Print this page
2882 implement libzfs_core
2883 changing "canmount" property to "on" should not always remount dataset
2900 "zfs snapshot" should be able to create multiple, arbitrary snapshots at once
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa.c
+++ new/usr/src/uts/common/fs/zfs/spa.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 25 * Copyright (c) 2012 by Delphix. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * This file contains all the routines used when modifying on-disk SPA state.
30 30 * This includes opening, importing, destroying, exporting a pool, and syncing a
31 31 * pool.
32 32 */
33 33
34 34 #include <sys/zfs_context.h>
35 35 #include <sys/fm/fs/zfs.h>
36 36 #include <sys/spa_impl.h>
37 37 #include <sys/zio.h>
38 38 #include <sys/zio_checksum.h>
39 39 #include <sys/dmu.h>
40 40 #include <sys/dmu_tx.h>
41 41 #include <sys/zap.h>
42 42 #include <sys/zil.h>
43 43 #include <sys/ddt.h>
44 44 #include <sys/vdev_impl.h>
45 45 #include <sys/metaslab.h>
46 46 #include <sys/metaslab_impl.h>
47 47 #include <sys/uberblock_impl.h>
48 48 #include <sys/txg.h>
49 49 #include <sys/avl.h>
50 50 #include <sys/dmu_traverse.h>
51 51 #include <sys/dmu_objset.h>
52 52 #include <sys/unique.h>
53 53 #include <sys/dsl_pool.h>
54 54 #include <sys/dsl_dataset.h>
55 55 #include <sys/dsl_dir.h>
56 56 #include <sys/dsl_prop.h>
57 57 #include <sys/dsl_synctask.h>
58 58 #include <sys/fs/zfs.h>
59 59 #include <sys/arc.h>
60 60 #include <sys/callb.h>
61 61 #include <sys/systeminfo.h>
62 62 #include <sys/spa_boot.h>
63 63 #include <sys/zfs_ioctl.h>
64 64 #include <sys/dsl_scan.h>
65 65 #include <sys/zfeature.h>
66 66
67 67 #ifdef _KERNEL
68 68 #include <sys/bootprops.h>
69 69 #include <sys/callb.h>
70 70 #include <sys/cpupart.h>
71 71 #include <sys/pool.h>
72 72 #include <sys/sysdc.h>
73 73 #include <sys/zone.h>
74 74 #endif /* _KERNEL */
75 75
76 76 #include "zfs_prop.h"
77 77 #include "zfs_comutil.h"
78 78
79 79 typedef enum zti_modes {
80 80 zti_mode_fixed, /* value is # of threads (min 1) */
81 81 zti_mode_online_percent, /* value is % of online CPUs */
82 82 zti_mode_batch, /* cpu-intensive; value is ignored */
83 83 zti_mode_null, /* don't create a taskq */
84 84 zti_nmodes
85 85 } zti_modes_t;
86 86
87 87 #define ZTI_FIX(n) { zti_mode_fixed, (n) }
88 88 #define ZTI_PCT(n) { zti_mode_online_percent, (n) }
89 89 #define ZTI_BATCH { zti_mode_batch, 0 }
90 90 #define ZTI_NULL { zti_mode_null, 0 }
91 91
92 92 #define ZTI_ONE ZTI_FIX(1)
93 93
94 94 typedef struct zio_taskq_info {
95 95 enum zti_modes zti_mode;
96 96 uint_t zti_value;
97 97 } zio_taskq_info_t;
98 98
99 99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
100 100 "issue", "issue_high", "intr", "intr_high"
101 101 };
102 102
103 103 /*
104 104 * Define the taskq threads for the following I/O types:
105 105 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106 106 */
107 107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
108 108 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
109 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
110 110 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL },
111 111 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) },
112 112 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL },
113 113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
114 114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL },
115 115 };
116 116
117 117 static dsl_syncfunc_t spa_sync_version;
118 118 static dsl_syncfunc_t spa_sync_props;
119 119 static boolean_t spa_has_active_shared_spare(spa_t *spa);
120 120 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
121 121 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
122 122 char **ereport);
123 123 static void spa_vdev_resilver_done(spa_t *spa);
124 124
125 125 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
126 126 id_t zio_taskq_psrset_bind = PS_NONE;
127 127 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
128 128 uint_t zio_taskq_basedc = 80; /* base duty cycle */
129 129
130 130 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
131 131
132 132 /*
133 133 * This (illegal) pool name is used when temporarily importing a spa_t in order
134 134 * to get the vdev stats associated with the imported devices.
135 135 */
136 136 #define TRYIMPORT_NAME "$import"
137 137
138 138 /*
139 139 * ==========================================================================
140 140 * SPA properties routines
141 141 * ==========================================================================
142 142 */
143 143
144 144 /*
145 145 * Add a (source=src, propname=propval) list to an nvlist.
146 146 */
147 147 static void
148 148 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
149 149 uint64_t intval, zprop_source_t src)
150 150 {
151 151 const char *propname = zpool_prop_to_name(prop);
152 152 nvlist_t *propval;
153 153
154 154 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
155 155 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
156 156
157 157 if (strval != NULL)
158 158 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
159 159 else
160 160 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
161 161
162 162 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
163 163 nvlist_free(propval);
164 164 }
165 165
166 166 /*
167 167 * Get property values from the spa configuration.
168 168 */
169 169 static void
170 170 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
171 171 {
172 172 vdev_t *rvd = spa->spa_root_vdev;
173 173 dsl_pool_t *pool = spa->spa_dsl_pool;
174 174 uint64_t size;
175 175 uint64_t alloc;
176 176 uint64_t space;
177 177 uint64_t cap, version;
178 178 zprop_source_t src = ZPROP_SRC_NONE;
179 179 spa_config_dirent_t *dp;
180 180
181 181 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
182 182
183 183 if (rvd != NULL) {
184 184 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
185 185 size = metaslab_class_get_space(spa_normal_class(spa));
186 186 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
187 187 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
188 188 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
189 189 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
190 190 size - alloc, src);
191 191
192 192 space = 0;
193 193 for (int c = 0; c < rvd->vdev_children; c++) {
194 194 vdev_t *tvd = rvd->vdev_child[c];
195 195 space += tvd->vdev_max_asize - tvd->vdev_asize;
196 196 }
197 197 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
198 198 src);
199 199
200 200 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
201 201 (spa_mode(spa) == FREAD), src);
202 202
203 203 cap = (size == 0) ? 0 : (alloc * 100 / size);
204 204 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
205 205
206 206 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
207 207 ddt_get_pool_dedup_ratio(spa), src);
208 208
209 209 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
210 210 rvd->vdev_state, src);
211 211
212 212 version = spa_version(spa);
213 213 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
214 214 src = ZPROP_SRC_DEFAULT;
215 215 else
216 216 src = ZPROP_SRC_LOCAL;
217 217 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
218 218 }
219 219
220 220 if (pool != NULL) {
221 221 dsl_dir_t *freedir = pool->dp_free_dir;
222 222
223 223 /*
224 224 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
225 225 * when opening pools before this version freedir will be NULL.
226 226 */
227 227 if (freedir != NULL) {
228 228 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
229 229 freedir->dd_phys->dd_used_bytes, src);
230 230 } else {
231 231 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
232 232 NULL, 0, src);
233 233 }
234 234 }
235 235
236 236 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
237 237
238 238 if (spa->spa_comment != NULL) {
239 239 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
240 240 0, ZPROP_SRC_LOCAL);
241 241 }
242 242
243 243 if (spa->spa_root != NULL)
244 244 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
245 245 0, ZPROP_SRC_LOCAL);
246 246
247 247 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
248 248 if (dp->scd_path == NULL) {
249 249 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
250 250 "none", 0, ZPROP_SRC_LOCAL);
251 251 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
252 252 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
253 253 dp->scd_path, 0, ZPROP_SRC_LOCAL);
254 254 }
255 255 }
256 256 }
257 257
258 258 /*
259 259 * Get zpool property values.
260 260 */
261 261 int
262 262 spa_prop_get(spa_t *spa, nvlist_t **nvp)
263 263 {
264 264 objset_t *mos = spa->spa_meta_objset;
265 265 zap_cursor_t zc;
266 266 zap_attribute_t za;
267 267 int err;
268 268
269 269 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
270 270
271 271 mutex_enter(&spa->spa_props_lock);
272 272
273 273 /*
274 274 * Get properties from the spa config.
275 275 */
276 276 spa_prop_get_config(spa, nvp);
277 277
278 278 /* If no pool property object, no more prop to get. */
279 279 if (mos == NULL || spa->spa_pool_props_object == 0) {
280 280 mutex_exit(&spa->spa_props_lock);
281 281 return (0);
282 282 }
283 283
284 284 /*
285 285 * Get properties from the MOS pool property object.
286 286 */
287 287 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
288 288 (err = zap_cursor_retrieve(&zc, &za)) == 0;
289 289 zap_cursor_advance(&zc)) {
290 290 uint64_t intval = 0;
291 291 char *strval = NULL;
292 292 zprop_source_t src = ZPROP_SRC_DEFAULT;
293 293 zpool_prop_t prop;
294 294
295 295 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
296 296 continue;
297 297
298 298 switch (za.za_integer_length) {
299 299 case 8:
300 300 /* integer property */
301 301 if (za.za_first_integer !=
302 302 zpool_prop_default_numeric(prop))
303 303 src = ZPROP_SRC_LOCAL;
304 304
305 305 if (prop == ZPOOL_PROP_BOOTFS) {
306 306 dsl_pool_t *dp;
307 307 dsl_dataset_t *ds = NULL;
308 308
309 309 dp = spa_get_dsl(spa);
310 310 rw_enter(&dp->dp_config_rwlock, RW_READER);
311 311 if (err = dsl_dataset_hold_obj(dp,
312 312 za.za_first_integer, FTAG, &ds)) {
313 313 rw_exit(&dp->dp_config_rwlock);
314 314 break;
315 315 }
316 316
317 317 strval = kmem_alloc(
318 318 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
319 319 KM_SLEEP);
320 320 dsl_dataset_name(ds, strval);
321 321 dsl_dataset_rele(ds, FTAG);
322 322 rw_exit(&dp->dp_config_rwlock);
323 323 } else {
324 324 strval = NULL;
325 325 intval = za.za_first_integer;
326 326 }
327 327
328 328 spa_prop_add_list(*nvp, prop, strval, intval, src);
329 329
330 330 if (strval != NULL)
331 331 kmem_free(strval,
332 332 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
333 333
334 334 break;
335 335
336 336 case 1:
337 337 /* string property */
338 338 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
339 339 err = zap_lookup(mos, spa->spa_pool_props_object,
340 340 za.za_name, 1, za.za_num_integers, strval);
341 341 if (err) {
342 342 kmem_free(strval, za.za_num_integers);
343 343 break;
344 344 }
345 345 spa_prop_add_list(*nvp, prop, strval, 0, src);
346 346 kmem_free(strval, za.za_num_integers);
347 347 break;
348 348
349 349 default:
350 350 break;
351 351 }
352 352 }
353 353 zap_cursor_fini(&zc);
354 354 mutex_exit(&spa->spa_props_lock);
355 355 out:
356 356 if (err && err != ENOENT) {
357 357 nvlist_free(*nvp);
358 358 *nvp = NULL;
359 359 return (err);
360 360 }
361 361
362 362 return (0);
363 363 }
364 364
365 365 /*
366 366 * Validate the given pool properties nvlist and modify the list
367 367 * for the property values to be set.
368 368 */
369 369 static int
370 370 spa_prop_validate(spa_t *spa, nvlist_t *props)
371 371 {
372 372 nvpair_t *elem;
373 373 int error = 0, reset_bootfs = 0;
374 374 uint64_t objnum;
375 375 boolean_t has_feature = B_FALSE;
376 376
377 377 elem = NULL;
378 378 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
379 379 uint64_t intval;
380 380 char *strval, *slash, *check, *fname;
381 381 const char *propname = nvpair_name(elem);
382 382 zpool_prop_t prop = zpool_name_to_prop(propname);
383 383
384 384 switch (prop) {
385 385 case ZPROP_INVAL:
386 386 if (!zpool_prop_feature(propname)) {
387 387 error = EINVAL;
388 388 break;
389 389 }
390 390
391 391 /*
392 392 * Sanitize the input.
393 393 */
394 394 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
395 395 error = EINVAL;
396 396 break;
397 397 }
398 398
399 399 if (nvpair_value_uint64(elem, &intval) != 0) {
400 400 error = EINVAL;
401 401 break;
402 402 }
403 403
404 404 if (intval != 0) {
405 405 error = EINVAL;
406 406 break;
407 407 }
408 408
409 409 fname = strchr(propname, '@') + 1;
410 410 if (zfeature_lookup_name(fname, NULL) != 0) {
411 411 error = EINVAL;
412 412 break;
413 413 }
414 414
415 415 has_feature = B_TRUE;
416 416 break;
417 417
418 418 case ZPOOL_PROP_VERSION:
419 419 error = nvpair_value_uint64(elem, &intval);
420 420 if (!error &&
421 421 (intval < spa_version(spa) ||
422 422 intval > SPA_VERSION_BEFORE_FEATURES ||
423 423 has_feature))
424 424 error = EINVAL;
425 425 break;
426 426
427 427 case ZPOOL_PROP_DELEGATION:
428 428 case ZPOOL_PROP_AUTOREPLACE:
429 429 case ZPOOL_PROP_LISTSNAPS:
430 430 case ZPOOL_PROP_AUTOEXPAND:
431 431 error = nvpair_value_uint64(elem, &intval);
432 432 if (!error && intval > 1)
433 433 error = EINVAL;
434 434 break;
435 435
436 436 case ZPOOL_PROP_BOOTFS:
437 437 /*
438 438 * If the pool version is less than SPA_VERSION_BOOTFS,
439 439 * or the pool is still being created (version == 0),
440 440 * the bootfs property cannot be set.
441 441 */
442 442 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
443 443 error = ENOTSUP;
444 444 break;
445 445 }
446 446
447 447 /*
448 448 * Make sure the vdev config is bootable
449 449 */
450 450 if (!vdev_is_bootable(spa->spa_root_vdev)) {
451 451 error = ENOTSUP;
452 452 break;
453 453 }
454 454
455 455 reset_bootfs = 1;
456 456
457 457 error = nvpair_value_string(elem, &strval);
458 458
459 459 if (!error) {
460 460 objset_t *os;
461 461 uint64_t compress;
462 462
463 463 if (strval == NULL || strval[0] == '\0') {
464 464 objnum = zpool_prop_default_numeric(
465 465 ZPOOL_PROP_BOOTFS);
466 466 break;
467 467 }
468 468
469 469 if (error = dmu_objset_hold(strval, FTAG, &os))
470 470 break;
471 471
472 472 /* Must be ZPL and not gzip compressed. */
473 473
474 474 if (dmu_objset_type(os) != DMU_OST_ZFS) {
475 475 error = ENOTSUP;
476 476 } else if ((error = dsl_prop_get_integer(strval,
477 477 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
478 478 &compress, NULL)) == 0 &&
479 479 !BOOTFS_COMPRESS_VALID(compress)) {
480 480 error = ENOTSUP;
481 481 } else {
482 482 objnum = dmu_objset_id(os);
483 483 }
484 484 dmu_objset_rele(os, FTAG);
485 485 }
486 486 break;
487 487
488 488 case ZPOOL_PROP_FAILUREMODE:
489 489 error = nvpair_value_uint64(elem, &intval);
490 490 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
491 491 intval > ZIO_FAILURE_MODE_PANIC))
492 492 error = EINVAL;
493 493
494 494 /*
495 495 * This is a special case which only occurs when
496 496 * the pool has completely failed. This allows
497 497 * the user to change the in-core failmode property
498 498 * without syncing it out to disk (I/Os might
499 499 * currently be blocked). We do this by returning
500 500 * EIO to the caller (spa_prop_set) to trick it
501 501 * into thinking we encountered a property validation
502 502 * error.
503 503 */
504 504 if (!error && spa_suspended(spa)) {
505 505 spa->spa_failmode = intval;
506 506 error = EIO;
507 507 }
508 508 break;
509 509
510 510 case ZPOOL_PROP_CACHEFILE:
511 511 if ((error = nvpair_value_string(elem, &strval)) != 0)
512 512 break;
513 513
514 514 if (strval[0] == '\0')
515 515 break;
516 516
517 517 if (strcmp(strval, "none") == 0)
518 518 break;
519 519
520 520 if (strval[0] != '/') {
521 521 error = EINVAL;
522 522 break;
523 523 }
524 524
525 525 slash = strrchr(strval, '/');
526 526 ASSERT(slash != NULL);
527 527
528 528 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
529 529 strcmp(slash, "/..") == 0)
530 530 error = EINVAL;
531 531 break;
532 532
533 533 case ZPOOL_PROP_COMMENT:
534 534 if ((error = nvpair_value_string(elem, &strval)) != 0)
535 535 break;
536 536 for (check = strval; *check != '\0'; check++) {
537 537 /*
538 538 * The kernel doesn't have an easy isprint()
539 539 * check. For this kernel check, we merely
540 540 * check ASCII apart from DEL. Fix this if
541 541 * there is an easy-to-use kernel isprint().
542 542 */
543 543 if (*check >= 0x7f) {
544 544 error = EINVAL;
545 545 break;
546 546 }
547 547 check++;
548 548 }
549 549 if (strlen(strval) > ZPROP_MAX_COMMENT)
550 550 error = E2BIG;
551 551 break;
552 552
553 553 case ZPOOL_PROP_DEDUPDITTO:
554 554 if (spa_version(spa) < SPA_VERSION_DEDUP)
555 555 error = ENOTSUP;
556 556 else
557 557 error = nvpair_value_uint64(elem, &intval);
558 558 if (error == 0 &&
559 559 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
560 560 error = EINVAL;
561 561 break;
562 562 }
563 563
564 564 if (error)
565 565 break;
566 566 }
567 567
568 568 if (!error && reset_bootfs) {
569 569 error = nvlist_remove(props,
570 570 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
571 571
572 572 if (!error) {
573 573 error = nvlist_add_uint64(props,
574 574 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
575 575 }
576 576 }
577 577
578 578 return (error);
579 579 }
580 580
581 581 void
582 582 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
583 583 {
584 584 char *cachefile;
585 585 spa_config_dirent_t *dp;
586 586
587 587 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
588 588 &cachefile) != 0)
589 589 return;
590 590
591 591 dp = kmem_alloc(sizeof (spa_config_dirent_t),
592 592 KM_SLEEP);
593 593
594 594 if (cachefile[0] == '\0')
595 595 dp->scd_path = spa_strdup(spa_config_path);
596 596 else if (strcmp(cachefile, "none") == 0)
597 597 dp->scd_path = NULL;
598 598 else
599 599 dp->scd_path = spa_strdup(cachefile);
600 600
601 601 list_insert_head(&spa->spa_config_list, dp);
602 602 if (need_sync)
603 603 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
604 604 }
605 605
606 606 int
607 607 spa_prop_set(spa_t *spa, nvlist_t *nvp)
608 608 {
609 609 int error;
610 610 nvpair_t *elem = NULL;
611 611 boolean_t need_sync = B_FALSE;
612 612
613 613 if ((error = spa_prop_validate(spa, nvp)) != 0)
614 614 return (error);
615 615
616 616 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
617 617 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
618 618
619 619 if (prop == ZPOOL_PROP_CACHEFILE ||
620 620 prop == ZPOOL_PROP_ALTROOT ||
621 621 prop == ZPOOL_PROP_READONLY)
622 622 continue;
623 623
624 624 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
625 625 uint64_t ver;
626 626
627 627 if (prop == ZPOOL_PROP_VERSION) {
628 628 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
629 629 } else {
630 630 ASSERT(zpool_prop_feature(nvpair_name(elem)));
631 631 ver = SPA_VERSION_FEATURES;
632 632 need_sync = B_TRUE;
633 633 }
634 634
635 635 /* Save time if the version is already set. */
636 636 if (ver == spa_version(spa))
637 637 continue;
638 638
639 639 /*
640 640 * In addition to the pool directory object, we might
641 641 * create the pool properties object, the features for
642 642 * read object, the features for write object, or the
643 643 * feature descriptions object.
644 644 */
645 645 error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
646 646 spa_sync_version, spa, &ver, 6);
647 647 if (error)
648 648 return (error);
649 649 continue;
650 650 }
651 651
652 652 need_sync = B_TRUE;
653 653 break;
654 654 }
655 655
656 656 if (need_sync) {
657 657 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
658 658 spa, nvp, 6));
659 659 }
660 660
661 661 return (0);
662 662 }
663 663
664 664 /*
665 665 * If the bootfs property value is dsobj, clear it.
666 666 */
667 667 void
668 668 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
669 669 {
670 670 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
671 671 VERIFY(zap_remove(spa->spa_meta_objset,
672 672 spa->spa_pool_props_object,
673 673 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
674 674 spa->spa_bootfs = 0;
675 675 }
676 676 }
677 677
678 678 /*
679 679 * Change the GUID for the pool. This is done so that we can later
680 680 * re-import a pool built from a clone of our own vdevs. We will modify
681 681 * the root vdev's guid, our own pool guid, and then mark all of our
682 682 * vdevs dirty. Note that we must make sure that all our vdevs are
683 683 * online when we do this, or else any vdevs that weren't present
684 684 * would be orphaned from our pool. We are also going to issue a
685 685 * sysevent to update any watchers.
686 686 */
687 687 int
688 688 spa_change_guid(spa_t *spa)
689 689 {
690 690 uint64_t oldguid, newguid;
691 691 uint64_t txg;
692 692
693 693 if (!(spa_mode_global & FWRITE))
694 694 return (EROFS);
695 695
696 696 txg = spa_vdev_enter(spa);
697 697
698 698 if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
699 699 return (spa_vdev_exit(spa, NULL, txg, ENXIO));
700 700
701 701 oldguid = spa_guid(spa);
702 702 newguid = spa_generate_guid(NULL);
703 703 ASSERT3U(oldguid, !=, newguid);
704 704
705 705 spa->spa_root_vdev->vdev_guid = newguid;
706 706 spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
707 707
708 708 vdev_config_dirty(spa->spa_root_vdev);
709 709
710 710 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
711 711
712 712 return (spa_vdev_exit(spa, NULL, txg, 0));
713 713 }
714 714
715 715 /*
716 716 * ==========================================================================
717 717 * SPA state manipulation (open/create/destroy/import/export)
718 718 * ==========================================================================
719 719 */
720 720
721 721 static int
722 722 spa_error_entry_compare(const void *a, const void *b)
723 723 {
724 724 spa_error_entry_t *sa = (spa_error_entry_t *)a;
725 725 spa_error_entry_t *sb = (spa_error_entry_t *)b;
726 726 int ret;
727 727
728 728 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
729 729 sizeof (zbookmark_t));
730 730
731 731 if (ret < 0)
732 732 return (-1);
733 733 else if (ret > 0)
734 734 return (1);
735 735 else
736 736 return (0);
737 737 }
738 738
739 739 /*
740 740 * Utility function which retrieves copies of the current logs and
741 741 * re-initializes them in the process.
742 742 */
743 743 void
744 744 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
745 745 {
746 746 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
747 747
748 748 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
749 749 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
750 750
751 751 avl_create(&spa->spa_errlist_scrub,
752 752 spa_error_entry_compare, sizeof (spa_error_entry_t),
753 753 offsetof(spa_error_entry_t, se_avl));
754 754 avl_create(&spa->spa_errlist_last,
755 755 spa_error_entry_compare, sizeof (spa_error_entry_t),
756 756 offsetof(spa_error_entry_t, se_avl));
757 757 }
758 758
759 759 static taskq_t *
760 760 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
761 761 uint_t value)
762 762 {
763 763 uint_t flags = 0;
764 764 boolean_t batch = B_FALSE;
765 765
766 766 switch (mode) {
767 767 case zti_mode_null:
768 768 return (NULL); /* no taskq needed */
769 769
770 770 case zti_mode_fixed:
771 771 ASSERT3U(value, >=, 1);
772 772 value = MAX(value, 1);
773 773 break;
774 774
775 775 case zti_mode_batch:
776 776 batch = B_TRUE;
777 777 flags |= TASKQ_THREADS_CPU_PCT;
778 778 value = zio_taskq_batch_pct;
779 779 break;
780 780
781 781 case zti_mode_online_percent:
782 782 flags |= TASKQ_THREADS_CPU_PCT;
783 783 break;
784 784
785 785 default:
786 786 panic("unrecognized mode for %s taskq (%u:%u) in "
787 787 "spa_activate()",
788 788 name, mode, value);
789 789 break;
790 790 }
791 791
792 792 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
793 793 if (batch)
794 794 flags |= TASKQ_DC_BATCH;
795 795
796 796 return (taskq_create_sysdc(name, value, 50, INT_MAX,
797 797 spa->spa_proc, zio_taskq_basedc, flags));
798 798 }
799 799 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
800 800 spa->spa_proc, flags));
801 801 }
802 802
803 803 static void
804 804 spa_create_zio_taskqs(spa_t *spa)
805 805 {
806 806 for (int t = 0; t < ZIO_TYPES; t++) {
807 807 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
808 808 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
809 809 enum zti_modes mode = ztip->zti_mode;
810 810 uint_t value = ztip->zti_value;
811 811 char name[32];
812 812
813 813 (void) snprintf(name, sizeof (name),
814 814 "%s_%s", zio_type_name[t], zio_taskq_types[q]);
815 815
816 816 spa->spa_zio_taskq[t][q] =
817 817 spa_taskq_create(spa, name, mode, value);
818 818 }
819 819 }
820 820 }
821 821
822 822 #ifdef _KERNEL
823 823 static void
824 824 spa_thread(void *arg)
825 825 {
826 826 callb_cpr_t cprinfo;
827 827
828 828 spa_t *spa = arg;
829 829 user_t *pu = PTOU(curproc);
830 830
831 831 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
832 832 spa->spa_name);
833 833
834 834 ASSERT(curproc != &p0);
835 835 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
836 836 "zpool-%s", spa->spa_name);
837 837 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
838 838
839 839 /* bind this thread to the requested psrset */
840 840 if (zio_taskq_psrset_bind != PS_NONE) {
841 841 pool_lock();
842 842 mutex_enter(&cpu_lock);
843 843 mutex_enter(&pidlock);
844 844 mutex_enter(&curproc->p_lock);
845 845
846 846 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
847 847 0, NULL, NULL) == 0) {
848 848 curthread->t_bind_pset = zio_taskq_psrset_bind;
849 849 } else {
850 850 cmn_err(CE_WARN,
851 851 "Couldn't bind process for zfs pool \"%s\" to "
852 852 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
853 853 }
854 854
855 855 mutex_exit(&curproc->p_lock);
856 856 mutex_exit(&pidlock);
857 857 mutex_exit(&cpu_lock);
858 858 pool_unlock();
859 859 }
860 860
861 861 if (zio_taskq_sysdc) {
862 862 sysdc_thread_enter(curthread, 100, 0);
863 863 }
864 864
865 865 spa->spa_proc = curproc;
866 866 spa->spa_did = curthread->t_did;
867 867
868 868 spa_create_zio_taskqs(spa);
869 869
870 870 mutex_enter(&spa->spa_proc_lock);
871 871 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
872 872
873 873 spa->spa_proc_state = SPA_PROC_ACTIVE;
874 874 cv_broadcast(&spa->spa_proc_cv);
875 875
876 876 CALLB_CPR_SAFE_BEGIN(&cprinfo);
877 877 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
878 878 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
879 879 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
880 880
881 881 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
882 882 spa->spa_proc_state = SPA_PROC_GONE;
883 883 spa->spa_proc = &p0;
884 884 cv_broadcast(&spa->spa_proc_cv);
885 885 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
886 886
887 887 mutex_enter(&curproc->p_lock);
888 888 lwp_exit();
889 889 }
890 890 #endif
891 891
892 892 /*
893 893 * Activate an uninitialized pool.
