078          * and invalid after the barrier.
1079          */
1080         rw_enter(&zfsvfs_lock, RW_READER);
1081         rw_exit(&zfsvfs_lock);
1082 
1083         zfs_fuid_destroy(zfsvfs);
1084 
1085         mutex_destroy(&zfsvfs->z_znodes_lock);
1086         mutex_destroy(&zfsvfs->z_lock);
1087         list_destroy(&zfsvfs->z_all_znodes);
1088         rrw_destroy(&zfsvfs->z_teardown_lock);
1089         rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1090         rw_destroy(&zfsvfs->z_fuid_lock);
1091         for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1092                 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1093         kmem_free(zfsvfs, sizeof (zfsvfs_t));
1094 }
1095 
1096 static void
1097 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1098 {
1099         zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1100         if (zfsvfs->z_vfs) {
1101                 if (zfsvfs->z_use_fuids) {
1102                         vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1103                         vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1104                         vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1105                         vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1106                         vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1107                         vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1108                 } else {
1109                         vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1110                         vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1111                         vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1112                         vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1113                         vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1114                         vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1115                 }
1116         }
1117         zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1118 }
1119 
1120 static int
1121 zfs_domount(vfs_t *vfsp, char *osname)
1122 {
1123         dev_t mount_dev;
1124         uint64_t recordsize, fsid_guid;
1125         int error = 0;
1126         zfsvfs_t *zfsvfs;
1127 
1128         ASSERT(vfsp);
1129         ASSERT(osname);
1130 
1131         error = zfsvfs_create(osname, &zfsvfs);
1132         if (error)
1133                 return (error);
1134         zfsvfs->z_vfs = vfsp;
1135 
1136         /* Initialize the generic filesystem structure. */
1137         vfsp->vfs_bcount = 0;
1138         vfsp->vfs_data = NULL;
1139 
1140         if (zfs_create_unique_device(&mount_dev) == -1) {
1141                 error = ENODEV;
1142                 goto out;
1143         }
1144         ASSERT(vfs_devismounted(mount_dev) == 0);
1145 
1146         if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1147             NULL))
1148                 goto out;
1149 
1150         vfsp->vfs_dev = mount_dev;
1151         vfsp->vfs_fstype = zfsfstype;
1152         vfsp->vfs_bsize = recordsize;
1153         vfsp->vfs_flag |= VFS_NOTRUNC;
1154         vfsp->vfs_data = zfsvfs;
1155 
1156         /*
1157          * The fsid is 64 bits, composed of an 8-bit fs type, which
1158          * separates our fsid from any other filesystem types, and a
1159          * 56-bit objset unique ID.  The objset unique ID is unique to
1160          * all objsets open on this system, provided by unique_create().
1161          * The 8-bit fs type must be put in the low bits of fsid[1]
1162          * because that's where other Solaris filesystems put it.
1163          */
1164         fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1165         ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1166         vfsp->vfs_fsid.val[0] = fsid_guid;
1167         vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1168             zfsfstype & 0xFF;
1169 
1170         /*
1171          * Set features for file system.
1172          */
1173         zfs_set_fuid_feature(zfsvfs);
1174         if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1175                 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1176                 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1177                 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1178         } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1179                 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1180                 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1181         }
1182         vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1183 
1184         if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1185                 uint64_t pval;
1186 
1187                 atime_changed_cb(zfsvfs, B_FALSE);
1188                 readonly_changed_cb(zfsvfs, B_TRUE);
1189                 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1190                         goto out;
1191                 xattr_changed_cb(zfsvfs, pval);
1192                 zfsvfs->z_issnap = B_TRUE;
1193                 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1194 
1195                 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1196                 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1197                 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1198         } else {
1199                 error = zfsvfs_setup(zfsvfs, B_TRUE);
1200         }
1201 
1202         if (!zfsvfs->z_issnap)
1203                 zfsctl_create(zfsvfs);
1204 out:
1205         if (error) {
1206                 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1207                 zfsvfs_free(zfsvfs);
1208         } else {
1209                 atomic_add_32(&zfs_active_fs_count, 1);
1210         }
1211 
1212         return (error);
1213 }
1214 
1215 void
1216 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1217 {
1218         objset_t *os = zfsvfs->z_os;
1219         struct dsl_dataset *ds;
1220 
1221         /*
1222          * Unregister properties.
1223          */
1224         if (!dmu_objset_is_snapshot(os)) {
1225                 ds = dmu_objset_ds(os);
1226                 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1227                     zfsvfs) == 0);
1228 
1229                 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1230                     zfsvfs) == 0);
1231 
1232                 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1233                     zfsvfs) == 0);
1234 
1235                 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1236                     zfsvfs) == 0);
1237 
1238                 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1239                     zfsvfs) == 0);
1240 
1241                 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1242                     zfsvfs) == 0);
1243 
1244                 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1245                     zfsvfs) == 0);
1246 
1247                 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1248                     zfsvfs) == 0);
1249 
1250                 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1251                     zfsvfs) == 0);
1252 
1253                 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1254                     acl_inherit_changed_cb, zfsvfs) == 0);
1255 
1256                 VERIFY(dsl_prop_unregister(ds, "vscan",
1257                     vscan_changed_cb, zfsvfs) == 0);
1258         }
1259 }
1260 
1261 /*
1262  * Convert a decimal digit string to a uint64_t integer.
1263  */
1264 static int
1265 str_to_uint64(char *str, uint64_t *objnum)
1266 {
1267         uint64_t num = 0;
1268 
1269         while (*str) {
1270                 if (*str < '0' || *str > '9')
1271                         return (EINVAL);
1272 
1273                 num = num*10 + *str++ - '0';
1274         }
1275 
1276         *objnum = num;
1277         return (0);
1278 }
1279 
1280 /*
1281  * The boot path passed from the boot loader is in the form of
1282  * "rootpool-name/root-filesystem-object-number'. Convert this
1283  * string to a dataset name: "rootpool-name/root-filesystem-name".
1284  */
1285 static int
1286 zfs_parse_bootfs(char *bpath, char *outpath)
1287 {
1288         char *slashp;
1289         uint64_t objnum;
1290         int error;
1291 
1292         if (*bpath == 0 || *bpath == '/')
1293                 return (EINVAL);
1294 
1295         (void) strcpy(outpath, bpath);
1296 
1297         slashp = strchr(bpath, '/');
1298 
1299         /* if no '/', just return the pool name */
1300         if (slashp == NULL) {
1301                 return (0);
1302         }
1303 
1304         /* if not a number, just return the root dataset name */
1305         if (str_to_uint64(slashp+1, &objnum)) {
1306                 return (0);
1307         }
1308 
1309         *slashp = '\0';
1310         error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1311         *slashp = '/';
1312 
1313         return (error);
1314 }
1315 
1316 /*
1317  * zfs_check_global_label:
1318  *      Check that the hex label string is appropriate for the dataset
1319  *      being mounted into the global_zone proper.
1320  *
1321  *      Return an error if the hex label string is not default or
1322  *      admin_low/admin_high.  For admin_low labels, the corresponding
1323  *      dataset must be readonly.
1324  */
1325 int
1326 zfs_check_global_label(const char *dsname, const char *hexsl)
1327 {
1328         if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1329                 return (0);
1330         if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1331                 return (0);
1332         if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1333                 /* must be readonly */
1334                 uint64_t rdonly;
1335 
1336                 if (dsl_prop_get_integer(dsname,
1337                     zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1338                         return (EACCES);
1339                 return (rdonly ? 0 : EACCES);
1340         }
1341         return (EACCES);
1342 }
1343 
1344 /*
1345  * zfs_mount_label_policy:
1346  *      Determine whether the mount is allowed according to MAC check.
1347  *      by comparing (where appropriate) label of the dataset against
1348  *      the label of the zone being mounted into.  If the dataset has
1349  *      no label, create one.
1350  *
1351  *      Returns:
1352  *               0 :    access allowed
1353  *              >0 : error code, such as EACCES
1354  */
1355 static int
1356 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1357 {
1358         int             error, retv;
1359         zone_t          *mntzone = NULL;
1360         ts_label_t      *mnt_tsl;
1361         bslabel_t       *mnt_sl;
1362         bslabel_t       ds_sl;
1363         char            ds_hexsl[MAXNAMELEN];
1364 
1365         retv = EACCES;                          /* assume the worst */
1366 
1367         /*
1368          * Start by getting the dataset label if it exists.
1369          */
1370         error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1371             1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1372         if (error)
1373                 return (EACCES);
1374 
1375         /*
1376          * If labeling is NOT enabled, then disallow the mount of datasets
1377          * which have a non-default label already.  No other label checks
1378          * are needed.
1379          */
1380         if (!is_system_labeled()) {
1381                 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1382                         return (0);
1383                 return (EACCES);
1384         }
1385 
1386         /*
1387          * Get the label of the mountpoint.  If mounting into the global
1388          * zone (i.e. mountpoint is not within an active zone and the
1389          * zoned property is off), the label must be default or
1390          * admin_low/admin_high only; no other checks are needed.
