1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 */ 25 26 27 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/types.h> 33 #include <sys/param.h> 34 #include <sys/time.h> 35 #include <sys/systm.h> 36 #include <sys/sysmacros.h> 37 #include <sys/resource.h> 38 #include <sys/vfs.h> 39 #include <sys/vfs_opreg.h> 40 #include <sys/vnode.h> 41 #include <sys/file.h> 42 #include <sys/stat.h> 43 #include <sys/kmem.h> 44 #include <sys/taskq.h> 45 #include <sys/uio.h> 46 #include <sys/vmsystm.h> 47 #include <sys/atomic.h> 48 #include <sys/vm.h> 49 #include <vm/seg_vn.h> 50 #include <vm/pvn.h> 51 #include <vm/as.h> 52 #include <vm/kpm.h> 53 #include <vm/seg_kpm.h> 54 #include <sys/mman.h> 55 #include <sys/pathname.h> 56 #include <sys/cmn_err.h> 57 #include <sys/errno.h> 58 #include <sys/unistd.h> 59 #include <sys/zfs_dir.h> 60 #include <sys/zfs_acl.h> 61 #include <sys/zfs_ioctl.h> 62 #include <sys/fs/zfs.h> 63 #include <sys/dmu.h> 64 #include <sys/dmu_objset.h> 65 #include <sys/spa.h> 66 #include <sys/txg.h> 67 #include <sys/dbuf.h> 68 #include <sys/zap.h> 69 #include <sys/sa.h> 70 #include <sys/dirent.h> 71 #include <sys/policy.h> 72 #include <sys/sunddi.h> 73 #include <sys/filio.h> 74 #include <sys/sid.h> 75 #include "fs/fs_subr.h" 76 #include <sys/zfs_ctldir.h> 77 #include <sys/zfs_fuid.h> 78 #include <sys/zfs_sa.h> 79 #include <sys/dnlc.h> 80 #include <sys/zfs_rlock.h> 81 #include <sys/extdirent.h> 82 #include <sys/kidmap.h> 83 #include <sys/cred.h> 84 #include <sys/attr.h> 85 86 /* 87 * Programming rules. 88 * 89 * Each vnode op performs some logical unit of work. To do this, the ZPL must 90 * properly lock its in-core state, create a DMU transaction, do the work, 91 * record this work in the intent log (ZIL), commit the DMU transaction, 92 * and wait for the intent log to commit if it is a synchronous operation. 93 * Moreover, the vnode ops must work in both normal and log replay context. 94 * The ordering of events is important to avoid deadlocks and references 95 * to freed memory. The example below illustrates the following Big Rules: 96 * 97 * (1) A check must be made in each zfs thread for a mounted file system. 98 * This is done avoiding races using ZFS_ENTER(zfsvfs). 99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 101 * can return EIO from the calling function. 102 * 103 * (2) VN_RELE() should always be the last thing except for zil_commit() 104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 105 * First, if it's the last reference, the vnode/znode 106 * can be freed, so the zp may point to freed memory. Second, the last 107 * reference will call zfs_zinactive(), which may induce a lot of work -- 108 * pushing cached pages (which acquires range locks) and syncing out 109 * cached atime changes. Third, zfs_zinactive() may require a new tx, 110 * which could deadlock the system if you were already holding one. 111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 112 * 113 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 114 * as they can span dmu_tx_assign() calls. 115 * 116 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 117 * This is critical because we don't want to block while holding locks. 118 * Note, in particular, that if a lock is sometimes acquired before 119 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 120 * use a non-blocking assign can deadlock the system. The scenario: 121 * 122 * Thread A has grabbed a lock before calling dmu_tx_assign(). 123 * Thread B is in an already-assigned tx, and blocks for this lock. 124 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 125 * forever, because the previous txg can't quiesce until B's tx commits. 126 * 127 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 128 * then drop all locks, call dmu_tx_wait(), and try again. 129 * 130 * (5) If the operation succeeded, generate the intent log entry for it 131 * before dropping locks. This ensures that the ordering of events 132 * in the intent log matches the order in which they actually occurred. 133 * During ZIL replay the zfs_log_* functions will update the sequence 134 * number to indicate the zil transaction has replayed. 135 * 136 * (6) At the end of each vnode op, the DMU tx must always commit, 137 * regardless of whether there were any errors. 138 * 139 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 140 * to ensure that synchronous semantics are provided when necessary. 141 * 142 * In general, this is how things should be ordered in each vnode op: 143 * 144 * ZFS_ENTER(zfsvfs); // exit if unmounted 145 * top: 146 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 147 * rw_enter(...); // grab any other locks you need 148 * tx = dmu_tx_create(...); // get DMU tx 149 * dmu_tx_hold_*(); // hold each object you might modify 150 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 151 * if (error) { 152 * rw_exit(...); // drop locks 153 * zfs_dirent_unlock(dl); // unlock directory entry 154 * VN_RELE(...); // release held vnodes 155 * if (error == ERESTART) { 156 * dmu_tx_wait(tx); 157 * dmu_tx_abort(tx); 158 * goto top; 159 * } 160 * dmu_tx_abort(tx); // abort DMU tx 161 * ZFS_EXIT(zfsvfs); // finished in zfs 162 * return (error); // really out of space 163 * } 164 * error = do_real_work(); // do whatever this VOP does 165 * if (error == 0) 166 * zfs_log_*(...); // on success, make ZIL entry 167 * dmu_tx_commit(tx); // commit DMU tx -- error or not 168 * rw_exit(...); // drop locks 169 * zfs_dirent_unlock(dl); // unlock directory entry 170 * VN_RELE(...); // release held vnodes 171 * zil_commit(zilog, foid); // synchronous when necessary 172 * ZFS_EXIT(zfsvfs); // finished in zfs 173 * return (error); // done, report error 174 */ 175 176 /* ARGSUSED */ 177 static int 178 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 179 { 180 znode_t *zp = VTOZ(*vpp); 181 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 182 183 ZFS_ENTER(zfsvfs); 184 ZFS_VERIFY_ZP(zp); 185 186 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 187 ((flag & FAPPEND) == 0)) { 188 ZFS_EXIT(zfsvfs); 189 return (EPERM); 190 } 191 192 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 193 ZTOV(zp)->v_type == VREG && 194 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 195 if (fs_vscan(*vpp, cr, 0) != 0) { 196 ZFS_EXIT(zfsvfs); 197 return (EACCES); 198 } 199 } 200 201 /* Keep a count of the synchronous opens in the znode */ 202 if (flag & (FSYNC | FDSYNC)) 203 atomic_inc_32(&zp->z_sync_cnt); 204 205 ZFS_EXIT(zfsvfs); 206 return (0); 207 } 208 209 /* ARGSUSED */ 210 static int 211 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 212 caller_context_t *ct) 213 { 214 znode_t *zp = VTOZ(vp); 215 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 216 217 /* 218 * Clean up any locks held by this process on the vp. 219 */ 220 cleanlocks(vp, ddi_get_pid(), 0); 221 cleanshares(vp, ddi_get_pid()); 222 223 ZFS_ENTER(zfsvfs); 224 ZFS_VERIFY_ZP(zp); 225 226 /* Decrement the synchronous opens in the znode */ 227 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 228 atomic_dec_32(&zp->z_sync_cnt); 229 230 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 231 ZTOV(zp)->v_type == VREG && 232 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 233 VERIFY(fs_vscan(vp, cr, 1) == 0); 234 235 ZFS_EXIT(zfsvfs); 236 return (0); 237 } 238 239 /* 240 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 241 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 242 */ 243 static int 244 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 245 { 246 znode_t *zp = VTOZ(vp); 247 uint64_t noff = (uint64_t)*off; /* new offset */ 248 uint64_t file_sz; 249 int error; 250 boolean_t hole; 251 252 file_sz = zp->z_size; 253 if (noff >= file_sz) { 254 return (ENXIO); 255 } 256 257 if (cmd == _FIO_SEEK_HOLE) 258 hole = B_TRUE; 259 else 260 hole = B_FALSE; 261 262 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 263 264 /* end of file? */ 265 if ((error == ESRCH) || (noff > file_sz)) { 266 /* 267 * Handle the virtual hole at the end of file. 268 */ 269 if (hole) { 270 *off = file_sz; 271 return (0); 272 } 273 return (ENXIO); 274 } 275 276 if (noff < *off) 277 return (error); 278 *off = noff; 279 return (error); 280 } 281 282 /* ARGSUSED */ 283 static int 284 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 285 int *rvalp, caller_context_t *ct) 286 { 287 offset_t off; 288 int error; 289 zfsvfs_t *zfsvfs; 290 znode_t *zp; 291 292 switch (com) { 293 case _FIOFFS: 294 return (zfs_sync(vp->v_vfsp, 0, cred)); 295 296 /* 297 * The following two ioctls are used by bfu. Faking out, 298 * necessary to avoid bfu errors. 299 */ 300 case _FIOGDIO: 301 case _FIOSDIO: 302 return (0); 303 304 case _FIO_SEEK_DATA: 305 case _FIO_SEEK_HOLE: 306 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 307 return (EFAULT); 308 309 zp = VTOZ(vp); 310 zfsvfs = zp->z_zfsvfs; 311 ZFS_ENTER(zfsvfs); 312 ZFS_VERIFY_ZP(zp); 313 314 /* offset parameter is in/out */ 315 error = zfs_holey(vp, com, &off); 316 ZFS_EXIT(zfsvfs); 317 if (error) 318 return (error); 319 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 320 return (EFAULT); 321 return (0); 322 } 323 return (ENOTTY); 324 } 325 326 /* 327 * Utility functions to map and unmap a single physical page. These 328 * are used to manage the mappable copies of ZFS file data, and therefore 329 * do not update ref/mod bits. 330 */ 331 caddr_t 332 zfs_map_page(page_t *pp, enum seg_rw rw) 333 { 334 if (kpm_enable) 335 return (hat_kpm_mapin(pp, 0)); 336 ASSERT(rw == S_READ || rw == S_WRITE); 337 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 338 (caddr_t)-1)); 339 } 340 341 void 342 zfs_unmap_page(page_t *pp, caddr_t addr) 343 { 344 if (kpm_enable) { 345 hat_kpm_mapout(pp, 0, addr); 346 } else { 347 ppmapout(addr); 348 } 349 } 350 351 /* 352 * When a file is memory mapped, we must keep the IO data synchronized 353 * between the DMU cache and the memory mapped pages. What this means: 354 * 355 * On Write: If we find a memory mapped page, we write to *both* 356 * the page and the dmu buffer. 357 */ 358 static void 359 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 360 { 361 int64_t off; 362 363 off = start & PAGEOFFSET; 364 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 365 page_t *pp; 366 uint64_t nbytes = MIN(PAGESIZE - off, len); 367 368 if (pp = page_lookup(vp, start, SE_SHARED)) { 369 caddr_t va; 370 371 va = zfs_map_page(pp, S_WRITE); 372 (void) dmu_read(os, oid, start+off, nbytes, va+off, 373 DMU_READ_PREFETCH); 374 zfs_unmap_page(pp, va); 375 page_unlock(pp); 376 } 377 len -= nbytes; 378 off = 0; 379 } 380 } 381 382 /* 383 * When a file is memory mapped, we must keep the IO data synchronized 384 * between the DMU cache and the memory mapped pages. What this means: 385 * 386 * On Read: We "read" preferentially from memory mapped pages, 387 * else we default from the dmu buffer. 388 * 389 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 390 * the file is memory mapped. 391 */ 392 static int 393 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 394 { 395 znode_t *zp = VTOZ(vp); 396 objset_t *os = zp->z_zfsvfs->z_os; 397 int64_t start, off; 398 int len = nbytes; 399 int error = 0; 400 401 start = uio->uio_loffset; 402 off = start & PAGEOFFSET; 403 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 404 page_t *pp; 405 uint64_t bytes = MIN(PAGESIZE - off, len); 406 407 if (pp = page_lookup(vp, start, SE_SHARED)) { 408 caddr_t va; 409 410 va = zfs_map_page(pp, S_READ); 411 error = uiomove(va + off, bytes, UIO_READ, uio); 412 zfs_unmap_page(pp, va); 413 page_unlock(pp); 414 } else { 415 error = dmu_read_uio(os, zp->z_id, uio, bytes); 416 } 417 len -= bytes; 418 off = 0; 419 if (error) 420 break; 421 } 422 return (error); 423 } 424 425 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 426 427 /* 428 * Read bytes from specified file into supplied buffer. 429 * 430 * IN: vp - vnode of file to be read from. 431 * uio - structure supplying read location, range info, 432 * and return buffer. 433 * ioflag - SYNC flags; used to provide FRSYNC semantics. 434 * cr - credentials of caller. 435 * ct - caller context 436 * 437 * OUT: uio - updated offset and range, buffer filled. 438 * 439 * RETURN: 0 if success 440 * error code if failure 441 * 442 * Side Effects: 443 * vp - atime updated if byte count > 0 444 */ 445 /* ARGSUSED */ 446 static int 447 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 448 { 449 znode_t *zp = VTOZ(vp); 450 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 451 objset_t *os; 452 ssize_t n, nbytes; 453 int error; 454 rl_t *rl; 455 xuio_t *xuio = NULL; 456 457 ZFS_ENTER(zfsvfs); 458 ZFS_VERIFY_ZP(zp); 459 os = zfsvfs->z_os; 460 461 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 462 ZFS_EXIT(zfsvfs); 463 return (EACCES); 464 } 465 466 /* 467 * Validate file offset 468 */ 469 if (uio->uio_loffset < (offset_t)0) { 470 ZFS_EXIT(zfsvfs); 471 return (EINVAL); 472 } 473 474 /* 475 * Fasttrack empty reads 476 */ 477 if (uio->uio_resid == 0) { 478 ZFS_EXIT(zfsvfs); 479 return (0); 480 } 481 482 /* 483 * Check for mandatory locks 484 */ 485 if (MANDMODE(zp->z_mode)) { 486 if (error = chklock(vp, FREAD, 487 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 488 ZFS_EXIT(zfsvfs); 489 return (error); 490 } 491 } 492 493 /* 494 * If we're in FRSYNC mode, sync out this znode before reading it. 495 */ 496 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 497 zil_commit(zfsvfs->z_log, zp->z_id); 498 499 /* 500 * Lock the range against changes. 501 */ 502 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 503 504 /* 505 * If we are reading past end-of-file we can skip 506 * to the end; but we might still need to set atime. 507 */ 508 if (uio->uio_loffset >= zp->z_size) { 509 error = 0; 510 goto out; 511 } 512 513 ASSERT(uio->uio_loffset < zp->z_size); 514 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 515 516 if ((uio->uio_extflg == UIO_XUIO) && 517 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 518 int nblk; 519 int blksz = zp->z_blksz; 520 uint64_t offset = uio->uio_loffset; 521 522 xuio = (xuio_t *)uio; 523 if ((ISP2(blksz))) { 524 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 525 blksz)) / blksz; 526 } else { 527 ASSERT(offset + n <= blksz); 528 nblk = 1; 529 } 530 (void) dmu_xuio_init(xuio, nblk); 531 532 if (vn_has_cached_data(vp)) { 533 /* 534 * For simplicity, we always allocate a full buffer 535 * even if we only expect to read a portion of a block. 536 */ 537 while (--nblk >= 0) { 538 (void) dmu_xuio_add(xuio, 539 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 540 blksz), 0, blksz); 541 } 542 } 543 } 544 545 while (n > 0) { 546 nbytes = MIN(n, zfs_read_chunk_size - 547 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 548 549 if (vn_has_cached_data(vp)) 550 error = mappedread(vp, nbytes, uio); 551 else 552 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 553 if (error) { 554 /* convert checksum errors into IO errors */ 555 if (error == ECKSUM) 556 error = EIO; 557 break; 558 } 559 560 n -= nbytes; 561 } 562 out: 563 zfs_range_unlock(rl); 564 565 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 566 ZFS_EXIT(zfsvfs); 567 return (error); 568 } 569 570 /* 571 * Write the bytes to a file. 572 * 573 * IN: vp - vnode of file to be written to. 574 * uio - structure supplying write location, range info, 575 * and data buffer. 576 * ioflag - FAPPEND flag set if in append mode. 577 * cr - credentials of caller. 578 * ct - caller context (NFS/CIFS fem monitor only) 579 * 580 * OUT: uio - updated offset and range. 581 * 582 * RETURN: 0 if success 583 * error code if failure 584 * 585 * Timestamps: 586 * vp - ctime|mtime updated if byte count > 0 587 */ 588 589 /* ARGSUSED */ 590 static int 591 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 592 { 593 znode_t *zp = VTOZ(vp); 594 rlim64_t limit = uio->uio_llimit; 595 ssize_t start_resid = uio->uio_resid; 596 ssize_t tx_bytes; 597 uint64_t end_size; 598 dmu_tx_t *tx; 599 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 600 zilog_t *zilog; 601 offset_t woff; 602 ssize_t n, nbytes; 603 rl_t *rl; 604 int max_blksz = zfsvfs->z_max_blksz; 605 int error; 606 arc_buf_t *abuf; 607 iovec_t *aiov; 608 xuio_t *xuio = NULL; 609 int i_iov = 0; 610 int iovcnt = uio->uio_iovcnt; 611 iovec_t *iovp = uio->uio_iov; 612 int write_eof; 613 int count = 0; 614 sa_bulk_attr_t bulk[4]; 615 uint64_t mtime[2], ctime[2]; 616 617 /* 618 * Fasttrack empty write 619 */ 620 n = start_resid; 621 if (n == 0) 622 return (0); 623 624 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 625 limit = MAXOFFSET_T; 626 627 ZFS_ENTER(zfsvfs); 628 ZFS_VERIFY_ZP(zp); 629 630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 631 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 632 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 633 &zp->z_size, 8); 634 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 635 &zp->z_pflags, 8); 636 637 /* 638 * If immutable or not appending then return EPERM 639 */ 640 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 641 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 642 (uio->uio_loffset < zp->z_size))) { 643 ZFS_EXIT(zfsvfs); 644 return (EPERM); 645 } 646 647 zilog = zfsvfs->z_log; 648 649 /* 650 * Validate file offset 651 */ 652 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 653 if (woff < 0) { 654 ZFS_EXIT(zfsvfs); 655 return (EINVAL); 656 } 657 658 /* 659 * Check for mandatory locks before calling zfs_range_lock() 660 * in order to prevent a deadlock with locks set via fcntl(). 661 */ 662 if (MANDMODE((mode_t)zp->z_mode) && 663 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 664 ZFS_EXIT(zfsvfs); 665 return (error); 666 } 667 668 /* 669 * Pre-fault the pages to ensure slow (eg NFS) pages 670 * don't hold up txg. 671 * Skip this if uio contains loaned arc_buf. 672 */ 673 if ((uio->uio_extflg == UIO_XUIO) && 674 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 675 xuio = (xuio_t *)uio; 676 else 677 uio_prefaultpages(MIN(n, max_blksz), uio); 678 679 /* 680 * If in append mode, set the io offset pointer to eof. 681 */ 682 if (ioflag & FAPPEND) { 683 /* 684 * Obtain an appending range lock to guarantee file append 685 * semantics. We reset the write offset once we have the lock. 686 */ 687 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 688 woff = rl->r_off; 689 if (rl->r_len == UINT64_MAX) { 690 /* 691 * We overlocked the file because this write will cause 692 * the file block size to increase. 693 * Note that zp_size cannot change with this lock held. 694 */ 695 woff = zp->z_size; 696 } 697 uio->uio_loffset = woff; 698 } else { 699 /* 700 * Note that if the file block size will change as a result of 701 * this write, then this range lock will lock the entire file 702 * so that we can re-write the block safely. 703 */ 704 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 705 } 706 707 if (woff >= limit) { 708 zfs_range_unlock(rl); 709 ZFS_EXIT(zfsvfs); 710 return (EFBIG); 711 } 712 713 if ((woff + n) > limit || woff > (limit - n)) 714 n = limit - woff; 715 716 /* Will this write extend the file length? */ 717 write_eof = (woff + n > zp->z_size); 718 719 end_size = MAX(zp->z_size, woff + n); 720 721 /* 722 * Write the file in reasonable size chunks. Each chunk is written 723 * in a separate transaction; this keeps the intent log records small 724 * and allows us to do more fine-grained space accounting. 725 */ 726 while (n > 0) { 727 abuf = NULL; 728 woff = uio->uio_loffset; 729 again: 730 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 731 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 732 if (abuf != NULL) 733 dmu_return_arcbuf(abuf); 734 error = EDQUOT; 735 break; 736 } 737 738 if (xuio && abuf == NULL) { 739 ASSERT(i_iov < iovcnt); 740 aiov = &iovp[i_iov]; 741 abuf = dmu_xuio_arcbuf(xuio, i_iov); 742 dmu_xuio_clear(xuio, i_iov); 743 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 744 iovec_t *, aiov, arc_buf_t *, abuf); 745 ASSERT((aiov->iov_base == abuf->b_data) || 746 ((char *)aiov->iov_base - (char *)abuf->b_data + 747 aiov->iov_len == arc_buf_size(abuf))); 748 i_iov++; 749 } else if (abuf == NULL && n >= max_blksz && 750 woff >= zp->z_size && 751 P2PHASE(woff, max_blksz) == 0 && 752 zp->z_blksz == max_blksz) { 753 /* 754 * This write covers a full block. "Borrow" a buffer 755 * from the dmu so that we can fill it before we enter 756 * a transaction. This avoids the possibility of 757 * holding up the transaction if the data copy hangs 758 * up on a pagefault (e.g., from an NFS server mapping). 759 */ 760 size_t cbytes; 761 762 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 763 max_blksz); 764 ASSERT(abuf != NULL); 765 ASSERT(arc_buf_size(abuf) == max_blksz); 766 if (error = uiocopy(abuf->b_data, max_blksz, 767 UIO_WRITE, uio, &cbytes)) { 768 dmu_return_arcbuf(abuf); 769 break; 770 } 771 ASSERT(cbytes == max_blksz); 772 } 773 774 /* 775 * Start a transaction. 776 */ 777 tx = dmu_tx_create(zfsvfs->z_os); 778 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 779 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 780 zfs_sa_upgrade_txholds(tx, zp); 781 error = dmu_tx_assign(tx, TXG_NOWAIT); 782 if (error) { 783 if (error == ERESTART) { 784 dmu_tx_wait(tx); 785 dmu_tx_abort(tx); 786 goto again; 787 } 788 dmu_tx_abort(tx); 789 if (abuf != NULL) 790 dmu_return_arcbuf(abuf); 791 break; 792 } 793 794 /* 795 * If zfs_range_lock() over-locked we grow the blocksize 796 * and then reduce the lock range. This will only happen 797 * on the first iteration since zfs_range_reduce() will 798 * shrink down r_len to the appropriate size. 799 */ 800 if (rl->r_len == UINT64_MAX) { 801 uint64_t new_blksz; 802 803 if (zp->z_blksz > max_blksz) { 804 ASSERT(!ISP2(zp->z_blksz)); 805 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 806 } else { 807 new_blksz = MIN(end_size, max_blksz); 808 } 809 zfs_grow_blocksize(zp, new_blksz, tx); 810 zfs_range_reduce(rl, woff, n); 811 } 812 813 /* 814 * XXX - should we really limit each write to z_max_blksz? 815 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 816 */ 817 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 818 819 if (abuf == NULL) { 820 tx_bytes = uio->uio_resid; 821 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 822 uio, nbytes, tx); 823 tx_bytes -= uio->uio_resid; 824 } else { 825 tx_bytes = nbytes; 826 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 827 /* 828 * If this is not a full block write, but we are 829 * extending the file past EOF and this data starts 830 * block-aligned, use assign_arcbuf(). Otherwise, 831 * write via dmu_write(). 832 */ 833 if (tx_bytes < max_blksz && (!write_eof || 834 aiov->iov_base != abuf->b_data)) { 835 ASSERT(xuio); 836 dmu_write(zfsvfs->z_os, zp->z_id, woff, 837 aiov->iov_len, aiov->iov_base, tx); 838 dmu_return_arcbuf(abuf); 839 xuio_stat_wbuf_copied(); 840 } else { 841 ASSERT(xuio || tx_bytes == max_blksz); 842 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 843 woff, abuf, tx); 844 } 845 ASSERT(tx_bytes <= uio->uio_resid); 846 uioskip(uio, tx_bytes); 847 } 848 if (tx_bytes && vn_has_cached_data(vp)) { 849 update_pages(vp, woff, 850 tx_bytes, zfsvfs->z_os, zp->z_id); 851 } 852 853 /* 854 * If we made no progress, we're done. If we made even 855 * partial progress, update the znode and ZIL accordingly. 856 */ 857 if (tx_bytes == 0) { 858 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 859 (void *)&zp->z_size, sizeof (uint64_t), tx); 860 dmu_tx_commit(tx); 861 ASSERT(error != 0); 862 break; 863 } 864 865 /* 866 * Clear Set-UID/Set-GID bits on successful write if not 867 * privileged and at least one of the excute bits is set. 868 * 869 * It would be nice to to this after all writes have 870 * been done, but that would still expose the ISUID/ISGID 871 * to another app after the partial write is committed. 872 * 873 * Note: we don't call zfs_fuid_map_id() here because 874 * user 0 is not an ephemeral uid. 875 */ 876 mutex_enter(&zp->z_acl_lock); 877 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 878 (S_IXUSR >> 6))) != 0 && 879 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 880 secpolicy_vnode_setid_retain(cr, 881 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 882 uint64_t newmode; 883 zp->z_mode &= ~(S_ISUID | S_ISGID); 884 newmode = zp->z_mode; 885 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 886 (void *)&newmode, sizeof (uint64_t), tx); 887 } 888 mutex_exit(&zp->z_acl_lock); 889 890 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 891 B_TRUE); 892 893 /* 894 * Update the file size (zp_size) if it has changed; 895 * account for possible concurrent updates. 896 */ 897 while ((end_size = zp->z_size) < uio->uio_loffset) { 898 (void) atomic_cas_64(&zp->z_size, end_size, 899 uio->uio_loffset); 900 ASSERT(error == 0); 901 } 902 /* 903 * If we are replaying and eof is non zero then force 904 * the file size to the specified eof. Note, there's no 905 * concurrency during replay. 906 */ 907 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 908 zp->z_size = zfsvfs->z_replay_eof; 909 910 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 911 912 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 913 dmu_tx_commit(tx); 914 915 if (error != 0) 916 break; 917 ASSERT(tx_bytes == nbytes); 918 n -= nbytes; 919 920 if (!xuio && n > 0) 921 uio_prefaultpages(MIN(n, max_blksz), uio); 922 } 923 924 zfs_range_unlock(rl); 925 926 /* 927 * If we're in replay mode, or we made no progress, return error. 928 * Otherwise, it's at least a partial write, so it's successful. 929 */ 930 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 931 ZFS_EXIT(zfsvfs); 932 return (error); 933 } 934 935 if (ioflag & (FSYNC | FDSYNC) || 936 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 937 zil_commit(zilog, zp->z_id); 938 939 ZFS_EXIT(zfsvfs); 940 return (0); 941 } 942 943 void 944 zfs_get_done(zgd_t *zgd, int error) 945 { 946 znode_t *zp = zgd->zgd_private; 947 objset_t *os = zp->z_zfsvfs->z_os; 948 949 if (zgd->zgd_db) 950 dmu_buf_rele(zgd->zgd_db, zgd); 951 952 zfs_range_unlock(zgd->zgd_rl); 953 954 /* 955 * Release the vnode asynchronously as we currently have the 956 * txg stopped from syncing. 957 */ 958 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 959 960 if (error == 0 && zgd->zgd_bp) 961 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 962 963 kmem_free(zgd, sizeof (zgd_t)); 964 } 965 966 #ifdef DEBUG 967 static int zil_fault_io = 0; 968 #endif 969 970 /* 971 * Get data to generate a TX_WRITE intent log record. 972 */ 973 int 974 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 975 { 976 zfsvfs_t *zfsvfs = arg; 977 objset_t *os = zfsvfs->z_os; 978 znode_t *zp; 979 uint64_t object = lr->lr_foid; 980 uint64_t offset = lr->lr_offset; 981 uint64_t size = lr->lr_length; 982 blkptr_t *bp = &lr->lr_blkptr; 983 dmu_buf_t *db; 984 zgd_t *zgd; 985 int error = 0; 986 987 ASSERT(zio != NULL); 988 ASSERT(size != 0); 989 990 /* 991 * Nothing to do if the file has been removed 992 */ 993 if (zfs_zget(zfsvfs, object, &zp) != 0) 994 return (ENOENT); 995 if (zp->z_unlinked) { 996 /* 997 * Release the vnode asynchronously as we currently have the 998 * txg stopped from syncing. 999 */ 1000 VN_RELE_ASYNC(ZTOV(zp), 1001 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1002 return (ENOENT); 1003 } 1004 1005 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1006 zgd->zgd_zilog = zfsvfs->z_log; 1007 zgd->zgd_private = zp; 1008 1009 /* 1010 * Write records come in two flavors: immediate and indirect. 1011 * For small writes it's cheaper to store the data with the 1012 * log record (immediate); for large writes it's cheaper to 1013 * sync the data and get a pointer to it (indirect) so that 1014 * we don't have to write the data twice. 1015 */ 1016 if (buf != NULL) { /* immediate write */ 1017 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1018 /* test for truncation needs to be done while range locked */ 1019 if (offset >= zp->z_size) { 1020 error = ENOENT; 1021 } else { 1022 error = dmu_read(os, object, offset, size, buf, 1023 DMU_READ_NO_PREFETCH); 1024 } 1025 ASSERT(error == 0 || error == ENOENT); 1026 } else { /* indirect write */ 1027 /* 1028 * Have to lock the whole block to ensure when it's 1029 * written out and it's checksum is being calculated 1030 * that no one can change the data. We need to re-check 1031 * blocksize after we get the lock in case it's changed! 1032 */ 1033 for (;;) { 1034 uint64_t blkoff; 1035 size = zp->z_blksz; 1036 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1037 offset -= blkoff; 1038 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1039 RL_READER); 1040 if (zp->z_blksz == size) 1041 break; 1042 offset += blkoff; 1043 zfs_range_unlock(zgd->zgd_rl); 1044 } 1045 /* test for truncation needs to be done while range locked */ 1046 if (lr->lr_offset >= zp->z_size) 1047 error = ENOENT; 1048 #ifdef DEBUG 1049 if (zil_fault_io) { 1050 error = EIO; 1051 zil_fault_io = 0; 1052 } 1053 #endif 1054 if (error == 0) 1055 error = dmu_buf_hold(os, object, offset, zgd, &db, 1056 DMU_READ_NO_PREFETCH); 1057 1058 if (error == 0) { 1059 zgd->zgd_db = db; 1060 zgd->zgd_bp = bp; 1061 1062 ASSERT(db->db_offset == offset); 1063 ASSERT(db->db_size == size); 1064 1065 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1066 zfs_get_done, zgd); 1067 ASSERT(error || lr->lr_length <= zp->z_blksz); 1068 1069 /* 1070 * On success, we need to wait for the write I/O 1071 * initiated by dmu_sync() to complete before we can 1072 * release this dbuf. We will finish everything up 1073 * in the zfs_get_done() callback. 1074 */ 1075 if (error == 0) 1076 return (0); 1077 1078 if (error == EALREADY) { 1079 lr->lr_common.lrc_txtype = TX_WRITE2; 1080 error = 0; 1081 } 1082 } 1083 } 1084 1085 zfs_get_done(zgd, error); 1086 1087 return (error); 1088 } 1089 1090 /*ARGSUSED*/ 1091 static int 1092 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1093 caller_context_t *ct) 1094 { 1095 znode_t *zp = VTOZ(vp); 1096 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1097 int error; 1098 1099 ZFS_ENTER(zfsvfs); 1100 ZFS_VERIFY_ZP(zp); 1101 1102 if (flag & V_ACE_MASK) 1103 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1104 else 1105 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1106 1107 ZFS_EXIT(zfsvfs); 1108 return (error); 1109 } 1110 1111 /* 1112 * If vnode is for a device return a specfs vnode instead. 1113 */ 1114 static int 1115 specvp_check(vnode_t **vpp, cred_t *cr) 1116 { 1117 int error = 0; 1118 1119 if (IS_DEVVP(*vpp)) { 1120 struct vnode *svp; 1121 1122 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1123 VN_RELE(*vpp); 1124 if (svp == NULL) 1125 error = ENOSYS; 1126 *vpp = svp; 1127 } 1128 return (error); 1129 } 1130 1131 1132 /* 1133 * Lookup an entry in a directory, or an extended attribute directory. 1134 * If it exists, return a held vnode reference for it. 1135 * 1136 * IN: dvp - vnode of directory to search. 1137 * nm - name of entry to lookup. 1138 * pnp - full pathname to lookup [UNUSED]. 1139 * flags - LOOKUP_XATTR set if looking for an attribute. 1140 * rdir - root directory vnode [UNUSED]. 1141 * cr - credentials of caller. 1142 * ct - caller context 1143 * direntflags - directory lookup flags 1144 * realpnp - returned pathname. 1145 * 1146 * OUT: vpp - vnode of located entry, NULL if not found. 1147 * 1148 * RETURN: 0 if success 1149 * error code if failure 1150 * 1151 * Timestamps: 1152 * NA 1153 */ 1154 /* ARGSUSED */ 1155 static int 1156 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1157 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1158 int *direntflags, pathname_t *realpnp) 1159 { 1160 znode_t *zdp = VTOZ(dvp); 1161 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1162 int error = 0; 1163 1164 /* fast path */ 1165 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1166 1167 if (dvp->v_type != VDIR) { 1168 return (ENOTDIR); 1169 } else if (zdp->z_sa_hdl == NULL) { 1170 return (EIO); 1171 } 1172 1173 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1174 error = zfs_fastaccesschk_execute(zdp, cr); 1175 if (!error) { 1176 *vpp = dvp; 1177 VN_HOLD(*vpp); 1178 return (0); 1179 } 1180 return (error); 1181 } else { 1182 vnode_t *tvp = dnlc_lookup(dvp, nm); 1183 1184 if (tvp) { 1185 error = zfs_fastaccesschk_execute(zdp, cr); 1186 if (error) { 1187 VN_RELE(tvp); 1188 return (error); 1189 } 1190 if (tvp == DNLC_NO_VNODE) { 1191 VN_RELE(tvp); 1192 return (ENOENT); 1193 } else { 1194 *vpp = tvp; 1195 return (specvp_check(vpp, cr)); 1196 } 1197 } 1198 } 1199 } 1200 1201 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1202 1203 ZFS_ENTER(zfsvfs); 1204 ZFS_VERIFY_ZP(zdp); 1205 1206 *vpp = NULL; 1207 1208 if (flags & LOOKUP_XATTR) { 1209 /* 1210 * If the xattr property is off, refuse the lookup request. 1211 */ 1212 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1213 ZFS_EXIT(zfsvfs); 1214 return (EINVAL); 1215 } 1216 1217 /* 1218 * We don't allow recursive attributes.. 1219 * Maybe someday we will. 1220 */ 1221 if (zdp->z_pflags & ZFS_XATTR) { 1222 ZFS_EXIT(zfsvfs); 1223 return (EINVAL); 1224 } 1225 1226 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1227 ZFS_EXIT(zfsvfs); 1228 return (error); 1229 } 1230 1231 /* 1232 * Do we have permission to get into attribute directory? 1233 */ 1234 1235 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1236 B_FALSE, cr)) { 1237 VN_RELE(*vpp); 1238 *vpp = NULL; 1239 } 1240 1241 ZFS_EXIT(zfsvfs); 1242 return (error); 1243 } 1244 1245 if (dvp->v_type != VDIR) { 1246 ZFS_EXIT(zfsvfs); 1247 return (ENOTDIR); 1248 } 1249 1250 /* 1251 * Check accessibility of directory. 1252 */ 1253 1254 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1255 ZFS_EXIT(zfsvfs); 1256 return (error); 1257 } 1258 1259 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1260 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1261 ZFS_EXIT(zfsvfs); 1262 return (EILSEQ); 1263 } 1264 1265 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1266 if (error == 0) 1267 error = specvp_check(vpp, cr); 1268 1269 ZFS_EXIT(zfsvfs); 1270 return (error); 1271 } 1272 1273 /* 1274 * Attempt to create a new entry in a directory. If the entry 1275 * already exists, truncate the file if permissible, else return 1276 * an error. Return the vp of the created or trunc'd file. 1277 * 1278 * IN: dvp - vnode of directory to put new file entry in. 1279 * name - name of new file entry. 1280 * vap - attributes of new file. 1281 * excl - flag indicating exclusive or non-exclusive mode. 1282 * mode - mode to open file with. 1283 * cr - credentials of caller. 1284 * flag - large file flag [UNUSED]. 1285 * ct - caller context 1286 * vsecp - ACL to be set 1287 * 1288 * OUT: vpp - vnode of created or trunc'd entry. 1289 * 1290 * RETURN: 0 if success 1291 * error code if failure 1292 * 1293 * Timestamps: 1294 * dvp - ctime|mtime updated if new entry created 1295 * vp - ctime|mtime always, atime if new 1296 */ 1297 1298 /* ARGSUSED */ 1299 static int 1300 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1301 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1302 vsecattr_t *vsecp) 1303 { 1304 znode_t *zp, *dzp = VTOZ(dvp); 1305 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1306 zilog_t *zilog; 1307 objset_t *os; 1308 zfs_dirlock_t *dl; 1309 dmu_tx_t *tx; 1310 int error; 1311 ksid_t *ksid; 1312 uid_t uid; 1313 gid_t gid = crgetgid(cr); 1314 zfs_acl_ids_t acl_ids; 1315 boolean_t fuid_dirtied; 1316 boolean_t have_acl = B_FALSE; 1317 1318 /* 1319 * If we have an ephemeral id, ACL, or XVATTR then 1320 * make sure file system is at proper version 1321 */ 1322 1323 ksid = crgetsid(cr, KSID_OWNER); 1324 if (ksid) 1325 uid = ksid_getid(ksid); 1326 else 1327 uid = crgetuid(cr); 1328 1329 if (zfsvfs->z_use_fuids == B_FALSE && 1330 (vsecp || (vap->va_mask & AT_XVATTR) || 1331 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1332 return (EINVAL); 1333 1334 ZFS_ENTER(zfsvfs); 1335 ZFS_VERIFY_ZP(dzp); 1336 os = zfsvfs->z_os; 1337 zilog = zfsvfs->z_log; 1338 1339 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1340 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1341 ZFS_EXIT(zfsvfs); 1342 return (EILSEQ); 1343 } 1344 1345 if (vap->va_mask & AT_XVATTR) { 1346 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1347 crgetuid(cr), cr, vap->va_type)) != 0) { 1348 ZFS_EXIT(zfsvfs); 1349 return (error); 1350 } 1351 } 1352 top: 1353 *vpp = NULL; 1354 1355 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1356 vap->va_mode &= ~VSVTX; 1357 1358 if (*name == '\0') { 1359 /* 1360 * Null component name refers to the directory itself. 