1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26
27 /* Portions Copyright 2007 Jeremy Teo */
28
29 #ifdef _KERNEL
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/mntent.h>
37 #include <sys/mkdev.h>
38 #include <sys/u8_textprep.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vfs.h>
41 #include <sys/vfs_opreg.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/kmem.h>
45 #include <sys/errno.h>
46 #include <sys/unistd.h>
47 #include <sys/mode.h>
48 #include <sys/atomic.h>
49 #include <vm/pvn.h>
50 #include "fs/fs_subr.h"
51 #include <sys/zfs_dir.h>
52 #include <sys/zfs_acl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_rlock.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/dnode.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/kidmap.h>
59 #endif /* _KERNEL */
60
61 #include <sys/dmu.h>
62 #include <sys/refcount.h>
63 #include <sys/stat.h>
64 #include <sys/zap.h>
65 #include <sys/zfs_znode.h>
66 #include <sys/sa.h>
67 #include <sys/zfs_sa.h>
68 #include <sys/zfs_stat.h>
69
70 #include "zfs_prop.h"
71 #include "zfs_comutil.h"
72
73 /*
74 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
75 * turned on when DEBUG is also defined.
76 */
77 #ifdef DEBUG
78 #define ZNODE_STATS
79 #endif /* DEBUG */
80
81 #ifdef ZNODE_STATS
82 #define ZNODE_STAT_ADD(stat) ((stat)++)
83 #else
84 #define ZNODE_STAT_ADD(stat) /* nothing */
85 #endif /* ZNODE_STATS */
86
87 /*
88 * Functions needed for userland (ie: libzpool) are not put under
89 * #ifdef_KERNEL; the rest of the functions have dependencies
90 * (such as VFS logic) that will not compile easily in userland.
91 */
92 #ifdef _KERNEL
93 /*
94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
95 * be freed before it can be safely accessed.
96 */
97 krwlock_t zfsvfs_lock;
98
99 static kmem_cache_t *znode_cache = NULL;
100
101 /*ARGSUSED*/
102 static void
103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
104 {
105 /*
106 * We should never drop all dbuf refs without first clearing
107 * the eviction callback.
108 */
109 panic("evicting znode %p\n", user_ptr);
110 }
111
112 /*ARGSUSED*/
113 static int
114 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
115 {
116 znode_t *zp = buf;
117
118 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
119
120 zp->z_vnode = vn_alloc(kmflags);
121 if (zp->z_vnode == NULL) {
122 return (-1);
123 }
124 ZTOV(zp)->v_data = zp;
125
126 list_link_init(&zp->z_link_node);
127
128 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
129 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
130 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
131 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
132
133 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
134 avl_create(&zp->z_range_avl, zfs_range_compare,
135 sizeof (rl_t), offsetof(rl_t, r_node));
136
137 zp->z_dirlocks = NULL;
138 zp->z_acl_cached = NULL;
139 zp->z_moved = 0;
140 return (0);
141 }
142
143 /*ARGSUSED*/
144 static void
145 zfs_znode_cache_destructor(void *buf, void *arg)
146 {
147 znode_t *zp = buf;
148
149 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
150 ASSERT(ZTOV(zp)->v_data == zp);
151 vn_free(ZTOV(zp));
152 ASSERT(!list_link_active(&zp->z_link_node));
153 mutex_destroy(&zp->z_lock);
154 rw_destroy(&zp->z_parent_lock);
155 rw_destroy(&zp->z_name_lock);
156 mutex_destroy(&zp->z_acl_lock);
157 avl_destroy(&zp->z_range_avl);
158 mutex_destroy(&zp->z_range_lock);
159
160 ASSERT(zp->z_dirlocks == NULL);
161 ASSERT(zp->z_acl_cached == NULL);
162 }
163
164 #ifdef ZNODE_STATS
165 static struct {
166 uint64_t zms_zfsvfs_invalid;
167 uint64_t zms_zfsvfs_recheck1;
168 uint64_t zms_zfsvfs_unmounted;
169 uint64_t zms_zfsvfs_recheck2;
170 uint64_t zms_obj_held;
171 uint64_t zms_vnode_locked;
172 uint64_t zms_not_only_dnlc;
173 } znode_move_stats;
174 #endif /* ZNODE_STATS */
175
176 static void
177 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
178 {
179 vnode_t *vp;
180
181 /* Copy fields. */
182 nzp->z_zfsvfs = ozp->z_zfsvfs;
183
184 /* Swap vnodes. */
185 vp = nzp->z_vnode;
186 nzp->z_vnode = ozp->z_vnode;
187 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
188 ZTOV(ozp)->v_data = ozp;
189 ZTOV(nzp)->v_data = nzp;
190
191 nzp->z_id = ozp->z_id;
192 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
193 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
194 nzp->z_unlinked = ozp->z_unlinked;
195 nzp->z_atime_dirty = ozp->z_atime_dirty;
196 nzp->z_zn_prefetch = ozp->z_zn_prefetch;
197 nzp->z_blksz = ozp->z_blksz;
198 nzp->z_seq = ozp->z_seq;
199 nzp->z_mapcnt = ozp->z_mapcnt;
200 nzp->z_gen = ozp->z_gen;
201 nzp->z_sync_cnt = ozp->z_sync_cnt;
202 nzp->z_is_sa = ozp->z_is_sa;
203 nzp->z_sa_hdl = ozp->z_sa_hdl;
204 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2);
205 nzp->z_links = ozp->z_links;
206 nzp->z_size = ozp->z_size;
207 nzp->z_pflags = ozp->z_pflags;
208 nzp->z_uid = ozp->z_uid;
209 nzp->z_gid = ozp->z_gid;
210 nzp->z_mode = ozp->z_mode;
211
212 /*
213 * Since this is just an idle znode and kmem is already dealing with
214 * memory pressure, release any cached ACL.
215 */
216 if (ozp->z_acl_cached) {
217 zfs_acl_free(ozp->z_acl_cached);
218 ozp->z_acl_cached = NULL;
219 }
220
221 sa_set_userp(nzp->z_sa_hdl, nzp);
222
223 /*
224 * Invalidate the original znode by clearing fields that provide a
225 * pointer back to the znode. Set the low bit of the vfs pointer to
226 * ensure that zfs_znode_move() recognizes the znode as invalid in any
227 * subsequent callback.
228 */
229 ozp->z_sa_hdl = NULL;
230 POINTER_INVALIDATE(&ozp->z_zfsvfs);
231
232 /*
233 * Mark the znode.
234 */
235 nzp->z_moved = 1;
236 ozp->z_moved = (uint8_t)-1;
237 }
238
239 /*ARGSUSED*/
240 static kmem_cbrc_t
241 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
242 {
243 znode_t *ozp = buf, *nzp = newbuf;
244 zfsvfs_t *zfsvfs;
245 vnode_t *vp;
246
247 /*
248 * The znode is on the file system's list of known znodes if the vfs
249 * pointer is valid. We set the low bit of the vfs pointer when freeing
250 * the znode to invalidate it, and the memory patterns written by kmem
251 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
252 * created znode sets the vfs pointer last of all to indicate that the
253 * znode is known and in a valid state to be moved by this function.
254 */
255 zfsvfs = ozp->z_zfsvfs;
256 if (!POINTER_IS_VALID(zfsvfs)) {
257 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
258 return (KMEM_CBRC_DONT_KNOW);
259 }
260
261 /*
262 * Close a small window in which it's possible that the filesystem could
263 * be unmounted and freed, and zfsvfs, though valid in the previous
264 * statement, could point to unrelated memory by the time we try to
265 * prevent the filesystem from being unmounted.
266 */
267 rw_enter(&zfsvfs_lock, RW_WRITER);
268 if (zfsvfs != ozp->z_zfsvfs) {
269 rw_exit(&zfsvfs_lock);
270 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1);
271 return (KMEM_CBRC_DONT_KNOW);
272 }
273
274 /*
275 * If the znode is still valid, then so is the file system. We know that
276 * no valid file system can be freed while we hold zfsvfs_lock, so we
277 * can safely ensure that the filesystem is not and will not be
278 * unmounted. The next statement is equivalent to ZFS_ENTER().
279 */
280 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG);
281 if (zfsvfs->z_unmounted) {
282 ZFS_EXIT(zfsvfs);
283 rw_exit(&zfsvfs_lock);
284 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
285 return (KMEM_CBRC_DONT_KNOW);
286 }
287 rw_exit(&zfsvfs_lock);
288
289 mutex_enter(&zfsvfs->z_znodes_lock);
290 /*
291 * Recheck the vfs pointer in case the znode was removed just before
292 * acquiring the lock.
293 */
294 if (zfsvfs != ozp->z_zfsvfs) {
295 mutex_exit(&zfsvfs->z_znodes_lock);
296 ZFS_EXIT(zfsvfs);
297 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2);
298 return (KMEM_CBRC_DONT_KNOW);
299 }
300
301 /*
302 * At this point we know that as long as we hold z_znodes_lock, the
303 * znode cannot be freed and fields within the znode can be safely
304 * accessed. Now, prevent a race with zfs_zget().
305 */
306 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) {
307 mutex_exit(&zfsvfs->z_znodes_lock);
308 ZFS_EXIT(zfsvfs);
309 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held);
310 return (KMEM_CBRC_LATER);
311 }
312
313 vp = ZTOV(ozp);
314 if (mutex_tryenter(&vp->v_lock) == 0) {
315 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
316 mutex_exit(&zfsvfs->z_znodes_lock);
317 ZFS_EXIT(zfsvfs);
318 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
319 return (KMEM_CBRC_LATER);
320 }
321
322 /* Only move znodes that are referenced _only_ by the DNLC. */
323 if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
324 mutex_exit(&vp->v_lock);
325 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
326 mutex_exit(&zfsvfs->z_znodes_lock);
327 ZFS_EXIT(zfsvfs);
328 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc);
329 return (KMEM_CBRC_LATER);
330 }
331
332 /*
333 * The znode is known and in a valid state to move. We're holding the
334 * locks needed to execute the critical section.
335 */
336 zfs_znode_move_impl(ozp, nzp);
337 mutex_exit(&vp->v_lock);
338 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id);
339
340 list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
341 mutex_exit(&zfsvfs->z_znodes_lock);
342 ZFS_EXIT(zfsvfs);
343
344 return (KMEM_CBRC_YES);
345 }
346
347 void
348 zfs_znode_init(void)
349 {
350 /*
351 * Initialize zcache
352 */
353 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL);
354 ASSERT(znode_cache == NULL);
355 znode_cache = kmem_cache_create("zfs_znode_cache",
356 sizeof (znode_t), 0, zfs_znode_cache_constructor,
357 zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
358 kmem_cache_set_move(znode_cache, zfs_znode_move);
359 }
360
361 void
362 zfs_znode_fini(void)
363 {
364 /*
365 * Cleanup vfs & vnode ops
366 */
367 zfs_remove_op_tables();
368
369 /*
370 * Cleanup zcache
371 */
372 if (znode_cache)
373 kmem_cache_destroy(znode_cache);
374 znode_cache = NULL;
375 rw_destroy(&zfsvfs_lock);
376 }
377
378 struct vnodeops *zfs_dvnodeops;
379 struct vnodeops *zfs_fvnodeops;
380 struct vnodeops *zfs_symvnodeops;
381 struct vnodeops *zfs_xdvnodeops;
382 struct vnodeops *zfs_evnodeops;
383 struct vnodeops *zfs_sharevnodeops;
384
385 void
386 zfs_remove_op_tables()
387 {
388 /*
389 * Remove vfs ops
390 */
391 ASSERT(zfsfstype);
392 (void) vfs_freevfsops_by_type(zfsfstype);
393 zfsfstype = 0;
394
395 /*
396 * Remove vnode ops
397 */
398 if (zfs_dvnodeops)
399 vn_freevnodeops(zfs_dvnodeops);
400 if (zfs_fvnodeops)
401 vn_freevnodeops(zfs_fvnodeops);
402 if (zfs_symvnodeops)
403 vn_freevnodeops(zfs_symvnodeops);
404 if (zfs_xdvnodeops)
405 vn_freevnodeops(zfs_xdvnodeops);
406 if (zfs_evnodeops)
407 vn_freevnodeops(zfs_evnodeops);
408 if (zfs_sharevnodeops)
409 vn_freevnodeops(zfs_sharevnodeops);
410
411 zfs_dvnodeops = NULL;
412 zfs_fvnodeops = NULL;
413 zfs_symvnodeops = NULL;
414 zfs_xdvnodeops = NULL;
415 zfs_evnodeops = NULL;
416 zfs_sharevnodeops = NULL;
417 }
418
419 extern const fs_operation_def_t zfs_dvnodeops_template[];
420 extern const fs_operation_def_t zfs_fvnodeops_template[];
421 extern const fs_operation_def_t zfs_xdvnodeops_template[];
422 extern const fs_operation_def_t zfs_symvnodeops_template[];
423 extern const fs_operation_def_t zfs_evnodeops_template[];
424 extern const fs_operation_def_t zfs_sharevnodeops_template[];
425
426 int
427 zfs_create_op_tables()
428 {
429 int error;
430
431 /*
432 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
433 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
434 * In this case we just return as the ops vectors are already set up.
435 */
436 if (zfs_dvnodeops)
437 return (0);
438
439 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
440 &zfs_dvnodeops);
441 if (error)
442 return (error);
443
444 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
445 &zfs_fvnodeops);
446 if (error)
447 return (error);
448
449 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
450 &zfs_symvnodeops);
451 if (error)
452 return (error);
453
454 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
455 &zfs_xdvnodeops);
456 if (error)
457 return (error);
458
459 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
460 &zfs_evnodeops);
461 if (error)
462 return (error);
463
464 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template,
465 &zfs_sharevnodeops);
466
467 return (error);
468 }
469
470 int
471 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
472 {
473 zfs_acl_ids_t acl_ids;
474 vattr_t vattr;
475 znode_t *sharezp;
476 vnode_t *vp;
477 znode_t *zp;
478 int error;
479
480 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
481 vattr.va_type = VDIR;
482 vattr.va_mode = S_IFDIR|0555;
483 vattr.va_uid = crgetuid(kcred);
484 vattr.va_gid = crgetgid(kcred);
485
486 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP);
487 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs));
488 sharezp->z_moved = 0;
489 sharezp->z_unlinked = 0;
490 sharezp->z_atime_dirty = 0;
491 sharezp->z_zfsvfs = zfsvfs;
492 sharezp->z_is_sa = zfsvfs->z_use_sa;
493
494 vp = ZTOV(sharezp);
495 vn_reinit(vp);
496 vp->v_type = VDIR;
497
498 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr,
499 kcred, NULL, &acl_ids));
500 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids);
501 ASSERT3P(zp, ==, sharezp);
502 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */
503 POINTER_INVALIDATE(&sharezp->z_zfsvfs);
504 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
505 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx);
506 zfsvfs->z_shares_dir = sharezp->z_id;
507
508 zfs_acl_ids_free(&acl_ids);
509 ZTOV(sharezp)->v_count = 0;
510 sa_handle_destroy(sharezp->z_sa_hdl);
511 kmem_cache_free(znode_cache, sharezp);
512
513 return (error);
514 }
515
516 /*
517 * define a couple of values we need available
518 * for both 64 and 32 bit environments.
519 */
520 #ifndef NBITSMINOR64
521 #define NBITSMINOR64 32
522 #endif
523 #ifndef MAXMAJ64
524 #define MAXMAJ64 0xffffffffUL
525 #endif
526 #ifndef MAXMIN64
527 #define MAXMIN64 0xffffffffUL
528 #endif
529
530 /*
531 * Create special expldev for ZFS private use.
532 * Can't use standard expldev since it doesn't do
533 * what we want. The standard expldev() takes a
534 * dev32_t in LP64 and expands it to a long dev_t.
535 * We need an interface that takes a dev32_t in ILP32
536 * and expands it to a long dev_t.
537 */
538 static uint64_t
539 zfs_expldev(dev_t dev)
540 {
541 #ifndef _LP64
542 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
543 return (((uint64_t)major << NBITSMINOR64) |
544 ((minor_t)dev & MAXMIN32));
545 #else
546 return (dev);
547 #endif
548 }
549
550 /*
551 * Special cmpldev for ZFS private use.
552 * Can't use standard cmpldev since it takes
553 * a long dev_t and compresses it to dev32_t in
554 * LP64. We need to do a compaction of a long dev_t
555 * to a dev32_t in ILP32.
556 */
557 dev_t
558 zfs_cmpldev(uint64_t dev)
559 {
560 #ifndef _LP64
561 minor_t minor = (minor_t)dev & MAXMIN64;
562 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
563
564 if (major > MAXMAJ32 || minor > MAXMIN32)
565 return (NODEV32);
566
567 return (((dev32_t)major << NBITSMINOR32) | minor);
568 #else
569 return (dev);
570 #endif
571 }
572
573 static void
574 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp,
575 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl)
576 {
577 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
578 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
579
580 mutex_enter(&zp->z_lock);
581
582 ASSERT(zp->z_sa_hdl == NULL);
583 ASSERT(zp->z_acl_cached == NULL);
584 if (sa_hdl == NULL) {
585 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp,
586 SA_HDL_SHARED, &zp->z_sa_hdl));
587 } else {
588 zp->z_sa_hdl = sa_hdl;
589 sa_set_userp(sa_hdl, zp);
590 }
591
592 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE;
593
594 /*
595 * Slap on VROOT if we are the root znode
596 */
597 if (zp->z_id == zfsvfs->z_root)
598 ZTOV(zp)->v_flag |= VROOT;
599
600 mutex_exit(&zp->z_lock);
601 vn_exists(ZTOV(zp));
602 }
603
604 void
605 zfs_znode_dmu_fini(znode_t *zp)
606 {
607 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
608 zp->z_unlinked ||
609 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
610
611 sa_handle_destroy(zp->z_sa_hdl);
612 zp->z_sa_hdl = NULL;
613 }
614
615 /*
616 * Construct a new znode/vnode and intialize.
617 *
618 * This does not do a call to dmu_set_user() that is
619 * up to the caller to do, in case you don't want to
620 * return the znode
621 */
622 static znode_t *
623 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz,
624 dmu_object_type_t obj_type, sa_handle_t *hdl)
625 {
626 znode_t *zp;
627 vnode_t *vp;
628 uint64_t mode;
629 uint64_t parent;
630 sa_bulk_attr_t bulk[9];
631 int count = 0;
632
633 zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
634
635 ASSERT(zp->z_dirlocks == NULL);
636 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
637 zp->z_moved = 0;
638
639 /*
640 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
641 * the zfs_znode_move() callback.
642 */
643 zp->z_sa_hdl = NULL;
644 zp->z_unlinked = 0;
645 zp->z_atime_dirty = 0;
646 zp->z_mapcnt = 0;
647 zp->z_id = db->db_object;
648 zp->z_blksz = blksz;
649 zp->z_seq = 0x7A4653;
650 zp->z_sync_cnt = 0;
651
652 vp = ZTOV(zp);
653 vn_reinit(vp);
654
655 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl);
656
657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8);
659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
660 &zp->z_size, 8);
661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
662 &zp->z_links, 8);
663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
664 &zp->z_pflags, 8);
665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8);
666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
667 &zp->z_atime, 16);
668 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
669 &zp->z_uid, 8);
670 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
671 &zp->z_gid, 8);
672
673 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) {
674 if (hdl == NULL)
675 sa_handle_destroy(zp->z_sa_hdl);
676 kmem_cache_free(znode_cache, zp);
677 return (NULL);
678 }
679
680 zp->z_mode = mode;
681 vp->v_vfsp = zfsvfs->z_parent->z_vfs;
682
683 vp->v_type = IFTOVT((mode_t)mode);
684
685 switch (vp->v_type) {
686 case VDIR:
687 if (zp->z_pflags & ZFS_XATTR) {
688 vn_setops(vp, zfs_xdvnodeops);
689 vp->v_flag |= V_XATTRDIR;
690 } else {
691 vn_setops(vp, zfs_dvnodeops);
692 }
693 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
694 break;
695 case VBLK:
696 case VCHR:
697 {
698 uint64_t rdev;
699 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs),
700 &rdev, sizeof (rdev)) == 0);
701
702 vp->v_rdev = zfs_cmpldev(rdev);
703 }
704 /*FALLTHROUGH*/
705 case VFIFO:
706 case VSOCK:
707 case VDOOR:
708 vn_setops(vp, zfs_fvnodeops);
709 break;
710 case VREG:
711 vp->v_flag |= VMODSORT;
712 if (parent == zfsvfs->z_shares_dir) {
713 ASSERT(zp->z_uid == 0 && zp->z_gid == 0);
714 vn_setops(vp, zfs_sharevnodeops);
715 } else {
716 vn_setops(vp, zfs_fvnodeops);
717 }
718 break;
719 case VLNK:
720 vn_setops(vp, zfs_symvnodeops);
721 break;
722 default:
723 vn_setops(vp, zfs_evnodeops);
724 break;
725 }
726
727 mutex_enter(&zfsvfs->z_znodes_lock);
728 list_insert_tail(&zfsvfs->z_all_znodes, zp);
729 membar_producer();
730 /*
731 * Everything else must be valid before assigning z_zfsvfs makes the
732 * znode eligible for zfs_znode_move().
733 */
734 zp->z_zfsvfs = zfsvfs;
735 mutex_exit(&zfsvfs->z_znodes_lock);
736
737 VFS_HOLD(zfsvfs->z_vfs);
738 return (zp);
739 }
740
741 static uint64_t empty_xattr;
742 static uint64_t pad[4];
743 static zfs_acl_phys_t acl_phys;
744 /*
745 * Create a new DMU object to hold a zfs znode.
746 *
747 * IN: dzp - parent directory for new znode
748 * vap - file attributes for new znode
749 * tx - dmu transaction id for zap operations
750 * cr - credentials of caller
751 * flag - flags:
752 * IS_ROOT_NODE - new object will be root
753 * IS_XATTR - new object is an attribute
754 * bonuslen - length of bonus buffer
755 * setaclp - File/Dir initial ACL
756 * fuidp - Tracks fuid allocation.
757 *
758 * OUT: zpp - allocated znode
759 *
760 */
761 void
762 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
763 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
764 {
765 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
766 uint64_t mode, size, links, parent, pflags;
767 uint64_t dzp_pflags = 0;
768 uint64_t rdev = 0;
769 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
770 dmu_buf_t *db;
771 timestruc_t now;
772 uint64_t gen, obj;
773 int err;
774 int bonuslen;
775 sa_handle_t *sa_hdl;
776 dmu_object_type_t obj_type;
777 sa_bulk_attr_t sa_attrs[ZPL_END];
778 int cnt = 0;
779 zfs_acl_locator_cb_t locate = { 0 };
780
781 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
782
783 if (zfsvfs->z_replay) {
784 obj = vap->va_nodeid;
785 now = vap->va_ctime; /* see zfs_replay_create() */
786 gen = vap->va_nblocks; /* ditto */
787 } else {
788 obj = 0;
789 gethrestime(&now);
790 gen = dmu_tx_get_txg(tx);
791 }
792
793 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
794 bonuslen = (obj_type == DMU_OT_SA) ?
795 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;
796
797 /*
798 * Create a new DMU object.
799 */
800 /*
801 * There's currently no mechanism for pre-reading the blocks that will
802 * be needed to allocate a new object, so we accept the small chance
803 * that there will be an i/o error and we will fail one of the
804 * assertions below.
805 */
806 if (vap->va_type == VDIR) {
807 if (zfsvfs->z_replay) {
808 err = zap_create_claim_norm(zfsvfs->z_os, obj,
809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
810 obj_type, bonuslen, tx);
811 ASSERT0(err);
812 } else {
813 obj = zap_create_norm(zfsvfs->z_os,
814 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
815 obj_type, bonuslen, tx);
816 }
817 } else {
818 if (zfsvfs->z_replay) {
819 err = dmu_object_claim(zfsvfs->z_os, obj,
820 DMU_OT_PLAIN_FILE_CONTENTS, 0,
821 obj_type, bonuslen, tx);
822 ASSERT0(err);
823 } else {
824 obj = dmu_object_alloc(zfsvfs->z_os,
825 DMU_OT_PLAIN_FILE_CONTENTS, 0,
826 obj_type, bonuslen, tx);
827 }
828 }
829
830 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
831 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));
832
833 /*
834 * If this is the root, fix up the half-initialized parent pointer
835 * to reference the just-allocated physical data area.
836 */
837 if (flag & IS_ROOT_NODE) {
838 dzp->z_id = obj;
839 } else {
840 dzp_pflags = dzp->z_pflags;
841 }
842
843 /*
844 * If parent is an xattr, so am I.
845 */
846 if (dzp_pflags & ZFS_XATTR) {
847 flag |= IS_XATTR;
848 }
849
850 if (zfsvfs->z_use_fuids)
851 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
852 else
853 pflags = 0;
854
855 if (vap->va_type == VDIR) {
856 size = 2; /* contents ("." and "..") */
857 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
858 } else {
859 size = links = 0;
860 }
861
862 if (vap->va_type == VBLK || vap->va_type == VCHR) {
863 rdev = zfs_expldev(vap->va_rdev);
864 }
865
866 parent = dzp->z_id;
867 mode = acl_ids->z_mode;
868 if (flag & IS_XATTR)
869 pflags |= ZFS_XATTR;
870
871 /*
872 * No execs denied will be deterimed when zfs_mode_compute() is called.
873 */
874 pflags |= acl_ids->z_aclp->z_hints &
875 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
876 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);
877
878 ZFS_TIME_ENCODE(&now, crtime);
879 ZFS_TIME_ENCODE(&now, ctime);
880
881 if (vap->va_mask & AT_ATIME) {
882 ZFS_TIME_ENCODE(&vap->va_atime, atime);
883 } else {
884 ZFS_TIME_ENCODE(&now, atime);
885 }
886
887 if (vap->va_mask & AT_MTIME) {
888 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
889 } else {
890 ZFS_TIME_ENCODE(&now, mtime);
891 }
892
893 /* Now add in all of the "SA" attributes */
894 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
895 &sa_hdl));
896
897 /*
898 * Setup the array of attributes to be replaced/set on the new file
899 *
900 * order for DMU_OT_ZNODE is critical since it needs to be constructed
901 * in the old znode_phys_t format. Don't change this ordering
902 */
903
904 if (obj_type == DMU_OT_ZNODE) {
905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
906 NULL, &atime, 16);
907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
908 NULL, &mtime, 16);
909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
910 NULL, &ctime, 16);
911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
912 NULL, &crtime, 16);
913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
914 NULL, &gen, 8);
915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
916 NULL, &mode, 8);
917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
918 NULL, &size, 8);
919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
920 NULL, &parent, 8);
921 } else {
922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
923 NULL, &mode, 8);
924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
925 NULL, &size, 8);
926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
927 NULL, &gen, 8);
928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
929 &acl_ids->z_fuid, 8);
930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
931 &acl_ids->z_fgid, 8);
932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
933 NULL, &parent, 8);
934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
935 NULL, &pflags, 8);
936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
937 NULL, &atime, 16);
938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
939 NULL, &mtime, 16);
940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
941 NULL, &ctime, 16);
942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
943 NULL, &crtime, 16);
944 }
945
946 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);
947
948 if (obj_type == DMU_OT_ZNODE) {
949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
950 &empty_xattr, 8);
951 }
952 if (obj_type == DMU_OT_ZNODE ||
953 (vap->va_type == VBLK || vap->va_type == VCHR)) {
954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
955 NULL, &rdev, 8);
956
957 }
958 if (obj_type == DMU_OT_ZNODE) {
959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
960 NULL, &pflags, 8);
961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
962 &acl_ids->z_fuid, 8);
963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
964 &acl_ids->z_fgid, 8);
965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
966 sizeof (uint64_t) * 4);
967 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
968 &acl_phys, sizeof (zfs_acl_phys_t));
969 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
970 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
971 &acl_ids->z_aclp->z_acl_count, 8);
972 locate.cb_aclp = acl_ids->z_aclp;
973 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
974 zfs_acl_data_locator, &locate,
975 acl_ids->z_aclp->z_acl_bytes);
976 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
977 acl_ids->z_fuid, acl_ids->z_fgid);
978 }
979
980 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);
981
982 if (!(flag & IS_ROOT_NODE)) {
983 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
984 ASSERT(*zpp != NULL);
985 } else {
986 /*
987 * If we are creating the root node, the "parent" we
988 * passed in is the znode for the root.
989 */
990 *zpp = dzp;
991
992 (*zpp)->z_sa_hdl = sa_hdl;
993 }
994
995 (*zpp)->z_pflags = pflags;
996 (*zpp)->z_mode = mode;
997
998 if (vap->va_mask & AT_XVATTR)
999 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);
1000
1001 if (obj_type == DMU_OT_ZNODE ||
1002 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1003 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
1004 ASSERT0(err);
1005 }
1006 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1007 }
1008
1009 /*
1010 * zfs_xvattr_set only updates the in-core attributes
1011 * it is assumed the caller will be doing an sa_bulk_update
1012 * to push the changes out
1013 */
1014 void
1015 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx)
1016 {
1017 xoptattr_t *xoap;
1018
1019 xoap = xva_getxoptattr(xvap);
1020 ASSERT(xoap);
1021
1022 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
1023 uint64_t times[2];
1024 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times);
1025 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs),
1026 ×, sizeof (times), tx);
1027 XVA_SET_RTN(xvap, XAT_CREATETIME);
1028 }
1029 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
1030 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly,
1031 zp->z_pflags, tx);
1032 XVA_SET_RTN(xvap, XAT_READONLY);
1033 }
1034 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
1035 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden,
1036 zp->z_pflags, tx);
1037 XVA_SET_RTN(xvap, XAT_HIDDEN);
1038 }
1039 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
1040 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system,
1041 zp->z_pflags, tx);
1042 XVA_SET_RTN(xvap, XAT_SYSTEM);
1043 }
1044 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
1045 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive,
1046 zp->z_pflags, tx);
1047 XVA_SET_RTN(xvap, XAT_ARCHIVE);
1048 }
1049 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
1050 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable,
1051 zp->z_pflags, tx);
1052 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
1053 }
1054 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
1055 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink,
1056 zp->z_pflags, tx);
1057 XVA_SET_RTN(xvap, XAT_NOUNLINK);
1058 }
1059 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
1060 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly,
1061 zp->z_pflags, tx);
1062 XVA_SET_RTN(xvap, XAT_APPENDONLY);
1063 }
1064 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
1065 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump,
1066 zp->z_pflags, tx);
1067 XVA_SET_RTN(xvap, XAT_NODUMP);
1068 }
1069 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
1070 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque,
1071 zp->z_pflags, tx);
1072 XVA_SET_RTN(xvap, XAT_OPAQUE);
1073 }
1074 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
1075 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
1076 xoap->xoa_av_quarantined, zp->z_pflags, tx);
1077 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
1078 }
1079 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
1080 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified,
1081 zp->z_pflags, tx);
1082 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
1083 }
1084 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
1085 zfs_sa_set_scanstamp(zp, xvap, tx);
1086 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
1087 }
1088 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
1089 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse,
1090 zp->z_pflags, tx);
1091 XVA_SET_RTN(xvap, XAT_REPARSE);
1092 }
1093 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
1094 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline,
1095 zp->z_pflags, tx);
1096 XVA_SET_RTN(xvap, XAT_OFFLINE);
1097 }
1098 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
1099 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse,
1100 zp->z_pflags, tx);
1101 XVA_SET_RTN(xvap, XAT_SPARSE);
1102 }
1103 }
1104
1105 int
1106 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
1107 {
1108 dmu_object_info_t doi;
1109 dmu_buf_t *db;
1110 znode_t *zp;
1111 int err;
1112 sa_handle_t *hdl;
1113
1114 *zpp = NULL;
1115
1116 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1117
1118 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1119 if (err) {
1120 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1121 return (err);
1122 }
1123
1124 dmu_object_info_from_db(db, &doi);
1125 if (doi.doi_bonus_type != DMU_OT_SA &&
1126 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1127 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1128 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1129 sa_buf_rele(db, NULL);
1130 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1131 return (EINVAL);
1132 }
1133
1134 hdl = dmu_buf_get_user(db);
1135 if (hdl != NULL) {
1136 zp = sa_get_userdata(hdl);
1137
1138
1139 /*
1140 * Since "SA" does immediate eviction we
1141 * should never find a sa handle that doesn't
1142 * know about the znode.
1143 */
1144
1145 ASSERT3P(zp, !=, NULL);
1146
1147 mutex_enter(&zp->z_lock);
1148 ASSERT3U(zp->z_id, ==, obj_num);
1149 if (zp->z_unlinked) {
1150 err = ENOENT;
1151 } else {
1152 VN_HOLD(ZTOV(zp));
1153 *zpp = zp;
1154 err = 0;
1155 }
1156 sa_buf_rele(db, NULL);
1157 mutex_exit(&zp->z_lock);
1158 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1159 return (err);
1160 }
1161
1162 /*
1163 * Not found create new znode/vnode
1164 * but only if file exists.
1165 *
1166 * There is a small window where zfs_vget() could
1167 * find this object while a file create is still in
1168 * progress. This is checked for in zfs_znode_alloc()
1169 *
1170 * if zfs_znode_alloc() fails it will drop the hold on the
1171 * bonus buffer.
1172 */
1173 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size,
1174 doi.doi_bonus_type, NULL);
1175 if (zp == NULL) {
1176 err = ENOENT;
1177 } else {
1178 *zpp = zp;
1179 }
1180 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1181 return (err);
1182 }
1183
1184 int
1185 zfs_rezget(znode_t *zp)
1186 {
1187 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1188 dmu_object_info_t doi;
1189 dmu_buf_t *db;
1190 uint64_t obj_num = zp->z_id;
1191 uint64_t mode;
1192 sa_bulk_attr_t bulk[8];
1193 int err;
1194 int count = 0;
1195 uint64_t gen;
1196
1197 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1198
1199 mutex_enter(&zp->z_acl_lock);
1200 if (zp->z_acl_cached) {
1201 zfs_acl_free(zp->z_acl_cached);
1202 zp->z_acl_cached = NULL;
1203 }
1204
1205 mutex_exit(&zp->z_acl_lock);
1206 ASSERT(zp->z_sa_hdl == NULL);
1207 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db);
1208 if (err) {
1209 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1210 return (err);
1211 }
1212
1213 dmu_object_info_from_db(db, &doi);
1214 if (doi.doi_bonus_type != DMU_OT_SA &&
1215 (doi.doi_bonus_type != DMU_OT_ZNODE ||
1216 (doi.doi_bonus_type == DMU_OT_ZNODE &&
1217 doi.doi_bonus_size < sizeof (znode_phys_t)))) {
1218 sa_buf_rele(db, NULL);
1219 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1220 return (EINVAL);
1221 }
1222
1223 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL);
1224
1225 /* reload cached values */
1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL,
1227 &gen, sizeof (gen));
1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
1229 &zp->z_size, sizeof (zp->z_size));
1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL,
1231 &zp->z_links, sizeof (zp->z_links));
1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
1233 &zp->z_pflags, sizeof (zp->z_pflags));
1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
1235 &zp->z_atime, sizeof (zp->z_atime));
1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1237 &zp->z_uid, sizeof (zp->z_uid));
1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1239 &zp->z_gid, sizeof (zp->z_gid));
1240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
1241 &mode, sizeof (mode));
1242
1243 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) {
1244 zfs_znode_dmu_fini(zp);
1245 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1246 return (EIO);
1247 }
1248
1249 zp->z_mode = mode;
1250
1251 if (gen != zp->z_gen) {
1252 zfs_znode_dmu_fini(zp);
1253 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1254 return (EIO);
1255 }
1256
1257 zp->z_unlinked = (zp->z_links == 0);
1258 zp->z_blksz = doi.doi_data_block_size;
1259
1260 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1261
1262 return (0);
1263 }
1264
1265 void
1266 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1267 {
1268 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1269 objset_t *os = zfsvfs->z_os;
1270 uint64_t obj = zp->z_id;
1271 uint64_t acl_obj = zfs_external_acl(zp);
1272
1273 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1274 if (acl_obj) {
1275 VERIFY(!zp->z_is_sa);
1276 VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1277 }
1278 VERIFY(0 == dmu_object_free(os, obj, tx));
1279 zfs_znode_dmu_fini(zp);
1280 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1281 zfs_znode_free(zp);
1282 }
1283
1284 void
1285 zfs_zinactive(znode_t *zp)
1286 {
1287 vnode_t *vp = ZTOV(zp);
1288 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1289 uint64_t z_id = zp->z_id;
1290
1291 ASSERT(zp->z_sa_hdl);
1292
1293 /*
1294 * Don't allow a zfs_zget() while were trying to release this znode
1295 */
1296 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1297
1298 mutex_enter(&zp->z_lock);
1299 mutex_enter(&vp->v_lock);
1300 vp->v_count--;
1301 if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1302 /*
1303 * If the hold count is greater than zero, somebody has
1304 * obtained a new reference on this znode while we were
1305 * processing it here, so we are done. If we still have
1306 * mapped pages then we are also done, since we don't
1307 * want to inactivate the znode until the pages get pushed.
1308 *
1309 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1310 * this seems like it would leave the znode hanging with
1311 * no chance to go inactive...
1312 */
1313 mutex_exit(&vp->v_lock);
1314 mutex_exit(&zp->z_lock);
1315 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1316 return;
1317 }
1318 mutex_exit(&vp->v_lock);
1319
1320 /*
1321 * If this was the last reference to a file with no links,
1322 * remove the file from the file system.
1323 */
1324 if (zp->z_unlinked) {
1325 mutex_exit(&zp->z_lock);
1326 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1327 zfs_rmnode(zp);
1328 return;
1329 }
1330
1331 mutex_exit(&zp->z_lock);
1332 zfs_znode_dmu_fini(zp);
1333 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1334 zfs_znode_free(zp);
1335 }
1336
1337 void
1338 zfs_znode_free(znode_t *zp)
1339 {
1340 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1341
1342 vn_invalid(ZTOV(zp));
1343
1344 ASSERT(ZTOV(zp)->v_count == 0);
1345
1346 mutex_enter(&zfsvfs->z_znodes_lock);
1347 POINTER_INVALIDATE(&zp->z_zfsvfs);
1348 list_remove(&zfsvfs->z_all_znodes, zp);
1349 mutex_exit(&zfsvfs->z_znodes_lock);
1350
1351 if (zp->z_acl_cached) {
1352 zfs_acl_free(zp->z_acl_cached);
1353 zp->z_acl_cached = NULL;
1354 }
1355
1356 kmem_cache_free(znode_cache, zp);
1357
1358 VFS_RELE(zfsvfs->z_vfs);
1359 }
1360
1361 void
1362 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2],
1363 uint64_t ctime[2], boolean_t have_tx)
1364 {
1365 timestruc_t now;
1366
1367 gethrestime(&now);
1368
1369 if (have_tx) { /* will sa_bulk_update happen really soon? */
1370 zp->z_atime_dirty = 0;
1371 zp->z_seq++;
1372 } else {
1373 zp->z_atime_dirty = 1;
1374 }
1375
1376 if (flag & AT_ATIME) {
1377 ZFS_TIME_ENCODE(&now, zp->z_atime);
1378 }
1379
1380 if (flag & AT_MTIME) {
1381 ZFS_TIME_ENCODE(&now, mtime);
1382 if (zp->z_zfsvfs->z_use_fuids) {
1383 zp->z_pflags |= (ZFS_ARCHIVE |
1384 ZFS_AV_MODIFIED);
1385 }
1386 }
1387
1388 if (flag & AT_CTIME) {
1389 ZFS_TIME_ENCODE(&now, ctime);
1390 if (zp->z_zfsvfs->z_use_fuids)
1391 zp->z_pflags |= ZFS_ARCHIVE;
1392 }
1393 }
1394
1395 /*
1396 * Grow the block size for a file.
1397 *
1398 * IN: zp - znode of file to free data in.
1399 * size - requested block size
1400 * tx - open transaction.
1401 *
1402 * NOTE: this function assumes that the znode is write locked.
1403 */
1404 void
1405 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1406 {
1407 int error;
1408 u_longlong_t dummy;
1409
1410 if (size <= zp->z_blksz)
1411 return;
1412 /*
1413 * If the file size is already greater than the current blocksize,
1414 * we will not grow. If there is more than one block in a file,
1415 * the blocksize cannot change.
1416 */
1417 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1418 return;
1419
1420 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1421 size, 0, tx);
1422
1423 if (error == ENOTSUP)
1424 return;
1425 ASSERT0(error);
1426
1427 /* What blocksize did we actually get? */
1428 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1429 }
1430
1431 /*
1432 * This is a dummy interface used when pvn_vplist_dirty() should *not*
1433 * be calling back into the fs for a putpage(). E.g.: when truncating
1434 * a file, the pages being "thrown away* don't need to be written out.
1435 */
1436 /* ARGSUSED */
1437 static int
1438 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1439 int flags, cred_t *cr)
1440 {
1441 ASSERT(0);
1442 return (0);
1443 }
1444
1445 /*
1446 * Increase the file length
1447 *
1448 * IN: zp - znode of file to free data in.
1449 * end - new end-of-file
1450 *
1451 * RETURN: 0 if success
1452 * error code if failure
1453 */
1454 static int
1455 zfs_extend(znode_t *zp, uint64_t end)
1456 {
1457 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1458 dmu_tx_t *tx;
1459 rl_t *rl;
1460 uint64_t newblksz;
1461 int error;
1462
1463 /*
1464 * We will change zp_size, lock the whole file.
1465 */
1466 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1467
1468 /*
1469 * Nothing to do if file already at desired length.
1470 */
1471 if (end <= zp->z_size) {
1472 zfs_range_unlock(rl);
1473 return (0);
1474 }
1475 top:
1476 tx = dmu_tx_create(zfsvfs->z_os);
1477 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1478 zfs_sa_upgrade_txholds(tx, zp);
1479 if (end > zp->z_blksz &&
1480 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1481 /*
1482 * We are growing the file past the current block size.
1483 */
1484 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1485 ASSERT(!ISP2(zp->z_blksz));
1486 newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1487 } else {
1488 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1489 }
1490 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1491 } else {
1492 newblksz = 0;
1493 }
1494
1495 error = dmu_tx_assign(tx, TXG_NOWAIT);
1496 if (error) {
1497 if (error == ERESTART) {
1498 dmu_tx_wait(tx);
1499 dmu_tx_abort(tx);
1500 goto top;
1501 }
1502 dmu_tx_abort(tx);
1503 zfs_range_unlock(rl);
1504 return (error);
1505 }
1506
1507 if (newblksz)
1508 zfs_grow_blocksize(zp, newblksz, tx);
1509
1510 zp->z_size = end;
1511
1512 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs),
1513 &zp->z_size, sizeof (zp->z_size), tx));
1514
1515 zfs_range_unlock(rl);
1516
1517 dmu_tx_commit(tx);
1518
1519 return (0);
1520 }
1521
1522 /*
1523 * Free space in a file.
1524 *
1525 * IN: zp - znode of file to free data in.
1526 * off - start of section to free.
1527 * len - length of section to free.
1528 *
1529 * RETURN: 0 if success
1530 * error code if failure
1531 */
1532 static int
1533 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1534 {
1535 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1536 rl_t *rl;
1537 int error;
1538
1539 /*
1540 * Lock the range being freed.
1541 */
1542 rl = zfs_range_lock(zp, off, len, RL_WRITER);
1543
1544 /*
1545 * Nothing to do if file already at desired length.
1546 */
1547 if (off >= zp->z_size) {
1548 zfs_range_unlock(rl);
1549 return (0);
1550 }
1551
1552 if (off + len > zp->z_size)
1553 len = zp->z_size - off;
1554
1555 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1556
1557 zfs_range_unlock(rl);
1558
1559 return (error);
1560 }
1561
1562 /*
1563 * Truncate a file
1564 *
1565 * IN: zp - znode of file to free data in.
1566 * end - new end-of-file.
1567 *
1568 * RETURN: 0 if success
1569 * error code if failure
1570 */
1571 static int
1572 zfs_trunc(znode_t *zp, uint64_t end)
1573 {
1574 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1575 vnode_t *vp = ZTOV(zp);
1576 dmu_tx_t *tx;
1577 rl_t *rl;
1578 int error;
1579 sa_bulk_attr_t bulk[2];
1580 int count = 0;
1581
1582 /*
1583 * We will change zp_size, lock the whole file.
1584 */
1585 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1586
1587 /*
1588 * Nothing to do if file already at desired length.
1589 */
1590 if (end >= zp->z_size) {
1591 zfs_range_unlock(rl);
1592 return (0);
1593 }
1594
1595 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1);
1596 if (error) {
1597 zfs_range_unlock(rl);
1598 return (error);
1599 }
1600 top:
1601 tx = dmu_tx_create(zfsvfs->z_os);
1602 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1603 zfs_sa_upgrade_txholds(tx, zp);
1604 error = dmu_tx_assign(tx, TXG_NOWAIT);
1605 if (error) {
1606 if (error == ERESTART) {
1607 dmu_tx_wait(tx);
1608 dmu_tx_abort(tx);
1609 goto top;
1610 }
1611 dmu_tx_abort(tx);
1612 zfs_range_unlock(rl);
1613 return (error);
1614 }
1615
1616 zp->z_size = end;
1617 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs),
1618 NULL, &zp->z_size, sizeof (zp->z_size));
1619
1620 if (end == 0) {
1621 zp->z_pflags &= ~ZFS_SPARSE;
1622 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1623 NULL, &zp->z_pflags, 8);
1624 }
1625 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0);
1626
1627 dmu_tx_commit(tx);
1628
1629 /*
1630 * Clear any mapped pages in the truncated region. This has to
1631 * happen outside of the transaction to avoid the possibility of
1632 * a deadlock with someone trying to push a page that we are
1633 * about to invalidate.
1634 */
1635 if (vn_has_cached_data(vp)) {
1636 page_t *pp;
1637 uint64_t start = end & PAGEMASK;
1638 int poff = end & PAGEOFFSET;
1639
1640 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1641 /*
1642 * We need to zero a partial page.
1643 */
1644 pagezero(pp, poff, PAGESIZE - poff);
1645 start += PAGESIZE;
1646 page_unlock(pp);
1647 }
1648 error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1649 B_INVAL | B_TRUNC, NULL);
1650 ASSERT(error == 0);
1651 }
1652
1653 zfs_range_unlock(rl);
1654
1655 return (0);
1656 }
1657
1658 /*
1659 * Free space in a file
1660 *
1661 * IN: zp - znode of file to free data in.
1662 * off - start of range
1663 * len - end of range (0 => EOF)
1664 * flag - current file open mode flags.
1665 * log - TRUE if this action should be logged
1666 *
1667 * RETURN: 0 if success
1668 * error code if failure
1669 */
1670 int
1671 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1672 {
1673 vnode_t *vp = ZTOV(zp);
1674 dmu_tx_t *tx;
1675 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1676 zilog_t *zilog = zfsvfs->z_log;
1677 uint64_t mode;
1678 uint64_t mtime[2], ctime[2];
1679 sa_bulk_attr_t bulk[3];
1680 int count = 0;
1681 int error;
1682
1683 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode,
1684 sizeof (mode))) != 0)
1685 return (error);
1686
1687 if (off > zp->z_size) {
1688 error = zfs_extend(zp, off+len);
1689 if (error == 0 && log)
1690 goto log;
1691 else
1692 return (error);
1693 }
1694
1695 /*
1696 * Check for any locks in the region to be freed.
1697 */
1698
1699 if (MANDLOCK(vp, (mode_t)mode)) {
1700 uint64_t length = (len ? len : zp->z_size - off);
1701 if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1702 return (error);
1703 }
1704
1705 if (len == 0) {
1706 error = zfs_trunc(zp, off);
1707 } else {
1708 if ((error = zfs_free_range(zp, off, len)) == 0 &&
1709 off + len > zp->z_size)
1710 error = zfs_extend(zp, off+len);
1711 }
1712 if (error || !log)
1713 return (error);
1714 log:
1715 tx = dmu_tx_create(zfsvfs->z_os);
1716 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1717 zfs_sa_upgrade_txholds(tx, zp);
1718 error = dmu_tx_assign(tx, TXG_NOWAIT);
1719 if (error) {
1720 if (error == ERESTART) {
1721 dmu_tx_wait(tx);
1722 dmu_tx_abort(tx);
1723 goto log;
1724 }
1725 dmu_tx_abort(tx);
1726 return (error);
1727 }
1728
1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16);
1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16);
1731 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs),
1732 NULL, &zp->z_pflags, 8);
1733 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE);
1734 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1735 ASSERT(error == 0);
1736
1737 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1738
1739 dmu_tx_commit(tx);
1740 return (0);
1741 }
1742
1743 void
1744 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1745 {
1746 zfsvfs_t zfsvfs;
1747 uint64_t moid, obj, sa_obj, version;
1748 uint64_t sense = ZFS_CASE_SENSITIVE;
1749 uint64_t norm = 0;
1750 nvpair_t *elem;
1751 int error;
1752 int i;
1753 znode_t *rootzp = NULL;
1754 vnode_t *vp;
1755 vattr_t vattr;
1756 znode_t *zp;
1757 zfs_acl_ids_t acl_ids;
1758
1759 /*
1760 * First attempt to create master node.
1761 */
1762 /*
1763 * In an empty objset, there are no blocks to read and thus
1764 * there can be no i/o errors (which we assert below).
1765 */
1766 moid = MASTER_NODE_OBJ;
1767 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1768 DMU_OT_NONE, 0, tx);
1769 ASSERT(error == 0);
1770
1771 /*
1772 * Set starting attributes.
1773 */
1774 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os)));
1775 elem = NULL;
1776 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1777 /* For the moment we expect all zpl props to be uint64_ts */
1778 uint64_t val;
1779 char *name;
1780
1781 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1782 VERIFY(nvpair_value_uint64(elem, &val) == 0);
1783 name = nvpair_name(elem);
1784 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1785 if (val < version)
1786 version = val;
1787 } else {
1788 error = zap_update(os, moid, name, 8, 1, &val, tx);
1789 }
1790 ASSERT(error == 0);
1791 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1792 norm = val;
1793 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1794 sense = val;
1795 }
1796 ASSERT(version != 0);
1797 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx);
1798
1799 /*
1800 * Create zap object used for SA attribute registration
1801 */
1802
1803 if (version >= ZPL_VERSION_SA) {
1804 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1805 DMU_OT_NONE, 0, tx);
1806 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1807 ASSERT(error == 0);
1808 } else {
1809 sa_obj = 0;
1810 }
1811 /*
1812 * Create a delete queue.
1813 */
1814 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1815
1816 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx);
1817 ASSERT(error == 0);
1818
1819 /*
1820 * Create root znode. Create minimal znode/vnode/zfsvfs
1821 * to allow zfs_mknode to work.
1822 */
1823 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1824 vattr.va_type = VDIR;
1825 vattr.va_mode = S_IFDIR|0755;
1826 vattr.va_uid = crgetuid(cr);
1827 vattr.va_gid = crgetgid(cr);
1828
1829 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1830 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1831 rootzp->z_moved = 0;
1832 rootzp->z_unlinked = 0;
1833 rootzp->z_atime_dirty = 0;
1834 rootzp->z_is_sa = USE_SA(version, os);
1835
1836 vp = ZTOV(rootzp);
1837 vn_reinit(vp);
1838 vp->v_type = VDIR;
1839
1840 bzero(&zfsvfs, sizeof (zfsvfs_t));
1841
1842 zfsvfs.z_os = os;
1843 zfsvfs.z_parent = &zfsvfs;
1844 zfsvfs.z_version = version;
1845 zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1846 zfsvfs.z_use_sa = USE_SA(version, os);
1847 zfsvfs.z_norm = norm;
1848
1849 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
1850 &zfsvfs.z_attr_table);
1851
1852 ASSERT(error == 0);
1853
1854 /*
1855 * Fold case on file systems that are always or sometimes case
1856 * insensitive.
1857 */
1858 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1859 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1860
1861 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1862 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1863 offsetof(znode_t, z_link_node));
1864
1865 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1866 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
1867
1868 rootzp->z_zfsvfs = &zfsvfs;
1869 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr,
1870 cr, NULL, &acl_ids));
1871 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids);
1872 ASSERT3P(zp, ==, rootzp);
1873 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1874 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1875 ASSERT(error == 0);
1876 zfs_acl_ids_free(&acl_ids);
1877 POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1878
1879 ZTOV(rootzp)->v_count = 0;
1880 sa_handle_destroy(rootzp->z_sa_hdl);
1881 kmem_cache_free(znode_cache, rootzp);
1882
1883 /*
1884 * Create shares directory
1885 */
1886
1887 error = zfs_create_share_dir(&zfsvfs, tx);
1888
1889 ASSERT(error == 0);
1890
1891 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1892 mutex_destroy(&zfsvfs.z_hold_mtx[i]);
1893 }
1894
1895 #endif /* _KERNEL */
1896
1897 static int
1898 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table)
1899 {
1900 uint64_t sa_obj = 0;
1901 int error;
1902
1903 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj);
1904 if (error != 0 && error != ENOENT)
1905 return (error);
1906
1907 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table);
1908 return (error);
1909 }
1910
1911 static int
1912 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp,
1913 dmu_buf_t **db, void *tag)
1914 {
1915 dmu_object_info_t doi;
1916 int error;
1917
1918 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0)
1919 return (error);
1920
1921 dmu_object_info_from_db(*db, &doi);
1922 if ((doi.doi_bonus_type != DMU_OT_SA &&
1923 doi.doi_bonus_type != DMU_OT_ZNODE) ||
1924 doi.doi_bonus_type == DMU_OT_ZNODE &&
1925 doi.doi_bonus_size < sizeof (znode_phys_t)) {
1926 sa_buf_rele(*db, tag);
1927 return (ENOTSUP);
1928 }
1929
1930 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp);
1931 if (error != 0) {
1932 sa_buf_rele(*db, tag);
1933 return (error);
1934 }
1935
1936 return (0);
1937 }
1938
1939 void
1940 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag)
1941 {
1942 sa_handle_destroy(hdl);
1943 sa_buf_rele(db, tag);
1944 }
1945
1946 /*
1947 * Given an object number, return its parent object number and whether
1948 * or not the object is an extended attribute directory.
1949 */
1950 static int
1951 zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp,
1952 int *is_xattrdir)
1953 {
1954 uint64_t parent;
1955 uint64_t pflags;
1956 uint64_t mode;
1957 sa_bulk_attr_t bulk[3];
1958 int count = 0;
1959 int error;
1960
1961 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL,
1962 &parent, sizeof (parent));
1963 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL,
1964 &pflags, sizeof (pflags));
1965 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1966 &mode, sizeof (mode));
1967
1968 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0)
1969 return (error);
1970
1971 *pobjp = parent;
1972 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode);
1973
1974 return (0);
1975 }
1976
1977 /*
1978 * Given an object number, return some zpl level statistics
1979 */
1980 static int
1981 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table,
1982 zfs_stat_t *sb)
1983 {
1984 sa_bulk_attr_t bulk[4];
1985 int count = 0;
1986
1987 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL,
1988 &sb->zs_mode, sizeof (sb->zs_mode));
1989 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL,
1990 &sb->zs_gen, sizeof (sb->zs_gen));
1991 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL,
1992 &sb->zs_links, sizeof (sb->zs_links));
1993 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL,
1994 &sb->zs_ctime, sizeof (sb->zs_ctime));
1995
1996 return (sa_bulk_lookup(hdl, bulk, count));
1997 }
1998
1999 static int
2000 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl,
2001 sa_attr_type_t *sa_table, char *buf, int len)
2002 {
2003 sa_handle_t *sa_hdl;
2004 sa_handle_t *prevhdl = NULL;
2005 dmu_buf_t *prevdb = NULL;
2006 dmu_buf_t *sa_db = NULL;
2007 char *path = buf + len - 1;
2008 int error;
2009
2010 *path = '\0';
2011 sa_hdl = hdl;
2012
2013 for (;;) {
2014 uint64_t pobj;
2015 char component[MAXNAMELEN + 2];
2016 size_t complen;
2017 int is_xattrdir;
2018
2019 if (prevdb)
2020 zfs_release_sa_handle(prevhdl, prevdb, FTAG);
2021
2022 if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj,
2023 &is_xattrdir)) != 0)
2024 break;
2025
2026 if (pobj == obj) {
2027 if (path[0] != '/')
2028 *--path = '/';
2029 break;
2030 }
2031
2032 component[0] = '/';
2033 if (is_xattrdir) {
2034 (void) sprintf(component + 1, "<xattrdir>");
2035 } else {
2036 error = zap_value_search(osp, pobj, obj,
2037 ZFS_DIRENT_OBJ(-1ULL), component + 1);
2038 if (error != 0)
2039 break;
2040 }
2041
2042 complen = strlen(component);
2043 path -= complen;
2044 ASSERT(path >= buf);
2045 bcopy(component, path, complen);
2046 obj = pobj;
2047
2048 if (sa_hdl != hdl) {
2049 prevhdl = sa_hdl;
2050 prevdb = sa_db;
2051 }
2052 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG);
2053 if (error != 0) {
2054 sa_hdl = prevhdl;
2055 sa_db = prevdb;
2056 break;
2057 }
2058 }
2059
2060 if (sa_hdl != NULL && sa_hdl != hdl) {
2061 ASSERT(sa_db != NULL);
2062 zfs_release_sa_handle(sa_hdl, sa_db, FTAG);
2063 }
2064
2065 if (error == 0)
2066 (void) memmove(buf, path, buf + len - path);
2067
2068 return (error);
2069 }
2070
2071 int
2072 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
2073 {
2074 sa_attr_type_t *sa_table;
2075 sa_handle_t *hdl;
2076 dmu_buf_t *db;
2077 int error;
2078
2079 error = zfs_sa_setup(osp, &sa_table);
2080 if (error != 0)
2081 return (error);
2082
2083 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2084 if (error != 0)
2085 return (error);
2086
2087 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2088
2089 zfs_release_sa_handle(hdl, db, FTAG);
2090 return (error);
2091 }
2092
2093 int
2094 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb,
2095 char *buf, int len)
2096 {
2097 char *path = buf + len - 1;
2098 sa_attr_type_t *sa_table;
2099 sa_handle_t *hdl;
2100 dmu_buf_t *db;
2101 int error;
2102
2103 *path = '\0';
2104
2105 error = zfs_sa_setup(osp, &sa_table);
2106 if (error != 0)
2107 return (error);
2108
2109 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG);
2110 if (error != 0)
2111 return (error);
2112
2113 error = zfs_obj_to_stats_impl(hdl, sa_table, sb);
2114 if (error != 0) {
2115 zfs_release_sa_handle(hdl, db, FTAG);
2116 return (error);
2117 }
2118
2119 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len);
2120
2121 zfs_release_sa_handle(hdl, db, FTAG);
2122 return (error);
2123 }