1391          */
1392         mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1393         if (mntzone->zone_id == GLOBAL_ZONEID) {
1394                 uint64_t zoned;
1395 
1396                 zone_rele(mntzone);
1397 
1398                 if (dsl_prop_get_integer(osname,
1399                     zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1400                         return (EACCES);
1401                 if (!zoned)
1402                         return (zfs_check_global_label(osname, ds_hexsl));
1403                 else
1404                         /*
1405                          * This is the case of a zone dataset being mounted
1406                          * initially, before the zone has been fully created;
1407                          * allow this mount into global zone.
1408                          */
1409                         return (0);
1410         }
1411 
1412         mnt_tsl = mntzone->zone_slabel;
1413         ASSERT(mnt_tsl != NULL);
1414         label_hold(mnt_tsl);
1415         mnt_sl = label2bslabel(mnt_tsl);
1416 
1417         if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1418                 /*
1419                  * The dataset doesn't have a real label, so fabricate one.
1420                  */
1421                 char *str = NULL;
1422 
1423                 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1424                     dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1425                     ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1426                         retv = 0;
1427                 if (str != NULL)
1428                         kmem_free(str, strlen(str) + 1);
1429         } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1430                 /*
1431                  * Now compare labels to complete the MAC check.  If the
1432                  * labels are equal then allow access.  If the mountpoint
1433                  * label dominates the dataset label, allow readonly access.
1434                  * Otherwise, access is denied.
1435                  */
1436                 if (blequal(mnt_sl, &ds_sl))
1437                         retv = 0;
1438                 else if (bldominates(mnt_sl, &ds_sl)) {
1439                         vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1440                         retv = 0;
1441                 }
1442         }
1443 
1444         label_rele(mnt_tsl);
1445         zone_rele(mntzone);
1446         return (retv);
1447 }
1448 
1449 static int
1450 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1451 {
1452         int error = 0;
1453         static int zfsrootdone = 0;
1454         zfsvfs_t *zfsvfs = NULL;
1455         znode_t *zp = NULL;
1456         vnode_t *vp = NULL;
1457         char *zfs_bootfs;
1458         char *zfs_devid;
1459 
1460         ASSERT(vfsp);
1461 
1462         /*
1463          * The filesystem that we mount as root is defined in the
1464          * boot property "zfs-bootfs" with a format of
1465          * "poolname/root-dataset-objnum".
1466          */
1467         if (why == ROOT_INIT) {
1468                 if (zfsrootdone++)
1469                         return (EBUSY);
1470                 /*
1471                  * the process of doing a spa_load will require the
1472                  * clock to be set before we could (for example) do
1473                  * something better by looking at the timestamp on
1474                  * an uberblock, so just set it to -1.
1475                  */
1476                 clkset(-1);
1477 
1478                 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1479                         cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1480                             "bootfs name");
1481                         return (EINVAL);
1482                 }
1483                 zfs_devid = spa_get_bootprop("diskdevid");
1484                 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1485                 if (zfs_devid)
1486                         spa_free_bootprop(zfs_devid);
1487                 if (error) {
1488                         spa_free_bootprop(zfs_bootfs);
1489                         cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1490                             error);
1491                         return (error);
1492                 }
1493                 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1494                         spa_free_bootprop(zfs_bootfs);
1495                         cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1496                             error);
1497                         return (error);
1498                 }
1499 
1500                 spa_free_bootprop(zfs_bootfs);
1501 
1502                 if (error = vfs_lock(vfsp))
1503                         return (error);
1504 
1505                 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1506                         cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1507                         goto out;
1508                 }
1509 
1510                 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1511                 ASSERT(zfsvfs);
1512                 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1513                         cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1514                         goto out;
1515                 }
1516 
1517                 vp = ZTOV(zp);
1518                 mutex_enter(&vp->v_lock);
1519                 vp->v_flag |= VROOT;
1520                 mutex_exit(&vp->v_lock);
1521                 rootvp = vp;
1522 
1523                 /*
1524                  * Leave rootvp held.  The root file system is never unmounted.
1525                  */
1526 
1527                 vfs_add((struct vnode *)0, vfsp,
1528                     (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1529 out:
1530                 vfs_unlock(vfsp);
1531                 return (error);
1532         } else if (why == ROOT_REMOUNT) {
1533                 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1534                 vfsp->vfs_flag |= VFS_REMOUNT;
1535 
1536                 /* refresh mount options */
1537                 zfs_unregister_callbacks(vfsp->vfs_data);
1538                 return (zfs_register_callbacks(vfsp));
1539 
1540         } else if (why == ROOT_UNMOUNT) {
1541                 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1542                 (void) zfs_sync(vfsp, 0, 0);
1543                 return (0);
1544         }
1545 
1546         /*
1547          * if "why" is equal to anything else other than ROOT_INIT,
1548          * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1549          */
1550         return (ENOTSUP);
1551 }
1552 
1553 /*ARGSUSED*/
1554 static int
1555 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1556 {
1557         char            *osname;
1558         pathname_t      spn;
1559         int             error = 0;
1560         uio_seg_t       fromspace = (uap->flags & MS_SYSSPACE) ?