894 894 */
895 895 static void
896 896 spa_activate(spa_t *spa, int mode)
897 897 {
898 898 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
899 899
900 900 spa->spa_state = POOL_STATE_ACTIVE;
901 901 spa->spa_mode = mode;
902 902
903 903 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
904 904 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
905 905
906 906 /* Try to create a covering process */
907 907 mutex_enter(&spa->spa_proc_lock);
908 908 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
909 909 ASSERT(spa->spa_proc == &p0);
910 910 spa->spa_did = 0;
911 911
912 912 /* Only create a process if we're going to be around a while. */
913 913 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
914 914 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
915 915 NULL, 0) == 0) {
916 916 spa->spa_proc_state = SPA_PROC_CREATED;
917 917 while (spa->spa_proc_state == SPA_PROC_CREATED) {
918 918 cv_wait(&spa->spa_proc_cv,
919 919 &spa->spa_proc_lock);
920 920 }
921 921 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
922 922 ASSERT(spa->spa_proc != &p0);
923 923 ASSERT(spa->spa_did != 0);
924 924 } else {
925 925 #ifdef _KERNEL
926 926 cmn_err(CE_WARN,
927 927 "Couldn't create process for zfs pool \"%s\"\n",
928 928 spa->spa_name);
929 929 #endif
930 930 }
931 931 }
932 932 mutex_exit(&spa->spa_proc_lock);
933 933
934 934 /* If we didn't create a process, we need to create our taskqs. */
935 935 if (spa->spa_proc == &p0) {
936 936 spa_create_zio_taskqs(spa);
937 937 }
938 938
939 939 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
940 940 offsetof(vdev_t, vdev_config_dirty_node));
941 941 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
942 942 offsetof(vdev_t, vdev_state_dirty_node));
943 943
944 944 txg_list_create(&spa->spa_vdev_txg_list,
945 945 offsetof(struct vdev, vdev_txg_node));
946 946
947 947 avl_create(&spa->spa_errlist_scrub,
948 948 spa_error_entry_compare, sizeof (spa_error_entry_t),
949 949 offsetof(spa_error_entry_t, se_avl));
950 950 avl_create(&spa->spa_errlist_last,
951 951 spa_error_entry_compare, sizeof (spa_error_entry_t),
952 952 offsetof(spa_error_entry_t, se_avl));
953 953 }
954 954
955 955 /*
956 956 * Opposite of spa_activate().
957 957 */
958 958 static void
959 959 spa_deactivate(spa_t *spa)
960 960 {
961 961 ASSERT(spa->spa_sync_on == B_FALSE);
962 962 ASSERT(spa->spa_dsl_pool == NULL);
963 963 ASSERT(spa->spa_root_vdev == NULL);
964 964 ASSERT(spa->spa_async_zio_root == NULL);
965 965 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
966 966
967 967 txg_list_destroy(&spa->spa_vdev_txg_list);
968 968
969 969 list_destroy(&spa->spa_config_dirty_list);
970 970 list_destroy(&spa->spa_state_dirty_list);
971 971
972 972 for (int t = 0; t < ZIO_TYPES; t++) {
973 973 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
974 974 if (spa->spa_zio_taskq[t][q] != NULL)
975 975 taskq_destroy(spa->spa_zio_taskq[t][q]);
976 976 spa->spa_zio_taskq[t][q] = NULL;
977 977 }
978 978 }
979 979
980 980 metaslab_class_destroy(spa->spa_normal_class);
981 981 spa->spa_normal_class = NULL;
982 982
983 983 metaslab_class_destroy(spa->spa_log_class);
984 984 spa->spa_log_class = NULL;
985 985
986 986 /*
987 987 * If this was part of an import or the open otherwise failed, we may
988 988 * still have errors left in the queues. Empty them just in case.
989 989 */
990 990 spa_errlog_drain(spa);
991 991
992 992 avl_destroy(&spa->spa_errlist_scrub);
993 993 avl_destroy(&spa->spa_errlist_last);
994 994
995 995 spa->spa_state = POOL_STATE_UNINITIALIZED;
996 996
997 997 mutex_enter(&spa->spa_proc_lock);
998 998 if (spa->spa_proc_state != SPA_PROC_NONE) {
999 999 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1000 1000 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1001 1001 cv_broadcast(&spa->spa_proc_cv);
1002 1002 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1003 1003 ASSERT(spa->spa_proc != &p0);
1004 1004 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1005 1005 }
1006 1006 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1007 1007 spa->spa_proc_state = SPA_PROC_NONE;
1008 1008 }
1009 1009 ASSERT(spa->spa_proc == &p0);
1010 1010 mutex_exit(&spa->spa_proc_lock);
1011 1011
1012 1012 /*
1013 1013 * We want to make sure spa_thread() has actually exited the ZFS
1014 1014 * module, so that the module can't be unloaded out from underneath
1015 1015 * it.
1016 1016 */
1017 1017 if (spa->spa_did != 0) {
1018 1018 thread_join(spa->spa_did);
1019 1019 spa->spa_did = 0;
1020 1020 }
1021 1021 }
1022 1022
1023 1023 /*
1024 1024 * Verify a pool configuration, and construct the vdev tree appropriately. This
1025 1025 * will create all the necessary vdevs in the appropriate layout, with each vdev
1026 1026 * in the CLOSED state. This will prep the pool before open/creation/import.
1027 1027 * All vdev validation is done by the vdev_alloc() routine.
1028 1028 */
1029 1029 static int
1030 1030 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1031 1031 uint_t id, int atype)
1032 1032 {
1033 1033 nvlist_t **child;
1034 1034 uint_t children;
1035 1035 int error;
1036 1036
1037 1037 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1038 1038 return (error);
1039 1039
1040 1040 if ((*vdp)->vdev_ops->vdev_op_leaf)
1041 1041 return (0);
1042 1042
1043 1043 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1044 1044 &child, &children);
1045 1045
1046 1046 if (error == ENOENT)
1047 1047 return (0);
1048 1048
1049 1049 if (error) {
1050 1050 vdev_free(*vdp);
1051 1051 *vdp = NULL;
1052 1052 return (EINVAL);
1053 1053 }
1054 1054
1055 1055 for (int c = 0; c < children; c++) {
1056 1056 vdev_t *vd;
1057 1057 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1058 1058 atype)) != 0) {
1059 1059 vdev_free(*vdp);
1060 1060 *vdp = NULL;
1061 1061 return (error);
1062 1062 }
1063 1063 }
1064 1064
1065 1065 ASSERT(*vdp != NULL);
1066 1066
1067 1067 return (0);
1068 1068 }
1069 1069
1070 1070 /*
1071 1071 * Opposite of spa_load().
1072 1072 */
1073 1073 static void
1074 1074 spa_unload(spa_t *spa)
1075 1075 {
1076 1076 int i;
1077 1077
1078 1078 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1079 1079
1080 1080 /*
1081 1081 * Stop async tasks.
1082 1082 */
1083 1083 spa_async_suspend(spa);
1084 1084
1085 1085 /*
1086 1086 * Stop syncing.
1087 1087 */
1088 1088 if (spa->spa_sync_on) {
1089 1089 txg_sync_stop(spa->spa_dsl_pool);
1090 1090 spa->spa_sync_on = B_FALSE;
1091 1091 }
1092 1092
1093 1093 /*
1094 1094 * Wait for any outstanding async I/O to complete.
1095 1095 */
1096 1096 if (spa->spa_async_zio_root != NULL) {
1097 1097 (void) zio_wait(spa->spa_async_zio_root);
1098 1098 spa->spa_async_zio_root = NULL;
1099 1099 }
1100 1100
1101 1101 bpobj_close(&spa->spa_deferred_bpobj);
1102 1102
1103 1103 /*
1104 1104 * Close the dsl pool.
1105 1105 */
1106 1106 if (spa->spa_dsl_pool) {
1107 1107 dsl_pool_close(spa->spa_dsl_pool);
1108 1108 spa->spa_dsl_pool = NULL;
1109 1109 spa->spa_meta_objset = NULL;
1110 1110 }
1111 1111
1112 1112 ddt_unload(spa);
1113 1113
1114 1114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1115 1115
1116 1116 /*
1117 1117 * Drop and purge level 2 cache
1118 1118 */
1119 1119 spa_l2cache_drop(spa);
1120 1120
1121 1121 /*
1122 1122 * Close all vdevs.
1123 1123 */
1124 1124 if (spa->spa_root_vdev)
1125 1125 vdev_free(spa->spa_root_vdev);
1126 1126 ASSERT(spa->spa_root_vdev == NULL);
1127 1127
1128 1128 for (i = 0; i < spa->spa_spares.sav_count; i++)
1129 1129 vdev_free(spa->spa_spares.sav_vdevs[i]);
1130 1130 if (spa->spa_spares.sav_vdevs) {
1131 1131 kmem_free(spa->spa_spares.sav_vdevs,
1132 1132 spa->spa_spares.sav_count * sizeof (void *));
1133 1133 spa->spa_spares.sav_vdevs = NULL;
1134 1134 }
1135 1135 if (spa->spa_spares.sav_config) {
1136 1136 nvlist_free(spa->spa_spares.sav_config);
1137 1137 spa->spa_spares.sav_config = NULL;
1138 1138 }
1139 1139 spa->spa_spares.sav_count = 0;
1140 1140
1141 1141 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1142 1142 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1143 1143 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1144 1144 }
1145 1145 if (spa->spa_l2cache.sav_vdevs) {
1146 1146 kmem_free(spa->spa_l2cache.sav_vdevs,
1147 1147 spa->spa_l2cache.sav_count * sizeof (void *));
1148 1148 spa->spa_l2cache.sav_vdevs = NULL;
1149 1149 }
1150 1150 if (spa->spa_l2cache.sav_config) {
1151 1151 nvlist_free(spa->spa_l2cache.sav_config);
1152 1152 spa->spa_l2cache.sav_config = NULL;
1153 1153 }
1154 1154 spa->spa_l2cache.sav_count = 0;
1155 1155
1156 1156 spa->spa_async_suspended = 0;
1157 1157
1158 1158 if (spa->spa_comment != NULL) {
1159 1159 spa_strfree(spa->spa_comment);
1160 1160 spa->spa_comment = NULL;
1161 1161 }
1162 1162
1163 1163 spa_config_exit(spa, SCL_ALL, FTAG);
1164 1164 }
1165 1165
1166 1166 /*
1167 1167 * Load (or re-load) the current list of vdevs describing the active spares for
1168 1168 * this pool. When this is called, we have some form of basic information in
1169 1169 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1170 1170 * then re-generate a more complete list including status information.
1171 1171 */
1172 1172 static void
1173 1173 spa_load_spares(spa_t *spa)
1174 1174 {
1175 1175 nvlist_t **spares;
1176 1176 uint_t nspares;
1177 1177 int i;
1178 1178 vdev_t *vd, *tvd;
1179 1179
1180 1180 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1181 1181
1182 1182 /*
1183 1183 * First, close and free any existing spare vdevs.
1184 1184 */
1185 1185 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1186 1186 vd = spa->spa_spares.sav_vdevs[i];
1187 1187
1188 1188 /* Undo the call to spa_activate() below */
1189 1189 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1190 1190 B_FALSE)) != NULL && tvd->vdev_isspare)
1191 1191 spa_spare_remove(tvd);
1192 1192 vdev_close(vd);
1193 1193 vdev_free(vd);
1194 1194 }
1195 1195
1196 1196 if (spa->spa_spares.sav_vdevs)
1197 1197 kmem_free(spa->spa_spares.sav_vdevs,
1198 1198 spa->spa_spares.sav_count * sizeof (void *));
1199 1199
1200 1200 if (spa->spa_spares.sav_config == NULL)
1201 1201 nspares = 0;
1202 1202 else
1203 1203 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1204 1204 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1205 1205
1206 1206 spa->spa_spares.sav_count = (int)nspares;
1207 1207 spa->spa_spares.sav_vdevs = NULL;
1208 1208
1209 1209 if (nspares == 0)
1210 1210 return;
1211 1211
1212 1212 /*
1213 1213 * Construct the array of vdevs, opening them to get status in the
1214 1214 * process. For each spare, there is potentially two different vdev_t
1215 1215 * structures associated with it: one in the list of spares (used only
1216 1216 * for basic validation purposes) and one in the active vdev
1217 1217 * configuration (if it's spared in). During this phase we open and
1218 1218 * validate each vdev on the spare list. If the vdev also exists in the
1219 1219 * active configuration, then we also mark this vdev as an active spare.
1220 1220 */
1221 1221 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1222 1222 KM_SLEEP);
1223 1223 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1224 1224 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1225 1225 VDEV_ALLOC_SPARE) == 0);
1226 1226 ASSERT(vd != NULL);
1227 1227
1228 1228 spa->spa_spares.sav_vdevs[i] = vd;
1229 1229
1230 1230 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1231 1231 B_FALSE)) != NULL) {
1232 1232 if (!tvd->vdev_isspare)
1233 1233 spa_spare_add(tvd);
1234 1234
1235 1235 /*
1236 1236 * We only mark the spare active if we were successfully
1237 1237 * able to load the vdev. Otherwise, importing a pool
1238 1238 * with a bad active spare would result in strange
1239 1239 * behavior, because multiple pool would think the spare
1240 1240 * is actively in use.
1241 1241 *
1242 1242 * There is a vulnerability here to an equally bizarre
1243 1243 * circumstance, where a dead active spare is later
1244 1244 * brought back to life (onlined or otherwise). Given
1245 1245 * the rarity of this scenario, and the extra complexity
1246 1246 * it adds, we ignore the possibility.
1247 1247 */
1248 1248 if (!vdev_is_dead(tvd))
1249 1249 spa_spare_activate(tvd);
1250 1250 }
1251 1251
1252 1252 vd->vdev_top = vd;
1253 1253 vd->vdev_aux = &spa->spa_spares;
1254 1254
1255 1255 if (vdev_open(vd) != 0)
1256 1256 continue;
1257 1257
1258 1258 if (vdev_validate_aux(vd) == 0)
1259 1259 spa_spare_add(vd);
1260 1260 }
1261 1261
1262 1262 /*
1263 1263 * Recompute the stashed list of spares, with status information
1264 1264 * this time.
1265 1265 */
1266 1266 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1267 1267 DATA_TYPE_NVLIST_ARRAY) == 0);
1268 1268
1269 1269 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1270 1270 KM_SLEEP);
1271 1271 for (i = 0; i < spa->spa_spares.sav_count; i++)
1272 1272 spares[i] = vdev_config_generate(spa,
1273 1273 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1274 1274 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1275 1275 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1276 1276 for (i = 0; i < spa->spa_spares.sav_count; i++)
1277 1277 nvlist_free(spares[i]);
1278 1278 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1279 1279 }
1280 1280
1281 1281 /*
1282 1282 * Load (or re-load) the current list of vdevs describing the active l2cache for
1283 1283 * this pool. When this is called, we have some form of basic information in
1284 1284 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1285 1285 * then re-generate a more complete list including status information.
1286 1286 * Devices which are already active have their details maintained, and are
1287 1287 * not re-opened.
1288 1288 */
1289 1289 static void
1290 1290 spa_load_l2cache(spa_t *spa)
1291 1291 {
1292 1292 nvlist_t **l2cache;
1293 1293 uint_t nl2cache;
1294 1294 int i, j, oldnvdevs;
1295 1295 uint64_t guid;
1296 1296 vdev_t *vd, **oldvdevs, **newvdevs;
1297 1297 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1298 1298
1299 1299 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1300 1300
1301 1301 if (sav->sav_config != NULL) {
1302 1302 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1303 1303 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1304 1304 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1305 1305 } else {
1306 1306 nl2cache = 0;
1307 1307 }
1308 1308
1309 1309 oldvdevs = sav->sav_vdevs;
1310 1310 oldnvdevs = sav->sav_count;
1311 1311 sav->sav_vdevs = NULL;
1312 1312 sav->sav_count = 0;
1313 1313
1314 1314 /*
1315 1315 * Process new nvlist of vdevs.
1316 1316 */
1317 1317 for (i = 0; i < nl2cache; i++) {
1318 1318 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1319 1319 &guid) == 0);
1320 1320
1321 1321 newvdevs[i] = NULL;
1322 1322 for (j = 0; j < oldnvdevs; j++) {
1323 1323 vd = oldvdevs[j];
1324 1324 if (vd != NULL && guid == vd->vdev_guid) {
1325 1325 /*
1326 1326 * Retain previous vdev for add/remove ops.
1327 1327 */
1328 1328 newvdevs[i] = vd;
1329 1329 oldvdevs[j] = NULL;
1330 1330 break;
1331 1331 }
1332 1332 }
1333 1333
1334 1334 if (newvdevs[i] == NULL) {
1335 1335 /*
1336 1336 * Create new vdev
1337 1337 */
1338 1338 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1339 1339 VDEV_ALLOC_L2CACHE) == 0);
1340 1340 ASSERT(vd != NULL);
1341 1341 newvdevs[i] = vd;
1342 1342
1343 1343 /*
1344 1344 * Commit this vdev as an l2cache device,
1345 1345 * even if it fails to open.
1346 1346 */
1347 1347 spa_l2cache_add(vd);
1348 1348
1349 1349 vd->vdev_top = vd;
1350 1350 vd->vdev_aux = sav;
1351 1351
1352 1352 spa_l2cache_activate(vd);
1353 1353
1354 1354 if (vdev_open(vd) != 0)
1355 1355 continue;
1356 1356
1357 1357 (void) vdev_validate_aux(vd);
1358 1358
1359 1359 if (!vdev_is_dead(vd))
1360 1360 l2arc_add_vdev(spa, vd);
1361 1361 }
1362 1362 }
1363 1363
1364 1364 /*
1365 1365 * Purge vdevs that were dropped
1366 1366 */
1367 1367 for (i = 0; i < oldnvdevs; i++) {
1368 1368 uint64_t pool;
1369 1369
1370 1370 vd = oldvdevs[i];
1371 1371 if (vd != NULL) {
1372 1372 ASSERT(vd->vdev_isl2cache);
1373 1373
1374 1374 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1375 1375 pool != 0ULL && l2arc_vdev_present(vd))
1376 1376 l2arc_remove_vdev(vd);
1377 1377 vdev_clear_stats(vd);
1378 1378 vdev_free(vd);
1379 1379 }
1380 1380 }
1381 1381
1382 1382 if (oldvdevs)
1383 1383 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1384 1384
1385 1385 if (sav->sav_config == NULL)
1386 1386 goto out;
1387 1387
1388 1388 sav->sav_vdevs = newvdevs;
1389 1389 sav->sav_count = (int)nl2cache;
1390 1390
1391 1391 /*
1392 1392 * Recompute the stashed list of l2cache devices, with status
1393 1393 * information this time.
1394 1394 */
1395 1395 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1396 1396 DATA_TYPE_NVLIST_ARRAY) == 0);
1397 1397
1398 1398 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1399 1399 for (i = 0; i < sav->sav_count; i++)
1400 1400 l2cache[i] = vdev_config_generate(spa,
1401 1401 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1402 1402 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1403 1403 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1404 1404 out:
1405 1405 for (i = 0; i < sav->sav_count; i++)
1406 1406 nvlist_free(l2cache[i]);
1407 1407 if (sav->sav_count)
1408 1408 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1409 1409 }
1410 1410
1411 1411 static int
1412 1412 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1413 1413 {
1414 1414 dmu_buf_t *db;
1415 1415 char *packed = NULL;
1416 1416 size_t nvsize = 0;
1417 1417 int error;
1418 1418 *value = NULL;
1419 1419
1420 1420 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1421 1421 nvsize = *(uint64_t *)db->db_data;
1422 1422 dmu_buf_rele(db, FTAG);
1423 1423
1424 1424 packed = kmem_alloc(nvsize, KM_SLEEP);
1425 1425 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1426 1426 DMU_READ_PREFETCH);
1427 1427 if (error == 0)
1428 1428 error = nvlist_unpack(packed, nvsize, value, 0);
1429 1429 kmem_free(packed, nvsize);
1430 1430
1431 1431 return (error);
1432 1432 }
1433 1433
1434 1434 /*
1435 1435 * Checks to see if the given vdev could not be opened, in which case we post a
1436 1436 * sysevent to notify the autoreplace code that the device has been removed.
1437 1437 */
1438 1438 static void
1439 1439 spa_check_removed(vdev_t *vd)
1440 1440 {
1441 1441 for (int c = 0; c < vd->vdev_children; c++)
1442 1442 spa_check_removed(vd->vdev_child[c]);
1443 1443
1444 1444 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1445 1445 zfs_post_autoreplace(vd->vdev_spa, vd);
1446 1446 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1447 1447 }
1448 1448 }
1449 1449
1450 1450 /*
1451 1451 * Validate the current config against the MOS config
1452 1452 */
1453 1453 static boolean_t
1454 1454 spa_config_valid(spa_t *spa, nvlist_t *config)
1455 1455 {
1456 1456 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1457 1457 nvlist_t *nv;
1458 1458
1459 1459 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1460 1460
1461 1461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1462 1462 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1463 1463
1464 1464 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1465 1465
1466 1466 /*
1467 1467 * If we're doing a normal import, then build up any additional
1468 1468 * diagnostic information about missing devices in this config.
1469 1469 * We'll pass this up to the user for further processing.
1470 1470 */
1471 1471 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1472 1472 nvlist_t **child, *nv;
1473 1473 uint64_t idx = 0;
1474 1474
1475 1475 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1476 1476 KM_SLEEP);
1477 1477 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1478 1478
1479 1479 for (int c = 0; c < rvd->vdev_children; c++) {
1480 1480 vdev_t *tvd = rvd->vdev_child[c];
1481 1481 vdev_t *mtvd = mrvd->vdev_child[c];
1482 1482
1483 1483 if (tvd->vdev_ops == &vdev_missing_ops &&
1484 1484 mtvd->vdev_ops != &vdev_missing_ops &&
1485 1485 mtvd->vdev_islog)
1486 1486 child[idx++] = vdev_config_generate(spa, mtvd,
1487 1487 B_FALSE, 0);
1488 1488 }
1489 1489
1490 1490 if (idx) {
1491 1491 VERIFY(nvlist_add_nvlist_array(nv,
1492 1492 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1493 1493 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1494 1494 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1495 1495
1496 1496 for (int i = 0; i < idx; i++)
1497 1497 nvlist_free(child[i]);
1498 1498 }
1499 1499 nvlist_free(nv);
1500 1500 kmem_free(child, rvd->vdev_children * sizeof (char **));
1501 1501 }
1502 1502
1503 1503 /*
1504 1504 * Compare the root vdev tree with the information we have
1505 1505 * from the MOS config (mrvd). Check each top-level vdev
1506 1506 * with the corresponding MOS config top-level (mtvd).
1507 1507 */
1508 1508 for (int c = 0; c < rvd->vdev_children; c++) {
1509 1509 vdev_t *tvd = rvd->vdev_child[c];
1510 1510 vdev_t *mtvd = mrvd->vdev_child[c];
1511 1511
1512 1512 /*
1513 1513 * Resolve any "missing" vdevs in the current configuration.
1514 1514 * If we find that the MOS config has more accurate information
1515 1515 * about the top-level vdev then use that vdev instead.
1516 1516 */
1517 1517 if (tvd->vdev_ops == &vdev_missing_ops &&
1518 1518 mtvd->vdev_ops != &vdev_missing_ops) {
1519 1519
1520 1520 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1521 1521 continue;
1522 1522
1523 1523 /*
1524 1524 * Device specific actions.
1525 1525 */
1526 1526 if (mtvd->vdev_islog) {
1527 1527 spa_set_log_state(spa, SPA_LOG_CLEAR);
1528 1528 } else {
1529 1529 /*
1530 1530 * XXX - once we have 'readonly' pool
1531 1531 * support we should be able to handle
1532 1532 * missing data devices by transitioning
1533 1533 * the pool to readonly.
1534 1534 */
1535 1535 continue;
1536 1536 }
1537 1537
1538 1538 /*
1539 1539 * Swap the missing vdev with the data we were
1540 1540 * able to obtain from the MOS config.
1541 1541 */
1542 1542 vdev_remove_child(rvd, tvd);
1543 1543 vdev_remove_child(mrvd, mtvd);
1544 1544
1545 1545 vdev_add_child(rvd, mtvd);
1546 1546 vdev_add_child(mrvd, tvd);
1547 1547
1548 1548 spa_config_exit(spa, SCL_ALL, FTAG);
1549 1549 vdev_load(mtvd);
1550 1550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1551 1551
1552 1552 vdev_reopen(rvd);
1553 1553 } else if (mtvd->vdev_islog) {
1554 1554 /*
1555 1555 * Load the slog device's state from the MOS config
1556 1556 * since it's possible that the label does not
1557 1557 * contain the most up-to-date information.
1558 1558 */
1559 1559 vdev_load_log_state(tvd, mtvd);
1560 1560 vdev_reopen(tvd);
1561 1561 }
1562 1562 }
1563 1563 vdev_free(mrvd);
1564 1564 spa_config_exit(spa, SCL_ALL, FTAG);
1565 1565
1566 1566 /*
1567 1567 * Ensure we were able to validate the config.
1568 1568 */
1569 1569 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1570 1570 }
1571 1571
1572 1572 /*
1573 1573 * Check for missing log devices
1574 1574 */
1575 1575 static int
1576 1576 spa_check_logs(spa_t *spa)
1577 1577 {
1578 1578 switch (spa->spa_log_state) {
1579 1579 case SPA_LOG_MISSING:
1580 1580 /* need to recheck in case slog has been restored */
1581 1581 case SPA_LOG_UNKNOWN:
1582 1582 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1583 1583 DS_FIND_CHILDREN)) {
1584 1584 spa_set_log_state(spa, SPA_LOG_MISSING);
1585 1585 return (1);
1586 1586 }
1587 1587 break;
1588 1588 }
1589 1589 return (0);
1590 1590 }
1591 1591
1592 1592 static boolean_t
1593 1593 spa_passivate_log(spa_t *spa)
1594 1594 {
1595 1595 vdev_t *rvd = spa->spa_root_vdev;
1596 1596 boolean_t slog_found = B_FALSE;
1597 1597
1598 1598 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1599 1599
1600 1600 if (!spa_has_slogs(spa))
1601 1601 return (B_FALSE);
1602 1602
1603 1603 for (int c = 0; c < rvd->vdev_children; c++) {
1604 1604 vdev_t *tvd = rvd->vdev_child[c];
1605 1605 metaslab_group_t *mg = tvd->vdev_mg;
1606 1606
1607 1607 if (tvd->vdev_islog) {
1608 1608 metaslab_group_passivate(mg);
1609 1609 slog_found = B_TRUE;
1610 1610 }
1611 1611 }
1612 1612
1613 1613 return (slog_found);
1614 1614 }
1615 1615
1616 1616 static void
1617 1617 spa_activate_log(spa_t *spa)
1618 1618 {
1619 1619 vdev_t *rvd = spa->spa_root_vdev;
1620 1620
1621 1621 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1622 1622
1623 1623 for (int c = 0; c < rvd->vdev_children; c++) {
1624 1624 vdev_t *tvd = rvd->vdev_child[c];
1625 1625 metaslab_group_t *mg = tvd->vdev_mg;
1626 1626
1627 1627 if (tvd->vdev_islog)
1628 1628 metaslab_group_activate(mg);
1629 1629 }
1630 1630 }
1631 1631
1632 1632 int
1633 1633 spa_offline_log(spa_t *spa)
1634 1634 {
1635 1635 int error = 0;
1636 1636
1637 1637 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1638 1638 NULL, DS_FIND_CHILDREN)) == 0) {
1639 1639
1640 1640 /*
1641 1641 * We successfully offlined the log device, sync out the
1642 1642 * current txg so that the "stubby" block can be removed
1643 1643 * by zil_sync().
1644 1644 */
1645 1645 txg_wait_synced(spa->spa_dsl_pool, 0);
1646 1646 }
1647 1647 return (error);
1648 1648 }
1649 1649
1650 1650 static void
1651 1651 spa_aux_check_removed(spa_aux_vdev_t *sav)
1652 1652 {
1653 1653 for (int i = 0; i < sav->sav_count; i++)
1654 1654 spa_check_removed(sav->sav_vdevs[i]);
1655 1655 }
1656 1656
1657 1657 void
1658 1658 spa_claim_notify(zio_t *zio)
1659 1659 {
1660 1660 spa_t *spa = zio->io_spa;
1661 1661
1662 1662 if (zio->io_error)
1663 1663 return;
1664 1664
1665 1665 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1666 1666 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1667 1667 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1668 1668 mutex_exit(&spa->spa_props_lock);
1669 1669 }
1670 1670
1671 1671 typedef struct spa_load_error {
1672 1672 uint64_t sle_meta_count;
1673 1673 uint64_t sle_data_count;
1674 1674 } spa_load_error_t;
1675 1675
1676 1676 static void
1677 1677 spa_load_verify_done(zio_t *zio)
1678 1678 {
1679 1679 blkptr_t *bp = zio->io_bp;
1680 1680 spa_load_error_t *sle = zio->io_private;
1681 1681 dmu_object_type_t type = BP_GET_TYPE(bp);
1682 1682 int error = zio->io_error;
1683 1683
1684 1684 if (error) {
1685 1685 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1686 1686 type != DMU_OT_INTENT_LOG)
1687 1687 atomic_add_64(&sle->sle_meta_count, 1);
1688 1688 else
1689 1689 atomic_add_64(&sle->sle_data_count, 1);
1690 1690 }
1691 1691 zio_data_buf_free(zio->io_data, zio->io_size);
1692 1692 }
1693 1693
1694 1694 /*ARGSUSED*/
1695 1695 static int
1696 1696 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1697 1697 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1698 1698 {
1699 1699 if (bp != NULL) {
1700 1700 zio_t *rio = arg;
1701 1701 size_t size = BP_GET_PSIZE(bp);
1702 1702 void *data = zio_data_buf_alloc(size);
1703 1703
1704 1704 zio_nowait(zio_read(rio, spa, bp, data, size,
1705 1705 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1706 1706 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1707 1707 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1708 1708 }
1709 1709 return (0);
1710 1710 }
1711 1711
1712 1712 static int
1713 1713 spa_load_verify(spa_t *spa)
1714 1714 {
1715 1715 zio_t *rio;
1716 1716 spa_load_error_t sle = { 0 };
1717 1717 zpool_rewind_policy_t policy;
1718 1718 boolean_t verify_ok = B_FALSE;
1719 1719 int error;
1720 1720
1721 1721 zpool_get_rewind_policy(spa->spa_config, &policy);
1722 1722
1723 1723 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1724 1724 return (0);
1725 1725
1726 1726 rio = zio_root(spa, NULL, &sle,
1727 1727 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1728 1728
1729 1729 error = traverse_pool(spa, spa->spa_verify_min_txg,
1730 1730 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1731 1731
1732 1732 (void) zio_wait(rio);
1733 1733
1734 1734 spa->spa_load_meta_errors = sle.sle_meta_count;
1735 1735 spa->spa_load_data_errors = sle.sle_data_count;
1736 1736
1737 1737 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1738 1738 sle.sle_data_count <= policy.zrp_maxdata) {
1739 1739 int64_t loss = 0;
1740 1740
1741 1741 verify_ok = B_TRUE;
1742 1742 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1743 1743 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1744 1744
1745 1745 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1746 1746 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1747 1747 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1748 1748 VERIFY(nvlist_add_int64(spa->spa_load_info,
1749 1749 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1750 1750 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1751 1751 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1752 1752 } else {
1753 1753 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1754 1754 }
1755 1755
1756 1756 if (error) {
1757 1757 if (error != ENXIO && error != EIO)
1758 1758 error = EIO;
1759 1759 return (error);
1760 1760 }
1761 1761
1762 1762 return (verify_ok ? 0 : EIO);
1763 1763 }
1764 1764
1765 1765 /*
1766 1766 * Find a value in the pool props object.
1767 1767 */
1768 1768 static void
1769 1769 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1770 1770 {
1771 1771 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1772 1772 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1773 1773 }
1774 1774
1775 1775 /*
1776 1776 * Find a value in the pool directory object.
1777 1777 */
1778 1778 static int
1779 1779 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1780 1780 {
1781 1781 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1782 1782 name, sizeof (uint64_t), 1, val));
1783 1783 }
1784 1784
1785 1785 static int
1786 1786 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1787 1787 {
1788 1788 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1789 1789 return (err);
1790 1790 }
1791 1791
1792 1792 /*
1793 1793 * Fix up config after a partly-completed split. This is done with the
1794 1794 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1795 1795 * pool have that entry in their config, but only the splitting one contains
1796 1796 * a list of all the guids of the vdevs that are being split off.
1797 1797 *
1798 1798 * This function determines what to do with that list: either rejoin
1799 1799 * all the disks to the pool, or complete the splitting process. To attempt
1800 1800 * the rejoin, each disk that is offlined is marked online again, and
1801 1801 * we do a reopen() call. If the vdev label for every disk that was
1802 1802 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1803 1803 * then we call vdev_split() on each disk, and complete the split.
1804 1804 *
1805 1805 * Otherwise we leave the config alone, with all the vdevs in place in
1806 1806 * the original pool.
1807 1807 */
1808 1808 static void
1809 1809 spa_try_repair(spa_t *spa, nvlist_t *config)
1810 1810 {
1811 1811 uint_t extracted;
1812 1812 uint64_t *glist;
1813 1813 uint_t i, gcount;
1814 1814 nvlist_t *nvl;
1815 1815 vdev_t **vd;
1816 1816 boolean_t attempt_reopen;
1817 1817
1818 1818 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1819 1819 return;
1820 1820
1821 1821 /* check that the config is complete */
1822 1822 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1823 1823 &glist, &gcount) != 0)
1824 1824 return;
1825 1825
1826 1826 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1827 1827
1828 1828 /* attempt to online all the vdevs & validate */
1829 1829 attempt_reopen = B_TRUE;
1830 1830 for (i = 0; i < gcount; i++) {
1831 1831 if (glist[i] == 0) /* vdev is hole */
1832 1832 continue;
1833 1833
1834 1834 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1835 1835 if (vd[i] == NULL) {
1836 1836 /*
1837 1837 * Don't bother attempting to reopen the disks;
1838 1838 * just do the split.
1839 1839 */
1840 1840 attempt_reopen = B_FALSE;
1841 1841 } else {
1842 1842 /* attempt to re-online it */
1843 1843 vd[i]->vdev_offline = B_FALSE;
1844 1844 }
1845 1845 }
1846 1846
1847 1847 if (attempt_reopen) {
1848 1848 vdev_reopen(spa->spa_root_vdev);
1849 1849
1850 1850 /* check each device to see what state it's in */
1851 1851 for (extracted = 0, i = 0; i < gcount; i++) {
1852 1852 if (vd[i] != NULL &&
1853 1853 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1854 1854 break;
1855 1855 ++extracted;
1856 1856 }
1857 1857 }
1858 1858
1859 1859 /*
1860 1860 * If every disk has been moved to the new pool, or if we never
1861 1861 * even attempted to look at them, then we split them off for
1862 1862 * good.
1863 1863 */
1864 1864 if (!attempt_reopen || gcount == extracted) {
1865 1865 for (i = 0; i < gcount; i++)
1866 1866 if (vd[i] != NULL)
1867 1867 vdev_split(vd[i]);
1868 1868 vdev_reopen(spa->spa_root_vdev);
1869 1869 }
1870 1870
1871 1871 kmem_free(vd, gcount * sizeof (vdev_t *));
1872 1872 }
1873 1873
1874 1874 static int
1875 1875 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1876 1876 boolean_t mosconfig)
1877 1877 {
1878 1878 nvlist_t *config = spa->spa_config;
1879 1879 char *ereport = FM_EREPORT_ZFS_POOL;
1880 1880 char *comment;
1881 1881 int error;
1882 1882 uint64_t pool_guid;
1883 1883 nvlist_t *nvl;
1884 1884
1885 1885 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1886 1886 return (EINVAL);
1887 1887
1888 1888 ASSERT(spa->spa_comment == NULL);
1889 1889 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1890 1890 spa->spa_comment = spa_strdup(comment);
1891 1891
1892 1892 /*
1893 1893 * Versioning wasn't explicitly added to the label until later, so if
1894 1894 * it's not present treat it as the initial version.
1895 1895 */
1896 1896 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1897 1897 &spa->spa_ubsync.ub_version) != 0)
1898 1898 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1899 1899
1900 1900 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1901 1901 &spa->spa_config_txg);
1902 1902
1903 1903 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1904 1904 spa_guid_exists(pool_guid, 0)) {
1905 1905 error = EEXIST;
1906 1906 } else {
1907 1907 spa->spa_config_guid = pool_guid;
1908 1908
1909 1909 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1910 1910 &nvl) == 0) {
1911 1911 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1912 1912 KM_SLEEP) == 0);
1913 1913 }
1914 1914
1915 1915 nvlist_free(spa->spa_load_info);
1916 1916 spa->spa_load_info = fnvlist_alloc();
1917 1917
1918 1918 gethrestime(&spa->spa_loaded_ts);
1919 1919 error = spa_load_impl(spa, pool_guid, config, state, type,
1920 1920 mosconfig, &ereport);
1921 1921 }
1922 1922
1923 1923 spa->spa_minref = refcount_count(&spa->spa_refcount);
1924 1924 if (error) {
1925 1925 if (error != EEXIST) {
1926 1926 spa->spa_loaded_ts.tv_sec = 0;
1927 1927 spa->spa_loaded_ts.tv_nsec = 0;
1928 1928 }
1929 1929 if (error != EBADF) {
1930 1930 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1931 1931 }
1932 1932 }
1933 1933 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1934 1934 spa->spa_ena = 0;
1935 1935
1936 1936 return (error);
1937 1937 }
1938 1938
1939 1939 /*
1940 1940 * Load an existing storage pool, using the pool's builtin spa_config as a
1941 1941 * source of configuration information.
1942 1942 */
1943 1943 static int
1944 1944 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1945 1945 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1946 1946 char **ereport)
1947 1947 {
1948 1948 int error = 0;
1949 1949 nvlist_t *nvroot = NULL;
1950 1950 nvlist_t *label;
1951 1951 vdev_t *rvd;
1952 1952 uberblock_t *ub = &spa->spa_uberblock;
1953 1953 uint64_t children, config_cache_txg = spa->spa_config_txg;
1954 1954 int orig_mode = spa->spa_mode;
1955 1955 int parse;
1956 1956 uint64_t obj;
1957 1957 boolean_t missing_feat_write = B_FALSE;
1958 1958
1959 1959 /*
1960 1960 * If this is an untrusted config, access the pool in read-only mode.
1961 1961 * This prevents things like resilvering recently removed devices.
1962 1962 */
1963 1963 if (!mosconfig)
1964 1964 spa->spa_mode = FREAD;
1965 1965
1966 1966 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1967 1967
1968 1968 spa->spa_load_state = state;
1969 1969
1970 1970 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1971 1971 return (EINVAL);
1972 1972
1973 1973 parse = (type == SPA_IMPORT_EXISTING ?
1974 1974 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1975 1975
1976 1976 /*
1977 1977 * Create "The Godfather" zio to hold all async IOs
1978 1978 */
1979 1979 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1980 1980 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1981 1981
1982 1982 /*
1983 1983 * Parse the configuration into a vdev tree. We explicitly set the
1984 1984 * value that will be returned by spa_version() since parsing the
1985 1985 * configuration requires knowing the version number.
1986 1986 */
1987 1987 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1988 1988 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1989 1989 spa_config_exit(spa, SCL_ALL, FTAG);
1990 1990
1991 1991 if (error != 0)
1992 1992 return (error);
1993 1993
1994 1994 ASSERT(spa->spa_root_vdev == rvd);
1995 1995
1996 1996 if (type != SPA_IMPORT_ASSEMBLE) {
1997 1997 ASSERT(spa_guid(spa) == pool_guid);
1998 1998 }
1999 1999
2000 2000 /*
2001 2001 * Try to open all vdevs, loading each label in the process.
2002 2002 */
2003 2003 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2004 2004 error = vdev_open(rvd);
2005 2005 spa_config_exit(spa, SCL_ALL, FTAG);
2006 2006 if (error != 0)
2007 2007 return (error);
2008 2008
2009 2009 /*
2010 2010 * We need to validate the vdev labels against the configuration that
2011 2011 * we have in hand, which is dependent on the setting of mosconfig. If
2012 2012 * mosconfig is true then we're validating the vdev labels based on
2013 2013 * that config. Otherwise, we're validating against the cached config
2014 2014 * (zpool.cache) that was read when we loaded the zfs module, and then
2015 2015 * later we will recursively call spa_load() and validate against
2016 2016 * the vdev config.
2017 2017 *
2018 2018 * If we're assembling a new pool that's been split off from an
2019 2019 * existing pool, the labels haven't yet been updated so we skip
2020 2020 * validation for now.
2021 2021 */
2022 2022 if (type != SPA_IMPORT_ASSEMBLE) {
2023 2023 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2024 2024 error = vdev_validate(rvd, mosconfig);
2025 2025 spa_config_exit(spa, SCL_ALL, FTAG);
2026 2026
2027 2027 if (error != 0)
2028 2028 return (error);
2029 2029
2030 2030 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2031 2031 return (ENXIO);
2032 2032 }
2033 2033
2034 2034 /*
2035 2035 * Find the best uberblock.
2036 2036 */
2037 2037 vdev_uberblock_load(rvd, ub, &label);
2038 2038
2039 2039 /*
2040 2040 * If we weren't able to find a single valid uberblock, return failure.
2041 2041 */
2042 2042 if (ub->ub_txg == 0) {
2043 2043 nvlist_free(label);
2044 2044 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2045 2045 }
2046 2046
2047 2047 /*
2048 2048 * If the pool has an unsupported version we can't open it.
2049 2049 */
2050 2050 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2051 2051 nvlist_free(label);
2052 2052 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2053 2053 }
2054 2054
2055 2055 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2056 2056 nvlist_t *features;
2057 2057
2058 2058 /*
2059 2059 * If we weren't able to find what's necessary for reading the
2060 2060 * MOS in the label, return failure.
2061 2061 */
2062 2062 if (label == NULL || nvlist_lookup_nvlist(label,
2063 2063 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2064 2064 nvlist_free(label);
2065 2065 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2066 2066 ENXIO));
2067 2067 }
2068 2068
2069 2069 /*
2070 2070 * Update our in-core representation with the definitive values
2071 2071 * from the label.
2072 2072 */
2073 2073 nvlist_free(spa->spa_label_features);
2074 2074 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2075 2075 }
2076 2076
2077 2077 nvlist_free(label);
2078 2078
2079 2079 /*
2080 2080 * Look through entries in the label nvlist's features_for_read. If
2081 2081 * there is a feature listed there which we don't understand then we
2082 2082 * cannot open a pool.
2083 2083 */
2084 2084 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2085 2085 nvlist_t *unsup_feat;
2086 2086
2087 2087 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2088 2088 0);
2089 2089
2090 2090 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2091 2091 NULL); nvp != NULL;
2092 2092 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2093 2093 if (!zfeature_is_supported(nvpair_name(nvp))) {
2094 2094 VERIFY(nvlist_add_string(unsup_feat,
2095 2095 nvpair_name(nvp), "") == 0);
2096 2096 }
2097 2097 }
2098 2098
2099 2099 if (!nvlist_empty(unsup_feat)) {
2100 2100 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2101 2101 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2102 2102 nvlist_free(unsup_feat);
2103 2103 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2104 2104 ENOTSUP));
2105 2105 }
2106 2106
2107 2107 nvlist_free(unsup_feat);
2108 2108 }
2109 2109
2110 2110 /*
2111 2111 * If the vdev guid sum doesn't match the uberblock, we have an
2112 2112 * incomplete configuration. We first check to see if the pool
2113 2113 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2114 2114 * If it is, defer the vdev_guid_sum check till later so we
2115 2115 * can handle missing vdevs.
2116 2116 */
2117 2117 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2118 2118 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2119 2119 rvd->vdev_guid_sum != ub->ub_guid_sum)
2120 2120 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2121 2121
2122 2122 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2123 2123 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2124 2124 spa_try_repair(spa, config);
2125 2125 spa_config_exit(spa, SCL_ALL, FTAG);
2126 2126 nvlist_free(spa->spa_config_splitting);
2127 2127 spa->spa_config_splitting = NULL;
2128 2128 }
2129 2129
2130 2130 /*
2131 2131 * Initialize internal SPA structures.
2132 2132 */
2133 2133 spa->spa_state = POOL_STATE_ACTIVE;
2134 2134 spa->spa_ubsync = spa->spa_uberblock;
2135 2135 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2136 2136 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2137 2137 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2138 2138 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2139 2139 spa->spa_claim_max_txg = spa->spa_first_txg;
2140 2140 spa->spa_prev_software_version = ub->ub_software_version;
2141 2141
2142 2142 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2143 2143 if (error)
2144 2144 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2145 2145 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2146 2146
2147 2147 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2148 2148 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2149 2149
2150 2150 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2151 2151 boolean_t missing_feat_read = B_FALSE;
2152 2152 nvlist_t *unsup_feat;
2153 2153
2154 2154 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2155 2155 &spa->spa_feat_for_read_obj) != 0) {
2156 2156 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2157 2157 }
2158 2158
2159 2159 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2160 2160 &spa->spa_feat_for_write_obj) != 0) {
2161 2161 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2162 2162 }
2163 2163
2164 2164 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2165 2165 &spa->spa_feat_desc_obj) != 0) {
2166 2166 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2167 2167 }
2168 2168
2169 2169 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2170 2170 0);
2171 2171
2172 2172 if (!feature_is_supported(spa->spa_meta_objset,
2173 2173 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2174 2174 unsup_feat))
2175 2175 missing_feat_read = B_TRUE;
2176 2176
2177 2177 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2178 2178 if (!feature_is_supported(spa->spa_meta_objset,
2179 2179 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2180 2180 unsup_feat))
2181 2181 missing_feat_write = B_TRUE;
2182 2182 }
2183 2183
2184 2184 if (!nvlist_empty(unsup_feat)) {
2185 2185 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2186 2186 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2187 2187 }
2188 2188
2189 2189 nvlist_free(unsup_feat);
2190 2190
2191 2191 if (!missing_feat_read) {
2192 2192 fnvlist_add_boolean(spa->spa_load_info,
2193 2193 ZPOOL_CONFIG_CAN_RDONLY);
2194 2194 }
2195 2195
2196 2196 /*
2197 2197 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2198 2198 * twofold: to determine whether the pool is available for
2199 2199 * import in read-write mode and (if it is not) whether the
2200 2200 * pool is available for import in read-only mode. If the pool
2201 2201 * is available for import in read-write mode, it is displayed
2202 2202 * as available in userland; if it is not available for import
2203 2203 * in read-only mode, it is displayed as unavailable in
2204 2204 * userland. If the pool is available for import in read-only
2205 2205 * mode but not read-write mode, it is displayed as unavailable
2206 2206 * in userland with a special note that the pool is actually
2207 2207 * available for open in read-only mode.
2208 2208 *
2209 2209 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2210 2210 * missing a feature for write, we must first determine whether
2211 2211 * the pool can be opened read-only before returning to
2212 2212 * userland in order to know whether to display the
2213 2213 * abovementioned note.
2214 2214 */
2215 2215 if (missing_feat_read || (missing_feat_write &&
2216 2216 spa_writeable(spa))) {
2217 2217 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2218 2218 ENOTSUP));
2219 2219 }
2220 2220 }
2221 2221
2222 2222 spa->spa_is_initializing = B_TRUE;
2223 2223 error = dsl_pool_open(spa->spa_dsl_pool);
2224 2224 spa->spa_is_initializing = B_FALSE;
2225 2225 if (error != 0)
2226 2226 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2227 2227
2228 2228 if (!mosconfig) {
2229 2229 uint64_t hostid;
2230 2230 nvlist_t *policy = NULL, *nvconfig;
2231 2231
2232 2232 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2233 2233 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2234 2234
2235 2235 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2236 2236 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2237 2237 char *hostname;
2238 2238 unsigned long myhostid = 0;
2239 2239
2240 2240 VERIFY(nvlist_lookup_string(nvconfig,
2241 2241 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2242 2242
2243 2243 #ifdef _KERNEL
2244 2244 myhostid = zone_get_hostid(NULL);
2245 2245 #else /* _KERNEL */
2246 2246 /*
2247 2247 * We're emulating the system's hostid in userland, so
2248 2248 * we can't use zone_get_hostid().
2249 2249 */
2250 2250 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2251 2251 #endif /* _KERNEL */
2252 2252 if (hostid != 0 && myhostid != 0 &&
2253 2253 hostid != myhostid) {
2254 2254 nvlist_free(nvconfig);
2255 2255 cmn_err(CE_WARN, "pool '%s' could not be "
2256 2256 "loaded as it was last accessed by "
2257 2257 "another system (host: %s hostid: 0x%lx). "
2258 2258 "See: http://illumos.org/msg/ZFS-8000-EY",
2259 2259 spa_name(spa), hostname,
2260 2260 (unsigned long)hostid);
2261 2261 return (EBADF);
2262 2262 }
2263 2263 }
2264 2264 if (nvlist_lookup_nvlist(spa->spa_config,
2265 2265 ZPOOL_REWIND_POLICY, &policy) == 0)
2266 2266 VERIFY(nvlist_add_nvlist(nvconfig,
2267 2267 ZPOOL_REWIND_POLICY, policy) == 0);
2268 2268
2269 2269 spa_config_set(spa, nvconfig);
2270 2270 spa_unload(spa);
2271 2271 spa_deactivate(spa);
2272 2272 spa_activate(spa, orig_mode);
2273 2273
2274 2274 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2275 2275 }
2276 2276
2277 2277 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2278 2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2279 2279 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2280 2280 if (error != 0)
2281 2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 2282
2283 2283 /*
2284 2284 * Load the bit that tells us to use the new accounting function
2285 2285 * (raid-z deflation). If we have an older pool, this will not
2286 2286 * be present.
2287 2287 */
2288 2288 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2289 2289 if (error != 0 && error != ENOENT)
2290 2290 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2291 2291
2292 2292 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2293 2293 &spa->spa_creation_version);
2294 2294 if (error != 0 && error != ENOENT)
2295 2295 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2296 2296
2297 2297 /*
2298 2298 * Load the persistent error log. If we have an older pool, this will
2299 2299 * not be present.
2300 2300 */
2301 2301 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2302 2302 if (error != 0 && error != ENOENT)
2303 2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2304 2304
2305 2305 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2306 2306 &spa->spa_errlog_scrub);
2307 2307 if (error != 0 && error != ENOENT)
2308 2308 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2309 2309
2310 2310 /*
2311 2311 * Load the history object. If we have an older pool, this
2312 2312 * will not be present.
2313 2313 */
2314 2314 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2315 2315 if (error != 0 && error != ENOENT)
2316 2316 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2317 2317
2318 2318 /*
2319 2319 * If we're assembling the pool from the split-off vdevs of
2320 2320 * an existing pool, we don't want to attach the spares & cache
2321 2321 * devices.
2322 2322 */
2323 2323
2324 2324 /*
2325 2325 * Load any hot spares for this pool.
2326 2326 */
2327 2327 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2328 2328 if (error != 0 && error != ENOENT)
2329 2329 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2330 2330 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2331 2331 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2332 2332 if (load_nvlist(spa, spa->spa_spares.sav_object,
2333 2333 &spa->spa_spares.sav_config) != 0)
2334 2334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2335 2335
2336 2336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2337 2337 spa_load_spares(spa);
2338 2338 spa_config_exit(spa, SCL_ALL, FTAG);
2339 2339 } else if (error == 0) {
2340 2340 spa->spa_spares.sav_sync = B_TRUE;
2341 2341 }
2342 2342
2343 2343 /*
2344 2344 * Load any level 2 ARC devices for this pool.
2345 2345 */
2346 2346 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2347 2347 &spa->spa_l2cache.sav_object);
2348 2348 if (error != 0 && error != ENOENT)
2349 2349 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2350 2350 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2351 2351 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2352 2352 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2353 2353 &spa->spa_l2cache.sav_config) != 0)
2354 2354 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2355 2355
2356 2356 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2357 2357 spa_load_l2cache(spa);
2358 2358 spa_config_exit(spa, SCL_ALL, FTAG);
2359 2359 } else if (error == 0) {
2360 2360 spa->spa_l2cache.sav_sync = B_TRUE;
2361 2361 }
2362 2362
2363 2363 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2364 2364
2365 2365 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2366 2366 if (error && error != ENOENT)
2367 2367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2368 2368
2369 2369 if (error == 0) {
2370 2370 uint64_t autoreplace;
2371 2371
2372 2372 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2373 2373 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2374 2374 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2375 2375 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2376 2376 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2377 2377 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2378 2378 &spa->spa_dedup_ditto);
2379 2379
2380 2380 spa->spa_autoreplace = (autoreplace != 0);
2381 2381 }
2382 2382
2383 2383 /*
2384 2384 * If the 'autoreplace' property is set, then post a resource notifying
2385 2385 * the ZFS DE that it should not issue any faults for unopenable
2386 2386 * devices. We also iterate over the vdevs, and post a sysevent for any
2387 2387 * unopenable vdevs so that the normal autoreplace handler can take
2388 2388 * over.
2389 2389 */
2390 2390 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2391 2391 spa_check_removed(spa->spa_root_vdev);
2392 2392 /*
2393 2393 * For the import case, this is done in spa_import(), because
2394 2394 * at this point we're using the spare definitions from
2395 2395 * the MOS config, not necessarily from the userland config.
2396 2396 */
2397 2397 if (state != SPA_LOAD_IMPORT) {
2398 2398 spa_aux_check_removed(&spa->spa_spares);
2399 2399 spa_aux_check_removed(&spa->spa_l2cache);
2400 2400 }
2401 2401 }
2402 2402
2403 2403 /*
2404 2404 * Load the vdev state for all toplevel vdevs.
2405 2405 */
2406 2406 vdev_load(rvd);
2407 2407
2408 2408 /*
2409 2409 * Propagate the leaf DTLs we just loaded all the way up the tree.
2410 2410 */
2411 2411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2412 2412 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2413 2413 spa_config_exit(spa, SCL_ALL, FTAG);
2414 2414
2415 2415 /*
2416 2416 * Load the DDTs (dedup tables).
2417 2417 */
2418 2418 error = ddt_load(spa);
2419 2419 if (error != 0)
2420 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421 2421
2422 2422 spa_update_dspace(spa);
2423 2423
2424 2424 /*
2425 2425 * Validate the config, using the MOS config to fill in any
2426 2426 * information which might be missing. If we fail to validate
2427 2427 * the config then declare the pool unfit for use. If we're
2428 2428 * assembling a pool from a split, the log is not transferred
2429 2429 * over.
2430 2430 */
2431 2431 if (type != SPA_IMPORT_ASSEMBLE) {
2432 2432 nvlist_t *nvconfig;
2433 2433
2434 2434 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2435 2435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2436 2436
2437 2437 if (!spa_config_valid(spa, nvconfig)) {
2438 2438 nvlist_free(nvconfig);
2439 2439 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2440 2440 ENXIO));
2441 2441 }
2442 2442 nvlist_free(nvconfig);
2443 2443
2444 2444 /*
2445 2445 * Now that we've validated the config, check the state of the
2446 2446 * root vdev. If it can't be opened, it indicates one or
2447 2447 * more toplevel vdevs are faulted.
2448 2448 */
2449 2449 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2450 2450 return (ENXIO);
2451 2451
2452 2452 if (spa_check_logs(spa)) {
2453 2453 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2454 2454 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2455 2455 }
2456 2456 }
2457 2457
2458 2458 if (missing_feat_write) {
2459 2459 ASSERT(state == SPA_LOAD_TRYIMPORT);
2460 2460
2461 2461 /*
2462 2462 * At this point, we know that we can open the pool in
2463 2463 * read-only mode but not read-write mode. We now have enough
2464 2464 * information and can return to userland.
2465 2465 */
2466 2466 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2467 2467 }
2468 2468
2469 2469 /*
2470 2470 * We've successfully opened the pool, verify that we're ready
2471 2471 * to start pushing transactions.
2472 2472 */
2473 2473 if (state != SPA_LOAD_TRYIMPORT) {
2474 2474 if (error = spa_load_verify(spa))
2475 2475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2476 2476 error));
2477 2477 }
2478 2478
2479 2479 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2480 2480 spa->spa_load_max_txg == UINT64_MAX)) {
2481 2481 dmu_tx_t *tx;
2482 2482 int need_update = B_FALSE;
2483 2483
2484 2484 ASSERT(state != SPA_LOAD_TRYIMPORT);
2485 2485
2486 2486 /*
2487 2487 * Claim log blocks that haven't been committed yet.
2488 2488 * This must all happen in a single txg.
2489 2489 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2490 2490 * invoked from zil_claim_log_block()'s i/o done callback.
2491 2491 * Price of rollback is that we abandon the log.
2492 2492 */
2493 2493 spa->spa_claiming = B_TRUE;
2494 2494
2495 2495 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2496 2496 spa_first_txg(spa));
2497 2497 (void) dmu_objset_find(spa_name(spa),
2498 2498 zil_claim, tx, DS_FIND_CHILDREN);
2499 2499 dmu_tx_commit(tx);
2500 2500
2501 2501 spa->spa_claiming = B_FALSE;
2502 2502
2503 2503 spa_set_log_state(spa, SPA_LOG_GOOD);
2504 2504 spa->spa_sync_on = B_TRUE;
2505 2505 txg_sync_start(spa->spa_dsl_pool);
2506 2506
2507 2507 /*
2508 2508 * Wait for all claims to sync. We sync up to the highest
2509 2509 * claimed log block birth time so that claimed log blocks
2510 2510 * don't appear to be from the future. spa_claim_max_txg
2511 2511 * will have been set for us by either zil_check_log_chain()
2512 2512 * (invoked from spa_check_logs()) or zil_claim() above.
2513 2513 */
2514 2514 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2515 2515
2516 2516 /*
2517 2517 * If the config cache is stale, or we have uninitialized
2518 2518 * metaslabs (see spa_vdev_add()), then update the config.
2519 2519 *
2520 2520 * If this is a verbatim import, trust the current
2521 2521 * in-core spa_config and update the disk labels.
2522 2522 */
2523 2523 if (config_cache_txg != spa->spa_config_txg ||
2524 2524 state == SPA_LOAD_IMPORT ||
2525 2525 state == SPA_LOAD_RECOVER ||
2526 2526 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2527 2527 need_update = B_TRUE;
2528 2528
2529 2529 for (int c = 0; c < rvd->vdev_children; c++)
2530 2530 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2531 2531 need_update = B_TRUE;
2532 2532
2533 2533 /*
2534 2534 * Update the config cache asychronously in case we're the
2535 2535 * root pool, in which case the config cache isn't writable yet.
2536 2536 */
2537 2537 if (need_update)
↓ open down ↓ |
2537 lines elided |
↑ open up ↑ |
2538 2538 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2539 2539
2540 2540 /*
2541 2541 * Check all DTLs to see if anything needs resilvering.
2542 2542 */
2543 2543 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2544 2544 vdev_resilver_needed(rvd, NULL, NULL))
2545 2545 spa_async_request(spa, SPA_ASYNC_RESILVER);
2546 2546
2547 2547 /*
2548 + * Log the fact that we booted up (so that we can detect if
2549 + * we rebooted in the middle of an operation).
2550 + */
2551 + spa_history_log_version(spa, "open");
2552 +
2553 + /*
2548 2554 * Delete any inconsistent datasets.
2549 2555 */
2550 2556 (void) dmu_objset_find(spa_name(spa),
2551 2557 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2552 2558
2553 2559 /*
2554 2560 * Clean up any stale temporary dataset userrefs.
2555 2561 */
2556 2562 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2557 2563 }
2558 2564
2559 2565 return (0);
2560 2566 }
2561 2567
2562 2568 static int
2563 2569 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2564 2570 {
2565 2571 int mode = spa->spa_mode;
2566 2572
2567 2573 spa_unload(spa);
2568 2574 spa_deactivate(spa);
2569 2575
2570 2576 spa->spa_load_max_txg--;
2571 2577
2572 2578 spa_activate(spa, mode);
2573 2579 spa_async_suspend(spa);
2574 2580
2575 2581 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2576 2582 }
2577 2583
2578 2584 /*
2579 2585 * If spa_load() fails this function will try loading prior txg's. If
2580 2586 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2581 2587 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2582 2588 * function will not rewind the pool and will return the same error as
2583 2589 * spa_load().
2584 2590 */
2585 2591 static int
2586 2592 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2587 2593 uint64_t max_request, int rewind_flags)
2588 2594 {
2589 2595 nvlist_t *loadinfo = NULL;
2590 2596 nvlist_t *config = NULL;
2591 2597 int load_error, rewind_error;
2592 2598 uint64_t safe_rewind_txg;
2593 2599 uint64_t min_txg;
2594 2600
2595 2601 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2596 2602 spa->spa_load_max_txg = spa->spa_load_txg;
2597 2603 spa_set_log_state(spa, SPA_LOG_CLEAR);
2598 2604 } else {
2599 2605 spa->spa_load_max_txg = max_request;
2600 2606 }
2601 2607
2602 2608 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2603 2609 mosconfig);
2604 2610 if (load_error == 0)
2605 2611 return (0);
2606 2612
2607 2613 if (spa->spa_root_vdev != NULL)
2608 2614 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2609 2615
2610 2616 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2611 2617 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2612 2618
2613 2619 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2614 2620 nvlist_free(config);
2615 2621 return (load_error);
2616 2622 }
2617 2623
2618 2624 if (state == SPA_LOAD_RECOVER) {
2619 2625 /* Price of rolling back is discarding txgs, including log */
2620 2626 spa_set_log_state(spa, SPA_LOG_CLEAR);
2621 2627 } else {
2622 2628 /*
2623 2629 * If we aren't rolling back save the load info from our first
2624 2630 * import attempt so that we can restore it after attempting
2625 2631 * to rewind.
2626 2632 */
2627 2633 loadinfo = spa->spa_load_info;
2628 2634 spa->spa_load_info = fnvlist_alloc();
2629 2635 }
2630 2636
2631 2637 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2632 2638 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2633 2639 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2634 2640 TXG_INITIAL : safe_rewind_txg;
2635 2641
2636 2642 /*
2637 2643 * Continue as long as we're finding errors, we're still within
2638 2644 * the acceptable rewind range, and we're still finding uberblocks
2639 2645 */
2640 2646 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2641 2647 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2642 2648 if (spa->spa_load_max_txg < safe_rewind_txg)
2643 2649 spa->spa_extreme_rewind = B_TRUE;
2644 2650 rewind_error = spa_load_retry(spa, state, mosconfig);
2645 2651 }
2646 2652
2647 2653 spa->spa_extreme_rewind = B_FALSE;
2648 2654 spa->spa_load_max_txg = UINT64_MAX;
2649 2655
2650 2656 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2651 2657 spa_config_set(spa, config);
2652 2658
2653 2659 if (state == SPA_LOAD_RECOVER) {
2654 2660 ASSERT3P(loadinfo, ==, NULL);
2655 2661 return (rewind_error);
2656 2662 } else {
2657 2663 /* Store the rewind info as part of the initial load info */
2658 2664 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2659 2665 spa->spa_load_info);
2660 2666
2661 2667 /* Restore the initial load info */
2662 2668 fnvlist_free(spa->spa_load_info);
2663 2669 spa->spa_load_info = loadinfo;
2664 2670
2665 2671 return (load_error);
2666 2672 }
2667 2673 }
2668 2674
2669 2675 /*
2670 2676 * Pool Open/Import
2671 2677 *
2672 2678 * The import case is identical to an open except that the configuration is sent
2673 2679 * down from userland, instead of grabbed from the configuration cache. For the
2674 2680 * case of an open, the pool configuration will exist in the
2675 2681 * POOL_STATE_UNINITIALIZED state.
2676 2682 *
2677 2683 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2678 2684 * the same time open the pool, without having to keep around the spa_t in some
2679 2685 * ambiguous state.
2680 2686 */
2681 2687 static int
2682 2688 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2683 2689 nvlist_t **config)
2684 2690 {
2685 2691 spa_t *spa;
2686 2692 spa_load_state_t state = SPA_LOAD_OPEN;
2687 2693 int error;
2688 2694 int locked = B_FALSE;
2689 2695
2690 2696 *spapp = NULL;
2691 2697
2692 2698 /*
2693 2699 * As disgusting as this is, we need to support recursive calls to this
2694 2700 * function because dsl_dir_open() is called during spa_load(), and ends
2695 2701 * up calling spa_open() again. The real fix is to figure out how to
2696 2702 * avoid dsl_dir_open() calling this in the first place.
2697 2703 */
2698 2704 if (mutex_owner(&spa_namespace_lock) != curthread) {
2699 2705 mutex_enter(&spa_namespace_lock);
2700 2706 locked = B_TRUE;
2701 2707 }
2702 2708
2703 2709 if ((spa = spa_lookup(pool)) == NULL) {
2704 2710 if (locked)
2705 2711 mutex_exit(&spa_namespace_lock);
2706 2712 return (ENOENT);
2707 2713 }
2708 2714
2709 2715 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2710 2716 zpool_rewind_policy_t policy;
2711 2717
2712 2718 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2713 2719 &policy);
2714 2720 if (policy.zrp_request & ZPOOL_DO_REWIND)
2715 2721 state = SPA_LOAD_RECOVER;
2716 2722
2717 2723 spa_activate(spa, spa_mode_global);
2718 2724
2719 2725 if (state != SPA_LOAD_RECOVER)
2720 2726 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2721 2727
2722 2728 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2723 2729 policy.zrp_request);
2724 2730
2725 2731 if (error == EBADF) {
2726 2732 /*
2727 2733 * If vdev_validate() returns failure (indicated by
2728 2734 * EBADF), it indicates that one of the vdevs indicates
2729 2735 * that the pool has been exported or destroyed. If
2730 2736 * this is the case, the config cache is out of sync and
2731 2737 * we should remove the pool from the namespace.
2732 2738 */
2733 2739 spa_unload(spa);
2734 2740 spa_deactivate(spa);
2735 2741 spa_config_sync(spa, B_TRUE, B_TRUE);
2736 2742 spa_remove(spa);
2737 2743 if (locked)
2738 2744 mutex_exit(&spa_namespace_lock);
2739 2745 return (ENOENT);
2740 2746 }
2741 2747
2742 2748 if (error) {
2743 2749 /*
2744 2750 * We can't open the pool, but we still have useful
2745 2751 * information: the state of each vdev after the
2746 2752 * attempted vdev_open(). Return this to the user.
2747 2753 */
2748 2754 if (config != NULL && spa->spa_config) {
2749 2755 VERIFY(nvlist_dup(spa->spa_config, config,
2750 2756 KM_SLEEP) == 0);
2751 2757 VERIFY(nvlist_add_nvlist(*config,
2752 2758 ZPOOL_CONFIG_LOAD_INFO,
2753 2759 spa->spa_load_info) == 0);
2754 2760 }
2755 2761 spa_unload(spa);
2756 2762 spa_deactivate(spa);
2757 2763 spa->spa_last_open_failed = error;
2758 2764 if (locked)
2759 2765 mutex_exit(&spa_namespace_lock);
2760 2766 *spapp = NULL;
2761 2767 return (error);
2762 2768 }
2763 2769 }
2764 2770
2765 2771 spa_open_ref(spa, tag);
2766 2772
2767 2773 if (config != NULL)
2768 2774 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2769 2775
2770 2776 /*
2771 2777 * If we've recovered the pool, pass back any information we
2772 2778 * gathered while doing the load.
2773 2779 */
2774 2780 if (state == SPA_LOAD_RECOVER) {
2775 2781 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2776 2782 spa->spa_load_info) == 0);
2777 2783 }
2778 2784
2779 2785 if (locked) {
2780 2786 spa->spa_last_open_failed = 0;
2781 2787 spa->spa_last_ubsync_txg = 0;
2782 2788 spa->spa_load_txg = 0;
2783 2789 mutex_exit(&spa_namespace_lock);
2784 2790 }
2785 2791
2786 2792 *spapp = spa;
2787 2793
2788 2794 return (0);
2789 2795 }
2790 2796
2791 2797 int
2792 2798 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2793 2799 nvlist_t **config)
2794 2800 {
2795 2801 return (spa_open_common(name, spapp, tag, policy, config));
2796 2802 }
2797 2803
2798 2804 int
2799 2805 spa_open(const char *name, spa_t **spapp, void *tag)
2800 2806 {
2801 2807 return (spa_open_common(name, spapp, tag, NULL, NULL));
2802 2808 }
2803 2809
2804 2810 /*
2805 2811 * Lookup the given spa_t, incrementing the inject count in the process,
2806 2812 * preventing it from being exported or destroyed.
2807 2813 */
2808 2814 spa_t *
2809 2815 spa_inject_addref(char *name)
2810 2816 {
2811 2817 spa_t *spa;
2812 2818
2813 2819 mutex_enter(&spa_namespace_lock);
2814 2820 if ((spa = spa_lookup(name)) == NULL) {
2815 2821 mutex_exit(&spa_namespace_lock);
2816 2822 return (NULL);
2817 2823 }
2818 2824 spa->spa_inject_ref++;
2819 2825 mutex_exit(&spa_namespace_lock);
2820 2826
2821 2827 return (spa);
2822 2828 }
2823 2829
2824 2830 void
2825 2831 spa_inject_delref(spa_t *spa)
2826 2832 {
2827 2833 mutex_enter(&spa_namespace_lock);
2828 2834 spa->spa_inject_ref--;
2829 2835 mutex_exit(&spa_namespace_lock);
2830 2836 }
2831 2837
2832 2838 /*
2833 2839 * Add spares device information to the nvlist.
2834 2840 */
2835 2841 static void
2836 2842 spa_add_spares(spa_t *spa, nvlist_t *config)
2837 2843 {
2838 2844 nvlist_t **spares;
2839 2845 uint_t i, nspares;
2840 2846 nvlist_t *nvroot;
2841 2847 uint64_t guid;
2842 2848 vdev_stat_t *vs;
2843 2849 uint_t vsc;
2844 2850 uint64_t pool;
2845 2851
2846 2852 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2847 2853
2848 2854 if (spa->spa_spares.sav_count == 0)
2849 2855 return;
2850 2856
2851 2857 VERIFY(nvlist_lookup_nvlist(config,
2852 2858 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2853 2859 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2854 2860 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2855 2861 if (nspares != 0) {
2856 2862 VERIFY(nvlist_add_nvlist_array(nvroot,
2857 2863 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2858 2864 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2859 2865 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2860 2866
2861 2867 /*
2862 2868 * Go through and find any spares which have since been
2863 2869 * repurposed as an active spare. If this is the case, update
2864 2870 * their status appropriately.
2865 2871 */
2866 2872 for (i = 0; i < nspares; i++) {
2867 2873 VERIFY(nvlist_lookup_uint64(spares[i],
2868 2874 ZPOOL_CONFIG_GUID, &guid) == 0);
2869 2875 if (spa_spare_exists(guid, &pool, NULL) &&
2870 2876 pool != 0ULL) {
2871 2877 VERIFY(nvlist_lookup_uint64_array(
2872 2878 spares[i], ZPOOL_CONFIG_VDEV_STATS,
2873 2879 (uint64_t **)&vs, &vsc) == 0);
2874 2880 vs->vs_state = VDEV_STATE_CANT_OPEN;
2875 2881 vs->vs_aux = VDEV_AUX_SPARED;
2876 2882 }
2877 2883 }
2878 2884 }
2879 2885 }
2880 2886
2881 2887 /*
2882 2888 * Add l2cache device information to the nvlist, including vdev stats.
2883 2889 */
2884 2890 static void
2885 2891 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2886 2892 {
2887 2893 nvlist_t **l2cache;
2888 2894 uint_t i, j, nl2cache;
2889 2895 nvlist_t *nvroot;
2890 2896 uint64_t guid;
2891 2897 vdev_t *vd;
2892 2898 vdev_stat_t *vs;
2893 2899 uint_t vsc;
2894 2900
2895 2901 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2896 2902
2897 2903 if (spa->spa_l2cache.sav_count == 0)
2898 2904 return;
2899 2905
2900 2906 VERIFY(nvlist_lookup_nvlist(config,
2901 2907 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2902 2908 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2903 2909 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2904 2910 if (nl2cache != 0) {
2905 2911 VERIFY(nvlist_add_nvlist_array(nvroot,
2906 2912 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2907 2913 VERIFY(nvlist_lookup_nvlist_array(nvroot,
2908 2914 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2909 2915
2910 2916 /*
2911 2917 * Update level 2 cache device stats.
2912 2918 */
2913 2919
2914 2920 for (i = 0; i < nl2cache; i++) {
2915 2921 VERIFY(nvlist_lookup_uint64(l2cache[i],
2916 2922 ZPOOL_CONFIG_GUID, &guid) == 0);
2917 2923
2918 2924 vd = NULL;
2919 2925 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2920 2926 if (guid ==
2921 2927 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2922 2928 vd = spa->spa_l2cache.sav_vdevs[j];
2923 2929 break;
2924 2930 }
2925 2931 }
2926 2932 ASSERT(vd != NULL);
2927 2933
2928 2934 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2929 2935 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2930 2936 == 0);
2931 2937 vdev_get_stats(vd, vs);
2932 2938 }
2933 2939 }
2934 2940 }
2935 2941
2936 2942 static void
2937 2943 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
2938 2944 {
2939 2945 nvlist_t *features;
2940 2946 zap_cursor_t zc;
2941 2947 zap_attribute_t za;
2942 2948
2943 2949 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2944 2950 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2945 2951
2946 2952 if (spa->spa_feat_for_read_obj != 0) {
2947 2953 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2948 2954 spa->spa_feat_for_read_obj);
2949 2955 zap_cursor_retrieve(&zc, &za) == 0;
2950 2956 zap_cursor_advance(&zc)) {
2951 2957 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
2952 2958 za.za_num_integers == 1);
2953 2959 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
2954 2960 za.za_first_integer));
2955 2961 }
2956 2962 zap_cursor_fini(&zc);
2957 2963 }
2958 2964
2959 2965 if (spa->spa_feat_for_write_obj != 0) {
2960 2966 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2961 2967 spa->spa_feat_for_write_obj);
2962 2968 zap_cursor_retrieve(&zc, &za) == 0;
2963 2969 zap_cursor_advance(&zc)) {
2964 2970 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
2965 2971 za.za_num_integers == 1);
2966 2972 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
2967 2973 za.za_first_integer));
2968 2974 }
2969 2975 zap_cursor_fini(&zc);
2970 2976 }
2971 2977
2972 2978 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
2973 2979 features) == 0);
2974 2980 nvlist_free(features);
2975 2981 }
2976 2982
2977 2983 int
2978 2984 spa_get_stats(const char *name, nvlist_t **config,
2979 2985 char *altroot, size_t buflen)
2980 2986 {
2981 2987 int error;
2982 2988 spa_t *spa;
2983 2989
2984 2990 *config = NULL;
2985 2991 error = spa_open_common(name, &spa, FTAG, NULL, config);
2986 2992
2987 2993 if (spa != NULL) {
2988 2994 /*
2989 2995 * This still leaves a window of inconsistency where the spares
2990 2996 * or l2cache devices could change and the config would be
2991 2997 * self-inconsistent.
2992 2998 */
2993 2999 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2994 3000
2995 3001 if (*config != NULL) {
2996 3002 uint64_t loadtimes[2];
2997 3003
2998 3004 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2999 3005 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3000 3006 VERIFY(nvlist_add_uint64_array(*config,
3001 3007 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3002 3008
3003 3009 VERIFY(nvlist_add_uint64(*config,
3004 3010 ZPOOL_CONFIG_ERRCOUNT,
3005 3011 spa_get_errlog_size(spa)) == 0);
3006 3012
3007 3013 if (spa_suspended(spa))
3008 3014 VERIFY(nvlist_add_uint64(*config,
3009 3015 ZPOOL_CONFIG_SUSPENDED,
3010 3016 spa->spa_failmode) == 0);
3011 3017
3012 3018 spa_add_spares(spa, *config);
3013 3019 spa_add_l2cache(spa, *config);
3014 3020 spa_add_feature_stats(spa, *config);
3015 3021 }
3016 3022 }
3017 3023
3018 3024 /*
3019 3025 * We want to get the alternate root even for faulted pools, so we cheat
3020 3026 * and call spa_lookup() directly.
3021 3027 */
3022 3028 if (altroot) {
3023 3029 if (spa == NULL) {
3024 3030 mutex_enter(&spa_namespace_lock);
3025 3031 spa = spa_lookup(name);
3026 3032 if (spa)
3027 3033 spa_altroot(spa, altroot, buflen);
3028 3034 else
3029 3035 altroot[0] = '\0';
3030 3036 spa = NULL;
3031 3037 mutex_exit(&spa_namespace_lock);
3032 3038 } else {
3033 3039 spa_altroot(spa, altroot, buflen);
3034 3040 }
3035 3041 }
3036 3042
3037 3043 if (spa != NULL) {
3038 3044 spa_config_exit(spa, SCL_CONFIG, FTAG);
3039 3045 spa_close(spa, FTAG);
3040 3046 }
3041 3047
3042 3048 return (error);
3043 3049 }
3044 3050
3045 3051 /*
3046 3052 * Validate that the auxiliary device array is well formed. We must have an
3047 3053 * array of nvlists, each which describes a valid leaf vdev. If this is an
3048 3054 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3049 3055 * specified, as long as they are well-formed.
3050 3056 */
3051 3057 static int
3052 3058 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3053 3059 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3054 3060 vdev_labeltype_t label)
3055 3061 {
3056 3062 nvlist_t **dev;
3057 3063 uint_t i, ndev;
3058 3064 vdev_t *vd;
3059 3065 int error;
3060 3066
3061 3067 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3062 3068
3063 3069 /*
3064 3070 * It's acceptable to have no devs specified.
3065 3071 */
3066 3072 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3067 3073 return (0);
3068 3074
3069 3075 if (ndev == 0)
3070 3076 return (EINVAL);
3071 3077
3072 3078 /*
3073 3079 * Make sure the pool is formatted with a version that supports this
3074 3080 * device type.
3075 3081 */
3076 3082 if (spa_version(spa) < version)
3077 3083 return (ENOTSUP);
3078 3084
3079 3085 /*
3080 3086 * Set the pending device list so we correctly handle device in-use
3081 3087 * checking.
3082 3088 */
3083 3089 sav->sav_pending = dev;
3084 3090 sav->sav_npending = ndev;
3085 3091
3086 3092 for (i = 0; i < ndev; i++) {
3087 3093 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3088 3094 mode)) != 0)
3089 3095 goto out;
3090 3096
3091 3097 if (!vd->vdev_ops->vdev_op_leaf) {
3092 3098 vdev_free(vd);
3093 3099 error = EINVAL;
3094 3100 goto out;
3095 3101 }
3096 3102
3097 3103 /*
3098 3104 * The L2ARC currently only supports disk devices in
3099 3105 * kernel context. For user-level testing, we allow it.
3100 3106 */
3101 3107 #ifdef _KERNEL
3102 3108 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3103 3109 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3104 3110 error = ENOTBLK;
3105 3111 vdev_free(vd);
3106 3112 goto out;
3107 3113 }
3108 3114 #endif
3109 3115 vd->vdev_top = vd;
3110 3116
3111 3117 if ((error = vdev_open(vd)) == 0 &&
3112 3118 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3113 3119 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3114 3120 vd->vdev_guid) == 0);
3115 3121 }
3116 3122
3117 3123 vdev_free(vd);
3118 3124
3119 3125 if (error &&
3120 3126 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3121 3127 goto out;
3122 3128 else
3123 3129 error = 0;
3124 3130 }
3125 3131
3126 3132 out:
3127 3133 sav->sav_pending = NULL;
3128 3134 sav->sav_npending = 0;
3129 3135 return (error);
3130 3136 }
3131 3137
3132 3138 static int
3133 3139 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3134 3140 {
3135 3141 int error;
3136 3142
3137 3143 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3138 3144
3139 3145 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3140 3146 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3141 3147 VDEV_LABEL_SPARE)) != 0) {
3142 3148 return (error);
3143 3149 }
3144 3150
3145 3151 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3146 3152 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3147 3153 VDEV_LABEL_L2CACHE));
3148 3154 }
3149 3155
3150 3156 static void
3151 3157 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3152 3158 const char *config)
3153 3159 {
3154 3160 int i;
3155 3161
3156 3162 if (sav->sav_config != NULL) {
3157 3163 nvlist_t **olddevs;
3158 3164 uint_t oldndevs;
3159 3165 nvlist_t **newdevs;
3160 3166
3161 3167 /*
3162 3168 * Generate new dev list by concatentating with the
3163 3169 * current dev list.
3164 3170 */
3165 3171 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3166 3172 &olddevs, &oldndevs) == 0);
3167 3173
3168 3174 newdevs = kmem_alloc(sizeof (void *) *
3169 3175 (ndevs + oldndevs), KM_SLEEP);
3170 3176 for (i = 0; i < oldndevs; i++)
3171 3177 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3172 3178 KM_SLEEP) == 0);
3173 3179 for (i = 0; i < ndevs; i++)
3174 3180 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3175 3181 KM_SLEEP) == 0);
3176 3182
3177 3183 VERIFY(nvlist_remove(sav->sav_config, config,
3178 3184 DATA_TYPE_NVLIST_ARRAY) == 0);
3179 3185
3180 3186 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3181 3187 config, newdevs, ndevs + oldndevs) == 0);
3182 3188 for (i = 0; i < oldndevs + ndevs; i++)
3183 3189 nvlist_free(newdevs[i]);
3184 3190 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3185 3191 } else {
3186 3192 /*
3187 3193 * Generate a new dev list.
3188 3194 */
3189 3195 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3190 3196 KM_SLEEP) == 0);
3191 3197 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3192 3198 devs, ndevs) == 0);
3193 3199 }
3194 3200 }
3195 3201
3196 3202 /*
3197 3203 * Stop and drop level 2 ARC devices
3198 3204 */
3199 3205 void
3200 3206 spa_l2cache_drop(spa_t *spa)
3201 3207 {
3202 3208 vdev_t *vd;
3203 3209 int i;
3204 3210 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3205 3211
3206 3212 for (i = 0; i < sav->sav_count; i++) {
3207 3213 uint64_t pool;
3208 3214
3209 3215 vd = sav->sav_vdevs[i];
3210 3216 ASSERT(vd != NULL);
3211 3217
3212 3218 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
↓ open down ↓ |
655 lines elided |
↑ open up ↑ |
3213 3219 pool != 0ULL && l2arc_vdev_present(vd))
3214 3220 l2arc_remove_vdev(vd);
3215 3221 }
3216 3222 }
3217 3223
3218 3224 /*
3219 3225 * Pool Creation
3220 3226 */
3221 3227 int
3222 3228 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3223 - const char *history_str, nvlist_t *zplprops)
3229 + nvlist_t *zplprops)
3224 3230 {
3225 3231 spa_t *spa;
3226 3232 char *altroot = NULL;
3227 3233 vdev_t *rvd;
3228 3234 dsl_pool_t *dp;
3229 3235 dmu_tx_t *tx;
3230 3236 int error = 0;
3231 3237 uint64_t txg = TXG_INITIAL;
3232 3238 nvlist_t **spares, **l2cache;
3233 3239 uint_t nspares, nl2cache;
3234 3240 uint64_t version, obj;
3235 3241 boolean_t has_features;
3236 3242
3237 3243 /*
3238 3244 * If this pool already exists, return failure.
3239 3245 */
3240 3246 mutex_enter(&spa_namespace_lock);
3241 3247 if (spa_lookup(pool) != NULL) {
3242 3248 mutex_exit(&spa_namespace_lock);
3243 3249 return (EEXIST);
3244 3250 }
3245 3251
3246 3252 /*
3247 3253 * Allocate a new spa_t structure.
3248 3254 */
3249 3255 (void) nvlist_lookup_string(props,
3250 3256 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3251 3257 spa = spa_add(pool, NULL, altroot);
3252 3258 spa_activate(spa, spa_mode_global);
3253 3259
3254 3260 if (props && (error = spa_prop_validate(spa, props))) {
3255 3261 spa_deactivate(spa);
3256 3262 spa_remove(spa);
3257 3263 mutex_exit(&spa_namespace_lock);
3258 3264 return (error);
3259 3265 }
3260 3266
3261 3267 has_features = B_FALSE;
3262 3268 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3263 3269 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3264 3270 if (zpool_prop_feature(nvpair_name(elem)))
3265 3271 has_features = B_TRUE;
3266 3272 }
3267 3273
3268 3274 if (has_features || nvlist_lookup_uint64(props,
3269 3275 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3270 3276 version = SPA_VERSION;
3271 3277 }
3272 3278 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3273 3279
3274 3280 spa->spa_first_txg = txg;
3275 3281 spa->spa_uberblock.ub_txg = txg - 1;
3276 3282 spa->spa_uberblock.ub_version = version;
3277 3283 spa->spa_ubsync = spa->spa_uberblock;
3278 3284
3279 3285 /*
3280 3286 * Create "The Godfather" zio to hold all async IOs
3281 3287 */
3282 3288 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3283 3289 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3284 3290
3285 3291 /*
3286 3292 * Create the root vdev.
3287 3293 */
3288 3294 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3289 3295
3290 3296 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3291 3297
3292 3298 ASSERT(error != 0 || rvd != NULL);
3293 3299 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3294 3300
3295 3301 if (error == 0 && !zfs_allocatable_devs(nvroot))
3296 3302 error = EINVAL;
3297 3303
3298 3304 if (error == 0 &&
3299 3305 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3300 3306 (error = spa_validate_aux(spa, nvroot, txg,
3301 3307 VDEV_ALLOC_ADD)) == 0) {
3302 3308 for (int c = 0; c < rvd->vdev_children; c++) {
3303 3309 vdev_metaslab_set_size(rvd->vdev_child[c]);
3304 3310 vdev_expand(rvd->vdev_child[c], txg);
3305 3311 }
3306 3312 }
3307 3313
3308 3314 spa_config_exit(spa, SCL_ALL, FTAG);
3309 3315
3310 3316 if (error != 0) {
3311 3317 spa_unload(spa);
3312 3318 spa_deactivate(spa);
3313 3319 spa_remove(spa);
3314 3320 mutex_exit(&spa_namespace_lock);
3315 3321 return (error);
3316 3322 }
3317 3323
3318 3324 /*
3319 3325 * Get the list of spares, if specified.
3320 3326 */
3321 3327 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3322 3328 &spares, &nspares) == 0) {
3323 3329 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3324 3330 KM_SLEEP) == 0);
3325 3331 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3326 3332 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3327 3333 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3328 3334 spa_load_spares(spa);
3329 3335 spa_config_exit(spa, SCL_ALL, FTAG);
3330 3336 spa->spa_spares.sav_sync = B_TRUE;
3331 3337 }
3332 3338
3333 3339 /*
3334 3340 * Get the list of level 2 cache devices, if specified.
3335 3341 */
3336 3342 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3337 3343 &l2cache, &nl2cache) == 0) {
3338 3344 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3339 3345 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3340 3346 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3341 3347 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3342 3348 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3343 3349 spa_load_l2cache(spa);
3344 3350 spa_config_exit(spa, SCL_ALL, FTAG);
3345 3351 spa->spa_l2cache.sav_sync = B_TRUE;
3346 3352 }
3347 3353
3348 3354 spa->spa_is_initializing = B_TRUE;
3349 3355 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3350 3356 spa->spa_meta_objset = dp->dp_meta_objset;
3351 3357 spa->spa_is_initializing = B_FALSE;
3352 3358
3353 3359 /*
3354 3360 * Create DDTs (dedup tables).
3355 3361 */
3356 3362 ddt_create(spa);
3357 3363
3358 3364 spa_update_dspace(spa);
3359 3365
3360 3366 tx = dmu_tx_create_assigned(dp, txg);
3361 3367
3362 3368 /*
3363 3369 * Create the pool config object.
3364 3370 */
3365 3371 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3366 3372 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3367 3373 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3368 3374
3369 3375 if (zap_add(spa->spa_meta_objset,
3370 3376 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3371 3377 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3372 3378 cmn_err(CE_PANIC, "failed to add pool config");
3373 3379 }
3374 3380
3375 3381 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3376 3382 spa_feature_create_zap_objects(spa, tx);
3377 3383
3378 3384 if (zap_add(spa->spa_meta_objset,
3379 3385 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3380 3386 sizeof (uint64_t), 1, &version, tx) != 0) {
3381 3387 cmn_err(CE_PANIC, "failed to add pool version");
3382 3388 }
3383 3389
3384 3390 /* Newly created pools with the right version are always deflated. */
3385 3391 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3386 3392 spa->spa_deflate = TRUE;
3387 3393 if (zap_add(spa->spa_meta_objset,
3388 3394 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3389 3395 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3390 3396 cmn_err(CE_PANIC, "failed to add deflate");
3391 3397 }
3392 3398 }
3393 3399
3394 3400 /*
3395 3401 * Create the deferred-free bpobj. Turn off compression
3396 3402 * because sync-to-convergence takes longer if the blocksize
3397 3403 * keeps changing.
3398 3404 */
3399 3405 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3400 3406 dmu_object_set_compress(spa->spa_meta_objset, obj,
3401 3407 ZIO_COMPRESS_OFF, tx);
3402 3408 if (zap_add(spa->spa_meta_objset,
3403 3409 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3404 3410 sizeof (uint64_t), 1, &obj, tx) != 0) {
3405 3411 cmn_err(CE_PANIC, "failed to add bpobj");
3406 3412 }
3407 3413 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3408 3414 spa->spa_meta_objset, obj));
3409 3415
3410 3416 /*
3411 3417 * Create the pool's history object.
3412 3418 */
3413 3419 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3414 3420 spa_history_create_obj(spa, tx);
3415 3421
3416 3422 /*
3417 3423 * Set pool properties.
3418 3424 */
3419 3425 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3420 3426 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3421 3427 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3422 3428 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3423 3429
3424 3430 if (props != NULL) {
3425 3431 spa_configfile_set(spa, props, B_FALSE);
3426 3432 spa_sync_props(spa, props, tx);
3427 3433 }
3428 3434
3429 3435 dmu_tx_commit(tx);
3430 3436
3431 3437 spa->spa_sync_on = B_TRUE;
↓ open down ↓ |
198 lines elided |
↑ open up ↑ |
3432 3438 txg_sync_start(spa->spa_dsl_pool);
3433 3439
3434 3440 /*
3435 3441 * We explicitly wait for the first transaction to complete so that our
3436 3442 * bean counters are appropriately updated.
3437 3443 */
3438 3444 txg_wait_synced(spa->spa_dsl_pool, txg);
3439 3445
3440 3446 spa_config_sync(spa, B_FALSE, B_TRUE);
3441 3447
3442 - if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3443 - (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3444 - spa_history_log_version(spa, LOG_POOL_CREATE);
3448 + spa_history_log_version(spa, "create");
3445 3449
3446 3450 spa->spa_minref = refcount_count(&spa->spa_refcount);
3447 3451
3448 3452 mutex_exit(&spa_namespace_lock);
3449 3453
3450 3454 return (0);
3451 3455 }
3452 3456
3453 3457 #ifdef _KERNEL
3454 3458 /*
3455 3459 * Get the root pool information from the root disk, then import the root pool
3456 3460 * during the system boot up time.
3457 3461 */
3458 3462 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3459 3463
3460 3464 static nvlist_t *
3461 3465 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3462 3466 {
3463 3467 nvlist_t *config;
3464 3468 nvlist_t *nvtop, *nvroot;
3465 3469 uint64_t pgid;
3466 3470
3467 3471 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3468 3472 return (NULL);
3469 3473
3470 3474 /*
3471 3475 * Add this top-level vdev to the child array.
3472 3476 */
3473 3477 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3474 3478 &nvtop) == 0);
3475 3479 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3476 3480 &pgid) == 0);
3477 3481 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3478 3482
3479 3483 /*
3480 3484 * Put this pool's top-level vdevs into a root vdev.
3481 3485 */
3482 3486 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3483 3487 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3484 3488 VDEV_TYPE_ROOT) == 0);
3485 3489 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3486 3490 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3487 3491 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3488 3492 &nvtop, 1) == 0);
3489 3493
3490 3494 /*
3491 3495 * Replace the existing vdev_tree with the new root vdev in
3492 3496 * this pool's configuration (remove the old, add the new).
3493 3497 */
3494 3498 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3495 3499 nvlist_free(nvroot);
3496 3500 return (config);
3497 3501 }
3498 3502
3499 3503 /*
3500 3504 * Walk the vdev tree and see if we can find a device with "better"
3501 3505 * configuration. A configuration is "better" if the label on that
3502 3506 * device has a more recent txg.
3503 3507 */
3504 3508 static void
3505 3509 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3506 3510 {
3507 3511 for (int c = 0; c < vd->vdev_children; c++)
3508 3512 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3509 3513
3510 3514 if (vd->vdev_ops->vdev_op_leaf) {
3511 3515 nvlist_t *label;
3512 3516 uint64_t label_txg;
3513 3517
3514 3518 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3515 3519 &label) != 0)
3516 3520 return;
3517 3521
3518 3522 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3519 3523 &label_txg) == 0);
3520 3524
3521 3525 /*
3522 3526 * Do we have a better boot device?
3523 3527 */
3524 3528 if (label_txg > *txg) {
3525 3529 *txg = label_txg;
3526 3530 *avd = vd;
3527 3531 }
3528 3532 nvlist_free(label);
3529 3533 }
3530 3534 }
3531 3535
3532 3536 /*
3533 3537 * Import a root pool.
3534 3538 *
3535 3539 * For x86. devpath_list will consist of devid and/or physpath name of
3536 3540 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3537 3541 * The GRUB "findroot" command will return the vdev we should boot.
3538 3542 *
3539 3543 * For Sparc, devpath_list consists the physpath name of the booting device
3540 3544 * no matter the rootpool is a single device pool or a mirrored pool.
3541 3545 * e.g.
3542 3546 * "/pci@1f,0/ide@d/disk@0,0:a"
3543 3547 */
3544 3548 int
3545 3549 spa_import_rootpool(char *devpath, char *devid)
3546 3550 {
3547 3551 spa_t *spa;
3548 3552 vdev_t *rvd, *bvd, *avd = NULL;
3549 3553 nvlist_t *config, *nvtop;
3550 3554 uint64_t guid, txg;
3551 3555 char *pname;
3552 3556 int error;
3553 3557
3554 3558 /*
3555 3559 * Read the label from the boot device and generate a configuration.
3556 3560 */
3557 3561 config = spa_generate_rootconf(devpath, devid, &guid);
3558 3562 #if defined(_OBP) && defined(_KERNEL)
3559 3563 if (config == NULL) {
3560 3564 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3561 3565 /* iscsi boot */
3562 3566 get_iscsi_bootpath_phy(devpath);
3563 3567 config = spa_generate_rootconf(devpath, devid, &guid);
3564 3568 }
3565 3569 }
3566 3570 #endif
3567 3571 if (config == NULL) {
3568 3572 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3569 3573 devpath);
3570 3574 return (EIO);
3571 3575 }
3572 3576
3573 3577 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3574 3578 &pname) == 0);
3575 3579 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3576 3580
3577 3581 mutex_enter(&spa_namespace_lock);
3578 3582 if ((spa = spa_lookup(pname)) != NULL) {
3579 3583 /*
3580 3584 * Remove the existing root pool from the namespace so that we
3581 3585 * can replace it with the correct config we just read in.
3582 3586 */
3583 3587 spa_remove(spa);
3584 3588 }
3585 3589
3586 3590 spa = spa_add(pname, config, NULL);
3587 3591 spa->spa_is_root = B_TRUE;
3588 3592 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3589 3593
3590 3594 /*
3591 3595 * Build up a vdev tree based on the boot device's label config.
3592 3596 */
3593 3597 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3594 3598 &nvtop) == 0);
3595 3599 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3596 3600 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3597 3601 VDEV_ALLOC_ROOTPOOL);
3598 3602 spa_config_exit(spa, SCL_ALL, FTAG);
3599 3603 if (error) {
3600 3604 mutex_exit(&spa_namespace_lock);
3601 3605 nvlist_free(config);
3602 3606 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3603 3607 pname);
3604 3608 return (error);
3605 3609 }
3606 3610
3607 3611 /*
3608 3612 * Get the boot vdev.
3609 3613 */
3610 3614 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3611 3615 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3612 3616 (u_longlong_t)guid);
3613 3617 error = ENOENT;
3614 3618 goto out;
3615 3619 }
3616 3620
3617 3621 /*
3618 3622 * Determine if there is a better boot device.
3619 3623 */
3620 3624 avd = bvd;
3621 3625 spa_alt_rootvdev(rvd, &avd, &txg);
3622 3626 if (avd != bvd) {
3623 3627 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3624 3628 "try booting from '%s'", avd->vdev_path);
3625 3629 error = EINVAL;
3626 3630 goto out;
3627 3631 }
3628 3632
3629 3633 /*
3630 3634 * If the boot device is part of a spare vdev then ensure that
3631 3635 * we're booting off the active spare.
3632 3636 */
3633 3637 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
↓ open down ↓ |
179 lines elided |
↑ open up ↑ |
3634 3638 !bvd->vdev_isspare) {
3635 3639 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3636 3640 "try booting from '%s'",
3637 3641 bvd->vdev_parent->
3638 3642 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3639 3643 error = EINVAL;
3640 3644 goto out;
3641 3645 }
3642 3646
3643 3647 error = 0;
3644 - spa_history_log_version(spa, LOG_POOL_IMPORT);
3645 3648 out:
3646 3649 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3647 3650 vdev_free(rvd);
3648 3651 spa_config_exit(spa, SCL_ALL, FTAG);
3649 3652 mutex_exit(&spa_namespace_lock);
3650 3653
3651 3654 nvlist_free(config);
3652 3655 return (error);
3653 3656 }
3654 3657
3655 3658 #endif
3656 3659
3657 3660 /*
3658 3661 * Import a non-root pool into the system.
3659 3662 */
3660 3663 int
3661 3664 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3662 3665 {
3663 3666 spa_t *spa;
3664 3667 char *altroot = NULL;
3665 3668 spa_load_state_t state = SPA_LOAD_IMPORT;
3666 3669 zpool_rewind_policy_t policy;
3667 3670 uint64_t mode = spa_mode_global;
3668 3671 uint64_t readonly = B_FALSE;
3669 3672 int error;
3670 3673 nvlist_t *nvroot;
3671 3674 nvlist_t **spares, **l2cache;
3672 3675 uint_t nspares, nl2cache;
3673 3676
3674 3677 /*
3675 3678 * If a pool with this name exists, return failure.
3676 3679 */
3677 3680 mutex_enter(&spa_namespace_lock);
3678 3681 if (spa_lookup(pool) != NULL) {
3679 3682 mutex_exit(&spa_namespace_lock);
3680 3683 return (EEXIST);
3681 3684 }
3682 3685
3683 3686 /*
3684 3687 * Create and initialize the spa structure.
3685 3688 */
3686 3689 (void) nvlist_lookup_string(props,
3687 3690 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3688 3691 (void) nvlist_lookup_uint64(props,
3689 3692 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3690 3693 if (readonly)
3691 3694 mode = FREAD;
3692 3695 spa = spa_add(pool, config, altroot);
3693 3696 spa->spa_import_flags = flags;
3694 3697
3695 3698 /*
↓ open down ↓ |
41 lines elided |
↑ open up ↑ |
3696 3699 * Verbatim import - Take a pool and insert it into the namespace
3697 3700 * as if it had been loaded at boot.
3698 3701 */
3699 3702 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3700 3703 if (props != NULL)
3701 3704 spa_configfile_set(spa, props, B_FALSE);
3702 3705
3703 3706 spa_config_sync(spa, B_FALSE, B_TRUE);
3704 3707
3705 3708 mutex_exit(&spa_namespace_lock);
3706 - spa_history_log_version(spa, LOG_POOL_IMPORT);
3709 + spa_history_log_version(spa, "import");
3707 3710
3708 3711 return (0);
3709 3712 }
3710 3713
3711 3714 spa_activate(spa, mode);
3712 3715
3713 3716 /*
3714 3717 * Don't start async tasks until we know everything is healthy.
3715 3718 */
3716 3719 spa_async_suspend(spa);
3717 3720
3718 3721 zpool_get_rewind_policy(config, &policy);
3719 3722 if (policy.zrp_request & ZPOOL_DO_REWIND)
3720 3723 state = SPA_LOAD_RECOVER;
3721 3724
3722 3725 /*
3723 3726 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3724 3727 * because the user-supplied config is actually the one to trust when
3725 3728 * doing an import.
3726 3729 */
3727 3730 if (state != SPA_LOAD_RECOVER)
3728 3731 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3729 3732
3730 3733 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3731 3734 policy.zrp_request);
3732 3735
3733 3736 /*
3734 3737 * Propagate anything learned while loading the pool and pass it
3735 3738 * back to caller (i.e. rewind info, missing devices, etc).
3736 3739 */
3737 3740 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3738 3741 spa->spa_load_info) == 0);
3739 3742
3740 3743 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3741 3744 /*
3742 3745 * Toss any existing sparelist, as it doesn't have any validity
3743 3746 * anymore, and conflicts with spa_has_spare().
3744 3747 */
3745 3748 if (spa->spa_spares.sav_config) {
3746 3749 nvlist_free(spa->spa_spares.sav_config);
3747 3750 spa->spa_spares.sav_config = NULL;
3748 3751 spa_load_spares(spa);
3749 3752 }
3750 3753 if (spa->spa_l2cache.sav_config) {
3751 3754 nvlist_free(spa->spa_l2cache.sav_config);
3752 3755 spa->spa_l2cache.sav_config = NULL;
3753 3756 spa_load_l2cache(spa);
3754 3757 }
3755 3758
3756 3759 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3757 3760 &nvroot) == 0);
3758 3761 if (error == 0)
3759 3762 error = spa_validate_aux(spa, nvroot, -1ULL,
3760 3763 VDEV_ALLOC_SPARE);
3761 3764 if (error == 0)
3762 3765 error = spa_validate_aux(spa, nvroot, -1ULL,
3763 3766 VDEV_ALLOC_L2CACHE);
3764 3767 spa_config_exit(spa, SCL_ALL, FTAG);
3765 3768
3766 3769 if (props != NULL)
3767 3770 spa_configfile_set(spa, props, B_FALSE);
3768 3771
3769 3772 if (error != 0 || (props && spa_writeable(spa) &&
3770 3773 (error = spa_prop_set(spa, props)))) {
3771 3774 spa_unload(spa);
3772 3775 spa_deactivate(spa);
3773 3776 spa_remove(spa);
3774 3777 mutex_exit(&spa_namespace_lock);
3775 3778 return (error);
3776 3779 }
3777 3780
3778 3781 spa_async_resume(spa);
3779 3782
3780 3783 /*
3781 3784 * Override any spares and level 2 cache devices as specified by
3782 3785 * the user, as these may have correct device names/devids, etc.
3783 3786 */
3784 3787 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3785 3788 &spares, &nspares) == 0) {
3786 3789 if (spa->spa_spares.sav_config)
3787 3790 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3788 3791 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3789 3792 else
3790 3793 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3791 3794 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3792 3795 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3793 3796 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3794 3797 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3795 3798 spa_load_spares(spa);
3796 3799 spa_config_exit(spa, SCL_ALL, FTAG);
3797 3800 spa->spa_spares.sav_sync = B_TRUE;
3798 3801 }
3799 3802 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3800 3803 &l2cache, &nl2cache) == 0) {
3801 3804 if (spa->spa_l2cache.sav_config)
3802 3805 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3803 3806 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3804 3807 else
3805 3808 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3806 3809 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3807 3810 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3808 3811 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3809 3812 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3810 3813 spa_load_l2cache(spa);
3811 3814 spa_config_exit(spa, SCL_ALL, FTAG);
3812 3815 spa->spa_l2cache.sav_sync = B_TRUE;
3813 3816 }
3814 3817
3815 3818 /*
3816 3819 * Check for any removed devices.
3817 3820 */
3818 3821 if (spa->spa_autoreplace) {
3819 3822 spa_aux_check_removed(&spa->spa_spares);
3820 3823 spa_aux_check_removed(&spa->spa_l2cache);
3821 3824 }
3822 3825
3823 3826 if (spa_writeable(spa)) {
3824 3827 /*
3825 3828 * Update the config cache to include the newly-imported pool.
3826 3829 */
↓ open down ↓ |
110 lines elided |
↑ open up ↑ |
3827 3830 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3828 3831 }
3829 3832
3830 3833 /*
3831 3834 * It's possible that the pool was expanded while it was exported.
3832 3835 * We kick off an async task to handle this for us.
3833 3836 */
3834 3837 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3835 3838
3836 3839 mutex_exit(&spa_namespace_lock);
3837 - spa_history_log_version(spa, LOG_POOL_IMPORT);
3840 + spa_history_log_version(spa, "import");
3838 3841
3839 3842 return (0);
3840 3843 }
3841 3844
3842 3845 nvlist_t *
3843 3846 spa_tryimport(nvlist_t *tryconfig)
3844 3847 {
3845 3848 nvlist_t *config = NULL;
3846 3849 char *poolname;
3847 3850 spa_t *spa;
3848 3851 uint64_t state;
3849 3852 int error;
3850 3853
3851 3854 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3852 3855 return (NULL);
3853 3856
3854 3857 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3855 3858 return (NULL);
3856 3859
3857 3860 /*
3858 3861 * Create and initialize the spa structure.
3859 3862 */
3860 3863 mutex_enter(&spa_namespace_lock);
3861 3864 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3862 3865 spa_activate(spa, FREAD);
3863 3866
3864 3867 /*
3865 3868 * Pass off the heavy lifting to spa_load().
3866 3869 * Pass TRUE for mosconfig because the user-supplied config
3867 3870 * is actually the one to trust when doing an import.
3868 3871 */
3869 3872 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3870 3873
3871 3874 /*
3872 3875 * If 'tryconfig' was at least parsable, return the current config.
3873 3876 */
3874 3877 if (spa->spa_root_vdev != NULL) {
3875 3878 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3876 3879 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3877 3880 poolname) == 0);
3878 3881 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3879 3882 state) == 0);
3880 3883 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3881 3884 spa->spa_uberblock.ub_timestamp) == 0);
3882 3885 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3883 3886 spa->spa_load_info) == 0);
3884 3887
3885 3888 /*
3886 3889 * If the bootfs property exists on this pool then we
3887 3890 * copy it out so that external consumers can tell which
3888 3891 * pools are bootable.
3889 3892 */
3890 3893 if ((!error || error == EEXIST) && spa->spa_bootfs) {
3891 3894 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3892 3895
3893 3896 /*
3894 3897 * We have to play games with the name since the
3895 3898 * pool was opened as TRYIMPORT_NAME.
3896 3899 */
3897 3900 if (dsl_dsobj_to_dsname(spa_name(spa),
3898 3901 spa->spa_bootfs, tmpname) == 0) {
3899 3902 char *cp;
3900 3903 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3901 3904
3902 3905 cp = strchr(tmpname, '/');
3903 3906 if (cp == NULL) {
3904 3907 (void) strlcpy(dsname, tmpname,
3905 3908 MAXPATHLEN);
3906 3909 } else {
3907 3910 (void) snprintf(dsname, MAXPATHLEN,
3908 3911 "%s/%s", poolname, ++cp);
3909 3912 }
3910 3913 VERIFY(nvlist_add_string(config,
3911 3914 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3912 3915 kmem_free(dsname, MAXPATHLEN);
3913 3916 }
3914 3917 kmem_free(tmpname, MAXPATHLEN);
3915 3918 }
3916 3919
3917 3920 /*
3918 3921 * Add the list of hot spares and level 2 cache devices.
3919 3922 */
3920 3923 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3921 3924 spa_add_spares(spa, config);
3922 3925 spa_add_l2cache(spa, config);
3923 3926 spa_config_exit(spa, SCL_CONFIG, FTAG);
3924 3927 }
3925 3928
3926 3929 spa_unload(spa);
3927 3930 spa_deactivate(spa);
3928 3931 spa_remove(spa);
3929 3932 mutex_exit(&spa_namespace_lock);
3930 3933
3931 3934 return (config);
3932 3935 }
3933 3936
3934 3937 /*
3935 3938 * Pool export/destroy
3936 3939 *
3937 3940 * The act of destroying or exporting a pool is very simple. We make sure there
3938 3941 * is no more pending I/O and any references to the pool are gone. Then, we
3939 3942 * update the pool state and sync all the labels to disk, removing the
3940 3943 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3941 3944 * we don't sync the labels or remove the configuration cache.
3942 3945 */
3943 3946 static int
3944 3947 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3945 3948 boolean_t force, boolean_t hardforce)
3946 3949 {
3947 3950 spa_t *spa;
3948 3951
3949 3952 if (oldconfig)
3950 3953 *oldconfig = NULL;
3951 3954
3952 3955 if (!(spa_mode_global & FWRITE))
3953 3956 return (EROFS);
3954 3957
3955 3958 mutex_enter(&spa_namespace_lock);
3956 3959 if ((spa = spa_lookup(pool)) == NULL) {
3957 3960 mutex_exit(&spa_namespace_lock);
3958 3961 return (ENOENT);
3959 3962 }
3960 3963
3961 3964 /*
3962 3965 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3963 3966 * reacquire the namespace lock, and see if we can export.
3964 3967 */
3965 3968 spa_open_ref(spa, FTAG);
3966 3969 mutex_exit(&spa_namespace_lock);
3967 3970 spa_async_suspend(spa);
3968 3971 mutex_enter(&spa_namespace_lock);
3969 3972 spa_close(spa, FTAG);
3970 3973
3971 3974 /*
3972 3975 * The pool will be in core if it's openable,
3973 3976 * in which case we can modify its state.
3974 3977 */
3975 3978 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3976 3979 /*
3977 3980 * Objsets may be open only because they're dirty, so we
3978 3981 * have to force it to sync before checking spa_refcnt.
3979 3982 */
3980 3983 txg_wait_synced(spa->spa_dsl_pool, 0);
3981 3984
3982 3985 /*
3983 3986 * A pool cannot be exported or destroyed if there are active
3984 3987 * references. If we are resetting a pool, allow references by
3985 3988 * fault injection handlers.
3986 3989 */
3987 3990 if (!spa_refcount_zero(spa) ||
3988 3991 (spa->spa_inject_ref != 0 &&
3989 3992 new_state != POOL_STATE_UNINITIALIZED)) {
3990 3993 spa_async_resume(spa);
3991 3994 mutex_exit(&spa_namespace_lock);
3992 3995 return (EBUSY);
3993 3996 }
3994 3997
3995 3998 /*
3996 3999 * A pool cannot be exported if it has an active shared spare.
3997 4000 * This is to prevent other pools stealing the active spare
3998 4001 * from an exported pool. At user's own will, such pool can
3999 4002 * be forcedly exported.
4000 4003 */
4001 4004 if (!force && new_state == POOL_STATE_EXPORTED &&
4002 4005 spa_has_active_shared_spare(spa)) {
4003 4006 spa_async_resume(spa);
4004 4007 mutex_exit(&spa_namespace_lock);
4005 4008 return (EXDEV);
4006 4009 }
4007 4010
4008 4011 /*
4009 4012 * We want this to be reflected on every label,
4010 4013 * so mark them all dirty. spa_unload() will do the
4011 4014 * final sync that pushes these changes out.
4012 4015 */
4013 4016 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4014 4017 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4015 4018 spa->spa_state = new_state;
4016 4019 spa->spa_final_txg = spa_last_synced_txg(spa) +
4017 4020 TXG_DEFER_SIZE + 1;
4018 4021 vdev_config_dirty(spa->spa_root_vdev);
4019 4022 spa_config_exit(spa, SCL_ALL, FTAG);
4020 4023 }
4021 4024 }
4022 4025
4023 4026 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4024 4027
4025 4028 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4026 4029 spa_unload(spa);
4027 4030 spa_deactivate(spa);
4028 4031 }
4029 4032
4030 4033 if (oldconfig && spa->spa_config)
4031 4034 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4032 4035
4033 4036 if (new_state != POOL_STATE_UNINITIALIZED) {
4034 4037 if (!hardforce)
4035 4038 spa_config_sync(spa, B_TRUE, B_TRUE);
4036 4039 spa_remove(spa);
4037 4040 }
4038 4041 mutex_exit(&spa_namespace_lock);
4039 4042
4040 4043 return (0);
4041 4044 }
4042 4045
4043 4046 /*
4044 4047 * Destroy a storage pool.
4045 4048 */
4046 4049 int
4047 4050 spa_destroy(char *pool)
4048 4051 {
4049 4052 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4050 4053 B_FALSE, B_FALSE));
4051 4054 }
4052 4055
4053 4056 /*
4054 4057 * Export a storage pool.
4055 4058 */
4056 4059 int
4057 4060 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4058 4061 boolean_t hardforce)
4059 4062 {
4060 4063 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4061 4064 force, hardforce));
4062 4065 }
4063 4066
4064 4067 /*
4065 4068 * Similar to spa_export(), this unloads the spa_t without actually removing it
4066 4069 * from the namespace in any way.
4067 4070 */
4068 4071 int
4069 4072 spa_reset(char *pool)
4070 4073 {
4071 4074 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4072 4075 B_FALSE, B_FALSE));
4073 4076 }
4074 4077
4075 4078 /*
4076 4079 * ==========================================================================
4077 4080 * Device manipulation
4078 4081 * ==========================================================================
4079 4082 */
4080 4083
4081 4084 /*
4082 4085 * Add a device to a storage pool.
4083 4086 */
4084 4087 int
4085 4088 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4086 4089 {
4087 4090 uint64_t txg, id;
4088 4091 int error;
4089 4092 vdev_t *rvd = spa->spa_root_vdev;
4090 4093 vdev_t *vd, *tvd;
4091 4094 nvlist_t **spares, **l2cache;
4092 4095 uint_t nspares, nl2cache;
4093 4096
4094 4097 ASSERT(spa_writeable(spa));
4095 4098
4096 4099 txg = spa_vdev_enter(spa);
4097 4100
4098 4101 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4099 4102 VDEV_ALLOC_ADD)) != 0)
4100 4103 return (spa_vdev_exit(spa, NULL, txg, error));
4101 4104
4102 4105 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4103 4106
4104 4107 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4105 4108 &nspares) != 0)
4106 4109 nspares = 0;
4107 4110
4108 4111 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4109 4112 &nl2cache) != 0)
4110 4113 nl2cache = 0;
4111 4114
4112 4115 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4113 4116 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4114 4117
4115 4118 if (vd->vdev_children != 0 &&
4116 4119 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4117 4120 return (spa_vdev_exit(spa, vd, txg, error));
4118 4121
4119 4122 /*
4120 4123 * We must validate the spares and l2cache devices after checking the
4121 4124 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4122 4125 */
4123 4126 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4124 4127 return (spa_vdev_exit(spa, vd, txg, error));
4125 4128
4126 4129 /*
4127 4130 * Transfer each new top-level vdev from vd to rvd.
4128 4131 */
4129 4132 for (int c = 0; c < vd->vdev_children; c++) {
4130 4133
4131 4134 /*
4132 4135 * Set the vdev id to the first hole, if one exists.
4133 4136 */
4134 4137 for (id = 0; id < rvd->vdev_children; id++) {
4135 4138 if (rvd->vdev_child[id]->vdev_ishole) {
4136 4139 vdev_free(rvd->vdev_child[id]);
4137 4140 break;
4138 4141 }
4139 4142 }
4140 4143 tvd = vd->vdev_child[c];
4141 4144 vdev_remove_child(vd, tvd);
4142 4145 tvd->vdev_id = id;
4143 4146 vdev_add_child(rvd, tvd);
4144 4147 vdev_config_dirty(tvd);
4145 4148 }
4146 4149
4147 4150 if (nspares != 0) {
4148 4151 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4149 4152 ZPOOL_CONFIG_SPARES);
4150 4153 spa_load_spares(spa);
4151 4154 spa->spa_spares.sav_sync = B_TRUE;
4152 4155 }
4153 4156
4154 4157 if (nl2cache != 0) {
4155 4158 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4156 4159 ZPOOL_CONFIG_L2CACHE);
4157 4160 spa_load_l2cache(spa);
4158 4161 spa->spa_l2cache.sav_sync = B_TRUE;
4159 4162 }
4160 4163
4161 4164 /*
4162 4165 * We have to be careful when adding new vdevs to an existing pool.
4163 4166 * If other threads start allocating from these vdevs before we
4164 4167 * sync the config cache, and we lose power, then upon reboot we may
4165 4168 * fail to open the pool because there are DVAs that the config cache
4166 4169 * can't translate. Therefore, we first add the vdevs without
4167 4170 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4168 4171 * and then let spa_config_update() initialize the new metaslabs.
4169 4172 *
4170 4173 * spa_load() checks for added-but-not-initialized vdevs, so that
4171 4174 * if we lose power at any point in this sequence, the remaining
4172 4175 * steps will be completed the next time we load the pool.
4173 4176 */
4174 4177 (void) spa_vdev_exit(spa, vd, txg, 0);
4175 4178
4176 4179 mutex_enter(&spa_namespace_lock);
4177 4180 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4178 4181 mutex_exit(&spa_namespace_lock);
4179 4182
4180 4183 return (0);
4181 4184 }
4182 4185
4183 4186 /*
4184 4187 * Attach a device to a mirror. The arguments are the path to any device
4185 4188 * in the mirror, and the nvroot for the new device. If the path specifies
4186 4189 * a device that is not mirrored, we automatically insert the mirror vdev.
4187 4190 *
4188 4191 * If 'replacing' is specified, the new device is intended to replace the
4189 4192 * existing device; in this case the two devices are made into their own
4190 4193 * mirror using the 'replacing' vdev, which is functionally identical to
4191 4194 * the mirror vdev (it actually reuses all the same ops) but has a few
4192 4195 * extra rules: you can't attach to it after it's been created, and upon
4193 4196 * completion of resilvering, the first disk (the one being replaced)
4194 4197 * is automatically detached.
4195 4198 */
4196 4199 int
4197 4200 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4198 4201 {
4199 4202 uint64_t txg, dtl_max_txg;
4200 4203 vdev_t *rvd = spa->spa_root_vdev;
4201 4204 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4202 4205 vdev_ops_t *pvops;
4203 4206 char *oldvdpath, *newvdpath;
4204 4207 int newvd_isspare;
4205 4208 int error;
4206 4209
4207 4210 ASSERT(spa_writeable(spa));
4208 4211
4209 4212 txg = spa_vdev_enter(spa);
4210 4213
4211 4214 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4212 4215
4213 4216 if (oldvd == NULL)
4214 4217 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4215 4218
4216 4219 if (!oldvd->vdev_ops->vdev_op_leaf)
4217 4220 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4218 4221
4219 4222 pvd = oldvd->vdev_parent;
4220 4223
4221 4224 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4222 4225 VDEV_ALLOC_ATTACH)) != 0)
4223 4226 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4224 4227
4225 4228 if (newrootvd->vdev_children != 1)
4226 4229 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4227 4230
4228 4231 newvd = newrootvd->vdev_child[0];
4229 4232
4230 4233 if (!newvd->vdev_ops->vdev_op_leaf)
4231 4234 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4232 4235
4233 4236 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4234 4237 return (spa_vdev_exit(spa, newrootvd, txg, error));
4235 4238
4236 4239 /*
4237 4240 * Spares can't replace logs
4238 4241 */
4239 4242 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4240 4243 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4241 4244
4242 4245 if (!replacing) {
4243 4246 /*
4244 4247 * For attach, the only allowable parent is a mirror or the root
4245 4248 * vdev.
4246 4249 */
4247 4250 if (pvd->vdev_ops != &vdev_mirror_ops &&
4248 4251 pvd->vdev_ops != &vdev_root_ops)
4249 4252 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4250 4253
4251 4254 pvops = &vdev_mirror_ops;
4252 4255 } else {
4253 4256 /*
4254 4257 * Active hot spares can only be replaced by inactive hot
4255 4258 * spares.
4256 4259 */
4257 4260 if (pvd->vdev_ops == &vdev_spare_ops &&
4258 4261 oldvd->vdev_isspare &&
4259 4262 !spa_has_spare(spa, newvd->vdev_guid))
4260 4263 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4261 4264
4262 4265 /*
4263 4266 * If the source is a hot spare, and the parent isn't already a
4264 4267 * spare, then we want to create a new hot spare. Otherwise, we
4265 4268 * want to create a replacing vdev. The user is not allowed to
4266 4269 * attach to a spared vdev child unless the 'isspare' state is
4267 4270 * the same (spare replaces spare, non-spare replaces
4268 4271 * non-spare).
4269 4272 */
4270 4273 if (pvd->vdev_ops == &vdev_replacing_ops &&
4271 4274 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4272 4275 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4273 4276 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4274 4277 newvd->vdev_isspare != oldvd->vdev_isspare) {
4275 4278 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4276 4279 }
4277 4280
4278 4281 if (newvd->vdev_isspare)
4279 4282 pvops = &vdev_spare_ops;
4280 4283 else
4281 4284 pvops = &vdev_replacing_ops;
4282 4285 }
4283 4286
4284 4287 /*
4285 4288 * Make sure the new device is big enough.
4286 4289 */
4287 4290 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4288 4291 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4289 4292
4290 4293 /*
4291 4294 * The new device cannot have a higher alignment requirement
4292 4295 * than the top-level vdev.
4293 4296 */
4294 4297 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4295 4298 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4296 4299
4297 4300 /*
4298 4301 * If this is an in-place replacement, update oldvd's path and devid
4299 4302 * to make it distinguishable from newvd, and unopenable from now on.
4300 4303 */
4301 4304 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4302 4305 spa_strfree(oldvd->vdev_path);
4303 4306 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4304 4307 KM_SLEEP);
4305 4308 (void) sprintf(oldvd->vdev_path, "%s/%s",
4306 4309 newvd->vdev_path, "old");
4307 4310 if (oldvd->vdev_devid != NULL) {
4308 4311 spa_strfree(oldvd->vdev_devid);
4309 4312 oldvd->vdev_devid = NULL;
4310 4313 }
4311 4314 }
4312 4315
4313 4316 /* mark the device being resilvered */
4314 4317 newvd->vdev_resilvering = B_TRUE;
4315 4318
4316 4319 /*
4317 4320 * If the parent is not a mirror, or if we're replacing, insert the new
4318 4321 * mirror/replacing/spare vdev above oldvd.
4319 4322 */
4320 4323 if (pvd->vdev_ops != pvops)
4321 4324 pvd = vdev_add_parent(oldvd, pvops);
4322 4325
4323 4326 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4324 4327 ASSERT(pvd->vdev_ops == pvops);
4325 4328 ASSERT(oldvd->vdev_parent == pvd);
4326 4329
4327 4330 /*
4328 4331 * Extract the new device from its root and add it to pvd.
4329 4332 */
4330 4333 vdev_remove_child(newrootvd, newvd);
4331 4334 newvd->vdev_id = pvd->vdev_children;
4332 4335 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4333 4336 vdev_add_child(pvd, newvd);
4334 4337
4335 4338 tvd = newvd->vdev_top;
4336 4339 ASSERT(pvd->vdev_top == tvd);
4337 4340 ASSERT(tvd->vdev_parent == rvd);
4338 4341
4339 4342 vdev_config_dirty(tvd);
4340 4343
4341 4344 /*
4342 4345 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4343 4346 * for any dmu_sync-ed blocks. It will propagate upward when
4344 4347 * spa_vdev_exit() calls vdev_dtl_reassess().
4345 4348 */
4346 4349 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4347 4350
4348 4351 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4349 4352 dtl_max_txg - TXG_INITIAL);
4350 4353
4351 4354 if (newvd->vdev_isspare) {
4352 4355 spa_spare_activate(newvd);
4353 4356 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4354 4357 }
4355 4358
4356 4359 oldvdpath = spa_strdup(oldvd->vdev_path);
4357 4360 newvdpath = spa_strdup(newvd->vdev_path);
4358 4361 newvd_isspare = newvd->vdev_isspare;
4359 4362
4360 4363 /*
4361 4364 * Mark newvd's DTL dirty in this txg.
4362 4365 */
4363 4366 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4364 4367
↓ open down ↓ |
517 lines elided |
↑ open up ↑ |
4365 4368 /*
4366 4369 * Restart the resilver
4367 4370 */
4368 4371 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4369 4372
4370 4373 /*
4371 4374 * Commit the config
4372 4375 */
4373 4376 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4374 4377
4375 - spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4378 + spa_history_log_internal(spa, "vdev attach", NULL,
4376 4379 "%s vdev=%s %s vdev=%s",
4377 4380 replacing && newvd_isspare ? "spare in" :
4378 4381 replacing ? "replace" : "attach", newvdpath,
4379 4382 replacing ? "for" : "to", oldvdpath);
4380 4383
4381 4384 spa_strfree(oldvdpath);
4382 4385 spa_strfree(newvdpath);
4383 4386
4384 4387 if (spa->spa_bootfs)
4385 4388 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4386 4389
4387 4390 return (0);
4388 4391 }
4389 4392
4390 4393 /*
4391 4394 * Detach a device from a mirror or replacing vdev.
4392 4395 * If 'replace_done' is specified, only detach if the parent
4393 4396 * is a replacing vdev.
4394 4397 */
4395 4398 int
4396 4399 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4397 4400 {
4398 4401 uint64_t txg;
4399 4402 int error;
4400 4403 vdev_t *rvd = spa->spa_root_vdev;
4401 4404 vdev_t *vd, *pvd, *cvd, *tvd;
4402 4405 boolean_t unspare = B_FALSE;
4403 4406 uint64_t unspare_guid;
4404 4407 char *vdpath;
4405 4408
4406 4409 ASSERT(spa_writeable(spa));
4407 4410
4408 4411 txg = spa_vdev_enter(spa);
4409 4412
4410 4413 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4411 4414
4412 4415 if (vd == NULL)
4413 4416 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4414 4417
4415 4418 if (!vd->vdev_ops->vdev_op_leaf)
4416 4419 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4417 4420
4418 4421 pvd = vd->vdev_parent;
4419 4422
4420 4423 /*
4421 4424 * If the parent/child relationship is not as expected, don't do it.
4422 4425 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4423 4426 * vdev that's replacing B with C. The user's intent in replacing
4424 4427 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4425 4428 * the replace by detaching C, the expected behavior is to end up
4426 4429 * M(A,B). But suppose that right after deciding to detach C,
4427 4430 * the replacement of B completes. We would have M(A,C), and then
4428 4431 * ask to detach C, which would leave us with just A -- not what
4429 4432 * the user wanted. To prevent this, we make sure that the
4430 4433 * parent/child relationship hasn't changed -- in this example,
4431 4434 * that C's parent is still the replacing vdev R.
4432 4435 */
4433 4436 if (pvd->vdev_guid != pguid && pguid != 0)
4434 4437 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4435 4438
4436 4439 /*
4437 4440 * Only 'replacing' or 'spare' vdevs can be replaced.
4438 4441 */
4439 4442 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4440 4443 pvd->vdev_ops != &vdev_spare_ops)
4441 4444 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4442 4445
4443 4446 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4444 4447 spa_version(spa) >= SPA_VERSION_SPARES);
4445 4448
4446 4449 /*
4447 4450 * Only mirror, replacing, and spare vdevs support detach.
4448 4451 */
4449 4452 if (pvd->vdev_ops != &vdev_replacing_ops &&
4450 4453 pvd->vdev_ops != &vdev_mirror_ops &&
4451 4454 pvd->vdev_ops != &vdev_spare_ops)
4452 4455 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4453 4456
4454 4457 /*
4455 4458 * If this device has the only valid copy of some data,
4456 4459 * we cannot safely detach it.
4457 4460 */
4458 4461 if (vdev_dtl_required(vd))
4459 4462 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4460 4463
4461 4464 ASSERT(pvd->vdev_children >= 2);
4462 4465
4463 4466 /*
4464 4467 * If we are detaching the second disk from a replacing vdev, then
4465 4468 * check to see if we changed the original vdev's path to have "/old"
4466 4469 * at the end in spa_vdev_attach(). If so, undo that change now.
4467 4470 */
4468 4471 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4469 4472 vd->vdev_path != NULL) {
4470 4473 size_t len = strlen(vd->vdev_path);
4471 4474
4472 4475 for (int c = 0; c < pvd->vdev_children; c++) {
4473 4476 cvd = pvd->vdev_child[c];
4474 4477
4475 4478 if (cvd == vd || cvd->vdev_path == NULL)
4476 4479 continue;
4477 4480
4478 4481 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4479 4482 strcmp(cvd->vdev_path + len, "/old") == 0) {
4480 4483 spa_strfree(cvd->vdev_path);
4481 4484 cvd->vdev_path = spa_strdup(vd->vdev_path);
4482 4485 break;
4483 4486 }
4484 4487 }
4485 4488 }
4486 4489
4487 4490 /*
4488 4491 * If we are detaching the original disk from a spare, then it implies
4489 4492 * that the spare should become a real disk, and be removed from the
4490 4493 * active spare list for the pool.
4491 4494 */
4492 4495 if (pvd->vdev_ops == &vdev_spare_ops &&
4493 4496 vd->vdev_id == 0 &&
4494 4497 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4495 4498 unspare = B_TRUE;
4496 4499
4497 4500 /*
4498 4501 * Erase the disk labels so the disk can be used for other things.
4499 4502 * This must be done after all other error cases are handled,
4500 4503 * but before we disembowel vd (so we can still do I/O to it).
4501 4504 * But if we can't do it, don't treat the error as fatal --
4502 4505 * it may be that the unwritability of the disk is the reason
4503 4506 * it's being detached!
4504 4507 */
4505 4508 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4506 4509
4507 4510 /*
4508 4511 * Remove vd from its parent and compact the parent's children.
4509 4512 */
4510 4513 vdev_remove_child(pvd, vd);
4511 4514 vdev_compact_children(pvd);
4512 4515
4513 4516 /*
4514 4517 * Remember one of the remaining children so we can get tvd below.
4515 4518 */
4516 4519 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4517 4520
4518 4521 /*
4519 4522 * If we need to remove the remaining child from the list of hot spares,
4520 4523 * do it now, marking the vdev as no longer a spare in the process.
4521 4524 * We must do this before vdev_remove_parent(), because that can
4522 4525 * change the GUID if it creates a new toplevel GUID. For a similar
4523 4526 * reason, we must remove the spare now, in the same txg as the detach;
4524 4527 * otherwise someone could attach a new sibling, change the GUID, and
4525 4528 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4526 4529 */
4527 4530 if (unspare) {
4528 4531 ASSERT(cvd->vdev_isspare);
4529 4532 spa_spare_remove(cvd);
4530 4533 unspare_guid = cvd->vdev_guid;
4531 4534 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4532 4535 cvd->vdev_unspare = B_TRUE;
4533 4536 }
4534 4537
4535 4538 /*
4536 4539 * If the parent mirror/replacing vdev only has one child,
4537 4540 * the parent is no longer needed. Remove it from the tree.
4538 4541 */
4539 4542 if (pvd->vdev_children == 1) {
4540 4543 if (pvd->vdev_ops == &vdev_spare_ops)
4541 4544 cvd->vdev_unspare = B_FALSE;
4542 4545 vdev_remove_parent(cvd);
4543 4546 cvd->vdev_resilvering = B_FALSE;
4544 4547 }
4545 4548
4546 4549
4547 4550 /*
4548 4551 * We don't set tvd until now because the parent we just removed
4549 4552 * may have been the previous top-level vdev.
4550 4553 */
4551 4554 tvd = cvd->vdev_top;
4552 4555 ASSERT(tvd->vdev_parent == rvd);
4553 4556
4554 4557 /*
4555 4558 * Reevaluate the parent vdev state.
4556 4559 */
4557 4560 vdev_propagate_state(cvd);
4558 4561
4559 4562 /*
4560 4563 * If the 'autoexpand' property is set on the pool then automatically
4561 4564 * try to expand the size of the pool. For example if the device we
4562 4565 * just detached was smaller than the others, it may be possible to
4563 4566 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4564 4567 * first so that we can obtain the updated sizes of the leaf vdevs.
4565 4568 */
4566 4569 if (spa->spa_autoexpand) {
4567 4570 vdev_reopen(tvd);
4568 4571 vdev_expand(tvd, txg);
4569 4572 }
4570 4573
4571 4574 vdev_config_dirty(tvd);
4572 4575
4573 4576 /*
4574 4577 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4575 4578 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4576 4579 * But first make sure we're not on any *other* txg's DTL list, to
4577 4580 * prevent vd from being accessed after it's freed.
4578 4581 */
4579 4582 vdpath = spa_strdup(vd->vdev_path);
4580 4583 for (int t = 0; t < TXG_SIZE; t++)
4581 4584 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
↓ open down ↓ |
196 lines elided |
↑ open up ↑ |
4582 4585 vd->vdev_detached = B_TRUE;
4583 4586 vdev_dirty(tvd, VDD_DTL, vd, txg);
4584 4587
4585 4588 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4586 4589
4587 4590 /* hang on to the spa before we release the lock */
4588 4591 spa_open_ref(spa, FTAG);
4589 4592
4590 4593 error = spa_vdev_exit(spa, vd, txg, 0);
4591 4594
4592 - spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4595 + spa_history_log_internal(spa, "detach", NULL,
4593 4596 "vdev=%s", vdpath);
4594 4597 spa_strfree(vdpath);
4595 4598
4596 4599 /*
4597 4600 * If this was the removal of the original device in a hot spare vdev,
4598 4601 * then we want to go through and remove the device from the hot spare
4599 4602 * list of every other pool.
4600 4603 */
4601 4604 if (unspare) {
4602 4605 spa_t *altspa = NULL;
4603 4606
4604 4607 mutex_enter(&spa_namespace_lock);
4605 4608 while ((altspa = spa_next(altspa)) != NULL) {
4606 4609 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4607 4610 altspa == spa)
4608 4611 continue;
4609 4612
4610 4613 spa_open_ref(altspa, FTAG);
4611 4614 mutex_exit(&spa_namespace_lock);
4612 4615 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4613 4616 mutex_enter(&spa_namespace_lock);
4614 4617 spa_close(altspa, FTAG);
4615 4618 }
4616 4619 mutex_exit(&spa_namespace_lock);
4617 4620
4618 4621 /* search the rest of the vdevs for spares to remove */
4619 4622 spa_vdev_resilver_done(spa);
4620 4623 }
4621 4624
4622 4625 /* all done with the spa; OK to release */
4623 4626 mutex_enter(&spa_namespace_lock);
4624 4627 spa_close(spa, FTAG);
4625 4628 mutex_exit(&spa_namespace_lock);
4626 4629
4627 4630 return (error);
4628 4631 }
4629 4632
4630 4633 /*
4631 4634 * Split a set of devices from their mirrors, and create a new pool from them.
4632 4635 */
4633 4636 int
4634 4637 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4635 4638 nvlist_t *props, boolean_t exp)
4636 4639 {
4637 4640 int error = 0;
4638 4641 uint64_t txg, *glist;
4639 4642 spa_t *newspa;
4640 4643 uint_t c, children, lastlog;
4641 4644 nvlist_t **child, *nvl, *tmp;
4642 4645 dmu_tx_t *tx;
4643 4646 char *altroot = NULL;
4644 4647 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4645 4648 boolean_t activate_slog;
4646 4649
4647 4650 ASSERT(spa_writeable(spa));
4648 4651
4649 4652 txg = spa_vdev_enter(spa);
4650 4653
4651 4654 /* clear the log and flush everything up to now */
4652 4655 activate_slog = spa_passivate_log(spa);
4653 4656 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4654 4657 error = spa_offline_log(spa);
4655 4658 txg = spa_vdev_config_enter(spa);
4656 4659
4657 4660 if (activate_slog)
4658 4661 spa_activate_log(spa);
4659 4662
4660 4663 if (error != 0)
4661 4664 return (spa_vdev_exit(spa, NULL, txg, error));
4662 4665
4663 4666 /* check new spa name before going any further */
4664 4667 if (spa_lookup(newname) != NULL)
4665 4668 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4666 4669
4667 4670 /*
4668 4671 * scan through all the children to ensure they're all mirrors
4669 4672 */
4670 4673 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4671 4674 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4672 4675 &children) != 0)
4673 4676 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4674 4677
4675 4678 /* first, check to ensure we've got the right child count */
4676 4679 rvd = spa->spa_root_vdev;
4677 4680 lastlog = 0;
4678 4681 for (c = 0; c < rvd->vdev_children; c++) {
4679 4682 vdev_t *vd = rvd->vdev_child[c];
4680 4683
4681 4684 /* don't count the holes & logs as children */
4682 4685 if (vd->vdev_islog || vd->vdev_ishole) {
4683 4686 if (lastlog == 0)
4684 4687 lastlog = c;
4685 4688 continue;
4686 4689 }
4687 4690
4688 4691 lastlog = 0;
4689 4692 }
4690 4693 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4691 4694 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4692 4695
4693 4696 /* next, ensure no spare or cache devices are part of the split */
4694 4697 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4695 4698 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4696 4699 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4697 4700
4698 4701 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4699 4702 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4700 4703
4701 4704 /* then, loop over each vdev and validate it */
4702 4705 for (c = 0; c < children; c++) {
4703 4706 uint64_t is_hole = 0;
4704 4707
4705 4708 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4706 4709 &is_hole);
4707 4710
4708 4711 if (is_hole != 0) {
4709 4712 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4710 4713 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4711 4714 continue;
4712 4715 } else {
4713 4716 error = EINVAL;
4714 4717 break;
4715 4718 }
4716 4719 }
4717 4720
4718 4721 /* which disk is going to be split? */
4719 4722 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4720 4723 &glist[c]) != 0) {
4721 4724 error = EINVAL;
4722 4725 break;
4723 4726 }
4724 4727
4725 4728 /* look it up in the spa */
4726 4729 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4727 4730 if (vml[c] == NULL) {
4728 4731 error = ENODEV;
4729 4732 break;
4730 4733 }
4731 4734
4732 4735 /* make sure there's nothing stopping the split */
4733 4736 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4734 4737 vml[c]->vdev_islog ||
4735 4738 vml[c]->vdev_ishole ||
4736 4739 vml[c]->vdev_isspare ||
4737 4740 vml[c]->vdev_isl2cache ||
4738 4741 !vdev_writeable(vml[c]) ||
4739 4742 vml[c]->vdev_children != 0 ||
4740 4743 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4741 4744 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4742 4745 error = EINVAL;
4743 4746 break;
4744 4747 }
4745 4748
4746 4749 if (vdev_dtl_required(vml[c])) {
4747 4750 error = EBUSY;
4748 4751 break;
4749 4752 }
4750 4753
4751 4754 /* we need certain info from the top level */
4752 4755 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4753 4756 vml[c]->vdev_top->vdev_ms_array) == 0);
4754 4757 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4755 4758 vml[c]->vdev_top->vdev_ms_shift) == 0);
4756 4759 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4757 4760 vml[c]->vdev_top->vdev_asize) == 0);
4758 4761 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4759 4762 vml[c]->vdev_top->vdev_ashift) == 0);
4760 4763 }
4761 4764
4762 4765 if (error != 0) {
4763 4766 kmem_free(vml, children * sizeof (vdev_t *));
4764 4767 kmem_free(glist, children * sizeof (uint64_t));
4765 4768 return (spa_vdev_exit(spa, NULL, txg, error));
4766 4769 }
4767 4770
4768 4771 /* stop writers from using the disks */
4769 4772 for (c = 0; c < children; c++) {
4770 4773 if (vml[c] != NULL)
4771 4774 vml[c]->vdev_offline = B_TRUE;
4772 4775 }
4773 4776 vdev_reopen(spa->spa_root_vdev);
4774 4777
4775 4778 /*
4776 4779 * Temporarily record the splitting vdevs in the spa config. This
4777 4780 * will disappear once the config is regenerated.
4778 4781 */
4779 4782 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4780 4783 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4781 4784 glist, children) == 0);
4782 4785 kmem_free(glist, children * sizeof (uint64_t));
4783 4786
4784 4787 mutex_enter(&spa->spa_props_lock);
4785 4788 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4786 4789 nvl) == 0);
4787 4790 mutex_exit(&spa->spa_props_lock);
4788 4791 spa->spa_config_splitting = nvl;
4789 4792 vdev_config_dirty(spa->spa_root_vdev);
4790 4793
4791 4794 /* configure and create the new pool */
4792 4795 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4793 4796 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4794 4797 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4795 4798 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4796 4799 spa_version(spa)) == 0);
4797 4800 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4798 4801 spa->spa_config_txg) == 0);
4799 4802 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4800 4803 spa_generate_guid(NULL)) == 0);
4801 4804 (void) nvlist_lookup_string(props,
4802 4805 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4803 4806
4804 4807 /* add the new pool to the namespace */
4805 4808 newspa = spa_add(newname, config, altroot);
4806 4809 newspa->spa_config_txg = spa->spa_config_txg;
4807 4810 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4808 4811
4809 4812 /* release the spa config lock, retaining the namespace lock */
4810 4813 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4811 4814
4812 4815 if (zio_injection_enabled)
4813 4816 zio_handle_panic_injection(spa, FTAG, 1);
4814 4817
4815 4818 spa_activate(newspa, spa_mode_global);
4816 4819 spa_async_suspend(newspa);
4817 4820
4818 4821 /* create the new pool from the disks of the original pool */
4819 4822 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4820 4823 if (error)
4821 4824 goto out;
4822 4825
4823 4826 /* if that worked, generate a real config for the new pool */
4824 4827 if (newspa->spa_root_vdev != NULL) {
4825 4828 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4826 4829 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4827 4830 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4828 4831 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4829 4832 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4830 4833 B_TRUE));
4831 4834 }
4832 4835
4833 4836 /* set the props */
4834 4837 if (props != NULL) {
4835 4838 spa_configfile_set(newspa, props, B_FALSE);
4836 4839 error = spa_prop_set(newspa, props);
4837 4840 if (error)
4838 4841 goto out;
4839 4842 }
4840 4843
4841 4844 /* flush everything */
4842 4845 txg = spa_vdev_config_enter(newspa);
4843 4846 vdev_config_dirty(newspa->spa_root_vdev);
4844 4847 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4845 4848
4846 4849 if (zio_injection_enabled)
4847 4850 zio_handle_panic_injection(spa, FTAG, 2);
4848 4851
4849 4852 spa_async_resume(newspa);
4850 4853
↓ open down ↓ |
248 lines elided |
↑ open up ↑ |
4851 4854 /* finally, update the original pool's config */
4852 4855 txg = spa_vdev_config_enter(spa);
4853 4856 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4854 4857 error = dmu_tx_assign(tx, TXG_WAIT);
4855 4858 if (error != 0)
4856 4859 dmu_tx_abort(tx);
4857 4860 for (c = 0; c < children; c++) {
4858 4861 if (vml[c] != NULL) {
4859 4862 vdev_split(vml[c]);
4860 4863 if (error == 0)
4861 - spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4862 - spa, tx, "vdev=%s",
4863 - vml[c]->vdev_path);
4864 + spa_history_log_internal(spa, "detach", tx,
4865 + "vdev=%s", vml[c]->vdev_path);
4864 4866 vdev_free(vml[c]);
4865 4867 }
4866 4868 }
4867 4869 vdev_config_dirty(spa->spa_root_vdev);
4868 4870 spa->spa_config_splitting = NULL;
4869 4871 nvlist_free(nvl);
4870 4872 if (error == 0)
4871 4873 dmu_tx_commit(tx);
4872 4874 (void) spa_vdev_exit(spa, NULL, txg, 0);
4873 4875
4874 4876 if (zio_injection_enabled)
4875 4877 zio_handle_panic_injection(spa, FTAG, 3);
4876 4878
4877 4879 /* split is complete; log a history record */
4878 - spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4879 - "split new pool %s from pool %s", newname, spa_name(spa));
4880 + spa_history_log_internal(newspa, "split", NULL,
4881 + "from pool %s", spa_name(spa));
4880 4882
4881 4883 kmem_free(vml, children * sizeof (vdev_t *));
4882 4884
4883 4885 /* if we're not going to mount the filesystems in userland, export */
4884 4886 if (exp)
4885 4887 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4886 4888 B_FALSE, B_FALSE);
4887 4889
4888 4890 return (error);
4889 4891
4890 4892 out:
4891 4893 spa_unload(newspa);
4892 4894 spa_deactivate(newspa);
4893 4895 spa_remove(newspa);
4894 4896
4895 4897 txg = spa_vdev_config_enter(spa);
4896 4898
4897 4899 /* re-online all offlined disks */
4898 4900 for (c = 0; c < children; c++) {
4899 4901 if (vml[c] != NULL)
4900 4902 vml[c]->vdev_offline = B_FALSE;
4901 4903 }
4902 4904 vdev_reopen(spa->spa_root_vdev);
4903 4905
4904 4906 nvlist_free(spa->spa_config_splitting);
4905 4907 spa->spa_config_splitting = NULL;
4906 4908 (void) spa_vdev_exit(spa, NULL, txg, error);
4907 4909
4908 4910 kmem_free(vml, children * sizeof (vdev_t *));
4909 4911 return (error);
4910 4912 }
4911 4913
4912 4914 static nvlist_t *
4913 4915 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4914 4916 {
4915 4917 for (int i = 0; i < count; i++) {
4916 4918 uint64_t guid;
4917 4919
4918 4920 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4919 4921 &guid) == 0);
4920 4922
4921 4923 if (guid == target_guid)
4922 4924 return (nvpp[i]);
4923 4925 }
4924 4926
4925 4927 return (NULL);
4926 4928 }
4927 4929
4928 4930 static void
4929 4931 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4930 4932 nvlist_t *dev_to_remove)
4931 4933 {
4932 4934 nvlist_t **newdev = NULL;
4933 4935
4934 4936 if (count > 1)
4935 4937 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4936 4938
4937 4939 for (int i = 0, j = 0; i < count; i++) {
4938 4940 if (dev[i] == dev_to_remove)
4939 4941 continue;
4940 4942 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4941 4943 }
4942 4944
4943 4945 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4944 4946 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4945 4947
4946 4948 for (int i = 0; i < count - 1; i++)
4947 4949 nvlist_free(newdev[i]);
4948 4950
4949 4951 if (count > 1)
4950 4952 kmem_free(newdev, (count - 1) * sizeof (void *));
4951 4953 }
4952 4954
4953 4955 /*
4954 4956 * Evacuate the device.
4955 4957 */
4956 4958 static int
4957 4959 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4958 4960 {
4959 4961 uint64_t txg;
4960 4962 int error = 0;
4961 4963
4962 4964 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4963 4965 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4964 4966 ASSERT(vd == vd->vdev_top);
4965 4967
4966 4968 /*
4967 4969 * Evacuate the device. We don't hold the config lock as writer
4968 4970 * since we need to do I/O but we do keep the
4969 4971 * spa_namespace_lock held. Once this completes the device
4970 4972 * should no longer have any blocks allocated on it.
4971 4973 */
4972 4974 if (vd->vdev_islog) {
4973 4975 if (vd->vdev_stat.vs_alloc != 0)
4974 4976 error = spa_offline_log(spa);
4975 4977 } else {
4976 4978 error = ENOTSUP;
4977 4979 }
4978 4980
4979 4981 if (error)
4980 4982 return (error);
4981 4983
4982 4984 /*
4983 4985 * The evacuation succeeded. Remove any remaining MOS metadata
4984 4986 * associated with this vdev, and wait for these changes to sync.
4985 4987 */
4986 4988 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4987 4989 txg = spa_vdev_config_enter(spa);
4988 4990 vd->vdev_removing = B_TRUE;
4989 4991 vdev_dirty(vd, 0, NULL, txg);
4990 4992 vdev_config_dirty(vd);
4991 4993 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4992 4994
4993 4995 return (0);
4994 4996 }
4995 4997
4996 4998 /*
4997 4999 * Complete the removal by cleaning up the namespace.
4998 5000 */
4999 5001 static void
5000 5002 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5001 5003 {
5002 5004 vdev_t *rvd = spa->spa_root_vdev;
5003 5005 uint64_t id = vd->vdev_id;
5004 5006 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5005 5007
5006 5008 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5007 5009 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5008 5010 ASSERT(vd == vd->vdev_top);
5009 5011
5010 5012 /*
5011 5013 * Only remove any devices which are empty.
5012 5014 */
5013 5015 if (vd->vdev_stat.vs_alloc != 0)
5014 5016 return;
5015 5017
5016 5018 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5017 5019
5018 5020 if (list_link_active(&vd->vdev_state_dirty_node))
5019 5021 vdev_state_clean(vd);
5020 5022 if (list_link_active(&vd->vdev_config_dirty_node))
5021 5023 vdev_config_clean(vd);
5022 5024
5023 5025 vdev_free(vd);
5024 5026
5025 5027 if (last_vdev) {
5026 5028 vdev_compact_children(rvd);
5027 5029 } else {
5028 5030 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5029 5031 vdev_add_child(rvd, vd);
5030 5032 }
5031 5033 vdev_config_dirty(rvd);
5032 5034
5033 5035 /*
5034 5036 * Reassess the health of our root vdev.
5035 5037 */
5036 5038 vdev_reopen(rvd);
5037 5039 }
5038 5040
5039 5041 /*
5040 5042 * Remove a device from the pool -
5041 5043 *
5042 5044 * Removing a device from the vdev namespace requires several steps
5043 5045 * and can take a significant amount of time. As a result we use
5044 5046 * the spa_vdev_config_[enter/exit] functions which allow us to
5045 5047 * grab and release the spa_config_lock while still holding the namespace
5046 5048 * lock. During each step the configuration is synced out.
5047 5049 */
5048 5050
5049 5051 /*
5050 5052 * Remove a device from the pool. Currently, this supports removing only hot
5051 5053 * spares, slogs, and level 2 ARC devices.
5052 5054 */
5053 5055 int
5054 5056 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5055 5057 {
5056 5058 vdev_t *vd;
5057 5059 metaslab_group_t *mg;
5058 5060 nvlist_t **spares, **l2cache, *nv;
5059 5061 uint64_t txg = 0;
5060 5062 uint_t nspares, nl2cache;
5061 5063 int error = 0;
5062 5064 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5063 5065
5064 5066 ASSERT(spa_writeable(spa));
5065 5067
5066 5068 if (!locked)
5067 5069 txg = spa_vdev_enter(spa);
5068 5070
5069 5071 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5070 5072
5071 5073 if (spa->spa_spares.sav_vdevs != NULL &&
5072 5074 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5073 5075 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5074 5076 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5075 5077 /*
5076 5078 * Only remove the hot spare if it's not currently in use
5077 5079 * in this pool.
5078 5080 */
5079 5081 if (vd == NULL || unspare) {
5080 5082 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5081 5083 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5082 5084 spa_load_spares(spa);
5083 5085 spa->spa_spares.sav_sync = B_TRUE;
5084 5086 } else {
5085 5087 error = EBUSY;
5086 5088 }
5087 5089 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5088 5090 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5089 5091 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5090 5092 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5091 5093 /*
5092 5094 * Cache devices can always be removed.
5093 5095 */
5094 5096 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5095 5097 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5096 5098 spa_load_l2cache(spa);
5097 5099 spa->spa_l2cache.sav_sync = B_TRUE;
5098 5100 } else if (vd != NULL && vd->vdev_islog) {
5099 5101 ASSERT(!locked);
5100 5102 ASSERT(vd == vd->vdev_top);
5101 5103
5102 5104 /*
5103 5105 * XXX - Once we have bp-rewrite this should
5104 5106 * become the common case.
5105 5107 */
5106 5108
5107 5109 mg = vd->vdev_mg;
5108 5110
5109 5111 /*
5110 5112 * Stop allocating from this vdev.
5111 5113 */
5112 5114 metaslab_group_passivate(mg);
5113 5115
5114 5116 /*
5115 5117 * Wait for the youngest allocations and frees to sync,
5116 5118 * and then wait for the deferral of those frees to finish.
5117 5119 */
5118 5120 spa_vdev_config_exit(spa, NULL,
5119 5121 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5120 5122
5121 5123 /*
5122 5124 * Attempt to evacuate the vdev.
5123 5125 */
5124 5126 error = spa_vdev_remove_evacuate(spa, vd);
5125 5127
5126 5128 txg = spa_vdev_config_enter(spa);
5127 5129
5128 5130 /*
5129 5131 * If we couldn't evacuate the vdev, unwind.
5130 5132 */
5131 5133 if (error) {
5132 5134 metaslab_group_activate(mg);
5133 5135 return (spa_vdev_exit(spa, NULL, txg, error));
5134 5136 }
5135 5137
5136 5138 /*
5137 5139 * Clean up the vdev namespace.
5138 5140 */
5139 5141 spa_vdev_remove_from_namespace(spa, vd);
5140 5142
5141 5143 } else if (vd != NULL) {
5142 5144 /*
5143 5145 * Normal vdevs cannot be removed (yet).
5144 5146 */
5145 5147 error = ENOTSUP;
5146 5148 } else {
5147 5149 /*
5148 5150 * There is no vdev of any kind with the specified guid.
5149 5151 */
5150 5152 error = ENOENT;
5151 5153 }
5152 5154
5153 5155 if (!locked)
5154 5156 return (spa_vdev_exit(spa, NULL, txg, error));
5155 5157
5156 5158 return (error);
5157 5159 }
5158 5160
5159 5161 /*
5160 5162 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5161 5163 * current spared, so we can detach it.
5162 5164 */
5163 5165 static vdev_t *
5164 5166 spa_vdev_resilver_done_hunt(vdev_t *vd)
5165 5167 {
5166 5168 vdev_t *newvd, *oldvd;
5167 5169
5168 5170 for (int c = 0; c < vd->vdev_children; c++) {
5169 5171 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5170 5172 if (oldvd != NULL)
5171 5173 return (oldvd);
5172 5174 }
5173 5175
5174 5176 /*
5175 5177 * Check for a completed replacement. We always consider the first
5176 5178 * vdev in the list to be the oldest vdev, and the last one to be
5177 5179 * the newest (see spa_vdev_attach() for how that works). In
5178 5180 * the case where the newest vdev is faulted, we will not automatically
5179 5181 * remove it after a resilver completes. This is OK as it will require
5180 5182 * user intervention to determine which disk the admin wishes to keep.
5181 5183 */
5182 5184 if (vd->vdev_ops == &vdev_replacing_ops) {
5183 5185 ASSERT(vd->vdev_children > 1);
5184 5186
5185 5187 newvd = vd->vdev_child[vd->vdev_children - 1];
5186 5188 oldvd = vd->vdev_child[0];
5187 5189
5188 5190 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5189 5191 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5190 5192 !vdev_dtl_required(oldvd))
5191 5193 return (oldvd);
5192 5194 }
5193 5195
5194 5196 /*
5195 5197 * Check for a completed resilver with the 'unspare' flag set.
5196 5198 */
5197 5199 if (vd->vdev_ops == &vdev_spare_ops) {
5198 5200 vdev_t *first = vd->vdev_child[0];
5199 5201 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5200 5202
5201 5203 if (last->vdev_unspare) {
5202 5204 oldvd = first;
5203 5205 newvd = last;
5204 5206 } else if (first->vdev_unspare) {
5205 5207 oldvd = last;
5206 5208 newvd = first;
5207 5209 } else {
5208 5210 oldvd = NULL;
5209 5211 }
5210 5212
5211 5213 if (oldvd != NULL &&
5212 5214 vdev_dtl_empty(newvd, DTL_MISSING) &&
5213 5215 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5214 5216 !vdev_dtl_required(oldvd))
5215 5217 return (oldvd);
5216 5218
5217 5219 /*
5218 5220 * If there are more than two spares attached to a disk,
5219 5221 * and those spares are not required, then we want to
5220 5222 * attempt to free them up now so that they can be used
5221 5223 * by other pools. Once we're back down to a single
5222 5224 * disk+spare, we stop removing them.
5223 5225 */
5224 5226 if (vd->vdev_children > 2) {
5225 5227 newvd = vd->vdev_child[1];
5226 5228
5227 5229 if (newvd->vdev_isspare && last->vdev_isspare &&
5228 5230 vdev_dtl_empty(last, DTL_MISSING) &&
5229 5231 vdev_dtl_empty(last, DTL_OUTAGE) &&
5230 5232 !vdev_dtl_required(newvd))
5231 5233 return (newvd);
5232 5234 }
5233 5235 }
5234 5236
5235 5237 return (NULL);
5236 5238 }
5237 5239
5238 5240 static void
5239 5241 spa_vdev_resilver_done(spa_t *spa)
5240 5242 {
5241 5243 vdev_t *vd, *pvd, *ppvd;
5242 5244 uint64_t guid, sguid, pguid, ppguid;
5243 5245
5244 5246 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5245 5247
5246 5248 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5247 5249 pvd = vd->vdev_parent;
5248 5250 ppvd = pvd->vdev_parent;
5249 5251 guid = vd->vdev_guid;
5250 5252 pguid = pvd->vdev_guid;
5251 5253 ppguid = ppvd->vdev_guid;
5252 5254 sguid = 0;
5253 5255 /*
5254 5256 * If we have just finished replacing a hot spared device, then
5255 5257 * we need to detach the parent's first child (the original hot
5256 5258 * spare) as well.
5257 5259 */
5258 5260 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5259 5261 ppvd->vdev_children == 2) {
5260 5262 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5261 5263 sguid = ppvd->vdev_child[1]->vdev_guid;
5262 5264 }
5263 5265 spa_config_exit(spa, SCL_ALL, FTAG);
5264 5266 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5265 5267 return;
5266 5268 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5267 5269 return;
5268 5270 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5269 5271 }
5270 5272
5271 5273 spa_config_exit(spa, SCL_ALL, FTAG);
5272 5274 }
5273 5275
5274 5276 /*
5275 5277 * Update the stored path or FRU for this vdev.
5276 5278 */
5277 5279 int
5278 5280 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5279 5281 boolean_t ispath)
5280 5282 {
5281 5283 vdev_t *vd;
5282 5284 boolean_t sync = B_FALSE;
5283 5285
5284 5286 ASSERT(spa_writeable(spa));
5285 5287
5286 5288 spa_vdev_state_enter(spa, SCL_ALL);
5287 5289
5288 5290 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5289 5291 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5290 5292
5291 5293 if (!vd->vdev_ops->vdev_op_leaf)
5292 5294 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5293 5295
5294 5296 if (ispath) {
5295 5297 if (strcmp(value, vd->vdev_path) != 0) {
5296 5298 spa_strfree(vd->vdev_path);
5297 5299 vd->vdev_path = spa_strdup(value);
5298 5300 sync = B_TRUE;
5299 5301 }
5300 5302 } else {
5301 5303 if (vd->vdev_fru == NULL) {
5302 5304 vd->vdev_fru = spa_strdup(value);
5303 5305 sync = B_TRUE;
5304 5306 } else if (strcmp(value, vd->vdev_fru) != 0) {
5305 5307 spa_strfree(vd->vdev_fru);
5306 5308 vd->vdev_fru = spa_strdup(value);
5307 5309 sync = B_TRUE;
5308 5310 }
5309 5311 }
5310 5312
5311 5313 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5312 5314 }
5313 5315
5314 5316 int
5315 5317 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5316 5318 {
5317 5319 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5318 5320 }
5319 5321
5320 5322 int
5321 5323 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5322 5324 {
5323 5325 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5324 5326 }
5325 5327
5326 5328 /*
5327 5329 * ==========================================================================
5328 5330 * SPA Scanning
5329 5331 * ==========================================================================
5330 5332 */
5331 5333
5332 5334 int
5333 5335 spa_scan_stop(spa_t *spa)
5334 5336 {
5335 5337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5336 5338 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5337 5339 return (EBUSY);
5338 5340 return (dsl_scan_cancel(spa->spa_dsl_pool));
5339 5341 }
5340 5342
5341 5343 int
5342 5344 spa_scan(spa_t *spa, pool_scan_func_t func)
5343 5345 {
5344 5346 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5345 5347
5346 5348 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5347 5349 return (ENOTSUP);
5348 5350
5349 5351 /*
5350 5352 * If a resilver was requested, but there is no DTL on a
5351 5353 * writeable leaf device, we have nothing to do.
5352 5354 */
5353 5355 if (func == POOL_SCAN_RESILVER &&
5354 5356 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5355 5357 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5356 5358 return (0);
5357 5359 }
5358 5360
5359 5361 return (dsl_scan(spa->spa_dsl_pool, func));
5360 5362 }
5361 5363
5362 5364 /*
5363 5365 * ==========================================================================
5364 5366 * SPA async task processing
5365 5367 * ==========================================================================
5366 5368 */
5367 5369
5368 5370 static void
5369 5371 spa_async_remove(spa_t *spa, vdev_t *vd)
5370 5372 {
5371 5373 if (vd->vdev_remove_wanted) {
5372 5374 vd->vdev_remove_wanted = B_FALSE;
5373 5375 vd->vdev_delayed_close = B_FALSE;
5374 5376 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5375 5377
5376 5378 /*
5377 5379 * We want to clear the stats, but we don't want to do a full
5378 5380 * vdev_clear() as that will cause us to throw away
5379 5381 * degraded/faulted state as well as attempt to reopen the
5380 5382 * device, all of which is a waste.
5381 5383 */
5382 5384 vd->vdev_stat.vs_read_errors = 0;
5383 5385 vd->vdev_stat.vs_write_errors = 0;
5384 5386 vd->vdev_stat.vs_checksum_errors = 0;
5385 5387
5386 5388 vdev_state_dirty(vd->vdev_top);
5387 5389 }
5388 5390
5389 5391 for (int c = 0; c < vd->vdev_children; c++)
5390 5392 spa_async_remove(spa, vd->vdev_child[c]);
5391 5393 }
5392 5394
5393 5395 static void
5394 5396 spa_async_probe(spa_t *spa, vdev_t *vd)
5395 5397 {
5396 5398 if (vd->vdev_probe_wanted) {
5397 5399 vd->vdev_probe_wanted = B_FALSE;
5398 5400 vdev_reopen(vd); /* vdev_open() does the actual probe */
5399 5401 }
5400 5402
5401 5403 for (int c = 0; c < vd->vdev_children; c++)
5402 5404 spa_async_probe(spa, vd->vdev_child[c]);
5403 5405 }
5404 5406
5405 5407 static void
5406 5408 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5407 5409 {
5408 5410 sysevent_id_t eid;
5409 5411 nvlist_t *attr;
5410 5412 char *physpath;
5411 5413
5412 5414 if (!spa->spa_autoexpand)
5413 5415 return;
5414 5416
5415 5417 for (int c = 0; c < vd->vdev_children; c++) {
5416 5418 vdev_t *cvd = vd->vdev_child[c];
5417 5419 spa_async_autoexpand(spa, cvd);
5418 5420 }
5419 5421
5420 5422 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5421 5423 return;
5422 5424
5423 5425 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5424 5426 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5425 5427
5426 5428 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5427 5429 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5428 5430
5429 5431 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5430 5432 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5431 5433
5432 5434 nvlist_free(attr);
5433 5435 kmem_free(physpath, MAXPATHLEN);
5434 5436 }
5435 5437
5436 5438 static void
5437 5439 spa_async_thread(spa_t *spa)
5438 5440 {
5439 5441 int tasks;
5440 5442
5441 5443 ASSERT(spa->spa_sync_on);
5442 5444
5443 5445 mutex_enter(&spa->spa_async_lock);
5444 5446 tasks = spa->spa_async_tasks;
5445 5447 spa->spa_async_tasks = 0;
5446 5448 mutex_exit(&spa->spa_async_lock);
5447 5449
5448 5450 /*
5449 5451 * See if the config needs to be updated.
5450 5452 */
5451 5453 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5452 5454 uint64_t old_space, new_space;
5453 5455
5454 5456 mutex_enter(&spa_namespace_lock);
↓ open down ↓ |
565 lines elided |
↑ open up ↑ |
5455 5457 old_space = metaslab_class_get_space(spa_normal_class(spa));
5456 5458 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5457 5459 new_space = metaslab_class_get_space(spa_normal_class(spa));
5458 5460 mutex_exit(&spa_namespace_lock);
5459 5461
5460 5462 /*
5461 5463 * If the pool grew as a result of the config update,
5462 5464 * then log an internal history event.
5463 5465 */
5464 5466 if (new_space != old_space) {
5465 - spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5466 - spa, NULL,
5467 + spa_history_log_internal(spa, "vdev online", NULL,
5467 5468 "pool '%s' size: %llu(+%llu)",
5468 5469 spa_name(spa), new_space, new_space - old_space);
5469 5470 }
5470 5471 }
5471 5472
5472 5473 /*
5473 5474 * See if any devices need to be marked REMOVED.
5474 5475 */
5475 5476 if (tasks & SPA_ASYNC_REMOVE) {
5476 5477 spa_vdev_state_enter(spa, SCL_NONE);
5477 5478 spa_async_remove(spa, spa->spa_root_vdev);
5478 5479 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5479 5480 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5480 5481 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5481 5482 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5482 5483 (void) spa_vdev_state_exit(spa, NULL, 0);
5483 5484 }
5484 5485
5485 5486 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5486 5487 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5487 5488 spa_async_autoexpand(spa, spa->spa_root_vdev);
5488 5489 spa_config_exit(spa, SCL_CONFIG, FTAG);
5489 5490 }
5490 5491
5491 5492 /*
5492 5493 * See if any devices need to be probed.
5493 5494 */
5494 5495 if (tasks & SPA_ASYNC_PROBE) {
5495 5496 spa_vdev_state_enter(spa, SCL_NONE);
5496 5497 spa_async_probe(spa, spa->spa_root_vdev);
5497 5498 (void) spa_vdev_state_exit(spa, NULL, 0);
5498 5499 }
5499 5500
5500 5501 /*
5501 5502 * If any devices are done replacing, detach them.
5502 5503 */
5503 5504 if (tasks & SPA_ASYNC_RESILVER_DONE)
5504 5505 spa_vdev_resilver_done(spa);
5505 5506
5506 5507 /*
5507 5508 * Kick off a resilver.
5508 5509 */
5509 5510 if (tasks & SPA_ASYNC_RESILVER)
5510 5511 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5511 5512
5512 5513 /*
5513 5514 * Let the world know that we're done.
5514 5515 */
5515 5516 mutex_enter(&spa->spa_async_lock);
5516 5517 spa->spa_async_thread = NULL;
5517 5518 cv_broadcast(&spa->spa_async_cv);
5518 5519 mutex_exit(&spa->spa_async_lock);
5519 5520 thread_exit();
5520 5521 }
5521 5522
5522 5523 void
5523 5524 spa_async_suspend(spa_t *spa)
5524 5525 {
5525 5526 mutex_enter(&spa->spa_async_lock);
5526 5527 spa->spa_async_suspended++;
5527 5528 while (spa->spa_async_thread != NULL)
5528 5529 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5529 5530 mutex_exit(&spa->spa_async_lock);
5530 5531 }
5531 5532
5532 5533 void
5533 5534 spa_async_resume(spa_t *spa)
5534 5535 {
5535 5536 mutex_enter(&spa->spa_async_lock);
5536 5537 ASSERT(spa->spa_async_suspended != 0);
5537 5538 spa->spa_async_suspended--;
5538 5539 mutex_exit(&spa->spa_async_lock);
5539 5540 }
5540 5541
5541 5542 static void
5542 5543 spa_async_dispatch(spa_t *spa)
5543 5544 {
5544 5545 mutex_enter(&spa->spa_async_lock);
5545 5546 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5546 5547 spa->spa_async_thread == NULL &&
5547 5548 rootdir != NULL && !vn_is_readonly(rootdir))
5548 5549 spa->spa_async_thread = thread_create(NULL, 0,
5549 5550 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5550 5551 mutex_exit(&spa->spa_async_lock);
5551 5552 }
5552 5553
5553 5554 void
5554 5555 spa_async_request(spa_t *spa, int task)
5555 5556 {
5556 5557 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5557 5558 mutex_enter(&spa->spa_async_lock);
5558 5559 spa->spa_async_tasks |= task;
5559 5560 mutex_exit(&spa->spa_async_lock);
5560 5561 }
5561 5562
5562 5563 /*
5563 5564 * ==========================================================================
5564 5565 * SPA syncing routines
5565 5566 * ==========================================================================
5566 5567 */
5567 5568
5568 5569 static int
5569 5570 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5570 5571 {
5571 5572 bpobj_t *bpo = arg;
5572 5573 bpobj_enqueue(bpo, bp, tx);
5573 5574 return (0);
5574 5575 }
5575 5576
5576 5577 static int
5577 5578 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5578 5579 {
5579 5580 zio_t *zio = arg;
5580 5581
5581 5582 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5582 5583 zio->io_flags));
5583 5584 return (0);
5584 5585 }
5585 5586
5586 5587 static void
5587 5588 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5588 5589 {
5589 5590 char *packed = NULL;
5590 5591 size_t bufsize;
5591 5592 size_t nvsize = 0;
5592 5593 dmu_buf_t *db;
5593 5594
5594 5595 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5595 5596
5596 5597 /*
5597 5598 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5598 5599 * information. This avoids the dbuf_will_dirty() path and
5599 5600 * saves us a pre-read to get data we don't actually care about.
5600 5601 */
5601 5602 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5602 5603 packed = kmem_alloc(bufsize, KM_SLEEP);
5603 5604
5604 5605 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5605 5606 KM_SLEEP) == 0);
5606 5607 bzero(packed + nvsize, bufsize - nvsize);
5607 5608
5608 5609 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5609 5610
5610 5611 kmem_free(packed, bufsize);
5611 5612
5612 5613 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5613 5614 dmu_buf_will_dirty(db, tx);
5614 5615 *(uint64_t *)db->db_data = nvsize;
5615 5616 dmu_buf_rele(db, FTAG);
5616 5617 }
5617 5618
5618 5619 static void
5619 5620 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5620 5621 const char *config, const char *entry)
5621 5622 {
5622 5623 nvlist_t *nvroot;
5623 5624 nvlist_t **list;
5624 5625 int i;
5625 5626
5626 5627 if (!sav->sav_sync)
5627 5628 return;
5628 5629
5629 5630 /*
5630 5631 * Update the MOS nvlist describing the list of available devices.
5631 5632 * spa_validate_aux() will have already made sure this nvlist is
5632 5633 * valid and the vdevs are labeled appropriately.
5633 5634 */
5634 5635 if (sav->sav_object == 0) {
5635 5636 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5636 5637 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5637 5638 sizeof (uint64_t), tx);
5638 5639 VERIFY(zap_update(spa->spa_meta_objset,
5639 5640 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5640 5641 &sav->sav_object, tx) == 0);
5641 5642 }
5642 5643
5643 5644 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5644 5645 if (sav->sav_count == 0) {
5645 5646 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5646 5647 } else {
5647 5648 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5648 5649 for (i = 0; i < sav->sav_count; i++)
5649 5650 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5650 5651 B_FALSE, VDEV_CONFIG_L2CACHE);
5651 5652 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5652 5653 sav->sav_count) == 0);
5653 5654 for (i = 0; i < sav->sav_count; i++)
5654 5655 nvlist_free(list[i]);
5655 5656 kmem_free(list, sav->sav_count * sizeof (void *));
5656 5657 }
5657 5658
5658 5659 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5659 5660 nvlist_free(nvroot);
5660 5661
5661 5662 sav->sav_sync = B_FALSE;
5662 5663 }
5663 5664
5664 5665 static void
5665 5666 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5666 5667 {
5667 5668 nvlist_t *config;
5668 5669
5669 5670 if (list_is_empty(&spa->spa_config_dirty_list))
5670 5671 return;
5671 5672
5672 5673 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5673 5674
5674 5675 config = spa_config_generate(spa, spa->spa_root_vdev,
5675 5676 dmu_tx_get_txg(tx), B_FALSE);
5676 5677
5677 5678 spa_config_exit(spa, SCL_STATE, FTAG);
5678 5679
5679 5680 if (spa->spa_config_syncing)
5680 5681 nvlist_free(spa->spa_config_syncing);
5681 5682 spa->spa_config_syncing = config;
5682 5683
5683 5684 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5684 5685 }
5685 5686
5686 5687 static void
5687 5688 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5688 5689 {
5689 5690 spa_t *spa = arg1;
5690 5691 uint64_t version = *(uint64_t *)arg2;
5691 5692
↓ open down ↓ |
215 lines elided |
↑ open up ↑ |
5692 5693 /*
5693 5694 * Setting the version is special cased when first creating the pool.
5694 5695 */
5695 5696 ASSERT(tx->tx_txg != TXG_INITIAL);
5696 5697
5697 5698 ASSERT(version <= SPA_VERSION);
5698 5699 ASSERT(version >= spa_version(spa));
5699 5700
5700 5701 spa->spa_uberblock.ub_version = version;
5701 5702 vdev_config_dirty(spa->spa_root_vdev);
5703 + spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5702 5704 }
5703 5705
5704 5706 /*
5705 5707 * Set zpool properties.
5706 5708 */
5707 5709 static void
5708 5710 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5709 5711 {
5710 5712 spa_t *spa = arg1;
5711 5713 objset_t *mos = spa->spa_meta_objset;
5712 5714 nvlist_t *nvp = arg2;
5713 5715 nvpair_t *elem = NULL;
5714 5716
5715 5717 mutex_enter(&spa->spa_props_lock);
5716 5718
5717 5719 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5718 5720 uint64_t intval;
5719 5721 char *strval, *fname;
5720 5722 zpool_prop_t prop;
5721 5723 const char *propname;
5722 5724 zprop_type_t proptype;
5723 5725 zfeature_info_t *feature;
5724 5726
5725 5727 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
5726 5728 case ZPROP_INVAL:
5727 5729 /*
5728 5730 * We checked this earlier in spa_prop_validate().
5729 5731 */
5730 5732 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5731 5733
5732 5734 fname = strchr(nvpair_name(elem), '@') + 1;
5733 5735 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5734 5736
5735 5737 spa_feature_enable(spa, feature, tx);
5738 + spa_history_log_internal(spa, "set", tx,
5739 + "%s=enabled", nvpair_name(elem));
5736 5740 break;
5737 5741
5738 5742 case ZPOOL_PROP_VERSION:
5739 5743 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5740 5744 /*
5741 5745 * The version is synced seperatly before other
5742 5746 * properties and should be correct by now.
5743 5747 */
5744 5748 ASSERT3U(spa_version(spa), >=, intval);
5745 5749 break;
5746 5750
5747 5751 case ZPOOL_PROP_ALTROOT:
5748 5752 /*
5749 5753 * 'altroot' is a non-persistent property. It should
5750 5754 * have been set temporarily at creation or import time.
5751 5755 */
5752 5756 ASSERT(spa->spa_root != NULL);
5753 5757 break;
5754 5758
5755 5759 case ZPOOL_PROP_READONLY:
5756 5760 case ZPOOL_PROP_CACHEFILE:
5757 5761 /*
5758 5762 * 'readonly' and 'cachefile' are also non-persisitent
5759 5763 * properties.
5760 5764 */
5761 5765 break;
5762 5766 case ZPOOL_PROP_COMMENT:
5763 5767 VERIFY(nvpair_value_string(elem, &strval) == 0);
5764 5768 if (spa->spa_comment != NULL)
↓ open down ↓ |
19 lines elided |
↑ open up ↑ |
5765 5769 spa_strfree(spa->spa_comment);
5766 5770 spa->spa_comment = spa_strdup(strval);
5767 5771 /*
5768 5772 * We need to dirty the configuration on all the vdevs
5769 5773 * so that their labels get updated. It's unnecessary
5770 5774 * to do this for pool creation since the vdev's
5771 5775 * configuratoin has already been dirtied.
5772 5776 */
5773 5777 if (tx->tx_txg != TXG_INITIAL)
5774 5778 vdev_config_dirty(spa->spa_root_vdev);
5779 + spa_history_log_internal(spa, "set", tx,
5780 + "%s=%s", nvpair_name(elem), strval);
5775 5781 break;
5776 5782 default:
5777 5783 /*
5778 5784 * Set pool property values in the poolprops mos object.
5779 5785 */
5780 5786 if (spa->spa_pool_props_object == 0) {
5781 5787 spa->spa_pool_props_object =
5782 5788 zap_create_link(mos, DMU_OT_POOL_PROPS,
5783 5789 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5784 5790 tx);
5785 5791 }
5786 5792
↓ open down ↓ |
2 lines elided |
↑ open up ↑ |
5787 5793 /* normalize the property name */
5788 5794 propname = zpool_prop_to_name(prop);
5789 5795 proptype = zpool_prop_get_type(prop);
5790 5796
5791 5797 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5792 5798 ASSERT(proptype == PROP_TYPE_STRING);
5793 5799 VERIFY(nvpair_value_string(elem, &strval) == 0);
5794 5800 VERIFY(zap_update(mos,
5795 5801 spa->spa_pool_props_object, propname,
5796 5802 1, strlen(strval) + 1, strval, tx) == 0);
5797 -
5803 + spa_history_log_internal(spa, "set", tx,
5804 + "%s=%s", nvpair_name(elem), strval);
5798 5805 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5799 5806 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5800 5807
5801 5808 if (proptype == PROP_TYPE_INDEX) {
5802 5809 const char *unused;
5803 5810 VERIFY(zpool_prop_index_to_string(
5804 5811 prop, intval, &unused) == 0);
5805 5812 }
5806 5813 VERIFY(zap_update(mos,
5807 5814 spa->spa_pool_props_object, propname,
5808 5815 8, 1, &intval, tx) == 0);
5816 + spa_history_log_internal(spa, "set", tx,
5817 + "%s=%lld", nvpair_name(elem), intval);
5809 5818 } else {
5810 5819 ASSERT(0); /* not allowed */
5811 5820 }
5812 5821
5813 5822 switch (prop) {
5814 5823 case ZPOOL_PROP_DELEGATION:
5815 5824 spa->spa_delegation = intval;
5816 5825 break;
5817 5826 case ZPOOL_PROP_BOOTFS:
5818 5827 spa->spa_bootfs = intval;
5819 5828 break;
5820 5829 case ZPOOL_PROP_FAILUREMODE:
5821 5830 spa->spa_failmode = intval;
5822 5831 break;
5823 5832 case ZPOOL_PROP_AUTOEXPAND:
5824 5833 spa->spa_autoexpand = intval;
5825 5834 if (tx->tx_txg != TXG_INITIAL)
5826 5835 spa_async_request(spa,
↓ open down ↓ |
8 lines elided |
↑ open up ↑ |
5827 5836 SPA_ASYNC_AUTOEXPAND);
5828 5837 break;
5829 5838 case ZPOOL_PROP_DEDUPDITTO:
5830 5839 spa->spa_dedup_ditto = intval;
5831 5840 break;
5832 5841 default:
5833 5842 break;
5834 5843 }
5835 5844 }
5836 5845
5837 - /* log internal history if this is not a zpool create */
5838 - if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5839 - tx->tx_txg != TXG_INITIAL) {
5840 - spa_history_log_internal(LOG_POOL_PROPSET,
5841 - spa, tx, "%s %lld %s",
5842 - nvpair_name(elem), intval, spa_name(spa));
5843 - }
5844 5846 }
5845 5847
5846 5848 mutex_exit(&spa->spa_props_lock);
5847 5849 }
5848 5850
5849 5851 /*
5850 5852 * Perform one-time upgrade on-disk changes. spa_version() does not
5851 5853 * reflect the new version this txg, so there must be no changes this
5852 5854 * txg to anything that the upgrade code depends on after it executes.
5853 5855 * Therefore this must be called after dsl_pool_sync() does the sync
5854 5856 * tasks.
5855 5857 */
5856 5858 static void
5857 5859 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5858 5860 {
5859 5861 dsl_pool_t *dp = spa->spa_dsl_pool;
5860 5862
5861 5863 ASSERT(spa->spa_sync_pass == 1);
5862 5864
5863 5865 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5864 5866 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5865 5867 dsl_pool_create_origin(dp, tx);
5866 5868
5867 5869 /* Keeping the origin open increases spa_minref */
5868 5870 spa->spa_minref += 3;
5869 5871 }
5870 5872
5871 5873 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5872 5874 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5873 5875 dsl_pool_upgrade_clones(dp, tx);
5874 5876 }
5875 5877
5876 5878 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5877 5879 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5878 5880 dsl_pool_upgrade_dir_clones(dp, tx);
5879 5881
5880 5882 /* Keeping the freedir open increases spa_minref */
5881 5883 spa->spa_minref += 3;
5882 5884 }
5883 5885
5884 5886 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5885 5887 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5886 5888 spa_feature_create_zap_objects(spa, tx);
5887 5889 }
5888 5890 }
5889 5891
5890 5892 /*
5891 5893 * Sync the specified transaction group. New blocks may be dirtied as
5892 5894 * part of the process, so we iterate until it converges.
5893 5895 */
5894 5896 void
5895 5897 spa_sync(spa_t *spa, uint64_t txg)
5896 5898 {
5897 5899 dsl_pool_t *dp = spa->spa_dsl_pool;
5898 5900 objset_t *mos = spa->spa_meta_objset;
5899 5901 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5900 5902 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5901 5903 vdev_t *rvd = spa->spa_root_vdev;
5902 5904 vdev_t *vd;
5903 5905 dmu_tx_t *tx;
5904 5906 int error;
5905 5907
5906 5908 VERIFY(spa_writeable(spa));
5907 5909
5908 5910 /*
5909 5911 * Lock out configuration changes.
5910 5912 */
5911 5913 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5912 5914
5913 5915 spa->spa_syncing_txg = txg;
5914 5916 spa->spa_sync_pass = 0;
5915 5917
5916 5918 /*
5917 5919 * If there are any pending vdev state changes, convert them
5918 5920 * into config changes that go out with this transaction group.
5919 5921 */
5920 5922 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5921 5923 while (list_head(&spa->spa_state_dirty_list) != NULL) {
5922 5924 /*
5923 5925 * We need the write lock here because, for aux vdevs,
5924 5926 * calling vdev_config_dirty() modifies sav_config.
5925 5927 * This is ugly and will become unnecessary when we
5926 5928 * eliminate the aux vdev wart by integrating all vdevs
5927 5929 * into the root vdev tree.
5928 5930 */
5929 5931 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5930 5932 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5931 5933 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5932 5934 vdev_state_clean(vd);
5933 5935 vdev_config_dirty(vd);
5934 5936 }
5935 5937 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5936 5938 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5937 5939 }
5938 5940 spa_config_exit(spa, SCL_STATE, FTAG);
5939 5941
5940 5942 tx = dmu_tx_create_assigned(dp, txg);
5941 5943
5942 5944 /*
5943 5945 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5944 5946 * set spa_deflate if we have no raid-z vdevs.
5945 5947 */
5946 5948 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5947 5949 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5948 5950 int i;
5949 5951
5950 5952 for (i = 0; i < rvd->vdev_children; i++) {
5951 5953 vd = rvd->vdev_child[i];
5952 5954 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5953 5955 break;
5954 5956 }
5955 5957 if (i == rvd->vdev_children) {
5956 5958 spa->spa_deflate = TRUE;
5957 5959 VERIFY(0 == zap_add(spa->spa_meta_objset,
5958 5960 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5959 5961 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5960 5962 }
5961 5963 }
5962 5964
5963 5965 /*
5964 5966 * If anything has changed in this txg, or if someone is waiting
5965 5967 * for this txg to sync (eg, spa_vdev_remove()), push the
5966 5968 * deferred frees from the previous txg. If not, leave them
5967 5969 * alone so that we don't generate work on an otherwise idle
5968 5970 * system.
5969 5971 */
5970 5972 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5971 5973 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5972 5974 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5973 5975 ((dsl_scan_active(dp->dp_scan) ||
5974 5976 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5975 5977 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5976 5978 VERIFY3U(bpobj_iterate(defer_bpo,
5977 5979 spa_free_sync_cb, zio, tx), ==, 0);
5978 5980 VERIFY3U(zio_wait(zio), ==, 0);
5979 5981 }
5980 5982
5981 5983 /*
5982 5984 * Iterate to convergence.
5983 5985 */
5984 5986 do {
5985 5987 int pass = ++spa->spa_sync_pass;
5986 5988
5987 5989 spa_sync_config_object(spa, tx);
5988 5990 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5989 5991 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5990 5992 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5991 5993 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5992 5994 spa_errlog_sync(spa, txg);
5993 5995 dsl_pool_sync(dp, txg);
5994 5996
5995 5997 if (pass <= SYNC_PASS_DEFERRED_FREE) {
5996 5998 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5997 5999 bplist_iterate(free_bpl, spa_free_sync_cb,
5998 6000 zio, tx);
5999 6001 VERIFY(zio_wait(zio) == 0);
6000 6002 } else {
6001 6003 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6002 6004 defer_bpo, tx);
6003 6005 }
6004 6006
6005 6007 ddt_sync(spa, txg);
6006 6008 dsl_scan_sync(dp, tx);
6007 6009
6008 6010 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6009 6011 vdev_sync(vd, txg);
6010 6012
6011 6013 if (pass == 1)
6012 6014 spa_sync_upgrades(spa, tx);
6013 6015
6014 6016 } while (dmu_objset_is_dirty(mos, txg));
6015 6017
6016 6018 /*
6017 6019 * Rewrite the vdev configuration (which includes the uberblock)
6018 6020 * to commit the transaction group.
6019 6021 *
6020 6022 * If there are no dirty vdevs, we sync the uberblock to a few
6021 6023 * random top-level vdevs that are known to be visible in the
6022 6024 * config cache (see spa_vdev_add() for a complete description).
6023 6025 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6024 6026 */
6025 6027 for (;;) {
6026 6028 /*
6027 6029 * We hold SCL_STATE to prevent vdev open/close/etc.
6028 6030 * while we're attempting to write the vdev labels.
6029 6031 */
6030 6032 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6031 6033
6032 6034 if (list_is_empty(&spa->spa_config_dirty_list)) {
6033 6035 vdev_t *svd[SPA_DVAS_PER_BP];
6034 6036 int svdcount = 0;
6035 6037 int children = rvd->vdev_children;
6036 6038 int c0 = spa_get_random(children);
6037 6039
6038 6040 for (int c = 0; c < children; c++) {
6039 6041 vd = rvd->vdev_child[(c0 + c) % children];
6040 6042 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6041 6043 continue;
6042 6044 svd[svdcount++] = vd;
6043 6045 if (svdcount == SPA_DVAS_PER_BP)
6044 6046 break;
6045 6047 }
6046 6048 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6047 6049 if (error != 0)
6048 6050 error = vdev_config_sync(svd, svdcount, txg,
6049 6051 B_TRUE);
6050 6052 } else {
6051 6053 error = vdev_config_sync(rvd->vdev_child,
6052 6054 rvd->vdev_children, txg, B_FALSE);
6053 6055 if (error != 0)
6054 6056 error = vdev_config_sync(rvd->vdev_child,
6055 6057 rvd->vdev_children, txg, B_TRUE);
6056 6058 }
6057 6059
6058 6060 spa_config_exit(spa, SCL_STATE, FTAG);
6059 6061
6060 6062 if (error == 0)
6061 6063 break;
6062 6064 zio_suspend(spa, NULL);
6063 6065 zio_resume_wait(spa);
6064 6066 }
6065 6067 dmu_tx_commit(tx);
6066 6068
6067 6069 /*
6068 6070 * Clear the dirty config list.
6069 6071 */
6070 6072 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6071 6073 vdev_config_clean(vd);
6072 6074
6073 6075 /*
6074 6076 * Now that the new config has synced transactionally,
6075 6077 * let it become visible to the config cache.
6076 6078 */
6077 6079 if (spa->spa_config_syncing != NULL) {
6078 6080 spa_config_set(spa, spa->spa_config_syncing);
6079 6081 spa->spa_config_txg = txg;
6080 6082 spa->spa_config_syncing = NULL;
6081 6083 }
6082 6084
6083 6085 spa->spa_ubsync = spa->spa_uberblock;
6084 6086
6085 6087 dsl_pool_sync_done(dp, txg);
6086 6088
6087 6089 /*
6088 6090 * Update usable space statistics.
6089 6091 */
6090 6092 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6091 6093 vdev_sync_done(vd, txg);
6092 6094
6093 6095 spa_update_dspace(spa);
6094 6096
6095 6097 /*
6096 6098 * It had better be the case that we didn't dirty anything
6097 6099 * since vdev_config_sync().
6098 6100 */
6099 6101 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6100 6102 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6101 6103 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6102 6104
6103 6105 spa->spa_sync_pass = 0;
6104 6106
6105 6107 spa_config_exit(spa, SCL_CONFIG, FTAG);
6106 6108
6107 6109 spa_handle_ignored_writes(spa);
6108 6110
6109 6111 /*
6110 6112 * If any async tasks have been requested, kick them off.
6111 6113 */
6112 6114 spa_async_dispatch(spa);
6113 6115 }
6114 6116
6115 6117 /*
6116 6118 * Sync all pools. We don't want to hold the namespace lock across these
6117 6119 * operations, so we take a reference on the spa_t and drop the lock during the
6118 6120 * sync.
6119 6121 */
6120 6122 void
6121 6123 spa_sync_allpools(void)
6122 6124 {
6123 6125 spa_t *spa = NULL;
6124 6126 mutex_enter(&spa_namespace_lock);
6125 6127 while ((spa = spa_next(spa)) != NULL) {
6126 6128 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6127 6129 !spa_writeable(spa) || spa_suspended(spa))
6128 6130 continue;
6129 6131 spa_open_ref(spa, FTAG);
6130 6132 mutex_exit(&spa_namespace_lock);
6131 6133 txg_wait_synced(spa_get_dsl(spa), 0);
6132 6134 mutex_enter(&spa_namespace_lock);
6133 6135 spa_close(spa, FTAG);
6134 6136 }
6135 6137 mutex_exit(&spa_namespace_lock);
6136 6138 }
6137 6139
6138 6140 /*
6139 6141 * ==========================================================================
6140 6142 * Miscellaneous routines
6141 6143 * ==========================================================================
6142 6144 */
6143 6145
6144 6146 /*
6145 6147 * Remove all pools in the system.
6146 6148 */
6147 6149 void
6148 6150 spa_evict_all(void)
6149 6151 {
6150 6152 spa_t *spa;
6151 6153
6152 6154 /*
6153 6155 * Remove all cached state. All pools should be closed now,
6154 6156 * so every spa in the AVL tree should be unreferenced.
6155 6157 */
6156 6158 mutex_enter(&spa_namespace_lock);
6157 6159 while ((spa = spa_next(NULL)) != NULL) {
6158 6160 /*
6159 6161 * Stop async tasks. The async thread may need to detach
6160 6162 * a device that's been replaced, which requires grabbing
6161 6163 * spa_namespace_lock, so we must drop it here.
6162 6164 */
6163 6165 spa_open_ref(spa, FTAG);
6164 6166 mutex_exit(&spa_namespace_lock);
6165 6167 spa_async_suspend(spa);
6166 6168 mutex_enter(&spa_namespace_lock);
6167 6169 spa_close(spa, FTAG);
6168 6170
6169 6171 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6170 6172 spa_unload(spa);
6171 6173 spa_deactivate(spa);
6172 6174 }
6173 6175 spa_remove(spa);
6174 6176 }
6175 6177 mutex_exit(&spa_namespace_lock);
6176 6178 }
6177 6179
6178 6180 vdev_t *
6179 6181 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6180 6182 {
6181 6183 vdev_t *vd;
6182 6184 int i;
6183 6185
6184 6186 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6185 6187 return (vd);
6186 6188
6187 6189 if (aux) {
6188 6190 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6189 6191 vd = spa->spa_l2cache.sav_vdevs[i];
6190 6192 if (vd->vdev_guid == guid)
6191 6193 return (vd);
6192 6194 }
6193 6195
6194 6196 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6195 6197 vd = spa->spa_spares.sav_vdevs[i];
6196 6198 if (vd->vdev_guid == guid)
6197 6199 return (vd);
6198 6200 }
6199 6201 }
6200 6202
6201 6203 return (NULL);
6202 6204 }
6203 6205
6204 6206 void
6205 6207 spa_upgrade(spa_t *spa, uint64_t version)
6206 6208 {
6207 6209 ASSERT(spa_writeable(spa));
6208 6210
6209 6211 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6210 6212
6211 6213 /*
6212 6214 * This should only be called for a non-faulted pool, and since a
6213 6215 * future version would result in an unopenable pool, this shouldn't be
6214 6216 * possible.
6215 6217 */
6216 6218 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6217 6219 ASSERT(version >= spa->spa_uberblock.ub_version);
6218 6220
6219 6221 spa->spa_uberblock.ub_version = version;
6220 6222 vdev_config_dirty(spa->spa_root_vdev);
6221 6223
6222 6224 spa_config_exit(spa, SCL_ALL, FTAG);
6223 6225
6224 6226 txg_wait_synced(spa_get_dsl(spa), 0);
6225 6227 }
6226 6228
6227 6229 boolean_t
6228 6230 spa_has_spare(spa_t *spa, uint64_t guid)
6229 6231 {
6230 6232 int i;
6231 6233 uint64_t spareguid;
6232 6234 spa_aux_vdev_t *sav = &spa->spa_spares;
6233 6235
6234 6236 for (i = 0; i < sav->sav_count; i++)
6235 6237 if (sav->sav_vdevs[i]->vdev_guid == guid)
6236 6238 return (B_TRUE);
6237 6239
6238 6240 for (i = 0; i < sav->sav_npending; i++) {
6239 6241 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6240 6242 &spareguid) == 0 && spareguid == guid)
6241 6243 return (B_TRUE);
6242 6244 }
6243 6245
6244 6246 return (B_FALSE);
6245 6247 }
6246 6248
6247 6249 /*
6248 6250 * Check if a pool has an active shared spare device.
6249 6251 * Note: reference count of an active spare is 2, as a spare and as a replace
6250 6252 */
6251 6253 static boolean_t
6252 6254 spa_has_active_shared_spare(spa_t *spa)
6253 6255 {
6254 6256 int i, refcnt;
6255 6257 uint64_t pool;
6256 6258 spa_aux_vdev_t *sav = &spa->spa_spares;
6257 6259
6258 6260 for (i = 0; i < sav->sav_count; i++) {
6259 6261 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6260 6262 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6261 6263 refcnt > 2)
6262 6264 return (B_TRUE);
6263 6265 }
6264 6266
6265 6267 return (B_FALSE);
6266 6268 }
6267 6269
6268 6270 /*
6269 6271 * Post a sysevent corresponding to the given event. The 'name' must be one of
6270 6272 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6271 6273 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6272 6274 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6273 6275 * or zdb as real changes.
6274 6276 */
6275 6277 void
6276 6278 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6277 6279 {
6278 6280 #ifdef _KERNEL
6279 6281 sysevent_t *ev;
6280 6282 sysevent_attr_list_t *attr = NULL;
6281 6283 sysevent_value_t value;
6282 6284 sysevent_id_t eid;
6283 6285
6284 6286 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6285 6287 SE_SLEEP);
6286 6288
6287 6289 value.value_type = SE_DATA_TYPE_STRING;
6288 6290 value.value.sv_string = spa_name(spa);
6289 6291 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6290 6292 goto done;
6291 6293
6292 6294 value.value_type = SE_DATA_TYPE_UINT64;
6293 6295 value.value.sv_uint64 = spa_guid(spa);
6294 6296 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6295 6297 goto done;
6296 6298
6297 6299 if (vd) {
6298 6300 value.value_type = SE_DATA_TYPE_UINT64;
6299 6301 value.value.sv_uint64 = vd->vdev_guid;
6300 6302 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6301 6303 SE_SLEEP) != 0)
6302 6304 goto done;
6303 6305
6304 6306 if (vd->vdev_path) {
6305 6307 value.value_type = SE_DATA_TYPE_STRING;
6306 6308 value.value.sv_string = vd->vdev_path;
6307 6309 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6308 6310 &value, SE_SLEEP) != 0)
6309 6311 goto done;
6310 6312 }
6311 6313 }
6312 6314
6313 6315 if (sysevent_attach_attributes(ev, attr) != 0)
6314 6316 goto done;
6315 6317 attr = NULL;
6316 6318
6317 6319 (void) log_sysevent(ev, SE_SLEEP, &eid);
6318 6320
6319 6321 done:
6320 6322 if (attr)
6321 6323 sysevent_free_attr(attr);
6322 6324 sysevent_free(ev);
6323 6325 #endif
6324 6326 }
↓ open down ↓ |
471 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX