1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012 by Delphix. All rights reserved.
  24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 #include <sys/zfs_context.h>
  28 #include <sys/fm/fs/zfs.h>
  29 #include <sys/spa.h>
  30 #include <sys/txg.h>
  31 #include <sys/spa_impl.h>
  32 #include <sys/vdev_impl.h>
  33 #include <sys/zio_impl.h>
  34 #include <sys/zio_compress.h>
  35 #include <sys/zio_checksum.h>
  36 #include <sys/dmu_objset.h>
  37 #include <sys/arc.h>
  38 #include <sys/ddt.h>
  39 
  40 /*
  41  * ==========================================================================
  42  * I/O priority table
  43  * ==========================================================================
  44  */
  45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
  46         0,      /* ZIO_PRIORITY_NOW             */
  47         0,      /* ZIO_PRIORITY_SYNC_READ       */
  48         0,      /* ZIO_PRIORITY_SYNC_WRITE      */
  49         0,      /* ZIO_PRIORITY_LOG_WRITE       */
  50         1,      /* ZIO_PRIORITY_CACHE_FILL      */
  51         1,      /* ZIO_PRIORITY_AGG             */
  52         4,      /* ZIO_PRIORITY_FREE            */
  53         4,      /* ZIO_PRIORITY_ASYNC_WRITE     */
  54         6,      /* ZIO_PRIORITY_ASYNC_READ      */
  55         10,     /* ZIO_PRIORITY_RESILVER        */
  56         20,     /* ZIO_PRIORITY_SCRUB           */
  57         2,      /* ZIO_PRIORITY_DDT_PREFETCH    */
  58 };
  59 
  60 /*
  61  * ==========================================================================
  62  * I/O type descriptions
  63  * ==========================================================================
  64  */
  65 char *zio_type_name[ZIO_TYPES] = {
  66         "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
  67         "zio_ioctl"
  68 };
  69 
  70 /*
  71  * ==========================================================================
  72  * I/O kmem caches
  73  * ==========================================================================
  74  */
  75 kmem_cache_t *zio_cache;
  76 kmem_cache_t *zio_link_cache;
  77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
  79 
  80 #ifdef _KERNEL
  81 extern vmem_t *zio_alloc_arena;
  82 #endif
  83 extern int zfs_mg_alloc_failures;
  84 
  85 /*
  86  * An allocating zio is one that either currently has the DVA allocate
  87  * stage set or will have it later in its lifetime.
  88  */
  89 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
  90 
  91 boolean_t       zio_requeue_io_start_cut_in_line = B_TRUE;
  92 
  93 #ifdef ZFS_DEBUG
  94 int zio_buf_debug_limit = 16384;
  95 #else
  96 int zio_buf_debug_limit = 0;
  97 #endif
  98 
  99 void
 100 zio_init(void)
 101 {
 102         size_t c;
 103         vmem_t *data_alloc_arena = NULL;
 104 
 105 #ifdef _KERNEL
 106         data_alloc_arena = zio_alloc_arena;
 107 #endif
 108         zio_cache = kmem_cache_create("zio_cache",
 109             sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 110         zio_link_cache = kmem_cache_create("zio_link_cache",
 111             sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 112 
 113         /*
 114          * For small buffers, we want a cache for each multiple of
 115          * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
 116          * for each quarter-power of 2.  For large buffers, we want
 117          * a cache for each multiple of PAGESIZE.
 118          */
 119         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 120                 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
 121                 size_t p2 = size;
 122                 size_t align = 0;
 123                 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
 124 
 125                 while (p2 & (p2 - 1))
 126                         p2 &= p2 - 1;
 127 
 128                 if (size <= 4 * SPA_MINBLOCKSIZE) {
 129                         align = SPA_MINBLOCKSIZE;
 130                 } else if (P2PHASE(size, PAGESIZE) == 0) {
 131                         align = PAGESIZE;
 132                 } else if (P2PHASE(size, p2 >> 2) == 0) {
 133                         align = p2 >> 2;
 134                 }
 135 
 136                 if (align != 0) {
 137                         char name[36];
 138                         (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
 139                         zio_buf_cache[c] = kmem_cache_create(name, size,
 140                             align, NULL, NULL, NULL, NULL, NULL, cflags);
 141 
 142                         /*
 143                          * Since zio_data bufs do not appear in crash dumps, we
 144                          * pass KMC_NOTOUCH so that no allocator metadata is
 145                          * stored with the buffers.
 146                          */
 147                         (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
 148                         zio_data_buf_cache[c] = kmem_cache_create(name, size,
 149                             align, NULL, NULL, NULL, NULL, data_alloc_arena,
 150                             cflags | KMC_NOTOUCH);
 151                 }
 152         }
 153 
 154         while (--c != 0) {
 155                 ASSERT(zio_buf_cache[c] != NULL);
 156                 if (zio_buf_cache[c - 1] == NULL)
 157                         zio_buf_cache[c - 1] = zio_buf_cache[c];
 158 
 159                 ASSERT(zio_data_buf_cache[c] != NULL);
 160                 if (zio_data_buf_cache[c - 1] == NULL)
 161                         zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
 162         }
 163 
 164         /*
 165          * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
 166          * to fail 3 times per txg or 8 failures, whichever is greater.
 167          */
 168         zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
 169 
 170         zio_inject_init();
 171 }
 172 
 173 void
 174 zio_fini(void)
 175 {
 176         size_t c;
 177         kmem_cache_t *last_cache = NULL;
 178         kmem_cache_t *last_data_cache = NULL;
 179 
 180         for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
 181                 if (zio_buf_cache[c] != last_cache) {
 182                         last_cache = zio_buf_cache[c];
 183                         kmem_cache_destroy(zio_buf_cache[c]);
 184                 }
 185                 zio_buf_cache[c] = NULL;
 186 
 187                 if (zio_data_buf_cache[c] != last_data_cache) {
 188                         last_data_cache = zio_data_buf_cache[c];
 189                         kmem_cache_destroy(zio_data_buf_cache[c]);
 190                 }
 191                 zio_data_buf_cache[c] = NULL;
 192         }
 193 
 194         kmem_cache_destroy(zio_link_cache);
 195         kmem_cache_destroy(zio_cache);
 196 
 197         zio_inject_fini();
 198 }
 199 
 200 /*
 201  * ==========================================================================
 202  * Allocate and free I/O buffers
 203  * ==========================================================================
 204  */
 205 
 206 /*
 207  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
 208  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
 209  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
 210  * excess / transient data in-core during a crashdump.
 211  */
 212 void *
 213 zio_buf_alloc(size_t size)
 214 {
 215         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 216 
 217         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 218 
 219         return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
 220 }
 221 
 222 /*
 223  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
 224  * crashdump if the kernel panics.  This exists so that we will limit the amount
 225  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
 226  * of kernel heap dumped to disk when the kernel panics)
 227  */
 228 void *
 229 zio_data_buf_alloc(size_t size)
 230 {
 231         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 232 
 233         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 234 
 235         return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
 236 }
 237 
 238 void
 239 zio_buf_free(void *buf, size_t size)
 240 {
 241         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 242 
 243         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 244 
 245         kmem_cache_free(zio_buf_cache[c], buf);
 246 }
 247 
 248 void
 249 zio_data_buf_free(void *buf, size_t size)
 250 {
 251         size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
 252 
 253         ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
 254 
 255         kmem_cache_free(zio_data_buf_cache[c], buf);
 256 }
 257 
 258 /*
 259  * ==========================================================================
 260  * Push and pop I/O transform buffers
 261  * ==========================================================================
 262  */
 263 static void
 264 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
 265         zio_transform_func_t *transform)
 266 {
 267         zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
 268 
 269         zt->zt_orig_data = zio->io_data;
 270         zt->zt_orig_size = zio->io_size;
 271         zt->zt_bufsize = bufsize;
 272         zt->zt_transform = transform;
 273 
 274         zt->zt_next = zio->io_transform_stack;
 275         zio->io_transform_stack = zt;
 276 
 277         zio->io_data = data;
 278         zio->io_size = size;
 279 }
 280 
 281 static void
 282 zio_pop_transforms(zio_t *zio)
 283 {
 284         zio_transform_t *zt;
 285 
 286         while ((zt = zio->io_transform_stack) != NULL) {
 287                 if (zt->zt_transform != NULL)
 288                         zt->zt_transform(zio,
 289                             zt->zt_orig_data, zt->zt_orig_size);
 290 
 291                 if (zt->zt_bufsize != 0)
 292                         zio_buf_free(zio->io_data, zt->zt_bufsize);
 293 
 294                 zio->io_data = zt->zt_orig_data;
 295                 zio->io_size = zt->zt_orig_size;
 296                 zio->io_transform_stack = zt->zt_next;
 297 
 298                 kmem_free(zt, sizeof (zio_transform_t));
 299         }
 300 }
 301 
 302 /*
 303  * ==========================================================================
 304  * I/O transform callbacks for subblocks and decompression
 305  * ==========================================================================
 306  */
 307 static void
 308 zio_subblock(zio_t *zio, void *data, uint64_t size)
 309 {
 310         ASSERT(zio->io_size > size);
 311 
 312         if (zio->io_type == ZIO_TYPE_READ)
 313                 bcopy(zio->io_data, data, size);
 314 }
 315 
 316 static void
 317 zio_decompress(zio_t *zio, void *data, uint64_t size)
 318 {
 319         if (zio->io_error == 0 &&
 320             zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
 321             zio->io_data, data, zio->io_size, size) != 0)
 322                 zio->io_error = EIO;
 323 }
 324 
 325 /*
 326  * ==========================================================================
 327  * I/O parent/child relationships and pipeline interlocks
 328  * ==========================================================================
 329  */
 330 /*
 331  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
 332  *        continue calling these functions until they return NULL.
 333  *        Otherwise, the next caller will pick up the list walk in
 334  *        some indeterminate state.  (Otherwise every caller would
 335  *        have to pass in a cookie to keep the state represented by
 336  *        io_walk_link, which gets annoying.)
 337  */
 338 zio_t *
 339 zio_walk_parents(zio_t *cio)
 340 {
 341         zio_link_t *zl = cio->io_walk_link;
 342         list_t *pl = &cio->io_parent_list;
 343 
 344         zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
 345         cio->io_walk_link = zl;
 346 
 347         if (zl == NULL)
 348                 return (NULL);
 349 
 350         ASSERT(zl->zl_child == cio);
 351         return (zl->zl_parent);
 352 }
 353 
 354 zio_t *
 355 zio_walk_children(zio_t *pio)
 356 {
 357         zio_link_t *zl = pio->io_walk_link;
 358         list_t *cl = &pio->io_child_list;
 359 
 360         zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
 361         pio->io_walk_link = zl;
 362 
 363         if (zl == NULL)
 364                 return (NULL);
 365 
 366         ASSERT(zl->zl_parent == pio);
 367         return (zl->zl_child);
 368 }
 369 
 370 zio_t *
 371 zio_unique_parent(zio_t *cio)
 372 {
 373         zio_t *pio = zio_walk_parents(cio);
 374 
 375         VERIFY(zio_walk_parents(cio) == NULL);
 376         return (pio);
 377 }
 378 
 379 void
 380 zio_add_child(zio_t *pio, zio_t *cio)
 381 {
 382         zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
 383 
 384         /*
 385          * Logical I/Os can have logical, gang, or vdev children.
 386          * Gang I/Os can have gang or vdev children.
 387          * Vdev I/Os can only have vdev children.
 388          * The following ASSERT captures all of these constraints.
 389          */
 390         ASSERT(cio->io_child_type <= pio->io_child_type);
 391 
 392         zl->zl_parent = pio;
 393         zl->zl_child = cio;
 394 
 395         mutex_enter(&cio->io_lock);
 396         mutex_enter(&pio->io_lock);
 397 
 398         ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
 399 
 400         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
 401                 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
 402 
 403         list_insert_head(&pio->io_child_list, zl);
 404         list_insert_head(&cio->io_parent_list, zl);
 405 
 406         pio->io_child_count++;
 407         cio->io_parent_count++;
 408 
 409         mutex_exit(&pio->io_lock);
 410         mutex_exit(&cio->io_lock);
 411 }
 412 
 413 static void
 414 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
 415 {
 416         ASSERT(zl->zl_parent == pio);
 417         ASSERT(zl->zl_child == cio);
 418 
 419         mutex_enter(&cio->io_lock);
 420         mutex_enter(&pio->io_lock);
 421 
 422         list_remove(&pio->io_child_list, zl);
 423         list_remove(&cio->io_parent_list, zl);
 424 
 425         pio->io_child_count--;
 426         cio->io_parent_count--;
 427 
 428         mutex_exit(&pio->io_lock);
 429         mutex_exit(&cio->io_lock);
 430 
 431         kmem_cache_free(zio_link_cache, zl);
 432 }
 433 
 434 static boolean_t
 435 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
 436 {
 437         uint64_t *countp = &zio->io_children[child][wait];
 438         boolean_t waiting = B_FALSE;
 439 
 440         mutex_enter(&zio->io_lock);
 441         ASSERT(zio->io_stall == NULL);
 442         if (*countp != 0) {
 443                 zio->io_stage >>= 1;
 444                 zio->io_stall = countp;
 445                 waiting = B_TRUE;
 446         }
 447         mutex_exit(&zio->io_lock);
 448 
 449         return (waiting);
 450 }
 451 
 452 static void
 453 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
 454 {
 455         uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
 456         int *errorp = &pio->io_child_error[zio->io_child_type];
 457 
 458         mutex_enter(&pio->io_lock);
 459         if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
 460                 *errorp = zio_worst_error(*errorp, zio->io_error);
 461         pio->io_reexecute |= zio->io_reexecute;
 462         ASSERT3U(*countp, >, 0);
 463         if (--*countp == 0 && pio->io_stall == countp) {
 464                 pio->io_stall = NULL;
 465                 mutex_exit(&pio->io_lock);
 466                 zio_execute(pio);
 467         } else {
 468                 mutex_exit(&pio->io_lock);
 469         }
 470 }
 471 
 472 static void
 473 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
 474 {
 475         if (zio->io_child_error[c] != 0 && zio->io_error == 0)
 476                 zio->io_error = zio->io_child_error[c];
 477 }
 478 
 479 /*
 480  * ==========================================================================
 481  * Create the various types of I/O (read, write, free, etc)
 482  * ==========================================================================
 483  */
 484 static zio_t *
 485 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 486     void *data, uint64_t size, zio_done_func_t *done, void *private,
 487     zio_type_t type, int priority, enum zio_flag flags,
 488     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
 489     enum zio_stage stage, enum zio_stage pipeline)
 490 {
 491         zio_t *zio;
 492 
 493         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 494         ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
 495         ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
 496 
 497         ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
 498         ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
 499         ASSERT(vd || stage == ZIO_STAGE_OPEN);
 500 
 501         zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
 502         bzero(zio, sizeof (zio_t));
 503 
 504         mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
 505         cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
 506 
 507         list_create(&zio->io_parent_list, sizeof (zio_link_t),
 508             offsetof(zio_link_t, zl_parent_node));
 509         list_create(&zio->io_child_list, sizeof (zio_link_t),
 510             offsetof(zio_link_t, zl_child_node));
 511 
 512         if (vd != NULL)
 513                 zio->io_child_type = ZIO_CHILD_VDEV;
 514         else if (flags & ZIO_FLAG_GANG_CHILD)
 515                 zio->io_child_type = ZIO_CHILD_GANG;
 516         else if (flags & ZIO_FLAG_DDT_CHILD)
 517                 zio->io_child_type = ZIO_CHILD_DDT;
 518         else
 519                 zio->io_child_type = ZIO_CHILD_LOGICAL;
 520 
 521         if (bp != NULL) {
 522                 zio->io_bp = (blkptr_t *)bp;
 523                 zio->io_bp_copy = *bp;
 524                 zio->io_bp_orig = *bp;
 525                 if (type != ZIO_TYPE_WRITE ||
 526                     zio->io_child_type == ZIO_CHILD_DDT)
 527                         zio->io_bp = &zio->io_bp_copy;        /* so caller can free */
 528                 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
 529                         zio->io_logical = zio;
 530                 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
 531                         pipeline |= ZIO_GANG_STAGES;
 532         }
 533 
 534         zio->io_spa = spa;
 535         zio->io_txg = txg;
 536         zio->io_done = done;
 537         zio->io_private = private;
 538         zio->io_type = type;
 539         zio->io_priority = priority;
 540         zio->io_vd = vd;
 541         zio->io_offset = offset;
 542         zio->io_orig_data = zio->io_data = data;
 543         zio->io_orig_size = zio->io_size = size;
 544         zio->io_orig_flags = zio->io_flags = flags;
 545         zio->io_orig_stage = zio->io_stage = stage;
 546         zio->io_orig_pipeline = zio->io_pipeline = pipeline;
 547 
 548         zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
 549         zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
 550 
 551         if (zb != NULL)
 552                 zio->io_bookmark = *zb;
 553 
 554         if (pio != NULL) {
 555                 if (zio->io_logical == NULL)
 556                         zio->io_logical = pio->io_logical;
 557                 if (zio->io_child_type == ZIO_CHILD_GANG)
 558                         zio->io_gang_leader = pio->io_gang_leader;
 559                 zio_add_child(pio, zio);
 560         }
 561 
 562         return (zio);
 563 }
 564 
 565 static void
 566 zio_destroy(zio_t *zio)
 567 {
 568         list_destroy(&zio->io_parent_list);
 569         list_destroy(&zio->io_child_list);
 570         mutex_destroy(&zio->io_lock);
 571         cv_destroy(&zio->io_cv);
 572         kmem_cache_free(zio_cache, zio);
 573 }
 574 
 575 zio_t *
 576 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
 577     void *private, enum zio_flag flags)
 578 {
 579         zio_t *zio;
 580 
 581         zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 582             ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
 583             ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
 584 
 585         return (zio);
 586 }
 587 
 588 zio_t *
 589 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
 590 {
 591         return (zio_null(NULL, spa, NULL, done, private, flags));
 592 }
 593 
 594 zio_t *
 595 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
 596     void *data, uint64_t size, zio_done_func_t *done, void *private,
 597     int priority, enum zio_flag flags, const zbookmark_t *zb)
 598 {
 599         zio_t *zio;
 600 
 601         zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
 602             data, size, done, private,
 603             ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
 604             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 605             ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
 606 
 607         return (zio);
 608 }
 609 
 610 zio_t *
 611 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
 612     void *data, uint64_t size, const zio_prop_t *zp,
 613     zio_done_func_t *ready, zio_done_func_t *done, void *private,
 614     int priority, enum zio_flag flags, const zbookmark_t *zb)
 615 {
 616         zio_t *zio;
 617 
 618         ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
 619             zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
 620             zp->zp_compress >= ZIO_COMPRESS_OFF &&
 621             zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
 622             DMU_OT_IS_VALID(zp->zp_type) &&
 623             zp->zp_level < 32 &&
 624             zp->zp_copies > 0 &&
 625             zp->zp_copies <= spa_max_replication(spa) &&
 626             zp->zp_dedup <= 1 &&
 627             zp->zp_dedup_verify <= 1);
 628 
 629         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 630             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 631             ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
 632             ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
 633 
 634         zio->io_ready = ready;
 635         zio->io_prop = *zp;
 636 
 637         return (zio);
 638 }
 639 
 640 zio_t *
 641 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
 642     uint64_t size, zio_done_func_t *done, void *private, int priority,
 643     enum zio_flag flags, zbookmark_t *zb)
 644 {
 645         zio_t *zio;
 646 
 647         zio = zio_create(pio, spa, txg, bp, data, size, done, private,
 648             ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
 649             ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
 650 
 651         return (zio);
 652 }
 653 
 654 void
 655 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
 656 {
 657         ASSERT(zio->io_type == ZIO_TYPE_WRITE);
 658         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 659         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
 660         ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
 661 
 662         zio->io_prop.zp_copies = copies;
 663         zio->io_bp_override = bp;
 664 }
 665 
 666 void
 667 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
 668 {
 669         bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
 670 }
 671 
 672 zio_t *
 673 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 674     enum zio_flag flags)
 675 {
 676         zio_t *zio;
 677 
 678         dprintf_bp(bp, "freeing in txg %llu, pass %u",
 679             (longlong_t)txg, spa->spa_sync_pass);
 680 
 681         ASSERT(!BP_IS_HOLE(bp));
 682         ASSERT(spa_syncing_txg(spa) == txg);
 683         ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
 684 
 685         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 686             NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
 687             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
 688 
 689         return (zio);
 690 }
 691 
 692 zio_t *
 693 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
 694     zio_done_func_t *done, void *private, enum zio_flag flags)
 695 {
 696         zio_t *zio;
 697 
 698         /*
 699          * A claim is an allocation of a specific block.  Claims are needed
 700          * to support immediate writes in the intent log.  The issue is that
 701          * immediate writes contain committed data, but in a txg that was
 702          * *not* committed.  Upon opening the pool after an unclean shutdown,
 703          * the intent log claims all blocks that contain immediate write data
 704          * so that the SPA knows they're in use.
 705          *
 706          * All claims *must* be resolved in the first txg -- before the SPA
 707          * starts allocating blocks -- so that nothing is allocated twice.
 708          * If txg == 0 we just verify that the block is claimable.
 709          */
 710         ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
 711         ASSERT(txg == spa_first_txg(spa) || txg == 0);
 712         ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));       /* zdb(1M) */
 713 
 714         zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
 715             done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
 716             NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
 717 
 718         return (zio);
 719 }
 720 
 721 zio_t *
 722 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
 723     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
 724 {
 725         zio_t *zio;
 726         int c;
 727 
 728         if (vd->vdev_children == 0) {
 729                 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
 730                     ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
 731                     ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
 732 
 733                 zio->io_cmd = cmd;
 734         } else {
 735                 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
 736 
 737                 for (c = 0; c < vd->vdev_children; c++)
 738                         zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
 739                             done, private, priority, flags));
 740         }
 741 
 742         return (zio);
 743 }
 744 
 745 zio_t *
 746 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 747     void *data, int checksum, zio_done_func_t *done, void *private,
 748     int priority, enum zio_flag flags, boolean_t labels)
 749 {
 750         zio_t *zio;
 751 
 752         ASSERT(vd->vdev_children == 0);
 753         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 754             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 755         ASSERT3U(offset + size, <=, vd->vdev_psize);
 756 
 757         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 758             ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
 759             ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
 760 
 761         zio->io_prop.zp_checksum = checksum;
 762 
 763         return (zio);
 764 }
 765 
 766 zio_t *
 767 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
 768     void *data, int checksum, zio_done_func_t *done, void *private,
 769     int priority, enum zio_flag flags, boolean_t labels)
 770 {
 771         zio_t *zio;
 772 
 773         ASSERT(vd->vdev_children == 0);
 774         ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
 775             offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
 776         ASSERT3U(offset + size, <=, vd->vdev_psize);
 777 
 778         zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
 779             ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
 780             ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
 781 
 782         zio->io_prop.zp_checksum = checksum;
 783 
 784         if (zio_checksum_table[checksum].ci_eck) {
 785                 /*
 786                  * zec checksums are necessarily destructive -- they modify
 787                  * the end of the write buffer to hold the verifier/checksum.
 788                  * Therefore, we must make a local copy in case the data is
 789                  * being written to multiple places in parallel.
 790                  */
 791                 void *wbuf = zio_buf_alloc(size);
 792                 bcopy(data, wbuf, size);
 793                 zio_push_transform(zio, wbuf, size, size, NULL);
 794         }
 795 
 796         return (zio);
 797 }
 798 
 799 /*
 800  * Create a child I/O to do some work for us.
 801  */
 802 zio_t *
 803 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
 804         void *data, uint64_t size, int type, int priority, enum zio_flag flags,
 805         zio_done_func_t *done, void *private)
 806 {
 807         enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
 808         zio_t *zio;
 809 
 810         ASSERT(vd->vdev_parent ==
 811             (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
 812 
 813         if (type == ZIO_TYPE_READ && bp != NULL) {
 814                 /*
 815                  * If we have the bp, then the child should perform the
 816                  * checksum and the parent need not.  This pushes error
 817                  * detection as close to the leaves as possible and
 818                  * eliminates redundant checksums in the interior nodes.
 819                  */
 820                 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
 821                 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
 822         }
 823 
 824         if (vd->vdev_children == 0)
 825                 offset += VDEV_LABEL_START_SIZE;
 826 
 827         flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
 828 
 829         /*
 830          * If we've decided to do a repair, the write is not speculative --
 831          * even if the original read was.
 832          */
 833         if (flags & ZIO_FLAG_IO_REPAIR)
 834                 flags &= ~ZIO_FLAG_SPECULATIVE;
 835 
 836         zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
 837             done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
 838             ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
 839 
 840         return (zio);
 841 }
 842 
 843 zio_t *
 844 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
 845         int type, int priority, enum zio_flag flags,
 846         zio_done_func_t *done, void *private)
 847 {
 848         zio_t *zio;
 849 
 850         ASSERT(vd->vdev_ops->vdev_op_leaf);
 851 
 852         zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
 853             data, size, done, private, type, priority,
 854             flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
 855             vd, offset, NULL,
 856             ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
 857 
 858         return (zio);
 859 }
 860 
 861 void
 862 zio_flush(zio_t *zio, vdev_t *vd)
 863 {
 864         zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
 865             NULL, NULL, ZIO_PRIORITY_NOW,
 866             ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
 867 }
 868 
 869 void
 870 zio_shrink(zio_t *zio, uint64_t size)
 871 {
 872         ASSERT(zio->io_executor == NULL);
 873         ASSERT(zio->io_orig_size == zio->io_size);
 874         ASSERT(size <= zio->io_size);
 875 
 876         /*
 877          * We don't shrink for raidz because of problems with the
 878          * reconstruction when reading back less than the block size.
 879          * Note, BP_IS_RAIDZ() assumes no compression.
 880          */
 881         ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
 882         if (!BP_IS_RAIDZ(zio->io_bp))
 883                 zio->io_orig_size = zio->io_size = size;
 884 }
 885 
 886 /*
 887  * ==========================================================================
 888  * Prepare to read and write logical blocks
 889  * ==========================================================================
 890  */
 891 
 892 static int
 893 zio_read_bp_init(zio_t *zio)
 894 {
 895         blkptr_t *bp = zio->io_bp;
 896 
 897         if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
 898             zio->io_child_type == ZIO_CHILD_LOGICAL &&
 899             !(zio->io_flags & ZIO_FLAG_RAW)) {
 900                 uint64_t psize = BP_GET_PSIZE(bp);
 901                 void *cbuf = zio_buf_alloc(psize);
 902 
 903                 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
 904         }
 905 
 906         if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
 907                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 908 
 909         if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
 910                 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
 911 
 912         if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
 913                 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
 914 
 915         return (ZIO_PIPELINE_CONTINUE);
 916 }
 917 
 918 static int
 919 zio_write_bp_init(zio_t *zio)
 920 {
 921         spa_t *spa = zio->io_spa;
 922         zio_prop_t *zp = &zio->io_prop;
 923         enum zio_compress compress = zp->zp_compress;
 924         blkptr_t *bp = zio->io_bp;
 925         uint64_t lsize = zio->io_size;
 926         uint64_t psize = lsize;
 927         int pass = 1;
 928 
 929         /*
 930          * If our children haven't all reached the ready stage,
 931          * wait for them and then repeat this pipeline stage.
 932          */
 933         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
 934             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
 935                 return (ZIO_PIPELINE_STOP);
 936 
 937         if (!IO_IS_ALLOCATING(zio))
 938                 return (ZIO_PIPELINE_CONTINUE);
 939 
 940         ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
 941 
 942         if (zio->io_bp_override) {
 943                 ASSERT(bp->blk_birth != zio->io_txg);
 944                 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
 945 
 946                 *bp = *zio->io_bp_override;
 947                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
 948 
 949                 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
 950                         return (ZIO_PIPELINE_CONTINUE);
 951 
 952                 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
 953                     zp->zp_dedup_verify);
 954 
 955                 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
 956                         BP_SET_DEDUP(bp, 1);
 957                         zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
 958                         return (ZIO_PIPELINE_CONTINUE);
 959                 }
 960                 zio->io_bp_override = NULL;
 961                 BP_ZERO(bp);
 962         }
 963 
 964         if (bp->blk_birth == zio->io_txg) {
 965                 /*
 966                  * We're rewriting an existing block, which means we're
 967                  * working on behalf of spa_sync().  For spa_sync() to
 968                  * converge, it must eventually be the case that we don't
 969                  * have to allocate new blocks.  But compression changes
 970                  * the blocksize, which forces a reallocate, and makes
 971                  * convergence take longer.  Therefore, after the first
 972                  * few passes, stop compressing to ensure convergence.
 973                  */
 974                 pass = spa_sync_pass(spa);
 975 
 976                 ASSERT(zio->io_txg == spa_syncing_txg(spa));
 977                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
 978                 ASSERT(!BP_GET_DEDUP(bp));
 979 
 980                 if (pass > SYNC_PASS_DONT_COMPRESS)
 981                         compress = ZIO_COMPRESS_OFF;
 982 
 983                 /* Make sure someone doesn't change their mind on overwrites */
 984                 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
 985                     spa_max_replication(spa)) == BP_GET_NDVAS(bp));
 986         }
 987 
 988         if (compress != ZIO_COMPRESS_OFF) {
 989                 void *cbuf = zio_buf_alloc(lsize);
 990                 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
 991                 if (psize == 0 || psize == lsize) {
 992                         compress = ZIO_COMPRESS_OFF;
 993                         zio_buf_free(cbuf, lsize);
 994                 } else {
 995                         ASSERT(psize < lsize);
 996                         zio_push_transform(zio, cbuf, psize, lsize, NULL);
 997                 }
 998         }
 999 
1000         /*
1001          * The final pass of spa_sync() must be all rewrites, but the first
1002          * few passes offer a trade-off: allocating blocks defers convergence,
1003          * but newly allocated blocks are sequential, so they can be written
1004          * to disk faster.  Therefore, we allow the first few passes of
1005          * spa_sync() to allocate new blocks, but force rewrites after that.
1006          * There should only be a handful of blocks after pass 1 in any case.
1007          */
1008         if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1009             pass > SYNC_PASS_REWRITE) {
1010                 ASSERT(psize != 0);
1011                 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1012                 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1013                 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1014         } else {
1015                 BP_ZERO(bp);
1016                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1017         }
1018 
1019         if (psize == 0) {
1020                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1021         } else {
1022                 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1023                 BP_SET_LSIZE(bp, lsize);
1024                 BP_SET_PSIZE(bp, psize);
1025                 BP_SET_COMPRESS(bp, compress);
1026                 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1027                 BP_SET_TYPE(bp, zp->zp_type);
1028                 BP_SET_LEVEL(bp, zp->zp_level);
1029                 BP_SET_DEDUP(bp, zp->zp_dedup);
1030                 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1031                 if (zp->zp_dedup) {
1032                         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1033                         ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1034                         zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1035                 }
1036         }
1037 
1038         return (ZIO_PIPELINE_CONTINUE);
1039 }
1040 
1041 static int
1042 zio_free_bp_init(zio_t *zio)
1043 {
1044         blkptr_t *bp = zio->io_bp;
1045 
1046         if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1047                 if (BP_GET_DEDUP(bp))
1048                         zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1049         }
1050 
1051         return (ZIO_PIPELINE_CONTINUE);
1052 }
1053 
1054 /*
1055  * ==========================================================================
1056  * Execute the I/O pipeline
1057  * ==========================================================================
1058  */
1059 
1060 static void
1061 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1062 {
1063         spa_t *spa = zio->io_spa;
1064         zio_type_t t = zio->io_type;
1065         int flags = (cutinline ? TQ_FRONT : 0);
1066 
1067         /*
1068          * If we're a config writer or a probe, the normal issue and
1069          * interrupt threads may all be blocked waiting for the config lock.
1070          * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1071          */
1072         if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1073                 t = ZIO_TYPE_NULL;
1074 
1075         /*
1076          * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1077          */
1078         if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1079                 t = ZIO_TYPE_NULL;
1080 
1081         /*
1082          * If this is a high priority I/O, then use the high priority taskq.
1083          */
1084         if (zio->io_priority == ZIO_PRIORITY_NOW &&
1085             spa->spa_zio_taskq[t][q + 1] != NULL)
1086                 q++;
1087 
1088         ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1089 
1090         /*
1091          * NB: We are assuming that the zio can only be dispatched
1092          * to a single taskq at a time.  It would be a grievous error
1093          * to dispatch the zio to another taskq at the same time.
1094          */
1095         ASSERT(zio->io_tqent.tqent_next == NULL);
1096         taskq_dispatch_ent(spa->spa_zio_taskq[t][q],
1097             (task_func_t *)zio_execute, zio, flags, &zio->io_tqent);
1098 }
1099 
1100 static boolean_t
1101 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1102 {
1103         kthread_t *executor = zio->io_executor;
1104         spa_t *spa = zio->io_spa;
1105 
1106         for (zio_type_t t = 0; t < ZIO_TYPES; t++)
1107                 if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1108                         return (B_TRUE);
1109 
1110         return (B_FALSE);
1111 }
1112 
1113 static int
1114 zio_issue_async(zio_t *zio)
1115 {
1116         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1117 
1118         return (ZIO_PIPELINE_STOP);
1119 }
1120 
1121 void
1122 zio_interrupt(zio_t *zio)
1123 {
1124         zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1125 }
1126 
1127 /*
1128  * Execute the I/O pipeline until one of the following occurs:
1129  * (1) the I/O completes; (2) the pipeline stalls waiting for
1130  * dependent child I/Os; (3) the I/O issues, so we're waiting
1131  * for an I/O completion interrupt; (4) the I/O is delegated by
1132  * vdev-level caching or aggregation; (5) the I/O is deferred
1133  * due to vdev-level queueing; (6) the I/O is handed off to
1134  * another thread.  In all cases, the pipeline stops whenever
1135  * there's no CPU work; it never burns a thread in cv_wait().
1136  *
1137  * There's no locking on io_stage because there's no legitimate way
1138  * for multiple threads to be attempting to process the same I/O.
1139  */
1140 static zio_pipe_stage_t *zio_pipeline[];
1141 
1142 void
1143 zio_execute(zio_t *zio)
1144 {
1145         zio->io_executor = curthread;
1146 
1147         while (zio->io_stage < ZIO_STAGE_DONE) {
1148                 enum zio_stage pipeline = zio->io_pipeline;
1149                 enum zio_stage stage = zio->io_stage;
1150                 int rv;
1151 
1152                 ASSERT(!MUTEX_HELD(&zio->io_lock));
1153                 ASSERT(ISP2(stage));
1154                 ASSERT(zio->io_stall == NULL);
1155 
1156                 do {
1157                         stage <<= 1;
1158                 } while ((stage & pipeline) == 0);
1159 
1160                 ASSERT(stage <= ZIO_STAGE_DONE);
1161 
1162                 /*
1163                  * If we are in interrupt context and this pipeline stage
1164                  * will grab a config lock that is held across I/O,
1165                  * or may wait for an I/O that needs an interrupt thread
1166                  * to complete, issue async to avoid deadlock.
1167                  *
1168                  * For VDEV_IO_START, we cut in line so that the io will
1169                  * be sent to disk promptly.
1170                  */
1171                 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1172                     zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1173                         boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1174                             zio_requeue_io_start_cut_in_line : B_FALSE;
1175                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1176                         return;
1177                 }
1178 
1179                 zio->io_stage = stage;
1180                 rv = zio_pipeline[highbit(stage) - 1](zio);
1181 
1182                 if (rv == ZIO_PIPELINE_STOP)
1183                         return;
1184 
1185                 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1186         }
1187 }
1188 
1189 /*
1190  * ==========================================================================
1191  * Initiate I/O, either sync or async
1192  * ==========================================================================
1193  */
1194 int
1195 zio_wait(zio_t *zio)
1196 {
1197         int error;
1198 
1199         ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1200         ASSERT(zio->io_executor == NULL);
1201 
1202         zio->io_waiter = curthread;
1203 
1204         zio_execute(zio);
1205 
1206         mutex_enter(&zio->io_lock);
1207         while (zio->io_executor != NULL)
1208                 cv_wait(&zio->io_cv, &zio->io_lock);
1209         mutex_exit(&zio->io_lock);
1210 
1211         error = zio->io_error;
1212         zio_destroy(zio);
1213 
1214         return (error);
1215 }
1216 
1217 void
1218 zio_nowait(zio_t *zio)
1219 {
1220         ASSERT(zio->io_executor == NULL);
1221 
1222         if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1223             zio_unique_parent(zio) == NULL) {
1224                 /*
1225                  * This is a logical async I/O with no parent to wait for it.
1226                  * We add it to the spa_async_root_zio "Godfather" I/O which
1227                  * will ensure they complete prior to unloading the pool.
1228                  */
1229                 spa_t *spa = zio->io_spa;
1230 
1231                 zio_add_child(spa->spa_async_zio_root, zio);
1232         }
1233 
1234         zio_execute(zio);
1235 }
1236 
1237 /*
1238  * ==========================================================================
1239  * Reexecute or suspend/resume failed I/O
1240  * ==========================================================================
1241  */
1242 
1243 static void
1244 zio_reexecute(zio_t *pio)
1245 {
1246         zio_t *cio, *cio_next;
1247 
1248         ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1249         ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1250         ASSERT(pio->io_gang_leader == NULL);
1251         ASSERT(pio->io_gang_tree == NULL);
1252 
1253         pio->io_flags = pio->io_orig_flags;
1254         pio->io_stage = pio->io_orig_stage;
1255         pio->io_pipeline = pio->io_orig_pipeline;
1256         pio->io_reexecute = 0;
1257         pio->io_error = 0;
1258         for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1259                 pio->io_state[w] = 0;
1260         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1261                 pio->io_child_error[c] = 0;
1262 
1263         if (IO_IS_ALLOCATING(pio))
1264                 BP_ZERO(pio->io_bp);
1265 
1266         /*
1267          * As we reexecute pio's children, new children could be created.
1268          * New children go to the head of pio's io_child_list, however,
1269          * so we will (correctly) not reexecute them.  The key is that
1270          * the remainder of pio's io_child_list, from 'cio_next' onward,
1271          * cannot be affected by any side effects of reexecuting 'cio'.
1272          */
1273         for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1274                 cio_next = zio_walk_children(pio);
1275                 mutex_enter(&pio->io_lock);
1276                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1277                         pio->io_children[cio->io_child_type][w]++;
1278                 mutex_exit(&pio->io_lock);
1279                 zio_reexecute(cio);
1280         }
1281 
1282         /*
1283          * Now that all children have been reexecuted, execute the parent.
1284          * We don't reexecute "The Godfather" I/O here as it's the
1285          * responsibility of the caller to wait on him.
1286          */
1287         if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1288                 zio_execute(pio);
1289 }
1290 
1291 void
1292 zio_suspend(spa_t *spa, zio_t *zio)
1293 {
1294         if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1295                 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1296                     "failure and the failure mode property for this pool "
1297                     "is set to panic.", spa_name(spa));
1298 
1299         zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1300 
1301         mutex_enter(&spa->spa_suspend_lock);
1302 
1303         if (spa->spa_suspend_zio_root == NULL)
1304                 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1305                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1306                     ZIO_FLAG_GODFATHER);
1307 
1308         spa->spa_suspended = B_TRUE;
1309 
1310         if (zio != NULL) {
1311                 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1312                 ASSERT(zio != spa->spa_suspend_zio_root);
1313                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1314                 ASSERT(zio_unique_parent(zio) == NULL);
1315                 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1316                 zio_add_child(spa->spa_suspend_zio_root, zio);
1317         }
1318 
1319         mutex_exit(&spa->spa_suspend_lock);
1320 }
1321 
1322 int
1323 zio_resume(spa_t *spa)
1324 {
1325         zio_t *pio;
1326 
1327         /*
1328          * Reexecute all previously suspended i/o.
1329          */
1330         mutex_enter(&spa->spa_suspend_lock);
1331         spa->spa_suspended = B_FALSE;
1332         cv_broadcast(&spa->spa_suspend_cv);
1333         pio = spa->spa_suspend_zio_root;
1334         spa->spa_suspend_zio_root = NULL;
1335         mutex_exit(&spa->spa_suspend_lock);
1336 
1337         if (pio == NULL)
1338                 return (0);
1339 
1340         zio_reexecute(pio);
1341         return (zio_wait(pio));
1342 }
1343 
1344 void
1345 zio_resume_wait(spa_t *spa)
1346 {
1347         mutex_enter(&spa->spa_suspend_lock);
1348         while (spa_suspended(spa))
1349                 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1350         mutex_exit(&spa->spa_suspend_lock);
1351 }
1352 
1353 /*
1354  * ==========================================================================
1355  * Gang blocks.
1356  *
1357  * A gang block is a collection of small blocks that looks to the DMU
1358  * like one large block.  When zio_dva_allocate() cannot find a block
1359  * of the requested size, due to either severe fragmentation or the pool
1360  * being nearly full, it calls zio_write_gang_block() to construct the
1361  * block from smaller fragments.
1362  *
1363  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1364  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1365  * an indirect block: it's an array of block pointers.  It consumes
1366  * only one sector and hence is allocatable regardless of fragmentation.
1367  * The gang header's bps point to its gang members, which hold the data.
1368  *
1369  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1370  * as the verifier to ensure uniqueness of the SHA256 checksum.
1371  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1372  * not the gang header.  This ensures that data block signatures (needed for
1373  * deduplication) are independent of how the block is physically stored.
1374  *
1375  * Gang blocks can be nested: a gang member may itself be a gang block.
1376  * Thus every gang block is a tree in which root and all interior nodes are
1377  * gang headers, and the leaves are normal blocks that contain user data.
1378  * The root of the gang tree is called the gang leader.
1379  *
1380  * To perform any operation (read, rewrite, free, claim) on a gang block,
1381  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1382  * in the io_gang_tree field of the original logical i/o by recursively
1383  * reading the gang leader and all gang headers below it.  This yields
1384  * an in-core tree containing the contents of every gang header and the
1385  * bps for every constituent of the gang block.
1386  *
1387  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1388  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1389  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1390  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1391  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1392  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1393  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1394  * of the gang header plus zio_checksum_compute() of the data to update the
1395  * gang header's blk_cksum as described above.
1396  *
1397  * The two-phase assemble/issue model solves the problem of partial failure --
1398  * what if you'd freed part of a gang block but then couldn't read the
1399  * gang header for another part?  Assembling the entire gang tree first
1400  * ensures that all the necessary gang header I/O has succeeded before
1401  * starting the actual work of free, claim, or write.  Once the gang tree
1402  * is assembled, free and claim are in-memory operations that cannot fail.
1403  *
1404  * In the event that a gang write fails, zio_dva_unallocate() walks the
1405  * gang tree to immediately free (i.e. insert back into the space map)
1406  * everything we've allocated.  This ensures that we don't get ENOSPC
1407  * errors during repeated suspend/resume cycles due to a flaky device.
1408  *
1409  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1410  * the gang tree, we won't modify the block, so we can safely defer the free
1411  * (knowing that the block is still intact).  If we *can* assemble the gang
1412  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1413  * each constituent bp and we can allocate a new block on the next sync pass.
1414  *
1415  * In all cases, the gang tree allows complete recovery from partial failure.
1416  * ==========================================================================
1417  */
1418 
1419 static zio_t *
1420 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1421 {
1422         if (gn != NULL)
1423                 return (pio);
1424 
1425         return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1426             NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1427             &pio->io_bookmark));
1428 }
1429 
1430 zio_t *
1431 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1432 {
1433         zio_t *zio;
1434 
1435         if (gn != NULL) {
1436                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1437                     gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1438                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1439                 /*
1440                  * As we rewrite each gang header, the pipeline will compute
1441                  * a new gang block header checksum for it; but no one will
1442                  * compute a new data checksum, so we do that here.  The one
1443                  * exception is the gang leader: the pipeline already computed
1444                  * its data checksum because that stage precedes gang assembly.
1445                  * (Presently, nothing actually uses interior data checksums;
1446                  * this is just good hygiene.)
1447                  */
1448                 if (gn != pio->io_gang_leader->io_gang_tree) {
1449                         zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1450                             data, BP_GET_PSIZE(bp));
1451                 }
1452                 /*
1453                  * If we are here to damage data for testing purposes,
1454                  * leave the GBH alone so that we can detect the damage.
1455                  */
1456                 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1457                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1458         } else {
1459                 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1460                     data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1461                     ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1462         }
1463 
1464         return (zio);
1465 }
1466 
1467 /* ARGSUSED */
1468 zio_t *
1469 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1470 {
1471         return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1472             ZIO_GANG_CHILD_FLAGS(pio)));
1473 }
1474 
1475 /* ARGSUSED */
1476 zio_t *
1477 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1478 {
1479         return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1480             NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1481 }
1482 
1483 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1484         NULL,
1485         zio_read_gang,
1486         zio_rewrite_gang,
1487         zio_free_gang,
1488         zio_claim_gang,
1489         NULL
1490 };
1491 
1492 static void zio_gang_tree_assemble_done(zio_t *zio);
1493 
1494 static zio_gang_node_t *
1495 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1496 {
1497         zio_gang_node_t *gn;
1498 
1499         ASSERT(*gnpp == NULL);
1500 
1501         gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1502         gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1503         *gnpp = gn;
1504 
1505         return (gn);
1506 }
1507 
1508 static void
1509 zio_gang_node_free(zio_gang_node_t **gnpp)
1510 {
1511         zio_gang_node_t *gn = *gnpp;
1512 
1513         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1514                 ASSERT(gn->gn_child[g] == NULL);
1515 
1516         zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1517         kmem_free(gn, sizeof (*gn));
1518         *gnpp = NULL;
1519 }
1520 
1521 static void
1522 zio_gang_tree_free(zio_gang_node_t **gnpp)
1523 {
1524         zio_gang_node_t *gn = *gnpp;
1525 
1526         if (gn == NULL)
1527                 return;
1528 
1529         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1530                 zio_gang_tree_free(&gn->gn_child[g]);
1531 
1532         zio_gang_node_free(gnpp);
1533 }
1534 
1535 static void
1536 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1537 {
1538         zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1539 
1540         ASSERT(gio->io_gang_leader == gio);
1541         ASSERT(BP_IS_GANG(bp));
1542 
1543         zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1544             SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1545             gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1546 }
1547 
1548 static void
1549 zio_gang_tree_assemble_done(zio_t *zio)
1550 {
1551         zio_t *gio = zio->io_gang_leader;
1552         zio_gang_node_t *gn = zio->io_private;
1553         blkptr_t *bp = zio->io_bp;
1554 
1555         ASSERT(gio == zio_unique_parent(zio));
1556         ASSERT(zio->io_child_count == 0);
1557 
1558         if (zio->io_error)
1559                 return;
1560 
1561         if (BP_SHOULD_BYTESWAP(bp))
1562                 byteswap_uint64_array(zio->io_data, zio->io_size);
1563 
1564         ASSERT(zio->io_data == gn->gn_gbh);
1565         ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1566         ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1567 
1568         for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1569                 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1570                 if (!BP_IS_GANG(gbp))
1571                         continue;
1572                 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1573         }
1574 }
1575 
1576 static void
1577 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1578 {
1579         zio_t *gio = pio->io_gang_leader;
1580         zio_t *zio;
1581 
1582         ASSERT(BP_IS_GANG(bp) == !!gn);
1583         ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1584         ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1585 
1586         /*
1587          * If you're a gang header, your data is in gn->gn_gbh.
1588          * If you're a gang member, your data is in 'data' and gn == NULL.
1589          */
1590         zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1591 
1592         if (gn != NULL) {
1593                 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1594 
1595                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1596                         blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1597                         if (BP_IS_HOLE(gbp))
1598                                 continue;
1599                         zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1600                         data = (char *)data + BP_GET_PSIZE(gbp);
1601                 }
1602         }
1603 
1604         if (gn == gio->io_gang_tree)
1605                 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1606 
1607         if (zio != pio)
1608                 zio_nowait(zio);
1609 }
1610 
1611 static int
1612 zio_gang_assemble(zio_t *zio)
1613 {
1614         blkptr_t *bp = zio->io_bp;
1615 
1616         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1617         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1618 
1619         zio->io_gang_leader = zio;
1620 
1621         zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1622 
1623         return (ZIO_PIPELINE_CONTINUE);
1624 }
1625 
1626 static int
1627 zio_gang_issue(zio_t *zio)
1628 {
1629         blkptr_t *bp = zio->io_bp;
1630 
1631         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1632                 return (ZIO_PIPELINE_STOP);
1633 
1634         ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1635         ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1636 
1637         if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1638                 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1639         else
1640                 zio_gang_tree_free(&zio->io_gang_tree);
1641 
1642         zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1643 
1644         return (ZIO_PIPELINE_CONTINUE);
1645 }
1646 
1647 static void
1648 zio_write_gang_member_ready(zio_t *zio)
1649 {
1650         zio_t *pio = zio_unique_parent(zio);
1651         zio_t *gio = zio->io_gang_leader;
1652         dva_t *cdva = zio->io_bp->blk_dva;
1653         dva_t *pdva = pio->io_bp->blk_dva;
1654         uint64_t asize;
1655 
1656         if (BP_IS_HOLE(zio->io_bp))
1657                 return;
1658 
1659         ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1660 
1661         ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1662         ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1663         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1664         ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1665         ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1666 
1667         mutex_enter(&pio->io_lock);
1668         for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1669                 ASSERT(DVA_GET_GANG(&pdva[d]));
1670                 asize = DVA_GET_ASIZE(&pdva[d]);
1671                 asize += DVA_GET_ASIZE(&cdva[d]);
1672                 DVA_SET_ASIZE(&pdva[d], asize);
1673         }
1674         mutex_exit(&pio->io_lock);
1675 }
1676 
1677 static int
1678 zio_write_gang_block(zio_t *pio)
1679 {
1680         spa_t *spa = pio->io_spa;
1681         blkptr_t *bp = pio->io_bp;
1682         zio_t *gio = pio->io_gang_leader;
1683         zio_t *zio;
1684         zio_gang_node_t *gn, **gnpp;
1685         zio_gbh_phys_t *gbh;
1686         uint64_t txg = pio->io_txg;
1687         uint64_t resid = pio->io_size;
1688         uint64_t lsize;
1689         int copies = gio->io_prop.zp_copies;
1690         int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1691         zio_prop_t zp;
1692         int error;
1693 
1694         error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1695             bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1696             METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1697         if (error) {
1698                 pio->io_error = error;
1699                 return (ZIO_PIPELINE_CONTINUE);
1700         }
1701 
1702         if (pio == gio) {
1703                 gnpp = &gio->io_gang_tree;
1704         } else {
1705                 gnpp = pio->io_private;
1706                 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1707         }
1708 
1709         gn = zio_gang_node_alloc(gnpp);
1710         gbh = gn->gn_gbh;
1711         bzero(gbh, SPA_GANGBLOCKSIZE);
1712 
1713         /*
1714          * Create the gang header.
1715          */
1716         zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1717             pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1718 
1719         /*
1720          * Create and nowait the gang children.
1721          */
1722         for (int g = 0; resid != 0; resid -= lsize, g++) {
1723                 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1724                     SPA_MINBLOCKSIZE);
1725                 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1726 
1727                 zp.zp_checksum = gio->io_prop.zp_checksum;
1728                 zp.zp_compress = ZIO_COMPRESS_OFF;
1729                 zp.zp_type = DMU_OT_NONE;
1730                 zp.zp_level = 0;
1731                 zp.zp_copies = gio->io_prop.zp_copies;
1732                 zp.zp_dedup = 0;
1733                 zp.zp_dedup_verify = 0;
1734 
1735                 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1736                     (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1737                     zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1738                     pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1739                     &pio->io_bookmark));
1740         }
1741 
1742         /*
1743          * Set pio's pipeline to just wait for zio to finish.
1744          */
1745         pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1746 
1747         zio_nowait(zio);
1748 
1749         return (ZIO_PIPELINE_CONTINUE);
1750 }
1751 
1752 /*
1753  * ==========================================================================
1754  * Dedup
1755  * ==========================================================================
1756  */
1757 static void
1758 zio_ddt_child_read_done(zio_t *zio)
1759 {
1760         blkptr_t *bp = zio->io_bp;
1761         ddt_entry_t *dde = zio->io_private;
1762         ddt_phys_t *ddp;
1763         zio_t *pio = zio_unique_parent(zio);
1764 
1765         mutex_enter(&pio->io_lock);
1766         ddp = ddt_phys_select(dde, bp);
1767         if (zio->io_error == 0)
1768                 ddt_phys_clear(ddp);    /* this ddp doesn't need repair */
1769         if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1770                 dde->dde_repair_data = zio->io_data;
1771         else
1772                 zio_buf_free(zio->io_data, zio->io_size);
1773         mutex_exit(&pio->io_lock);
1774 }
1775 
1776 static int
1777 zio_ddt_read_start(zio_t *zio)
1778 {
1779         blkptr_t *bp = zio->io_bp;
1780 
1781         ASSERT(BP_GET_DEDUP(bp));
1782         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1783         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1784 
1785         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1786                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1787                 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1788                 ddt_phys_t *ddp = dde->dde_phys;
1789                 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1790                 blkptr_t blk;
1791 
1792                 ASSERT(zio->io_vsd == NULL);
1793                 zio->io_vsd = dde;
1794 
1795                 if (ddp_self == NULL)
1796                         return (ZIO_PIPELINE_CONTINUE);
1797 
1798                 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1799                         if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1800                                 continue;
1801                         ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1802                             &blk);
1803                         zio_nowait(zio_read(zio, zio->io_spa, &blk,
1804                             zio_buf_alloc(zio->io_size), zio->io_size,
1805                             zio_ddt_child_read_done, dde, zio->io_priority,
1806                             ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1807                             &zio->io_bookmark));
1808                 }
1809                 return (ZIO_PIPELINE_CONTINUE);
1810         }
1811 
1812         zio_nowait(zio_read(zio, zio->io_spa, bp,
1813             zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1814             ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1815 
1816         return (ZIO_PIPELINE_CONTINUE);
1817 }
1818 
1819 static int
1820 zio_ddt_read_done(zio_t *zio)
1821 {
1822         blkptr_t *bp = zio->io_bp;
1823 
1824         if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1825                 return (ZIO_PIPELINE_STOP);
1826 
1827         ASSERT(BP_GET_DEDUP(bp));
1828         ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1829         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1830 
1831         if (zio->io_child_error[ZIO_CHILD_DDT]) {
1832                 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1833                 ddt_entry_t *dde = zio->io_vsd;
1834                 if (ddt == NULL) {
1835                         ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1836                         return (ZIO_PIPELINE_CONTINUE);
1837                 }
1838                 if (dde == NULL) {
1839                         zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1840                         zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1841                         return (ZIO_PIPELINE_STOP);
1842                 }
1843                 if (dde->dde_repair_data != NULL) {
1844                         bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1845                         zio->io_child_error[ZIO_CHILD_DDT] = 0;
1846                 }
1847                 ddt_repair_done(ddt, dde);
1848                 zio->io_vsd = NULL;
1849         }
1850 
1851         ASSERT(zio->io_vsd == NULL);
1852 
1853         return (ZIO_PIPELINE_CONTINUE);
1854 }
1855 
1856 static boolean_t
1857 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1858 {
1859         spa_t *spa = zio->io_spa;
1860 
1861         /*
1862          * Note: we compare the original data, not the transformed data,
1863          * because when zio->io_bp is an override bp, we will not have
1864          * pushed the I/O transforms.  That's an important optimization
1865          * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1866          */
1867         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1868                 zio_t *lio = dde->dde_lead_zio[p];
1869 
1870                 if (lio != NULL) {
1871                         return (lio->io_orig_size != zio->io_orig_size ||
1872                             bcmp(zio->io_orig_data, lio->io_orig_data,
1873                             zio->io_orig_size) != 0);
1874                 }
1875         }
1876 
1877         for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1878                 ddt_phys_t *ddp = &dde->dde_phys[p];
1879 
1880                 if (ddp->ddp_phys_birth != 0) {
1881                         arc_buf_t *abuf = NULL;
1882                         uint32_t aflags = ARC_WAIT;
1883                         blkptr_t blk = *zio->io_bp;
1884                         int error;
1885 
1886                         ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
1887 
1888                         ddt_exit(ddt);
1889 
1890                         error = arc_read_nolock(NULL, spa, &blk,
1891                             arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
1892                             ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1893                             &aflags, &zio->io_bookmark);
1894 
1895                         if (error == 0) {
1896                                 if (arc_buf_size(abuf) != zio->io_orig_size ||
1897                                     bcmp(abuf->b_data, zio->io_orig_data,
1898                                     zio->io_orig_size) != 0)
1899                                         error = EEXIST;
1900                                 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1901                         }
1902 
1903                         ddt_enter(ddt);
1904                         return (error != 0);
1905                 }
1906         }
1907 
1908         return (B_FALSE);
1909 }
1910 
1911 static void
1912 zio_ddt_child_write_ready(zio_t *zio)
1913 {
1914         int p = zio->io_prop.zp_copies;
1915         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1916         ddt_entry_t *dde = zio->io_private;
1917         ddt_phys_t *ddp = &dde->dde_phys[p];
1918         zio_t *pio;
1919 
1920         if (zio->io_error)
1921                 return;
1922 
1923         ddt_enter(ddt);
1924 
1925         ASSERT(dde->dde_lead_zio[p] == zio);
1926 
1927         ddt_phys_fill(ddp, zio->io_bp);
1928 
1929         while ((pio = zio_walk_parents(zio)) != NULL)
1930                 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
1931 
1932         ddt_exit(ddt);
1933 }
1934 
1935 static void
1936 zio_ddt_child_write_done(zio_t *zio)
1937 {
1938         int p = zio->io_prop.zp_copies;
1939         ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1940         ddt_entry_t *dde = zio->io_private;
1941         ddt_phys_t *ddp = &dde->dde_phys[p];
1942 
1943         ddt_enter(ddt);
1944 
1945         ASSERT(ddp->ddp_refcnt == 0);
1946         ASSERT(dde->dde_lead_zio[p] == zio);
1947         dde->dde_lead_zio[p] = NULL;
1948 
1949         if (zio->io_error == 0) {
1950                 while (zio_walk_parents(zio) != NULL)
1951                         ddt_phys_addref(ddp);
1952         } else {
1953                 ddt_phys_clear(ddp);
1954         }
1955 
1956         ddt_exit(ddt);
1957 }
1958 
1959 static void
1960 zio_ddt_ditto_write_done(zio_t *zio)
1961 {
1962         int p = DDT_PHYS_DITTO;
1963         zio_prop_t *zp = &zio->io_prop;
1964         blkptr_t *bp = zio->io_bp;
1965         ddt_t *ddt = ddt_select(zio->io_spa, bp);
1966         ddt_entry_t *dde = zio->io_private;
1967         ddt_phys_t *ddp = &dde->dde_phys[p];
1968         ddt_key_t *ddk = &dde->dde_key;
1969 
1970         ddt_enter(ddt);
1971 
1972         ASSERT(ddp->ddp_refcnt == 0);
1973         ASSERT(dde->dde_lead_zio[p] == zio);
1974         dde->dde_lead_zio[p] = NULL;
1975 
1976         if (zio->io_error == 0) {
1977                 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
1978                 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
1979                 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
1980                 if (ddp->ddp_phys_birth != 0)
1981                         ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
1982                 ddt_phys_fill(ddp, bp);
1983         }
1984 
1985         ddt_exit(ddt);
1986 }
1987 
1988 static int
1989 zio_ddt_write(zio_t *zio)
1990 {
1991         spa_t *spa = zio->io_spa;
1992         blkptr_t *bp = zio->io_bp;
1993         uint64_t txg = zio->io_txg;
1994         zio_prop_t *zp = &zio->io_prop;
1995         int p = zp->zp_copies;
1996         int ditto_copies;
1997         zio_t *cio = NULL;
1998         zio_t *dio = NULL;
1999         ddt_t *ddt = ddt_select(spa, bp);
2000         ddt_entry_t *dde;
2001         ddt_phys_t *ddp;
2002 
2003         ASSERT(BP_GET_DEDUP(bp));
2004         ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2005         ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2006 
2007         ddt_enter(ddt);
2008         dde = ddt_lookup(ddt, bp, B_TRUE);
2009         ddp = &dde->dde_phys[p];
2010 
2011         if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2012                 /*
2013                  * If we're using a weak checksum, upgrade to a strong checksum
2014                  * and try again.  If we're already using a strong checksum,
2015                  * we can't resolve it, so just convert to an ordinary write.
2016                  * (And automatically e-mail a paper to Nature?)
2017                  */
2018                 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2019                         zp->zp_checksum = spa_dedup_checksum(spa);
2020                         zio_pop_transforms(zio);
2021                         zio->io_stage = ZIO_STAGE_OPEN;
2022                         BP_ZERO(bp);
2023                 } else {
2024                         zp->zp_dedup = 0;
2025                 }
2026                 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2027                 ddt_exit(ddt);
2028                 return (ZIO_PIPELINE_CONTINUE);
2029         }
2030 
2031         ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2032         ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2033 
2034         if (ditto_copies > ddt_ditto_copies_present(dde) &&
2035             dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2036                 zio_prop_t czp = *zp;
2037 
2038                 czp.zp_copies = ditto_copies;
2039 
2040                 /*
2041                  * If we arrived here with an override bp, we won't have run
2042                  * the transform stack, so we won't have the data we need to
2043                  * generate a child i/o.  So, toss the override bp and restart.
2044                  * This is safe, because using the override bp is just an
2045                  * optimization; and it's rare, so the cost doesn't matter.
2046                  */
2047                 if (zio->io_bp_override) {
2048                         zio_pop_transforms(zio);
2049                         zio->io_stage = ZIO_STAGE_OPEN;
2050                         zio->io_pipeline = ZIO_WRITE_PIPELINE;
2051                         zio->io_bp_override = NULL;
2052                         BP_ZERO(bp);
2053                         ddt_exit(ddt);
2054                         return (ZIO_PIPELINE_CONTINUE);
2055                 }
2056 
2057                 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2058                     zio->io_orig_size, &czp, NULL,
2059                     zio_ddt_ditto_write_done, dde, zio->io_priority,
2060                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2061 
2062                 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2063                 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2064         }
2065 
2066         if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2067                 if (ddp->ddp_phys_birth != 0)
2068                         ddt_bp_fill(ddp, bp, txg);
2069                 if (dde->dde_lead_zio[p] != NULL)
2070                         zio_add_child(zio, dde->dde_lead_zio[p]);
2071                 else
2072                         ddt_phys_addref(ddp);
2073         } else if (zio->io_bp_override) {
2074                 ASSERT(bp->blk_birth == txg);
2075                 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2076                 ddt_phys_fill(ddp, bp);
2077                 ddt_phys_addref(ddp);
2078         } else {
2079                 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2080                     zio->io_orig_size, zp, zio_ddt_child_write_ready,
2081                     zio_ddt_child_write_done, dde, zio->io_priority,
2082                     ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2083 
2084                 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2085                 dde->dde_lead_zio[p] = cio;
2086         }
2087 
2088         ddt_exit(ddt);
2089 
2090         if (cio)
2091                 zio_nowait(cio);
2092         if (dio)
2093                 zio_nowait(dio);
2094 
2095         return (ZIO_PIPELINE_CONTINUE);
2096 }
2097 
2098 ddt_entry_t *freedde; /* for debugging */
2099 
2100 static int
2101 zio_ddt_free(zio_t *zio)
2102 {
2103         spa_t *spa = zio->io_spa;
2104         blkptr_t *bp = zio->io_bp;
2105         ddt_t *ddt = ddt_select(spa, bp);
2106         ddt_entry_t *dde;
2107         ddt_phys_t *ddp;
2108 
2109         ASSERT(BP_GET_DEDUP(bp));
2110         ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2111 
2112         ddt_enter(ddt);
2113         freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2114         ddp = ddt_phys_select(dde, bp);
2115         ddt_phys_decref(ddp);
2116         ddt_exit(ddt);
2117 
2118         return (ZIO_PIPELINE_CONTINUE);
2119 }
2120 
2121 /*
2122  * ==========================================================================
2123  * Allocate and free blocks
2124  * ==========================================================================
2125  */
2126 static int
2127 zio_dva_allocate(zio_t *zio)
2128 {
2129         spa_t *spa = zio->io_spa;
2130         metaslab_class_t *mc = spa_normal_class(spa);
2131         blkptr_t *bp = zio->io_bp;
2132         int error;
2133         int flags = 0;
2134 
2135         if (zio->io_gang_leader == NULL) {
2136                 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2137                 zio->io_gang_leader = zio;
2138         }
2139 
2140         ASSERT(BP_IS_HOLE(bp));
2141         ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2142         ASSERT3U(zio->io_prop.zp_copies, >, 0);
2143         ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2144         ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2145 
2146         /*
2147          * The dump device does not support gang blocks so allocation on
2148          * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2149          * the "fast" gang feature.
2150          */
2151         flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2152         flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2153             METASLAB_GANG_CHILD : 0;
2154         error = metaslab_alloc(spa, mc, zio->io_size, bp,
2155             zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2156 
2157         if (error) {
2158                 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2159                     "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2160                     error);
2161                 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2162                         return (zio_write_gang_block(zio));
2163                 zio->io_error = error;
2164         }
2165 
2166         return (ZIO_PIPELINE_CONTINUE);
2167 }
2168 
2169 static int
2170 zio_dva_free(zio_t *zio)
2171 {
2172         metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2173 
2174         return (ZIO_PIPELINE_CONTINUE);
2175 }
2176 
2177 static int
2178 zio_dva_claim(zio_t *zio)
2179 {
2180         int error;
2181 
2182         error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2183         if (error)
2184                 zio->io_error = error;
2185 
2186         return (ZIO_PIPELINE_CONTINUE);
2187 }
2188 
2189 /*
2190  * Undo an allocation.  This is used by zio_done() when an I/O fails
2191  * and we want to give back the block we just allocated.
2192  * This handles both normal blocks and gang blocks.
2193  */
2194 static void
2195 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2196 {
2197         ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2198         ASSERT(zio->io_bp_override == NULL);
2199 
2200         if (!BP_IS_HOLE(bp))
2201                 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2202 
2203         if (gn != NULL) {
2204                 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2205                         zio_dva_unallocate(zio, gn->gn_child[g],
2206                             &gn->gn_gbh->zg_blkptr[g]);
2207                 }
2208         }
2209 }
2210 
2211 /*
2212  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2213  */
2214 int
2215 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2216     uint64_t size, boolean_t use_slog)
2217 {
2218         int error = 1;
2219 
2220         ASSERT(txg > spa_syncing_txg(spa));
2221 
2222         /*
2223          * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2224          * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2225          * when allocating them.
2226          */
2227         if (use_slog) {
2228                 error = metaslab_alloc(spa, spa_log_class(spa), size,
2229                     new_bp, 1, txg, old_bp,
2230                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2231         }
2232 
2233         if (error) {
2234                 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2235                     new_bp, 1, txg, old_bp,
2236                     METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2237         }
2238 
2239         if (error == 0) {
2240                 BP_SET_LSIZE(new_bp, size);
2241                 BP_SET_PSIZE(new_bp, size);
2242                 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2243                 BP_SET_CHECKSUM(new_bp,
2244                     spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2245                     ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2246                 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2247                 BP_SET_LEVEL(new_bp, 0);
2248                 BP_SET_DEDUP(new_bp, 0);
2249                 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2250         }
2251 
2252         return (error);
2253 }
2254 
2255 /*
2256  * Free an intent log block.
2257  */
2258 void
2259 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2260 {
2261         ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2262         ASSERT(!BP_IS_GANG(bp));
2263 
2264         zio_free(spa, txg, bp);
2265 }
2266 
2267 /*
2268  * ==========================================================================
2269  * Read and write to physical devices
2270  * ==========================================================================
2271  */
2272 static int
2273 zio_vdev_io_start(zio_t *zio)
2274 {
2275         vdev_t *vd = zio->io_vd;
2276         uint64_t align;
2277         spa_t *spa = zio->io_spa;
2278 
2279         ASSERT(zio->io_error == 0);
2280         ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2281 
2282         if (vd == NULL) {
2283                 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2284                         spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2285 
2286                 /*
2287                  * The mirror_ops handle multiple DVAs in a single BP.
2288                  */
2289                 return (vdev_mirror_ops.vdev_op_io_start(zio));
2290         }
2291 
2292         /*
2293          * We keep track of time-sensitive I/Os so that the scan thread
2294          * can quickly react to certain workloads.  In particular, we care
2295          * about non-scrubbing, top-level reads and writes with the following
2296          * characteristics:
2297          *      - synchronous writes of user data to non-slog devices
2298          *      - any reads of user data
2299          * When these conditions are met, adjust the timestamp of spa_last_io
2300          * which allows the scan thread to adjust its workload accordingly.
2301          */
2302         if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2303             vd == vd->vdev_top && !vd->vdev_islog &&
2304             zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2305             zio->io_txg != spa_syncing_txg(spa)) {
2306                 uint64_t old = spa->spa_last_io;
2307                 uint64_t new = ddi_get_lbolt64();
2308                 if (old != new)
2309                         (void) atomic_cas_64(&spa->spa_last_io, old, new);
2310         }
2311 
2312         align = 1ULL << vd->vdev_top->vdev_ashift;
2313 
2314         if (P2PHASE(zio->io_size, align) != 0) {
2315                 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2316                 char *abuf = zio_buf_alloc(asize);
2317                 ASSERT(vd == vd->vdev_top);
2318                 if (zio->io_type == ZIO_TYPE_WRITE) {
2319                         bcopy(zio->io_data, abuf, zio->io_size);
2320                         bzero(abuf + zio->io_size, asize - zio->io_size);
2321                 }
2322                 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2323         }
2324 
2325         ASSERT(P2PHASE(zio->io_offset, align) == 0);
2326         ASSERT(P2PHASE(zio->io_size, align) == 0);
2327         VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2328 
2329         /*
2330          * If this is a repair I/O, and there's no self-healing involved --
2331          * that is, we're just resilvering what we expect to resilver --
2332          * then don't do the I/O unless zio's txg is actually in vd's DTL.
2333          * This prevents spurious resilvering with nested replication.
2334          * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2335          * A is out of date, we'll read from C+D, then use the data to
2336          * resilver A+B -- but we don't actually want to resilver B, just A.
2337          * The top-level mirror has no way to know this, so instead we just
2338          * discard unnecessary repairs as we work our way down the vdev tree.
2339          * The same logic applies to any form of nested replication:
2340          * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2341          */
2342         if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2343             !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2344             zio->io_txg != 0 &&      /* not a delegated i/o */
2345             !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2346                 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2347                 zio_vdev_io_bypass(zio);
2348                 return (ZIO_PIPELINE_CONTINUE);
2349         }
2350 
2351         if (vd->vdev_ops->vdev_op_leaf &&
2352             (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2353 
2354                 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2355                         return (ZIO_PIPELINE_CONTINUE);
2356 
2357                 if ((zio = vdev_queue_io(zio)) == NULL)
2358                         return (ZIO_PIPELINE_STOP);
2359 
2360                 if (!vdev_accessible(vd, zio)) {
2361                         zio->io_error = ENXIO;
2362                         zio_interrupt(zio);
2363                         return (ZIO_PIPELINE_STOP);
2364                 }
2365         }
2366 
2367         return (vd->vdev_ops->vdev_op_io_start(zio));
2368 }
2369 
2370 static int
2371 zio_vdev_io_done(zio_t *zio)
2372 {
2373         vdev_t *vd = zio->io_vd;
2374         vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2375         boolean_t unexpected_error = B_FALSE;
2376 
2377         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2378                 return (ZIO_PIPELINE_STOP);
2379 
2380         ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2381 
2382         if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2383 
2384                 vdev_queue_io_done(zio);
2385 
2386                 if (zio->io_type == ZIO_TYPE_WRITE)
2387                         vdev_cache_write(zio);
2388 
2389                 if (zio_injection_enabled && zio->io_error == 0)
2390                         zio->io_error = zio_handle_device_injection(vd,
2391                             zio, EIO);
2392 
2393                 if (zio_injection_enabled && zio->io_error == 0)
2394                         zio->io_error = zio_handle_label_injection(zio, EIO);
2395 
2396                 if (zio->io_error) {
2397                         if (!vdev_accessible(vd, zio)) {
2398                                 zio->io_error = ENXIO;
2399                         } else {
2400                                 unexpected_error = B_TRUE;
2401                         }
2402                 }
2403         }
2404 
2405         ops->vdev_op_io_done(zio);
2406 
2407         if (unexpected_error)
2408                 VERIFY(vdev_probe(vd, zio) == NULL);
2409 
2410         return (ZIO_PIPELINE_CONTINUE);
2411 }
2412 
2413 /*
2414  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2415  * disk, and use that to finish the checksum ereport later.
2416  */
2417 static void
2418 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2419     const void *good_buf)
2420 {
2421         /* no processing needed */
2422         zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2423 }
2424 
2425 /*ARGSUSED*/
2426 void
2427 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2428 {
2429         void *buf = zio_buf_alloc(zio->io_size);
2430 
2431         bcopy(zio->io_data, buf, zio->io_size);
2432 
2433         zcr->zcr_cbinfo = zio->io_size;
2434         zcr->zcr_cbdata = buf;
2435         zcr->zcr_finish = zio_vsd_default_cksum_finish;
2436         zcr->zcr_free = zio_buf_free;
2437 }
2438 
2439 static int
2440 zio_vdev_io_assess(zio_t *zio)
2441 {
2442         vdev_t *vd = zio->io_vd;
2443 
2444         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2445                 return (ZIO_PIPELINE_STOP);
2446 
2447         if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2448                 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2449 
2450         if (zio->io_vsd != NULL) {
2451                 zio->io_vsd_ops->vsd_free(zio);
2452                 zio->io_vsd = NULL;
2453         }
2454 
2455         if (zio_injection_enabled && zio->io_error == 0)
2456                 zio->io_error = zio_handle_fault_injection(zio, EIO);
2457 
2458         /*
2459          * If the I/O failed, determine whether we should attempt to retry it.
2460          *
2461          * On retry, we cut in line in the issue queue, since we don't want
2462          * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2463          */
2464         if (zio->io_error && vd == NULL &&
2465             !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2466                 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));  /* not a leaf */
2467                 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));   /* not a leaf */
2468                 zio->io_error = 0;
2469                 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2470                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2471                 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2472                 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2473                     zio_requeue_io_start_cut_in_line);
2474                 return (ZIO_PIPELINE_STOP);
2475         }
2476 
2477         /*
2478          * If we got an error on a leaf device, convert it to ENXIO
2479          * if the device is not accessible at all.
2480          */
2481         if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2482             !vdev_accessible(vd, zio))
2483                 zio->io_error = ENXIO;
2484 
2485         /*
2486          * If we can't write to an interior vdev (mirror or RAID-Z),
2487          * set vdev_cant_write so that we stop trying to allocate from it.
2488          */
2489         if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2490             vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2491                 vd->vdev_cant_write = B_TRUE;
2492 
2493         if (zio->io_error)
2494                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2495 
2496         return (ZIO_PIPELINE_CONTINUE);
2497 }
2498 
2499 void
2500 zio_vdev_io_reissue(zio_t *zio)
2501 {
2502         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2503         ASSERT(zio->io_error == 0);
2504 
2505         zio->io_stage >>= 1;
2506 }
2507 
2508 void
2509 zio_vdev_io_redone(zio_t *zio)
2510 {
2511         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2512 
2513         zio->io_stage >>= 1;
2514 }
2515 
2516 void
2517 zio_vdev_io_bypass(zio_t *zio)
2518 {
2519         ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2520         ASSERT(zio->io_error == 0);
2521 
2522         zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2523         zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2524 }
2525 
2526 /*
2527  * ==========================================================================
2528  * Generate and verify checksums
2529  * ==========================================================================
2530  */
2531 static int
2532 zio_checksum_generate(zio_t *zio)
2533 {
2534         blkptr_t *bp = zio->io_bp;
2535         enum zio_checksum checksum;
2536 
2537         if (bp == NULL) {
2538                 /*
2539                  * This is zio_write_phys().
2540                  * We're either generating a label checksum, or none at all.
2541                  */
2542                 checksum = zio->io_prop.zp_checksum;
2543 
2544                 if (checksum == ZIO_CHECKSUM_OFF)
2545                         return (ZIO_PIPELINE_CONTINUE);
2546 
2547                 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2548         } else {
2549                 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2550                         ASSERT(!IO_IS_ALLOCATING(zio));
2551                         checksum = ZIO_CHECKSUM_GANG_HEADER;
2552                 } else {
2553                         checksum = BP_GET_CHECKSUM(bp);
2554                 }
2555         }
2556 
2557         zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2558 
2559         return (ZIO_PIPELINE_CONTINUE);
2560 }
2561 
2562 static int
2563 zio_checksum_verify(zio_t *zio)
2564 {
2565         zio_bad_cksum_t info;
2566         blkptr_t *bp = zio->io_bp;
2567         int error;
2568 
2569         ASSERT(zio->io_vd != NULL);
2570 
2571         if (bp == NULL) {
2572                 /*
2573                  * This is zio_read_phys().
2574                  * We're either verifying a label checksum, or nothing at all.
2575                  */
2576                 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2577                         return (ZIO_PIPELINE_CONTINUE);
2578 
2579                 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2580         }
2581 
2582         if ((error = zio_checksum_error(zio, &info)) != 0) {
2583                 zio->io_error = error;
2584                 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2585                         zfs_ereport_start_checksum(zio->io_spa,
2586                             zio->io_vd, zio, zio->io_offset,
2587                             zio->io_size, NULL, &info);
2588                 }
2589         }
2590 
2591         return (ZIO_PIPELINE_CONTINUE);
2592 }
2593 
2594 /*
2595  * Called by RAID-Z to ensure we don't compute the checksum twice.
2596  */
2597 void
2598 zio_checksum_verified(zio_t *zio)
2599 {
2600         zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2601 }
2602 
2603 /*
2604  * ==========================================================================
2605  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2606  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2607  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2608  * indicate errors that are specific to one I/O, and most likely permanent.
2609  * Any other error is presumed to be worse because we weren't expecting it.
2610  * ==========================================================================
2611  */
2612 int
2613 zio_worst_error(int e1, int e2)
2614 {
2615         static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2616         int r1, r2;
2617 
2618         for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2619                 if (e1 == zio_error_rank[r1])
2620                         break;
2621 
2622         for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2623                 if (e2 == zio_error_rank[r2])
2624                         break;
2625 
2626         return (r1 > r2 ? e1 : e2);
2627 }
2628 
2629 /*
2630  * ==========================================================================
2631  * I/O completion
2632  * ==========================================================================
2633  */
2634 static int
2635 zio_ready(zio_t *zio)
2636 {
2637         blkptr_t *bp = zio->io_bp;
2638         zio_t *pio, *pio_next;
2639 
2640         if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2641             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2642                 return (ZIO_PIPELINE_STOP);
2643 
2644         if (zio->io_ready) {
2645                 ASSERT(IO_IS_ALLOCATING(zio));
2646                 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2647                 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2648 
2649                 zio->io_ready(zio);
2650         }
2651 
2652         if (bp != NULL && bp != &zio->io_bp_copy)
2653                 zio->io_bp_copy = *bp;
2654 
2655         if (zio->io_error)
2656                 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2657 
2658         mutex_enter(&zio->io_lock);
2659         zio->io_state[ZIO_WAIT_READY] = 1;
2660         pio = zio_walk_parents(zio);
2661         mutex_exit(&zio->io_lock);
2662 
2663         /*
2664          * As we notify zio's parents, new parents could be added.
2665          * New parents go to the head of zio's io_parent_list, however,
2666          * so we will (correctly) not notify them.  The remainder of zio's
2667          * io_parent_list, from 'pio_next' onward, cannot change because
2668          * all parents must wait for us to be done before they can be done.
2669          */
2670         for (; pio != NULL; pio = pio_next) {
2671                 pio_next = zio_walk_parents(zio);
2672                 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2673         }
2674 
2675         if (zio->io_flags & ZIO_FLAG_NODATA) {
2676                 if (BP_IS_GANG(bp)) {
2677                         zio->io_flags &= ~ZIO_FLAG_NODATA;
2678                 } else {
2679                         ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2680                         zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2681                 }
2682         }
2683 
2684         if (zio_injection_enabled &&
2685             zio->io_spa->spa_syncing_txg == zio->io_txg)
2686                 zio_handle_ignored_writes(zio);
2687 
2688         return (ZIO_PIPELINE_CONTINUE);
2689 }
2690 
2691 static int
2692 zio_done(zio_t *zio)
2693 {
2694         spa_t *spa = zio->io_spa;
2695         zio_t *lio = zio->io_logical;
2696         blkptr_t *bp = zio->io_bp;
2697         vdev_t *vd = zio->io_vd;
2698         uint64_t psize = zio->io_size;
2699         zio_t *pio, *pio_next;
2700 
2701         /*
2702          * If our children haven't all completed,
2703          * wait for them and then repeat this pipeline stage.
2704          */
2705         if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2706             zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2707             zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2708             zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2709                 return (ZIO_PIPELINE_STOP);
2710 
2711         for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2712                 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2713                         ASSERT(zio->io_children[c][w] == 0);
2714 
2715         if (bp != NULL) {
2716                 ASSERT(bp->blk_pad[0] == 0);
2717                 ASSERT(bp->blk_pad[1] == 0);
2718                 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2719                     (bp == zio_unique_parent(zio)->io_bp));
2720                 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2721                     zio->io_bp_override == NULL &&
2722                     !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2723                         ASSERT(!BP_SHOULD_BYTESWAP(bp));
2724                         ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2725                         ASSERT(BP_COUNT_GANG(bp) == 0 ||
2726                             (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2727                 }
2728         }
2729 
2730         /*
2731          * If there were child vdev/gang/ddt errors, they apply to us now.
2732          */
2733         zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2734         zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2735         zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2736 
2737         /*
2738          * If the I/O on the transformed data was successful, generate any
2739          * checksum reports now while we still have the transformed data.
2740          */
2741         if (zio->io_error == 0) {
2742                 while (zio->io_cksum_report != NULL) {
2743                         zio_cksum_report_t *zcr = zio->io_cksum_report;
2744                         uint64_t align = zcr->zcr_align;
2745                         uint64_t asize = P2ROUNDUP(psize, align);
2746                         char *abuf = zio->io_data;
2747 
2748                         if (asize != psize) {
2749                                 abuf = zio_buf_alloc(asize);
2750                                 bcopy(zio->io_data, abuf, psize);
2751                                 bzero(abuf + psize, asize - psize);
2752                         }
2753 
2754                         zio->io_cksum_report = zcr->zcr_next;
2755                         zcr->zcr_next = NULL;
2756                         zcr->zcr_finish(zcr, abuf);
2757                         zfs_ereport_free_checksum(zcr);
2758 
2759                         if (asize != psize)
2760                                 zio_buf_free(abuf, asize);
2761                 }
2762         }
2763 
2764         zio_pop_transforms(zio);        /* note: may set zio->io_error */
2765 
2766         vdev_stat_update(zio, psize);
2767 
2768         if (zio->io_error) {
2769                 /*
2770                  * If this I/O is attached to a particular vdev,
2771                  * generate an error message describing the I/O failure
2772                  * at the block level.  We ignore these errors if the
2773                  * device is currently unavailable.
2774                  */
2775                 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2776                         zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2777 
2778                 if ((zio->io_error == EIO || !(zio->io_flags &
2779                     (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2780                     zio == lio) {
2781                         /*
2782                          * For logical I/O requests, tell the SPA to log the
2783                          * error and generate a logical data ereport.
2784                          */
2785                         spa_log_error(spa, zio);
2786                         zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2787                             0, 0);
2788                 }
2789         }
2790 
2791         if (zio->io_error && zio == lio) {
2792                 /*
2793                  * Determine whether zio should be reexecuted.  This will
2794                  * propagate all the way to the root via zio_notify_parent().
2795                  */
2796                 ASSERT(vd == NULL && bp != NULL);
2797                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2798 
2799                 if (IO_IS_ALLOCATING(zio) &&
2800                     !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2801                         if (zio->io_error != ENOSPC)
2802                                 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2803                         else
2804                                 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2805                 }
2806 
2807                 if ((zio->io_type == ZIO_TYPE_READ ||
2808                     zio->io_type == ZIO_TYPE_FREE) &&
2809                     !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2810                     zio->io_error == ENXIO &&
2811                     spa_load_state(spa) == SPA_LOAD_NONE &&
2812                     spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2813                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2814 
2815                 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2816                         zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2817 
2818                 /*
2819                  * Here is a possibly good place to attempt to do
2820                  * either combinatorial reconstruction or error correction
2821                  * based on checksums.  It also might be a good place
2822                  * to send out preliminary ereports before we suspend
2823                  * processing.
2824                  */
2825         }
2826 
2827         /*
2828          * If there were logical child errors, they apply to us now.
2829          * We defer this until now to avoid conflating logical child
2830          * errors with errors that happened to the zio itself when
2831          * updating vdev stats and reporting FMA events above.
2832          */
2833         zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2834 
2835         if ((zio->io_error || zio->io_reexecute) &&
2836             IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2837             !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2838                 zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2839 
2840         zio_gang_tree_free(&zio->io_gang_tree);
2841 
2842         /*
2843          * Godfather I/Os should never suspend.
2844          */
2845         if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2846             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2847                 zio->io_reexecute = 0;
2848 
2849         if (zio->io_reexecute) {
2850                 /*
2851                  * This is a logical I/O that wants to reexecute.
2852                  *
2853                  * Reexecute is top-down.  When an i/o fails, if it's not
2854                  * the root, it simply notifies its parent and sticks around.
2855                  * The parent, seeing that it still has children in zio_done(),
2856                  * does the same.  This percolates all the way up to the root.
2857                  * The root i/o will reexecute or suspend the entire tree.
2858                  *
2859                  * This approach ensures that zio_reexecute() honors
2860                  * all the original i/o dependency relationships, e.g.
2861                  * parents not executing until children are ready.
2862                  */
2863                 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2864 
2865                 zio->io_gang_leader = NULL;
2866 
2867                 mutex_enter(&zio->io_lock);
2868                 zio->io_state[ZIO_WAIT_DONE] = 1;
2869                 mutex_exit(&zio->io_lock);
2870 
2871                 /*
2872                  * "The Godfather" I/O monitors its children but is
2873                  * not a true parent to them. It will track them through
2874                  * the pipeline but severs its ties whenever they get into
2875                  * trouble (e.g. suspended). This allows "The Godfather"
2876                  * I/O to return status without blocking.
2877                  */
2878                 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2879                         zio_link_t *zl = zio->io_walk_link;
2880                         pio_next = zio_walk_parents(zio);
2881 
2882                         if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
2883                             (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
2884                                 zio_remove_child(pio, zio, zl);
2885                                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2886                         }
2887                 }
2888 
2889                 if ((pio = zio_unique_parent(zio)) != NULL) {
2890                         /*
2891                          * We're not a root i/o, so there's nothing to do
2892                          * but notify our parent.  Don't propagate errors
2893                          * upward since we haven't permanently failed yet.
2894                          */
2895                         ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2896                         zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2897                         zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2898                 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2899                         /*
2900                          * We'd fail again if we reexecuted now, so suspend
2901                          * until conditions improve (e.g. device comes online).
2902                          */
2903                         zio_suspend(spa, zio);
2904                 } else {
2905                         /*
2906                          * Reexecution is potentially a huge amount of work.
2907                          * Hand it off to the otherwise-unused claim taskq.
2908                          */
2909                         ASSERT(zio->io_tqent.tqent_next == NULL);
2910                         (void) taskq_dispatch_ent(
2911                             spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2912                             (task_func_t *)zio_reexecute, zio, 0,
2913                             &zio->io_tqent);
2914                 }
2915                 return (ZIO_PIPELINE_STOP);
2916         }
2917 
2918         ASSERT(zio->io_child_count == 0);
2919         ASSERT(zio->io_reexecute == 0);
2920         ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2921 
2922         /*
2923          * Report any checksum errors, since the I/O is complete.
2924          */
2925         while (zio->io_cksum_report != NULL) {
2926                 zio_cksum_report_t *zcr = zio->io_cksum_report;
2927                 zio->io_cksum_report = zcr->zcr_next;
2928                 zcr->zcr_next = NULL;
2929                 zcr->zcr_finish(zcr, NULL);
2930                 zfs_ereport_free_checksum(zcr);
2931         }
2932 
2933         /*
2934          * It is the responsibility of the done callback to ensure that this
2935          * particular zio is no longer discoverable for adoption, and as
2936          * such, cannot acquire any new parents.
2937          */
2938         if (zio->io_done)
2939                 zio->io_done(zio);
2940 
2941         mutex_enter(&zio->io_lock);
2942         zio->io_state[ZIO_WAIT_DONE] = 1;
2943         mutex_exit(&zio->io_lock);
2944 
2945         for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2946                 zio_link_t *zl = zio->io_walk_link;
2947                 pio_next = zio_walk_parents(zio);
2948                 zio_remove_child(pio, zio, zl);
2949                 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2950         }
2951 
2952         if (zio->io_waiter != NULL) {
2953                 mutex_enter(&zio->io_lock);
2954                 zio->io_executor = NULL;
2955                 cv_broadcast(&zio->io_cv);
2956                 mutex_exit(&zio->io_lock);
2957         } else {
2958                 zio_destroy(zio);
2959         }
2960 
2961         return (ZIO_PIPELINE_STOP);
2962 }
2963 
2964 /*
2965  * ==========================================================================
2966  * I/O pipeline definition
2967  * ==========================================================================
2968  */
2969 static zio_pipe_stage_t *zio_pipeline[] = {
2970         NULL,
2971         zio_read_bp_init,
2972         zio_free_bp_init,
2973         zio_issue_async,
2974         zio_write_bp_init,
2975         zio_checksum_generate,
2976         zio_ddt_read_start,
2977         zio_ddt_read_done,
2978         zio_ddt_write,
2979         zio_ddt_free,
2980         zio_gang_assemble,
2981         zio_gang_issue,
2982         zio_dva_allocate,
2983         zio_dva_free,
2984         zio_dva_claim,
2985         zio_ready,
2986         zio_vdev_io_start,
2987         zio_vdev_io_done,
2988         zio_vdev_io_assess,
2989         zio_checksum_verify,
2990         zio_done
2991 };
2992 
2993 /* dnp is the dnode for zb1->zb_object */
2994 boolean_t
2995 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
2996     const zbookmark_t *zb2)
2997 {
2998         uint64_t zb1nextL0, zb2thisobj;
2999 
3000         ASSERT(zb1->zb_objset == zb2->zb_objset);
3001         ASSERT(zb2->zb_level == 0);
3002 
3003         /*
3004          * A bookmark in the deadlist is considered to be after
3005          * everything else.
3006          */
3007         if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3008                 return (B_TRUE);
3009 
3010         /* The objset_phys_t isn't before anything. */
3011         if (dnp == NULL)
3012                 return (B_FALSE);
3013 
3014         zb1nextL0 = (zb1->zb_blkid + 1) <<
3015             ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3016 
3017         zb2thisobj = zb2->zb_object ? zb2->zb_object :
3018             zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3019 
3020         if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3021                 uint64_t nextobj = zb1nextL0 *
3022                     (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3023                 return (nextobj <= zb2thisobj);
3024         }
3025 
3026         if (zb1->zb_object < zb2thisobj)
3027                 return (B_TRUE);
3028         if (zb1->zb_object > zb2thisobj)
3029                 return (B_FALSE);
3030         if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3031                 return (B_FALSE);
3032         return (zb1nextL0 <= zb2->zb_blkid);
3033 }