1561             UIO_SYSSPACE : UIO_USERSPACE;
1562         int             canwrite;
1563 
1564         if (mvp->v_type != VDIR)
1565                 return (ENOTDIR);
1566 
1567         mutex_enter(&mvp->v_lock);
1568         if ((uap->flags & MS_REMOUNT) == 0 &&
1569             (uap->flags & MS_OVERLAY) == 0 &&
1570             (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1571                 mutex_exit(&mvp->v_lock);
1572                 return (EBUSY);
1573         }
1574         mutex_exit(&mvp->v_lock);
1575 
1576         /*
1577          * ZFS does not support passing unparsed data in via MS_DATA.
1578          * Users should use the MS_OPTIONSTR interface; this means
1579          * that all option parsing is already done and the options struct
1580          * can be interrogated.
1581          */
1582         if ((uap->flags & MS_DATA) && uap->datalen > 0)
1583                 return (EINVAL);
1584 
1585         /*
1586          * Get the objset name (the "special" mount argument).
1587          */
1588         if (error = pn_get(uap->spec, fromspace, &spn))
1589                 return (error);
1590 
1591         osname = spn.pn_path;
1592 
1593         /*
1594          * Check for mount privilege?
1595          *
1596          * If we don't have privilege then see if
1597          * we have local permission to allow it
1598          */
1599         error = secpolicy_fs_mount(cr, mvp, vfsp);
1600         if (error) {
1601                 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1602                         vattr_t         vattr;
1603 
1604                         /*
1605                          * Make sure user is the owner of the mount point
1606                          * or has sufficient privileges.
1607                          */
1608 
1609                         vattr.va_mask = AT_UID;
1610 
1611                         if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1612                                 goto out;
1613                         }
1614 
1615                         if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1616                             VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1617                                 goto out;
1618                         }
1619                         secpolicy_fs_mount_clearopts(cr, vfsp);
1620                 } else {
1621                         goto out;
1622                 }
1623         }
1624 
1625         /*
1626          * Refuse to mount a filesystem if we are in a local zone and the
1627          * dataset is not visible.
1628          */
1629         if (!INGLOBALZONE(curproc) &&
1630             (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1631                 error = EPERM;
1632                 goto out;
1633         }
1634 
1635         error = zfs_mount_label_policy(vfsp, osname);
1636         if (error)
1637                 goto out;
1638 
1639         /*
1640          * When doing a remount, we simply refresh our temporary properties
1641          * according to those options set in the current VFS options.
1642          */
1643         if (uap->flags & MS_REMOUNT) {
1644                 /* refresh mount options */
1645                 zfs_unregister_callbacks(vfsp->vfs_data);
1646                 error = zfs_register_callbacks(vfsp);
1647                 goto out;
1648         }
1649 
1650         error = zfs_domount(vfsp, osname);
1651 
1652         /*
1653          * Add an extra VFS_HOLD on our parent vfs so that it can't
1654          * disappear due to a forced unmount.
1655          */
1656         if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1657                 VFS_HOLD(mvp->v_vfsp);
1658 
1659 out:
1660         pn_free(&spn);
1661         return (error);
1662 }
1663 
1664 static int
1665 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1666 {
1667         zfsvfs_t *zfsvfs = vfsp->vfs_data;
1668         dev32_t d32;
1669         uint64_t refdbytes, availbytes, usedobjs, availobjs;
1670 
1671         ZFS_ENTER(zfsvfs);
1672 
1673         dmu_objset_space(zfsvfs->z_os,
1674             &refdbytes, &availbytes, &usedobjs, &availobjs);
1675 
1676         /*
1677          * The underlying storage pool actually uses multiple block sizes.
1678          * We report the fragsize as the smallest block size we support,
1679          * and we report our blocksize as the filesystem's maximum blocksize.
1680          */
1681         statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1682         statp->f_bsize = zfsvfs->z_max_blksz;
1683 
1684         /*
1685          * The following report "total" blocks of various kinds in the
1686          * file system, but reported in terms of f_frsize - the
1687          * "fragment" size.
1688          */
1689 
1690         statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1691         statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1692         statp->f_bavail = statp->f_bfree; /* no root reservation */
1693 
1694         /*
1695          * statvfs() should really be called statufs(), because it assumes
1696          * static metadata.  ZFS doesn't preallocate files, so the best
1697          * we can do is report the max that could possibly fit in f_files,
1698          * and that minus the number actually used in f_ffree.
1699          * For f_ffree, report the smaller of the number of object available
1700          * and the number of blocks (each object will take at least a block).
1701          */
1702         statp->f_ffree = MIN(availobjs, statp->f_bfree);
1703         statp->f_favail = statp->f_ffree; /* no "root reservation" */
1704         statp->f_files = statp->f_ffree + usedobjs;
1705 
1706         (void) cmpldev(&d32, vfsp->vfs_dev);
1707         statp->f_fsid = d32;
1708 
1709         /*
1710          * We're a zfs filesystem.
1711          */
1712         (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1713 
1714         statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1715 
1716         statp->f_namemax = ZFS_MAXNAMELEN;
1717 
1718         /*
1719          * We have all of 32 characters to stuff a string here.
1720          * Is there anything useful we could/should provide?
1721          */
1722         bzero(statp->f_fstr, sizeof (statp->f_fstr));
1723 
1724         ZFS_EXIT(zfsvfs);
1725         return (0);
1726 }
1727 
1728 static int
1729 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1730 {
1731         zfsvfs_t *zfsvfs = vfsp->vfs_data;
1732         znode_t *rootzp;
1733         int error;
1734 
1735         ZFS_ENTER(zfsvfs);
1736 
1737         error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1738         if (error == 0)
1739                 *vpp = ZTOV(rootzp);
1740 
1741         ZFS_EXIT(zfsvfs);
1742         return (error);
1743 }
1744 
1745 /*
1746  * Teardown the zfsvfs::z_os.
1747  *
1748  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1749  * and 'z_teardown_inactive_lock' held.
1750  */
1751 static int
1752 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1753 {
1754         znode_t *zp;
1755 
1756         rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1757 
1758         if (!unmounting) {
1759                 /*
1760                  * We purge the parent filesystem's vfsp as the parent
1761                  * filesystem and all of its snapshots have their vnode's
1762                  * v_vfsp set to the parent's filesystem's vfsp.  Note,
1763                  * 'z_parent' is self referential for non-snapshots.
1764                  */
1765                 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1766         }
1767 
1768         /*
1769          * Close the zil. NB: Can't close the zil while zfs_inactive
1770          * threads are blocked as zil_close can call zfs_inactive.
1771          */
1772         if (zfsvfs->z_log) {
1773                 zil_close(zfsvfs->z_log);
1774                 zfsvfs->z_log = NULL;
1775         }
1776 
1777         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1778 
1779         /*
1780          * If we are not unmounting (ie: online recv) and someone already
1781          * unmounted this file system while we were doing the switcheroo,
1782          * or a reopen of z_os failed then just bail out now.
1783          */
1784         if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1785                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1786                 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1787                 return (EIO);
1788         }
1789 
1790         /*
1791          * At this point there are no vops active, and any new vops will
1792          * fail with EIO since we have z_teardown_lock for writer (only
1793          * relavent for forced unmount).
1794          *
1795          * Release all holds on dbufs.
1796          */
1797         mutex_enter(&zfsvfs->z_znodes_lock);
1798         for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1799             zp = list_next(&zfsvfs->z_all_znodes, zp))
1800                 if (zp->z_sa_hdl) {
1801                         ASSERT(ZTOV(zp)->v_count > 0);
1802                         zfs_znode_dmu_fini(zp);
1803                 }
1804         mutex_exit(&zfsvfs->z_znodes_lock);
1805 
1806         /*
1807          * If we are unmounting, set the unmounted flag and let new vops
1808          * unblock.  zfs_inactive will have the unmounted behavior, and all
1809          * other vops will fail with EIO.
1810          */
1811         if (unmounting) {
1812                 zfsvfs->z_unmounted = B_TRUE;
1813                 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1814                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1815         }
1816 
1817         /*
1818          * z_os will be NULL if there was an error in attempting to reopen
1819          * zfsvfs, so just return as the properties had already been
1820          * unregistered and cached data had been evicted before.
1821          */
1822         if (zfsvfs->z_os == NULL)
1823                 return (0);
1824 
1825         /*
1826          * Unregister properties.
1827          */
1828         zfs_unregister_callbacks(zfsvfs);
1829 
1830         /*
1831          * Evict cached data
1832          */
1833         if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1834                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1835                         txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1836         (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1837 
1838         return (0);
1839 }
1840 
1841 /*ARGSUSED*/
1842 static int
1843 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1844 {
1845         zfsvfs_t *zfsvfs = vfsp->vfs_data;
1846         objset_t *os;
1847         int ret;
1848 
1849         ret = secpolicy_fs_unmount(cr, vfsp);
1850         if (ret) {
1851                 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1852                     ZFS_DELEG_PERM_MOUNT, cr))
1853                         return (ret);
1854         }
1855 
1856         /*
1857          * We purge the parent filesystem's vfsp as the parent filesystem
1858          * and all of its snapshots have their vnode's v_vfsp set to the
1859          * parent's filesystem's vfsp.  Note, 'z_parent' is self
1860          * referential for non-snapshots.
1861          */
1862         (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1863 
1864         /*
1865          * Unmount any snapshots mounted under .zfs before unmounting the
1866          * dataset itself.
1867          */
1868         if (zfsvfs->z_ctldir != NULL &&
1869             (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1870                 return (ret);
1871         }
1872 
1873         if (!(fflag & MS_FORCE)) {
1874                 /*
1875                  * Check the number of active vnodes in the file system.
1876                  * Our count is maintained in the vfs structure, but the
1877                  * number is off by 1 to indicate a hold on the vfs
1878                  * structure itself.
1879                  *
1880                  * The '.zfs' directory maintains a reference of its
1881                  * own, and any active references underneath are
1882                  * reflected in the vnode count.
1883                  */
1884                 if (zfsvfs->z_ctldir == NULL) {
1885                         if (vfsp->vfs_count > 1)
1886                                 return (EBUSY);
1887                 } else {
1888                         if (vfsp->vfs_count > 2 ||
1889                             zfsvfs->z_ctldir->v_count > 1)
1890                                 return (EBUSY);
1891                 }
1892         }
1893 
1894         vfsp->vfs_flag |= VFS_UNMOUNTED;
1895 
1896         VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1897         os = zfsvfs->z_os;
1898 
1899         /*
1900          * z_os will be NULL if there was an error in
1901          * attempting to reopen zfsvfs.
1902          */
1903         if (os != NULL) {
1904                 /*
1905                  * Unset the objset user_ptr.
1906                  */
1907                 mutex_enter(&os->os_user_ptr_lock);
1908                 dmu_objset_set_user(os, NULL);
1909                 mutex_exit(&os->os_user_ptr_lock);
1910 
1911                 /*
1912                  * Finally release the objset
1913                  */
1914                 dmu_objset_disown(os, zfsvfs);
1915         }
1916 
1917         /*
1918          * We can now safely destroy the '.zfs' directory node.
1919          */
1920         if (zfsvfs->z_ctldir != NULL)
1921                 zfsctl_destroy(zfsvfs);
1922 
1923         return (0);
1924 }
1925 
1926 static int
1927 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1928 {
1929         zfsvfs_t        *zfsvfs = vfsp->vfs_data;
1930         znode_t         *zp;
1931         uint64_t        object = 0;
1932         uint64_t        fid_gen = 0;
1933         uint64_t        gen_mask;
1934         uint64_t        zp_gen;
1935         int             i, err;
1936 
1937         *vpp = NULL;
1938 
1939         ZFS_ENTER(zfsvfs);
1940 
1941         if (fidp->fid_len == LONG_FID_LEN) {
1942                 zfid_long_t     *zlfid = (zfid_long_t *)fidp;
1943                 uint64_t        objsetid = 0;
1944                 uint64_t        setgen = 0;
1945 
1946                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1947                         objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1948 
1949                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1950                         setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1951 
1952                 ZFS_EXIT(zfsvfs);
1953 
1954                 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1955                 if (err)
1956                         return (EINVAL);
1957                 ZFS_ENTER(zfsvfs);
1958         }
1959 
1960         if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1961                 zfid_short_t    *zfid = (zfid_short_t *)fidp;
1962 
1963                 for (i = 0; i < sizeof (zfid->zf_object); i++)
1964                         object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1965 
1966                 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1967                         fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1968         } else {
1969                 ZFS_EXIT(zfsvfs);
1970                 return (EINVAL);
1971         }
1972 
1973         /* A zero fid_gen means we are in the .zfs control directories */
1974         if (fid_gen == 0 &&
1975             (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1976                 *vpp = zfsvfs->z_ctldir;
1977                 ASSERT(*vpp != NULL);
1978                 if (object == ZFSCTL_INO_SNAPDIR) {
1979                         VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1980                             0, NULL, NULL, NULL, NULL, NULL) == 0);
1981                 } else {
1982                         VN_HOLD(*vpp);
1983                 }
1984                 ZFS_EXIT(zfsvfs);
1985                 return (0);
1986         }
1987 
1988         gen_mask = -1ULL >> (64 - 8 * i);
1989 
1990         dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1991         if (err = zfs_zget(zfsvfs, object, &zp)) {
1992                 ZFS_EXIT(zfsvfs);
1993                 return (err);
1994         }
1995         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1996             sizeof (uint64_t));
1997         zp_gen = zp_gen & gen_mask;
1998         if (zp_gen == 0)
1999                 zp_gen = 1;
2000         if (zp->z_unlinked || zp_gen != fid_gen) {
2001                 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2002                 VN_RELE(ZTOV(zp));
2003                 ZFS_EXIT(zfsvfs);
2004                 return (EINVAL);
2005         }
2006 
2007         *vpp = ZTOV(zp);
2008         ZFS_EXIT(zfsvfs);
2009         return (0);
2010 }
2011 
2012 /*
2013  * Block out VOPs and close zfsvfs_t::z_os
2014  *
2015  * Note, if successful, then we return with the 'z_teardown_lock' and
2016  * 'z_teardown_inactive_lock' write held.
2017  */
2018 int
2019 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2020 {
2021         int error;
2022 
2023         if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2024                 return (error);
2025         dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2026 
2027         return (0);
2028 }
2029 
2030 /*
2031  * Reopen zfsvfs_t::z_os and release VOPs.
2032  */
2033 int
2034 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2035 {
2036         int err;
2037 
2038         ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2039         ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2040 
2041         err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2042             &zfsvfs->z_os);
2043         if (err) {
2044                 zfsvfs->z_os = NULL;
2045         } else {
2046                 znode_t *zp;
2047                 uint64_t sa_obj = 0;
2048 
2049                 /*
2050                  * Make sure version hasn't changed
2051                  */
2052 
2053                 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2054                     &zfsvfs->z_version);
2055 
2056                 if (err)
2057                         goto bail;
2058 
2059                 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2060                     ZFS_SA_ATTRS, 8, 1, &sa_obj);
2061 
2062                 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2063                         goto bail;
2064 
2065                 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2066                     zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2067                         goto bail;
2068 
2069                 if (zfsvfs->z_version >= ZPL_VERSION_SA)
2070                         sa_register_update_callback(zfsvfs->z_os,
2071                             zfs_sa_upgrade);
2072 
2073                 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2074 
2075                 zfs_set_fuid_feature(zfsvfs);
2076 
2077                 /*
2078                  * Attempt to re-establish all the active znodes with
2079                  * their dbufs.  If a zfs_rezget() fails, then we'll let
2080                  * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2081                  * when they try to use their znode.
2082                  */
2083                 mutex_enter(&zfsvfs->z_znodes_lock);
2084                 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2085                     zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2086                         (void) zfs_rezget(zp);
2087                 }
2088                 mutex_exit(&zfsvfs->z_znodes_lock);
2089         }
2090 
2091 bail:
2092         /* release the VOPs */
2093         rw_exit(&zfsvfs->z_teardown_inactive_lock);
2094         rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2095 
2096         if (err) {
2097                 /*
2098                  * Since we couldn't reopen zfsvfs::z_os, or
2099                  * setup the sa framework force unmount this file system.
2100                  */
2101                 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2102                         (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2103         }
2104         return (err);
2105 }
2106 
2107 static void
2108 zfs_freevfs(vfs_t *vfsp)
2109 {
2110         zfsvfs_t *zfsvfs = vfsp->vfs_data;
2111 
2112         /*
2113          * If this is a snapshot, we have an extra VFS_HOLD on our parent
2114          * from zfs_mount().  Release it here.  If we came through
2115          * zfs_mountroot() instead, we didn't grab an extra hold, so
2116          * skip the VFS_RELE for rootvfs.
2117          */
2118         if (zfsvfs->z_issnap && (vfsp != rootvfs))
2119                 VFS_RELE(zfsvfs->z_parent->z_vfs);
2120 
2121         zfsvfs_free(zfsvfs);
2122 
2123         atomic_add_32(&zfs_active_fs_count, -1);
2124 }
2125 
2126 /*
2127  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2128  * so we can't safely do any non-idempotent initialization here.
2129  * Leave that to zfs_init() and zfs_fini(), which are called
2130  * from the module's _init() and _fini() entry points.
2131  */
2132 /*ARGSUSED*/
2133 static int
2134 zfs_vfsinit(int fstype, char *name)
2135 {
2136         int error;
2137 
2138         zfsfstype = fstype;
2139 
2140         /*
2141          * Setup vfsops and vnodeops tables.
2142          */
2143         error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2144         if (error != 0) {
2145                 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2146         }
2147 
2148         error = zfs_create_op_tables();
2149         if (error) {
2150                 zfs_remove_op_tables();
2151                 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2152                 (void) vfs_freevfsops_by_type(zfsfstype);
2153                 return (error);
2154         }
2155 
2156         mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2157 
2158         /*
2159          * Unique major number for all zfs mounts.
2160          * If we run out of 32-bit minors, we'll getudev() another major.
2161          */
2162         zfs_major = ddi_name_to_major(ZFS_DRIVER);
2163         zfs_minor = ZFS_MIN_MINOR;
2164 
2165         return (0);
2166 }
2167 
2168 void
2169 zfs_init(void)
2170 {
2171         /*
2172          * Initialize .zfs directory structures
2173          */
2174         zfsctl_init();
2175 
2176         /*
2177          * Initialize znode cache, vnode ops, etc...
2178          */
2179         zfs_znode_init();
2180 
2181         dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2182 }
2183 
2184 void
2185 zfs_fini(void)
2186 {
2187         zfsctl_fini();
2188         zfs_znode_fini();
2189 }
2190 
2191 int
2192 zfs_busy(void)
2193 {
2194         return (zfs_active_fs_count != 0);
2195 }
2196 
2197 int
2198 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2199 {
2200         int error;
2201         objset_t *os = zfsvfs->z_os;
2202         dmu_tx_t *tx;
2203 
2204         if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2205                 return (EINVAL);
2206 
2207         if (newvers < zfsvfs->z_version)
2208                 return (EINVAL);
2209 
2210         if (zfs_spa_version_map(newvers) >
2211             spa_version(dmu_objset_spa(zfsvfs->z_os)))
2212                 return (ENOTSUP);
2213 
2214         tx = dmu_tx_create(os);
2215         dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2216         if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2217                 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2218                     ZFS_SA_ATTRS);
2219                 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2220         }
2221         error = dmu_tx_assign(tx, TXG_WAIT);
2222         if (error) {
2223                 dmu_tx_abort(tx);
2224                 return (error);
2225         }
2226 
2227         error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2228             8, 1, &newvers, tx);
2229 
2230         if (error) {
2231                 dmu_tx_commit(tx);
2232                 return (error);
2233         }
2234 
2235         if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2236                 uint64_t sa_obj;
2237 
2238                 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2239                     SPA_VERSION_SA);
2240                 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2241                     DMU_OT_NONE, 0, tx);
2242 
2243                 error = zap_add(os, MASTER_NODE_OBJ,
2244                     ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2245                 ASSERT3U(error, ==, 0);
2246 
2247                 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2248                 sa_register_update_callback(os, zfs_sa_upgrade);
2249         }
2250 
2251         spa_history_log_internal(LOG_DS_UPGRADE,
2252             dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2253             zfsvfs->z_version, newvers, dmu_objset_id(os));
2254 
2255         dmu_tx_commit(tx);
2256 
2257         zfsvfs->z_version = newvers;
2258 
2259         zfs_set_fuid_feature(zfsvfs);
2260 
2261         return (0);
2262 }
2263 
2264 /*
2265  * Read a property stored within the master node.
2266  */
2267 int
2268 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2269 {
2270         const char *pname;
2271         int error = ENOENT;
2272 
2273         /*
2274          * Look up the file system's value for the property.  For the
2275          * version property, we look up a slightly different string.
2276          */
2277         if (prop == ZFS_PROP_VERSION)
2278                 pname = ZPL_VERSION_STR;
2279         else
2280                 pname = zfs_prop_to_name(prop);
2281 
2282         if (os != NULL)
2283                 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2284 
2285         if (error == ENOENT) {
2286                 /* No value set, use the default value */
2287                 switch (prop) {
2288                 case ZFS_PROP_VERSION:
2289                         *value = ZPL_VERSION;
2290                         break;
2291                 case ZFS_PROP_NORMALIZE:
2292                 case ZFS_PROP_UTF8ONLY:
2293                         *value = 0;
2294                         break;
2295                 case ZFS_PROP_CASE:
2296                         *value = ZFS_CASE_SENSITIVE;
2297                         break;
2298                 default:
2299                         return (error);
2300                 }
2301                 error = 0;
2302         }
2303         return (error);
2304 }
2305 
2306 static vfsdef_t vfw = {
2307         VFSDEF_VERSION,
2308         MNTTYPE_ZFS,
2309         zfs_vfsinit,
2310         VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2311             VSW_XID|VSW_ZMOUNT,
2312         &zfs_mntopts
2313 };
2314 
2315 struct modlfs zfs_modlfs = {
2316         &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2317 };