1361 */ 1362 VN_HOLD(dvp); 1363 zp = dzp; 1364 dl = NULL; 1365 error = 0; 1366 } else { 1367 /* possible VN_HOLD(zp) */ 1368 int zflg = 0; 1369 1370 if (flag & FIGNORECASE) 1371 zflg |= ZCILOOK; 1372 1373 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1374 NULL, NULL); 1375 if (error) { 1376 if (have_acl) 1377 zfs_acl_ids_free(&acl_ids); 1378 if (strcmp(name, "..") == 0) 1379 error = EISDIR; 1380 ZFS_EXIT(zfsvfs); 1381 return (error); 1382 } 1383 } 1384 1385 if (zp == NULL) { 1386 uint64_t txtype; 1387 1388 /* 1389 * Create a new file object and update the directory 1390 * to reference it. 1391 */ 1392 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1393 if (have_acl) 1394 zfs_acl_ids_free(&acl_ids); 1395 goto out; 1396 } 1397 1398 /* 1399 * We only support the creation of regular files in 1400 * extended attribute directories. 1401 */ 1402 1403 if ((dzp->z_pflags & ZFS_XATTR) && 1404 (vap->va_type != VREG)) { 1405 if (have_acl) 1406 zfs_acl_ids_free(&acl_ids); 1407 error = EINVAL; 1408 goto out; 1409 } 1410 1411 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1412 cr, vsecp, &acl_ids)) != 0) 1413 goto out; 1414 have_acl = B_TRUE; 1415 1416 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1417 zfs_acl_ids_free(&acl_ids); 1418 error = EDQUOT; 1419 goto out; 1420 } 1421 1422 tx = dmu_tx_create(os); 1423 1424 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1425 ZFS_SA_BASE_ATTR_SIZE); 1426 1427 fuid_dirtied = zfsvfs->z_fuid_dirty; 1428 if (fuid_dirtied) 1429 zfs_fuid_txhold(zfsvfs, tx); 1430 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1431 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1432 if (!zfsvfs->z_use_sa && 1433 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1434 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1435 0, acl_ids.z_aclp->z_acl_bytes); 1436 } 1437 error = dmu_tx_assign(tx, TXG_NOWAIT); 1438 if (error) { 1439 zfs_dirent_unlock(dl); 1440 if (error == ERESTART) { 1441 dmu_tx_wait(tx); 1442 dmu_tx_abort(tx); 1443 goto top; 1444 } 1445 zfs_acl_ids_free(&acl_ids); 1446 dmu_tx_abort(tx); 1447 ZFS_EXIT(zfsvfs); 1448 return (error); 1449 } 1450 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1451 1452 if (fuid_dirtied) 1453 zfs_fuid_sync(zfsvfs, tx); 1454 1455 (void) zfs_link_create(dl, zp, tx, ZNEW); 1456 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1457 if (flag & FIGNORECASE) 1458 txtype |= TX_CI; 1459 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1460 vsecp, acl_ids.z_fuidp, vap); 1461 zfs_acl_ids_free(&acl_ids); 1462 dmu_tx_commit(tx); 1463 } else { 1464 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1465 1466 if (have_acl) 1467 zfs_acl_ids_free(&acl_ids); 1468 have_acl = B_FALSE; 1469 1470 /* 1471 * A directory entry already exists for this name. 1472 */ 1473 /* 1474 * Can't truncate an existing file if in exclusive mode. 1475 */ 1476 if (excl == EXCL) { 1477 error = EEXIST; 1478 goto out; 1479 } 1480 /* 1481 * Can't open a directory for writing. 1482 */ 1483 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1484 error = EISDIR; 1485 goto out; 1486 } 1487 /* 1488 * Verify requested access to file. 1489 */ 1490 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1491 goto out; 1492 } 1493 1494 mutex_enter(&dzp->z_lock); 1495 dzp->z_seq++; 1496 mutex_exit(&dzp->z_lock); 1497 1498 /* 1499 * Truncate regular files if requested. 1500 */ 1501 if ((ZTOV(zp)->v_type == VREG) && 1502 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1503 /* we can't hold any locks when calling zfs_freesp() */ 1504 zfs_dirent_unlock(dl); 1505 dl = NULL; 1506 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1507 if (error == 0) { 1508 vnevent_create(ZTOV(zp), ct); 1509 } 1510 } 1511 } 1512 out: 1513 1514 if (dl) 1515 zfs_dirent_unlock(dl); 1516 1517 if (error) { 1518 if (zp) 1519 VN_RELE(ZTOV(zp)); 1520 } else { 1521 *vpp = ZTOV(zp); 1522 error = specvp_check(vpp, cr); 1523 } 1524 1525 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1526 zil_commit(zilog, 0); 1527 1528 ZFS_EXIT(zfsvfs); 1529 return (error); 1530 } 1531 1532 /* 1533 * Remove an entry from a directory. 1534 * 1535 * IN: dvp - vnode of directory to remove entry from. 1536 * name - name of entry to remove. 1537 * cr - credentials of caller. 1538 * ct - caller context 1539 * flags - case flags 1540 * 1541 * RETURN: 0 if success 1542 * error code if failure 1543 * 1544 * Timestamps: 1545 * dvp - ctime|mtime 1546 * vp - ctime (if nlink > 0) 1547 */ 1548 1549 uint64_t null_xattr = 0; 1550 1551 /*ARGSUSED*/ 1552 static int 1553 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1554 int flags) 1555 { 1556 znode_t *zp, *dzp = VTOZ(dvp); 1557 znode_t *xzp; 1558 vnode_t *vp; 1559 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1560 zilog_t *zilog; 1561 uint64_t acl_obj, xattr_obj; 1562 uint64_t xattr_obj_unlinked = 0; 1563 uint64_t obj = 0; 1564 zfs_dirlock_t *dl; 1565 dmu_tx_t *tx; 1566 boolean_t may_delete_now, delete_now = FALSE; 1567 boolean_t unlinked, toobig = FALSE; 1568 uint64_t txtype; 1569 pathname_t *realnmp = NULL; 1570 pathname_t realnm; 1571 int error; 1572 int zflg = ZEXISTS; 1573 1574 ZFS_ENTER(zfsvfs); 1575 ZFS_VERIFY_ZP(dzp); 1576 zilog = zfsvfs->z_log; 1577 1578 if (flags & FIGNORECASE) { 1579 zflg |= ZCILOOK; 1580 pn_alloc(&realnm); 1581 realnmp = &realnm; 1582 } 1583 1584 top: 1585 xattr_obj = 0; 1586 xzp = NULL; 1587 /* 1588 * Attempt to lock directory; fail if entry doesn't exist. 1589 */ 1590 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1591 NULL, realnmp)) { 1592 if (realnmp) 1593 pn_free(realnmp); 1594 ZFS_EXIT(zfsvfs); 1595 return (error); 1596 } 1597 1598 vp = ZTOV(zp); 1599 1600 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1601 goto out; 1602 } 1603 1604 /* 1605 * Need to use rmdir for removing directories. 1606 */ 1607 if (vp->v_type == VDIR) { 1608 error = EPERM; 1609 goto out; 1610 } 1611 1612 vnevent_remove(vp, dvp, name, ct); 1613 1614 if (realnmp) 1615 dnlc_remove(dvp, realnmp->pn_buf); 1616 else 1617 dnlc_remove(dvp, name); 1618 1619 mutex_enter(&vp->v_lock); 1620 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1621 mutex_exit(&vp->v_lock); 1622 1623 /* 1624 * We may delete the znode now, or we may put it in the unlinked set; 1625 * it depends on whether we're the last link, and on whether there are 1626 * other holds on the vnode. So we dmu_tx_hold() the right things to 1627 * allow for either case. 1628 */ 1629 obj = zp->z_id; 1630 tx = dmu_tx_create(zfsvfs->z_os); 1631 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1632 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1633 zfs_sa_upgrade_txholds(tx, zp); 1634 zfs_sa_upgrade_txholds(tx, dzp); 1635 if (may_delete_now) { 1636 toobig = 1637 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1638 /* if the file is too big, only hold_free a token amount */ 1639 dmu_tx_hold_free(tx, zp->z_id, 0, 1640 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1641 } 1642 1643 /* are there any extended attributes? */ 1644 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1645 &xattr_obj, sizeof (xattr_obj)); 1646 if (error == 0 && xattr_obj) { 1647 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1648 ASSERT0(error); 1649 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1650 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1651 } 1652 1653 mutex_enter(&zp->z_lock); 1654 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1655 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1656 mutex_exit(&zp->z_lock); 1657 1658 /* charge as an update -- would be nice not to charge at all */ 1659 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1660 1661 error = dmu_tx_assign(tx, TXG_NOWAIT); 1662 if (error) { 1663 zfs_dirent_unlock(dl); 1664 VN_RELE(vp); 1665 if (xzp) 1666 VN_RELE(ZTOV(xzp)); 1667 if (error == ERESTART) { 1668 dmu_tx_wait(tx); 1669 dmu_tx_abort(tx); 1670 goto top; 1671 } 1672 if (realnmp) 1673 pn_free(realnmp); 1674 dmu_tx_abort(tx); 1675 ZFS_EXIT(zfsvfs); 1676 return (error); 1677 } 1678 1679 /* 1680 * Remove the directory entry. 1681 */ 1682 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1683 1684 if (error) { 1685 dmu_tx_commit(tx); 1686 goto out; 1687 } 1688 1689 if (unlinked) { 1690 1691 /* 1692 * Hold z_lock so that we can make sure that the ACL obj 1693 * hasn't changed. Could have been deleted due to 1694 * zfs_sa_upgrade(). 1695 */ 1696 mutex_enter(&zp->z_lock); 1697 mutex_enter(&vp->v_lock); 1698 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1699 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1700 delete_now = may_delete_now && !toobig && 1701 vp->v_count == 1 && !vn_has_cached_data(vp) && 1702 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1703 acl_obj; 1704 mutex_exit(&vp->v_lock); 1705 } 1706 1707 if (delete_now) { 1708 if (xattr_obj_unlinked) { 1709 ASSERT3U(xzp->z_links, ==, 2); 1710 mutex_enter(&xzp->z_lock); 1711 xzp->z_unlinked = 1; 1712 xzp->z_links = 0; 1713 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1714 &xzp->z_links, sizeof (xzp->z_links), tx); 1715 ASSERT3U(error, ==, 0); 1716 mutex_exit(&xzp->z_lock); 1717 zfs_unlinked_add(xzp, tx); 1718 1719 if (zp->z_is_sa) 1720 error = sa_remove(zp->z_sa_hdl, 1721 SA_ZPL_XATTR(zfsvfs), tx); 1722 else 1723 error = sa_update(zp->z_sa_hdl, 1724 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1725 sizeof (uint64_t), tx); 1726 ASSERT0(error); 1727 } 1728 mutex_enter(&vp->v_lock); 1729 vp->v_count--; 1730 ASSERT0(vp->v_count); 1731 mutex_exit(&vp->v_lock); 1732 mutex_exit(&zp->z_lock); 1733 zfs_znode_delete(zp, tx); 1734 } else if (unlinked) { 1735 mutex_exit(&zp->z_lock); 1736 zfs_unlinked_add(zp, tx); 1737 } 1738 1739 txtype = TX_REMOVE; 1740 if (flags & FIGNORECASE) 1741 txtype |= TX_CI; 1742 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1743 1744 dmu_tx_commit(tx); 1745 out: 1746 if (realnmp) 1747 pn_free(realnmp); 1748 1749 zfs_dirent_unlock(dl); 1750 1751 if (!delete_now) 1752 VN_RELE(vp); 1753 if (xzp) 1754 VN_RELE(ZTOV(xzp)); 1755 1756 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1757 zil_commit(zilog, 0); 1758 1759 ZFS_EXIT(zfsvfs); 1760 return (error); 1761 } 1762 1763 /* 1764 * Create a new directory and insert it into dvp using the name 1765 * provided. Return a pointer to the inserted directory. 1766 * 1767 * IN: dvp - vnode of directory to add subdir to. 1768 * dirname - name of new directory. 1769 * vap - attributes of new directory. 1770 * cr - credentials of caller. 1771 * ct - caller context 1772 * vsecp - ACL to be set 1773 * 1774 * OUT: vpp - vnode of created directory. 1775 * 1776 * RETURN: 0 if success 1777 * error code if failure 1778 * 1779 * Timestamps: 1780 * dvp - ctime|mtime updated 1781 * vp - ctime|mtime|atime updated 1782 */ 1783 /*ARGSUSED*/ 1784 static int 1785 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1786 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1787 { 1788 znode_t *zp, *dzp = VTOZ(dvp); 1789 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1790 zilog_t *zilog; 1791 zfs_dirlock_t *dl; 1792 uint64_t txtype; 1793 dmu_tx_t *tx; 1794 int error; 1795 int zf = ZNEW; 1796 ksid_t *ksid; 1797 uid_t uid; 1798 gid_t gid = crgetgid(cr); 1799 zfs_acl_ids_t acl_ids; 1800 boolean_t fuid_dirtied; 1801 1802 ASSERT(vap->va_type == VDIR); 1803 1804 /* 1805 * If we have an ephemeral id, ACL, or XVATTR then 1806 * make sure file system is at proper version 1807 */ 1808 1809 ksid = crgetsid(cr, KSID_OWNER); 1810 if (ksid) 1811 uid = ksid_getid(ksid); 1812 else 1813 uid = crgetuid(cr); 1814 if (zfsvfs->z_use_fuids == B_FALSE && 1815 (vsecp || (vap->va_mask & AT_XVATTR) || 1816 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1817 return (EINVAL); 1818 1819 ZFS_ENTER(zfsvfs); 1820 ZFS_VERIFY_ZP(dzp); 1821 zilog = zfsvfs->z_log; 1822 1823 if (dzp->z_pflags & ZFS_XATTR) { 1824 ZFS_EXIT(zfsvfs); 1825 return (EINVAL); 1826 } 1827 1828 if (zfsvfs->z_utf8 && u8_validate(dirname, 1829 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1830 ZFS_EXIT(zfsvfs); 1831 return (EILSEQ); 1832 } 1833 if (flags & FIGNORECASE) 1834 zf |= ZCILOOK; 1835 1836 if (vap->va_mask & AT_XVATTR) { 1837 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1838 crgetuid(cr), cr, vap->va_type)) != 0) { 1839 ZFS_EXIT(zfsvfs); 1840 return (error); 1841 } 1842 } 1843 1844 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1845 vsecp, &acl_ids)) != 0) { 1846 ZFS_EXIT(zfsvfs); 1847 return (error); 1848 } 1849 /* 1850 * First make sure the new directory doesn't exist. 1851 * 1852 * Existence is checked first to make sure we don't return 1853 * EACCES instead of EEXIST which can cause some applications 1854 * to fail. 1855 */ 1856 top: 1857 *vpp = NULL; 1858 1859 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1860 NULL, NULL)) { 1861 zfs_acl_ids_free(&acl_ids); 1862 ZFS_EXIT(zfsvfs); 1863 return (error); 1864 } 1865 1866 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1867 zfs_acl_ids_free(&acl_ids); 1868 zfs_dirent_unlock(dl); 1869 ZFS_EXIT(zfsvfs); 1870 return (error); 1871 } 1872 1873 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1874 zfs_acl_ids_free(&acl_ids); 1875 zfs_dirent_unlock(dl); 1876 ZFS_EXIT(zfsvfs); 1877 return (EDQUOT); 1878 } 1879 1880 /* 1881 * Add a new entry to the directory. 1882 */ 1883 tx = dmu_tx_create(zfsvfs->z_os); 1884 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1885 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1886 fuid_dirtied = zfsvfs->z_fuid_dirty; 1887 if (fuid_dirtied) 1888 zfs_fuid_txhold(zfsvfs, tx); 1889 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1890 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1891 acl_ids.z_aclp->z_acl_bytes); 1892 } 1893 1894 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1895 ZFS_SA_BASE_ATTR_SIZE); 1896 1897 error = dmu_tx_assign(tx, TXG_NOWAIT); 1898 if (error) { 1899 zfs_dirent_unlock(dl); 1900 if (error == ERESTART) { 1901 dmu_tx_wait(tx); 1902 dmu_tx_abort(tx); 1903 goto top; 1904 } 1905 zfs_acl_ids_free(&acl_ids); 1906 dmu_tx_abort(tx); 1907 ZFS_EXIT(zfsvfs); 1908 return (error); 1909 } 1910 1911 /* 1912 * Create new node. 1913 */ 1914 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1915 1916 if (fuid_dirtied) 1917 zfs_fuid_sync(zfsvfs, tx); 1918 1919 /* 1920 * Now put new name in parent dir. 1921 */ 1922 (void) zfs_link_create(dl, zp, tx, ZNEW); 1923 1924 *vpp = ZTOV(zp); 1925 1926 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1927 if (flags & FIGNORECASE) 1928 txtype |= TX_CI; 1929 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1930 acl_ids.z_fuidp, vap); 1931 1932 zfs_acl_ids_free(&acl_ids); 1933 1934 dmu_tx_commit(tx); 1935 1936 zfs_dirent_unlock(dl); 1937 1938 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1939 zil_commit(zilog, 0); 1940 1941 ZFS_EXIT(zfsvfs); 1942 return (0); 1943 } 1944 1945 /* 1946 * Remove a directory subdir entry. If the current working 1947 * directory is the same as the subdir to be removed, the 1948 * remove will fail. 1949 * 1950 * IN: dvp - vnode of directory to remove from. 1951 * name - name of directory to be removed. 1952 * cwd - vnode of current working directory. 1953 * cr - credentials of caller. 1954 * ct - caller context 1955 * flags - case flags 1956 * 1957 * RETURN: 0 if success 1958 * error code if failure 1959 * 1960 * Timestamps: 1961 * dvp - ctime|mtime updated 1962 */ 1963 /*ARGSUSED*/ 1964 static int 1965 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1966 caller_context_t *ct, int flags) 1967 { 1968 znode_t *dzp = VTOZ(dvp); 1969 znode_t *zp; 1970 vnode_t *vp; 1971 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1972 zilog_t *zilog; 1973 zfs_dirlock_t *dl; 1974 dmu_tx_t *tx; 1975 int error; 1976 int zflg = ZEXISTS; 1977 1978 ZFS_ENTER(zfsvfs); 1979 ZFS_VERIFY_ZP(dzp); 1980 zilog = zfsvfs->z_log; 1981 1982 if (flags & FIGNORECASE) 1983 zflg |= ZCILOOK; 1984 top: 1985 zp = NULL; 1986 1987 /* 1988 * Attempt to lock directory; fail if entry doesn't exist. 1989 */ 1990 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1991 NULL, NULL)) { 1992 ZFS_EXIT(zfsvfs); 1993 return (error); 1994 } 1995 1996 vp = ZTOV(zp); 1997 1998 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1999 goto out; 2000 } 2001 2002 if (vp->v_type != VDIR) { 2003 error = ENOTDIR; 2004 goto out; 2005 } 2006 2007 if (vp == cwd) { 2008 error = EINVAL; 2009 goto out; 2010 } 2011 2012 vnevent_rmdir(vp, dvp, name, ct); 2013 2014 /* 2015 * Grab a lock on the directory to make sure that noone is 2016 * trying to add (or lookup) entries while we are removing it. 2017 */ 2018 rw_enter(&zp->z_name_lock, RW_WRITER); 2019 2020 /* 2021 * Grab a lock on the parent pointer to make sure we play well 2022 * with the treewalk and directory rename code. 2023 */ 2024 rw_enter(&zp->z_parent_lock, RW_WRITER); 2025 2026 tx = dmu_tx_create(zfsvfs->z_os); 2027 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2028 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2029 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2030 zfs_sa_upgrade_txholds(tx, zp); 2031 zfs_sa_upgrade_txholds(tx, dzp); 2032 error = dmu_tx_assign(tx, TXG_NOWAIT); 2033 if (error) { 2034 rw_exit(&zp->z_parent_lock); 2035 rw_exit(&zp->z_name_lock); 2036 zfs_dirent_unlock(dl); 2037 VN_RELE(vp); 2038 if (error == ERESTART) { 2039 dmu_tx_wait(tx); 2040 dmu_tx_abort(tx); 2041 goto top; 2042 } 2043 dmu_tx_abort(tx); 2044 ZFS_EXIT(zfsvfs); 2045 return (error); 2046 } 2047 2048 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2049 2050 if (error == 0) { 2051 uint64_t txtype = TX_RMDIR; 2052 if (flags & FIGNORECASE) 2053 txtype |= TX_CI; 2054 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2055 } 2056 2057 dmu_tx_commit(tx); 2058 2059 rw_exit(&zp->z_parent_lock); 2060 rw_exit(&zp->z_name_lock); 2061 out: 2062 zfs_dirent_unlock(dl); 2063 2064 VN_RELE(vp); 2065 2066 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2067 zil_commit(zilog, 0); 2068 2069 ZFS_EXIT(zfsvfs); 2070 return (error); 2071 } 2072 2073 /* 2074 * Read as many directory entries as will fit into the provided 2075 * buffer from the given directory cursor position (specified in 2076 * the uio structure. 2077 * 2078 * IN: vp - vnode of directory to read. 2079 * uio - structure supplying read location, range info, 2080 * and return buffer. 2081 * cr - credentials of caller. 2082 * ct - caller context 2083 * flags - case flags 2084 * 2085 * OUT: uio - updated offset and range, buffer filled. 2086 * eofp - set to true if end-of-file detected. 2087 * 2088 * RETURN: 0 if success 2089 * error code if failure 2090 * 2091 * Timestamps: 2092 * vp - atime updated 2093 * 2094 * Note that the low 4 bits of the cookie returned by zap is always zero. 2095 * This allows us to use the low range for "special" directory entries: 2096 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2097 * we use the offset 2 for the '.zfs' directory. 2098 */ 2099 /* ARGSUSED */ 2100 static int 2101 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2102 caller_context_t *ct, int flags) 2103 { 2104 znode_t *zp = VTOZ(vp); 2105 iovec_t *iovp; 2106 edirent_t *eodp; 2107 dirent64_t *odp; 2108 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2109 objset_t *os; 2110 caddr_t outbuf; 2111 size_t bufsize; 2112 zap_cursor_t zc; 2113 zap_attribute_t zap; 2114 uint_t bytes_wanted; 2115 uint64_t offset; /* must be unsigned; checks for < 1 */ 2116 uint64_t parent; 2117 int local_eof; 2118 int outcount; 2119 int error; 2120 uint8_t prefetch; 2121 boolean_t check_sysattrs; 2122 2123 ZFS_ENTER(zfsvfs); 2124 ZFS_VERIFY_ZP(zp); 2125 2126 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2127 &parent, sizeof (parent))) != 0) { 2128 ZFS_EXIT(zfsvfs); 2129 return (error); 2130 } 2131 2132 /* 2133 * If we are not given an eof variable, 2134 * use a local one. 2135 */ 2136 if (eofp == NULL) 2137 eofp = &local_eof; 2138 2139 /* 2140 * Check for valid iov_len. 2141 */ 2142 if (uio->uio_iov->iov_len <= 0) { 2143 ZFS_EXIT(zfsvfs); 2144 return (EINVAL); 2145 } 2146 2147 /* 2148 * Quit if directory has been removed (posix) 2149 */ 2150 if ((*eofp = zp->z_unlinked) != 0) { 2151 ZFS_EXIT(zfsvfs); 2152 return (0); 2153 } 2154 2155 error = 0; 2156 os = zfsvfs->z_os; 2157 offset = uio->uio_loffset; 2158 prefetch = zp->z_zn_prefetch; 2159 2160 /* 2161 * Initialize the iterator cursor. 2162 */ 2163 if (offset <= 3) { 2164 /* 2165 * Start iteration from the beginning of the directory. 2166 */ 2167 zap_cursor_init(&zc, os, zp->z_id); 2168 } else { 2169 /* 2170 * The offset is a serialized cursor. 2171 */ 2172 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2173 } 2174 2175 /* 2176 * Get space to change directory entries into fs independent format. 2177 */ 2178 iovp = uio->uio_iov; 2179 bytes_wanted = iovp->iov_len; 2180 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2181 bufsize = bytes_wanted; 2182 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2183 odp = (struct dirent64 *)outbuf; 2184 } else { 2185 bufsize = bytes_wanted; 2186 odp = (struct dirent64 *)iovp->iov_base; 2187 } 2188 eodp = (struct edirent *)odp; 2189 2190 /* 2191 * If this VFS supports the system attribute view interface; and 2192 * we're looking at an extended attribute directory; and we care 2193 * about normalization conflicts on this vfs; then we must check 2194 * for normalization conflicts with the sysattr name space. 2195 */ 2196 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2197 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2198 (flags & V_RDDIR_ENTFLAGS); 2199 2200 /* 2201 * Transform to file-system independent format 2202 */ 2203 outcount = 0; 2204 while (outcount < bytes_wanted) { 2205 ino64_t objnum; 2206 ushort_t reclen; 2207 off64_t *next = NULL; 2208 2209 /* 2210 * Special case `.', `..', and `.zfs'. 2211 */ 2212 if (offset == 0) { 2213 (void) strcpy(zap.za_name, "."); 2214 zap.za_normalization_conflict = 0; 2215 objnum = zp->z_id; 2216 } else if (offset == 1) { 2217 (void) strcpy(zap.za_name, ".."); 2218 zap.za_normalization_conflict = 0; 2219 objnum = parent; 2220 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2221 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2222 zap.za_normalization_conflict = 0; 2223 objnum = ZFSCTL_INO_ROOT; 2224 } else { 2225 /* 2226 * Grab next entry. 2227 */ 2228 if (error = zap_cursor_retrieve(&zc, &zap)) { 2229 if ((*eofp = (error == ENOENT)) != 0) 2230 break; 2231 else 2232 goto update; 2233 } 2234 2235 if (zap.za_integer_length != 8 || 2236 zap.za_num_integers != 1) { 2237 cmn_err(CE_WARN, "zap_readdir: bad directory " 2238 "entry, obj = %lld, offset = %lld\n", 2239 (u_longlong_t)zp->z_id, 2240 (u_longlong_t)offset); 2241 error = ENXIO; 2242 goto update; 2243 } 2244 2245 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2246 /* 2247 * MacOS X can extract the object type here such as: 2248 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2249 */ 2250 2251 if (check_sysattrs && !zap.za_normalization_conflict) { 2252 zap.za_normalization_conflict = 2253 xattr_sysattr_casechk(zap.za_name); 2254 } 2255 } 2256 2257 if (flags & V_RDDIR_ACCFILTER) { 2258 /* 2259 * If we have no access at all, don't include 2260 * this entry in the returned information 2261 */ 2262 znode_t *ezp; 2263 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2264 goto skip_entry; 2265 if (!zfs_has_access(ezp, cr)) { 2266 VN_RELE(ZTOV(ezp)); 2267 goto skip_entry; 2268 } 2269 VN_RELE(ZTOV(ezp)); 2270 } 2271 2272 if (flags & V_RDDIR_ENTFLAGS) 2273 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2274 else 2275 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2276 2277 /* 2278 * Will this entry fit in the buffer? 2279 */ 2280 if (outcount + reclen > bufsize) { 2281 /* 2282 * Did we manage to fit anything in the buffer? 2283 */ 2284 if (!outcount) { 2285 error = EINVAL; 2286 goto update; 2287 } 2288 break; 2289 } 2290 if (flags & V_RDDIR_ENTFLAGS) { 2291 /* 2292 * Add extended flag entry: 2293 */ 2294 eodp->ed_ino = objnum; 2295 eodp->ed_reclen = reclen; 2296 /* NOTE: ed_off is the offset for the *next* entry */ 2297 next = &(eodp->ed_off); 2298 eodp->ed_eflags = zap.za_normalization_conflict ? 2299 ED_CASE_CONFLICT : 0; 2300 (void) strncpy(eodp->ed_name, zap.za_name, 2301 EDIRENT_NAMELEN(reclen)); 2302 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2303 } else { 2304 /* 2305 * Add normal entry: 2306 */ 2307 odp->d_ino = objnum; 2308 odp->d_reclen = reclen; 2309 /* NOTE: d_off is the offset for the *next* entry */ 2310 next = &(odp->d_off); 2311 (void) strncpy(odp->d_name, zap.za_name, 2312 DIRENT64_NAMELEN(reclen)); 2313 odp = (dirent64_t *)((intptr_t)odp + reclen); 2314 } 2315 outcount += reclen; 2316 2317 ASSERT(outcount <= bufsize); 2318 2319 /* Prefetch znode */ 2320 if (prefetch) 2321 dmu_prefetch(os, objnum, 0, 0); 2322 2323 skip_entry: 2324 /* 2325 * Move to the next entry, fill in the previous offset. 2326 */ 2327 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2328 zap_cursor_advance(&zc); 2329 offset = zap_cursor_serialize(&zc); 2330 } else { 2331 offset += 1; 2332 } 2333 if (next) 2334 *next = offset; 2335 } 2336 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2337 2338 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2339 iovp->iov_base += outcount; 2340 iovp->iov_len -= outcount; 2341 uio->uio_resid -= outcount; 2342 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2343 /* 2344 * Reset the pointer. 2345 */ 2346 offset = uio->uio_loffset; 2347 } 2348 2349 update: 2350 zap_cursor_fini(&zc); 2351 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2352 kmem_free(outbuf, bufsize); 2353 2354 if (error == ENOENT) 2355 error = 0; 2356 2357 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2358 2359 uio->uio_loffset = offset; 2360 ZFS_EXIT(zfsvfs); 2361 return (error); 2362 } 2363 2364 ulong_t zfs_fsync_sync_cnt = 4; 2365 2366 static int 2367 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2368 { 2369 znode_t *zp = VTOZ(vp); 2370 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2371 2372 /* 2373 * Regardless of whether this is required for standards conformance, 2374 * this is the logical behavior when fsync() is called on a file with 2375 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2376 * going to be pushed out as part of the zil_commit(). 2377 */ 2378 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2379 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2380 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2381 2382 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2383 2384 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2385 ZFS_ENTER(zfsvfs); 2386 ZFS_VERIFY_ZP(zp); 2387 zil_commit(zfsvfs->z_log, zp->z_id); 2388 ZFS_EXIT(zfsvfs); 2389 } 2390 return (0); 2391 } 2392 2393 2394 /* 2395 * Get the requested file attributes and place them in the provided 2396 * vattr structure. 2397 * 2398 * IN: vp - vnode of file. 2399 * vap - va_mask identifies requested attributes. 2400 * If AT_XVATTR set, then optional attrs are requested 2401 * flags - ATTR_NOACLCHECK (CIFS server context) 2402 * cr - credentials of caller. 2403 * ct - caller context 2404 * 2405 * OUT: vap - attribute values. 2406 * 2407 * RETURN: 0 (always succeeds) 2408 */ 2409 /* ARGSUSED */ 2410 static int 2411 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2412 caller_context_t *ct) 2413 { 2414 znode_t *zp = VTOZ(vp); 2415 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2416 int error = 0; 2417 uint64_t links; 2418 uint64_t mtime[2], ctime[2]; 2419 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2420 xoptattr_t *xoap = NULL; 2421 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2422 sa_bulk_attr_t bulk[2]; 2423 int count = 0; 2424 2425 ZFS_ENTER(zfsvfs); 2426 ZFS_VERIFY_ZP(zp); 2427 2428 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2429 2430 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2431 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2432 2433 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2434 ZFS_EXIT(zfsvfs); 2435 return (error); 2436 } 2437 2438 /* 2439 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2440 * Also, if we are the owner don't bother, since owner should 2441 * always be allowed to read basic attributes of file. 2442 */ 2443 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2444 (vap->va_uid != crgetuid(cr))) { 2445 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2446 skipaclchk, cr)) { 2447 ZFS_EXIT(zfsvfs); 2448 return (error); 2449 } 2450 } 2451 2452 /* 2453 * Return all attributes. It's cheaper to provide the answer 2454 * than to determine whether we were asked the question. 2455 */ 2456 2457 mutex_enter(&zp->z_lock); 2458 vap->va_type = vp->v_type; 2459 vap->va_mode = zp->z_mode & MODEMASK; 2460 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2461 vap->va_nodeid = zp->z_id; 2462 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2463 links = zp->z_links + 1; 2464 else 2465 links = zp->z_links; 2466 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2467 vap->va_size = zp->z_size; 2468 vap->va_rdev = vp->v_rdev; 2469 vap->va_seq = zp->z_seq; 2470 2471 /* 2472 * Add in any requested optional attributes and the create time. 2473 * Also set the corresponding bits in the returned attribute bitmap. 2474 */ 2475 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2476 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2477 xoap->xoa_archive = 2478 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2479 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2480 } 2481 2482 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2483 xoap->xoa_readonly = 2484 ((zp->z_pflags & ZFS_READONLY) != 0); 2485 XVA_SET_RTN(xvap, XAT_READONLY); 2486 } 2487 2488 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2489 xoap->xoa_system = 2490 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2491 XVA_SET_RTN(xvap, XAT_SYSTEM); 2492 } 2493 2494 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2495 xoap->xoa_hidden = 2496 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2497 XVA_SET_RTN(xvap, XAT_HIDDEN); 2498 } 2499 2500 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2501 xoap->xoa_nounlink = 2502 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2503 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2504 } 2505 2506 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2507 xoap->xoa_immutable = 2508 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2509 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2510 } 2511 2512 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2513 xoap->xoa_appendonly = 2514 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2515 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2516 } 2517 2518 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2519 xoap->xoa_nodump = 2520 ((zp->z_pflags & ZFS_NODUMP) != 0); 2521 XVA_SET_RTN(xvap, XAT_NODUMP); 2522 } 2523 2524 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2525 xoap->xoa_opaque = 2526 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2527 XVA_SET_RTN(xvap, XAT_OPAQUE); 2528 } 2529 2530 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2531 xoap->xoa_av_quarantined = 2532 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2533 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2534 } 2535 2536 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2537 xoap->xoa_av_modified = 2538 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2539 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2540 } 2541 2542 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2543 vp->v_type == VREG) { 2544 zfs_sa_get_scanstamp(zp, xvap); 2545 } 2546 2547 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2548 uint64_t times[2]; 2549 2550 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2551 times, sizeof (times)); 2552 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2553 XVA_SET_RTN(xvap, XAT_CREATETIME); 2554 } 2555 2556 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2557 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2558 XVA_SET_RTN(xvap, XAT_REPARSE); 2559 } 2560 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2561 xoap->xoa_generation = zp->z_gen; 2562 XVA_SET_RTN(xvap, XAT_GEN); 2563 } 2564 2565 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2566 xoap->xoa_offline = 2567 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2568 XVA_SET_RTN(xvap, XAT_OFFLINE); 2569 } 2570 2571 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2572 xoap->xoa_sparse = 2573 ((zp->z_pflags & ZFS_SPARSE) != 0); 2574 XVA_SET_RTN(xvap, XAT_SPARSE); 2575 } 2576 } 2577 2578 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2579 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2580 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2581 2582 mutex_exit(&zp->z_lock); 2583 2584 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2585 2586 if (zp->z_blksz == 0) { 2587 /* 2588 * Block size hasn't been set; suggest maximal I/O transfers. 2589 */ 2590 vap->va_blksize = zfsvfs->z_max_blksz; 2591 } 2592 2593 ZFS_EXIT(zfsvfs); 2594 return (0); 2595 } 2596 2597 /* 2598 * Set the file attributes to the values contained in the 2599 * vattr structure. 2600 * 2601 * IN: vp - vnode of file to be modified. 2602 * vap - new attribute values. 2603 * If AT_XVATTR set, then optional attrs are being set 2604 * flags - ATTR_UTIME set if non-default time values provided. 2605 * - ATTR_NOACLCHECK (CIFS context only). 2606 * cr - credentials of caller. 2607 * ct - caller context 2608 * 2609 * RETURN: 0 if success 2610 * error code if failure 2611 * 2612 * Timestamps: 2613 * vp - ctime updated, mtime updated if size changed. 2614 */ 2615 /* ARGSUSED */ 2616 static int 2617 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2618 caller_context_t *ct) 2619 { 2620 znode_t *zp = VTOZ(vp); 2621 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2622 zilog_t *zilog; 2623 dmu_tx_t *tx; 2624 vattr_t oldva; 2625 xvattr_t tmpxvattr; 2626 uint_t mask = vap->va_mask; 2627 uint_t saved_mask; 2628 int trim_mask = 0; 2629 uint64_t new_mode; 2630 uint64_t new_uid, new_gid; 2631 uint64_t xattr_obj; 2632 uint64_t mtime[2], ctime[2]; 2633 znode_t *attrzp; 2634 int need_policy = FALSE; 2635 int err, err2; 2636 zfs_fuid_info_t *fuidp = NULL; 2637 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2638 xoptattr_t *xoap; 2639 zfs_acl_t *aclp; 2640 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2641 boolean_t fuid_dirtied = B_FALSE; 2642 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2643 int count = 0, xattr_count = 0; 2644 2645 if (mask == 0) 2646 return (0); 2647 2648 if (mask & AT_NOSET) 2649 return (EINVAL); 2650 2651 ZFS_ENTER(zfsvfs); 2652 ZFS_VERIFY_ZP(zp); 2653 2654 zilog = zfsvfs->z_log; 2655 2656 /* 2657 * Make sure that if we have ephemeral uid/gid or xvattr specified 2658 * that file system is at proper version level 2659 */ 2660 2661 if (zfsvfs->z_use_fuids == B_FALSE && 2662 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2663 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2664 (mask & AT_XVATTR))) { 2665 ZFS_EXIT(zfsvfs); 2666 return (EINVAL); 2667 } 2668 2669 if (mask & AT_SIZE && vp->v_type == VDIR) { 2670 ZFS_EXIT(zfsvfs); 2671 return (EISDIR); 2672 } 2673 2674 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2675 ZFS_EXIT(zfsvfs); 2676 return (EINVAL); 2677 } 2678 2679 /* 2680 * If this is an xvattr_t, then get a pointer to the structure of 2681 * optional attributes. If this is NULL, then we have a vattr_t. 2682 */ 2683 xoap = xva_getxoptattr(xvap); 2684 2685 xva_init(&tmpxvattr); 2686 2687 /* 2688 * Immutable files can only alter immutable bit and atime 2689 */ 2690 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2691 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2692 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2693 ZFS_EXIT(zfsvfs); 2694 return (EPERM); 2695 } 2696 2697 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2698 ZFS_EXIT(zfsvfs); 2699 return (EPERM); 2700 } 2701 2702 /* 2703 * Verify timestamps doesn't overflow 32 bits. 2704 * ZFS can handle large timestamps, but 32bit syscalls can't 2705 * handle times greater than 2039. This check should be removed 2706 * once large timestamps are fully supported. 2707 */ 2708 if (mask & (AT_ATIME | AT_MTIME)) { 2709 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2710 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2711 ZFS_EXIT(zfsvfs); 2712 return (EOVERFLOW); 2713 } 2714 } 2715 2716 top: 2717 attrzp = NULL; 2718 aclp = NULL; 2719 2720 /* Can this be moved to before the top label? */ 2721 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2722 ZFS_EXIT(zfsvfs); 2723 return (EROFS); 2724 } 2725 2726 /* 2727 * First validate permissions 2728 */ 2729 2730 if (mask & AT_SIZE) { 2731 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2732 if (err) { 2733 ZFS_EXIT(zfsvfs); 2734 return (err); 2735 } 2736 /* 2737 * XXX - Note, we are not providing any open 2738 * mode flags here (like FNDELAY), so we may 2739 * block if there are locks present... this 2740 * should be addressed in openat(). 2741 */ 2742 /* XXX - would it be OK to generate a log record here? */ 2743 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2744 if (err) { 2745 ZFS_EXIT(zfsvfs); 2746 return (err); 2747 } 2748 } 2749 2750 if (mask & (AT_ATIME|AT_MTIME) || 2751 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2752 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2753 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2754 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2755 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2756 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2757 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2758 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2759 skipaclchk, cr); 2760 } 2761 2762 if (mask & (AT_UID|AT_GID)) { 2763 int idmask = (mask & (AT_UID|AT_GID)); 2764 int take_owner; 2765 int take_group; 2766 2767 /* 2768 * NOTE: even if a new mode is being set, 2769 * we may clear S_ISUID/S_ISGID bits. 2770 */ 2771 2772 if (!(mask & AT_MODE)) 2773 vap->va_mode = zp->z_mode; 2774 2775 /* 2776 * Take ownership or chgrp to group we are a member of 2777 */ 2778 2779 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2780 take_group = (mask & AT_GID) && 2781 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2782 2783 /* 2784 * If both AT_UID and AT_GID are set then take_owner and 2785 * take_group must both be set in order to allow taking 2786 * ownership. 2787 * 2788 * Otherwise, send the check through secpolicy_vnode_setattr() 2789 * 2790 */ 2791 2792 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2793 ((idmask == AT_UID) && take_owner) || 2794 ((idmask == AT_GID) && take_group)) { 2795 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2796 skipaclchk, cr) == 0) { 2797 /* 2798 * Remove setuid/setgid for non-privileged users 2799 */ 2800 secpolicy_setid_clear(vap, cr); 2801 trim_mask = (mask & (AT_UID|AT_GID)); 2802 } else { 2803 need_policy = TRUE; 2804 } 2805 } else { 2806 need_policy = TRUE; 2807 } 2808 } 2809 2810 mutex_enter(&zp->z_lock); 2811 oldva.va_mode = zp->z_mode; 2812 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2813 if (mask & AT_XVATTR) { 2814 /* 2815 * Update xvattr mask to include only those attributes 2816 * that are actually changing. 2817 * 2818 * the bits will be restored prior to actually setting 2819 * the attributes so the caller thinks they were set. 2820 */ 2821 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2822 if (xoap->xoa_appendonly != 2823 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2824 need_policy = TRUE; 2825 } else { 2826 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2827 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2828 } 2829 } 2830 2831 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2832 if (xoap->xoa_nounlink != 2833 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2834 need_policy = TRUE; 2835 } else { 2836 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2837 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2838 } 2839 } 2840 2841 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2842 if (xoap->xoa_immutable != 2843 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2844 need_policy = TRUE; 2845 } else { 2846 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2847 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2848 } 2849 } 2850 2851 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2852 if (xoap->xoa_nodump != 2853 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2854 need_policy = TRUE; 2855 } else { 2856 XVA_CLR_REQ(xvap, XAT_NODUMP); 2857 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2858 } 2859 } 2860 2861 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2862 if (xoap->xoa_av_modified != 2863 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2864 need_policy = TRUE; 2865 } else { 2866 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2867 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2868 } 2869 } 2870 2871 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2872 if ((vp->v_type != VREG && 2873 xoap->xoa_av_quarantined) || 2874 xoap->xoa_av_quarantined != 2875 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2876 need_policy = TRUE; 2877 } else { 2878 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2879 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2880 } 2881 } 2882 2883 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2884 mutex_exit(&zp->z_lock); 2885 ZFS_EXIT(zfsvfs); 2886 return (EPERM); 2887 } 2888 2889 if (need_policy == FALSE && 2890 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2891 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2892 need_policy = TRUE; 2893 } 2894 } 2895 2896 mutex_exit(&zp->z_lock); 2897 2898 if (mask & AT_MODE) { 2899 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2900 err = secpolicy_setid_setsticky_clear(vp, vap, 2901 &oldva, cr); 2902 if (err) { 2903 ZFS_EXIT(zfsvfs); 2904 return (err); 2905 } 2906 trim_mask |= AT_MODE; 2907 } else { 2908 need_policy = TRUE; 2909 } 2910 } 2911 2912 if (need_policy) { 2913 /* 2914 * If trim_mask is set then take ownership 2915 * has been granted or write_acl is present and user 2916 * has the ability to modify mode. In that case remove 2917 * UID|GID and or MODE from mask so that 2918 * secpolicy_vnode_setattr() doesn't revoke it. 2919 */ 2920 2921 if (trim_mask) { 2922 saved_mask = vap->va_mask; 2923 vap->va_mask &= ~trim_mask; 2924 } 2925 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2926 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2927 if (err) { 2928 ZFS_EXIT(zfsvfs); 2929 return (err); 2930 } 2931 2932 if (trim_mask) 2933 vap->va_mask |= saved_mask; 2934 } 2935 2936 /* 2937 * secpolicy_vnode_setattr, or take ownership may have 2938 * changed va_mask 2939 */ 2940 mask = vap->va_mask; 2941 2942 if ((mask & (AT_UID | AT_GID))) { 2943 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2944 &xattr_obj, sizeof (xattr_obj)); 2945 2946 if (err == 0 && xattr_obj) { 2947 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2948 if (err) 2949 goto out2; 2950 } 2951 if (mask & AT_UID) { 2952 new_uid = zfs_fuid_create(zfsvfs, 2953 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2954 if (new_uid != zp->z_uid && 2955 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2956 if (attrzp) 2957 VN_RELE(ZTOV(attrzp)); 2958 err = EDQUOT; 2959 goto out2; 2960 } 2961 } 2962 2963 if (mask & AT_GID) { 2964 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2965 cr, ZFS_GROUP, &fuidp); 2966 if (new_gid != zp->z_gid && 2967 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2968 if (attrzp) 2969 VN_RELE(ZTOV(attrzp)); 2970 err = EDQUOT; 2971 goto out2; 2972 } 2973 } 2974 } 2975 tx = dmu_tx_create(zfsvfs->z_os); 2976 2977 if (mask & AT_MODE) { 2978 uint64_t pmode = zp->z_mode; 2979 uint64_t acl_obj; 2980 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2981 2982 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2983 goto out; 2984 2985 mutex_enter(&zp->z_lock); 2986 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2987 /* 2988 * Are we upgrading ACL from old V0 format 2989 * to V1 format? 2990 */ 2991 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 2992 zfs_znode_acl_version(zp) == 2993 ZFS_ACL_VERSION_INITIAL) { 2994 dmu_tx_hold_free(tx, acl_obj, 0, 2995 DMU_OBJECT_END); 2996 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2997 0, aclp->z_acl_bytes); 2998 } else { 2999 dmu_tx_hold_write(tx, acl_obj, 0, 3000 aclp->z_acl_bytes); 3001 } 3002 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3003 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3004 0, aclp->z_acl_bytes); 3005 } 3006 mutex_exit(&zp->z_lock); 3007 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3008 } else { 3009 if ((mask & AT_XVATTR) && 3010 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3011 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3012 else 3013 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3014 } 3015 3016 if (attrzp) { 3017 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3018 } 3019 3020 fuid_dirtied = zfsvfs->z_fuid_dirty; 3021 if (fuid_dirtied) 3022 zfs_fuid_txhold(zfsvfs, tx); 3023 3024 zfs_sa_upgrade_txholds(tx, zp); 3025 3026 err = dmu_tx_assign(tx, TXG_NOWAIT); 3027 if (err) { 3028 if (err == ERESTART) 3029 dmu_tx_wait(tx); 3030 goto out; 3031 } 3032 3033 count = 0; 3034 /* 3035 * Set each attribute requested. 3036 * We group settings according to the locks they need to acquire. 3037 * 3038 * Note: you cannot set ctime directly, although it will be 3039 * updated as a side-effect of calling this function. 3040 */ 3041 3042 3043 if (mask & (AT_UID|AT_GID|AT_MODE)) 3044 mutex_enter(&zp->z_acl_lock); 3045 mutex_enter(&zp->z_lock); 3046 3047 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3048 &zp->z_pflags, sizeof (zp->z_pflags)); 3049 3050 if (attrzp) { 3051 if (mask & (AT_UID|AT_GID|AT_MODE)) 3052 mutex_enter(&attrzp->z_acl_lock); 3053 mutex_enter(&attrzp->z_lock); 3054 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3055 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3056 sizeof (attrzp->z_pflags)); 3057 } 3058 3059 if (mask & (AT_UID|AT_GID)) { 3060 3061 if (mask & AT_UID) { 3062 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3063 &new_uid, sizeof (new_uid)); 3064 zp->z_uid = new_uid; 3065 if (attrzp) { 3066 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3067 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3068 sizeof (new_uid)); 3069 attrzp->z_uid = new_uid; 3070 } 3071 } 3072 3073 if (mask & AT_GID) { 3074 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3075 NULL, &new_gid, sizeof (new_gid)); 3076 zp->z_gid = new_gid; 3077 if (attrzp) { 3078 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3079 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3080 sizeof (new_gid)); 3081 attrzp->z_gid = new_gid; 3082 } 3083 } 3084 if (!(mask & AT_MODE)) { 3085 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3086 NULL, &new_mode, sizeof (new_mode)); 3087 new_mode = zp->z_mode; 3088 } 3089 err = zfs_acl_chown_setattr(zp); 3090 ASSERT(err == 0); 3091 if (attrzp) { 3092 err = zfs_acl_chown_setattr(attrzp); 3093 ASSERT(err == 0); 3094 } 3095 } 3096 3097 if (mask & AT_MODE) { 3098 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3099 &new_mode, sizeof (new_mode)); 3100 zp->z_mode = new_mode; 3101 ASSERT3U((uintptr_t)aclp, !=, NULL); 3102 err = zfs_aclset_common(zp, aclp, cr, tx); 3103 ASSERT0(err); 3104 if (zp->z_acl_cached) 3105 zfs_acl_free(zp->z_acl_cached); 3106 zp->z_acl_cached = aclp; 3107 aclp = NULL; 3108 } 3109 3110 3111 if (mask & AT_ATIME) { 3112 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3113 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3114 &zp->z_atime, sizeof (zp->z_atime)); 3115 } 3116 3117 if (mask & AT_MTIME) { 3118 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3119 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3120 mtime, sizeof (mtime)); 3121 } 3122 3123 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3124 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3125 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3126 NULL, mtime, sizeof (mtime)); 3127 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3128 &ctime, sizeof (ctime)); 3129 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3130 B_TRUE); 3131 } else if (mask != 0) { 3132 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3133 &ctime, sizeof (ctime)); 3134 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3135 B_TRUE); 3136 if (attrzp) { 3137 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3138 SA_ZPL_CTIME(zfsvfs), NULL, 3139 &ctime, sizeof (ctime)); 3140 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3141 mtime, ctime, B_TRUE); 3142 } 3143 } 3144 /* 3145 * Do this after setting timestamps to prevent timestamp 3146 * update from toggling bit 3147 */ 3148 3149 if (xoap && (mask & AT_XVATTR)) { 3150 3151 /* 3152 * restore trimmed off masks 3153 * so that return masks can be set for caller. 3154 */ 3155 3156 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3157 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3158 } 3159 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3160 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3161 } 3162 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3163 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3164 } 3165 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3166 XVA_SET_REQ(xvap, XAT_NODUMP); 3167 } 3168 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3169 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3170 } 3171 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3172 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3173 } 3174 3175 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3176 ASSERT(vp->v_type == VREG); 3177 3178 zfs_xvattr_set(zp, xvap, tx); 3179 } 3180 3181 if (fuid_dirtied) 3182 zfs_fuid_sync(zfsvfs, tx); 3183 3184 if (mask != 0) 3185 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3186 3187 mutex_exit(&zp->z_lock); 3188 if (mask & (AT_UID|AT_GID|AT_MODE)) 3189 mutex_exit(&zp->z_acl_lock); 3190 3191 if (attrzp) { 3192 if (mask & (AT_UID|AT_GID|AT_MODE)) 3193 mutex_exit(&attrzp->z_acl_lock); 3194 mutex_exit(&attrzp->z_lock); 3195 } 3196 out: 3197 if (err == 0 && attrzp) { 3198 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3199 xattr_count, tx); 3200 ASSERT(err2 == 0); 3201 } 3202 3203 if (attrzp) 3204 VN_RELE(ZTOV(attrzp)); 3205 if (aclp) 3206 zfs_acl_free(aclp); 3207 3208 if (fuidp) { 3209 zfs_fuid_info_free(fuidp); 3210 fuidp = NULL; 3211 } 3212 3213 if (err) { 3214 dmu_tx_abort(tx); 3215 if (err == ERESTART) 3216 goto top; 3217 } else { 3218 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3219 dmu_tx_commit(tx); 3220 } 3221 3222 out2: 3223 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3224 zil_commit(zilog, 0); 3225 3226 ZFS_EXIT(zfsvfs); 3227 return (err); 3228 } 3229 3230 typedef struct zfs_zlock { 3231 krwlock_t *zl_rwlock; /* lock we acquired */ 3232 znode_t *zl_znode; /* znode we held */ 3233 struct zfs_zlock *zl_next; /* next in list */ 3234 } zfs_zlock_t; 3235 3236 /* 3237 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3238 */ 3239 static void 3240 zfs_rename_unlock(zfs_zlock_t **zlpp) 3241 { 3242 zfs_zlock_t *zl; 3243 3244 while ((zl = *zlpp) != NULL) { 3245 if (zl->zl_znode != NULL) 3246 VN_RELE(ZTOV(zl->zl_znode)); 3247 rw_exit(zl->zl_rwlock); 3248 *zlpp = zl->zl_next; 3249 kmem_free(zl, sizeof (*zl)); 3250 } 3251 } 3252 3253 /* 3254 * Search back through the directory tree, using the ".." entries. 3255 * Lock each directory in the chain to prevent concurrent renames. 3256 * Fail any attempt to move a directory into one of its own descendants. 3257 * XXX - z_parent_lock can overlap with map or grow locks 3258 */ 3259 static int 3260 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3261 { 3262 zfs_zlock_t *zl; 3263 znode_t *zp = tdzp; 3264 uint64_t rootid = zp->z_zfsvfs->z_root; 3265 uint64_t oidp = zp->z_id; 3266 krwlock_t *rwlp = &szp->z_parent_lock; 3267 krw_t rw = RW_WRITER; 3268 3269 /* 3270 * First pass write-locks szp and compares to zp->z_id. 3271 * Later passes read-lock zp and compare to zp->z_parent. 3272 */ 3273 do { 3274 if (!rw_tryenter(rwlp, rw)) { 3275 /* 3276 * Another thread is renaming in this path. 3277 * Note that if we are a WRITER, we don't have any 3278 * parent_locks held yet. 3279 */ 3280 if (rw == RW_READER && zp->z_id > szp->z_id) { 3281 /* 3282 * Drop our locks and restart 3283 */ 3284 zfs_rename_unlock(&zl); 3285 *zlpp = NULL; 3286 zp = tdzp; 3287 oidp = zp->z_id; 3288 rwlp = &szp->z_parent_lock; 3289 rw = RW_WRITER; 3290 continue; 3291 } else { 3292 /* 3293 * Wait for other thread to drop its locks 3294 */ 3295 rw_enter(rwlp, rw); 3296 } 3297 } 3298 3299 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3300 zl->zl_rwlock = rwlp; 3301 zl->zl_znode = NULL; 3302 zl->zl_next = *zlpp; 3303 *zlpp = zl; 3304 3305 if (oidp == szp->z_id) /* We're a descendant of szp */ 3306 return (EINVAL); 3307 3308 if (oidp == rootid) /* We've hit the top */ 3309 return (0); 3310 3311 if (rw == RW_READER) { /* i.e. not the first pass */ 3312 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3313 if (error) 3314 return (error); 3315 zl->zl_znode = zp; 3316 } 3317 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3318 &oidp, sizeof (oidp)); 3319 rwlp = &zp->z_parent_lock; 3320 rw = RW_READER; 3321 3322 } while (zp->z_id != sdzp->z_id); 3323 3324 return (0); 3325 } 3326 3327 /* 3328 * Move an entry from the provided source directory to the target 3329 * directory. Change the entry name as indicated. 3330 * 3331 * IN: sdvp - Source directory containing the "old entry". 3332 * snm - Old entry name. 3333 * tdvp - Target directory to contain the "new entry". 3334 * tnm - New entry name. 3335 * cr - credentials of caller. 3336 * ct - caller context 3337 * flags - case flags 3338 * 3339 * RETURN: 0 if success 3340 * error code if failure 3341 * 3342 * Timestamps: 3343 * sdvp,tdvp - ctime|mtime updated 3344 */ 3345 /*ARGSUSED*/ 3346 static int 3347 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3348 caller_context_t *ct, int flags) 3349 { 3350 znode_t *tdzp, *szp, *tzp; 3351 znode_t *sdzp = VTOZ(sdvp); 3352 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3353 zilog_t *zilog; 3354 vnode_t *realvp; 3355 zfs_dirlock_t *sdl, *tdl; 3356 dmu_tx_t *tx; 3357 zfs_zlock_t *zl; 3358 int cmp, serr, terr; 3359 int error = 0; 3360 int zflg = 0; 3361 3362 ZFS_ENTER(zfsvfs); 3363 ZFS_VERIFY_ZP(sdzp); 3364 zilog = zfsvfs->z_log; 3365 3366 /* 3367 * Make sure we have the real vp for the target directory. 3368 */ 3369 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3370 tdvp = realvp; 3371 3372 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3373 ZFS_EXIT(zfsvfs); 3374 return (EXDEV); 3375 } 3376 3377 tdzp = VTOZ(tdvp); 3378 ZFS_VERIFY_ZP(tdzp); 3379 if (zfsvfs->z_utf8 && u8_validate(tnm, 3380 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3381 ZFS_EXIT(zfsvfs); 3382 return (EILSEQ); 3383 } 3384 3385 if (flags & FIGNORECASE) 3386 zflg |= ZCILOOK; 3387 3388 top: 3389 szp = NULL; 3390 tzp = NULL; 3391 zl = NULL; 3392 3393 /* 3394 * This is to prevent the creation of links into attribute space 3395 * by renaming a linked file into/outof an attribute directory. 3396 * See the comment in zfs_link() for why this is considered bad. 3397 */ 3398 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3399 ZFS_EXIT(zfsvfs); 3400 return (EINVAL); 3401 } 3402 3403 /* 3404 * Lock source and target directory entries. To prevent deadlock, 3405 * a lock ordering must be defined. We lock the directory with 3406 * the smallest object id first, or if it's a tie, the one with 3407 * the lexically first name. 3408 */ 3409 if (sdzp->z_id < tdzp->z_id) { 3410 cmp = -1; 3411 } else if (sdzp->z_id > tdzp->z_id) { 3412 cmp = 1; 3413 } else { 3414 /* 3415 * First compare the two name arguments without 3416 * considering any case folding. 3417 */ 3418 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3419 3420 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3421 ASSERT(error == 0 || !zfsvfs->z_utf8); 3422 if (cmp == 0) { 3423 /* 3424 * POSIX: "If the old argument and the new argument 3425 * both refer to links to the same existing file, 3426 * the rename() function shall return successfully 3427 * and perform no other action." 3428 */ 3429 ZFS_EXIT(zfsvfs); 3430 return (0); 3431 } 3432 /* 3433 * If the file system is case-folding, then we may 3434 * have some more checking to do. A case-folding file 3435 * system is either supporting mixed case sensitivity 3436 * access or is completely case-insensitive. Note 3437 * that the file system is always case preserving. 3438 * 3439 * In mixed sensitivity mode case sensitive behavior 3440 * is the default. FIGNORECASE must be used to 3441 * explicitly request case insensitive behavior. 3442 * 3443 * If the source and target names provided differ only 3444 * by case (e.g., a request to rename 'tim' to 'Tim'), 3445 * we will treat this as a special case in the 3446 * case-insensitive mode: as long as the source name 3447 * is an exact match, we will allow this to proceed as 3448 * a name-change request. 3449 */ 3450 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3451 (zfsvfs->z_case == ZFS_CASE_MIXED && 3452 flags & FIGNORECASE)) && 3453 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3454 &error) == 0) { 3455 /* 3456 * case preserving rename request, require exact 3457 * name matches 3458 */ 3459 zflg |= ZCIEXACT; 3460 zflg &= ~ZCILOOK; 3461 } 3462 } 3463 3464 /* 3465 * If the source and destination directories are the same, we should 3466 * grab the z_name_lock of that directory only once. 3467 */ 3468 if (sdzp == tdzp) { 3469 zflg |= ZHAVELOCK; 3470 rw_enter(&sdzp->z_name_lock, RW_READER); 3471 } 3472 3473 if (cmp < 0) { 3474 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3475 ZEXISTS | zflg, NULL, NULL); 3476 terr = zfs_dirent_lock(&tdl, 3477 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3478 } else { 3479 terr = zfs_dirent_lock(&tdl, 3480 tdzp, tnm, &tzp, zflg, NULL, NULL); 3481 serr = zfs_dirent_lock(&sdl, 3482 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3483 NULL, NULL); 3484 } 3485 3486 if (serr) { 3487 /* 3488 * Source entry invalid or not there. 3489 */ 3490 if (!terr) { 3491 zfs_dirent_unlock(tdl); 3492 if (tzp) 3493 VN_RELE(ZTOV(tzp)); 3494 } 3495 3496 if (sdzp == tdzp) 3497 rw_exit(&sdzp->z_name_lock); 3498 3499 if (strcmp(snm, "..") == 0) 3500 serr = EINVAL; 3501 ZFS_EXIT(zfsvfs); 3502 return (serr); 3503 } 3504 if (terr) { 3505 zfs_dirent_unlock(sdl); 3506 VN_RELE(ZTOV(szp)); 3507 3508 if (sdzp == tdzp) 3509 rw_exit(&sdzp->z_name_lock); 3510 3511 if (strcmp(tnm, "..") == 0) 3512 terr = EINVAL; 3513 ZFS_EXIT(zfsvfs); 3514 return (terr); 3515 } 3516 3517 /* 3518 * Must have write access at the source to remove the old entry 3519 * and write access at the target to create the new entry. 3520 * Note that if target and source are the same, this can be 3521 * done in a single check. 3522 */ 3523 3524 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3525 goto out; 3526 3527 if (ZTOV(szp)->v_type == VDIR) { 3528 /* 3529 * Check to make sure rename is valid. 3530 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3531 */ 3532 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3533 goto out; 3534 } 3535 3536 /* 3537 * Does target exist? 3538 */ 3539 if (tzp) { 3540 /* 3541 * Source and target must be the same type. 3542 */ 3543 if (ZTOV(szp)->v_type == VDIR) { 3544 if (ZTOV(tzp)->v_type != VDIR) { 3545 error = ENOTDIR; 3546 goto out; 3547 } 3548 } else { 3549 if (ZTOV(tzp)->v_type == VDIR) { 3550 error = EISDIR; 3551 goto out; 3552 } 3553 } 3554 /* 3555 * POSIX dictates that when the source and target 3556 * entries refer to the same file object, rename 3557 * must do nothing and exit without error. 3558 */ 3559 if (szp->z_id == tzp->z_id) { 3560 error = 0; 3561 goto out; 3562 } 3563 } 3564 3565 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3566 if (tzp) 3567 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3568 3569 /* 3570 * notify the target directory if it is not the same 3571 * as source directory. 3572 */ 3573 if (tdvp != sdvp) { 3574 vnevent_rename_dest_dir(tdvp, ct); 3575 } 3576 3577 tx = dmu_tx_create(zfsvfs->z_os); 3578 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3579 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3580 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3581 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3582 if (sdzp != tdzp) { 3583 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3584 zfs_sa_upgrade_txholds(tx, tdzp); 3585 } 3586 if (tzp) { 3587 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3588 zfs_sa_upgrade_txholds(tx, tzp); 3589 } 3590 3591 zfs_sa_upgrade_txholds(tx, szp); 3592 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3593 error = dmu_tx_assign(tx, TXG_NOWAIT); 3594 if (error) { 3595 if (zl != NULL) 3596 zfs_rename_unlock(&zl); 3597 zfs_dirent_unlock(sdl); 3598 zfs_dirent_unlock(tdl); 3599 3600 if (sdzp == tdzp) 3601 rw_exit(&sdzp->z_name_lock); 3602 3603 VN_RELE(ZTOV(szp)); 3604 if (tzp) 3605 VN_RELE(ZTOV(tzp)); 3606 if (error == ERESTART) { 3607 dmu_tx_wait(tx); 3608 dmu_tx_abort(tx); 3609 goto top; 3610 } 3611 dmu_tx_abort(tx); 3612 ZFS_EXIT(zfsvfs); 3613 return (error); 3614 } 3615 3616 if (tzp) /* Attempt to remove the existing target */ 3617 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3618 3619 if (error == 0) { 3620 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3621 if (error == 0) { 3622 szp->z_pflags |= ZFS_AV_MODIFIED; 3623 3624 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3625 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3626 ASSERT0(error); 3627 3628 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3629 if (error == 0) { 3630 zfs_log_rename(zilog, tx, TX_RENAME | 3631 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3632 sdl->dl_name, tdzp, tdl->dl_name, szp); 3633 3634 /* 3635 * Update path information for the target vnode 3636 */ 3637 vn_renamepath(tdvp, ZTOV(szp), tnm, 3638 strlen(tnm)); 3639 } else { 3640 /* 3641 * At this point, we have successfully created 3642 * the target name, but have failed to remove 3643 * the source name. Since the create was done 3644 * with the ZRENAMING flag, there are 3645 * complications; for one, the link count is 3646 * wrong. The easiest way to deal with this 3647 * is to remove the newly created target, and 3648 * return the original error. This must 3649 * succeed; fortunately, it is very unlikely to 3650 * fail, since we just created it. 3651 */ 3652 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3653 ZRENAMING, NULL), ==, 0); 3654 } 3655 } 3656 } 3657 3658 dmu_tx_commit(tx); 3659 out: 3660 if (zl != NULL) 3661 zfs_rename_unlock(&zl); 3662 3663 zfs_dirent_unlock(sdl); 3664 zfs_dirent_unlock(tdl); 3665 3666 if (sdzp == tdzp) 3667 rw_exit(&sdzp->z_name_lock); 3668 3669 3670 VN_RELE(ZTOV(szp)); 3671 if (tzp) 3672 VN_RELE(ZTOV(tzp)); 3673 3674 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3675 zil_commit(zilog, 0); 3676 3677 ZFS_EXIT(zfsvfs); 3678 return (error); 3679 } 3680 3681 /* 3682 * Insert the indicated symbolic reference entry into the directory. 3683 * 3684 * IN: dvp - Directory to contain new symbolic link. 3685 * link - Name for new symlink entry. 3686 * vap - Attributes of new entry. 3687 * target - Target path of new symlink. 3688 * cr - credentials of caller. 3689 * ct - caller context 3690 * flags - case flags 3691 * 3692 * RETURN: 0 if success 3693 * error code if failure 3694 * 3695 * Timestamps: 3696 * dvp - ctime|mtime updated 3697 */ 3698 /*ARGSUSED*/ 3699 static int 3700 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3701 caller_context_t *ct, int flags) 3702 { 3703 znode_t *zp, *dzp = VTOZ(dvp); 3704 zfs_dirlock_t *dl; 3705 dmu_tx_t *tx; 3706 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3707 zilog_t *zilog; 3708 uint64_t len = strlen(link); 3709 int error; 3710 int zflg = ZNEW; 3711 zfs_acl_ids_t acl_ids; 3712 boolean_t fuid_dirtied; 3713 uint64_t txtype = TX_SYMLINK; 3714 3715 ASSERT(vap->va_type == VLNK); 3716 3717 ZFS_ENTER(zfsvfs); 3718 ZFS_VERIFY_ZP(dzp); 3719 zilog = zfsvfs->z_log; 3720 3721 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3722 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3723 ZFS_EXIT(zfsvfs); 3724 return (EILSEQ); 3725 } 3726 if (flags & FIGNORECASE) 3727 zflg |= ZCILOOK; 3728 3729 if (len > MAXPATHLEN) { 3730 ZFS_EXIT(zfsvfs); 3731 return (ENAMETOOLONG); 3732 } 3733 3734 if ((error = zfs_acl_ids_create(dzp, 0, 3735 vap, cr, NULL, &acl_ids)) != 0) { 3736 ZFS_EXIT(zfsvfs); 3737 return (error); 3738 } 3739 top: 3740 /* 3741 * Attempt to lock directory; fail if entry already exists. 3742 */ 3743 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3744 if (error) { 3745 zfs_acl_ids_free(&acl_ids); 3746 ZFS_EXIT(zfsvfs); 3747 return (error); 3748 } 3749 3750 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3751 zfs_acl_ids_free(&acl_ids); 3752 zfs_dirent_unlock(dl); 3753 ZFS_EXIT(zfsvfs); 3754 return (error); 3755 } 3756 3757 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3758 zfs_acl_ids_free(&acl_ids); 3759 zfs_dirent_unlock(dl); 3760 ZFS_EXIT(zfsvfs); 3761 return (EDQUOT); 3762 } 3763 tx = dmu_tx_create(zfsvfs->z_os); 3764 fuid_dirtied = zfsvfs->z_fuid_dirty; 3765 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3766 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3767 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3768 ZFS_SA_BASE_ATTR_SIZE + len); 3769 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3770 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3771 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3772 acl_ids.z_aclp->z_acl_bytes); 3773 } 3774 if (fuid_dirtied) 3775 zfs_fuid_txhold(zfsvfs, tx); 3776 error = dmu_tx_assign(tx, TXG_NOWAIT); 3777 if (error) { 3778 zfs_dirent_unlock(dl); 3779 if (error == ERESTART) { 3780 dmu_tx_wait(tx); 3781 dmu_tx_abort(tx); 3782 goto top; 3783 } 3784 zfs_acl_ids_free(&acl_ids); 3785 dmu_tx_abort(tx); 3786 ZFS_EXIT(zfsvfs); 3787 return (error); 3788 } 3789 3790 /* 3791 * Create a new object for the symlink. 3792 * for version 4 ZPL datsets the symlink will be an SA attribute 3793 */ 3794 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3795 3796 if (fuid_dirtied) 3797 zfs_fuid_sync(zfsvfs, tx); 3798 3799 mutex_enter(&zp->z_lock); 3800 if (zp->z_is_sa) 3801 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3802 link, len, tx); 3803 else 3804 zfs_sa_symlink(zp, link, len, tx); 3805 mutex_exit(&zp->z_lock); 3806 3807 zp->z_size = len; 3808 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3809 &zp->z_size, sizeof (zp->z_size), tx); 3810 /* 3811 * Insert the new object into the directory. 3812 */ 3813 (void) zfs_link_create(dl, zp, tx, ZNEW); 3814 3815 if (flags & FIGNORECASE) 3816 txtype |= TX_CI; 3817 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3818 3819 zfs_acl_ids_free(&acl_ids); 3820 3821 dmu_tx_commit(tx); 3822 3823 zfs_dirent_unlock(dl); 3824 3825 VN_RELE(ZTOV(zp)); 3826 3827 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3828 zil_commit(zilog, 0); 3829 3830 ZFS_EXIT(zfsvfs); 3831 return (error); 3832 } 3833 3834 /* 3835 * Return, in the buffer contained in the provided uio structure, 3836 * the symbolic path referred to by vp. 3837 * 3838 * IN: vp - vnode of symbolic link. 3839 * uoip - structure to contain the link path. 3840 * cr - credentials of caller. 3841 * ct - caller context 3842 * 3843 * OUT: uio - structure to contain the link path. 3844 * 3845 * RETURN: 0 if success 3846 * error code if failure 3847 * 3848 * Timestamps: 3849 * vp - atime updated 3850 */ 3851 /* ARGSUSED */ 3852 static int 3853 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3854 { 3855 znode_t *zp = VTOZ(vp); 3856 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3857 int error; 3858 3859 ZFS_ENTER(zfsvfs); 3860 ZFS_VERIFY_ZP(zp); 3861 3862 mutex_enter(&zp->z_lock); 3863 if (zp->z_is_sa) 3864 error = sa_lookup_uio(zp->z_sa_hdl, 3865 SA_ZPL_SYMLINK(zfsvfs), uio); 3866 else 3867 error = zfs_sa_readlink(zp, uio); 3868 mutex_exit(&zp->z_lock); 3869 3870 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3871 3872 ZFS_EXIT(zfsvfs); 3873 return (error); 3874 } 3875 3876 /* 3877 * Insert a new entry into directory tdvp referencing svp. 3878 * 3879 * IN: tdvp - Directory to contain new entry. 3880 * svp - vnode of new entry. 3881 * name - name of new entry. 3882 * cr - credentials of caller. 3883 * ct - caller context 3884 * 3885 * RETURN: 0 if success 3886 * error code if failure 3887 * 3888 * Timestamps: 3889 * tdvp - ctime|mtime updated 3890 * svp - ctime updated 3891 */ 3892 /* ARGSUSED */ 3893 static int 3894 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3895 caller_context_t *ct, int flags) 3896 { 3897 znode_t *dzp = VTOZ(tdvp); 3898 znode_t *tzp, *szp; 3899 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3900 zilog_t *zilog; 3901 zfs_dirlock_t *dl; 3902 dmu_tx_t *tx; 3903 vnode_t *realvp; 3904 int error; 3905 int zf = ZNEW; 3906 uint64_t parent; 3907 uid_t owner; 3908 3909 ASSERT(tdvp->v_type == VDIR); 3910 3911 ZFS_ENTER(zfsvfs); 3912 ZFS_VERIFY_ZP(dzp); 3913 zilog = zfsvfs->z_log; 3914 3915 if (VOP_REALVP(svp, &realvp, ct) == 0) 3916 svp = realvp; 3917 3918 /* 3919 * POSIX dictates that we return EPERM here. 3920 * Better choices include ENOTSUP or EISDIR. 3921 */ 3922 if (svp->v_type == VDIR) { 3923 ZFS_EXIT(zfsvfs); 3924 return (EPERM); 3925 } 3926 3927 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3928 ZFS_EXIT(zfsvfs); 3929 return (EXDEV); 3930 } 3931 3932 szp = VTOZ(svp); 3933 ZFS_VERIFY_ZP(szp); 3934 3935 /* Prevent links to .zfs/shares files */ 3936 3937 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3938 &parent, sizeof (uint64_t))) != 0) { 3939 ZFS_EXIT(zfsvfs); 3940 return (error); 3941 } 3942 if (parent == zfsvfs->z_shares_dir) { 3943 ZFS_EXIT(zfsvfs); 3944 return (EPERM); 3945 } 3946 3947 if (zfsvfs->z_utf8 && u8_validate(name, 3948 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3949 ZFS_EXIT(zfsvfs); 3950 return (EILSEQ); 3951 } 3952 if (flags & FIGNORECASE) 3953 zf |= ZCILOOK; 3954 3955 /* 3956 * We do not support links between attributes and non-attributes 3957 * because of the potential security risk of creating links 3958 * into "normal" file space in order to circumvent restrictions 3959 * imposed in attribute space. 3960 */ 3961 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3962 ZFS_EXIT(zfsvfs); 3963 return (EINVAL); 3964 } 3965 3966 3967 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 3968 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 3969 ZFS_EXIT(zfsvfs); 3970 return (EPERM); 3971 } 3972 3973 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3974 ZFS_EXIT(zfsvfs); 3975 return (error); 3976 } 3977 3978 top: 3979 /* 3980 * Attempt to lock directory; fail if entry already exists. 3981 */ 3982 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3983 if (error) { 3984 ZFS_EXIT(zfsvfs); 3985 return (error); 3986 } 3987 3988 tx = dmu_tx_create(zfsvfs->z_os); 3989 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3990 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3991 zfs_sa_upgrade_txholds(tx, szp); 3992 zfs_sa_upgrade_txholds(tx, dzp); 3993 error = dmu_tx_assign(tx, TXG_NOWAIT); 3994 if (error) { 3995 zfs_dirent_unlock(dl); 3996 if (error == ERESTART) { 3997 dmu_tx_wait(tx); 3998 dmu_tx_abort(tx); 3999 goto top; 4000 } 4001 dmu_tx_abort(tx); 4002 ZFS_EXIT(zfsvfs); 4003 return (error); 4004 } 4005 4006 error = zfs_link_create(dl, szp, tx, 0); 4007 4008 if (error == 0) { 4009 uint64_t txtype = TX_LINK; 4010 if (flags & FIGNORECASE) 4011 txtype |= TX_CI; 4012 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4013 } 4014 4015 dmu_tx_commit(tx); 4016 4017 zfs_dirent_unlock(dl); 4018 4019 if (error == 0) { 4020 vnevent_link(svp, ct); 4021 } 4022 4023 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4024 zil_commit(zilog, 0); 4025 4026 ZFS_EXIT(zfsvfs); 4027 return (error); 4028 } 4029 4030 /* 4031 * zfs_null_putapage() is used when the file system has been force 4032 * unmounted. It just drops the pages. 4033 */ 4034 /* ARGSUSED */ 4035 static int 4036 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4037 size_t *lenp, int flags, cred_t *cr) 4038 { 4039 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4040 return (0); 4041 } 4042 4043 /* 4044 * Push a page out to disk, klustering if possible. 4045 * 4046 * IN: vp - file to push page to. 4047 * pp - page to push. 4048 * flags - additional flags. 4049 * cr - credentials of caller. 4050 * 4051 * OUT: offp - start of range pushed. 4052 * lenp - len of range pushed. 4053 * 4054 * RETURN: 0 if success 4055 * error code if failure 4056 * 4057 * NOTE: callers must have locked the page to be pushed. On 4058 * exit, the page (and all other pages in the kluster) must be 4059 * unlocked. 4060 */ 4061 /* ARGSUSED */ 4062 static int 4063 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4064 size_t *lenp, int flags, cred_t *cr) 4065 { 4066 znode_t *zp = VTOZ(vp); 4067 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4068 dmu_tx_t *tx; 4069 u_offset_t off, koff; 4070 size_t len, klen; 4071 int err; 4072 4073 off = pp->p_offset; 4074 len = PAGESIZE; 4075 /* 4076 * If our blocksize is bigger than the page size, try to kluster 4077 * multiple pages so that we write a full block (thus avoiding 4078 * a read-modify-write). 4079 */ 4080 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4081 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4082 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4083 ASSERT(koff <= zp->z_size); 4084 if (koff + klen > zp->z_size) 4085 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4086 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4087 } 4088 ASSERT3U(btop(len), ==, btopr(len)); 4089 4090 /* 4091 * Can't push pages past end-of-file. 4092 */ 4093 if (off >= zp->z_size) { 4094 /* ignore all pages */ 4095 err = 0; 4096 goto out; 4097 } else if (off + len > zp->z_size) { 4098 int npages = btopr(zp->z_size - off); 4099 page_t *trunc; 4100 4101 page_list_break(&pp, &trunc, npages); 4102 /* ignore pages past end of file */ 4103 if (trunc) 4104 pvn_write_done(trunc, flags); 4105 len = zp->z_size - off; 4106 } 4107 4108 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4109 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4110 err = EDQUOT; 4111 goto out; 4112 } 4113 top: 4114 tx = dmu_tx_create(zfsvfs->z_os); 4115 dmu_tx_hold_write(tx, zp->z_id, off, len); 4116 4117 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4118 zfs_sa_upgrade_txholds(tx, zp); 4119 err = dmu_tx_assign(tx, TXG_NOWAIT); 4120 if (err != 0) { 4121 if (err == ERESTART) { 4122 dmu_tx_wait(tx); 4123 dmu_tx_abort(tx); 4124 goto top; 4125 } 4126 dmu_tx_abort(tx); 4127 goto out; 4128 } 4129 4130 if (zp->z_blksz <= PAGESIZE) { 4131 caddr_t va = zfs_map_page(pp, S_READ); 4132 ASSERT3U(len, <=, PAGESIZE); 4133 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4134 zfs_unmap_page(pp, va); 4135 } else { 4136 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4137 } 4138 4139 if (err == 0) { 4140 uint64_t mtime[2], ctime[2]; 4141 sa_bulk_attr_t bulk[3]; 4142 int count = 0; 4143 4144 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4145 &mtime, 16); 4146 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4147 &ctime, 16); 4148 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4149 &zp->z_pflags, 8); 4150 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4151 B_TRUE); 4152 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4153 } 4154 dmu_tx_commit(tx); 4155 4156 out: 4157 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4158 if (offp) 4159 *offp = off; 4160 if (lenp) 4161 *lenp = len; 4162 4163 return (err); 4164 } 4165 4166 /* 4167 * Copy the portion of the file indicated from pages into the file. 4168 * The pages are stored in a page list attached to the files vnode. 4169 * 4170 * IN: vp - vnode of file to push page data to. 4171 * off - position in file to put data. 4172 * len - amount of data to write. 4173 * flags - flags to control the operation. 4174 * cr - credentials of caller. 4175 * ct - caller context. 4176 * 4177 * RETURN: 0 if success 4178 * error code if failure 4179 * 4180 * Timestamps: 4181 * vp - ctime|mtime updated 4182 */ 4183 /*ARGSUSED*/ 4184 static int 4185 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4186 caller_context_t *ct) 4187 { 4188 znode_t *zp = VTOZ(vp); 4189 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4190 page_t *pp; 4191 size_t io_len; 4192 u_offset_t io_off; 4193 uint_t blksz; 4194 rl_t *rl; 4195 int error = 0; 4196 4197 ZFS_ENTER(zfsvfs); 4198 ZFS_VERIFY_ZP(zp); 4199 4200 /* 4201 * There's nothing to do if no data is cached. 4202 */ 4203 if (!vn_has_cached_data(vp)) { 4204 ZFS_EXIT(zfsvfs); 4205 return (0); 4206 } 4207 4208 /* 4209 * Align this request to the file block size in case we kluster. 4210 * XXX - this can result in pretty aggresive locking, which can 4211 * impact simultanious read/write access. One option might be 4212 * to break up long requests (len == 0) into block-by-block 4213 * operations to get narrower locking. 4214 */ 4215 blksz = zp->z_blksz; 4216 if (ISP2(blksz)) 4217 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4218 else 4219 io_off = 0; 4220 if (len > 0 && ISP2(blksz)) 4221 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4222 else 4223 io_len = 0; 4224 4225 if (io_len == 0) { 4226 /* 4227 * Search the entire vp list for pages >= io_off. 4228 */ 4229 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4230 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4231 goto out; 4232 } 4233 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4234 4235 if (off > zp->z_size) { 4236 /* past end of file */ 4237 zfs_range_unlock(rl); 4238 ZFS_EXIT(zfsvfs); 4239 return (0); 4240 } 4241 4242 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4243 4244 for (off = io_off; io_off < off + len; io_off += io_len) { 4245 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4246 pp = page_lookup(vp, io_off, 4247 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4248 } else { 4249 pp = page_lookup_nowait(vp, io_off, 4250 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4251 } 4252 4253 if (pp != NULL && pvn_getdirty(pp, flags)) { 4254 int err; 4255 4256 /* 4257 * Found a dirty page to push 4258 */ 4259 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4260 if (err) 4261 error = err; 4262 } else { 4263 io_len = PAGESIZE; 4264 } 4265 } 4266 out: 4267 zfs_range_unlock(rl); 4268 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4269 zil_commit(zfsvfs->z_log, zp->z_id); 4270 ZFS_EXIT(zfsvfs); 4271 return (error); 4272 } 4273 4274 /*ARGSUSED*/ 4275 void 4276 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4277 { 4278 znode_t *zp = VTOZ(vp); 4279 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4280 int error; 4281 4282 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4283 if (zp->z_sa_hdl == NULL) { 4284 /* 4285 * The fs has been unmounted, or we did a 4286 * suspend/resume and this file no longer exists. 4287 */ 4288 if (vn_has_cached_data(vp)) { 4289 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4290 B_INVAL, cr); 4291 } 4292 4293 mutex_enter(&zp->z_lock); 4294 mutex_enter(&vp->v_lock); 4295 ASSERT(vp->v_count == 1); 4296 vp->v_count = 0; 4297 mutex_exit(&vp->v_lock); 4298 mutex_exit(&zp->z_lock); 4299 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4300 zfs_znode_free(zp); 4301 return; 4302 } 4303 4304 /* 4305 * Attempt to push any data in the page cache. If this fails 4306 * we will get kicked out later in zfs_zinactive(). 4307 */ 4308 if (vn_has_cached_data(vp)) { 4309 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4310 cr); 4311 } 4312 4313 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4314 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4315 4316 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4317 zfs_sa_upgrade_txholds(tx, zp); 4318 error = dmu_tx_assign(tx, TXG_WAIT); 4319 if (error) { 4320 dmu_tx_abort(tx); 4321 } else { 4322 mutex_enter(&zp->z_lock); 4323 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4324 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4325 zp->z_atime_dirty = 0; 4326 mutex_exit(&zp->z_lock); 4327 dmu_tx_commit(tx); 4328 } 4329 } 4330 4331 zfs_zinactive(zp); 4332 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4333 } 4334 4335 /* 4336 * Bounds-check the seek operation. 4337 * 4338 * IN: vp - vnode seeking within 4339 * ooff - old file offset 4340 * noffp - pointer to new file offset 4341 * ct - caller context 4342 * 4343 * RETURN: 0 if success 4344 * EINVAL if new offset invalid 4345 */ 4346 /* ARGSUSED */ 4347 static int 4348 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4349 caller_context_t *ct) 4350 { 4351 if (vp->v_type == VDIR) 4352 return (0); 4353 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4354 } 4355 4356 /* 4357 * Pre-filter the generic locking function to trap attempts to place 4358 * a mandatory lock on a memory mapped file. 4359 */ 4360 static int 4361 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4362 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4363 { 4364 znode_t *zp = VTOZ(vp); 4365 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4366 4367 ZFS_ENTER(zfsvfs); 4368 ZFS_VERIFY_ZP(zp); 4369 4370 /* 4371 * We are following the UFS semantics with respect to mapcnt 4372 * here: If we see that the file is mapped already, then we will 4373 * return an error, but we don't worry about races between this 4374 * function and zfs_map(). 4375 */ 4376 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4377 ZFS_EXIT(zfsvfs); 4378 return (EAGAIN); 4379 } 4380 ZFS_EXIT(zfsvfs); 4381 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4382 } 4383 4384 /* 4385 * If we can't find a page in the cache, we will create a new page 4386 * and fill it with file data. For efficiency, we may try to fill 4387 * multiple pages at once (klustering) to fill up the supplied page 4388 * list. Note that the pages to be filled are held with an exclusive 4389 * lock to prevent access by other threads while they are being filled. 4390 */ 4391 static int 4392 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4393 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4394 { 4395 znode_t *zp = VTOZ(vp); 4396 page_t *pp, *cur_pp; 4397 objset_t *os = zp->z_zfsvfs->z_os; 4398 u_offset_t io_off, total; 4399 size_t io_len; 4400 int err; 4401 4402 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4403 /* 4404 * We only have a single page, don't bother klustering 4405 */ 4406 io_off = off; 4407 io_len = PAGESIZE; 4408 pp = page_create_va(vp, io_off, io_len, 4409 PG_EXCL | PG_WAIT, seg, addr); 4410 } else { 4411 /* 4412 * Try to find enough pages to fill the page list 4413 */ 4414 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4415 &io_len, off, plsz, 0); 4416 } 4417 if (pp == NULL) { 4418 /* 4419 * The page already exists, nothing to do here. 4420 */ 4421 *pl = NULL; 4422 return (0); 4423 } 4424 4425 /* 4426 * Fill the pages in the kluster. 4427 */ 4428 cur_pp = pp; 4429 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4430 caddr_t va; 4431 4432 ASSERT3U(io_off, ==, cur_pp->p_offset); 4433 va = zfs_map_page(cur_pp, S_WRITE); 4434 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4435 DMU_READ_PREFETCH); 4436 zfs_unmap_page(cur_pp, va); 4437 if (err) { 4438 /* On error, toss the entire kluster */ 4439 pvn_read_done(pp, B_ERROR); 4440 /* convert checksum errors into IO errors */ 4441 if (err == ECKSUM) 4442 err = EIO; 4443 return (err); 4444 } 4445 cur_pp = cur_pp->p_next; 4446 } 4447 4448 /* 4449 * Fill in the page list array from the kluster starting 4450 * from the desired offset `off'. 4451 * NOTE: the page list will always be null terminated. 4452 */ 4453 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4454 ASSERT(pl == NULL || (*pl)->p_offset == off); 4455 4456 return (0); 4457 } 4458 4459 /* 4460 * Return pointers to the pages for the file region [off, off + len] 4461 * in the pl array. If plsz is greater than len, this function may 4462 * also return page pointers from after the specified region 4463 * (i.e. the region [off, off + plsz]). These additional pages are 4464 * only returned if they are already in the cache, or were created as 4465 * part of a klustered read. 4466 * 4467 * IN: vp - vnode of file to get data from. 4468 * off - position in file to get data from. 4469 * len - amount of data to retrieve. 4470 * plsz - length of provided page list. 4471 * seg - segment to obtain pages for. 4472 * addr - virtual address of fault. 4473 * rw - mode of created pages. 4474 * cr - credentials of caller. 4475 * ct - caller context. 4476 * 4477 * OUT: protp - protection mode of created pages. 4478 * pl - list of pages created. 4479 * 4480 * RETURN: 0 if success 4481 * error code if failure 4482 * 4483 * Timestamps: 4484 * vp - atime updated 4485 */ 4486 /* ARGSUSED */ 4487 static int 4488 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4489 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4490 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4491 { 4492 znode_t *zp = VTOZ(vp); 4493 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4494 page_t **pl0 = pl; 4495 int err = 0; 4496 4497 /* we do our own caching, faultahead is unnecessary */ 4498 if (pl == NULL) 4499 return (0); 4500 else if (len > plsz) 4501 len = plsz; 4502 else 4503 len = P2ROUNDUP(len, PAGESIZE); 4504 ASSERT(plsz >= len); 4505 4506 ZFS_ENTER(zfsvfs); 4507 ZFS_VERIFY_ZP(zp); 4508 4509 if (protp) 4510 *protp = PROT_ALL; 4511 4512 /* 4513 * Loop through the requested range [off, off + len) looking 4514 * for pages. If we don't find a page, we will need to create 4515 * a new page and fill it with data from the file. 4516 */ 4517 while (len > 0) { 4518 if (*pl = page_lookup(vp, off, SE_SHARED)) 4519 *(pl+1) = NULL; 4520 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4521 goto out; 4522 while (*pl) { 4523 ASSERT3U((*pl)->p_offset, ==, off); 4524 off += PAGESIZE; 4525 addr += PAGESIZE; 4526 if (len > 0) { 4527 ASSERT3U(len, >=, PAGESIZE); 4528 len -= PAGESIZE; 4529 } 4530 ASSERT3U(plsz, >=, PAGESIZE); 4531 plsz -= PAGESIZE; 4532 pl++; 4533 } 4534 } 4535 4536 /* 4537 * Fill out the page array with any pages already in the cache. 4538 */ 4539 while (plsz > 0 && 4540 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4541 off += PAGESIZE; 4542 plsz -= PAGESIZE; 4543 } 4544 out: 4545 if (err) { 4546 /* 4547 * Release any pages we have previously locked. 4548 */ 4549 while (pl > pl0) 4550 page_unlock(*--pl); 4551 } else { 4552 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4553 } 4554 4555 *pl = NULL; 4556 4557 ZFS_EXIT(zfsvfs); 4558 return (err); 4559 } 4560 4561 /* 4562 * Request a memory map for a section of a file. This code interacts 4563 * with common code and the VM system as follows: 4564 * 4565 * common code calls mmap(), which ends up in smmap_common() 4566 * 4567 * this calls VOP_MAP(), which takes you into (say) zfs 4568 * 4569 * zfs_map() calls as_map(), passing segvn_create() as the callback 4570 * 4571 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4572 * 4573 * zfs_addmap() updates z_mapcnt 4574 */ 4575 /*ARGSUSED*/ 4576 static int 4577 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4578 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4579 caller_context_t *ct) 4580 { 4581 znode_t *zp = VTOZ(vp); 4582 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4583 segvn_crargs_t vn_a; 4584 int error; 4585 4586 ZFS_ENTER(zfsvfs); 4587 ZFS_VERIFY_ZP(zp); 4588 4589 if ((prot & PROT_WRITE) && (zp->z_pflags & 4590 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4591 ZFS_EXIT(zfsvfs); 4592 return (EPERM); 4593 } 4594 4595 if ((prot & (PROT_READ | PROT_EXEC)) && 4596 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4597 ZFS_EXIT(zfsvfs); 4598 return (EACCES); 4599 } 4600 4601 if (vp->v_flag & VNOMAP) { 4602 ZFS_EXIT(zfsvfs); 4603 return (ENOSYS); 4604 } 4605 4606 if (off < 0 || len > MAXOFFSET_T - off) { 4607 ZFS_EXIT(zfsvfs); 4608 return (ENXIO); 4609 } 4610 4611 if (vp->v_type != VREG) { 4612 ZFS_EXIT(zfsvfs); 4613 return (ENODEV); 4614 } 4615 4616 /* 4617 * If file is locked, disallow mapping. 4618 */ 4619 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4620 ZFS_EXIT(zfsvfs); 4621 return (EAGAIN); 4622 } 4623 4624 as_rangelock(as); 4625 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4626 if (error != 0) { 4627 as_rangeunlock(as); 4628 ZFS_EXIT(zfsvfs); 4629 return (error); 4630 } 4631 4632 vn_a.vp = vp; 4633 vn_a.offset = (u_offset_t)off; 4634 vn_a.type = flags & MAP_TYPE; 4635 vn_a.prot = prot; 4636 vn_a.maxprot = maxprot; 4637 vn_a.cred = cr; 4638 vn_a.amp = NULL; 4639 vn_a.flags = flags & ~MAP_TYPE; 4640 vn_a.szc = 0; 4641 vn_a.lgrp_mem_policy_flags = 0; 4642 4643 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4644 4645 as_rangeunlock(as); 4646 ZFS_EXIT(zfsvfs); 4647 return (error); 4648 } 4649 4650 /* ARGSUSED */ 4651 static int 4652 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4653 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4654 caller_context_t *ct) 4655 { 4656 uint64_t pages = btopr(len); 4657 4658 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4659 return (0); 4660 } 4661 4662 /* 4663 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4664 * more accurate mtime for the associated file. Since we don't have a way of 4665 * detecting when the data was actually modified, we have to resort to 4666 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4667 * last page is pushed. The problem occurs when the msync() call is omitted, 4668 * which by far the most common case: 4669 * 4670 * open() 4671 * mmap() 4672 * <modify memory> 4673 * munmap() 4674 * close() 4675 * <time lapse> 4676 * putpage() via fsflush 4677 * 4678 * If we wait until fsflush to come along, we can have a modification time that 4679 * is some arbitrary point in the future. In order to prevent this in the 4680 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4681 * torn down. 4682 */ 4683 /* ARGSUSED */ 4684 static int 4685 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4686 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4687 caller_context_t *ct) 4688 { 4689 uint64_t pages = btopr(len); 4690 4691 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4692 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4693 4694 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4695 vn_has_cached_data(vp)) 4696 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4697 4698 return (0); 4699 } 4700 4701 /* 4702 * Free or allocate space in a file. Currently, this function only 4703 * supports the `F_FREESP' command. However, this command is somewhat 4704 * misnamed, as its functionality includes the ability to allocate as 4705 * well as free space. 4706 * 4707 * IN: vp - vnode of file to free data in. 4708 * cmd - action to take (only F_FREESP supported). 4709 * bfp - section of file to free/alloc. 4710 * flag - current file open mode flags. 4711 * offset - current file offset. 4712 * cr - credentials of caller [UNUSED]. 4713 * ct - caller context. 4714 * 4715 * RETURN: 0 if success 4716 * error code if failure 4717 * 4718 * Timestamps: 4719 * vp - ctime|mtime updated 4720 */ 4721 /* ARGSUSED */ 4722 static int 4723 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4724 offset_t offset, cred_t *cr, caller_context_t *ct) 4725 { 4726 znode_t *zp = VTOZ(vp); 4727 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4728 uint64_t off, len; 4729 int error; 4730 4731 ZFS_ENTER(zfsvfs); 4732 ZFS_VERIFY_ZP(zp); 4733 4734 if (cmd != F_FREESP) { 4735 ZFS_EXIT(zfsvfs); 4736 return (EINVAL); 4737 } 4738 4739 if (error = convoff(vp, bfp, 0, offset)) { 4740 ZFS_EXIT(zfsvfs); 4741 return (error); 4742 } 4743 4744 if (bfp->l_len < 0) { 4745 ZFS_EXIT(zfsvfs); 4746 return (EINVAL); 4747 } 4748 4749 off = bfp->l_start; 4750 len = bfp->l_len; /* 0 means from off to end of file */ 4751 4752 error = zfs_freesp(zp, off, len, flag, TRUE); 4753 4754 ZFS_EXIT(zfsvfs); 4755 return (error); 4756 } 4757 4758 /*ARGSUSED*/ 4759 static int 4760 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4761 { 4762 znode_t *zp = VTOZ(vp); 4763 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4764 uint32_t gen; 4765 uint64_t gen64; 4766 uint64_t object = zp->z_id; 4767 zfid_short_t *zfid; 4768 int size, i, error; 4769 4770 ZFS_ENTER(zfsvfs); 4771 ZFS_VERIFY_ZP(zp); 4772 4773 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4774 &gen64, sizeof (uint64_t))) != 0) { 4775 ZFS_EXIT(zfsvfs); 4776 return (error); 4777 } 4778 4779 gen = (uint32_t)gen64; 4780 4781 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4782 if (fidp->fid_len < size) { 4783 fidp->fid_len = size; 4784 ZFS_EXIT(zfsvfs); 4785 return (ENOSPC); 4786 } 4787 4788 zfid = (zfid_short_t *)fidp; 4789 4790 zfid->zf_len = size; 4791 4792 for (i = 0; i < sizeof (zfid->zf_object); i++) 4793 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4794 4795 /* Must have a non-zero generation number to distinguish from .zfs */ 4796 if (gen == 0) 4797 gen = 1; 4798 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4799 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4800 4801 if (size == LONG_FID_LEN) { 4802 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4803 zfid_long_t *zlfid; 4804 4805 zlfid = (zfid_long_t *)fidp; 4806 4807 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4808 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4809 4810 /* XXX - this should be the generation number for the objset */ 4811 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4812 zlfid->zf_setgen[i] = 0; 4813 } 4814 4815 ZFS_EXIT(zfsvfs); 4816 return (0); 4817 } 4818 4819 static int 4820 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4821 caller_context_t *ct) 4822 { 4823 znode_t *zp, *xzp; 4824 zfsvfs_t *zfsvfs; 4825 zfs_dirlock_t *dl; 4826 int error; 4827 4828 switch (cmd) { 4829 case _PC_LINK_MAX: 4830 *valp = ULONG_MAX; 4831 return (0); 4832 4833 case _PC_FILESIZEBITS: 4834 *valp = 64; 4835 return (0); 4836 4837 case _PC_XATTR_EXISTS: 4838 zp = VTOZ(vp); 4839 zfsvfs = zp->z_zfsvfs; 4840 ZFS_ENTER(zfsvfs); 4841 ZFS_VERIFY_ZP(zp); 4842 *valp = 0; 4843 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4844 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4845 if (error == 0) { 4846 zfs_dirent_unlock(dl); 4847 if (!zfs_dirempty(xzp)) 4848 *valp = 1; 4849 VN_RELE(ZTOV(xzp)); 4850 } else if (error == ENOENT) { 4851 /* 4852 * If there aren't extended attributes, it's the 4853 * same as having zero of them. 4854 */ 4855 error = 0; 4856 } 4857 ZFS_EXIT(zfsvfs); 4858 return (error); 4859 4860 case _PC_SATTR_ENABLED: 4861 case _PC_SATTR_EXISTS: 4862 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4863 (vp->v_type == VREG || vp->v_type == VDIR); 4864 return (0); 4865 4866 case _PC_ACCESS_FILTERING: 4867 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4868 vp->v_type == VDIR; 4869 return (0); 4870 4871 case _PC_ACL_ENABLED: 4872 *valp = _ACL_ACE_ENABLED; 4873 return (0); 4874 4875 case _PC_MIN_HOLE_SIZE: 4876 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4877 return (0); 4878 4879 case _PC_TIMESTAMP_RESOLUTION: 4880 /* nanosecond timestamp resolution */ 4881 *valp = 1L; 4882 return (0); 4883 4884 default: 4885 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4886 } 4887 } 4888 4889 /*ARGSUSED*/ 4890 static int 4891 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4892 caller_context_t *ct) 4893 { 4894 znode_t *zp = VTOZ(vp); 4895 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4896 int error; 4897 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4898 4899 ZFS_ENTER(zfsvfs); 4900 ZFS_VERIFY_ZP(zp); 4901 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4902 ZFS_EXIT(zfsvfs); 4903 4904 return (error); 4905 } 4906 4907 /*ARGSUSED*/ 4908 static int 4909 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4910 caller_context_t *ct) 4911 { 4912 znode_t *zp = VTOZ(vp); 4913 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4914 int error; 4915 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4916 zilog_t *zilog = zfsvfs->z_log; 4917 4918 ZFS_ENTER(zfsvfs); 4919 ZFS_VERIFY_ZP(zp); 4920 4921 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4922 4923 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4924 zil_commit(zilog, 0); 4925 4926 ZFS_EXIT(zfsvfs); 4927 return (error); 4928 } 4929 4930 /* 4931 * Tunable, both must be a power of 2. 4932 * 4933 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4934 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4935 * an arcbuf for a partial block read 4936 */ 4937 int zcr_blksz_min = (1 << 10); /* 1K */ 4938 int zcr_blksz_max = (1 << 17); /* 128K */ 4939 4940 /*ARGSUSED*/ 4941 static int 4942 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4943 caller_context_t *ct) 4944 { 4945 znode_t *zp = VTOZ(vp); 4946 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4947 int max_blksz = zfsvfs->z_max_blksz; 4948 uio_t *uio = &xuio->xu_uio; 4949 ssize_t size = uio->uio_resid; 4950 offset_t offset = uio->uio_loffset; 4951 int blksz; 4952 int fullblk, i; 4953 arc_buf_t *abuf; 4954 ssize_t maxsize; 4955 int preamble, postamble; 4956 4957 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4958 return (EINVAL); 4959 4960 ZFS_ENTER(zfsvfs); 4961 ZFS_VERIFY_ZP(zp); 4962 switch (ioflag) { 4963 case UIO_WRITE: 4964 /* 4965 * Loan out an arc_buf for write if write size is bigger than 4966 * max_blksz, and the file's block size is also max_blksz. 4967 */ 4968 blksz = max_blksz; 4969 if (size < blksz || zp->z_blksz != blksz) { 4970 ZFS_EXIT(zfsvfs); 4971 return (EINVAL); 4972 } 4973 /* 4974 * Caller requests buffers for write before knowing where the 4975 * write offset might be (e.g. NFS TCP write). 4976 */ 4977 if (offset == -1) { 4978 preamble = 0; 4979 } else { 4980 preamble = P2PHASE(offset, blksz); 4981 if (preamble) { 4982 preamble = blksz - preamble; 4983 size -= preamble; 4984 } 4985 } 4986 4987 postamble = P2PHASE(size, blksz); 4988 size -= postamble; 4989 4990 fullblk = size / blksz; 4991 (void) dmu_xuio_init(xuio, 4992 (preamble != 0) + fullblk + (postamble != 0)); 4993 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4994 int, postamble, int, 4995 (preamble != 0) + fullblk + (postamble != 0)); 4996 4997 /* 4998 * Have to fix iov base/len for partial buffers. They 4999 * currently represent full arc_buf's. 5000 */ 5001 if (preamble) { 5002 /* data begins in the middle of the arc_buf */ 5003 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5004 blksz); 5005 ASSERT(abuf); 5006 (void) dmu_xuio_add(xuio, abuf, 5007 blksz - preamble, preamble); 5008 } 5009 5010 for (i = 0; i < fullblk; i++) { 5011 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5012 blksz); 5013 ASSERT(abuf); 5014 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5015 } 5016 5017 if (postamble) { 5018 /* data ends in the middle of the arc_buf */ 5019 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5020 blksz); 5021 ASSERT(abuf); 5022 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5023 } 5024 break; 5025 case UIO_READ: 5026 /* 5027 * Loan out an arc_buf for read if the read size is larger than 5028 * the current file block size. Block alignment is not 5029 * considered. Partial arc_buf will be loaned out for read. 5030 */ 5031 blksz = zp->z_blksz; 5032 if (blksz < zcr_blksz_min) 5033 blksz = zcr_blksz_min; 5034 if (blksz > zcr_blksz_max) 5035 blksz = zcr_blksz_max; 5036 /* avoid potential complexity of dealing with it */ 5037 if (blksz > max_blksz) { 5038 ZFS_EXIT(zfsvfs); 5039 return (EINVAL); 5040 } 5041 5042 maxsize = zp->z_size - uio->uio_loffset; 5043 if (size > maxsize) 5044 size = maxsize; 5045 5046 if (size < blksz || vn_has_cached_data(vp)) { 5047 ZFS_EXIT(zfsvfs); 5048 return (EINVAL); 5049 } 5050 break; 5051 default: 5052 ZFS_EXIT(zfsvfs); 5053 return (EINVAL); 5054 } 5055 5056 uio->uio_extflg = UIO_XUIO; 5057 XUIO_XUZC_RW(xuio) = ioflag; 5058 ZFS_EXIT(zfsvfs); 5059 return (0); 5060 } 5061 5062 /*ARGSUSED*/ 5063 static int 5064 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5065 { 5066 int i; 5067 arc_buf_t *abuf; 5068 int ioflag = XUIO_XUZC_RW(xuio); 5069 5070 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5071 5072 i = dmu_xuio_cnt(xuio); 5073 while (i-- > 0) { 5074 abuf = dmu_xuio_arcbuf(xuio, i); 5075 /* 5076 * if abuf == NULL, it must be a write buffer 5077 * that has been returned in zfs_write(). 5078 */ 5079 if (abuf) 5080 dmu_return_arcbuf(abuf); 5081 ASSERT(abuf || ioflag == UIO_WRITE); 5082 } 5083 5084 dmu_xuio_fini(xuio); 5085 return (0); 5086 } 5087 5088 /* 5089 * Predeclare these here so that the compiler assumes that 5090 * this is an "old style" function declaration that does 5091 * not include arguments => we won't get type mismatch errors 5092 * in the initializations that follow. 5093 */ 5094 static int zfs_inval(); 5095 static int zfs_isdir(); 5096 5097 static int 5098 zfs_inval() 5099 { 5100 return (EINVAL); 5101 } 5102 5103 static int 5104 zfs_isdir() 5105 { 5106 return (EISDIR); 5107 } 5108 /* 5109 * Directory vnode operations template 5110 */ 5111 vnodeops_t *zfs_dvnodeops; 5112 const fs_operation_def_t zfs_dvnodeops_template[] = { 5113 VOPNAME_OPEN, { .vop_open = zfs_open }, 5114 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5115 VOPNAME_READ, { .error = zfs_isdir }, 5116 VOPNAME_WRITE, { .error = zfs_isdir }, 5117 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5118 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5119 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5120 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5121 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5122 VOPNAME_CREATE, { .vop_create = zfs_create }, 5123 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5124 VOPNAME_LINK, { .vop_link = zfs_link }, 5125 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5126 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5127 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5128 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5129 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5130 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5131 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5132 VOPNAME_FID, { .vop_fid = zfs_fid }, 5133 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5134 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5135 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5136 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5137 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5138 NULL, NULL 5139 }; 5140 5141 /* 5142 * Regular file vnode operations template 5143 */ 5144 vnodeops_t *zfs_fvnodeops; 5145 const fs_operation_def_t zfs_fvnodeops_template[] = { 5146 VOPNAME_OPEN, { .vop_open = zfs_open }, 5147 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5148 VOPNAME_READ, { .vop_read = zfs_read }, 5149 VOPNAME_WRITE, { .vop_write = zfs_write }, 5150 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5151 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5152 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5153 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5154 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5155 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5156 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5157 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5158 VOPNAME_FID, { .vop_fid = zfs_fid }, 5159 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5160 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5161 VOPNAME_SPACE, { .vop_space = zfs_space }, 5162 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5163 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5164 VOPNAME_MAP, { .vop_map = zfs_map }, 5165 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5166 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5167 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5168 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5169 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5170 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5171 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5172 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5173 NULL, NULL 5174 }; 5175 5176 /* 5177 * Symbolic link vnode operations template 5178 */ 5179 vnodeops_t *zfs_symvnodeops; 5180 const fs_operation_def_t zfs_symvnodeops_template[] = { 5181 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5182 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5183 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5184 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5185 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5186 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5187 VOPNAME_FID, { .vop_fid = zfs_fid }, 5188 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5189 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5190 NULL, NULL 5191 }; 5192 5193 /* 5194 * special share hidden files vnode operations template 5195 */ 5196 vnodeops_t *zfs_sharevnodeops; 5197 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5198 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5199 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5200 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5201 VOPNAME_FID, { .vop_fid = zfs_fid }, 5202 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5203 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5204 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5205 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5206 NULL, NULL 5207 }; 5208 5209 /* 5210 * Extended attribute directory vnode operations template 5211 * This template is identical to the directory vnodes 5212 * operation template except for restricted operations: 5213 * VOP_MKDIR() 5214 * VOP_SYMLINK() 5215 * Note that there are other restrictions embedded in: 5216 * zfs_create() - restrict type to VREG 5217 * zfs_link() - no links into/out of attribute space 5218 * zfs_rename() - no moves into/out of attribute space 5219 */ 5220 vnodeops_t *zfs_xdvnodeops; 5221 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5222 VOPNAME_OPEN, { .vop_open = zfs_open }, 5223 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5224 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5225 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5226 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5227 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5228 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5229 VOPNAME_CREATE, { .vop_create = zfs_create }, 5230 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5231 VOPNAME_LINK, { .vop_link = zfs_link }, 5232 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5233 VOPNAME_MKDIR, { .error = zfs_inval }, 5234 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5235 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5236 VOPNAME_SYMLINK, { .error = zfs_inval }, 5237 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5238 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5239 VOPNAME_FID, { .vop_fid = zfs_fid }, 5240 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5241 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5242 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5243 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5244 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5245 NULL, NULL 5246 }; 5247 5248 /* 5249 * Error vnode operations template 5250 */ 5251 vnodeops_t *zfs_evnodeops; 5252 const fs_operation_def_t zfs_evnodeops_template[] = { 5253 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5254 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5255 NULL, NULL 5256 };