Print this page
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zfs_znode.c
+++ new/usr/src/uts/common/fs/zfs/zfs_znode.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
↓ open down ↓ |
12 lines elided |
↑ open up ↑ |
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 + * Copyright (c) 2012 by Delphix. All rights reserved.
23 24 */
24 25
26 +
25 27 /* Portions Copyright 2007 Jeremy Teo */
26 28
27 29 #ifdef _KERNEL
28 30 #include <sys/types.h>
29 31 #include <sys/param.h>
30 32 #include <sys/time.h>
31 33 #include <sys/systm.h>
32 34 #include <sys/sysmacros.h>
33 35 #include <sys/resource.h>
34 36 #include <sys/mntent.h>
35 37 #include <sys/mkdev.h>
36 38 #include <sys/u8_textprep.h>
37 39 #include <sys/dsl_dataset.h>
38 40 #include <sys/vfs.h>
39 41 #include <sys/vfs_opreg.h>
40 42 #include <sys/vnode.h>
41 43 #include <sys/file.h>
42 44 #include <sys/kmem.h>
43 45 #include <sys/errno.h>
44 46 #include <sys/unistd.h>
45 47 #include <sys/mode.h>
46 48 #include <sys/atomic.h>
47 49 #include <vm/pvn.h>
48 50 #include "fs/fs_subr.h"
49 51 #include <sys/zfs_dir.h>
50 52 #include <sys/zfs_acl.h>
51 53 #include <sys/zfs_ioctl.h>
52 54 #include <sys/zfs_rlock.h>
53 55 #include <sys/zfs_fuid.h>
54 56 #include <sys/dnode.h>
55 57 #include <sys/fs/zfs.h>
56 58 #include <sys/kidmap.h>
57 59 #endif /* _KERNEL */
58 60
59 61 #include <sys/dmu.h>
60 62 #include <sys/refcount.h>
61 63 #include <sys/stat.h>
62 64 #include <sys/zap.h>
63 65 #include <sys/zfs_znode.h>
64 66 #include <sys/sa.h>
65 67 #include <sys/zfs_sa.h>
66 68 #include <sys/zfs_stat.h>
67 69
68 70 #include "zfs_prop.h"
69 71 #include "zfs_comutil.h"
70 72
71 73 /*
72 74 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
73 75 * turned on when DEBUG is also defined.
74 76 */
75 77 #ifdef DEBUG
76 78 #define ZNODE_STATS
77 79 #endif /* DEBUG */
78 80
79 81 #ifdef ZNODE_STATS
80 82 #define ZNODE_STAT_ADD(stat) ((stat)++)
81 83 #else
82 84 #define ZNODE_STAT_ADD(stat) /* nothing */
83 85 #endif /* ZNODE_STATS */
84 86
85 87 /*
86 88 * Functions needed for userland (ie: libzpool) are not put under
87 89 * #ifdef_KERNEL; the rest of the functions have dependencies
88 90 * (such as VFS logic) that will not compile easily in userland.
89 91 */
90 92 #ifdef _KERNEL
91 93 /*
92 94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
93 95 * be freed before it can be safely accessed.
94 96 */
95 97 krwlock_t zfsvfs_lock;
96 98
97 99 static kmem_cache_t *znode_cache = NULL;
98 100
99 101 /*ARGSUSED*/
100 102 static void
101 103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
102 104 {
103 105 /*
104 106 * We should never drop all dbuf refs without first clearing
105 107 * the eviction callback.
106 108 */
107 109 panic("evicting znode %p\n", user_ptr);
108 110 }
109 111
110 112 /*ARGSUSED*/
111 113 static int
112 114 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
113 115 {
114 116 znode_t *zp = buf;
115 117
116 118 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
117 119
118 120 zp->z_vnode = vn_alloc(kmflags);
119 121 if (zp->z_vnode == NULL) {
120 122 return (-1);
121 123 }
122 124 ZTOV(zp)->v_data = zp;
123 125
124 126 list_link_init(&zp->z_link_node);
125 127
126 128 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
127 129 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
128 130 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
129 131 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
130 132
131 133 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
132 134 avl_create(&zp->z_range_avl, zfs_range_compare,
133 135 sizeof (rl_t), offsetof(rl_t, r_node));
134 136
135 137 zp->z_dirlocks = NULL;
136 138 zp->z_acl_cached = NULL;
137 139 zp->z_moved = 0;
138 140 return (0);
139 141 }
140 142
141 143 /*ARGSUSED*/
142 144 static void
143 145 zfs_znode_cache_destructor(void *buf, void *arg)
144 146 {
145 147 znode_t *zp = buf;
146 148
147 149 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
148 150 ASSERT(ZTOV(zp)->v_data == zp);
149 151 vn_free(ZTOV(zp));
150 152 ASSERT(!list_link_active(&zp->z_link_node));
151 153 mutex_destroy(&zp->z_lock);
152 154 rw_destroy(&zp->z_parent_lock);
153 155 rw_destroy(&zp->z_name_lock);
154 156 mutex_destroy(&zp->z_acl_lock);
155 157 avl_destroy(&zp->z_range_avl);
156 158 mutex_destroy(&zp->z_range_lock);
157 159
158 160 ASSERT(zp->z_dirlocks == NULL);
159 161 ASSERT(zp->z_acl_cached == NULL);
160 162 }
161 163
162 164 #ifdef ZNODE_STATS
163 165 static struct {
164 166 uint64_t zms_zfsvfs_invalid;
165 167 uint64_t zms_zfsvfs_recheck1;
166 168 uint64_t zms_zfsvfs_unmounted;
167 169 uint64_t zms_zfsvfs_recheck2;
168 170 uint64_t zms_obj_held;
169 171 uint64_t zms_vnode_locked;
170 172 uint64_t zms_not_only_dnlc;
171 173 } znode_move_stats;
172 174 #endif /* ZNODE_STATS */
173 175
174 176 static void
175 177 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
176 178 {
177 179 vnode_t *vp;
178 180
179 181 /* Copy fields. */
180 182 nzp->z_zfsvfs = ozp->z_zfsvfs;
181 183
182 184 /* Swap vnodes. */
183 185 vp = nzp->z_vnode;
184 186 nzp->z_vnode = ozp->z_vnode;
185 187 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
186 188 ZTOV(ozp)->v_data = ozp;
187 189 ZTOV(nzp)->v_data = nzp;
188 190
189 191 nzp->z_id = ozp->z_id;
190 192 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
191 193 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
192 194 nzp->z_unlinked = ozp->z_unlinked;
193 195 nzp->z_atime_dirty = ozp->z_atime_dirty;
194 196 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
195 197 nzp->z_blksz = ozp->z_blksz;
196 198 nzp->z_seq = ozp->z_seq;
197 199 nzp->z_mapcnt = ozp->z_mapcnt;
198 200 nzp->z_gen = ozp->z_gen;
199 201 nzp->z_sync_cnt = ozp->z_sync_cnt;
200 202 nzp->z_is_sa = ozp->z_is_sa;
201 203 nzp->z_sa_hdl = ozp->z_sa_hdl;
202 204 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
203 205 nzp->z_links = ozp->z_links;
204 206 nzp->z_size = ozp->z_size;
205 207 nzp->z_pflags = ozp->z_pflags;
206 208 nzp->z_uid = ozp->z_uid;
207 209 nzp->z_gid = ozp->z_gid;
208 210 nzp->z_mode = ozp->z_mode;
209 211
210 212 /*
211 213 * Since this is just an idle znode and kmem is already dealing with
212 214 * memory pressure, release any cached ACL.
213 215 */
214 216 if (ozp->z_acl_cached) {
215 217 zfs_acl_free(ozp->z_acl_cached);
216 218 ozp->z_acl_cached = NULL;
217 219 }
218 220
219 221 sa_set_userp(nzp->z_sa_hdl, nzp);
220 222
221 223 /*
222 224 * Invalidate the original znode by clearing fields that provide a
223 225 * pointer back to the znode. Set the low bit of the vfs pointer to
224 226 * ensure that zfs_znode_move() recognizes the znode as invalid in any
225 227 * subsequent callback.
226 228 */
227 229 ozp->z_sa_hdl = NULL;
228 230 POINTER_INVALIDATE(&ozp->z_zfsvfs);
229 231
230 232 /*
231 233 * Mark the znode.
232 234 */
233 235 nzp->z_moved = 1;
234 236 ozp->z_moved = (uint8_t)-1;
235 237 }
236 238
237 239 /*ARGSUSED*/
238 240 static kmem_cbrc_t
239 241 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
240 242 {
241 243 znode_t *ozp = buf, *nzp = newbuf;
242 244 zfsvfs_t *zfsvfs;
243 245 vnode_t *vp;
244 246
245 247 /*
246 248 * The znode is on the file system's list of known znodes if the vfs
247 249 * pointer is valid. We set the low bit of the vfs pointer when freeing
248 250 * the znode to invalidate it, and the memory patterns written by kmem
249 251 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
250 252 * created znode sets the vfs pointer last of all to indicate that the
251 253 * znode is known and in a valid state to be moved by this function.
