1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/refcount.h> 27 #include <sys/rrwlock.h> 28 29 /* 30 * This file contains the implementation of a re-entrant read 31 * reader/writer lock (aka "rrwlock"). 32 * 33 * This is a normal reader/writer lock with the additional feature 34 * of allowing threads who have already obtained a read lock to 35 * re-enter another read lock (re-entrant read) - even if there are 36 * waiting writers. 37 * 38 * Callers who have not obtained a read lock give waiting writers priority. 39 * 40 * The rrwlock_t lock does not allow re-entrant writers, nor does it 41 * allow a re-entrant mix of reads and writes (that is, it does not 42 * allow a caller who has already obtained a read lock to be able to 43 * then grab a write lock without first dropping all read locks, and 44 * vice versa). 45 * 46 * The rrwlock_t uses tsd (thread specific data) to keep a list of 47 * nodes (rrw_node_t), where each node keeps track of which specific 48 * lock (rrw_node_t::rn_rrl) the thread has grabbed. Since re-entering 49 * should be rare, a thread that grabs multiple reads on the same rrwlock_t 50 * will store multiple rrw_node_ts of the same 'rrn_rrl'. Nodes on the 51 * tsd list can represent a different rrwlock_t. This allows a thread 52 * to enter multiple and unique rrwlock_ts for read locks at the same time. 53 * 54 * Since using tsd exposes some overhead, the rrwlock_t only needs to 55 * keep tsd data when writers are waiting. If no writers are waiting, then 56 * a reader just bumps the anonymous read count (rr_anon_rcount) - no tsd 57 * is needed. Once a writer attempts to grab the lock, readers then 58 * keep tsd data and bump the linked readers count (rr_linked_rcount). 59 * 60 * If there are waiting writers and there are anonymous readers, then a 61 * reader doesn't know if it is a re-entrant lock. But since it may be one, 62 * we allow the read to proceed (otherwise it could deadlock). Since once 63 * waiting writers are active, readers no longer bump the anonymous count, 64 * the anonymous readers will eventually flush themselves out. At this point, 65 * readers will be able to tell if they are a re-entrant lock (have a 66 * rrw_node_t entry for the lock) or not. If they are a re-entrant lock, then 67 * we must let the proceed. If they are not, then the reader blocks for the 68 * waiting writers. Hence, we do not starve writers. 69 */ 70 71 /* global key for TSD */ 72 uint_t rrw_tsd_key; 73 74 typedef struct rrw_node { 75 struct rrw_node *rn_next; 76 rrwlock_t *rn_rrl; 77 } rrw_node_t; 78 79 static rrw_node_t * 80 rrn_find(rrwlock_t *rrl) 81 { 82 rrw_node_t *rn; 83 84 if (refcount_count(&rrl->rr_linked_rcount) == 0) 85 return (NULL); 86 87 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) { 88 if (rn->rn_rrl == rrl) 89 return (rn); 90 } 91 return (NULL); 92 } 93 94 /* 95 * Add a node to the head of the singly linked list. 96 */ 97 static void 98 rrn_add(rrwlock_t *rrl) 99 { 100 rrw_node_t *rn; 101 102 rn = kmem_alloc(sizeof (*rn), KM_SLEEP); 103 rn->rn_rrl = rrl; 104 rn->rn_next = tsd_get(rrw_tsd_key); 105 VERIFY(tsd_set(rrw_tsd_key, rn) == 0); 106 } 107 108 /* 109 * If a node is found for 'rrl', then remove the node from this 110 * thread's list and return TRUE; otherwise return FALSE. 111 */ 112 static boolean_t 113 rrn_find_and_remove(rrwlock_t *rrl) 114 { 115 rrw_node_t *rn; 116 rrw_node_t *prev = NULL; 117 118 if (refcount_count(&rrl->rr_linked_rcount) == 0) 119 return (B_FALSE); 120 121 for (rn = tsd_get(rrw_tsd_key); rn != NULL; rn = rn->rn_next) { 122 if (rn->rn_rrl == rrl) { 123 if (prev) 124 prev->rn_next = rn->rn_next; 125 else 126 VERIFY(tsd_set(rrw_tsd_key, rn->rn_next) == 0); 127 kmem_free(rn, sizeof (*rn)); 128 return (B_TRUE); 129 } 130 prev = rn; 131 } 132 return (B_FALSE); 133 } 134 135 void 136 rrw_init(rrwlock_t *rrl) 137 { 138 mutex_init(&rrl->rr_lock, NULL, MUTEX_DEFAULT, NULL); 139 cv_init(&rrl->rr_cv, NULL, CV_DEFAULT, NULL); 140 rrl->rr_writer = NULL; 141 refcount_create(&rrl->rr_anon_rcount); 142 refcount_create(&rrl->rr_linked_rcount); 143 rrl->rr_writer_wanted = B_FALSE; 144 } 145 146 void 147 rrw_destroy(rrwlock_t *rrl) 148 { 149 mutex_destroy(&rrl->rr_lock); 150 cv_destroy(&rrl->rr_cv); 151 ASSERT(rrl->rr_writer == NULL); 152 refcount_destroy(&rrl->rr_anon_rcount); 153 refcount_destroy(&rrl->rr_linked_rcount); 154 } 155 156 static void 157 rrw_enter_read(rrwlock_t *rrl, void *tag) 158 { 159 mutex_enter(&rrl->rr_lock); 160 #if !defined(DEBUG) && defined(_KERNEL) 161 if (!rrl->rr_writer && !rrl->rr_writer_wanted) { 162 rrl->rr_anon_rcount.rc_count++; 163 mutex_exit(&rrl->rr_lock); 164 return; 165 } 166 DTRACE_PROBE(zfs__rrwfastpath__rdmiss); 167 #endif 168 ASSERT(rrl->rr_writer != curthread); 169 ASSERT(refcount_count(&rrl->rr_anon_rcount) >= 0); 170 171 while (rrl->rr_writer || (rrl->rr_writer_wanted && 172 refcount_is_zero(&rrl->rr_anon_rcount) && 173 rrn_find(rrl) == NULL)) 174 cv_wait(&rrl->rr_cv, &rrl->rr_lock); 175 176 if (rrl->rr_writer_wanted) { 177 /* may or may not be a re-entrant enter */ 178 rrn_add(rrl); 179 (void) refcount_add(&rrl->rr_linked_rcount, tag); 180 } else { 181 (void) refcount_add(&rrl->rr_anon_rcount, tag); 182 } 183 ASSERT(rrl->rr_writer == NULL); 184 mutex_exit(&rrl->rr_lock); 185 } 186 187 static void 188 rrw_enter_write(rrwlock_t *rrl) 189 { 190 mutex_enter(&rrl->rr_lock); 191 ASSERT(rrl->rr_writer != curthread); 192 193 while (refcount_count(&rrl->rr_anon_rcount) > 0 || 194 refcount_count(&rrl->rr_linked_rcount) > 0 || 195 rrl->rr_writer != NULL) { 196 rrl->rr_writer_wanted = B_TRUE; 197 cv_wait(&rrl->rr_cv, &rrl->rr_lock); 198 } 199 rrl->rr_writer_wanted = B_FALSE; 200 rrl->rr_writer = curthread; 201 mutex_exit(&rrl->rr_lock); 202 } 203 204 void 205 rrw_enter(rrwlock_t *rrl, krw_t rw, void *tag) 206 { 207 if (rw == RW_READER) 208 rrw_enter_read(rrl, tag); 209 else 210 rrw_enter_write(rrl); 211 } 212 213 void 214 rrw_exit(rrwlock_t *rrl, void *tag) 215 { 216 mutex_enter(&rrl->rr_lock); 217 #if !defined(DEBUG) && defined(_KERNEL) 218 if (!rrl->rr_writer && rrl->rr_linked_rcount.rc_count == 0) { 219 rrl->rr_anon_rcount.rc_count--; 220 if (rrl->rr_anon_rcount.rc_count == 0) 221 cv_broadcast(&rrl->rr_cv); 222 mutex_exit(&rrl->rr_lock); 223 return; 224 } 225 DTRACE_PROBE(zfs__rrwfastpath__exitmiss); 226 #endif 227 ASSERT(!refcount_is_zero(&rrl->rr_anon_rcount) || 228 !refcount_is_zero(&rrl->rr_linked_rcount) || 229 rrl->rr_writer != NULL); 230 231 if (rrl->rr_writer == NULL) { 232 int64_t count; 233 if (rrn_find_and_remove(rrl)) 234 count = refcount_remove(&rrl->rr_linked_rcount, tag); 235 else 236 count = refcount_remove(&rrl->rr_anon_rcount, tag); 237 if (count == 0) 238 cv_broadcast(&rrl->rr_cv); 239 } else { 240 ASSERT(rrl->rr_writer == curthread); 241 ASSERT(refcount_is_zero(&rrl->rr_anon_rcount) && 242 refcount_is_zero(&rrl->rr_linked_rcount)); 243 rrl->rr_writer = NULL; 244 cv_broadcast(&rrl->rr_cv); 245 } 246 mutex_exit(&rrl->rr_lock); 247 } 248 249 boolean_t 250 rrw_held(rrwlock_t *rrl, krw_t rw) 251 { 252 boolean_t held; 253 254 mutex_enter(&rrl->rr_lock); 255 if (rw == RW_WRITER) { 256 held = (rrl->rr_writer == curthread); 257 } else { 258 held = (!refcount_is_zero(&rrl->rr_anon_rcount) || 259 !refcount_is_zero(&rrl->rr_linked_rcount)); 260 } 261 mutex_exit(&rrl->rr_lock); 262 263 return (held); 264 }