Print this page
    
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/uts/common/fs/zfs/vdev.c
          +++ new/usr/src/uts/common/fs/zfs/vdev.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  24   24   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  25   25   * Copyright (c) 2012 by Delphix. All rights reserved.
  26   26   */
  27   27  
  28   28  #include <sys/zfs_context.h>
  29   29  #include <sys/fm/fs/zfs.h>
  30   30  #include <sys/spa.h>
  31   31  #include <sys/spa_impl.h>
  32   32  #include <sys/dmu.h>
  33   33  #include <sys/dmu_tx.h>
  34   34  #include <sys/vdev_impl.h>
  35   35  #include <sys/uberblock_impl.h>
  36   36  #include <sys/metaslab.h>
  37   37  #include <sys/metaslab_impl.h>
  38   38  #include <sys/space_map.h>
  39   39  #include <sys/zio.h>
  40   40  #include <sys/zap.h>
  41   41  #include <sys/fs/zfs.h>
  42   42  #include <sys/arc.h>
  43   43  #include <sys/zil.h>
  44   44  #include <sys/dsl_scan.h>
  45   45  
  46   46  /*
  47   47   * Virtual device management.
  48   48   */
  49   49  
  50   50  static vdev_ops_t *vdev_ops_table[] = {
  51   51          &vdev_root_ops,
  52   52          &vdev_raidz_ops,
  53   53          &vdev_mirror_ops,
  54   54          &vdev_replacing_ops,
  55   55          &vdev_spare_ops,
  56   56          &vdev_disk_ops,
  57   57          &vdev_file_ops,
  58   58          &vdev_missing_ops,
  59   59          &vdev_hole_ops,
  60   60          NULL
  61   61  };
  62   62  
  63   63  /* maximum scrub/resilver I/O queue per leaf vdev */
  64   64  int zfs_scrub_limit = 10;
  65   65  
  66   66  /*
  67   67   * Given a vdev type, return the appropriate ops vector.
  68   68   */
  69   69  static vdev_ops_t *
  70   70  vdev_getops(const char *type)
  71   71  {
  72   72          vdev_ops_t *ops, **opspp;
  73   73  
  74   74          for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
  75   75                  if (strcmp(ops->vdev_op_type, type) == 0)
  76   76                          break;
  77   77  
  78   78          return (ops);
  79   79  }
  80   80  
  81   81  /*
  82   82   * Default asize function: return the MAX of psize with the asize of
  83   83   * all children.  This is what's used by anything other than RAID-Z.
  84   84   */
  85   85  uint64_t
  86   86  vdev_default_asize(vdev_t *vd, uint64_t psize)
  87   87  {
  88   88          uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
  89   89          uint64_t csize;
  90   90  
  91   91          for (int c = 0; c < vd->vdev_children; c++) {
  92   92                  csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
  93   93                  asize = MAX(asize, csize);
  94   94          }
  95   95  
  96   96          return (asize);
  97   97  }
  98   98  
  99   99  /*
 100  100   * Get the minimum allocatable size. We define the allocatable size as
 101  101   * the vdev's asize rounded to the nearest metaslab. This allows us to
 102  102   * replace or attach devices which don't have the same physical size but
 103  103   * can still satisfy the same number of allocations.
 104  104   */
 105  105  uint64_t
 106  106  vdev_get_min_asize(vdev_t *vd)
 107  107  {
 108  108          vdev_t *pvd = vd->vdev_parent;
 109  109  
 110  110          /*
 111  111           * If our parent is NULL (inactive spare or cache) or is the root,
 112  112           * just return our own asize.
 113  113           */
 114  114          if (pvd == NULL)
 115  115                  return (vd->vdev_asize);
 116  116  
 117  117          /*
 118  118           * The top-level vdev just returns the allocatable size rounded
 119  119           * to the nearest metaslab.
 120  120           */
 121  121          if (vd == vd->vdev_top)
 122  122                  return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
 123  123  
 124  124          /*
 125  125           * The allocatable space for a raidz vdev is N * sizeof(smallest child),
 126  126           * so each child must provide at least 1/Nth of its asize.
 127  127           */
 128  128          if (pvd->vdev_ops == &vdev_raidz_ops)
 129  129                  return (pvd->vdev_min_asize / pvd->vdev_children);
 130  130  
 131  131          return (pvd->vdev_min_asize);
 132  132  }
 133  133  
 134  134  void
 135  135  vdev_set_min_asize(vdev_t *vd)
 136  136  {
 137  137          vd->vdev_min_asize = vdev_get_min_asize(vd);
 138  138  
 139  139          for (int c = 0; c < vd->vdev_children; c++)
 140  140                  vdev_set_min_asize(vd->vdev_child[c]);
 141  141  }
 142  142  
 143  143  vdev_t *
 144  144  vdev_lookup_top(spa_t *spa, uint64_t vdev)
 145  145  {
 146  146          vdev_t *rvd = spa->spa_root_vdev;
 147  147  
 148  148          ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
 149  149  
 150  150          if (vdev < rvd->vdev_children) {
 151  151                  ASSERT(rvd->vdev_child[vdev] != NULL);
 152  152                  return (rvd->vdev_child[vdev]);
 153  153          }
 154  154  
 155  155          return (NULL);
 156  156  }
 157  157  
 158  158  vdev_t *
 159  159  vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
 160  160  {
 161  161          vdev_t *mvd;
 162  162  
 163  163          if (vd->vdev_guid == guid)
 164  164                  return (vd);
 165  165  
 166  166          for (int c = 0; c < vd->vdev_children; c++)
 167  167                  if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
 168  168                      NULL)
 169  169                          return (mvd);
 170  170  
 171  171          return (NULL);
 172  172  }
 173  173  
 174  174  void
 175  175  vdev_add_child(vdev_t *pvd, vdev_t *cvd)
 176  176  {
 177  177          size_t oldsize, newsize;
 178  178          uint64_t id = cvd->vdev_id;
 179  179          vdev_t **newchild;
 180  180  
 181  181          ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 182  182          ASSERT(cvd->vdev_parent == NULL);
 183  183  
 184  184          cvd->vdev_parent = pvd;
 185  185  
 186  186          if (pvd == NULL)
 187  187                  return;
 188  188  
 189  189          ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
 190  190  
 191  191          oldsize = pvd->vdev_children * sizeof (vdev_t *);
 192  192          pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
 193  193          newsize = pvd->vdev_children * sizeof (vdev_t *);
 194  194  
 195  195          newchild = kmem_zalloc(newsize, KM_SLEEP);
 196  196          if (pvd->vdev_child != NULL) {
 197  197                  bcopy(pvd->vdev_child, newchild, oldsize);
 198  198                  kmem_free(pvd->vdev_child, oldsize);
 199  199          }
 200  200  
 201  201          pvd->vdev_child = newchild;
 202  202          pvd->vdev_child[id] = cvd;
 203  203  
 204  204          cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
 205  205          ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
 206  206  
 207  207          /*
 208  208           * Walk up all ancestors to update guid sum.
 209  209           */
 210  210          for (; pvd != NULL; pvd = pvd->vdev_parent)
 211  211                  pvd->vdev_guid_sum += cvd->vdev_guid_sum;
 212  212  }
 213  213  
 214  214  void
 215  215  vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
 216  216  {
 217  217          int c;
 218  218          uint_t id = cvd->vdev_id;
 219  219  
 220  220          ASSERT(cvd->vdev_parent == pvd);
 221  221  
 222  222          if (pvd == NULL)
 223  223                  return;
 224  224  
 225  225          ASSERT(id < pvd->vdev_children);
 226  226          ASSERT(pvd->vdev_child[id] == cvd);
 227  227  
 228  228          pvd->vdev_child[id] = NULL;
 229  229          cvd->vdev_parent = NULL;
 230  230  
 231  231          for (c = 0; c < pvd->vdev_children; c++)
 232  232                  if (pvd->vdev_child[c])
 233  233                          break;
 234  234  
 235  235          if (c == pvd->vdev_children) {
 236  236                  kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
 237  237                  pvd->vdev_child = NULL;
 238  238                  pvd->vdev_children = 0;
 239  239          }
 240  240  
 241  241          /*
 242  242           * Walk up all ancestors to update guid sum.
 243  243           */
 244  244          for (; pvd != NULL; pvd = pvd->vdev_parent)
 245  245                  pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
 246  246  }
 247  247  
 248  248  /*
 249  249   * Remove any holes in the child array.
 250  250   */
 251  251  void
 252  252  vdev_compact_children(vdev_t *pvd)
 253  253  {
 254  254          vdev_t **newchild, *cvd;
 255  255          int oldc = pvd->vdev_children;
 256  256          int newc;
 257  257  
 258  258          ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 259  259  
 260  260          for (int c = newc = 0; c < oldc; c++)
 261  261                  if (pvd->vdev_child[c])
 262  262                          newc++;
 263  263  
 264  264          newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
 265  265  
 266  266          for (int c = newc = 0; c < oldc; c++) {
 267  267                  if ((cvd = pvd->vdev_child[c]) != NULL) {
 268  268                          newchild[newc] = cvd;
 269  269                          cvd->vdev_id = newc++;
 270  270                  }
 271  271          }
 272  272  
 273  273          kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
 274  274          pvd->vdev_child = newchild;
 275  275          pvd->vdev_children = newc;
 276  276  }
 277  277  
 278  278  /*
 279  279   * Allocate and minimally initialize a vdev_t.
 280  280   */
 281  281  vdev_t *
 282  282  vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
 283  283  {
 284  284          vdev_t *vd;
 285  285  
 286  286          vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
 287  287  
 288  288          if (spa->spa_root_vdev == NULL) {
 289  289                  ASSERT(ops == &vdev_root_ops);
 290  290                  spa->spa_root_vdev = vd;
 291  291                  spa->spa_load_guid = spa_generate_guid(NULL);
 292  292          }
 293  293  
 294  294          if (guid == 0 && ops != &vdev_hole_ops) {
 295  295                  if (spa->spa_root_vdev == vd) {
 296  296                          /*
 297  297                           * The root vdev's guid will also be the pool guid,
 298  298                           * which must be unique among all pools.
 299  299                           */
 300  300                          guid = spa_generate_guid(NULL);
 301  301                  } else {
 302  302                          /*
 303  303                           * Any other vdev's guid must be unique within the pool.
 304  304                           */
 305  305                          guid = spa_generate_guid(spa);
 306  306                  }
 307  307                  ASSERT(!spa_guid_exists(spa_guid(spa), guid));
 308  308          }
 309  309  
 310  310          vd->vdev_spa = spa;
 311  311          vd->vdev_id = id;
 312  312          vd->vdev_guid = guid;
 313  313          vd->vdev_guid_sum = guid;
 314  314          vd->vdev_ops = ops;
 315  315          vd->vdev_state = VDEV_STATE_CLOSED;
 316  316          vd->vdev_ishole = (ops == &vdev_hole_ops);
 317  317  
 318  318          mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
 319  319          mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
 320  320          mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
 321  321          for (int t = 0; t < DTL_TYPES; t++) {
 322  322                  space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
 323  323                      &vd->vdev_dtl_lock);
 324  324          }
 325  325          txg_list_create(&vd->vdev_ms_list,
 326  326              offsetof(struct metaslab, ms_txg_node));
 327  327          txg_list_create(&vd->vdev_dtl_list,
 328  328              offsetof(struct vdev, vdev_dtl_node));
 329  329          vd->vdev_stat.vs_timestamp = gethrtime();
 330  330          vdev_queue_init(vd);
 331  331          vdev_cache_init(vd);
 332  332  
 333  333          return (vd);
 334  334  }
 335  335  
 336  336  /*
 337  337   * Allocate a new vdev.  The 'alloctype' is used to control whether we are
 338  338   * creating a new vdev or loading an existing one - the behavior is slightly
 339  339   * different for each case.
 340  340   */
 341  341  int
 342  342  vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
 343  343      int alloctype)
 344  344  {
 345  345          vdev_ops_t *ops;
 346  346          char *type;
 347  347          uint64_t guid = 0, islog, nparity;
 348  348          vdev_t *vd;
 349  349  
 350  350          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 351  351  
 352  352          if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
 353  353                  return (EINVAL);
 354  354  
 355  355          if ((ops = vdev_getops(type)) == NULL)
 356  356                  return (EINVAL);
 357  357  
 358  358          /*
 359  359           * If this is a load, get the vdev guid from the nvlist.
 360  360           * Otherwise, vdev_alloc_common() will generate one for us.
 361  361           */
 362  362          if (alloctype == VDEV_ALLOC_LOAD) {
 363  363                  uint64_t label_id;
 364  364  
 365  365                  if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
 366  366                      label_id != id)
 367  367                          return (EINVAL);
 368  368  
 369  369                  if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 370  370                          return (EINVAL);
 371  371          } else if (alloctype == VDEV_ALLOC_SPARE) {
 372  372                  if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 373  373                          return (EINVAL);
 374  374          } else if (alloctype == VDEV_ALLOC_L2CACHE) {
 375  375                  if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 376  376                          return (EINVAL);
 377  377          } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 378  378                  if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
 379  379                          return (EINVAL);
 380  380          }
 381  381  
 382  382          /*
 383  383           * The first allocated vdev must be of type 'root'.
 384  384           */
 385  385          if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
 386  386                  return (EINVAL);
 387  387  
 388  388          /*
 389  389           * Determine whether we're a log vdev.
 390  390           */
 391  391          islog = 0;
 392  392          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
 393  393          if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
 394  394                  return (ENOTSUP);
 395  395  
 396  396          if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
 397  397                  return (ENOTSUP);
 398  398  
 399  399          /*
 400  400           * Set the nparity property for RAID-Z vdevs.
 401  401           */
 402  402          nparity = -1ULL;
 403  403          if (ops == &vdev_raidz_ops) {
 404  404                  if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
 405  405                      &nparity) == 0) {
 406  406                          if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
 407  407                                  return (EINVAL);
 408  408                          /*
 409  409                           * Previous versions could only support 1 or 2 parity
 410  410                           * device.
 411  411                           */
 412  412                          if (nparity > 1 &&
 413  413                              spa_version(spa) < SPA_VERSION_RAIDZ2)
 414  414                                  return (ENOTSUP);
 415  415                          if (nparity > 2 &&
 416  416                              spa_version(spa) < SPA_VERSION_RAIDZ3)
 417  417                                  return (ENOTSUP);
 418  418                  } else {
 419  419                          /*
 420  420                           * We require the parity to be specified for SPAs that
 421  421                           * support multiple parity levels.
 422  422                           */
 423  423                          if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
 424  424                                  return (EINVAL);
 425  425                          /*
 426  426                           * Otherwise, we default to 1 parity device for RAID-Z.
 427  427                           */
 428  428                          nparity = 1;
 429  429                  }
 430  430          } else {
 431  431                  nparity = 0;
 432  432          }
 433  433          ASSERT(nparity != -1ULL);
 434  434  
 435  435          vd = vdev_alloc_common(spa, id, guid, ops);
 436  436  
 437  437          vd->vdev_islog = islog;
 438  438          vd->vdev_nparity = nparity;
 439  439  
 440  440          if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
 441  441                  vd->vdev_path = spa_strdup(vd->vdev_path);
 442  442          if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
 443  443                  vd->vdev_devid = spa_strdup(vd->vdev_devid);
 444  444          if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
 445  445              &vd->vdev_physpath) == 0)
 446  446                  vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
 447  447          if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
 448  448                  vd->vdev_fru = spa_strdup(vd->vdev_fru);
 449  449  
 450  450          /*
 451  451           * Set the whole_disk property.  If it's not specified, leave the value
 452  452           * as -1.