252 254 */
253 255 zfsvfs = ozp->z_zfsvfs;
254 256 if (!POINTER_IS_VALID(zfsvfs)) {
255 257 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
256 258 return (KMEM_CBRC_DONT_KNOW);
257 259 }
258 260
259 261 /*
260 262 * Close a small window in which it's possible that the filesystem could
261 263 * be unmounted and freed, and zfsvfs, though valid in the previous
262 264 * statement, could point to unrelated memory by the time we try to
263 265 * prevent the filesystem from being unmounted.
264 266 */
265 267 rw_enter(&zfsvfs_lock, RW_WRITER);
266 268 if (zfsvfs != ozp->z_zfsvfs) {
267 269 rw_exit(&zfsvfs_lock);
268 270 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
269 271 return (KMEM_CBRC_DONT_KNOW);
270 272 }
271 273
272 274 /*
273 275 * If the znode is still valid, then so is the file system. We know that
274 276 * no valid file system can be freed while we hold zfsvfs_lock, so we
275 277 * can safely ensure that the filesystem is not and will not be
276 278 * unmounted. The next statement is equivalent to ZFS_ENTER().
277 279 */
278 280 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
279 281 if (zfsvfs->z_unmounted) {
280 282 ZFS_EXIT(zfsvfs);
281 283 rw_exit(&zfsvfs_lock);
282 284 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
283 285 return (KMEM_CBRC_DONT_KNOW);
284 286 }
285 287 rw_exit(&zfsvfs_lock);
286 288
287 289 mutex_enter(&zfsvfs->z_znodes_lock);
288 290 /*
289 291 * Recheck the vfs pointer in case the znode was removed just before
290 292 * acquiring the lock.
291 293 */
292 294 if (zfsvfs != ozp->z_zfsvfs) {
293 295 mutex_exit(&zfsvfs->z_znodes_lock);
294 296 ZFS_EXIT(zfsvfs);
295 297 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
296 298 return (KMEM_CBRC_DONT_KNOW);
297 299 }
298 300
299 301 /*
300 302 * At this point we know that as long as we hold z_znodes_lock, the
301 303 * znode cannot be freed and fields within the znode can be safely
302 304 * accessed. Now, prevent a race with zfs_zget().
303 305 */
304 306 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
305 307 mutex_exit(&zfsvfs->z_znodes_lock);
306 308 ZFS_EXIT(zfsvfs);
307 309 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
308 310 return (KMEM_CBRC_LATER);
309 311 }
310 312
311 313 vp = ZTOV(ozp);
312 314 if (mutex_tryenter(&vp->v_lock) == 0) {
313 315 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
314 316 mutex_exit(&zfsvfs->z_znodes_lock);
315 317 ZFS_EXIT(zfsvfs);
316 318 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
317 319 return (KMEM_CBRC_LATER);
318 320 }
319 321
320 322 /* Only move znodes that are referenced _only_ by the DNLC. */
321 323 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
322 324 mutex_exit(&vp->v_lock);
323 325 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
324 326 mutex_exit(&zfsvfs->z_znodes_lock);
325 327 ZFS_EXIT(zfsvfs);
326 328 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
327 329 return (KMEM_CBRC_LATER);
328 330 }
329 331
330 332 /*
331 333 * The znode is known and in a valid state to move. We're holding the
332 334 * locks needed to execute the critical section.
333 335 */
334 336 zfs_znode_move_impl(ozp, nzp);
335 337 mutex_exit(&vp->v_lock);
336 338 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
337 339
338 340 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
339 341 mutex_exit(&zfsvfs->z_znodes_lock);
340 342 ZFS_EXIT(zfsvfs);
341 343
342 344 return (KMEM_CBRC_YES);
343 345 }
344 346
345 347 void
346 348 zfs_znode_init(void)
347 349 {
348 350 /*
349 351 * Initialize zcache
350 352 */
351 353 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
352 354 ASSERT(znode_cache == NULL);
353 355 znode_cache = kmem_cache_create("zfs_znode_cache",
354 356 sizeof (znode_t), 0, zfs_znode_cache_constructor,
355 357 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
356 358 kmem_cache_set_move(znode_cache, zfs_znode_move);
357 359 }
358 360
359 361 void
360 362 zfs_znode_fini(void)
361 363 {
362 364 /*
363 365 * Cleanup vfs & vnode ops
364 366 */
365 367 zfs_remove_op_tables();
366 368
367 369 /*
368 370 * Cleanup zcache
369 371 */
370 372 if (znode_cache)
371 373 kmem_cache_destroy(znode_cache);
372 374 znode_cache = NULL;
373 375 rw_destroy(&zfsvfs_lock);
374 376 }
375 377
376 378 struct vnodeops *zfs_dvnodeops;
377 379 struct vnodeops *zfs_fvnodeops;
378 380 struct vnodeops *zfs_symvnodeops;
379 381 struct vnodeops *zfs_xdvnodeops;
380 382 struct vnodeops *zfs_evnodeops;
381 383 struct vnodeops *zfs_sharevnodeops;
382 384
383 385 void
384 386 zfs_remove_op_tables()
385 387 {
386 388 /*
387 389 * Remove vfs ops
388 390 */
389 391 ASSERT(zfsfstype);
390 392 (void) vfs_freevfsops_by_type(zfsfstype);
391 393 zfsfstype = 0;
392 394
393 395 /*
394 396 * Remove vnode ops
395 397 */
396 398 if (zfs_dvnodeops)
397 399 vn_freevnodeops(zfs_dvnodeops);
398 400 if (zfs_fvnodeops)
399 401 vn_freevnodeops(zfs_fvnodeops);
400 402 if (zfs_symvnodeops)
401 403 vn_freevnodeops(zfs_symvnodeops);
402 404 if (zfs_xdvnodeops)
403 405 vn_freevnodeops(zfs_xdvnodeops);
404 406 if (zfs_evnodeops)
405 407 vn_freevnodeops(zfs_evnodeops);
406 408 if (zfs_sharevnodeops)
407 409 vn_freevnodeops(zfs_sharevnodeops);
408 410
409 411 zfs_dvnodeops = NULL;
410 412 zfs_fvnodeops = NULL;
411 413 zfs_symvnodeops = NULL;
412 414 zfs_xdvnodeops = NULL;
413 415 zfs_evnodeops = NULL;
414 416 zfs_sharevnodeops = NULL;
415 417 }
416 418
417 419 extern const fs_operation_def_t zfs_dvnodeops_template[];
418 420 extern const fs_operation_def_t zfs_fvnodeops_template[];
419 421 extern const fs_operation_def_t zfs_xdvnodeops_template[];
420 422 extern const fs_operation_def_t zfs_symvnodeops_template[];
421 423 extern const fs_operation_def_t zfs_evnodeops_template[];
422 424 extern const fs_operation_def_t zfs_sharevnodeops_template[];
423 425
424 426 int
425 427 zfs_create_op_tables()
426 428 {
427 429 int error;
428 430
429 431 /*
430 432 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
431 433 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
432 434 * In this case we just return as the ops vectors are already set up.
433 435 */
434 436 if (zfs_dvnodeops)
435 437 return (0);
436 438
437 439 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
438 440 &zfs_dvnodeops);
439 441 if (error)
440 442 return (error);
441 443
442 444 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
443 445 &zfs_fvnodeops);
444 446 if (error)
445 447 return (error);
446 448
447 449 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
448 450 &zfs_symvnodeops);
449 451 if (error)
450 452 return (error);
451 453
452 454 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
453 455 &zfs_xdvnodeops);
454 456 if (error)
455 457 return (error);
456 458
457 459 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
458 460 &zfs_evnodeops);
459 461 if (error)
460 462 return (error);
461 463
462 464 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
463 465 &zfs_sharevnodeops);
464 466
465 467 return (error);
466 468 }
467 469
468 470 int
469 471 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
470 472 {
471 473 zfs_acl_ids_t acl_ids;
472 474 vattr_t vattr;
473 475 znode_t *sharezp;
474 476 vnode_t *vp;
475 477 znode_t *zp;
476 478 int error;
477 479
478 480 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
479 481 vattr.va_type = VDIR;
480 482 vattr.va_mode = S_IFDIR|0555;
481 483 vattr.va_uid = crgetuid(kcred);
482 484 vattr.va_gid = crgetgid(kcred);
483 485
484 486 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
485 487 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
486 488 sharezp->z_moved = 0;
487 489 sharezp->z_unlinked = 0;
488 490 sharezp->z_atime_dirty = 0;
489 491 sharezp->z_zfsvfs = zfsvfs;
490 492 sharezp->z_is_sa = zfsvfs->z_use_sa;
491 493
492 494 vp = ZTOV(sharezp);
493 495 vn_reinit(vp);
494 496 vp->v_type = VDIR;
495 497
496 498 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
497 499 kcred, NULL, &acl_ids));
498 500 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
499 501 ASSERT3P(zp, ==, sharezp);
500 502 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
501 503 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
502 504 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
503 505 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
504 506 zfsvfs->z_shares_dir = sharezp->z_id;
505 507
506 508 zfs_acl_ids_free(&acl_ids);
507 509 ZTOV(sharezp)->v_count = 0;
508 510 sa_handle_destroy(sharezp->z_sa_hdl);
509 511 kmem_cache_free(znode_cache, sharezp);
510 512
511 513 return (error);
512 514 }
513 515
514 516 /*
515 517 * define a couple of values we need available
516 518 * for both 64 and 32 bit environments.
517 519 */
518 520 #ifndef NBITSMINOR64
519 521 #define NBITSMINOR64 32
520 522 #endif
521 523 #ifndef MAXMAJ64
522 524 #define MAXMAJ64 0xffffffffUL
523 525 #endif
524 526 #ifndef MAXMIN64
525 527 #define MAXMIN64 0xffffffffUL
526 528 #endif
527 529
528 530 /*
529 531 * Create special expldev for ZFS private use.
530 532 * Can't use standard expldev since it doesn't do
531 533 * what we want. The standard expldev() takes a
532 534 * dev32_t in LP64 and expands it to a long dev_t.
533 535 * We need an interface that takes a dev32_t in ILP32
534 536 * and expands it to a long dev_t.
535 537 */
536 538 static uint64_t
537 539 zfs_expldev(dev_t dev)
538 540 {
539 541 #ifndef _LP64
540 542 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
541 543 return (((uint64_t)major << NBITSMINOR64) |
542 544 ((minor_t)dev & MAXMIN32));
543 545 #else
544 546 return (dev);
545 547 #endif
546 548 }
547 549
548 550 /*
549 551 * Special cmpldev for ZFS private use.
550 552 * Can't use standard cmpldev since it takes
551 553 * a long dev_t and compresses it to dev32_t in
552 554 * LP64. We need to do a compaction of a long dev_t
553 555 * to a dev32_t in ILP32.
554 556 */
555 557 dev_t
556 558 zfs_cmpldev(uint64_t dev)
557 559 {
558 560 #ifndef _LP64
559 561 minor_t minor = (minor_t)dev & MAXMIN64;
560 562 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
561 563
562 564 if (major > MAXMAJ32 || minor > MAXMIN32)
563 565 return (NODEV32);
564 566
565 567 return (((dev32_t)major << NBITSMINOR32) | minor);
566 568 #else
567 569 return (dev);
568 570 #endif
569 571 }
570 572
571 573 static void
572 574 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
573 575 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
574 576 {
575 577 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
576 578 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
577 579
578 580 mutex_enter(&zp->z_lock);
579 581
580 582 ASSERT(zp->z_sa_hdl == NULL);
581 583 ASSERT(zp->z_acl_cached == NULL);
582 584 if (sa_hdl == NULL) {
583 585 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
584 586 SA_HDL_SHARED, &zp->z_sa_hdl));
585 587 } else {
586 588 zp->z_sa_hdl = sa_hdl;
587 589 sa_set_userp(sa_hdl, zp);
588 590 }
589 591
590 592 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
591 593
592 594 /*
593 595 * Slap on VROOT if we are the root znode
594 596 */
595 597 if (zp->z_id == zfsvfs->z_root)
596 598 ZTOV(zp)->v_flag |= VROOT;
597 599
598 600 mutex_exit(&zp->z_lock);
599 601 vn_exists(ZTOV(zp));
600 602 }
601 603
602 604 void
603 605 zfs_znode_dmu_fini(znode_t *zp)
604 606 {
605 607 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
606 608 zp->z_unlinked ||
607 609 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
608 610
609 611 sa_handle_destroy(zp->z_sa_hdl);
610 612 zp->z_sa_hdl = NULL;
611 613 }
612 614
613 615 /*
614 616 * Construct a new znode/vnode and intialize.
615 617 *
616 618 * This does not do a call to dmu_set_user() that is
617 619 * up to the caller to do, in case you don't want to
618 620 * return the znode
619 621 */
620 622 static znode_t *
621 623 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
622 624 dmu_object_type_t obj_type, sa_handle_t *hdl)
623 625 {
624 626 znode_t *zp;
625 627 vnode_t *vp;
626 628 uint64_t mode;
627 629 uint64_t parent;
628 630 sa_bulk_attr_t bulk[9];
629 631 int count = 0;
630 632
631 633 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
632 634
633 635 ASSERT(zp->z_dirlocks == NULL);
634 636 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
635 637 zp->z_moved = 0;
636 638
637 639 /*
638 640 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
639 641 * the zfs_znode_move() callback.
640 642 */
641 643 zp->z_sa_hdl = NULL;
642 644 zp->z_unlinked = 0;
643 645 zp->z_atime_dirty = 0;
644 646 zp->z_mapcnt = 0;
645 647 zp->z_id = db->db_object;
646 648 zp->z_blksz = blksz;
647 649 zp->z_seq = 0x7A4653;
648 650 zp->z_sync_cnt = 0;
649 651
650 652 vp = ZTOV(zp);
651 653 vn_reinit(vp);
652 654
653 655 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
654 656
655 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
656 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
657 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
658 660 &zp->z_size, 8);
659 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
660 662 &zp->z_links, 8);
661 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
662 664 &zp->z_pflags, 8);
663 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
664 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
665 667 &zp->z_atime, 16);
666 668 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
667 669 &zp->z_uid, 8);
668 670 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
669 671 &zp->z_gid, 8);
670 672
671 673 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
672 674 if (hdl == NULL)
673 675 sa_handle_destroy(zp->z_sa_hdl);
674 676 kmem_cache_free(znode_cache, zp);
675 677 return (NULL);
676 678 }
677 679
678 680 zp->z_mode = mode;
679 681 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
680 682
681 683 vp->v_type = IFTOVT((mode_t)mode);
682 684
683 685 switch (vp->v_type) {
684 686 case VDIR:
685 687 if (zp->z_pflags & ZFS_XATTR) {
686 688 vn_setops(vp, zfs_xdvnodeops);
687 689 vp->v_flag |= V_XATTRDIR;
688 690 } else {
689 691 vn_setops(vp, zfs_dvnodeops);
690 692 }
691 693 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
692 694 break;
693 695 case VBLK:
694 696 case VCHR:
695 697 {
696 698 uint64_t rdev;
697 699 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
698 700 &rdev, sizeof (rdev)) == 0);
699 701
700 702 vp->v_rdev = zfs_cmpldev(rdev);
701 703 }
702 704 /*FALLTHROUGH*/
703 705 case VFIFO:
704 706 case VSOCK:
705 707 case VDOOR:
706 708 vn_setops(vp, zfs_fvnodeops);
707 709 break;
708 710 case VREG:
709 711 vp->v_flag |= VMODSORT;
710 712 if (parent == zfsvfs->z_shares_dir) {
711 713 ASSERT(zp->z_uid == 0 && zp->z_gid == 0);
712 714 vn_setops(vp, zfs_sharevnodeops);
713 715 } else {
714 716 vn_setops(vp, zfs_fvnodeops);
715 717 }
716 718 break;
717 719 case VLNK:
718 720 vn_setops(vp, zfs_symvnodeops);
719 721 break;
720 722 default:
721 723 vn_setops(vp, zfs_evnodeops);
722 724 break;
723 725 }
724 726
725 727 mutex_enter(&zfsvfs->z_znodes_lock);
726 728 list_insert_tail(&zfsvfs->z_all_znodes, zp);
727 729 membar_producer();
728 730 /*
729 731 * Everything else must be valid before assigning z_zfsvfs makes the
730 732 * znode eligible for zfs_znode_move().
731 733 */
732 734 zp->z_zfsvfs = zfsvfs;
733 735 mutex_exit(&zfsvfs->z_znodes_lock);
734 736
735 737 VFS_HOLD(zfsvfs->z_vfs);
736 738 return (zp);
737 739 }
738 740
739 741 static uint64_t empty_xattr;
740 742 static uint64_t pad[4];
741 743 static zfs_acl_phys_t acl_phys;
742 744 /*
743 745 * Create a new DMU object to hold a zfs znode.
744 746 *
745 747 * IN: dzp - parent directory for new znode
746 748 * vap - file attributes for new znode
747 749 * tx - dmu transaction id for zap operations
748 750 * cr - credentials of caller
749 751 * flag - flags:
750 752 * IS_ROOT_NODE - new object will be root
751 753 * IS_XATTR - new object is an attribute
752 754 * bonuslen - length of bonus buffer
753 755 * setaclp - File/Dir initial ACL
754 756 * fuidp - Tracks fuid allocation.
755 757 *
756 758 * OUT: zpp - allocated znode
757 759 *
758 760 */
759 761 void
760 762 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
761 763 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
762 764 {
763 765 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
764 766 uint64_t mode, size, links, parent, pflags;
765 767 uint64_t dzp_pflags = 0;
766 768 uint64_t rdev = 0;
767 769 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
768 770 dmu_buf_t *db;
769 771 timestruc_t now;
770 772 uint64_t gen, obj;
771 773 int err;
772 774 int bonuslen;
773 775 sa_handle_t *sa_hdl;
774 776 dmu_object_type_t obj_type;
775 777 sa_bulk_attr_t sa_attrs[ZPL_END];
776 778 int cnt = 0;
777 779 zfs_acl_locator_cb_t locate = { 0 };
778 780
779 781 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
780 782
781 783 if (zfsvfs->z_replay) {
782 784 obj = vap->va_nodeid;
783 785 now = vap->va_ctime; /* see zfs_replay_create() */
784 786 gen = vap->va_nblocks; /* ditto */
785 787 } else {
786 788 obj = 0;
787 789 gethrestime(&now);
788 790 gen = dmu_tx_get_txg(tx);
789 791 }
790 792
791 793 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
792 794 bonuslen = (obj_type == DMU_OT_SA) ?
793 795 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
794 796
795 797 /*
796 798 * Create a new DMU object.
797 799 */
798 800 /*
↓ open down ↓ |
764 lines elided |
↑ open up ↑ |
799 801 * There's currently no mechanism for pre-reading the blocks that will
800 802 * be needed to allocate a new object, so we accept the small chance
801 803 * that there will be an i/o error and we will fail one of the
802 804 * assertions below.
803 805 */
804 806 if (vap->va_type == VDIR) {
805 807 if (zfsvfs->z_replay) {
806 808 err = zap_create_claim_norm(zfsvfs->z_os, obj,
807 809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
808 810 obj_type, bonuslen, tx);
809 - ASSERT3U(err, ==, 0);
811 + ASSERT0(err);
810 812 } else {
811 813 obj = zap_create_norm(zfsvfs->z_os,
812 814 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
813 815 obj_type, bonuslen, tx);
814 816 }
815 817 } else {
816 818 if (zfsvfs->z_replay) {
817 819 err = dmu_object_claim(zfsvfs->z_os, obj,
818 820 DMU_OT_PLAIN_FILE_CONTENTS, 0,
819 821 obj_type, bonuslen, tx);
820 - ASSERT3U(err, ==, 0);
822 + ASSERT0(err);
821 823 } else {
822 824 obj = dmu_object_alloc(zfsvfs->z_os,
823 825 DMU_OT_PLAIN_FILE_CONTENTS, 0,
824 826 obj_type, bonuslen, tx);
825 827 }
826 828 }
827 829
828 830 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
829 831 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
830 832
831 833 /*
832 834 * If this is the root, fix up the half-initialized parent pointer
833 835 * to reference the just-allocated physical data area.
834 836 */
835 837 if (flag & IS_ROOT_NODE) {
836 838 dzp->z_id = obj;
837 839 } else {
838 840 dzp_pflags = dzp->z_pflags;
839 841 }
840 842
841 843 /*
842 844 * If parent is an xattr, so am I.
843 845 */
844 846 if (dzp_pflags & ZFS_XATTR) {
845 847 flag |= IS_XATTR;
846 848 }
847 849
848 850 if (zfsvfs->z_use_fuids)
849 851 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
850 852 else
851 853 pflags = 0;
852 854
853 855 if (vap->va_type == VDIR) {
854 856 size = 2; /* contents ("." and "..") */
855 857 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
856 858 } else {
857 859 size = links = 0;
858 860 }
859 861
860 862 if (vap->va_type == VBLK || vap->va_type == VCHR) {
861 863 rdev = zfs_expldev(vap->va_rdev);
862 864 }
863 865
864 866 parent = dzp->z_id;
865 867 mode = acl_ids->z_mode;
866 868 if (flag & IS_XATTR)
867 869 pflags |= ZFS_XATTR;
868 870
869 871 /*
870 872 * No execs denied will be deterimed when zfs_mode_compute() is called.
871 873 */
872 874 pflags |= acl_ids->z_aclp->z_hints &
873 875 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
874 876 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
875 877
876 878 ZFS_TIME_ENCODE(&now, crtime);
877 879 ZFS_TIME_ENCODE(&now, ctime);
878 880
879 881 if (vap->va_mask & AT_ATIME) {
880 882 ZFS_TIME_ENCODE(&vap->va_atime, atime);
881 883 } else {
882 884 ZFS_TIME_ENCODE(&now, atime);
883 885 }
884 886
885 887 if (vap->va_mask & AT_MTIME) {
886 888 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
887 889 } else {
888 890 ZFS_TIME_ENCODE(&now, mtime);
889 891 }
890 892
891 893 /* Now add in all of the "SA" attributes */
892 894 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
893 895 &sa_hdl));
894 896
895 897 /*
896 898 * Setup the array of attributes to be replaced/set on the new file
897 899 *
898 900 * order for DMU_OT_ZNODE is critical since it needs to be constructed
899 901 * in the old znode_phys_t format. Don't change this ordering
900 902 */
901 903
902 904 if (obj_type == DMU_OT_ZNODE) {
903 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
904 906 NULL, &atime, 16);
905 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
906 908 NULL, &mtime, 16);
907 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
908 910 NULL, &ctime, 16);
909 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
910 912 NULL, &crtime, 16);
911 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
912 914 NULL, &gen, 8);
913 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
914 916 NULL, &mode, 8);
915 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
916 918 NULL, &size, 8);
917 919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
918 920 NULL, &parent, 8);
919 921 } else {
920 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
921 923 NULL, &mode, 8);
922 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
923 925 NULL, &size, 8);
924 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
925 927 NULL, &gen, 8);
926 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
927 929 &acl_ids->z_fuid, 8);
928 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
929 931 &acl_ids->z_fgid, 8);
930 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
931 933 NULL, &parent, 8);
932 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
933 935 NULL, &pflags, 8);
934 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
935 937 NULL, &atime, 16);
936 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
937 939 NULL, &mtime, 16);
938 940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
939 941 NULL, &ctime, 16);
940 942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
941 943 NULL, &crtime, 16);
942 944 }
943 945
944 946 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
945 947
946 948 if (obj_type == DMU_OT_ZNODE) {
947 949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
948 950 &empty_xattr, 8);
949 951 }
950 952 if (obj_type == DMU_OT_ZNODE ||
951 953 (vap->va_type == VBLK || vap->va_type == VCHR)) {
952 954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
953 955 NULL, &rdev, 8);
954 956
955 957 }
956 958 if (obj_type == DMU_OT_ZNODE) {
957 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
958 960 NULL, &pflags, 8);
959 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
960 962 &acl_ids->z_fuid, 8);
961 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
962 964 &acl_ids->z_fgid, 8);
963 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
964 966 sizeof (uint64_t) * 4);
965 967 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
966 968 &acl_phys, sizeof (zfs_acl_phys_t));
967 969 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
968 970 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
969 971 &acl_ids->z_aclp->z_acl_count, 8);
970 972 locate.cb_aclp = acl_ids->z_aclp;
971 973 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
972 974 zfs_acl_data_locator, &locate,
973 975 acl_ids->z_aclp->z_acl_bytes);
974 976 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
975 977 acl_ids->z_fuid, acl_ids->z_fgid);
976 978 }
977 979
978 980 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
979 981
980 982 if (!(flag & IS_ROOT_NODE)) {
981 983 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
982 984 ASSERT(*zpp != NULL);
983 985 } else {
984 986 /*
985 987 * If we are creating the root node, the "parent" we
986 988 * passed in is the znode for the root.
987 989 */
988 990 *zpp = dzp;
989 991
990 992 (*zpp)->z_sa_hdl = sa_hdl;
991 993 }
↓ open down ↓ |
161 lines elided |
↑ open up ↑ |
992 994
993 995 (*zpp)->z_pflags = pflags;
994 996 (*zpp)->z_mode = mode;
995 997
996 998 if (vap->va_mask & AT_XVATTR)
997 999 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
998 1000
999 1001 if (obj_type == DMU_OT_ZNODE ||
1000 1002 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1001 1003 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
1002 - ASSERT3P(err, ==, 0);
1004 + ASSERT0(err);
1003 1005 }
1004 1006 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1005 1007 }
1006 1008
1007 1009 /*
1008 1010 * zfs_xvattr_set only updates the in-core attributes
1009 1011 * it is assumed the caller will be doing an sa_bulk_update
1010 1012 * to push the changes out
1011 1013 */
1012 1014 void
1013 1015 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1014 1016 {
1015 1017 xoptattr_t *xoap;
1016 1018
1017 1019 xoap = xva_getxoptattr(xvap);
1018 1020 ASSERT(xoap);
1019 1021
1020 1022 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1021 1023 uint64_t times[2];
1022 1024 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1023 1025 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1024 1026 ×, sizeof (times), tx);
1025 1027 XVA_SET_RTN(xvap, XAT_CREATETIME);
1026 1028 }
1027 1029 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1028 1030 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1029 1031 zp->z_pflags, tx);
1030 1032 XVA_SET_RTN(xvap, XAT_READONLY);
1031 1033 }
1032 1034 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1033 1035 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1034 1036 zp->z_pflags, tx);
1035 1037 XVA_SET_RTN(xvap, XAT_HIDDEN);
1036 1038 }
1037 1039 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1038 1040 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1039 1041 zp->z_pflags, tx);
1040 1042 XVA_SET_RTN(xvap, XAT_SYSTEM);
1041 1043 }
1042 1044 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1043 1045 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1044 1046 zp->z_pflags, tx);
1045 1047 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1046 1048 }
1047 1049 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1048 1050 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1049 1051 zp->z_pflags, tx);
1050 1052 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1051 1053 }
1052 1054 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1053 1055 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1054 1056 zp->z_pflags, tx);
1055 1057 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1056 1058 }
1057 1059 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1058 1060 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1059 1061 zp->z_pflags, tx);
1060 1062 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1061 1063 }
1062 1064 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1063 1065 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1064 1066 zp->z_pflags, tx);
1065 1067 XVA_SET_RTN(xvap, XAT_NODUMP);
1066 1068 }
1067 1069 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1068 1070 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1069 1071 zp->z_pflags, tx);
1070 1072 XVA_SET_RTN(xvap, XAT_OPAQUE);
1071 1073 }
1072 1074 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1073 1075 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1074 1076 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1075 1077 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1076 1078 }
1077 1079 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1078 1080 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1079 1081 zp->z_pflags, tx);
1080 1082 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1081 1083 }
1082 1084 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1083 1085 zfs_sa_set_scanstamp(zp, xvap, tx);
1084 1086 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1085 1087 }
1086 1088 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1087 1089 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1088 1090 zp->z_pflags, tx);
1089 1091 XVA_SET_RTN(xvap, XAT_REPARSE);
1090 1092 }
1091 1093 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1092 1094 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1093 1095 zp->z_pflags, tx);
1094 1096 XVA_SET_RTN(xvap, XAT_OFFLINE);
1095 1097 }
1096 1098 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1097 1099 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1098 1100 zp->z_pflags, tx);
1099 1101 XVA_SET_RTN(xvap, XAT_SPARSE);
1100 1102 }
1101 1103 }
1102 1104
1103 1105 int
1104 1106 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1105 1107 {
1106 1108 dmu_object_info_t doi;
1107 1109 dmu_buf_t *db;
1108 1110 znode_t *zp;
1109 1111 int err;
1110 1112 sa_handle_t *hdl;
1111 1113
1112 1114 *zpp = NULL;
1113 1115
1114 1116 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1115 1117
1116 1118 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1117 1119 if (err) {
1118 1120 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1119 1121 return (err);
1120 1122 }
1121 1123
1122 1124 dmu_object_info_from_db(db, &doi);
1123 1125 if (doi.doi_bonus_type != DMU_OT_SA &&
1124 1126 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1125 1127 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1126 1128 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1127 1129 sa_buf_rele(db, NULL);
1128 1130 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1129 1131 return (EINVAL);
1130 1132 }
1131 1133
1132 1134 hdl = dmu_buf_get_user(db);
1133 1135 if (hdl != NULL) {
1134 1136 zp = sa_get_userdata(hdl);
1135 1137
1136 1138
1137 1139 /*
1138 1140 * Since "SA" does immediate eviction we
1139 1141 * should never find a sa handle that doesn't
1140 1142 * know about the znode.
1141 1143 */
1142 1144
1143 1145 ASSERT3P(zp, !=, NULL);
1144 1146
1145 1147 mutex_enter(&zp->z_lock);
1146 1148 ASSERT3U(zp->z_id, ==, obj_num);
1147 1149 if (zp->z_unlinked) {
1148 1150 err = ENOENT;
1149 1151 } else {
1150 1152 VN_HOLD(ZTOV(zp));
1151 1153 *zpp = zp;
1152 1154 err = 0;
1153 1155 }
1154 1156 sa_buf_rele(db, NULL);
1155 1157 mutex_exit(&zp->z_lock);
1156 1158 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1157 1159 return (err);
1158 1160 }
1159 1161
1160 1162 /*
1161 1163 * Not found create new znode/vnode
1162 1164 * but only if file exists.
1163 1165 *
1164 1166 * There is a small window where zfs_vget() could
1165 1167 * find this object while a file create is still in
1166 1168 * progress. This is checked for in zfs_znode_alloc()
1167 1169 *
1168 1170 * if zfs_znode_alloc() fails it will drop the hold on the
1169 1171 * bonus buffer.
1170 1172 */
1171 1173 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1172 1174 doi.doi_bonus_type, NULL);
1173 1175 if (zp == NULL) {
1174 1176 err = ENOENT;
1175 1177 } else {
1176 1178 *zpp = zp;
1177 1179 }
1178 1180 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1179 1181 return (err);
1180 1182 }
1181 1183
1182 1184 int
1183 1185 zfs_rezget(znode_t *zp)
1184 1186 {
1185 1187 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1186 1188 dmu_object_info_t doi;
1187 1189 dmu_buf_t *db;
1188 1190 uint64_t obj_num = zp->z_id;
1189 1191 uint64_t mode;
1190 1192 sa_bulk_attr_t bulk[8];
1191 1193 int err;
1192 1194 int count = 0;
1193 1195 uint64_t gen;
1194 1196
1195 1197 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1196 1198
1197 1199 mutex_enter(&zp->z_acl_lock);
1198 1200 if (zp->z_acl_cached) {
1199 1201 zfs_acl_free(zp->z_acl_cached);
1200 1202 zp->z_acl_cached = NULL;
1201 1203 }
1202 1204
1203 1205 mutex_exit(&zp->z_acl_lock);
1204 1206 ASSERT(zp->z_sa_hdl == NULL);
1205 1207 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1206 1208 if (err) {
1207 1209 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1208 1210 return (err);
1209 1211 }
1210 1212
1211 1213 dmu_object_info_from_db(db, &doi);
1212 1214 if (doi.doi_bonus_type != DMU_OT_SA &&
1213 1215 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1214 1216 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1215 1217 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1216 1218 sa_buf_rele(db, NULL);
1217 1219 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1218 1220 return (EINVAL);
1219 1221 }
1220 1222
1221 1223 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1222 1224
1223 1225 /* reload cached values */
1224 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1225 1227 &gen, sizeof (gen));
1226 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1227 1229 &zp->z_size, sizeof (zp->z_size));
1228 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1229 1231 &zp->z_links, sizeof (zp->z_links));
1230 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1231 1233 &zp->z_pflags, sizeof (zp->z_pflags));
1232 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1233 1235 &zp->z_atime, sizeof (zp->z_atime));
1234 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1235 1237 &zp->z_uid, sizeof (zp->z_uid));
1236 1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1237 1239 &zp->z_gid, sizeof (zp->z_gid));
1238 1240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1239 1241 &mode, sizeof (mode));
1240 1242
1241 1243 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1242 1244 zfs_znode_dmu_fini(zp);
1243 1245 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1244 1246 return (EIO);
1245 1247 }
1246 1248
1247 1249 zp->z_mode = mode;
1248 1250
1249 1251 if (gen != zp->z_gen) {
1250 1252 zfs_znode_dmu_fini(zp);
1251 1253 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1252 1254 return (EIO);
1253 1255 }
1254 1256
1255 1257 zp->z_unlinked = (zp->z_links == 0);
1256 1258 zp->z_blksz = doi.doi_data_block_size;
1257 1259
1258 1260 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1259 1261
1260 1262 return (0);
1261 1263 }
1262 1264
1263 1265 void
1264 1266 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1265 1267 {
1266 1268 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1267 1269 objset_t *os = zfsvfs->z_os;
1268 1270 uint64_t obj = zp->z_id;
1269 1271 uint64_t acl_obj = zfs_external_acl(zp);
1270 1272
1271 1273 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1272 1274 if (acl_obj) {
1273 1275 VERIFY(!zp->z_is_sa);
1274 1276 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1275 1277 }
1276 1278 VERIFY(0 == dmu_object_free(os, obj, tx));
1277 1279 zfs_znode_dmu_fini(zp);
1278 1280 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1279 1281 zfs_znode_free(zp);
1280 1282 }
1281 1283
1282 1284 void
1283 1285 zfs_zinactive(znode_t *zp)
1284 1286 {
1285 1287 vnode_t *vp = ZTOV(zp);
1286 1288 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1287 1289 uint64_t z_id = zp->z_id;
1288 1290
1289 1291 ASSERT(zp->z_sa_hdl);
1290 1292
1291 1293 /*
1292 1294 * Don't allow a zfs_zget() while were trying to release this znode
1293 1295 */
1294 1296 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1295 1297
1296 1298 mutex_enter(&zp->z_lock);
1297 1299 mutex_enter(&vp->v_lock);
1298 1300 vp->v_count--;
1299 1301 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1300 1302 /*
1301 1303 * If the hold count is greater than zero, somebody has
1302 1304 * obtained a new reference on this znode while we were
1303 1305 * processing it here, so we are done. If we still have
1304 1306 * mapped pages then we are also done, since we don't
1305 1307 * want to inactivate the znode until the pages get pushed.
1306 1308 *
1307 1309 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1308 1310 * this seems like it would leave the znode hanging with
1309 1311 * no chance to go inactive...
1310 1312 */
1311 1313 mutex_exit(&vp->v_lock);
1312 1314 mutex_exit(&zp->z_lock);
1313 1315 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1314 1316 return;
1315 1317 }
1316 1318 mutex_exit(&vp->v_lock);
1317 1319
1318 1320 /*
1319 1321 * If this was the last reference to a file with no links,
1320 1322 * remove the file from the file system.
1321 1323 */
1322 1324 if (zp->z_unlinked) {
1323 1325 mutex_exit(&zp->z_lock);
1324 1326 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1325 1327 zfs_rmnode(zp);
1326 1328 return;
1327 1329 }
1328 1330
1329 1331 mutex_exit(&zp->z_lock);
1330 1332 zfs_znode_dmu_fini(zp);
1331 1333 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1332 1334 zfs_znode_free(zp);
1333 1335 }
1334 1336
1335 1337 void
1336 1338 zfs_znode_free(znode_t *zp)
1337 1339 {
1338 1340 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1339 1341
1340 1342 vn_invalid(ZTOV(zp));
1341 1343
1342 1344 ASSERT(ZTOV(zp)->v_count == 0);
1343 1345
1344 1346 mutex_enter(&zfsvfs->z_znodes_lock);
1345 1347 POINTER_INVALIDATE(&zp->z_zfsvfs);
1346 1348 list_remove(&zfsvfs->z_all_znodes, zp);
1347 1349 mutex_exit(&zfsvfs->z_znodes_lock);
1348 1350
1349 1351 if (zp->z_acl_cached) {
1350 1352 zfs_acl_free(zp->z_acl_cached);
1351 1353 zp->z_acl_cached = NULL;
1352 1354 }
1353 1355
1354 1356 kmem_cache_free(znode_cache, zp);
1355 1357
1356 1358 VFS_RELE(zfsvfs->z_vfs);
1357 1359 }
1358 1360
1359 1361 void
1360 1362 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1361 1363 uint64_t ctime[2], boolean_t have_tx)
1362 1364 {
1363 1365 timestruc_t now;
1364 1366
1365 1367 gethrestime(&now);
1366 1368
1367 1369 if (have_tx) { /* will sa_bulk_update happen really soon? */
1368 1370 zp->z_atime_dirty = 0;
1369 1371 zp->z_seq++;
1370 1372 } else {
1371 1373 zp->z_atime_dirty = 1;
1372 1374 }
1373 1375
1374 1376 if (flag & AT_ATIME) {
1375 1377 ZFS_TIME_ENCODE(&now, zp->z_atime);
1376 1378 }
1377 1379
1378 1380 if (flag & AT_MTIME) {
1379 1381 ZFS_TIME_ENCODE(&now, mtime);
1380 1382 if (zp->z_zfsvfs->z_use_fuids) {
1381 1383 zp->z_pflags |= (ZFS_ARCHIVE |
1382 1384 ZFS_AV_MODIFIED);
1383 1385 }
1384 1386 }
1385 1387
1386 1388 if (flag & AT_CTIME) {
1387 1389 ZFS_TIME_ENCODE(&now, ctime);
1388 1390 if (zp->z_zfsvfs->z_use_fuids)
1389 1391 zp->z_pflags |= ZFS_ARCHIVE;
1390 1392 }
1391 1393 }
1392 1394
1393 1395 /*
1394 1396 * Grow the block size for a file.
1395 1397 *
1396 1398 * IN: zp - znode of file to free data in.
1397 1399 * size - requested block size
1398 1400 * tx - open transaction.
1399 1401 *
1400 1402 * NOTE: this function assumes that the znode is write locked.
1401 1403 */
1402 1404 void
1403 1405 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1404 1406 {
1405 1407 int error;
1406 1408 u_longlong_t dummy;
1407 1409
1408 1410 if (size <= zp->z_blksz)
1409 1411 return;
1410 1412 /*
1411 1413 * If the file size is already greater than the current blocksize,
1412 1414 * we will not grow. If there is more than one block in a file,
↓ open down ↓ |
400 lines elided |
↑ open up ↑ |
1413 1415 * the blocksize cannot change.
1414 1416 */
1415 1417 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1416 1418 return;
1417 1419
1418 1420 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1419 1421 size, 0, tx);
1420 1422
1421 1423 if (error == ENOTSUP)
1422 1424 return;
1423 - ASSERT3U(error, ==, 0);
1425 + ASSERT0(error);
1424 1426
1425 1427 /* What blocksize did we actually get? */
1426 1428 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1427 1429 }
1428 1430
1429 1431 /*
1430 1432 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1431 1433 * be calling back into the fs for a putpage(). E.g.: when truncating
1432 1434 * a file, the pages being "thrown away* don't need to be written out.
1433 1435 */
1434 1436 /* ARGSUSED */
1435 1437 static int
1436 1438 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1437 1439 int flags, cred_t *cr)
1438 1440 {
1439 1441 ASSERT(0);
1440 1442 return (0);
1441 1443 }
1442 1444
1443 1445 /*
1444 1446 * Increase the file length
1445 1447 *
1446 1448 * IN: zp - znode of file to free data in.
1447 1449 * end - new end-of-file
1448 1450 *
1449 1451 * RETURN: 0 if success
1450 1452 * error code if failure
1451 1453 */
1452 1454 static int
1453 1455 zfs_extend(znode_t *zp, uint64_t end)
1454 1456 {
1455 1457 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1456 1458 dmu_tx_t *tx;
1457 1459 rl_t *rl;
1458 1460 uint64_t newblksz;
1459 1461 int error;
1460 1462
1461 1463 /*
1462 1464 * We will change zp_size, lock the whole file.
1463 1465 */
1464 1466 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1465 1467
1466 1468 /*
1467 1469 * Nothing to do if file already at desired length.
1468 1470 */
1469 1471 if (end <= zp->z_size) {
1470 1472 zfs_range_unlock(rl);
1471 1473 return (0);
1472 1474 }
1473 1475 top:
1474 1476 tx = dmu_tx_create(zfsvfs->z_os);
1475 1477 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1476 1478 zfs_sa_upgrade_txholds(tx, zp);
1477 1479 if (end > zp->z_blksz &&
1478 1480 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1479 1481 /*
1480 1482 * We are growing the file past the current block size.
1481 1483 */
1482 1484 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1483 1485 ASSERT(!ISP2(zp->z_blksz));
1484 1486 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1485 1487 } else {
1486 1488 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1487 1489 }
1488 1490 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1489 1491 } else {
1490 1492 newblksz = 0;
1491 1493 }
1492 1494
1493 1495 error = dmu_tx_assign(tx, TXG_NOWAIT);
1494 1496 if (error) {
1495 1497 if (error == ERESTART) {
1496 1498 dmu_tx_wait(tx);
1497 1499 dmu_tx_abort(tx);
1498 1500 goto top;
1499 1501 }
1500 1502 dmu_tx_abort(tx);
1501 1503 zfs_range_unlock(rl);
1502 1504 return (error);
1503 1505 }
1504 1506
1505 1507 if (newblksz)
1506 1508 zfs_grow_blocksize(zp, newblksz, tx);
1507 1509
1508 1510 zp->z_size = end;
1509 1511
1510 1512 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1511 1513 &zp->z_size, sizeof (zp->z_size), tx));
1512 1514
1513 1515 zfs_range_unlock(rl);
1514 1516
1515 1517 dmu_tx_commit(tx);
1516 1518
1517 1519 return (0);
1518 1520 }
1519 1521
1520 1522 /*
1521 1523 * Free space in a file.
1522 1524 *
1523 1525 * IN: zp - znode of file to free data in.
1524 1526 * off - start of section to free.
1525 1527 * len - length of section to free.
1526 1528 *
1527 1529 * RETURN: 0 if success
1528 1530 * error code if failure
1529 1531 */
1530 1532 static int
1531 1533 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1532 1534 {
1533 1535 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1534 1536 rl_t *rl;
1535 1537 int error;
1536 1538
1537 1539 /*
1538 1540 * Lock the range being freed.
1539 1541 */
1540 1542 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1541 1543
1542 1544 /*
1543 1545 * Nothing to do if file already at desired length.
1544 1546 */
1545 1547 if (off >= zp->z_size) {
1546 1548 zfs_range_unlock(rl);
1547 1549 return (0);
1548 1550 }
1549 1551
1550 1552 if (off + len > zp->z_size)
1551 1553 len = zp->z_size - off;
1552 1554
1553 1555 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1554 1556
1555 1557 zfs_range_unlock(rl);
1556 1558
1557 1559 return (error);
1558 1560 }
1559 1561
1560 1562 /*
1561 1563 * Truncate a file
1562 1564 *
1563 1565 * IN: zp - znode of file to free data in.
1564 1566 * end - new end-of-file.
1565 1567 *
1566 1568 * RETURN: 0 if success
1567 1569 * error code if failure
1568 1570 */
1569 1571 static int
1570 1572 zfs_trunc(znode_t *zp, uint64_t end)
1571 1573 {
1572 1574 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1573 1575 vnode_t *vp = ZTOV(zp);
1574 1576 dmu_tx_t *tx;
1575 1577 rl_t *rl;
1576 1578 int error;
1577 1579 sa_bulk_attr_t bulk[2];
1578 1580 int count = 0;
1579 1581
1580 1582 /*
1581 1583 * We will change zp_size, lock the whole file.
1582 1584 */
1583 1585 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1584 1586
1585 1587 /*
1586 1588 * Nothing to do if file already at desired length.
1587 1589 */
1588 1590 if (end >= zp->z_size) {
1589 1591 zfs_range_unlock(rl);
1590 1592 return (0);
1591 1593 }
1592 1594
1593 1595 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1594 1596 if (error) {
1595 1597 zfs_range_unlock(rl);
1596 1598 return (error);
1597 1599 }
1598 1600 top:
1599 1601 tx = dmu_tx_create(zfsvfs->z_os);
1600 1602 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1601 1603 zfs_sa_upgrade_txholds(tx, zp);
1602 1604 error = dmu_tx_assign(tx, TXG_NOWAIT);
1603 1605 if (error) {
1604 1606 if (error == ERESTART) {
1605 1607 dmu_tx_wait(tx);
1606 1608 dmu_tx_abort(tx);
1607 1609 goto top;
1608 1610 }
1609 1611 dmu_tx_abort(tx);
1610 1612 zfs_range_unlock(rl);
1611 1613 return (error);
1612 1614 }
1613 1615
1614 1616 zp->z_size = end;
1615 1617 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1616 1618 NULL, &zp->z_size, sizeof (zp->z_size));
1617 1619
1618 1620 if (end == 0) {
1619 1621 zp->z_pflags &= ~ZFS_SPARSE;
1620 1622 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1621 1623 NULL, &zp->z_pflags, 8);
1622 1624 }
1623 1625 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1624 1626
1625 1627 dmu_tx_commit(tx);
1626 1628
1627 1629 /*
1628 1630 * Clear any mapped pages in the truncated region. This has to
1629 1631 * happen outside of the transaction to avoid the possibility of
1630 1632 * a deadlock with someone trying to push a page that we are
1631 1633 * about to invalidate.
1632 1634 */
1633 1635 if (vn_has_cached_data(vp)) {
1634 1636 page_t *pp;
1635 1637 uint64_t start = end & PAGEMASK;
1636 1638 int poff = end & PAGEOFFSET;
1637 1639
1638 1640 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1639 1641 /*
1640 1642 * We need to zero a partial page.
1641 1643 */
1642 1644 pagezero(pp, poff, PAGESIZE - poff);
1643 1645 start += PAGESIZE;
1644 1646 page_unlock(pp);
1645 1647 }
1646 1648 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1647 1649 B_INVAL | B_TRUNC, NULL);
1648 1650 ASSERT(error == 0);
1649 1651 }
1650 1652
1651 1653 zfs_range_unlock(rl);
1652 1654
1653 1655 return (0);
1654 1656 }
1655 1657
1656 1658 /*
1657 1659 * Free space in a file
1658 1660 *
1659 1661 * IN: zp - znode of file to free data in.
1660 1662 * off - start of range
1661 1663 * len - end of range (0 => EOF)
1662 1664 * flag - current file open mode flags.
1663 1665 * log - TRUE if this action should be logged
1664 1666 *
1665 1667 * RETURN: 0 if success
1666 1668 * error code if failure
1667 1669 */
1668 1670 int
1669 1671 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1670 1672 {
1671 1673 vnode_t *vp = ZTOV(zp);
1672 1674 dmu_tx_t *tx;
1673 1675 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1674 1676 zilog_t *zilog = zfsvfs->z_log;
1675 1677 uint64_t mode;
1676 1678 uint64_t mtime[2], ctime[2];
1677 1679 sa_bulk_attr_t bulk[3];
1678 1680 int count = 0;
1679 1681 int error;
1680 1682
1681 1683 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1682 1684 sizeof (mode))) != 0)
1683 1685 return (error);
1684 1686
1685 1687 if (off > zp->z_size) {
1686 1688 error = zfs_extend(zp, off+len);
1687 1689 if (error == 0 && log)
1688 1690 goto log;
1689 1691 else
1690 1692 return (error);
1691 1693 }
1692 1694
1693 1695 /*
1694 1696 * Check for any locks in the region to be freed.
1695 1697 */
1696 1698
1697 1699 if (MANDLOCK(vp, (mode_t)mode)) {
1698 1700 uint64_t length = (len ? len : zp->z_size - off);
1699 1701 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1700 1702 return (error);
1701 1703 }
1702 1704
1703 1705 if (len == 0) {
1704 1706 error = zfs_trunc(zp, off);
1705 1707 } else {
1706 1708 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1707 1709 off + len > zp->z_size)
1708 1710 error = zfs_extend(zp, off+len);
1709 1711 }
1710 1712 if (error || !log)
1711 1713 return (error);
1712 1714 log:
1713 1715 tx = dmu_tx_create(zfsvfs->z_os);
1714 1716 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1715 1717 zfs_sa_upgrade_txholds(tx, zp);
1716 1718 error = dmu_tx_assign(tx, TXG_NOWAIT);
1717 1719 if (error) {
1718 1720 if (error == ERESTART) {
1719 1721 dmu_tx_wait(tx);
1720 1722 dmu_tx_abort(tx);
1721 1723 goto log;
1722 1724 }
1723 1725 dmu_tx_abort(tx);
1724 1726 return (error);
1725 1727 }
1726 1728
1727 1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1728 1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1729 1731 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1730 1732 NULL, &zp->z_pflags, 8);
1731 1733 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1732 1734 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1733 1735 ASSERT(error == 0);
1734 1736
1735 1737 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1736 1738
1737 1739 dmu_tx_commit(tx);
1738 1740 return (0);
1739 1741 }
1740 1742
1741 1743 void
1742 1744 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1743 1745 {
1744 1746 zfsvfs_t zfsvfs;
1745 1747 uint64_t moid, obj, sa_obj, version;
1746 1748 uint64_t sense = ZFS_CASE_SENSITIVE;
1747 1749 uint64_t norm = 0;
1748 1750 nvpair_t *elem;
1749 1751 int error;
1750 1752 int i;
1751 1753 znode_t *rootzp = NULL;
1752 1754 vnode_t *vp;
1753 1755 vattr_t vattr;
1754 1756 znode_t *zp;
1755 1757 zfs_acl_ids_t acl_ids;
1756 1758
1757 1759 /*
1758 1760 * First attempt to create master node.
1759 1761 */
1760 1762 /*
1761 1763 * In an empty objset, there are no blocks to read and thus
1762 1764 * there can be no i/o errors (which we assert below).
1763 1765 */
1764 1766 moid = MASTER_NODE_OBJ;
1765 1767 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1766 1768 DMU_OT_NONE, 0, tx);
1767 1769 ASSERT(error == 0);
1768 1770
1769 1771 /*
1770 1772 * Set starting attributes.
1771 1773 */
1772 1774 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1773 1775 elem = NULL;
1774 1776 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1775 1777 /* For the moment we expect all zpl props to be uint64_ts */
1776 1778 uint64_t val;
1777 1779 char *name;
1778 1780
1779 1781 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1780 1782 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1781 1783 name = nvpair_name(elem);
1782 1784 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1783 1785 if (val < version)
1784 1786 version = val;
1785 1787 } else {
1786 1788 error = zap_update(os, moid, name, 8, 1, &val, tx);
1787 1789 }
1788 1790 ASSERT(error == 0);
1789 1791 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1790 1792 norm = val;
1791 1793 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1792 1794 sense = val;
1793 1795 }
1794 1796 ASSERT(version != 0);
1795 1797 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1796 1798
1797 1799 /*
1798 1800 * Create zap object used for SA attribute registration
1799 1801 */
1800 1802
1801 1803 if (version >= ZPL_VERSION_SA) {
1802 1804 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1803 1805 DMU_OT_NONE, 0, tx);
1804 1806 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1805 1807 ASSERT(error == 0);
1806 1808 } else {
1807 1809 sa_obj = 0;
1808 1810 }
1809 1811 /*
1810 1812 * Create a delete queue.
1811 1813 */
1812 1814 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1813 1815
1814 1816 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1815 1817 ASSERT(error == 0);
1816 1818
1817 1819 /*
1818 1820 * Create root znode. Create minimal znode/vnode/zfsvfs
1819 1821 * to allow zfs_mknode to work.
1820 1822 */
1821 1823 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1822 1824 vattr.va_type = VDIR;
1823 1825 vattr.va_mode = S_IFDIR|0755;
1824 1826 vattr.va_uid = crgetuid(cr);
1825 1827 vattr.va_gid = crgetgid(cr);
1826 1828
1827 1829 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1828 1830 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1829 1831 rootzp->z_moved = 0;
1830 1832 rootzp->z_unlinked = 0;
1831 1833 rootzp->z_atime_dirty = 0;
1832 1834 rootzp->z_is_sa = USE_SA(version, os);
1833 1835
1834 1836 vp = ZTOV(rootzp);
1835 1837 vn_reinit(vp);
1836 1838 vp->v_type = VDIR;
1837 1839
1838 1840 bzero(&zfsvfs, sizeof (zfsvfs_t));
1839 1841
1840 1842 zfsvfs.z_os = os;
1841 1843 zfsvfs.z_parent = &zfsvfs;
1842 1844 zfsvfs.z_version = version;
1843 1845 zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1844 1846 zfsvfs.z_use_sa = USE_SA(version, os);
1845 1847 zfsvfs.z_norm = norm;
1846 1848
1847 1849 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1848 1850 &zfsvfs.z_attr_table);
1849 1851
1850 1852 ASSERT(error == 0);
1851 1853
1852 1854 /*
1853 1855 * Fold case on file systems that are always or sometimes case
1854 1856 * insensitive.
1855 1857 */
1856 1858 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1857 1859 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1858 1860
1859 1861 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1860 1862 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1861 1863 offsetof(znode_t, z_link_node));
1862 1864
1863 1865 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1864 1866 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1865 1867
1866 1868 rootzp->z_zfsvfs = &zfsvfs;
1867 1869 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1868 1870 cr, NULL, &acl_ids));
1869 1871 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1870 1872 ASSERT3P(zp, ==, rootzp);
1871 1873 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1872 1874 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1873 1875 ASSERT(error == 0);
1874 1876 zfs_acl_ids_free(&acl_ids);
1875 1877 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1876 1878
1877 1879 ZTOV(rootzp)->v_count = 0;
1878 1880 sa_handle_destroy(rootzp->z_sa_hdl);
1879 1881 kmem_cache_free(znode_cache, rootzp);
1880 1882
1881 1883 /*
1882 1884 * Create shares directory
1883 1885 */
1884 1886
1885 1887 error = zfs_create_share_dir(&zfsvfs, tx);
1886 1888
1887 1889 ASSERT(error == 0);
1888 1890
1889 1891 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1890 1892 mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1891 1893 }
1892 1894
1893 1895 #endif /* _KERNEL */
1894 1896
1895 1897 static int
1896 1898 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1897 1899 {
1898 1900 uint64_t sa_obj = 0;
1899 1901 int error;
1900 1902
1901 1903 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1902 1904 if (error != 0 && error != ENOENT)
1903 1905 return (error);
1904 1906
1905 1907 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1906 1908 return (error);
1907 1909 }
1908 1910
1909 1911 static int
1910 1912 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1911 1913 dmu_buf_t **db, void *tag)
1912 1914 {
1913 1915 dmu_object_info_t doi;
1914 1916 int error;
1915 1917
1916 1918 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1917 1919 return (error);
1918 1920
1919 1921 dmu_object_info_from_db(*db, &doi);
1920 1922 if ((doi.doi_bonus_type != DMU_OT_SA &&
1921 1923 doi.doi_bonus_type != DMU_OT_ZNODE) ||
1922 1924 doi.doi_bonus_type == DMU_OT_ZNODE &&
1923 1925 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1924 1926 sa_buf_rele(*db, tag);
1925 1927 return (ENOTSUP);
1926 1928 }
1927 1929
1928 1930 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1929 1931 if (error != 0) {
1930 1932 sa_buf_rele(*db, tag);
1931 1933 return (error);
1932 1934 }
1933 1935
1934 1936 return (0);
1935 1937 }
1936 1938
1937 1939 void
1938 1940 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1939 1941 {
1940 1942 sa_handle_destroy(hdl);
1941 1943 sa_buf_rele(db, tag);
1942 1944 }
1943 1945
1944 1946 /*
1945 1947 * Given an object number, return its parent object number and whether
1946 1948 * or not the object is an extended attribute directory.
1947 1949 */
1948 1950 static int
1949 1951 zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp,
1950 1952 int *is_xattrdir)
1951 1953 {
1952 1954 uint64_t parent;
1953 1955 uint64_t pflags;
1954 1956 uint64_t mode;
1955 1957 sa_bulk_attr_t bulk[3];
1956 1958 int count = 0;
1957 1959 int error;
1958 1960
1959 1961 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1960 1962 &parent, sizeof (parent));
1961 1963 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1962 1964 &pflags, sizeof (pflags));
1963 1965 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1964 1966 &mode, sizeof (mode));
1965 1967
1966 1968 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1967 1969 return (error);
1968 1970
1969 1971 *pobjp = parent;
1970 1972 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1971 1973
1972 1974 return (0);
1973 1975 }
1974 1976
1975 1977 /*
1976 1978 * Given an object number, return some zpl level statistics
1977 1979 */
1978 1980 static int
1979 1981 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
1980 1982 zfs_stat_t *sb)
1981 1983 {
1982 1984 sa_bulk_attr_t bulk[4];
1983 1985 int count = 0;
1984 1986
1985 1987 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1986 1988 &sb->zs_mode, sizeof (sb->zs_mode));
1987 1989 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
1988 1990 &sb->zs_gen, sizeof (sb->zs_gen));
1989 1991 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
1990 1992 &sb->zs_links, sizeof (sb->zs_links));
1991 1993 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
1992 1994 &sb->zs_ctime, sizeof (sb->zs_ctime));
1993 1995
1994 1996 return (sa_bulk_lookup(hdl, bulk, count));
1995 1997 }
1996 1998
1997 1999 static int
1998 2000 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
1999 2001 sa_attr_type_t *sa_table, char *buf, int len)
2000 2002 {
2001 2003 sa_handle_t *sa_hdl;
2002 2004 sa_handle_t *prevhdl = NULL;
2003 2005 dmu_buf_t *prevdb = NULL;
2004 2006 dmu_buf_t *sa_db = NULL;
2005 2007 char *path = buf + len - 1;
2006 2008 int error;
2007 2009
2008 2010 *path = '\0';
2009 2011 sa_hdl = hdl;
2010 2012
2011 2013 for (;;) {
2012 2014 uint64_t pobj;
2013 2015 char component[MAXNAMELEN + 2];
2014 2016 size_t complen;
2015 2017 int is_xattrdir;
2016 2018
2017 2019 if (prevdb)
2018 2020 zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2019 2021
2020 2022 if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj,
2021 2023 &is_xattrdir)) != 0)
2022 2024 break;
2023 2025
2024 2026 if (pobj == obj) {
2025 2027 if (path[0] != '/')
2026 2028 *--path = '/';
2027 2029 break;
2028 2030 }
2029 2031
2030 2032 component[0] = '/';
2031 2033 if (is_xattrdir) {
2032 2034 (void) sprintf(component + 1, "<xattrdir>");
2033 2035 } else {
2034 2036 error = zap_value_search(osp, pobj, obj,
2035 2037 ZFS_DIRENT_OBJ(-1ULL), component + 1);
2036 2038 if (error != 0)
2037 2039 break;
2038 2040 }
2039 2041
2040 2042 complen = strlen(component);
2041 2043 path -= complen;
2042 2044 ASSERT(path >= buf);
2043 2045 bcopy(component, path, complen);
2044 2046 obj = pobj;
2045 2047
2046 2048 if (sa_hdl != hdl) {
2047 2049 prevhdl = sa_hdl;
2048 2050 prevdb = sa_db;
2049 2051 }
2050 2052 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2051 2053 if (error != 0) {
2052 2054 sa_hdl = prevhdl;
2053 2055 sa_db = prevdb;
2054 2056 break;
2055 2057 }
2056 2058 }
2057 2059
2058 2060 if (sa_hdl != NULL && sa_hdl != hdl) {
2059 2061 ASSERT(sa_db != NULL);
2060 2062 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2061 2063 }
2062 2064
2063 2065 if (error == 0)
2064 2066 (void) memmove(buf, path, buf + len - path);
2065 2067
2066 2068 return (error);
2067 2069 }
2068 2070
2069 2071 int
2070 2072 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2071 2073 {
2072 2074 sa_attr_type_t *sa_table;
2073 2075 sa_handle_t *hdl;
2074 2076 dmu_buf_t *db;
2075 2077 int error;
2076 2078
2077 2079 error = zfs_sa_setup(osp, &sa_table);
2078 2080 if (error != 0)
2079 2081 return (error);
2080 2082
2081 2083 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2082 2084 if (error != 0)
2083 2085 return (error);
2084 2086
2085 2087 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2086 2088
2087 2089 zfs_release_sa_handle(hdl, db, FTAG);
2088 2090 return (error);
2089 2091 }
2090 2092
2091 2093 int
2092 2094 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2093 2095 char *buf, int len)
2094 2096 {
2095 2097 char *path = buf + len - 1;
2096 2098 sa_attr_type_t *sa_table;
2097 2099 sa_handle_t *hdl;
2098 2100 dmu_buf_t *db;
2099 2101 int error;
2100 2102
2101 2103 *path = '\0';
2102 2104
2103 2105 error = zfs_sa_setup(osp, &sa_table);
2104 2106 if (error != 0)
2105 2107 return (error);
2106 2108
2107 2109 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2108 2110 if (error != 0)
2109 2111 return (error);
2110 2112
2111 2113 error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2112 2114 if (error != 0) {
2113 2115 zfs_release_sa_handle(hdl, db, FTAG);
2114 2116 return (error);
2115 2117 }
2116 2118
2117 2119 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2118 2120
2119 2121 zfs_release_sa_handle(hdl, db, FTAG);
2120 2122 return (error);
2121 2123 }
↓ open down ↓ |
688 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX