1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 29 #ifdef _KERNEL 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/mntent.h> 37 #include <sys/mkdev.h> 38 #include <sys/u8_textprep.h> 39 #include <sys/dsl_dataset.h> 40 #include <sys/vfs.h> 41 #include <sys/vfs_opreg.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/kmem.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/mode.h> 48 #include <sys/atomic.h> 49 #include <vm/pvn.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zfs_dir.h> 52 #include <sys/zfs_acl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_rlock.h> 55 #include <sys/zfs_fuid.h> 56 #include <sys/dnode.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/kidmap.h> 59 #endif /* _KERNEL */ 60 61 #include <sys/dmu.h> 62 #include <sys/refcount.h> 63 #include <sys/stat.h> 64 #include <sys/zap.h> 65 #include <sys/zfs_znode.h> 66 #include <sys/sa.h> 67 #include <sys/zfs_sa.h> 68 #include <sys/zfs_stat.h> 69 70 #include "zfs_prop.h" 71 #include "zfs_comutil.h" 72 73 /* 74 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 75 * turned on when DEBUG is also defined. 76 */ 77 #ifdef DEBUG 78 #define ZNODE_STATS 79 #endif /* DEBUG */ 80 81 #ifdef ZNODE_STATS 82 #define ZNODE_STAT_ADD(stat) ((stat)++) 83 #else 84 #define ZNODE_STAT_ADD(stat) /* nothing */ 85 #endif /* ZNODE_STATS */ 86 87 /* 88 * Functions needed for userland (ie: libzpool) are not put under 89 * #ifdef_KERNEL; the rest of the functions have dependencies 90 * (such as VFS logic) that will not compile easily in userland. 91 */ 92 #ifdef _KERNEL 93 /* 94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 95 * be freed before it can be safely accessed. 96 */ 97 krwlock_t zfsvfs_lock; 98 99 static kmem_cache_t *znode_cache = NULL; 100 101 /*ARGSUSED*/ 102 static void 103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 104 { 105 /* 106 * We should never drop all dbuf refs without first clearing 107 * the eviction callback. 108 */ 109 panic("evicting znode %p\n", user_ptr); 110 } 111 112 /*ARGSUSED*/ 113 static int 114 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 115 { 116 znode_t *zp = buf; 117 118 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 119 120 zp->z_vnode = vn_alloc(kmflags); 121 if (zp->z_vnode == NULL) { 122 return (-1); 123 } 124 ZTOV(zp)->v_data = zp; 125 126 list_link_init(&zp->z_link_node); 127 128 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 129 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 130 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 131 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 132 133 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 134 avl_create(&zp->z_range_avl, zfs_range_compare, 135 sizeof (rl_t), offsetof(rl_t, r_node)); 136 137 zp->z_dirlocks = NULL; 138 zp->z_acl_cached = NULL; 139 zp->z_moved = 0; 140 return (0); 141 } 142 143 /*ARGSUSED*/ 144 static void 145 zfs_znode_cache_destructor(void *buf, void *arg) 146 { 147 znode_t *zp = buf; 148 149 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 150 ASSERT(ZTOV(zp)->v_data == zp); 151 vn_free(ZTOV(zp)); 152 ASSERT(!list_link_active(&zp->z_link_node)); 153 mutex_destroy(&zp->z_lock); 154 rw_destroy(&zp->z_parent_lock); 155 rw_destroy(&zp->z_name_lock); 156 mutex_destroy(&zp->z_acl_lock); 157 avl_destroy(&zp->z_range_avl); 158 mutex_destroy(&zp->z_range_lock); 159 160 ASSERT(zp->z_dirlocks == NULL); 161 ASSERT(zp->z_acl_cached == NULL); 162 } 163 164 #ifdef ZNODE_STATS 165 static struct { 166 uint64_t zms_zfsvfs_invalid; 167 uint64_t zms_zfsvfs_recheck1; 168 uint64_t zms_zfsvfs_unmounted; 169 uint64_t zms_zfsvfs_recheck2; 170 uint64_t zms_obj_held; 171 uint64_t zms_vnode_locked; 172 uint64_t zms_not_only_dnlc; 173 } znode_move_stats; 174 #endif /* ZNODE_STATS */ 175 176 static void 177 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 178 { 179 vnode_t *vp; 180 181 /* Copy fields. */ 182 nzp->z_zfsvfs = ozp->z_zfsvfs; 183 184 /* Swap vnodes. */ 185 vp = nzp->z_vnode; 186 nzp->z_vnode = ozp->z_vnode; 187 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 188 ZTOV(ozp)->v_data = ozp; 189 ZTOV(nzp)->v_data = nzp; 190 191 nzp->z_id = ozp->z_id; 192 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 193 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 194 nzp->z_unlinked = ozp->z_unlinked; 195 nzp->z_atime_dirty = ozp->z_atime_dirty; 196 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 197 nzp->z_blksz = ozp->z_blksz; 198 nzp->z_seq = ozp->z_seq; 199 nzp->z_mapcnt = ozp->z_mapcnt; 200 nzp->z_gen = ozp->z_gen; 201 nzp->z_sync_cnt = ozp->z_sync_cnt; 202 nzp->z_is_sa = ozp->z_is_sa; 203 nzp->z_sa_hdl = ozp->z_sa_hdl; 204 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 205 nzp->z_links = ozp->z_links; 206 nzp->z_size = ozp->z_size; 207 nzp->z_pflags = ozp->z_pflags; 208 nzp->z_uid = ozp->z_uid; 209 nzp->z_gid = ozp->z_gid; 210 nzp->z_mode = ozp->z_mode; 211 212 /* 213 * Since this is just an idle znode and kmem is already dealing with 214 * memory pressure, release any cached ACL. 215 */ 216 if (ozp->z_acl_cached) { 217 zfs_acl_free(ozp->z_acl_cached); 218 ozp->z_acl_cached = NULL; 219 } 220 221 sa_set_userp(nzp->z_sa_hdl, nzp); 222 223 /* 224 * Invalidate the original znode by clearing fields that provide a 225 * pointer back to the znode. Set the low bit of the vfs pointer to 226 * ensure that zfs_znode_move() recognizes the znode as invalid in any 227 * subsequent callback. 228 */ 229 ozp->z_sa_hdl = NULL; 230 POINTER_INVALIDATE(&ozp->z_zfsvfs); 231 232 /* 233 * Mark the znode. 234 */ 235 nzp->z_moved = 1; 236 ozp->z_moved = (uint8_t)-1; 237 } 238 239 /*ARGSUSED*/ 240 static kmem_cbrc_t 241 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 242 { 243 znode_t *ozp = buf, *nzp = newbuf; 244 zfsvfs_t *zfsvfs; 245 vnode_t *vp; 246 247 /* 248 * The znode is on the file system's list of known znodes if the vfs 249 * pointer is valid. We set the low bit of the vfs pointer when freeing 250 * the znode to invalidate it, and the memory patterns written by kmem 251 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 252 * created znode sets the vfs pointer last of all to indicate that the 253 * znode is known and in a valid state to be moved by this function. 254 */ 255 zfsvfs = ozp->z_zfsvfs; 256 if (!POINTER_IS_VALID(zfsvfs)) { 257 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 258 return (KMEM_CBRC_DONT_KNOW); 259 } 260 261 /* 262 * Close a small window in which it's possible that the filesystem could 263 * be unmounted and freed, and zfsvfs, though valid in the previous 264 * statement, could point to unrelated memory by the time we try to 265 * prevent the filesystem from being unmounted. 266 */ 267 rw_enter(&zfsvfs_lock, RW_WRITER); 268 if (zfsvfs != ozp->z_zfsvfs) { 269 rw_exit(&zfsvfs_lock); 270 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 271 return (KMEM_CBRC_DONT_KNOW); 272 } 273 274 /* 275 * If the znode is still valid, then so is the file system. We know that 276 * no valid file system can be freed while we hold zfsvfs_lock, so we 277 * can safely ensure that the filesystem is not and will not be 278 * unmounted. The next statement is equivalent to ZFS_ENTER(). 279 */ 280 rrw_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 281 if (zfsvfs->z_unmounted) { 282 ZFS_EXIT(zfsvfs); 283 rw_exit(&zfsvfs_lock); 284 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 285 return (KMEM_CBRC_DONT_KNOW); 286 } 287 rw_exit(&zfsvfs_lock); 288 289 mutex_enter(&zfsvfs->z_znodes_lock); 290 /* 291 * Recheck the vfs pointer in case the znode was removed just before 292 * acquiring the lock. 293 */ 294 if (zfsvfs != ozp->z_zfsvfs) { 295 mutex_exit(&zfsvfs->z_znodes_lock); 296 ZFS_EXIT(zfsvfs); 297 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 298 return (KMEM_CBRC_DONT_KNOW); 299 } 300 301 /* 302 * At this point we know that as long as we hold z_znodes_lock, the 303 * znode cannot be freed and fields within the znode can be safely 304 * accessed. Now, prevent a race with zfs_zget(). 305 */ 306 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 307 mutex_exit(&zfsvfs->z_znodes_lock); 308 ZFS_EXIT(zfsvfs); 309 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 310 return (KMEM_CBRC_LATER); 311 } 312 313 vp = ZTOV(ozp); 314 if (mutex_tryenter(&vp->v_lock) == 0) { 315 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 316 mutex_exit(&zfsvfs->z_znodes_lock); 317 ZFS_EXIT(zfsvfs); 318 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 319 return (KMEM_CBRC_LATER); 320 } 321 322 /* Only move znodes that are referenced _only_ by the DNLC. */ 323 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 324 mutex_exit(&vp->v_lock); 325 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 326 mutex_exit(&zfsvfs->z_znodes_lock); 327 ZFS_EXIT(zfsvfs); 328 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 329 return (KMEM_CBRC_LATER); 330 } 331 332 /* 333 * The znode is known and in a valid state to move. We're holding the 334 * locks needed to execute the critical section. 335 */ 336 zfs_znode_move_impl(ozp, nzp); 337 mutex_exit(&vp->v_lock); 338 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 339 340 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 341 mutex_exit(&zfsvfs->z_znodes_lock); 342 ZFS_EXIT(zfsvfs); 343 344 return (KMEM_CBRC_YES); 345 } 346 347 void 348 zfs_znode_init(void) 349 { 350 /* 351 * Initialize zcache 352 */ 353 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 354 ASSERT(znode_cache == NULL); 355 znode_cache = kmem_cache_create("zfs_znode_cache", 356 sizeof (znode_t), 0, zfs_znode_cache_constructor, 357 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 358 kmem_cache_set_move(znode_cache, zfs_znode_move); 359 } 360 361 void 362 zfs_znode_fini(void) 363 { 364 /* 365 * Cleanup vfs & vnode ops 366 */ 367 zfs_remove_op_tables(); 368 369 /* 370 * Cleanup zcache 371 */ 372 if (znode_cache) 373 kmem_cache_destroy(znode_cache); 374 znode_cache = NULL; 375 rw_destroy(&zfsvfs_lock); 376 } 377 378 struct vnodeops *zfs_dvnodeops; 379 struct vnodeops *zfs_fvnodeops; 380 struct vnodeops *zfs_symvnodeops; 381 struct vnodeops *zfs_xdvnodeops; 382 struct vnodeops *zfs_evnodeops; 383 struct vnodeops *zfs_sharevnodeops; 384 385 void 386 zfs_remove_op_tables() 387 { 388 /* 389 * Remove vfs ops 390 */ 391 ASSERT(zfsfstype); 392 (void) vfs_freevfsops_by_type(zfsfstype); 393 zfsfstype = 0; 394 395 /* 396 * Remove vnode ops 397 */ 398 if (zfs_dvnodeops) 399 vn_freevnodeops(zfs_dvnodeops); 400 if (zfs_fvnodeops) 401 vn_freevnodeops(zfs_fvnodeops); 402 if (zfs_symvnodeops) 403 vn_freevnodeops(zfs_symvnodeops); 404 if (zfs_xdvnodeops) 405 vn_freevnodeops(zfs_xdvnodeops); 406 if (zfs_evnodeops) 407 vn_freevnodeops(zfs_evnodeops); 408 if (zfs_sharevnodeops) 409 vn_freevnodeops(zfs_sharevnodeops); 410 411 zfs_dvnodeops = NULL; 412 zfs_fvnodeops = NULL; 413 zfs_symvnodeops = NULL; 414 zfs_xdvnodeops = NULL; 415 zfs_evnodeops = NULL; 416 zfs_sharevnodeops = NULL; 417 } 418 419 extern const fs_operation_def_t zfs_dvnodeops_template[]; 420 extern const fs_operation_def_t zfs_fvnodeops_template[]; 421 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 422 extern const fs_operation_def_t zfs_symvnodeops_template[]; 423 extern const fs_operation_def_t zfs_evnodeops_template[]; 424 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 425 426 int 427 zfs_create_op_tables() 428 { 429 int error; 430 431 /* 432 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 433 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 434 * In this case we just return as the ops vectors are already set up. 435 */ 436 if (zfs_dvnodeops) 437 return (0); 438 439 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 440 &zfs_dvnodeops); 441 if (error) 442 return (error); 443 444 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 445 &zfs_fvnodeops); 446 if (error) 447 return (error); 448 449 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 450 &zfs_symvnodeops); 451 if (error) 452 return (error); 453 454 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 455 &zfs_xdvnodeops); 456 if (error) 457 return (error); 458 459 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 460 &zfs_evnodeops); 461 if (error) 462 return (error); 463 464 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 465 &zfs_sharevnodeops); 466 467 return (error); 468 } 469 470 int 471 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 472 { 473 zfs_acl_ids_t acl_ids; 474 vattr_t vattr; 475 znode_t *sharezp; 476 vnode_t *vp; 477 znode_t *zp; 478 int error; 479 480 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 481 vattr.va_type = VDIR; 482 vattr.va_mode = S_IFDIR|0555; 483 vattr.va_uid = crgetuid(kcred); 484 vattr.va_gid = crgetgid(kcred); 485 486 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 487 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 488 sharezp->z_moved = 0; 489 sharezp->z_unlinked = 0; 490 sharezp->z_atime_dirty = 0; 491 sharezp->z_zfsvfs = zfsvfs; 492 sharezp->z_is_sa = zfsvfs->z_use_sa; 493 494 vp = ZTOV(sharezp); 495 vn_reinit(vp); 496 vp->v_type = VDIR; 497 498 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 499 kcred, NULL, &acl_ids)); 500 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 501 ASSERT3P(zp, ==, sharezp); 502 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 503 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 504 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 505 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 506 zfsvfs->z_shares_dir = sharezp->z_id; 507 508 zfs_acl_ids_free(&acl_ids); 509 ZTOV(sharezp)->v_count = 0; 510 sa_handle_destroy(sharezp->z_sa_hdl); 511 kmem_cache_free(znode_cache, sharezp); 512 513 return (error); 514 } 515 516 /* 517 * define a couple of values we need available 518 * for both 64 and 32 bit environments. 519 */ 520 #ifndef NBITSMINOR64 521 #define NBITSMINOR64 32 522 #endif 523 #ifndef MAXMAJ64 524 #define MAXMAJ64 0xffffffffUL 525 #endif 526 #ifndef MAXMIN64 527 #define MAXMIN64 0xffffffffUL 528 #endif 529 530 /* 531 * Create special expldev for ZFS private use. 532 * Can't use standard expldev since it doesn't do 533 * what we want. The standard expldev() takes a 534 * dev32_t in LP64 and expands it to a long dev_t. 535 * We need an interface that takes a dev32_t in ILP32 536 * and expands it to a long dev_t. 537 */ 538 static uint64_t 539 zfs_expldev(dev_t dev) 540 { 541 #ifndef _LP64 542 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 543 return (((uint64_t)major << NBITSMINOR64) | 544 ((minor_t)dev & MAXMIN32)); 545 #else 546 return (dev); 547 #endif 548 } 549 550 /* 551 * Special cmpldev for ZFS private use. 552 * Can't use standard cmpldev since it takes 553 * a long dev_t and compresses it to dev32_t in 554 * LP64. We need to do a compaction of a long dev_t 555 * to a dev32_t in ILP32. 556 */ 557 dev_t 558 zfs_cmpldev(uint64_t dev) 559 { 560 #ifndef _LP64 561 minor_t minor = (minor_t)dev & MAXMIN64; 562 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 563 564 if (major > MAXMAJ32 || minor > MAXMIN32) 565 return (NODEV32); 566 567 return (((dev32_t)major << NBITSMINOR32) | minor); 568 #else 569 return (dev); 570 #endif 571 } 572 573 static void 574 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 575 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 576 { 577 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 578 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 579 580 mutex_enter(&zp->z_lock); 581 582 ASSERT(zp->z_sa_hdl == NULL); 583 ASSERT(zp->z_acl_cached == NULL); 584 if (sa_hdl == NULL) { 585 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 586 SA_HDL_SHARED, &zp->z_sa_hdl)); 587 } else { 588 zp->z_sa_hdl = sa_hdl; 589 sa_set_userp(sa_hdl, zp); 590 } 591 592 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 593 594 /* 595 * Slap on VROOT if we are the root znode 596 */ 597 if (zp->z_id == zfsvfs->z_root) 598 ZTOV(zp)->v_flag |= VROOT; 599 600 mutex_exit(&zp->z_lock); 601 vn_exists(ZTOV(zp)); 602 } 603 604 void 605 zfs_znode_dmu_fini(znode_t *zp) 606 { 607 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 608 zp->z_unlinked || 609 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 610 611 sa_handle_destroy(zp->z_sa_hdl); 612 zp->z_sa_hdl = NULL; 613 } 614 615 /* 616 * Construct a new znode/vnode and intialize. 617 * 618 * This does not do a call to dmu_set_user() that is 619 * up to the caller to do, in case you don't want to 620 * return the znode 621 */ 622 static znode_t * 623 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 624 dmu_object_type_t obj_type, sa_handle_t *hdl) 625 { 626 znode_t *zp; 627 vnode_t *vp; 628 uint64_t mode; 629 uint64_t parent; 630 sa_bulk_attr_t bulk[9]; 631 int count = 0; 632 633 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 634 635 ASSERT(zp->z_dirlocks == NULL); 636 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 637 zp->z_moved = 0; 638 639 /* 640 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 641 * the zfs_znode_move() callback. 642 */ 643 zp->z_sa_hdl = NULL; 644 zp->z_unlinked = 0; 645 zp->z_atime_dirty = 0; 646 zp->z_mapcnt = 0; 647 zp->z_id = db->db_object; 648 zp->z_blksz = blksz; 649 zp->z_seq = 0x7A4653; 650 zp->z_sync_cnt = 0; 651 652 vp = ZTOV(zp); 653 vn_reinit(vp); 654 655 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 656 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 660 &zp->z_size, 8); 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 662 &zp->z_links, 8); 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 664 &zp->z_pflags, 8); 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 667 &zp->z_atime, 16); 668 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 669 &zp->z_uid, 8); 670 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 671 &zp->z_gid, 8); 672 673 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 674 if (hdl == NULL) 675 sa_handle_destroy(zp->z_sa_hdl); 676 kmem_cache_free(znode_cache, zp); 677 return (NULL); 678 } 679 680 zp->z_mode = mode; 681 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 682 683 vp->v_type = IFTOVT((mode_t)mode); 684 685 switch (vp->v_type) { 686 case VDIR: 687 if (zp->z_pflags & ZFS_XATTR) { 688 vn_setops(vp, zfs_xdvnodeops); 689 vp->v_flag |= V_XATTRDIR; 690 } else { 691 vn_setops(vp, zfs_dvnodeops); 692 } 693 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 694 break; 695 case VBLK: 696 case VCHR: 697 { 698 uint64_t rdev; 699 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 700 &rdev, sizeof (rdev)) == 0); 701 702 vp->v_rdev = zfs_cmpldev(rdev); 703 } 704 /*FALLTHROUGH*/ 705 case VFIFO: 706 case VSOCK: 707 case VDOOR: 708 vn_setops(vp, zfs_fvnodeops); 709 break; 710 case VREG: 711 vp->v_flag |= VMODSORT; 712 if (parent == zfsvfs->z_shares_dir) { 713 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 714 vn_setops(vp, zfs_sharevnodeops); 715 } else { 716 vn_setops(vp, zfs_fvnodeops); 717 } 718 break; 719 case VLNK: 720 vn_setops(vp, zfs_symvnodeops); 721 break; 722 default: 723 vn_setops(vp, zfs_evnodeops); 724 break; 725 } 726 727 mutex_enter(&zfsvfs->z_znodes_lock); 728 list_insert_tail(&zfsvfs->z_all_znodes, zp); 729 membar_producer(); 730 /* 731 * Everything else must be valid before assigning z_zfsvfs makes the 732 * znode eligible for zfs_znode_move(). 733 */ 734 zp->z_zfsvfs = zfsvfs; 735 mutex_exit(&zfsvfs->z_znodes_lock); 736 737 VFS_HOLD(zfsvfs->z_vfs); 738 return (zp); 739 } 740 741 static uint64_t empty_xattr; 742 static uint64_t pad[4]; 743 static zfs_acl_phys_t acl_phys; 744 /* 745 * Create a new DMU object to hold a zfs znode. 746 * 747 * IN: dzp - parent directory for new znode 748 * vap - file attributes for new znode 749 * tx - dmu transaction id for zap operations 750 * cr - credentials of caller 751 * flag - flags: 752 * IS_ROOT_NODE - new object will be root 753 * IS_XATTR - new object is an attribute 754 * bonuslen - length of bonus buffer 755 * setaclp - File/Dir initial ACL 756 * fuidp - Tracks fuid allocation. 757 * 758 * OUT: zpp - allocated znode 759 * 760 */ 761 void 762 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 763 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 764 { 765 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 766 uint64_t mode, size, links, parent, pflags; 767 uint64_t dzp_pflags = 0; 768 uint64_t rdev = 0; 769 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 770 dmu_buf_t *db; 771 timestruc_t now; 772 uint64_t gen, obj; 773 int err; 774 int bonuslen; 775 sa_handle_t *sa_hdl; 776 dmu_object_type_t obj_type; 777 sa_bulk_attr_t sa_attrs[ZPL_END]; 778 int cnt = 0; 779 zfs_acl_locator_cb_t locate = { 0 }; 780 781 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 782 783 if (zfsvfs->z_replay) { 784 obj = vap->va_nodeid; 785 now = vap->va_ctime; /* see zfs_replay_create() */ 786 gen = vap->va_nblocks; /* ditto */ 787 } else { 788 obj = 0; 789 gethrestime(&now); 790 gen = dmu_tx_get_txg(tx); 791 } 792 793 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 794 bonuslen = (obj_type == DMU_OT_SA) ? 795 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 796 797 /* 798 * Create a new DMU object. 799 */ 800 /* 801 * There's currently no mechanism for pre-reading the blocks that will 802 * be needed to allocate a new object, so we accept the small chance 803 * that there will be an i/o error and we will fail one of the 804 * assertions below. 805 */ 806 if (vap->va_type == VDIR) { 807 if (zfsvfs->z_replay) { 808 err = zap_create_claim_norm(zfsvfs->z_os, obj, 809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 810 obj_type, bonuslen, tx); 811 ASSERT0(err); 812 } else { 813 obj = zap_create_norm(zfsvfs->z_os, 814 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 815 obj_type, bonuslen, tx); 816 } 817 } else { 818 if (zfsvfs->z_replay) { 819 err = dmu_object_claim(zfsvfs->z_os, obj, 820 DMU_OT_PLAIN_FILE_CONTENTS, 0, 821 obj_type, bonuslen, tx); 822 ASSERT0(err); 823 } else { 824 obj = dmu_object_alloc(zfsvfs->z_os, 825 DMU_OT_PLAIN_FILE_CONTENTS, 0, 826 obj_type, bonuslen, tx); 827 } 828 } 829 830 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 831 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 832 833 /* 834 * If this is the root, fix up the half-initialized parent pointer 835 * to reference the just-allocated physical data area. 836 */ 837 if (flag & IS_ROOT_NODE) { 838 dzp->z_id = obj; 839 } else { 840 dzp_pflags = dzp->z_pflags; 841 } 842 843 /* 844 * If parent is an xattr, so am I. 845 */ 846 if (dzp_pflags & ZFS_XATTR) { 847 flag |= IS_XATTR; 848 } 849 850 if (zfsvfs->z_use_fuids) 851 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 852 else 853 pflags = 0; 854 855 if (vap->va_type == VDIR) { 856 size = 2; /* contents ("." and "..") */ 857 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 858 } else { 859 size = links = 0; 860 } 861 862 if (vap->va_type == VBLK || vap->va_type == VCHR) { 863 rdev = zfs_expldev(vap->va_rdev); 864 } 865 866 parent = dzp->z_id; 867 mode = acl_ids->z_mode; 868 if (flag & IS_XATTR) 869 pflags |= ZFS_XATTR; 870 871 /* 872 * No execs denied will be deterimed when zfs_mode_compute() is called. 873 */ 874 pflags |= acl_ids->z_aclp->z_hints & 875 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 876 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 877 878 ZFS_TIME_ENCODE(&now, crtime); 879 ZFS_TIME_ENCODE(&now, ctime); 880 881 if (vap->va_mask & AT_ATIME) { 882 ZFS_TIME_ENCODE(&vap->va_atime, atime); 883 } else { 884 ZFS_TIME_ENCODE(&now, atime); 885 } 886 887 if (vap->va_mask & AT_MTIME) { 888 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 889 } else { 890 ZFS_TIME_ENCODE(&now, mtime); 891 } 892 893 /* Now add in all of the "SA" attributes */ 894 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 895 &sa_hdl)); 896 897 /* 898 * Setup the array of attributes to be replaced/set on the new file 899 * 900 * order for DMU_OT_ZNODE is critical since it needs to be constructed 901 * in the old znode_phys_t format. Don't change this ordering 902 */ 903 904 if (obj_type == DMU_OT_ZNODE) { 905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 906 NULL, &atime, 16); 907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 908 NULL, &mtime, 16); 909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 910 NULL, &ctime, 16); 911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 912 NULL, &crtime, 16); 913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 914 NULL, &gen, 8); 915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 916 NULL, &mode, 8); 917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 918 NULL, &size, 8); 919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 920 NULL, &parent, 8); 921 } else { 922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 923 NULL, &mode, 8); 924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 925 NULL, &size, 8); 926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 927 NULL, &gen, 8); 928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 929 &acl_ids->z_fuid, 8); 930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 931 &acl_ids->z_fgid, 8); 932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 933 NULL, &parent, 8); 934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 935 NULL, &pflags, 8); 936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 937 NULL, &atime, 16); 938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 939 NULL, &mtime, 16); 940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 941 NULL, &ctime, 16); 942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 943 NULL, &crtime, 16); 944 } 945 946 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 947 948 if (obj_type == DMU_OT_ZNODE) { 949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 950 &empty_xattr, 8); 951 } 952 if (obj_type == DMU_OT_ZNODE || 953 (vap->va_type == VBLK || vap->va_type == VCHR)) { 954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 955 NULL, &rdev, 8); 956 957 } 958 if (obj_type == DMU_OT_ZNODE) { 959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 960 NULL, &pflags, 8); 961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 962 &acl_ids->z_fuid, 8); 963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 964 &acl_ids->z_fgid, 8); 965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 966 sizeof (uint64_t) * 4); 967 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 968 &acl_phys, sizeof (zfs_acl_phys_t)); 969 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 970 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 971 &acl_ids->z_aclp->z_acl_count, 8); 972 locate.cb_aclp = acl_ids->z_aclp; 973 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 974 zfs_acl_data_locator, &locate, 975 acl_ids->z_aclp->z_acl_bytes); 976 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 977 acl_ids->z_fuid, acl_ids->z_fgid); 978 } 979 980 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 981 982 if (!(flag & IS_ROOT_NODE)) { 983 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 984 ASSERT(*zpp != NULL); 985 } else { 986 /* 987 * If we are creating the root node, the "parent" we 988 * passed in is the znode for the root. 989 */ 990 *zpp = dzp; 991 992 (*zpp)->z_sa_hdl = sa_hdl; 993 } 994 995 (*zpp)->z_pflags = pflags; 996 (*zpp)->z_mode = mode; 997 998 if (vap->va_mask & AT_XVATTR) 999 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 1000 1001 if (obj_type == DMU_OT_ZNODE || 1002 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1003 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx); 1004 ASSERT0(err); 1005 } 1006 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1007 } 1008 1009 /* 1010 * zfs_xvattr_set only updates the in-core attributes 1011 * it is assumed the caller will be doing an sa_bulk_update 1012 * to push the changes out 1013 */ 1014 void 1015 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1016 { 1017 xoptattr_t *xoap; 1018 1019 xoap = xva_getxoptattr(xvap); 1020 ASSERT(xoap); 1021 1022 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1023 uint64_t times[2]; 1024 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1025 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1026 ×, sizeof (times), tx); 1027 XVA_SET_RTN(xvap, XAT_CREATETIME); 1028 } 1029 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1030 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1031 zp->z_pflags, tx); 1032 XVA_SET_RTN(xvap, XAT_READONLY); 1033 } 1034 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1035 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1036 zp->z_pflags, tx); 1037 XVA_SET_RTN(xvap, XAT_HIDDEN); 1038 } 1039 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1040 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1041 zp->z_pflags, tx); 1042 XVA_SET_RTN(xvap, XAT_SYSTEM); 1043 } 1044 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1045 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1046 zp->z_pflags, tx); 1047 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1048 } 1049 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1050 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1051 zp->z_pflags, tx); 1052 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1053 } 1054 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1055 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1056 zp->z_pflags, tx); 1057 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1058 } 1059 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1060 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1061 zp->z_pflags, tx); 1062 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1063 } 1064 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1065 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1066 zp->z_pflags, tx); 1067 XVA_SET_RTN(xvap, XAT_NODUMP); 1068 } 1069 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1070 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1071 zp->z_pflags, tx); 1072 XVA_SET_RTN(xvap, XAT_OPAQUE); 1073 } 1074 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1075 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1076 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1077 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1078 } 1079 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1080 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1081 zp->z_pflags, tx); 1082 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1083 } 1084 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1085 zfs_sa_set_scanstamp(zp, xvap, tx); 1086 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1087 } 1088 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1089 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1090 zp->z_pflags, tx); 1091 XVA_SET_RTN(xvap, XAT_REPARSE); 1092 } 1093 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1094 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1095 zp->z_pflags, tx); 1096 XVA_SET_RTN(xvap, XAT_OFFLINE); 1097 } 1098 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1099 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1100 zp->z_pflags, tx); 1101 XVA_SET_RTN(xvap, XAT_SPARSE); 1102 } 1103 } 1104 1105 int 1106 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1107 { 1108 dmu_object_info_t doi; 1109 dmu_buf_t *db; 1110 znode_t *zp; 1111 int err; 1112 sa_handle_t *hdl; 1113 1114 *zpp = NULL; 1115 1116 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1117 1118 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1119 if (err) { 1120 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1121 return (err); 1122 } 1123 1124 dmu_object_info_from_db(db, &doi); 1125 if (doi.doi_bonus_type != DMU_OT_SA && 1126 (doi.doi_bonus_type != DMU_OT_ZNODE || 1127 (doi.doi_bonus_type == DMU_OT_ZNODE && 1128 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1129 sa_buf_rele(db, NULL); 1130 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1131 return (EINVAL); 1132 } 1133 1134 hdl = dmu_buf_get_user(db); 1135 if (hdl != NULL) { 1136 zp = sa_get_userdata(hdl); 1137 1138 1139 /* 1140 * Since "SA" does immediate eviction we 1141 * should never find a sa handle that doesn't 1142 * know about the znode. 1143 */ 1144 1145 ASSERT3P(zp, !=, NULL); 1146 1147 mutex_enter(&zp->z_lock); 1148 ASSERT3U(zp->z_id, ==, obj_num); 1149 if (zp->z_unlinked) { 1150 err = ENOENT; 1151 } else { 1152 VN_HOLD(ZTOV(zp)); 1153 *zpp = zp; 1154 err = 0; 1155 } 1156 sa_buf_rele(db, NULL); 1157 mutex_exit(&zp->z_lock); 1158 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1159 return (err); 1160 } 1161 1162 /* 1163 * Not found create new znode/vnode 1164 * but only if file exists. 1165 * 1166 * There is a small window where zfs_vget() could 1167 * find this object while a file create is still in 1168 * progress. This is checked for in zfs_znode_alloc() 1169 * 1170 * if zfs_znode_alloc() fails it will drop the hold on the 1171 * bonus buffer. 1172 */ 1173 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1174 doi.doi_bonus_type, NULL); 1175 if (zp == NULL) { 1176 err = ENOENT; 1177 } else { 1178 *zpp = zp; 1179 } 1180 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1181 return (err); 1182 } 1183 1184 int 1185 zfs_rezget(znode_t *zp) 1186 { 1187 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1188 dmu_object_info_t doi; 1189 dmu_buf_t *db; 1190 uint64_t obj_num = zp->z_id; 1191 uint64_t mode; 1192 sa_bulk_attr_t bulk[8]; 1193 int err; 1194 int count = 0; 1195 uint64_t gen; 1196 1197 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1198 1199 mutex_enter(&zp->z_acl_lock); 1200 if (zp->z_acl_cached) { 1201 zfs_acl_free(zp->z_acl_cached); 1202 zp->z_acl_cached = NULL; 1203 } 1204 1205 mutex_exit(&zp->z_acl_lock); 1206 ASSERT(zp->z_sa_hdl == NULL); 1207 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1208 if (err) { 1209 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1210 return (err); 1211 } 1212 1213 dmu_object_info_from_db(db, &doi); 1214 if (doi.doi_bonus_type != DMU_OT_SA && 1215 (doi.doi_bonus_type != DMU_OT_ZNODE || 1216 (doi.doi_bonus_type == DMU_OT_ZNODE && 1217 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1218 sa_buf_rele(db, NULL); 1219 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1220 return (EINVAL); 1221 } 1222 1223 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1224 1225 /* reload cached values */ 1226 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1227 &gen, sizeof (gen)); 1228 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1229 &zp->z_size, sizeof (zp->z_size)); 1230 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1231 &zp->z_links, sizeof (zp->z_links)); 1232 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1233 &zp->z_pflags, sizeof (zp->z_pflags)); 1234 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1235 &zp->z_atime, sizeof (zp->z_atime)); 1236 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1237 &zp->z_uid, sizeof (zp->z_uid)); 1238 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1239 &zp->z_gid, sizeof (zp->z_gid)); 1240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1241 &mode, sizeof (mode)); 1242 1243 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1244 zfs_znode_dmu_fini(zp); 1245 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1246 return (EIO); 1247 } 1248 1249 zp->z_mode = mode; 1250 1251 if (gen != zp->z_gen) { 1252 zfs_znode_dmu_fini(zp); 1253 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1254 return (EIO); 1255 } 1256 1257 zp->z_unlinked = (zp->z_links == 0); 1258 zp->z_blksz = doi.doi_data_block_size; 1259 1260 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1261 1262 return (0); 1263 } 1264 1265 void 1266 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1267 { 1268 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1269 objset_t *os = zfsvfs->z_os; 1270 uint64_t obj = zp->z_id; 1271 uint64_t acl_obj = zfs_external_acl(zp); 1272 1273 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1274 if (acl_obj) { 1275 VERIFY(!zp->z_is_sa); 1276 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1277 } 1278 VERIFY(0 == dmu_object_free(os, obj, tx)); 1279 zfs_znode_dmu_fini(zp); 1280 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1281 zfs_znode_free(zp); 1282 } 1283 1284 void 1285 zfs_zinactive(znode_t *zp) 1286 { 1287 vnode_t *vp = ZTOV(zp); 1288 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1289 uint64_t z_id = zp->z_id; 1290 1291 ASSERT(zp->z_sa_hdl); 1292 1293 /* 1294 * Don't allow a zfs_zget() while were trying to release this znode 1295 */ 1296 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1297 1298 mutex_enter(&zp->z_lock); 1299 mutex_enter(&vp->v_lock); 1300 vp->v_count--; 1301 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1302 /* 1303 * If the hold count is greater than zero, somebody has 1304 * obtained a new reference on this znode while we were 1305 * processing it here, so we are done. If we still have 1306 * mapped pages then we are also done, since we don't 1307 * want to inactivate the znode until the pages get pushed. 1308 * 1309 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1310 * this seems like it would leave the znode hanging with 1311 * no chance to go inactive... 1312 */ 1313 mutex_exit(&vp->v_lock); 1314 mutex_exit(&zp->z_lock); 1315 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1316 return; 1317 } 1318 mutex_exit(&vp->v_lock); 1319 1320 /* 1321 * If this was the last reference to a file with no links, 1322 * remove the file from the file system. 1323 */ 1324 if (zp->z_unlinked) { 1325 mutex_exit(&zp->z_lock); 1326 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1327 zfs_rmnode(zp); 1328 return; 1329 } 1330 1331 mutex_exit(&zp->z_lock); 1332 zfs_znode_dmu_fini(zp); 1333 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1334 zfs_znode_free(zp); 1335 } 1336 1337 void 1338 zfs_znode_free(znode_t *zp) 1339 { 1340 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1341 1342 vn_invalid(ZTOV(zp)); 1343 1344 ASSERT(ZTOV(zp)->v_count == 0); 1345 1346 mutex_enter(&zfsvfs->z_znodes_lock); 1347 POINTER_INVALIDATE(&zp->z_zfsvfs); 1348 list_remove(&zfsvfs->z_all_znodes, zp); 1349 mutex_exit(&zfsvfs->z_znodes_lock); 1350 1351 if (zp->z_acl_cached) { 1352 zfs_acl_free(zp->z_acl_cached); 1353 zp->z_acl_cached = NULL; 1354 } 1355 1356 kmem_cache_free(znode_cache, zp); 1357 1358 VFS_RELE(zfsvfs->z_vfs); 1359 } 1360 1361 void 1362 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1363 uint64_t ctime[2], boolean_t have_tx) 1364 { 1365 timestruc_t now; 1366 1367 gethrestime(&now); 1368 1369 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1370 zp->z_atime_dirty = 0; 1371 zp->z_seq++; 1372 } else { 1373 zp->z_atime_dirty = 1; 1374 } 1375 1376 if (flag & AT_ATIME) { 1377 ZFS_TIME_ENCODE(&now, zp->z_atime); 1378 } 1379 1380 if (flag & AT_MTIME) { 1381 ZFS_TIME_ENCODE(&now, mtime); 1382 if (zp->z_zfsvfs->z_use_fuids) { 1383 zp->z_pflags |= (ZFS_ARCHIVE | 1384 ZFS_AV_MODIFIED); 1385 } 1386 } 1387 1388 if (flag & AT_CTIME) { 1389 ZFS_TIME_ENCODE(&now, ctime); 1390 if (zp->z_zfsvfs->z_use_fuids) 1391 zp->z_pflags |= ZFS_ARCHIVE; 1392 } 1393 } 1394 1395 /* 1396 * Grow the block size for a file. 1397 * 1398 * IN: zp - znode of file to free data in. 1399 * size - requested block size 1400 * tx - open transaction. 1401 * 1402 * NOTE: this function assumes that the znode is write locked. 1403 */ 1404 void 1405 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1406 { 1407 int error; 1408 u_longlong_t dummy; 1409 1410 if (size <= zp->z_blksz) 1411 return; 1412 /* 1413 * If the file size is already greater than the current blocksize, 1414 * we will not grow. If there is more than one block in a file, 1415 * the blocksize cannot change. 1416 */ 1417 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1418 return; 1419 1420 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1421 size, 0, tx); 1422 1423 if (error == ENOTSUP) 1424 return; 1425 ASSERT0(error); 1426 1427 /* What blocksize did we actually get? */ 1428 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1429 } 1430 1431 /* 1432 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1433 * be calling back into the fs for a putpage(). E.g.: when truncating 1434 * a file, the pages being "thrown away* don't need to be written out. 1435 */ 1436 /* ARGSUSED */ 1437 static int 1438 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1439 int flags, cred_t *cr) 1440 { 1441 ASSERT(0); 1442 return (0); 1443 } 1444 1445 /* 1446 * Increase the file length 1447 * 1448 * IN: zp - znode of file to free data in. 1449 * end - new end-of-file 1450 * 1451 * RETURN: 0 if success 1452 * error code if failure 1453 */ 1454 static int 1455 zfs_extend(znode_t *zp, uint64_t end) 1456 { 1457 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1458 dmu_tx_t *tx; 1459 rl_t *rl; 1460 uint64_t newblksz; 1461 int error; 1462 1463 /* 1464 * We will change zp_size, lock the whole file. 1465 */ 1466 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1467 1468 /* 1469 * Nothing to do if file already at desired length. 1470 */ 1471 if (end <= zp->z_size) { 1472 zfs_range_unlock(rl); 1473 return (0); 1474 } 1475 top: 1476 tx = dmu_tx_create(zfsvfs->z_os); 1477 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1478 zfs_sa_upgrade_txholds(tx, zp); 1479 if (end > zp->z_blksz && 1480 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1481 /* 1482 * We are growing the file past the current block size. 1483 */ 1484 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1485 ASSERT(!ISP2(zp->z_blksz)); 1486 newblksz = MIN(end, SPA_MAXBLOCKSIZE); 1487 } else { 1488 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1489 } 1490 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1491 } else { 1492 newblksz = 0; 1493 } 1494 1495 error = dmu_tx_assign(tx, TXG_NOWAIT); 1496 if (error) { 1497 if (error == ERESTART) { 1498 dmu_tx_wait(tx); 1499 dmu_tx_abort(tx); 1500 goto top; 1501 } 1502 dmu_tx_abort(tx); 1503 zfs_range_unlock(rl); 1504 return (error); 1505 } 1506 1507 if (newblksz) 1508 zfs_grow_blocksize(zp, newblksz, tx); 1509 1510 zp->z_size = end; 1511 1512 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1513 &zp->z_size, sizeof (zp->z_size), tx)); 1514 1515 zfs_range_unlock(rl); 1516 1517 dmu_tx_commit(tx); 1518 1519 return (0); 1520 } 1521 1522 /* 1523 * Free space in a file. 1524 * 1525 * IN: zp - znode of file to free data in. 1526 * off - start of section to free. 1527 * len - length of section to free. 1528 * 1529 * RETURN: 0 if success 1530 * error code if failure 1531 */ 1532 static int 1533 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1534 { 1535 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1536 rl_t *rl; 1537 int error; 1538 1539 /* 1540 * Lock the range being freed. 1541 */ 1542 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1543 1544 /* 1545 * Nothing to do if file already at desired length. 1546 */ 1547 if (off >= zp->z_size) { 1548 zfs_range_unlock(rl); 1549 return (0); 1550 } 1551 1552 if (off + len > zp->z_size) 1553 len = zp->z_size - off; 1554 1555 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1556 1557 zfs_range_unlock(rl); 1558 1559 return (error); 1560 } 1561 1562 /* 1563 * Truncate a file 1564 * 1565 * IN: zp - znode of file to free data in. 1566 * end - new end-of-file. 1567 * 1568 * RETURN: 0 if success 1569 * error code if failure 1570 */ 1571 static int 1572 zfs_trunc(znode_t *zp, uint64_t end) 1573 { 1574 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1575 vnode_t *vp = ZTOV(zp); 1576 dmu_tx_t *tx; 1577 rl_t *rl; 1578 int error; 1579 sa_bulk_attr_t bulk[2]; 1580 int count = 0; 1581 1582 /* 1583 * We will change zp_size, lock the whole file. 1584 */ 1585 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1586 1587 /* 1588 * Nothing to do if file already at desired length. 1589 */ 1590 if (end >= zp->z_size) { 1591 zfs_range_unlock(rl); 1592 return (0); 1593 } 1594 1595 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1596 if (error) { 1597 zfs_range_unlock(rl); 1598 return (error); 1599 } 1600 top: 1601 tx = dmu_tx_create(zfsvfs->z_os); 1602 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1603 zfs_sa_upgrade_txholds(tx, zp); 1604 error = dmu_tx_assign(tx, TXG_NOWAIT); 1605 if (error) { 1606 if (error == ERESTART) { 1607 dmu_tx_wait(tx); 1608 dmu_tx_abort(tx); 1609 goto top; 1610 } 1611 dmu_tx_abort(tx); 1612 zfs_range_unlock(rl); 1613 return (error); 1614 } 1615 1616 zp->z_size = end; 1617 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1618 NULL, &zp->z_size, sizeof (zp->z_size)); 1619 1620 if (end == 0) { 1621 zp->z_pflags &= ~ZFS_SPARSE; 1622 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1623 NULL, &zp->z_pflags, 8); 1624 } 1625 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1626 1627 dmu_tx_commit(tx); 1628 1629 /* 1630 * Clear any mapped pages in the truncated region. This has to 1631 * happen outside of the transaction to avoid the possibility of 1632 * a deadlock with someone trying to push a page that we are 1633 * about to invalidate. 1634 */ 1635 if (vn_has_cached_data(vp)) { 1636 page_t *pp; 1637 uint64_t start = end & PAGEMASK; 1638 int poff = end & PAGEOFFSET; 1639 1640 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1641 /* 1642 * We need to zero a partial page. 1643 */ 1644 pagezero(pp, poff, PAGESIZE - poff); 1645 start += PAGESIZE; 1646 page_unlock(pp); 1647 } 1648 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1649 B_INVAL | B_TRUNC, NULL); 1650 ASSERT(error == 0); 1651 } 1652 1653 zfs_range_unlock(rl); 1654 1655 return (0); 1656 } 1657 1658 /* 1659 * Free space in a file 1660 * 1661 * IN: zp - znode of file to free data in. 1662 * off - start of range 1663 * len - end of range (0 => EOF) 1664 * flag - current file open mode flags. 1665 * log - TRUE if this action should be logged 1666 * 1667 * RETURN: 0 if success 1668 * error code if failure 1669 */ 1670 int 1671 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1672 { 1673 vnode_t *vp = ZTOV(zp); 1674 dmu_tx_t *tx; 1675 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1676 zilog_t *zilog = zfsvfs->z_log; 1677 uint64_t mode; 1678 uint64_t mtime[2], ctime[2]; 1679 sa_bulk_attr_t bulk[3]; 1680 int count = 0; 1681 int error; 1682 1683 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1684 sizeof (mode))) != 0) 1685 return (error); 1686 1687 if (off > zp->z_size) { 1688 error = zfs_extend(zp, off+len); 1689 if (error == 0 && log) 1690 goto log; 1691 else 1692 return (error); 1693 } 1694 1695 /* 1696 * Check for any locks in the region to be freed. 1697 */ 1698 1699 if (MANDLOCK(vp, (mode_t)mode)) { 1700 uint64_t length = (len ? len : zp->z_size - off); 1701 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1702 return (error); 1703 } 1704 1705 if (len == 0) { 1706 error = zfs_trunc(zp, off); 1707 } else { 1708 if ((error = zfs_free_range(zp, off, len)) == 0 && 1709 off + len > zp->z_size) 1710 error = zfs_extend(zp, off+len); 1711 } 1712 if (error || !log) 1713 return (error); 1714 log: 1715 tx = dmu_tx_create(zfsvfs->z_os); 1716 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1717 zfs_sa_upgrade_txholds(tx, zp); 1718 error = dmu_tx_assign(tx, TXG_NOWAIT); 1719 if (error) { 1720 if (error == ERESTART) { 1721 dmu_tx_wait(tx); 1722 dmu_tx_abort(tx); 1723 goto log; 1724 } 1725 dmu_tx_abort(tx); 1726 return (error); 1727 } 1728 1729 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1730 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1731 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1732 NULL, &zp->z_pflags, 8); 1733 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1734 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1735 ASSERT(error == 0); 1736 1737 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1738 1739 dmu_tx_commit(tx); 1740 return (0); 1741 } 1742 1743 void 1744 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1745 { 1746 zfsvfs_t zfsvfs; 1747 uint64_t moid, obj, sa_obj, version; 1748 uint64_t sense = ZFS_CASE_SENSITIVE; 1749 uint64_t norm = 0; 1750 nvpair_t *elem; 1751 int error; 1752 int i; 1753 znode_t *rootzp = NULL; 1754 vnode_t *vp; 1755 vattr_t vattr; 1756 znode_t *zp; 1757 zfs_acl_ids_t acl_ids; 1758 1759 /* 1760 * First attempt to create master node. 1761 */ 1762 /* 1763 * In an empty objset, there are no blocks to read and thus 1764 * there can be no i/o errors (which we assert below). 1765 */ 1766 moid = MASTER_NODE_OBJ; 1767 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1768 DMU_OT_NONE, 0, tx); 1769 ASSERT(error == 0); 1770 1771 /* 1772 * Set starting attributes. 1773 */ 1774 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1775 elem = NULL; 1776 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1777 /* For the moment we expect all zpl props to be uint64_ts */ 1778 uint64_t val; 1779 char *name; 1780 1781 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1782 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1783 name = nvpair_name(elem); 1784 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1785 if (val < version) 1786 version = val; 1787 } else { 1788 error = zap_update(os, moid, name, 8, 1, &val, tx); 1789 } 1790 ASSERT(error == 0); 1791 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1792 norm = val; 1793 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1794 sense = val; 1795 } 1796 ASSERT(version != 0); 1797 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1798 1799 /* 1800 * Create zap object used for SA attribute registration 1801 */ 1802 1803 if (version >= ZPL_VERSION_SA) { 1804 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1805 DMU_OT_NONE, 0, tx); 1806 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1807 ASSERT(error == 0); 1808 } else { 1809 sa_obj = 0; 1810 } 1811 /* 1812 * Create a delete queue. 1813 */ 1814 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1815 1816 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1817 ASSERT(error == 0); 1818 1819 /* 1820 * Create root znode. Create minimal znode/vnode/zfsvfs 1821 * to allow zfs_mknode to work. 1822 */ 1823 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1824 vattr.va_type = VDIR; 1825 vattr.va_mode = S_IFDIR|0755; 1826 vattr.va_uid = crgetuid(cr); 1827 vattr.va_gid = crgetgid(cr); 1828 1829 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1830 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1831 rootzp->z_moved = 0; 1832 rootzp->z_unlinked = 0; 1833 rootzp->z_atime_dirty = 0; 1834 rootzp->z_is_sa = USE_SA(version, os); 1835 1836 vp = ZTOV(rootzp); 1837 vn_reinit(vp); 1838 vp->v_type = VDIR; 1839 1840 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1841 1842 zfsvfs.z_os = os; 1843 zfsvfs.z_parent = &zfsvfs; 1844 zfsvfs.z_version = version; 1845 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1846 zfsvfs.z_use_sa = USE_SA(version, os); 1847 zfsvfs.z_norm = norm; 1848 1849 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1850 &zfsvfs.z_attr_table); 1851 1852 ASSERT(error == 0); 1853 1854 /* 1855 * Fold case on file systems that are always or sometimes case 1856 * insensitive. 1857 */ 1858 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1859 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1860 1861 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1862 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1863 offsetof(znode_t, z_link_node)); 1864 1865 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1866 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1867 1868 rootzp->z_zfsvfs = &zfsvfs; 1869 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1870 cr, NULL, &acl_ids)); 1871 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1872 ASSERT3P(zp, ==, rootzp); 1873 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1874 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1875 ASSERT(error == 0); 1876 zfs_acl_ids_free(&acl_ids); 1877 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1878 1879 ZTOV(rootzp)->v_count = 0; 1880 sa_handle_destroy(rootzp->z_sa_hdl); 1881 kmem_cache_free(znode_cache, rootzp); 1882 1883 /* 1884 * Create shares directory 1885 */ 1886 1887 error = zfs_create_share_dir(&zfsvfs, tx); 1888 1889 ASSERT(error == 0); 1890 1891 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1892 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1893 } 1894 1895 #endif /* _KERNEL */ 1896 1897 static int 1898 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1899 { 1900 uint64_t sa_obj = 0; 1901 int error; 1902 1903 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1904 if (error != 0 && error != ENOENT) 1905 return (error); 1906 1907 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1908 return (error); 1909 } 1910 1911 static int 1912 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1913 dmu_buf_t **db, void *tag) 1914 { 1915 dmu_object_info_t doi; 1916 int error; 1917 1918 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1919 return (error); 1920 1921 dmu_object_info_from_db(*db, &doi); 1922 if ((doi.doi_bonus_type != DMU_OT_SA && 1923 doi.doi_bonus_type != DMU_OT_ZNODE) || 1924 doi.doi_bonus_type == DMU_OT_ZNODE && 1925 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1926 sa_buf_rele(*db, tag); 1927 return (ENOTSUP); 1928 } 1929 1930 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1931 if (error != 0) { 1932 sa_buf_rele(*db, tag); 1933 return (error); 1934 } 1935 1936 return (0); 1937 } 1938 1939 void 1940 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1941 { 1942 sa_handle_destroy(hdl); 1943 sa_buf_rele(db, tag); 1944 } 1945 1946 /* 1947 * Given an object number, return its parent object number and whether 1948 * or not the object is an extended attribute directory. 1949 */ 1950 static int 1951 zfs_obj_to_pobj(sa_handle_t *hdl, sa_attr_type_t *sa_table, uint64_t *pobjp, 1952 int *is_xattrdir) 1953 { 1954 uint64_t parent; 1955 uint64_t pflags; 1956 uint64_t mode; 1957 sa_bulk_attr_t bulk[3]; 1958 int count = 0; 1959 int error; 1960 1961 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1962 &parent, sizeof (parent)); 1963 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1964 &pflags, sizeof (pflags)); 1965 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1966 &mode, sizeof (mode)); 1967 1968 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1969 return (error); 1970 1971 *pobjp = parent; 1972 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1973 1974 return (0); 1975 } 1976 1977 /* 1978 * Given an object number, return some zpl level statistics 1979 */ 1980 static int 1981 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1982 zfs_stat_t *sb) 1983 { 1984 sa_bulk_attr_t bulk[4]; 1985 int count = 0; 1986 1987 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1988 &sb->zs_mode, sizeof (sb->zs_mode)); 1989 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1990 &sb->zs_gen, sizeof (sb->zs_gen)); 1991 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1992 &sb->zs_links, sizeof (sb->zs_links)); 1993 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 1994 &sb->zs_ctime, sizeof (sb->zs_ctime)); 1995 1996 return (sa_bulk_lookup(hdl, bulk, count)); 1997 } 1998 1999 static int 2000 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2001 sa_attr_type_t *sa_table, char *buf, int len) 2002 { 2003 sa_handle_t *sa_hdl; 2004 sa_handle_t *prevhdl = NULL; 2005 dmu_buf_t *prevdb = NULL; 2006 dmu_buf_t *sa_db = NULL; 2007 char *path = buf + len - 1; 2008 int error; 2009 2010 *path = '\0'; 2011 sa_hdl = hdl; 2012 2013 for (;;) { 2014 uint64_t pobj; 2015 char component[MAXNAMELEN + 2]; 2016 size_t complen; 2017 int is_xattrdir; 2018 2019 if (prevdb) 2020 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2021 2022 if ((error = zfs_obj_to_pobj(sa_hdl, sa_table, &pobj, 2023 &is_xattrdir)) != 0) 2024 break; 2025 2026 if (pobj == obj) { 2027 if (path[0] != '/') 2028 *--path = '/'; 2029 break; 2030 } 2031 2032 component[0] = '/'; 2033 if (is_xattrdir) { 2034 (void) sprintf(component + 1, "<xattrdir>"); 2035 } else { 2036 error = zap_value_search(osp, pobj, obj, 2037 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2038 if (error != 0) 2039 break; 2040 } 2041 2042 complen = strlen(component); 2043 path -= complen; 2044 ASSERT(path >= buf); 2045 bcopy(component, path, complen); 2046 obj = pobj; 2047 2048 if (sa_hdl != hdl) { 2049 prevhdl = sa_hdl; 2050 prevdb = sa_db; 2051 } 2052 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2053 if (error != 0) { 2054 sa_hdl = prevhdl; 2055 sa_db = prevdb; 2056 break; 2057 } 2058 } 2059 2060 if (sa_hdl != NULL && sa_hdl != hdl) { 2061 ASSERT(sa_db != NULL); 2062 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2063 } 2064 2065 if (error == 0) 2066 (void) memmove(buf, path, buf + len - path); 2067 2068 return (error); 2069 } 2070 2071 int 2072 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2073 { 2074 sa_attr_type_t *sa_table; 2075 sa_handle_t *hdl; 2076 dmu_buf_t *db; 2077 int error; 2078 2079 error = zfs_sa_setup(osp, &sa_table); 2080 if (error != 0) 2081 return (error); 2082 2083 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2084 if (error != 0) 2085 return (error); 2086 2087 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2088 2089 zfs_release_sa_handle(hdl, db, FTAG); 2090 return (error); 2091 } 2092 2093 int 2094 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2095 char *buf, int len) 2096 { 2097 char *path = buf + len - 1; 2098 sa_attr_type_t *sa_table; 2099 sa_handle_t *hdl; 2100 dmu_buf_t *db; 2101 int error; 2102 2103 *path = '\0'; 2104 2105 error = zfs_sa_setup(osp, &sa_table); 2106 if (error != 0) 2107 return (error); 2108 2109 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2110 if (error != 0) 2111 return (error); 2112 2113 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2114 if (error != 0) { 2115 zfs_release_sa_handle(hdl, db, FTAG); 2116 return (error); 2117 } 2118 2119 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2120 2121 zfs_release_sa_handle(hdl, db, FTAG); 2122 return (error); 2123 }