 453  453           */
 454  454          if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
 455  455              &vd->vdev_wholedisk) != 0)
 456  456                  vd->vdev_wholedisk = -1ULL;
 457  457  
 458  458          /*
 459  459           * Look for the 'not present' flag.  This will only be set if the device
 460  460           * was not present at the time of import.
 461  461           */
 462  462          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
 463  463              &vd->vdev_not_present);
 464  464  
 465  465          /*
 466  466           * Get the alignment requirement.
 467  467           */
 468  468          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
 469  469  
 470  470          /*
 471  471           * Retrieve the vdev creation time.
 472  472           */
 473  473          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
 474  474              &vd->vdev_crtxg);
 475  475  
 476  476          /*
 477  477           * If we're a top-level vdev, try to load the allocation parameters.
 478  478           */
 479  479          if (parent && !parent->vdev_parent &&
 480  480              (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
 481  481                  (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
 482  482                      &vd->vdev_ms_array);
 483  483                  (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
 484  484                      &vd->vdev_ms_shift);
 485  485                  (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
 486  486                      &vd->vdev_asize);
 487  487                  (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
 488  488                      &vd->vdev_removing);
 489  489          }
 490  490  
 491  491          if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
 492  492                  ASSERT(alloctype == VDEV_ALLOC_LOAD ||
 493  493                      alloctype == VDEV_ALLOC_ADD ||
 494  494                      alloctype == VDEV_ALLOC_SPLIT ||
 495  495                      alloctype == VDEV_ALLOC_ROOTPOOL);
 496  496                  vd->vdev_mg = metaslab_group_create(islog ?
 497  497                      spa_log_class(spa) : spa_normal_class(spa), vd);
 498  498          }
 499  499  
 500  500          /*
 501  501           * If we're a leaf vdev, try to load the DTL object and other state.
 502  502           */
 503  503          if (vd->vdev_ops->vdev_op_leaf &&
 504  504              (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
 505  505              alloctype == VDEV_ALLOC_ROOTPOOL)) {
 506  506                  if (alloctype == VDEV_ALLOC_LOAD) {
 507  507                          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
 508  508                              &vd->vdev_dtl_smo.smo_object);
 509  509                          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
 510  510                              &vd->vdev_unspare);
 511  511                  }
 512  512  
 513  513                  if (alloctype == VDEV_ALLOC_ROOTPOOL) {
 514  514                          uint64_t spare = 0;
 515  515  
 516  516                          if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
 517  517                              &spare) == 0 && spare)
 518  518                                  spa_spare_add(vd);
 519  519                  }
 520  520  
 521  521                  (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
 522  522                      &vd->vdev_offline);
 523  523  
 524  524                  (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
 525  525                      &vd->vdev_resilvering);
 526  526  
 527  527                  /*
 528  528                   * When importing a pool, we want to ignore the persistent fault
 529  529                   * state, as the diagnosis made on another system may not be
 530  530                   * valid in the current context.  Local vdevs will
 531  531                   * remain in the faulted state.
 532  532                   */
 533  533                  if (spa_load_state(spa) == SPA_LOAD_OPEN) {
 534  534                          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
 535  535                              &vd->vdev_faulted);
 536  536                          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
 537  537                              &vd->vdev_degraded);
 538  538                          (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
 539  539                              &vd->vdev_removed);
 540  540  
 541  541                          if (vd->vdev_faulted || vd->vdev_degraded) {
 542  542                                  char *aux;
 543  543  
 544  544                                  vd->vdev_label_aux =
 545  545                                      VDEV_AUX_ERR_EXCEEDED;
 546  546                                  if (nvlist_lookup_string(nv,
 547  547                                      ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
 548  548                                      strcmp(aux, "external") == 0)
 549  549                                          vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
 550  550                          }
 551  551                  }
 552  552          }
 553  553  
 554  554          /*
 555  555           * Add ourselves to the parent's list of children.
 556  556           */
 557  557          vdev_add_child(parent, vd);
 558  558  
 559  559          *vdp = vd;
 560  560  
 561  561          return (0);
 562  562  }
 563  563  
 564  564  void
 565  565  vdev_free(vdev_t *vd)
 566  566  {
 567  567          spa_t *spa = vd->vdev_spa;
 568  568  
 569  569          /*
 570  570           * vdev_free() implies closing the vdev first.  This is simpler than
 571  571           * trying to ensure complicated semantics for all callers.
 572  572           */
 573  573          vdev_close(vd);
 574  574  
 575  575          ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
 576  576          ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
 577  577  
 578  578          /*
 579  579           * Free all children.
 580  580           */
 581  581          for (int c = 0; c < vd->vdev_children; c++)
 582  582                  vdev_free(vd->vdev_child[c]);
 583  583  
 584  584          ASSERT(vd->vdev_child == NULL);
  
    | 
      ↓ open down ↓ | 
    584 lines elided | 
    
      ↑ open up ↑ | 
  
 585  585          ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
 586  586  
 587  587          /*
 588  588           * Discard allocation state.
 589  589           */
 590  590          if (vd->vdev_mg != NULL) {
 591  591                  vdev_metaslab_fini(vd);
 592  592                  metaslab_group_destroy(vd->vdev_mg);
 593  593          }
 594  594  
 595      -        ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
 596      -        ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
 597      -        ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
      595 +        ASSERT0(vd->vdev_stat.vs_space);
      596 +        ASSERT0(vd->vdev_stat.vs_dspace);
      597 +        ASSERT0(vd->vdev_stat.vs_alloc);
 598  598  
 599  599          /*
 600  600           * Remove this vdev from its parent's child list.
 601  601           */
 602  602          vdev_remove_child(vd->vdev_parent, vd);
 603  603  
 604  604          ASSERT(vd->vdev_parent == NULL);
 605  605  
 606  606          /*
 607  607           * Clean up vdev structure.
 608  608           */
 609  609          vdev_queue_fini(vd);
 610  610          vdev_cache_fini(vd);
 611  611  
 612  612          if (vd->vdev_path)
 613  613                  spa_strfree(vd->vdev_path);
 614  614          if (vd->vdev_devid)
 615  615                  spa_strfree(vd->vdev_devid);
 616  616          if (vd->vdev_physpath)
 617  617                  spa_strfree(vd->vdev_physpath);
 618  618          if (vd->vdev_fru)
 619  619                  spa_strfree(vd->vdev_fru);
 620  620  
 621  621          if (vd->vdev_isspare)
 622  622                  spa_spare_remove(vd);
 623  623          if (vd->vdev_isl2cache)
 624  624                  spa_l2cache_remove(vd);
 625  625  
 626  626          txg_list_destroy(&vd->vdev_ms_list);
 627  627          txg_list_destroy(&vd->vdev_dtl_list);
 628  628  
 629  629          mutex_enter(&vd->vdev_dtl_lock);
 630  630          for (int t = 0; t < DTL_TYPES; t++) {
 631  631                  space_map_unload(&vd->vdev_dtl[t]);
 632  632                  space_map_destroy(&vd->vdev_dtl[t]);
 633  633          }
 634  634          mutex_exit(&vd->vdev_dtl_lock);
 635  635  
 636  636          mutex_destroy(&vd->vdev_dtl_lock);
 637  637          mutex_destroy(&vd->vdev_stat_lock);
 638  638          mutex_destroy(&vd->vdev_probe_lock);
 639  639  
 640  640          if (vd == spa->spa_root_vdev)
 641  641                  spa->spa_root_vdev = NULL;
 642  642  
 643  643          kmem_free(vd, sizeof (vdev_t));
 644  644  }
 645  645  
 646  646  /*
 647  647   * Transfer top-level vdev state from svd to tvd.
 648  648   */
 649  649  static void
 650  650  vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
 651  651  {
 652  652          spa_t *spa = svd->vdev_spa;
 653  653          metaslab_t *msp;
 654  654          vdev_t *vd;
 655  655          int t;
 656  656  
 657  657          ASSERT(tvd == tvd->vdev_top);
 658  658  
 659  659          tvd->vdev_ms_array = svd->vdev_ms_array;
 660  660          tvd->vdev_ms_shift = svd->vdev_ms_shift;
 661  661          tvd->vdev_ms_count = svd->vdev_ms_count;
 662  662  
 663  663          svd->vdev_ms_array = 0;
 664  664          svd->vdev_ms_shift = 0;
 665  665          svd->vdev_ms_count = 0;
 666  666  
 667  667          if (tvd->vdev_mg)
 668  668                  ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
 669  669          tvd->vdev_mg = svd->vdev_mg;
 670  670          tvd->vdev_ms = svd->vdev_ms;
 671  671  
 672  672          svd->vdev_mg = NULL;
 673  673          svd->vdev_ms = NULL;
 674  674  
 675  675          if (tvd->vdev_mg != NULL)
 676  676                  tvd->vdev_mg->mg_vd = tvd;
 677  677  
 678  678          tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
 679  679          tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
 680  680          tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
 681  681  
 682  682          svd->vdev_stat.vs_alloc = 0;
 683  683          svd->vdev_stat.vs_space = 0;
 684  684          svd->vdev_stat.vs_dspace = 0;
 685  685  
 686  686          for (t = 0; t < TXG_SIZE; t++) {
 687  687                  while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
 688  688                          (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
 689  689                  while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
 690  690                          (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
 691  691                  if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
 692  692                          (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
 693  693          }
 694  694  
 695  695          if (list_link_active(&svd->vdev_config_dirty_node)) {
 696  696                  vdev_config_clean(svd);
 697  697                  vdev_config_dirty(tvd);
 698  698          }
 699  699  
 700  700          if (list_link_active(&svd->vdev_state_dirty_node)) {
 701  701                  vdev_state_clean(svd);
 702  702                  vdev_state_dirty(tvd);
 703  703          }
 704  704  
 705  705          tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
 706  706          svd->vdev_deflate_ratio = 0;
 707  707  
 708  708          tvd->vdev_islog = svd->vdev_islog;
 709  709          svd->vdev_islog = 0;
 710  710  }
 711  711  
 712  712  static void
 713  713  vdev_top_update(vdev_t *tvd, vdev_t *vd)
 714  714  {
 715  715          if (vd == NULL)
 716  716                  return;
 717  717  
 718  718          vd->vdev_top = tvd;
 719  719  
 720  720          for (int c = 0; c < vd->vdev_children; c++)
 721  721                  vdev_top_update(tvd, vd->vdev_child[c]);
 722  722  }
 723  723  
 724  724  /*
 725  725   * Add a mirror/replacing vdev above an existing vdev.
 726  726   */
 727  727  vdev_t *
 728  728  vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
 729  729  {
 730  730          spa_t *spa = cvd->vdev_spa;
 731  731          vdev_t *pvd = cvd->vdev_parent;
 732  732          vdev_t *mvd;
 733  733  
 734  734          ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 735  735  
 736  736          mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
 737  737  
 738  738          mvd->vdev_asize = cvd->vdev_asize;
 739  739          mvd->vdev_min_asize = cvd->vdev_min_asize;
 740  740          mvd->vdev_max_asize = cvd->vdev_max_asize;
 741  741          mvd->vdev_ashift = cvd->vdev_ashift;
 742  742          mvd->vdev_state = cvd->vdev_state;
 743  743          mvd->vdev_crtxg = cvd->vdev_crtxg;
 744  744  
 745  745          vdev_remove_child(pvd, cvd);
 746  746          vdev_add_child(pvd, mvd);
 747  747          cvd->vdev_id = mvd->vdev_children;
 748  748          vdev_add_child(mvd, cvd);
 749  749          vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 750  750  
 751  751          if (mvd == mvd->vdev_top)
 752  752                  vdev_top_transfer(cvd, mvd);
 753  753  
 754  754          return (mvd);
 755  755  }
 756  756  
 757  757  /*
 758  758   * Remove a 1-way mirror/replacing vdev from the tree.
 759  759   */
 760  760  void
 761  761  vdev_remove_parent(vdev_t *cvd)
 762  762  {
 763  763          vdev_t *mvd = cvd->vdev_parent;
 764  764          vdev_t *pvd = mvd->vdev_parent;
 765  765  
 766  766          ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
 767  767  
 768  768          ASSERT(mvd->vdev_children == 1);
 769  769          ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
 770  770              mvd->vdev_ops == &vdev_replacing_ops ||
 771  771              mvd->vdev_ops == &vdev_spare_ops);
 772  772          cvd->vdev_ashift = mvd->vdev_ashift;
 773  773  
 774  774          vdev_remove_child(mvd, cvd);
 775  775          vdev_remove_child(pvd, mvd);
 776  776  
 777  777          /*
 778  778           * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
 779  779           * Otherwise, we could have detached an offline device, and when we
 780  780           * go to import the pool we'll think we have two top-level vdevs,
 781  781           * instead of a different version of the same top-level vdev.
 782  782           */
 783  783          if (mvd->vdev_top == mvd) {
 784  784                  uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
 785  785                  cvd->vdev_orig_guid = cvd->vdev_guid;
 786  786                  cvd->vdev_guid += guid_delta;
 787  787                  cvd->vdev_guid_sum += guid_delta;
 788  788          }
 789  789          cvd->vdev_id = mvd->vdev_id;
 790  790          vdev_add_child(pvd, cvd);
 791  791          vdev_top_update(cvd->vdev_top, cvd->vdev_top);
 792  792  
 793  793          if (cvd == cvd->vdev_top)
 794  794                  vdev_top_transfer(mvd, cvd);
 795  795  
 796  796          ASSERT(mvd->vdev_children == 0);
 797  797          vdev_free(mvd);
 798  798  }
 799  799  
 800  800  int
 801  801  vdev_metaslab_init(vdev_t *vd, uint64_t txg)
 802  802  {
 803  803          spa_t *spa = vd->vdev_spa;
 804  804          objset_t *mos = spa->spa_meta_objset;
 805  805          uint64_t m;
 806  806          uint64_t oldc = vd->vdev_ms_count;
 807  807          uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
 808  808          metaslab_t **mspp;
 809  809          int error;
 810  810  
 811  811          ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
 812  812  
 813  813          /*
 814  814           * This vdev is not being allocated from yet or is a hole.
 815  815           */
 816  816          if (vd->vdev_ms_shift == 0)
 817  817                  return (0);
 818  818  
 819  819          ASSERT(!vd->vdev_ishole);
 820  820  
 821  821          /*
 822  822           * Compute the raidz-deflation ratio.  Note, we hard-code
 823  823           * in 128k (1 << 17) because it is the current "typical" blocksize.
 824  824           * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
 825  825           * or we will inconsistently account for existing bp's.
 826  826           */
 827  827          vd->vdev_deflate_ratio = (1 << 17) /
 828  828              (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
 829  829  
 830  830          ASSERT(oldc <= newc);
 831  831  
 832  832          mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
 833  833  
 834  834          if (oldc != 0) {
 835  835                  bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
 836  836                  kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
 837  837          }
 838  838  
 839  839          vd->vdev_ms = mspp;
 840  840          vd->vdev_ms_count = newc;
 841  841  
 842  842          for (m = oldc; m < newc; m++) {
 843  843                  space_map_obj_t smo = { 0, 0, 0 };
 844  844                  if (txg == 0) {
 845  845                          uint64_t object = 0;
 846  846                          error = dmu_read(mos, vd->vdev_ms_array,
 847  847                              m * sizeof (uint64_t), sizeof (uint64_t), &object,
 848  848                              DMU_READ_PREFETCH);
 849  849                          if (error)
 850  850                                  return (error);
 851  851                          if (object != 0) {
 852  852                                  dmu_buf_t *db;
 853  853                                  error = dmu_bonus_hold(mos, object, FTAG, &db);
 854  854                                  if (error)
 855  855                                          return (error);
 856  856                                  ASSERT3U(db->db_size, >=, sizeof (smo));
 857  857                                  bcopy(db->db_data, &smo, sizeof (smo));
 858  858                                  ASSERT3U(smo.smo_object, ==, object);
 859  859                                  dmu_buf_rele(db, FTAG);
 860  860                          }
 861  861                  }
 862  862                  vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
 863  863                      m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
 864  864          }
 865  865  
 866  866          if (txg == 0)
 867  867                  spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
 868  868  
 869  869          /*
 870  870           * If the vdev is being removed we don't activate
 871  871           * the metaslabs since we want to ensure that no new
 872  872           * allocations are performed on this device.
 873  873           */
 874  874          if (oldc == 0 && !vd->vdev_removing)
 875  875                  metaslab_group_activate(vd->vdev_mg);
 876  876  
 877  877          if (txg == 0)
 878  878                  spa_config_exit(spa, SCL_ALLOC, FTAG);
 879  879  
 880  880          return (0);
 881  881  }
 882  882  
 883  883  void
 884  884  vdev_metaslab_fini(vdev_t *vd)
 885  885  {
 886  886          uint64_t m;
 887  887          uint64_t count = vd->vdev_ms_count;
 888  888  
 889  889          if (vd->vdev_ms != NULL) {
 890  890                  metaslab_group_passivate(vd->vdev_mg);
 891  891                  for (m = 0; m < count; m++)
 892  892                          if (vd->vdev_ms[m] != NULL)
 893  893                                  metaslab_fini(vd->vdev_ms[m]);
 894  894                  kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
 895  895                  vd->vdev_ms = NULL;
 896  896          }
 897  897  }
 898  898  
 899  899  typedef struct vdev_probe_stats {
 900  900          boolean_t       vps_readable;
 901  901          boolean_t       vps_writeable;
 902  902          int             vps_flags;
 903  903  } vdev_probe_stats_t;
 904  904  
 905  905  static void
 906  906  vdev_probe_done(zio_t *zio)
 907  907  {
 908  908          spa_t *spa = zio->io_spa;
 909  909          vdev_t *vd = zio->io_vd;
 910  910          vdev_probe_stats_t *vps = zio->io_private;
 911  911  
 912  912          ASSERT(vd->vdev_probe_zio != NULL);
 913  913  
 914  914          if (zio->io_type == ZIO_TYPE_READ) {
 915  915                  if (zio->io_error == 0)
 916  916                          vps->vps_readable = 1;
 917  917                  if (zio->io_error == 0 && spa_writeable(spa)) {
 918  918                          zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
 919  919                              zio->io_offset, zio->io_size, zio->io_data,
 920  920                              ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
 921  921                              ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
 922  922                  } else {
 923  923                          zio_buf_free(zio->io_data, zio->io_size);
 924  924                  }
 925  925          } else if (zio->io_type == ZIO_TYPE_WRITE) {
 926  926                  if (zio->io_error == 0)
 927  927                          vps->vps_writeable = 1;
 928  928                  zio_buf_free(zio->io_data, zio->io_size);
 929  929          } else if (zio->io_type == ZIO_TYPE_NULL) {
 930  930                  zio_t *pio;
 931  931  
 932  932                  vd->vdev_cant_read |= !vps->vps_readable;
 933  933                  vd->vdev_cant_write |= !vps->vps_writeable;
 934  934  
 935  935                  if (vdev_readable(vd) &&
 936  936                      (vdev_writeable(vd) || !spa_writeable(spa))) {
 937  937                          zio->io_error = 0;
 938  938                  } else {
 939  939                          ASSERT(zio->io_error != 0);
 940  940                          zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
 941  941                              spa, vd, NULL, 0, 0);
 942  942                          zio->io_error = ENXIO;
 943  943                  }
 944  944  
 945  945                  mutex_enter(&vd->vdev_probe_lock);
 946  946                  ASSERT(vd->vdev_probe_zio == zio);
 947  947                  vd->vdev_probe_zio = NULL;
 948  948                  mutex_exit(&vd->vdev_probe_lock);
 949  949  
 950  950                  while ((pio = zio_walk_parents(zio)) != NULL)
 951  951                          if (!vdev_accessible(vd, pio))
 952  952                                  pio->io_error = ENXIO;
 953  953  
 954  954                  kmem_free(vps, sizeof (*vps));
 955  955          }
 956  956  }
 957  957  
 958  958  /*
 959  959   * Determine whether this device is accessible by reading and writing
 960  960   * to several known locations: the pad regions of each vdev label
 961  961   * but the first (which we leave alone in case it contains a VTOC).
 962  962   */
 963  963  zio_t *
 964  964  vdev_probe(vdev_t *vd, zio_t *zio)
 965  965  {
 966  966          spa_t *spa = vd->vdev_spa;
 967  967          vdev_probe_stats_t *vps = NULL;
 968  968          zio_t *pio;
 969  969  
 970  970          ASSERT(vd->vdev_ops->vdev_op_leaf);
 971  971  
 972  972          /*
 973  973           * Don't probe the probe.
 974  974           */
 975  975          if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
 976  976                  return (NULL);
 977  977  
 978  978          /*
 979  979           * To prevent 'probe storms' when a device fails, we create
 980  980           * just one probe i/o at a time.  All zios that want to probe
 981  981           * this vdev will become parents of the probe io.
 982  982           */
 983  983          mutex_enter(&vd->vdev_probe_lock);
 984  984  
 985  985          if ((pio = vd->vdev_probe_zio) == NULL) {
 986  986                  vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
 987  987  
 988  988                  vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
 989  989                      ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
 990  990                      ZIO_FLAG_TRYHARD;
 991  991  
 992  992                  if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
 993  993                          /*
 994  994                           * vdev_cant_read and vdev_cant_write can only
 995  995                           * transition from TRUE to FALSE when we have the
 996  996                           * SCL_ZIO lock as writer; otherwise they can only
 997  997                           * transition from FALSE to TRUE.  This ensures that
 998  998                           * any zio looking at these values can assume that
 999  999                           * failures persist for the life of the I/O.  That's
1000 1000                           * important because when a device has intermittent
1001 1001                           * connectivity problems, we want to ensure that
1002 1002                           * they're ascribed to the device (ENXIO) and not
1003 1003                           * the zio (EIO).
1004 1004                           *
1005 1005                           * Since we hold SCL_ZIO as writer here, clear both
1006 1006                           * values so the probe can reevaluate from first
1007 1007                           * principles.
1008 1008                           */
1009 1009                          vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1010 1010                          vd->vdev_cant_read = B_FALSE;
1011 1011                          vd->vdev_cant_write = B_FALSE;
1012 1012                  }
1013 1013  
1014 1014                  vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1015 1015                      vdev_probe_done, vps,
1016 1016                      vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1017 1017  
1018 1018                  /*
1019 1019                   * We can't change the vdev state in this context, so we
1020 1020                   * kick off an async task to do it on our behalf.
1021 1021                   */
1022 1022                  if (zio != NULL) {
1023 1023                          vd->vdev_probe_wanted = B_TRUE;
1024 1024                          spa_async_request(spa, SPA_ASYNC_PROBE);
1025 1025                  }
1026 1026          }
1027 1027  
1028 1028          if (zio != NULL)
1029 1029                  zio_add_child(zio, pio);
1030 1030  
1031 1031          mutex_exit(&vd->vdev_probe_lock);
1032 1032  
1033 1033          if (vps == NULL) {
1034 1034                  ASSERT(zio != NULL);
1035 1035                  return (NULL);
1036 1036          }
1037 1037  
1038 1038          for (int l = 1; l < VDEV_LABELS; l++) {
1039 1039                  zio_nowait(zio_read_phys(pio, vd,
1040 1040                      vdev_label_offset(vd->vdev_psize, l,
1041 1041                      offsetof(vdev_label_t, vl_pad2)),
1042 1042                      VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1043 1043                      ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044 1044                      ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1045 1045          }
1046 1046  
1047 1047          if (zio == NULL)
1048 1048                  return (pio);
1049 1049  
1050 1050          zio_nowait(pio);
1051 1051          return (NULL);
1052 1052  }
1053 1053  
1054 1054  static void
1055 1055  vdev_open_child(void *arg)
1056 1056  {
1057 1057          vdev_t *vd = arg;
1058 1058  
1059 1059          vd->vdev_open_thread = curthread;
1060 1060          vd->vdev_open_error = vdev_open(vd);
1061 1061          vd->vdev_open_thread = NULL;
1062 1062  }
1063 1063  
1064 1064  boolean_t
1065 1065  vdev_uses_zvols(vdev_t *vd)
1066 1066  {
1067 1067          if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1068 1068              strlen(ZVOL_DIR)) == 0)
1069 1069                  return (B_TRUE);
1070 1070          for (int c = 0; c < vd->vdev_children; c++)
1071 1071                  if (vdev_uses_zvols(vd->vdev_child[c]))
1072 1072                          return (B_TRUE);
1073 1073          return (B_FALSE);
1074 1074  }
1075 1075  
1076 1076  void
1077 1077  vdev_open_children(vdev_t *vd)
1078 1078  {
1079 1079          taskq_t *tq;
1080 1080          int children = vd->vdev_children;
1081 1081  
1082 1082          /*
1083 1083           * in order to handle pools on top of zvols, do the opens
1084 1084           * in a single thread so that the same thread holds the
1085 1085           * spa_namespace_lock
1086 1086           */
1087 1087          if (vdev_uses_zvols(vd)) {
1088 1088                  for (int c = 0; c < children; c++)
1089 1089                          vd->vdev_child[c]->vdev_open_error =
1090 1090                              vdev_open(vd->vdev_child[c]);
1091 1091                  return;
1092 1092          }
1093 1093          tq = taskq_create("vdev_open", children, minclsyspri,
1094 1094              children, children, TASKQ_PREPOPULATE);
1095 1095  
1096 1096          for (int c = 0; c < children; c++)
1097 1097                  VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1098 1098                      TQ_SLEEP) != NULL);
1099 1099  
1100 1100          taskq_destroy(tq);
1101 1101  }
1102 1102  
1103 1103  /*
1104 1104   * Prepare a virtual device for access.
1105 1105   */
1106 1106  int
1107 1107  vdev_open(vdev_t *vd)
1108 1108  {
1109 1109          spa_t *spa = vd->vdev_spa;
1110 1110          int error;
1111 1111          uint64_t osize = 0;
1112 1112          uint64_t max_osize = 0;
1113 1113          uint64_t asize, max_asize, psize;
1114 1114          uint64_t ashift = 0;
1115 1115  
1116 1116          ASSERT(vd->vdev_open_thread == curthread ||
1117 1117              spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1118 1118          ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1119 1119              vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1120 1120              vd->vdev_state == VDEV_STATE_OFFLINE);
1121 1121  
1122 1122          vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1123 1123          vd->vdev_cant_read = B_FALSE;
1124 1124          vd->vdev_cant_write = B_FALSE;
1125 1125          vd->vdev_min_asize = vdev_get_min_asize(vd);
1126 1126  
1127 1127          /*
1128 1128           * If this vdev is not removed, check its fault status.  If it's
1129 1129           * faulted, bail out of the open.
1130 1130           */
1131 1131          if (!vd->vdev_removed && vd->vdev_faulted) {
1132 1132                  ASSERT(vd->vdev_children == 0);
1133 1133                  ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1134 1134                      vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1135 1135                  vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1136 1136                      vd->vdev_label_aux);
1137 1137                  return (ENXIO);
1138 1138          } else if (vd->vdev_offline) {
1139 1139                  ASSERT(vd->vdev_children == 0);
1140 1140                  vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1141 1141                  return (ENXIO);
1142 1142          }
1143 1143  
1144 1144          error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1145 1145  
1146 1146          /*
1147 1147           * Reset the vdev_reopening flag so that we actually close
1148 1148           * the vdev on error.
1149 1149           */
1150 1150          vd->vdev_reopening = B_FALSE;
1151 1151          if (zio_injection_enabled && error == 0)
1152 1152                  error = zio_handle_device_injection(vd, NULL, ENXIO);
1153 1153  
1154 1154          if (error) {
1155 1155                  if (vd->vdev_removed &&
1156 1156                      vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1157 1157                          vd->vdev_removed = B_FALSE;
1158 1158  
1159 1159                  vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 1160                      vd->vdev_stat.vs_aux);
1161 1161                  return (error);
1162 1162          }
1163 1163  
1164 1164          vd->vdev_removed = B_FALSE;
1165 1165  
1166 1166          /*
1167 1167           * Recheck the faulted flag now that we have confirmed that
1168 1168           * the vdev is accessible.  If we're faulted, bail.
1169 1169           */
1170 1170          if (vd->vdev_faulted) {
1171 1171                  ASSERT(vd->vdev_children == 0);
1172 1172                  ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1173 1173                      vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1174 1174                  vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1175 1175                      vd->vdev_label_aux);
1176 1176                  return (ENXIO);
1177 1177          }
1178 1178  
1179 1179          if (vd->vdev_degraded) {
1180 1180                  ASSERT(vd->vdev_children == 0);
1181 1181                  vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1182 1182                      VDEV_AUX_ERR_EXCEEDED);
1183 1183          } else {
1184 1184                  vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1185 1185          }
1186 1186  
1187 1187          /*
1188 1188           * For hole or missing vdevs we just return success.
1189 1189           */
1190 1190          if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1191 1191                  return (0);
1192 1192  
1193 1193          for (int c = 0; c < vd->vdev_children; c++) {
1194 1194                  if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1195 1195                          vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1196 1196                              VDEV_AUX_NONE);
1197 1197                          break;
1198 1198                  }
1199 1199          }
1200 1200  
1201 1201          osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1202 1202          max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1203 1203  
1204 1204          if (vd->vdev_children == 0) {
1205 1205                  if (osize < SPA_MINDEVSIZE) {
1206 1206                          vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 1207                              VDEV_AUX_TOO_SMALL);
1208 1208                          return (EOVERFLOW);
1209 1209                  }
1210 1210                  psize = osize;
1211 1211                  asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1212 1212                  max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1213 1213                      VDEV_LABEL_END_SIZE);
1214 1214          } else {
1215 1215                  if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1216 1216                      (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1217 1217                          vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 1218                              VDEV_AUX_TOO_SMALL);
1219 1219                          return (EOVERFLOW);
1220 1220                  }
1221 1221                  psize = 0;
1222 1222                  asize = osize;
1223 1223                  max_asize = max_osize;
1224 1224          }
1225 1225  
1226 1226          vd->vdev_psize = psize;
1227 1227  
1228 1228          /*
1229 1229           * Make sure the allocatable size hasn't shrunk.
1230 1230           */
1231 1231          if (asize < vd->vdev_min_asize) {
1232 1232                  vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 1233                      VDEV_AUX_BAD_LABEL);
1234 1234                  return (EINVAL);
1235 1235          }
1236 1236  
1237 1237          if (vd->vdev_asize == 0) {
1238 1238                  /*
1239 1239                   * This is the first-ever open, so use the computed values.
1240 1240                   * For testing purposes, a higher ashift can be requested.
1241 1241                   */
1242 1242                  vd->vdev_asize = asize;
1243 1243                  vd->vdev_max_asize = max_asize;
1244 1244                  vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1245 1245          } else {
1246 1246                  /*
1247 1247                   * Detect if the alignment requirement has increased.
1248 1248                   * We don't want to make the pool unavailable, just
1249 1249                   * issue a warning instead.
1250 1250                   */
1251 1251                  if (ashift > vd->vdev_top->vdev_ashift &&
1252 1252                      vd->vdev_ops->vdev_op_leaf) {
1253 1253                          cmn_err(CE_WARN,
1254 1254                              "Disk, '%s', has a block alignment that is "
1255 1255                              "larger than the pool's alignment\n",
1256 1256                              vd->vdev_path);
1257 1257                  }
1258 1258                  vd->vdev_max_asize = max_asize;
1259 1259          }
1260 1260  
1261 1261          /*
1262 1262           * If all children are healthy and the asize has increased,
1263 1263           * then we've experienced dynamic LUN growth.  If automatic
1264 1264           * expansion is enabled then use the additional space.
1265 1265           */
1266 1266          if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1267 1267              (vd->vdev_expanding || spa->spa_autoexpand))
1268 1268                  vd->vdev_asize = asize;
1269 1269  
1270 1270          vdev_set_min_asize(vd);
1271 1271  
1272 1272          /*
1273 1273           * Ensure we can issue some IO before declaring the
1274 1274           * vdev open for business.
1275 1275           */
1276 1276          if (vd->vdev_ops->vdev_op_leaf &&
1277 1277              (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1278 1278                  vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 1279                      VDEV_AUX_ERR_EXCEEDED);
1280 1280                  return (error);
1281 1281          }
1282 1282  
1283 1283          /*
1284 1284           * If a leaf vdev has a DTL, and seems healthy, then kick off a
1285 1285           * resilver.  But don't do this if we are doing a reopen for a scrub,
1286 1286           * since this would just restart the scrub we are already doing.
1287 1287           */
1288 1288          if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1289 1289              vdev_resilver_needed(vd, NULL, NULL))
1290 1290                  spa_async_request(spa, SPA_ASYNC_RESILVER);
1291 1291  
1292 1292          return (0);
1293 1293  }
1294 1294  
1295 1295  /*
1296 1296   * Called once the vdevs are all opened, this routine validates the label
1297 1297   * contents.  This needs to be done before vdev_load() so that we don't
1298 1298   * inadvertently do repair I/Os to the wrong device.
1299 1299   *
1300 1300   * If 'strict' is false ignore the spa guid check. This is necessary because
1301 1301   * if the machine crashed during a re-guid the new guid might have been written
1302 1302   * to all of the vdev labels, but not the cached config. The strict check
1303 1303   * will be performed when the pool is opened again using the mos config.
1304 1304   *
1305 1305   * This function will only return failure if one of the vdevs indicates that it
1306 1306   * has since been destroyed or exported.  This is only possible if
1307 1307   * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1308 1308   * will be updated but the function will return 0.
1309 1309   */
1310 1310  int
1311 1311  vdev_validate(vdev_t *vd, boolean_t strict)
1312 1312  {
1313 1313          spa_t *spa = vd->vdev_spa;
1314 1314          nvlist_t *label;
1315 1315          uint64_t guid = 0, top_guid;
1316 1316          uint64_t state;
1317 1317  
1318 1318          for (int c = 0; c < vd->vdev_children; c++)
1319 1319                  if (vdev_validate(vd->vdev_child[c], strict) != 0)
1320 1320                          return (EBADF);
1321 1321  
1322 1322          /*
1323 1323           * If the device has already failed, or was marked offline, don't do
1324 1324           * any further validation.  Otherwise, label I/O will fail and we will
1325 1325           * overwrite the previous state.
1326 1326           */
1327 1327          if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1328 1328                  uint64_t aux_guid = 0;
1329 1329                  nvlist_t *nvl;
1330 1330  
1331 1331                  if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) ==
1332 1332                      NULL) {
1333 1333                          vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1334 1334                              VDEV_AUX_BAD_LABEL);
1335 1335                          return (0);
1336 1336                  }
1337 1337  
1338 1338                  /*
1339 1339                   * Determine if this vdev has been split off into another
1340 1340                   * pool.  If so, then refuse to open it.
1341 1341                   */
1342 1342                  if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1343 1343                      &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1344 1344                          vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1345 1345                              VDEV_AUX_SPLIT_POOL);
1346 1346                          nvlist_free(label);
1347 1347                          return (0);
1348 1348                  }
1349 1349  
1350 1350                  if (strict && (nvlist_lookup_uint64(label,
1351 1351                      ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1352 1352                      guid != spa_guid(spa))) {
1353 1353                          vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1354 1354                              VDEV_AUX_CORRUPT_DATA);
1355 1355                          nvlist_free(label);
1356 1356                          return (0);
1357 1357                  }
1358 1358  
1359 1359                  if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1360 1360                      != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1361 1361                      &aux_guid) != 0)
1362 1362                          aux_guid = 0;
1363 1363  
1364 1364                  /*
1365 1365                   * If this vdev just became a top-level vdev because its
1366 1366                   * sibling was detached, it will have adopted the parent's
1367 1367                   * vdev guid -- but the label may or may not be on disk yet.
1368 1368                   * Fortunately, either version of the label will have the
1369 1369                   * same top guid, so if we're a top-level vdev, we can
1370 1370                   * safely compare to that instead.
1371 1371                   *
1372 1372                   * If we split this vdev off instead, then we also check the
1373 1373                   * original pool's guid.  We don't want to consider the vdev
1374 1374                   * corrupt if it is partway through a split operation.
1375 1375                   */
1376 1376                  if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1377 1377                      &guid) != 0 ||
1378 1378                      nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1379 1379                      &top_guid) != 0 ||
1380 1380                      ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1381 1381                      (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1382 1382                          vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1383 1383                              VDEV_AUX_CORRUPT_DATA);
1384 1384                          nvlist_free(label);
1385 1385                          return (0);
1386 1386                  }
1387 1387  
1388 1388                  if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1389 1389                      &state) != 0) {
1390 1390                          vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1391 1391                              VDEV_AUX_CORRUPT_DATA);
1392 1392                          nvlist_free(label);
1393 1393                          return (0);
1394 1394                  }
1395 1395  
1396 1396                  nvlist_free(label);
1397 1397  
1398 1398                  /*
1399 1399                   * If this is a verbatim import, no need to check the
1400 1400                   * state of the pool.
1401 1401                   */
1402 1402                  if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1403 1403                      spa_load_state(spa) == SPA_LOAD_OPEN &&
1404 1404                      state != POOL_STATE_ACTIVE)
1405 1405                          return (EBADF);
1406 1406  
1407 1407                  /*
1408 1408                   * If we were able to open and validate a vdev that was
1409 1409                   * previously marked permanently unavailable, clear that state
1410 1410                   * now.
1411 1411                   */
1412 1412                  if (vd->vdev_not_present)
1413 1413                          vd->vdev_not_present = 0;
1414 1414          }
1415 1415  
1416 1416          return (0);
1417 1417  }
1418 1418  
1419 1419  /*
1420 1420   * Close a virtual device.
1421 1421   */
1422 1422  void
1423 1423  vdev_close(vdev_t *vd)
1424 1424  {
1425 1425          spa_t *spa = vd->vdev_spa;
1426 1426          vdev_t *pvd = vd->vdev_parent;
1427 1427  
1428 1428          ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1429 1429  
1430 1430          /*
1431 1431           * If our parent is reopening, then we are as well, unless we are
1432 1432           * going offline.
1433 1433           */
1434 1434          if (pvd != NULL && pvd->vdev_reopening)
1435 1435                  vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1436 1436  
1437 1437          vd->vdev_ops->vdev_op_close(vd);
1438 1438  
1439 1439          vdev_cache_purge(vd);
1440 1440  
1441 1441          /*
1442 1442           * We record the previous state before we close it, so that if we are
1443 1443           * doing a reopen(), we don't generate FMA ereports if we notice that
1444 1444           * it's still faulted.
1445 1445           */
1446 1446          vd->vdev_prevstate = vd->vdev_state;
1447 1447  
1448 1448          if (vd->vdev_offline)
1449 1449                  vd->vdev_state = VDEV_STATE_OFFLINE;
1450 1450          else
1451 1451                  vd->vdev_state = VDEV_STATE_CLOSED;
1452 1452          vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1453 1453  }
1454 1454  
1455 1455  void
1456 1456  vdev_hold(vdev_t *vd)
1457 1457  {
1458 1458          spa_t *spa = vd->vdev_spa;
1459 1459  
1460 1460          ASSERT(spa_is_root(spa));
1461 1461          if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1462 1462                  return;
1463 1463  
1464 1464          for (int c = 0; c < vd->vdev_children; c++)
1465 1465                  vdev_hold(vd->vdev_child[c]);
1466 1466  
1467 1467          if (vd->vdev_ops->vdev_op_leaf)
1468 1468                  vd->vdev_ops->vdev_op_hold(vd);
1469 1469  }
1470 1470  
1471 1471  void
1472 1472  vdev_rele(vdev_t *vd)
1473 1473  {
1474 1474          spa_t *spa = vd->vdev_spa;
1475 1475  
1476 1476          ASSERT(spa_is_root(spa));
1477 1477          for (int c = 0; c < vd->vdev_children; c++)
1478 1478                  vdev_rele(vd->vdev_child[c]);
1479 1479  
1480 1480          if (vd->vdev_ops->vdev_op_leaf)
1481 1481                  vd->vdev_ops->vdev_op_rele(vd);
1482 1482  }
1483 1483  
1484 1484  /*
1485 1485   * Reopen all interior vdevs and any unopened leaves.  We don't actually
1486 1486   * reopen leaf vdevs which had previously been opened as they might deadlock
1487 1487   * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1488 1488   * If the leaf has never been opened then open it, as usual.
1489 1489   */
1490 1490  void
1491 1491  vdev_reopen(vdev_t *vd)
1492 1492  {
1493 1493          spa_t *spa = vd->vdev_spa;
1494 1494  
1495 1495          ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1496 1496  
1497 1497          /* set the reopening flag unless we're taking the vdev offline */
1498 1498          vd->vdev_reopening = !vd->vdev_offline;
1499 1499          vdev_close(vd);
1500 1500          (void) vdev_open(vd);
1501 1501  
1502 1502          /*
1503 1503           * Call vdev_validate() here to make sure we have the same device.
1504 1504           * Otherwise, a device with an invalid label could be successfully
1505 1505           * opened in response to vdev_reopen().
1506 1506           */
1507 1507          if (vd->vdev_aux) {
1508 1508                  (void) vdev_validate_aux(vd);
1509 1509                  if (vdev_readable(vd) && vdev_writeable(vd) &&
1510 1510                      vd->vdev_aux == &spa->spa_l2cache &&
1511 1511                      !l2arc_vdev_present(vd))
1512 1512                          l2arc_add_vdev(spa, vd);
1513 1513          } else {
1514 1514                  (void) vdev_validate(vd, B_TRUE);
1515 1515          }
1516 1516  
1517 1517          /*
1518 1518           * Reassess parent vdev's health.
1519 1519           */
1520 1520          vdev_propagate_state(vd);
1521 1521  }
1522 1522  
1523 1523  int
1524 1524  vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1525 1525  {
1526 1526          int error;
1527 1527  
1528 1528          /*
1529 1529           * Normally, partial opens (e.g. of a mirror) are allowed.
1530 1530           * For a create, however, we want to fail the request if
1531 1531           * there are any components we can't open.
1532 1532           */
1533 1533          error = vdev_open(vd);
1534 1534  
1535 1535          if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1536 1536                  vdev_close(vd);
1537 1537                  return (error ? error : ENXIO);
1538 1538          }
1539 1539  
1540 1540          /*
1541 1541           * Recursively initialize all labels.
1542 1542           */
1543 1543          if ((error = vdev_label_init(vd, txg, isreplacing ?
1544 1544              VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1545 1545                  vdev_close(vd);
1546 1546                  return (error);
1547 1547          }
1548 1548  
1549 1549          return (0);
1550 1550  }
1551 1551  
1552 1552  void
1553 1553  vdev_metaslab_set_size(vdev_t *vd)
1554 1554  {
1555 1555          /*
1556 1556           * Aim for roughly 200 metaslabs per vdev.
1557 1557           */
1558 1558          vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1559 1559          vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1560 1560  }
1561 1561  
1562 1562  void
1563 1563  vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1564 1564  {
1565 1565          ASSERT(vd == vd->vdev_top);
1566 1566          ASSERT(!vd->vdev_ishole);
1567 1567          ASSERT(ISP2(flags));
1568 1568          ASSERT(spa_writeable(vd->vdev_spa));
1569 1569  
1570 1570          if (flags & VDD_METASLAB)
1571 1571                  (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1572 1572  
1573 1573          if (flags & VDD_DTL)
1574 1574                  (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1575 1575  
1576 1576          (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1577 1577  }
1578 1578  
1579 1579  /*
1580 1580   * DTLs.
1581 1581   *
1582 1582   * A vdev's DTL (dirty time log) is the set of transaction groups for which
1583 1583   * the vdev has less than perfect replication.  There are four kinds of DTL:
1584 1584   *
1585 1585   * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1586 1586   *
1587 1587   * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1588 1588   *
1589 1589   * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1590 1590   *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1591 1591   *      txgs that was scrubbed.
1592 1592   *
1593 1593   * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1594 1594   *      persistent errors or just some device being offline.
1595 1595   *      Unlike the other three, the DTL_OUTAGE map is not generally
1596 1596   *      maintained; it's only computed when needed, typically to
1597 1597   *      determine whether a device can be detached.
1598 1598   *
1599 1599   * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1600 1600   * either has the data or it doesn't.
1601 1601   *
1602 1602   * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1603 1603   * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1604 1604   * if any child is less than fully replicated, then so is its parent.
1605 1605   * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1606 1606   * comprising only those txgs which appear in 'maxfaults' or more children;
1607 1607   * those are the txgs we don't have enough replication to read.  For example,
1608 1608   * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1609 1609   * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1610 1610   * two child DTL_MISSING maps.
1611 1611   *
1612 1612   * It should be clear from the above that to compute the DTLs and outage maps
1613 1613   * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1614 1614   * Therefore, that is all we keep on disk.  When loading the pool, or after
1615 1615   * a configuration change, we generate all other DTLs from first principles.
1616 1616   */
1617 1617  void
1618 1618  vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1619 1619  {
1620 1620          space_map_t *sm = &vd->vdev_dtl[t];
1621 1621  
1622 1622          ASSERT(t < DTL_TYPES);
1623 1623          ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1624 1624          ASSERT(spa_writeable(vd->vdev_spa));
1625 1625  
1626 1626          mutex_enter(sm->sm_lock);
1627 1627          if (!space_map_contains(sm, txg, size))
1628 1628                  space_map_add(sm, txg, size);
1629 1629          mutex_exit(sm->sm_lock);
1630 1630  }
1631 1631  
1632 1632  boolean_t
1633 1633  vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1634 1634  {
1635 1635          space_map_t *sm = &vd->vdev_dtl[t];
1636 1636          boolean_t dirty = B_FALSE;
1637 1637  
1638 1638          ASSERT(t < DTL_TYPES);
1639 1639          ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1640 1640  
1641 1641          mutex_enter(sm->sm_lock);
1642 1642          if (sm->sm_space != 0)
1643 1643                  dirty = space_map_contains(sm, txg, size);
1644 1644          mutex_exit(sm->sm_lock);
1645 1645  
1646 1646          return (dirty);
1647 1647  }
1648 1648  
1649 1649  boolean_t
1650 1650  vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1651 1651  {
1652 1652          space_map_t *sm = &vd->vdev_dtl[t];
1653 1653          boolean_t empty;
1654 1654  
1655 1655          mutex_enter(sm->sm_lock);
1656 1656          empty = (sm->sm_space == 0);
1657 1657          mutex_exit(sm->sm_lock);
1658 1658  
1659 1659          return (empty);
1660 1660  }
1661 1661  
1662 1662  /*
1663 1663   * Reassess DTLs after a config change or scrub completion.
1664 1664   */
1665 1665  void
1666 1666  vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1667 1667  {
1668 1668          spa_t *spa = vd->vdev_spa;
1669 1669          avl_tree_t reftree;
1670 1670          int minref;
1671 1671  
1672 1672          ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1673 1673  
1674 1674          for (int c = 0; c < vd->vdev_children; c++)
1675 1675                  vdev_dtl_reassess(vd->vdev_child[c], txg,
1676 1676                      scrub_txg, scrub_done);
1677 1677  
1678 1678          if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1679 1679                  return;
1680 1680  
1681 1681          if (vd->vdev_ops->vdev_op_leaf) {
1682 1682                  dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1683 1683  
1684 1684                  mutex_enter(&vd->vdev_dtl_lock);
1685 1685                  if (scrub_txg != 0 &&
1686 1686                      (spa->spa_scrub_started ||
1687 1687                      (scn && scn->scn_phys.scn_errors == 0))) {
1688 1688                          /*
1689 1689                           * We completed a scrub up to scrub_txg.  If we
1690 1690                           * did it without rebooting, then the scrub dtl
1691 1691                           * will be valid, so excise the old region and
1692 1692                           * fold in the scrub dtl.  Otherwise, leave the
1693 1693                           * dtl as-is if there was an error.
1694 1694                           *
1695 1695                           * There's little trick here: to excise the beginning
1696 1696                           * of the DTL_MISSING map, we put it into a reference
1697 1697                           * tree and then add a segment with refcnt -1 that
1698 1698                           * covers the range [0, scrub_txg).  This means
1699 1699                           * that each txg in that range has refcnt -1 or 0.
1700 1700                           * We then add DTL_SCRUB with a refcnt of 2, so that
1701 1701                           * entries in the range [0, scrub_txg) will have a
1702 1702                           * positive refcnt -- either 1 or 2.  We then convert
1703 1703                           * the reference tree into the new DTL_MISSING map.
1704 1704                           */
1705 1705                          space_map_ref_create(&reftree);
1706 1706                          space_map_ref_add_map(&reftree,
1707 1707                              &vd->vdev_dtl[DTL_MISSING], 1);
1708 1708                          space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1709 1709                          space_map_ref_add_map(&reftree,
1710 1710                              &vd->vdev_dtl[DTL_SCRUB], 2);
1711 1711                          space_map_ref_generate_map(&reftree,
1712 1712                              &vd->vdev_dtl[DTL_MISSING], 1);
1713 1713                          space_map_ref_destroy(&reftree);
1714 1714                  }
1715 1715                  space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1716 1716                  space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1717 1717                      space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1718 1718                  if (scrub_done)
1719 1719                          space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1720 1720                  space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1721 1721                  if (!vdev_readable(vd))
1722 1722                          space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1723 1723                  else
1724 1724                          space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1725 1725                              space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1726 1726                  mutex_exit(&vd->vdev_dtl_lock);
1727 1727  
1728 1728                  if (txg != 0)
1729 1729                          vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1730 1730                  return;
1731 1731          }
1732 1732  
1733 1733          mutex_enter(&vd->vdev_dtl_lock);
1734 1734          for (int t = 0; t < DTL_TYPES; t++) {
1735 1735                  /* account for child's outage in parent's missing map */
1736 1736                  int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1737 1737                  if (t == DTL_SCRUB)
1738 1738                          continue;                       /* leaf vdevs only */
1739 1739                  if (t == DTL_PARTIAL)
1740 1740                          minref = 1;                     /* i.e. non-zero */
1741 1741                  else if (vd->vdev_nparity != 0)
1742 1742                          minref = vd->vdev_nparity + 1;  /* RAID-Z */
1743 1743                  else
1744 1744                          minref = vd->vdev_children;     /* any kind of mirror */
1745 1745                  space_map_ref_create(&reftree);
1746 1746                  for (int c = 0; c < vd->vdev_children; c++) {
1747 1747                          vdev_t *cvd = vd->vdev_child[c];
1748 1748                          mutex_enter(&cvd->vdev_dtl_lock);
1749 1749                          space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1750 1750                          mutex_exit(&cvd->vdev_dtl_lock);
1751 1751                  }
1752 1752                  space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1753 1753                  space_map_ref_destroy(&reftree);
1754 1754          }
1755 1755          mutex_exit(&vd->vdev_dtl_lock);
1756 1756  }
1757 1757  
1758 1758  static int
1759 1759  vdev_dtl_load(vdev_t *vd)
1760 1760  {
1761 1761          spa_t *spa = vd->vdev_spa;
1762 1762          space_map_obj_t *smo = &vd->vdev_dtl_smo;
1763 1763          objset_t *mos = spa->spa_meta_objset;
1764 1764          dmu_buf_t *db;
1765 1765          int error;
1766 1766  
1767 1767          ASSERT(vd->vdev_children == 0);
1768 1768  
1769 1769          if (smo->smo_object == 0)
1770 1770                  return (0);
1771 1771  
1772 1772          ASSERT(!vd->vdev_ishole);
1773 1773  
1774 1774          if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1775 1775                  return (error);
1776 1776  
1777 1777          ASSERT3U(db->db_size, >=, sizeof (*smo));
1778 1778          bcopy(db->db_data, smo, sizeof (*smo));
1779 1779          dmu_buf_rele(db, FTAG);
1780 1780  
1781 1781          mutex_enter(&vd->vdev_dtl_lock);
1782 1782          error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1783 1783              NULL, SM_ALLOC, smo, mos);
1784 1784          mutex_exit(&vd->vdev_dtl_lock);
1785 1785  
1786 1786          return (error);
1787 1787  }
1788 1788  
1789 1789  void
1790 1790  vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1791 1791  {
1792 1792          spa_t *spa = vd->vdev_spa;
1793 1793          space_map_obj_t *smo = &vd->vdev_dtl_smo;
1794 1794          space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1795 1795          objset_t *mos = spa->spa_meta_objset;
1796 1796          space_map_t smsync;
1797 1797          kmutex_t smlock;
  
    | 
      ↓ open down ↓ | 
    1190 lines elided | 
    
      ↑ open up ↑ | 
  
1798 1798          dmu_buf_t *db;
1799 1799          dmu_tx_t *tx;
1800 1800  
1801 1801          ASSERT(!vd->vdev_ishole);
1802 1802  
1803 1803          tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1804 1804  
1805 1805          if (vd->vdev_detached) {
1806 1806                  if (smo->smo_object != 0) {
1807 1807                          int err = dmu_object_free(mos, smo->smo_object, tx);
1808      -                        ASSERT3U(err, ==, 0);
     1808 +                        ASSERT0(err);
1809 1809                          smo->smo_object = 0;
1810 1810                  }
1811 1811                  dmu_tx_commit(tx);
1812 1812                  return;
1813 1813          }
1814 1814  
1815 1815          if (smo->smo_object == 0) {
1816 1816                  ASSERT(smo->smo_objsize == 0);
1817 1817                  ASSERT(smo->smo_alloc == 0);
1818 1818                  smo->smo_object = dmu_object_alloc(mos,
1819 1819                      DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1820 1820                      DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1821 1821                  ASSERT(smo->smo_object != 0);
1822 1822                  vdev_config_dirty(vd->vdev_top);
1823 1823          }
1824 1824  
1825 1825          mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1826 1826  
1827 1827          space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1828 1828              &smlock);
1829 1829  
1830 1830          mutex_enter(&smlock);
1831 1831  
1832 1832          mutex_enter(&vd->vdev_dtl_lock);
1833 1833          space_map_walk(sm, space_map_add, &smsync);
1834 1834          mutex_exit(&vd->vdev_dtl_lock);
1835 1835  
1836 1836          space_map_truncate(smo, mos, tx);
1837 1837          space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1838 1838  
1839 1839          space_map_destroy(&smsync);
1840 1840  
1841 1841          mutex_exit(&smlock);
1842 1842          mutex_destroy(&smlock);
1843 1843  
1844 1844          VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1845 1845          dmu_buf_will_dirty(db, tx);
1846 1846          ASSERT3U(db->db_size, >=, sizeof (*smo));
1847 1847          bcopy(smo, db->db_data, sizeof (*smo));
1848 1848          dmu_buf_rele(db, FTAG);
1849 1849  
1850 1850          dmu_tx_commit(tx);
1851 1851  }
1852 1852  
1853 1853  /*
1854 1854   * Determine whether the specified vdev can be offlined/detached/removed
1855 1855   * without losing data.
1856 1856   */
1857 1857  boolean_t
1858 1858  vdev_dtl_required(vdev_t *vd)
1859 1859  {
1860 1860          spa_t *spa = vd->vdev_spa;
1861 1861          vdev_t *tvd = vd->vdev_top;
1862 1862          uint8_t cant_read = vd->vdev_cant_read;
1863 1863          boolean_t required;
1864 1864  
1865 1865          ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1866 1866  
1867 1867          if (vd == spa->spa_root_vdev || vd == tvd)
1868 1868                  return (B_TRUE);
1869 1869  
1870 1870          /*
1871 1871           * Temporarily mark the device as unreadable, and then determine
1872 1872           * whether this results in any DTL outages in the top-level vdev.
1873 1873           * If not, we can safely offline/detach/remove the device.
1874 1874           */
1875 1875          vd->vdev_cant_read = B_TRUE;
1876 1876          vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1877 1877          required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1878 1878          vd->vdev_cant_read = cant_read;
1879 1879          vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1880 1880  
1881 1881          if (!required && zio_injection_enabled)
1882 1882                  required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1883 1883  
1884 1884          return (required);
1885 1885  }
1886 1886  
1887 1887  /*
1888 1888   * Determine if resilver is needed, and if so the txg range.
1889 1889   */
1890 1890  boolean_t
1891 1891  vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1892 1892  {
1893 1893          boolean_t needed = B_FALSE;
1894 1894          uint64_t thismin = UINT64_MAX;
1895 1895          uint64_t thismax = 0;
1896 1896  
1897 1897          if (vd->vdev_children == 0) {
1898 1898                  mutex_enter(&vd->vdev_dtl_lock);
1899 1899                  if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1900 1900                      vdev_writeable(vd)) {
1901 1901                          space_seg_t *ss;
1902 1902  
1903 1903                          ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1904 1904                          thismin = ss->ss_start - 1;
1905 1905                          ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1906 1906                          thismax = ss->ss_end;
1907 1907                          needed = B_TRUE;
1908 1908                  }
1909 1909                  mutex_exit(&vd->vdev_dtl_lock);
1910 1910          } else {
1911 1911                  for (int c = 0; c < vd->vdev_children; c++) {
1912 1912                          vdev_t *cvd = vd->vdev_child[c];
1913 1913                          uint64_t cmin, cmax;
1914 1914  
1915 1915                          if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1916 1916                                  thismin = MIN(thismin, cmin);
1917 1917                                  thismax = MAX(thismax, cmax);
1918 1918                                  needed = B_TRUE;
1919 1919                          }
1920 1920                  }
1921 1921          }
1922 1922  
1923 1923          if (needed && minp) {
1924 1924                  *minp = thismin;
1925 1925                  *maxp = thismax;
1926 1926          }
1927 1927          return (needed);
1928 1928  }
1929 1929  
1930 1930  void
1931 1931  vdev_load(vdev_t *vd)
1932 1932  {
1933 1933          /*
1934 1934           * Recursively load all children.
1935 1935           */
1936 1936          for (int c = 0; c < vd->vdev_children; c++)
1937 1937                  vdev_load(vd->vdev_child[c]);
1938 1938  
1939 1939          /*
1940 1940           * If this is a top-level vdev, initialize its metaslabs.
1941 1941           */
1942 1942          if (vd == vd->vdev_top && !vd->vdev_ishole &&
1943 1943              (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1944 1944              vdev_metaslab_init(vd, 0) != 0))
1945 1945                  vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1946 1946                      VDEV_AUX_CORRUPT_DATA);
1947 1947  
1948 1948          /*
1949 1949           * If this is a leaf vdev, load its DTL.
1950 1950           */
1951 1951          if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1952 1952                  vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1953 1953                      VDEV_AUX_CORRUPT_DATA);
1954 1954  }
1955 1955  
1956 1956  /*
1957 1957   * The special vdev case is used for hot spares and l2cache devices.  Its
1958 1958   * sole purpose it to set the vdev state for the associated vdev.  To do this,
1959 1959   * we make sure that we can open the underlying device, then try to read the
1960 1960   * label, and make sure that the label is sane and that it hasn't been
1961 1961   * repurposed to another pool.
1962 1962   */
1963 1963  int
1964 1964  vdev_validate_aux(vdev_t *vd)
1965 1965  {
1966 1966          nvlist_t *label;
1967 1967          uint64_t guid, version;
1968 1968          uint64_t state;
1969 1969  
1970 1970          if (!vdev_readable(vd))
1971 1971                  return (0);
1972 1972  
1973 1973          if ((label = vdev_label_read_config(vd, VDEV_BEST_LABEL)) == NULL) {
1974 1974                  vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1975 1975                      VDEV_AUX_CORRUPT_DATA);
1976 1976                  return (-1);
1977 1977          }
1978 1978  
1979 1979          if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1980 1980              !SPA_VERSION_IS_SUPPORTED(version) ||
1981 1981              nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1982 1982              guid != vd->vdev_guid ||
1983 1983              nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1984 1984                  vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1985 1985                      VDEV_AUX_CORRUPT_DATA);
1986 1986                  nvlist_free(label);
1987 1987                  return (-1);
1988 1988          }
1989 1989  
1990 1990          /*
1991 1991           * We don't actually check the pool state here.  If it's in fact in
1992 1992           * use by another pool, we update this fact on the fly when requested.
1993 1993           */
1994 1994          nvlist_free(label);
1995 1995          return (0);
1996 1996  }
1997 1997  
  
    | 
      ↓ open down ↓ | 
    179 lines elided | 
    
      ↑ open up ↑ | 
  
1998 1998  void
1999 1999  vdev_remove(vdev_t *vd, uint64_t txg)
2000 2000  {
2001 2001          spa_t *spa = vd->vdev_spa;
2002 2002          objset_t *mos = spa->spa_meta_objset;
2003 2003          dmu_tx_t *tx;
2004 2004  
2005 2005          tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2006 2006  
2007 2007          if (vd->vdev_dtl_smo.smo_object) {
2008      -                ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
     2008 +                ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2009 2009                  (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2010 2010                  vd->vdev_dtl_smo.smo_object = 0;
2011 2011          }
2012 2012  
2013 2013          if (vd->vdev_ms != NULL) {
2014 2014                  for (int m = 0; m < vd->vdev_ms_count; m++) {
2015 2015                          metaslab_t *msp = vd->vdev_ms[m];
2016 2016  
2017 2017                          if (msp == NULL || msp->ms_smo.smo_object == 0)
2018 2018                                  continue;
2019 2019  
2020      -                        ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
     2020 +                        ASSERT0(msp->ms_smo.smo_alloc);
2021 2021                          (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2022 2022                          msp->ms_smo.smo_object = 0;
2023 2023                  }
2024 2024          }
2025 2025  
2026 2026          if (vd->vdev_ms_array) {
2027 2027                  (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2028 2028                  vd->vdev_ms_array = 0;
2029 2029                  vd->vdev_ms_shift = 0;
2030 2030          }
2031 2031          dmu_tx_commit(tx);
2032 2032  }
2033 2033  
2034 2034  void
2035 2035  vdev_sync_done(vdev_t *vd, uint64_t txg)
2036 2036  {
2037 2037          metaslab_t *msp;
2038 2038          boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2039 2039  
2040 2040          ASSERT(!vd->vdev_ishole);
2041 2041  
2042 2042          while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2043 2043                  metaslab_sync_done(msp, txg);
2044 2044  
2045 2045          if (reassess)
2046 2046                  metaslab_sync_reassess(vd->vdev_mg);
2047 2047  }
2048 2048  
2049 2049  void
2050 2050  vdev_sync(vdev_t *vd, uint64_t txg)
2051 2051  {
2052 2052          spa_t *spa = vd->vdev_spa;
2053 2053          vdev_t *lvd;
2054 2054          metaslab_t *msp;
2055 2055          dmu_tx_t *tx;
2056 2056  
2057 2057          ASSERT(!vd->vdev_ishole);
2058 2058  
2059 2059          if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2060 2060                  ASSERT(vd == vd->vdev_top);
2061 2061                  tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2062 2062                  vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2063 2063                      DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2064 2064                  ASSERT(vd->vdev_ms_array != 0);
2065 2065                  vdev_config_dirty(vd);
2066 2066                  dmu_tx_commit(tx);
2067 2067          }
2068 2068  
2069 2069          /*
2070 2070           * Remove the metadata associated with this vdev once it's empty.
2071 2071           */
2072 2072          if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2073 2073                  vdev_remove(vd, txg);
2074 2074  
2075 2075          while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2076 2076                  metaslab_sync(msp, txg);
2077 2077                  (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2078 2078          }
2079 2079  
2080 2080          while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2081 2081                  vdev_dtl_sync(lvd, txg);
2082 2082  
2083 2083          (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2084 2084  }
2085 2085  
2086 2086  uint64_t
2087 2087  vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2088 2088  {
2089 2089          return (vd->vdev_ops->vdev_op_asize(vd, psize));
2090 2090  }
2091 2091  
2092 2092  /*
2093 2093   * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2094 2094   * not be opened, and no I/O is attempted.
2095 2095   */
2096 2096  int
2097 2097  vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2098 2098  {
2099 2099          vdev_t *vd, *tvd;
2100 2100  
2101 2101          spa_vdev_state_enter(spa, SCL_NONE);
2102 2102  
2103 2103          if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2104 2104                  return (spa_vdev_state_exit(spa, NULL, ENODEV));
2105 2105  
2106 2106          if (!vd->vdev_ops->vdev_op_leaf)
2107 2107                  return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2108 2108  
2109 2109          tvd = vd->vdev_top;
2110 2110  
2111 2111          /*
2112 2112           * We don't directly use the aux state here, but if we do a
2113 2113           * vdev_reopen(), we need this value to be present to remember why we
2114 2114           * were faulted.
2115 2115           */
2116 2116          vd->vdev_label_aux = aux;
2117 2117  
2118 2118          /*
2119 2119           * Faulted state takes precedence over degraded.
2120 2120           */
2121 2121          vd->vdev_delayed_close = B_FALSE;
2122 2122          vd->vdev_faulted = 1ULL;
2123 2123          vd->vdev_degraded = 0ULL;
2124 2124          vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2125 2125  
2126 2126          /*
2127 2127           * If this device has the only valid copy of the data, then
2128 2128           * back off and simply mark the vdev as degraded instead.
2129 2129           */
2130 2130          if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2131 2131                  vd->vdev_degraded = 1ULL;
2132 2132                  vd->vdev_faulted = 0ULL;
2133 2133  
2134 2134                  /*
2135 2135                   * If we reopen the device and it's not dead, only then do we
2136 2136                   * mark it degraded.
2137 2137                   */
2138 2138                  vdev_reopen(tvd);
2139 2139  
2140 2140                  if (vdev_readable(vd))
2141 2141                          vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2142 2142          }
2143 2143  
2144 2144          return (spa_vdev_state_exit(spa, vd, 0));
2145 2145  }
2146 2146  
2147 2147  /*
2148 2148   * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2149 2149   * user that something is wrong.  The vdev continues to operate as normal as far
2150 2150   * as I/O is concerned.
2151 2151   */
2152 2152  int
2153 2153  vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2154 2154  {
2155 2155          vdev_t *vd;
2156 2156  
2157 2157          spa_vdev_state_enter(spa, SCL_NONE);
2158 2158  
2159 2159          if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2160 2160                  return (spa_vdev_state_exit(spa, NULL, ENODEV));
2161 2161  
2162 2162          if (!vd->vdev_ops->vdev_op_leaf)
2163 2163                  return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2164 2164  
2165 2165          /*
2166 2166           * If the vdev is already faulted, then don't do anything.
2167 2167           */
2168 2168          if (vd->vdev_faulted || vd->vdev_degraded)
2169 2169                  return (spa_vdev_state_exit(spa, NULL, 0));
2170 2170  
2171 2171          vd->vdev_degraded = 1ULL;
2172 2172          if (!vdev_is_dead(vd))
2173 2173                  vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2174 2174                      aux);
2175 2175  
2176 2176          return (spa_vdev_state_exit(spa, vd, 0));
2177 2177  }
2178 2178  
2179 2179  /*
2180 2180   * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2181 2181   * any attached spare device should be detached when the device finishes
2182 2182   * resilvering.  Second, the online should be treated like a 'test' online case,
2183 2183   * so no FMA events are generated if the device fails to open.
2184 2184   */
2185 2185  int
2186 2186  vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2187 2187  {
2188 2188          vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2189 2189  
2190 2190          spa_vdev_state_enter(spa, SCL_NONE);
2191 2191  
2192 2192          if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2193 2193                  return (spa_vdev_state_exit(spa, NULL, ENODEV));
2194 2194  
2195 2195          if (!vd->vdev_ops->vdev_op_leaf)
2196 2196                  return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2197 2197  
2198 2198          tvd = vd->vdev_top;
2199 2199          vd->vdev_offline = B_FALSE;
2200 2200          vd->vdev_tmpoffline = B_FALSE;
2201 2201          vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2202 2202          vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2203 2203  
2204 2204          /* XXX - L2ARC 1.0 does not support expansion */
2205 2205          if (!vd->vdev_aux) {
2206 2206                  for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2207 2207                          pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2208 2208          }
2209 2209  
2210 2210          vdev_reopen(tvd);
2211 2211          vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2212 2212  
2213 2213          if (!vd->vdev_aux) {
2214 2214                  for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2215 2215                          pvd->vdev_expanding = B_FALSE;
2216 2216          }
2217 2217  
2218 2218          if (newstate)
2219 2219                  *newstate = vd->vdev_state;
2220 2220          if ((flags & ZFS_ONLINE_UNSPARE) &&
2221 2221              !vdev_is_dead(vd) && vd->vdev_parent &&
2222 2222              vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2223 2223              vd->vdev_parent->vdev_child[0] == vd)
2224 2224                  vd->vdev_unspare = B_TRUE;
2225 2225  
2226 2226          if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2227 2227  
2228 2228                  /* XXX - L2ARC 1.0 does not support expansion */
2229 2229                  if (vd->vdev_aux)
2230 2230                          return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2231 2231                  spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2232 2232          }
2233 2233          return (spa_vdev_state_exit(spa, vd, 0));
2234 2234  }
2235 2235  
2236 2236  static int
2237 2237  vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2238 2238  {
2239 2239          vdev_t *vd, *tvd;
2240 2240          int error = 0;
2241 2241          uint64_t generation;
2242 2242          metaslab_group_t *mg;
2243 2243  
2244 2244  top:
2245 2245          spa_vdev_state_enter(spa, SCL_ALLOC);
2246 2246  
2247 2247          if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2248 2248                  return (spa_vdev_state_exit(spa, NULL, ENODEV));
2249 2249  
2250 2250          if (!vd->vdev_ops->vdev_op_leaf)
2251 2251                  return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2252 2252  
2253 2253          tvd = vd->vdev_top;
2254 2254          mg = tvd->vdev_mg;
2255 2255          generation = spa->spa_config_generation + 1;
2256 2256  
2257 2257          /*
2258 2258           * If the device isn't already offline, try to offline it.
2259 2259           */
2260 2260          if (!vd->vdev_offline) {
2261 2261                  /*
2262 2262                   * If this device has the only valid copy of some data,
2263 2263                   * don't allow it to be offlined. Log devices are always
2264 2264                   * expendable.
2265 2265                   */
2266 2266                  if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2267 2267                      vdev_dtl_required(vd))
2268 2268                          return (spa_vdev_state_exit(spa, NULL, EBUSY));
2269 2269  
2270 2270                  /*
2271 2271                   * If the top-level is a slog and it has had allocations
2272 2272                   * then proceed.  We check that the vdev's metaslab group
2273 2273                   * is not NULL since it's possible that we may have just
2274 2274                   * added this vdev but not yet initialized its metaslabs.
2275 2275                   */
2276 2276                  if (tvd->vdev_islog && mg != NULL) {
2277 2277                          /*
2278 2278                           * Prevent any future allocations.
2279 2279                           */
2280 2280                          metaslab_group_passivate(mg);
2281 2281                          (void) spa_vdev_state_exit(spa, vd, 0);
2282 2282  
2283 2283                          error = spa_offline_log(spa);
2284 2284  
2285 2285                          spa_vdev_state_enter(spa, SCL_ALLOC);
2286 2286  
2287 2287                          /*
  
    | 
      ↓ open down ↓ | 
    257 lines elided | 
    
      ↑ open up ↑ | 
  
2288 2288                           * Check to see if the config has changed.
2289 2289                           */
2290 2290                          if (error || generation != spa->spa_config_generation) {
2291 2291                                  metaslab_group_activate(mg);
2292 2292                                  if (error)
2293 2293                                          return (spa_vdev_state_exit(spa,
2294 2294                                              vd, error));
2295 2295                                  (void) spa_vdev_state_exit(spa, vd, 0);
2296 2296                                  goto top;
2297 2297                          }
2298      -                        ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
     2298 +                        ASSERT0(tvd->vdev_stat.vs_alloc);
2299 2299                  }
2300 2300  
2301 2301                  /*
2302 2302                   * Offline this device and reopen its top-level vdev.
2303 2303                   * If the top-level vdev is a log device then just offline
2304 2304                   * it. Otherwise, if this action results in the top-level
2305 2305                   * vdev becoming unusable, undo it and fail the request.
2306 2306                   */
2307 2307                  vd->vdev_offline = B_TRUE;
2308 2308                  vdev_reopen(tvd);
2309 2309  
2310 2310                  if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2311 2311                      vdev_is_dead(tvd)) {
2312 2312                          vd->vdev_offline = B_FALSE;
2313 2313                          vdev_reopen(tvd);
2314 2314                          return (spa_vdev_state_exit(spa, NULL, EBUSY));
2315 2315                  }
2316 2316  
2317 2317                  /*
2318 2318                   * Add the device back into the metaslab rotor so that
2319 2319                   * once we online the device it's open for business.
2320 2320                   */
2321 2321                  if (tvd->vdev_islog && mg != NULL)
2322 2322                          metaslab_group_activate(mg);
2323 2323          }
2324 2324  
2325 2325          vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2326 2326  
2327 2327          return (spa_vdev_state_exit(spa, vd, 0));
2328 2328  }
2329 2329  
2330 2330  int
2331 2331  vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2332 2332  {
2333 2333          int error;
2334 2334  
2335 2335          mutex_enter(&spa->spa_vdev_top_lock);
2336 2336          error = vdev_offline_locked(spa, guid, flags);
2337 2337          mutex_exit(&spa->spa_vdev_top_lock);
2338 2338  
2339 2339          return (error);
2340 2340  }
2341 2341  
2342 2342  /*
2343 2343   * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2344 2344   * vdev_offline(), we assume the spa config is locked.  We also clear all
2345 2345   * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2346 2346   */
2347 2347  void
2348 2348  vdev_clear(spa_t *spa, vdev_t *vd)
2349 2349  {
2350 2350          vdev_t *rvd = spa->spa_root_vdev;
2351 2351  
2352 2352          ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2353 2353  
2354 2354          if (vd == NULL)
2355 2355                  vd = rvd;
2356 2356  
2357 2357          vd->vdev_stat.vs_read_errors = 0;
2358 2358          vd->vdev_stat.vs_write_errors = 0;
2359 2359          vd->vdev_stat.vs_checksum_errors = 0;
2360 2360  
2361 2361          for (int c = 0; c < vd->vdev_children; c++)
2362 2362                  vdev_clear(spa, vd->vdev_child[c]);
2363 2363  
2364 2364          /*
2365 2365           * If we're in the FAULTED state or have experienced failed I/O, then
2366 2366           * clear the persistent state and attempt to reopen the device.  We
2367 2367           * also mark the vdev config dirty, so that the new faulted state is
2368 2368           * written out to disk.
2369 2369           */
2370 2370          if (vd->vdev_faulted || vd->vdev_degraded ||
2371 2371              !vdev_readable(vd) || !vdev_writeable(vd)) {
2372 2372  
2373 2373                  /*
2374 2374                   * When reopening in reponse to a clear event, it may be due to
2375 2375                   * a fmadm repair request.  In this case, if the device is
2376 2376                   * still broken, we want to still post the ereport again.
2377 2377                   */
2378 2378                  vd->vdev_forcefault = B_TRUE;
2379 2379  
2380 2380                  vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2381 2381                  vd->vdev_cant_read = B_FALSE;
2382 2382                  vd->vdev_cant_write = B_FALSE;
2383 2383  
2384 2384                  vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2385 2385  
2386 2386                  vd->vdev_forcefault = B_FALSE;
2387 2387  
2388 2388                  if (vd != rvd && vdev_writeable(vd->vdev_top))
2389 2389                          vdev_state_dirty(vd->vdev_top);
2390 2390  
2391 2391                  if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2392 2392                          spa_async_request(spa, SPA_ASYNC_RESILVER);
2393 2393  
2394 2394                  spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2395 2395          }
2396 2396  
2397 2397          /*
2398 2398           * When clearing a FMA-diagnosed fault, we always want to
2399 2399           * unspare the device, as we assume that the original spare was
2400 2400           * done in response to the FMA fault.
2401 2401           */
2402 2402          if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2403 2403              vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2404 2404              vd->vdev_parent->vdev_child[0] == vd)
2405 2405                  vd->vdev_unspare = B_TRUE;
2406 2406  }
2407 2407  
2408 2408  boolean_t
2409 2409  vdev_is_dead(vdev_t *vd)
2410 2410  {
2411 2411          /*
2412 2412           * Holes and missing devices are always considered "dead".
2413 2413           * This simplifies the code since we don't have to check for
2414 2414           * these types of devices in the various code paths.
2415 2415           * Instead we rely on the fact that we skip over dead devices
2416 2416           * before issuing I/O to them.
2417 2417           */
2418 2418          return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2419 2419              vd->vdev_ops == &vdev_missing_ops);
2420 2420  }
2421 2421  
2422 2422  boolean_t
2423 2423  vdev_readable(vdev_t *vd)
2424 2424  {
2425 2425          return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2426 2426  }
2427 2427  
2428 2428  boolean_t
2429 2429  vdev_writeable(vdev_t *vd)
2430 2430  {
2431 2431          return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2432 2432  }
2433 2433  
2434 2434  boolean_t
2435 2435  vdev_allocatable(vdev_t *vd)
2436 2436  {
2437 2437          uint64_t state = vd->vdev_state;
2438 2438  
2439 2439          /*
2440 2440           * We currently allow allocations from vdevs which may be in the
2441 2441           * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2442 2442           * fails to reopen then we'll catch it later when we're holding
2443 2443           * the proper locks.  Note that we have to get the vdev state
2444 2444           * in a local variable because although it changes atomically,
2445 2445           * we're asking two separate questions about it.
2446 2446           */
2447 2447          return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2448 2448              !vd->vdev_cant_write && !vd->vdev_ishole);
2449 2449  }
2450 2450  
2451 2451  boolean_t
2452 2452  vdev_accessible(vdev_t *vd, zio_t *zio)
2453 2453  {
2454 2454          ASSERT(zio->io_vd == vd);
2455 2455  
2456 2456          if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2457 2457                  return (B_FALSE);
2458 2458  
2459 2459          if (zio->io_type == ZIO_TYPE_READ)
2460 2460                  return (!vd->vdev_cant_read);
2461 2461  
2462 2462          if (zio->io_type == ZIO_TYPE_WRITE)
2463 2463                  return (!vd->vdev_cant_write);
2464 2464  
2465 2465          return (B_TRUE);
2466 2466  }
2467 2467  
2468 2468  /*
2469 2469   * Get statistics for the given vdev.
2470 2470   */
2471 2471  void
2472 2472  vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2473 2473  {
2474 2474          vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2475 2475  
2476 2476          mutex_enter(&vd->vdev_stat_lock);
2477 2477          bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2478 2478          vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2479 2479          vs->vs_state = vd->vdev_state;
2480 2480          vs->vs_rsize = vdev_get_min_asize(vd);
2481 2481          if (vd->vdev_ops->vdev_op_leaf)
2482 2482                  vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2483 2483          vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2484 2484          mutex_exit(&vd->vdev_stat_lock);
2485 2485  
2486 2486          /*
2487 2487           * If we're getting stats on the root vdev, aggregate the I/O counts
2488 2488           * over all top-level vdevs (i.e. the direct children of the root).
2489 2489           */
2490 2490          if (vd == rvd) {
2491 2491                  for (int c = 0; c < rvd->vdev_children; c++) {
2492 2492                          vdev_t *cvd = rvd->vdev_child[c];
2493 2493                          vdev_stat_t *cvs = &cvd->vdev_stat;
2494 2494  
2495 2495                          mutex_enter(&vd->vdev_stat_lock);
2496 2496                          for (int t = 0; t < ZIO_TYPES; t++) {
2497 2497                                  vs->vs_ops[t] += cvs->vs_ops[t];
2498 2498                                  vs->vs_bytes[t] += cvs->vs_bytes[t];
2499 2499                          }
2500 2500                          cvs->vs_scan_removing = cvd->vdev_removing;
2501 2501                          mutex_exit(&vd->vdev_stat_lock);
2502 2502                  }
2503 2503          }
2504 2504  }
2505 2505  
2506 2506  void
2507 2507  vdev_clear_stats(vdev_t *vd)
2508 2508  {
2509 2509          mutex_enter(&vd->vdev_stat_lock);
2510 2510          vd->vdev_stat.vs_space = 0;
2511 2511          vd->vdev_stat.vs_dspace = 0;
2512 2512          vd->vdev_stat.vs_alloc = 0;
2513 2513          mutex_exit(&vd->vdev_stat_lock);
2514 2514  }
2515 2515  
2516 2516  void
2517 2517  vdev_scan_stat_init(vdev_t *vd)
2518 2518  {
2519 2519          vdev_stat_t *vs = &vd->vdev_stat;
2520 2520  
2521 2521          for (int c = 0; c < vd->vdev_children; c++)
2522 2522                  vdev_scan_stat_init(vd->vdev_child[c]);
2523 2523  
2524 2524          mutex_enter(&vd->vdev_stat_lock);
2525 2525          vs->vs_scan_processed = 0;
2526 2526          mutex_exit(&vd->vdev_stat_lock);
2527 2527  }
2528 2528  
2529 2529  void
2530 2530  vdev_stat_update(zio_t *zio, uint64_t psize)
2531 2531  {
2532 2532          spa_t *spa = zio->io_spa;
2533 2533          vdev_t *rvd = spa->spa_root_vdev;
2534 2534          vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2535 2535          vdev_t *pvd;
2536 2536          uint64_t txg = zio->io_txg;
2537 2537          vdev_stat_t *vs = &vd->vdev_stat;
2538 2538          zio_type_t type = zio->io_type;
2539 2539          int flags = zio->io_flags;
2540 2540  
2541 2541          /*
2542 2542           * If this i/o is a gang leader, it didn't do any actual work.
2543 2543           */
2544 2544          if (zio->io_gang_tree)
2545 2545                  return;
2546 2546  
2547 2547          if (zio->io_error == 0) {
2548 2548                  /*
2549 2549                   * If this is a root i/o, don't count it -- we've already
2550 2550                   * counted the top-level vdevs, and vdev_get_stats() will
2551 2551                   * aggregate them when asked.  This reduces contention on
2552 2552                   * the root vdev_stat_lock and implicitly handles blocks
2553 2553                   * that compress away to holes, for which there is no i/o.
2554 2554                   * (Holes never create vdev children, so all the counters
2555 2555                   * remain zero, which is what we want.)
2556 2556                   *
2557 2557                   * Note: this only applies to successful i/o (io_error == 0)
2558 2558                   * because unlike i/o counts, errors are not additive.
2559 2559                   * When reading a ditto block, for example, failure of
2560 2560                   * one top-level vdev does not imply a root-level error.
2561 2561                   */
2562 2562                  if (vd == rvd)
2563 2563                          return;
2564 2564  
2565 2565                  ASSERT(vd == zio->io_vd);
2566 2566  
2567 2567                  if (flags & ZIO_FLAG_IO_BYPASS)
2568 2568                          return;
2569 2569  
2570 2570                  mutex_enter(&vd->vdev_stat_lock);
2571 2571  
2572 2572                  if (flags & ZIO_FLAG_IO_REPAIR) {
2573 2573                          if (flags & ZIO_FLAG_SCAN_THREAD) {
2574 2574                                  dsl_scan_phys_t *scn_phys =
2575 2575                                      &spa->spa_dsl_pool->dp_scan->scn_phys;
2576 2576                                  uint64_t *processed = &scn_phys->scn_processed;
2577 2577  
2578 2578                                  /* XXX cleanup? */
2579 2579                                  if (vd->vdev_ops->vdev_op_leaf)
2580 2580                                          atomic_add_64(processed, psize);
2581 2581                                  vs->vs_scan_processed += psize;
2582 2582                          }
2583 2583  
2584 2584                          if (flags & ZIO_FLAG_SELF_HEAL)
2585 2585                                  vs->vs_self_healed += psize;
2586 2586                  }
2587 2587  
2588 2588                  vs->vs_ops[type]++;
2589 2589                  vs->vs_bytes[type] += psize;
2590 2590  
2591 2591                  mutex_exit(&vd->vdev_stat_lock);
2592 2592                  return;
2593 2593          }
2594 2594  
2595 2595          if (flags & ZIO_FLAG_SPECULATIVE)
2596 2596                  return;
2597 2597  
2598 2598          /*
2599 2599           * If this is an I/O error that is going to be retried, then ignore the
2600 2600           * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2601 2601           * hard errors, when in reality they can happen for any number of
2602 2602           * innocuous reasons (bus resets, MPxIO link failure, etc).
2603 2603           */
2604 2604          if (zio->io_error == EIO &&
2605 2605              !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2606 2606                  return;
2607 2607  
2608 2608          /*
2609 2609           * Intent logs writes won't propagate their error to the root
2610 2610           * I/O so don't mark these types of failures as pool-level
2611 2611           * errors.
2612 2612           */
2613 2613          if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2614 2614                  return;
2615 2615  
2616 2616          mutex_enter(&vd->vdev_stat_lock);
2617 2617          if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2618 2618                  if (zio->io_error == ECKSUM)
2619 2619                          vs->vs_checksum_errors++;
2620 2620                  else
2621 2621                          vs->vs_read_errors++;
2622 2622          }
2623 2623          if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2624 2624                  vs->vs_write_errors++;
2625 2625          mutex_exit(&vd->vdev_stat_lock);
2626 2626  
2627 2627          if (type == ZIO_TYPE_WRITE && txg != 0 &&
2628 2628              (!(flags & ZIO_FLAG_IO_REPAIR) ||
2629 2629              (flags & ZIO_FLAG_SCAN_THREAD) ||
2630 2630              spa->spa_claiming)) {
2631 2631                  /*
2632 2632                   * This is either a normal write (not a repair), or it's
2633 2633                   * a repair induced by the scrub thread, or it's a repair
2634 2634                   * made by zil_claim() during spa_load() in the first txg.
2635 2635                   * In the normal case, we commit the DTL change in the same
2636 2636                   * txg as the block was born.  In the scrub-induced repair
2637 2637                   * case, we know that scrubs run in first-pass syncing context,
2638 2638                   * so we commit the DTL change in spa_syncing_txg(spa).
2639 2639                   * In the zil_claim() case, we commit in spa_first_txg(spa).
2640 2640                   *
2641 2641                   * We currently do not make DTL entries for failed spontaneous
2642 2642                   * self-healing writes triggered by normal (non-scrubbing)
2643 2643                   * reads, because we have no transactional context in which to
2644 2644                   * do so -- and it's not clear that it'd be desirable anyway.
2645 2645                   */
2646 2646                  if (vd->vdev_ops->vdev_op_leaf) {
2647 2647                          uint64_t commit_txg = txg;
2648 2648                          if (flags & ZIO_FLAG_SCAN_THREAD) {
2649 2649                                  ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2650 2650                                  ASSERT(spa_sync_pass(spa) == 1);
2651 2651                                  vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2652 2652                                  commit_txg = spa_syncing_txg(spa);
2653 2653                          } else if (spa->spa_claiming) {
2654 2654                                  ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2655 2655                                  commit_txg = spa_first_txg(spa);
2656 2656                          }
2657 2657                          ASSERT(commit_txg >= spa_syncing_txg(spa));
2658 2658                          if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2659 2659                                  return;
2660 2660                          for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2661 2661                                  vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2662 2662                          vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2663 2663                  }
2664 2664                  if (vd != rvd)
2665 2665                          vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2666 2666          }
2667 2667  }
2668 2668  
2669 2669  /*
2670 2670   * Update the in-core space usage stats for this vdev, its metaslab class,
2671 2671   * and the root vdev.
2672 2672   */
2673 2673  void
2674 2674  vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2675 2675      int64_t space_delta)
2676 2676  {
2677 2677          int64_t dspace_delta = space_delta;
2678 2678          spa_t *spa = vd->vdev_spa;
2679 2679          vdev_t *rvd = spa->spa_root_vdev;
2680 2680          metaslab_group_t *mg = vd->vdev_mg;
2681 2681          metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2682 2682  
2683 2683          ASSERT(vd == vd->vdev_top);
2684 2684  
2685 2685          /*
2686 2686           * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2687 2687           * factor.  We must calculate this here and not at the root vdev
2688 2688           * because the root vdev's psize-to-asize is simply the max of its
2689 2689           * childrens', thus not accurate enough for us.
2690 2690           */
2691 2691          ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2692 2692          ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2693 2693          dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2694 2694              vd->vdev_deflate_ratio;
2695 2695  
2696 2696          mutex_enter(&vd->vdev_stat_lock);
2697 2697          vd->vdev_stat.vs_alloc += alloc_delta;
2698 2698          vd->vdev_stat.vs_space += space_delta;
2699 2699          vd->vdev_stat.vs_dspace += dspace_delta;
2700 2700          mutex_exit(&vd->vdev_stat_lock);
2701 2701  
2702 2702          if (mc == spa_normal_class(spa)) {
2703 2703                  mutex_enter(&rvd->vdev_stat_lock);
2704 2704                  rvd->vdev_stat.vs_alloc += alloc_delta;
2705 2705                  rvd->vdev_stat.vs_space += space_delta;
2706 2706                  rvd->vdev_stat.vs_dspace += dspace_delta;
2707 2707                  mutex_exit(&rvd->vdev_stat_lock);
2708 2708          }
2709 2709  
2710 2710          if (mc != NULL) {
2711 2711                  ASSERT(rvd == vd->vdev_parent);
2712 2712                  ASSERT(vd->vdev_ms_count != 0);
2713 2713  
2714 2714                  metaslab_class_space_update(mc,
2715 2715                      alloc_delta, defer_delta, space_delta, dspace_delta);
2716 2716          }
2717 2717  }
2718 2718  
2719 2719  /*
2720 2720   * Mark a top-level vdev's config as dirty, placing it on the dirty list
2721 2721   * so that it will be written out next time the vdev configuration is synced.
2722 2722   * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2723 2723   */
2724 2724  void
2725 2725  vdev_config_dirty(vdev_t *vd)
2726 2726  {
2727 2727          spa_t *spa = vd->vdev_spa;
2728 2728          vdev_t *rvd = spa->spa_root_vdev;
2729 2729          int c;
2730 2730  
2731 2731          ASSERT(spa_writeable(spa));
2732 2732  
2733 2733          /*
2734 2734           * If this is an aux vdev (as with l2cache and spare devices), then we
2735 2735           * update the vdev config manually and set the sync flag.
2736 2736           */
2737 2737          if (vd->vdev_aux != NULL) {
2738 2738                  spa_aux_vdev_t *sav = vd->vdev_aux;
2739 2739                  nvlist_t **aux;
2740 2740                  uint_t naux;
2741 2741  
2742 2742                  for (c = 0; c < sav->sav_count; c++) {
2743 2743                          if (sav->sav_vdevs[c] == vd)
2744 2744                                  break;
2745 2745                  }
2746 2746  
2747 2747                  if (c == sav->sav_count) {
2748 2748                          /*
2749 2749                           * We're being removed.  There's nothing more to do.
2750 2750                           */
2751 2751                          ASSERT(sav->sav_sync == B_TRUE);
2752 2752                          return;
2753 2753                  }
2754 2754  
2755 2755                  sav->sav_sync = B_TRUE;
2756 2756  
2757 2757                  if (nvlist_lookup_nvlist_array(sav->sav_config,
2758 2758                      ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2759 2759                          VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2760 2760                              ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2761 2761                  }
2762 2762  
2763 2763                  ASSERT(c < naux);
2764 2764  
2765 2765                  /*
2766 2766                   * Setting the nvlist in the middle if the array is a little
2767 2767                   * sketchy, but it will work.
2768 2768                   */
2769 2769                  nvlist_free(aux[c]);
2770 2770                  aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2771 2771  
2772 2772                  return;
2773 2773          }
2774 2774  
2775 2775          /*
2776 2776           * The dirty list is protected by the SCL_CONFIG lock.  The caller
2777 2777           * must either hold SCL_CONFIG as writer, or must be the sync thread
2778 2778           * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2779 2779           * so this is sufficient to ensure mutual exclusion.
2780 2780           */
2781 2781          ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2782 2782              (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2783 2783              spa_config_held(spa, SCL_CONFIG, RW_READER)));
2784 2784  
2785 2785          if (vd == rvd) {
2786 2786                  for (c = 0; c < rvd->vdev_children; c++)
2787 2787                          vdev_config_dirty(rvd->vdev_child[c]);
2788 2788          } else {
2789 2789                  ASSERT(vd == vd->vdev_top);
2790 2790  
2791 2791                  if (!list_link_active(&vd->vdev_config_dirty_node) &&
2792 2792                      !vd->vdev_ishole)
2793 2793                          list_insert_head(&spa->spa_config_dirty_list, vd);
2794 2794          }
2795 2795  }
2796 2796  
2797 2797  void
2798 2798  vdev_config_clean(vdev_t *vd)
2799 2799  {
2800 2800          spa_t *spa = vd->vdev_spa;
2801 2801  
2802 2802          ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2803 2803              (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2804 2804              spa_config_held(spa, SCL_CONFIG, RW_READER)));
2805 2805  
2806 2806          ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2807 2807          list_remove(&spa->spa_config_dirty_list, vd);
2808 2808  }
2809 2809  
2810 2810  /*
2811 2811   * Mark a top-level vdev's state as dirty, so that the next pass of
2812 2812   * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2813 2813   * the state changes from larger config changes because they require
2814 2814   * much less locking, and are often needed for administrative actions.
2815 2815   */
2816 2816  void
2817 2817  vdev_state_dirty(vdev_t *vd)
2818 2818  {
2819 2819          spa_t *spa = vd->vdev_spa;
2820 2820  
2821 2821          ASSERT(spa_writeable(spa));
2822 2822          ASSERT(vd == vd->vdev_top);
2823 2823  
2824 2824          /*
2825 2825           * The state list is protected by the SCL_STATE lock.  The caller
2826 2826           * must either hold SCL_STATE as writer, or must be the sync thread
2827 2827           * (which holds SCL_STATE as reader).  There's only one sync thread,
2828 2828           * so this is sufficient to ensure mutual exclusion.
2829 2829           */
2830 2830          ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2831 2831              (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2832 2832              spa_config_held(spa, SCL_STATE, RW_READER)));
2833 2833  
2834 2834          if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2835 2835                  list_insert_head(&spa->spa_state_dirty_list, vd);
2836 2836  }
2837 2837  
2838 2838  void
2839 2839  vdev_state_clean(vdev_t *vd)
2840 2840  {
2841 2841          spa_t *spa = vd->vdev_spa;
2842 2842  
2843 2843          ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2844 2844              (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2845 2845              spa_config_held(spa, SCL_STATE, RW_READER)));
2846 2846  
2847 2847          ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2848 2848          list_remove(&spa->spa_state_dirty_list, vd);
2849 2849  }
2850 2850  
2851 2851  /*
2852 2852   * Propagate vdev state up from children to parent.
2853 2853   */
2854 2854  void
2855 2855  vdev_propagate_state(vdev_t *vd)
2856 2856  {
2857 2857          spa_t *spa = vd->vdev_spa;
2858 2858          vdev_t *rvd = spa->spa_root_vdev;
2859 2859          int degraded = 0, faulted = 0;
2860 2860          int corrupted = 0;
2861 2861          vdev_t *child;
2862 2862  
2863 2863          if (vd->vdev_children > 0) {
2864 2864                  for (int c = 0; c < vd->vdev_children; c++) {
2865 2865                          child = vd->vdev_child[c];
2866 2866  
2867 2867                          /*
2868 2868                           * Don't factor holes into the decision.
2869 2869                           */
2870 2870                          if (child->vdev_ishole)
2871 2871                                  continue;
2872 2872  
2873 2873                          if (!vdev_readable(child) ||
2874 2874                              (!vdev_writeable(child) && spa_writeable(spa))) {
2875 2875                                  /*
2876 2876                                   * Root special: if there is a top-level log
2877 2877                                   * device, treat the root vdev as if it were
2878 2878                                   * degraded.
2879 2879                                   */
2880 2880                                  if (child->vdev_islog && vd == rvd)
2881 2881                                          degraded++;
2882 2882                                  else
2883 2883                                          faulted++;
2884 2884                          } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2885 2885                                  degraded++;
2886 2886                          }
2887 2887  
2888 2888                          if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2889 2889                                  corrupted++;
2890 2890                  }
2891 2891  
2892 2892                  vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2893 2893  
2894 2894                  /*
2895 2895                   * Root special: if there is a top-level vdev that cannot be
2896 2896                   * opened due to corrupted metadata, then propagate the root
2897 2897                   * vdev's aux state as 'corrupt' rather than 'insufficient
2898 2898                   * replicas'.
2899 2899                   */
2900 2900                  if (corrupted && vd == rvd &&
2901 2901                      rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2902 2902                          vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2903 2903                              VDEV_AUX_CORRUPT_DATA);
2904 2904          }
2905 2905  
2906 2906          if (vd->vdev_parent)
2907 2907                  vdev_propagate_state(vd->vdev_parent);
2908 2908  }
2909 2909  
2910 2910  /*
2911 2911   * Set a vdev's state.  If this is during an open, we don't update the parent
2912 2912   * state, because we're in the process of opening children depth-first.
2913 2913   * Otherwise, we propagate the change to the parent.
2914 2914   *
2915 2915   * If this routine places a device in a faulted state, an appropriate ereport is
2916 2916   * generated.
2917 2917   */
2918 2918  void
2919 2919  vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2920 2920  {
2921 2921          uint64_t save_state;
2922 2922          spa_t *spa = vd->vdev_spa;
2923 2923  
2924 2924          if (state == vd->vdev_state) {
2925 2925                  vd->vdev_stat.vs_aux = aux;
2926 2926                  return;
2927 2927          }
2928 2928  
2929 2929          save_state = vd->vdev_state;
2930 2930  
2931 2931          vd->vdev_state = state;
2932 2932          vd->vdev_stat.vs_aux = aux;
2933 2933  
2934 2934          /*
2935 2935           * If we are setting the vdev state to anything but an open state, then
2936 2936           * always close the underlying device unless the device has requested
2937 2937           * a delayed close (i.e. we're about to remove or fault the device).
2938 2938           * Otherwise, we keep accessible but invalid devices open forever.
2939 2939           * We don't call vdev_close() itself, because that implies some extra
2940 2940           * checks (offline, etc) that we don't want here.  This is limited to
2941 2941           * leaf devices, because otherwise closing the device will affect other
2942 2942           * children.
2943 2943           */
2944 2944          if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2945 2945              vd->vdev_ops->vdev_op_leaf)
2946 2946                  vd->vdev_ops->vdev_op_close(vd);
2947 2947  
2948 2948          /*
2949 2949           * If we have brought this vdev back into service, we need
2950 2950           * to notify fmd so that it can gracefully repair any outstanding
2951 2951           * cases due to a missing device.  We do this in all cases, even those
2952 2952           * that probably don't correlate to a repaired fault.  This is sure to
2953 2953           * catch all cases, and we let the zfs-retire agent sort it out.  If
2954 2954           * this is a transient state it's OK, as the retire agent will
2955 2955           * double-check the state of the vdev before repairing it.
2956 2956           */
2957 2957          if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2958 2958              vd->vdev_prevstate != state)
2959 2959                  zfs_post_state_change(spa, vd);
2960 2960  
2961 2961          if (vd->vdev_removed &&
2962 2962              state == VDEV_STATE_CANT_OPEN &&
2963 2963              (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2964 2964                  /*
2965 2965                   * If the previous state is set to VDEV_STATE_REMOVED, then this
2966 2966                   * device was previously marked removed and someone attempted to
2967 2967                   * reopen it.  If this failed due to a nonexistent device, then
2968 2968                   * keep the device in the REMOVED state.  We also let this be if
2969 2969                   * it is one of our special test online cases, which is only
2970 2970                   * attempting to online the device and shouldn't generate an FMA
2971 2971                   * fault.
2972 2972                   */
2973 2973                  vd->vdev_state = VDEV_STATE_REMOVED;
2974 2974                  vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2975 2975          } else if (state == VDEV_STATE_REMOVED) {
2976 2976                  vd->vdev_removed = B_TRUE;
2977 2977          } else if (state == VDEV_STATE_CANT_OPEN) {
2978 2978                  /*
2979 2979                   * If we fail to open a vdev during an import or recovery, we
2980 2980                   * mark it as "not available", which signifies that it was
2981 2981                   * never there to begin with.  Failure to open such a device
2982 2982                   * is not considered an error.
2983 2983                   */
2984 2984                  if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2985 2985                      spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2986 2986                      vd->vdev_ops->vdev_op_leaf)
2987 2987                          vd->vdev_not_present = 1;
2988 2988  
2989 2989                  /*
2990 2990                   * Post the appropriate ereport.  If the 'prevstate' field is
2991 2991                   * set to something other than VDEV_STATE_UNKNOWN, it indicates
2992 2992                   * that this is part of a vdev_reopen().  In this case, we don't
2993 2993                   * want to post the ereport if the device was already in the
2994 2994                   * CANT_OPEN state beforehand.
2995 2995                   *
2996 2996                   * If the 'checkremove' flag is set, then this is an attempt to
2997 2997                   * online the device in response to an insertion event.  If we
2998 2998                   * hit this case, then we have detected an insertion event for a
2999 2999                   * faulted or offline device that wasn't in the removed state.
3000 3000                   * In this scenario, we don't post an ereport because we are
3001 3001                   * about to replace the device, or attempt an online with
3002 3002                   * vdev_forcefault, which will generate the fault for us.
3003 3003                   */
3004 3004                  if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3005 3005                      !vd->vdev_not_present && !vd->vdev_checkremove &&
3006 3006                      vd != spa->spa_root_vdev) {
3007 3007                          const char *class;
3008 3008  
3009 3009                          switch (aux) {
3010 3010                          case VDEV_AUX_OPEN_FAILED:
3011 3011                                  class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3012 3012                                  break;
3013 3013                          case VDEV_AUX_CORRUPT_DATA:
3014 3014                                  class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3015 3015                                  break;
3016 3016                          case VDEV_AUX_NO_REPLICAS:
3017 3017                                  class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3018 3018                                  break;
3019 3019                          case VDEV_AUX_BAD_GUID_SUM:
3020 3020                                  class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3021 3021                                  break;
3022 3022                          case VDEV_AUX_TOO_SMALL:
3023 3023                                  class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3024 3024                                  break;
3025 3025                          case VDEV_AUX_BAD_LABEL:
3026 3026                                  class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3027 3027                                  break;
3028 3028                          default:
3029 3029                                  class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3030 3030                          }
3031 3031  
3032 3032                          zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3033 3033                  }
3034 3034  
3035 3035                  /* Erase any notion of persistent removed state */
3036 3036                  vd->vdev_removed = B_FALSE;
3037 3037          } else {
3038 3038                  vd->vdev_removed = B_FALSE;
3039 3039          }
3040 3040  
3041 3041          if (!isopen && vd->vdev_parent)
3042 3042                  vdev_propagate_state(vd->vdev_parent);
3043 3043  }
3044 3044  
3045 3045  /*
3046 3046   * Check the vdev configuration to ensure that it's capable of supporting
3047 3047   * a root pool. Currently, we do not support RAID-Z or partial configuration.
3048 3048   * In addition, only a single top-level vdev is allowed and none of the leaves
3049 3049   * can be wholedisks.
3050 3050   */
3051 3051  boolean_t
3052 3052  vdev_is_bootable(vdev_t *vd)
3053 3053  {
3054 3054          if (!vd->vdev_ops->vdev_op_leaf) {
3055 3055                  char *vdev_type = vd->vdev_ops->vdev_op_type;
3056 3056  
3057 3057                  if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3058 3058                      vd->vdev_children > 1) {
3059 3059                          return (B_FALSE);
3060 3060                  } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3061 3061                      strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3062 3062                          return (B_FALSE);
3063 3063                  }
3064 3064          } else if (vd->vdev_wholedisk == 1) {
3065 3065                  return (B_FALSE);
3066 3066          }
3067 3067  
3068 3068          for (int c = 0; c < vd->vdev_children; c++) {
3069 3069                  if (!vdev_is_bootable(vd->vdev_child[c]))
3070 3070                          return (B_FALSE);
3071 3071          }
3072 3072          return (B_TRUE);
3073 3073  }
3074 3074  
3075 3075  /*
3076 3076   * Load the state from the original vdev tree (ovd) which
3077 3077   * we've retrieved from the MOS config object. If the original
3078 3078   * vdev was offline or faulted then we transfer that state to the
3079 3079   * device in the current vdev tree (nvd).
3080 3080   */
3081 3081  void
3082 3082  vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3083 3083  {
3084 3084          spa_t *spa = nvd->vdev_spa;
3085 3085  
3086 3086          ASSERT(nvd->vdev_top->vdev_islog);
3087 3087          ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3088 3088          ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3089 3089  
3090 3090          for (int c = 0; c < nvd->vdev_children; c++)
3091 3091                  vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3092 3092  
3093 3093          if (nvd->vdev_ops->vdev_op_leaf) {
3094 3094                  /*
3095 3095                   * Restore the persistent vdev state
3096 3096                   */
3097 3097                  nvd->vdev_offline = ovd->vdev_offline;
3098 3098                  nvd->vdev_faulted = ovd->vdev_faulted;
3099 3099                  nvd->vdev_degraded = ovd->vdev_degraded;
3100 3100                  nvd->vdev_removed = ovd->vdev_removed;
3101 3101          }
3102 3102  }
3103 3103  
3104 3104  /*
3105 3105   * Determine if a log device has valid content.  If the vdev was
3106 3106   * removed or faulted in the MOS config then we know that
3107 3107   * the content on the log device has already been written to the pool.
3108 3108   */
3109 3109  boolean_t
3110 3110  vdev_log_state_valid(vdev_t *vd)
3111 3111  {
3112 3112          if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3113 3113              !vd->vdev_removed)
3114 3114                  return (B_TRUE);
3115 3115  
3116 3116          for (int c = 0; c < vd->vdev_children; c++)
3117 3117                  if (vdev_log_state_valid(vd->vdev_child[c]))
3118 3118                          return (B_TRUE);
3119 3119  
3120 3120          return (B_FALSE);
3121 3121  }
3122 3122  
3123 3123  /*
3124 3124   * Expand a vdev if possible.
3125 3125   */
3126 3126  void
3127 3127  vdev_expand(vdev_t *vd, uint64_t txg)
3128 3128  {
3129 3129          ASSERT(vd->vdev_top == vd);
3130 3130          ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3131 3131  
3132 3132          if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3133 3133                  VERIFY(vdev_metaslab_init(vd, txg) == 0);
3134 3134                  vdev_config_dirty(vd);
3135 3135          }
3136 3136  }
3137 3137  
3138 3138  /*
3139 3139   * Split a vdev.
3140 3140   */
3141 3141  void
3142 3142  vdev_split(vdev_t *vd)
3143 3143  {
3144 3144          vdev_t *cvd, *pvd = vd->vdev_parent;
3145 3145  
3146 3146          vdev_remove_child(pvd, vd);
3147 3147          vdev_compact_children(pvd);
3148 3148  
3149 3149          cvd = pvd->vdev_child[0];
3150 3150          if (pvd->vdev_children == 1) {
3151 3151                  vdev_remove_parent(cvd);
3152 3152                  cvd->vdev_splitting = B_TRUE;
3153 3153          }
3154 3154          vdev_propagate_state(cvd);
3155 3155  }
  
    | 
      ↓ open down ↓ | 
    847 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX