1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  */
  24 
  25 /* Portions Copyright 2007 Jeremy Teo */
  26 /* Portions Copyright 2010 Robert Milkowski */
  27 
  28 #include <sys/types.h>
  29 #include <sys/param.h>
  30 #include <sys/time.h>
  31 #include <sys/systm.h>
  32 #include <sys/sysmacros.h>
  33 #include <sys/resource.h>
  34 #include <sys/vfs.h>
  35 #include <sys/vfs_opreg.h>
  36 #include <sys/vnode.h>
  37 #include <sys/file.h>
  38 #include <sys/stat.h>
  39 #include <sys/kmem.h>
  40 #include <sys/taskq.h>
  41 #include <sys/uio.h>
  42 #include <sys/vmsystm.h>
  43 #include <sys/atomic.h>
  44 #include <sys/vm.h>
  45 #include <vm/seg_vn.h>
  46 #include <vm/pvn.h>
  47 #include <vm/as.h>
  48 #include <vm/kpm.h>
  49 #include <vm/seg_kpm.h>
  50 #include <sys/mman.h>
  51 #include <sys/pathname.h>
  52 #include <sys/cmn_err.h>
  53 #include <sys/errno.h>
  54 #include <sys/unistd.h>
  55 #include <sys/zfs_dir.h>
  56 #include <sys/zfs_acl.h>
  57 #include <sys/zfs_ioctl.h>
  58 #include <sys/fs/zfs.h>
  59 #include <sys/dmu.h>
  60 #include <sys/dmu_objset.h>
  61 #include <sys/spa.h>
  62 #include <sys/txg.h>
  63 #include <sys/dbuf.h>
  64 #include <sys/zap.h>
  65 #include <sys/sa.h>
  66 #include <sys/dirent.h>
  67 #include <sys/policy.h>
  68 #include <sys/sunddi.h>
  69 #include <sys/filio.h>
  70 #include <sys/sid.h>
  71 #include "fs/fs_subr.h"
  72 #include <sys/zfs_ctldir.h>
  73 #include <sys/zfs_fuid.h>
  74 #include <sys/zfs_sa.h>
  75 #include <sys/dnlc.h>
  76 #include <sys/zfs_rlock.h>
  77 #include <sys/extdirent.h>
  78 #include <sys/kidmap.h>
  79 #include <sys/cred.h>
  80 #include <sys/attr.h>
  81 
  82 /*
  83  * Programming rules.
  84  *
  85  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
  86  * properly lock its in-core state, create a DMU transaction, do the work,
  87  * record this work in the intent log (ZIL), commit the DMU transaction,
  88  * and wait for the intent log to commit if it is a synchronous operation.
  89  * Moreover, the vnode ops must work in both normal and log replay context.
  90  * The ordering of events is important to avoid deadlocks and references
  91  * to freed memory.  The example below illustrates the following Big Rules:
  92  *
  93  *  (1) A check must be made in each zfs thread for a mounted file system.
  94  *      This is done avoiding races using ZFS_ENTER(zfsvfs).
  95  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
  96  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
  97  *      can return EIO from the calling function.
  98  *
  99  *  (2) VN_RELE() should always be the last thing except for zil_commit()
 100  *      (if necessary) and ZFS_EXIT(). This is for 3 reasons:
 101  *      First, if it's the last reference, the vnode/znode
 102  *      can be freed, so the zp may point to freed memory.  Second, the last
 103  *      reference will call zfs_zinactive(), which may induce a lot of work --
 104  *      pushing cached pages (which acquires range locks) and syncing out
 105  *      cached atime changes.  Third, zfs_zinactive() may require a new tx,
 106  *      which could deadlock the system if you were already holding one.
 107  *      If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
 108  *
 109  *  (3) All range locks must be grabbed before calling dmu_tx_assign(),
 110  *      as they can span dmu_tx_assign() calls.
 111  *
 112  *  (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
 113  *      This is critical because we don't want to block while holding locks.
 114  *      Note, in particular, that if a lock is sometimes acquired before
 115  *      the tx assigns, and sometimes after (e.g. z_lock), then failing to
 116  *      use a non-blocking assign can deadlock the system.  The scenario:
 117  *
 118  *      Thread A has grabbed a lock before calling dmu_tx_assign().
 119  *      Thread B is in an already-assigned tx, and blocks for this lock.
 120  *      Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
 121  *      forever, because the previous txg can't quiesce until B's tx commits.
 122  *
 123  *      If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
 124  *      then drop all locks, call dmu_tx_wait(), and try again.
 125  *
 126  *  (5) If the operation succeeded, generate the intent log entry for it
 127  *      before dropping locks.  This ensures that the ordering of events
 128  *      in the intent log matches the order in which they actually occurred.
 129  *      During ZIL replay the zfs_log_* functions will update the sequence
 130  *      number to indicate the zil transaction has replayed.
 131  *
 132  *  (6) At the end of each vnode op, the DMU tx must always commit,
 133  *      regardless of whether there were any errors.
 134  *
 135  *  (7) After dropping all locks, invoke zil_commit(zilog, foid)
 136  *      to ensure that synchronous semantics are provided when necessary.
 137  *
 138  * In general, this is how things should be ordered in each vnode op:
 139  *
 140  *      ZFS_ENTER(zfsvfs);              // exit if unmounted
 141  * top:
 142  *      zfs_dirent_lock(&dl, ...)   // lock directory entry (may VN_HOLD())
 143  *      rw_enter(...);                  // grab any other locks you need
 144  *      tx = dmu_tx_create(...);        // get DMU tx
 145  *      dmu_tx_hold_*();                // hold each object you might modify
 146  *      error = dmu_tx_assign(tx, TXG_NOWAIT);  // try to assign
 147  *      if (error) {
 148  *              rw_exit(...);           // drop locks
 149  *              zfs_dirent_unlock(dl);  // unlock directory entry
 150  *              VN_RELE(...);           // release held vnodes
 151  *              if (error == ERESTART) {
 152  *                      dmu_tx_wait(tx);
 153  *                      dmu_tx_abort(tx);
 154  *                      goto top;
 155  *              }
 156  *              dmu_tx_abort(tx);       // abort DMU tx
 157  *              ZFS_EXIT(zfsvfs);       // finished in zfs
 158  *              return (error);         // really out of space
 159  *      }
 160  *      error = do_real_work();         // do whatever this VOP does
 161  *      if (error == 0)
 162  *              zfs_log_*(...);         // on success, make ZIL entry
 163  *      dmu_tx_commit(tx);              // commit DMU tx -- error or not
 164  *      rw_exit(...);                   // drop locks
 165  *      zfs_dirent_unlock(dl);          // unlock directory entry
 166  *      VN_RELE(...);                   // release held vnodes
 167  *      zil_commit(zilog, foid);        // synchronous when necessary
 168  *      ZFS_EXIT(zfsvfs);               // finished in zfs
 169  *      return (error);                 // done, report error
 170  */
 171 
 172 /* ARGSUSED */
 173 static int
 174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
 175 {
 176         znode_t *zp = VTOZ(*vpp);
 177         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 178 
 179         ZFS_ENTER(zfsvfs);
 180         ZFS_VERIFY_ZP(zp);
 181 
 182         if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
 183             ((flag & FAPPEND) == 0)) {
 184                 ZFS_EXIT(zfsvfs);
 185                 return (EPERM);
 186         }
 187 
 188         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 189             ZTOV(zp)->v_type == VREG &&
 190             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
 191                 if (fs_vscan(*vpp, cr, 0) != 0) {
 192                         ZFS_EXIT(zfsvfs);
 193                         return (EACCES);
 194                 }
 195         }
 196 
 197         /* Keep a count of the synchronous opens in the znode */
 198         if (flag & (FSYNC | FDSYNC))
 199                 atomic_inc_32(&zp->z_sync_cnt);
 200 
 201         ZFS_EXIT(zfsvfs);
 202         return (0);
 203 }
 204 
 205 /* ARGSUSED */
 206 static int
 207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
 208     caller_context_t *ct)
 209 {
 210         znode_t *zp = VTOZ(vp);
 211         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
 212 
 213         /*
 214          * Clean up any locks held by this process on the vp.
 215          */
 216         cleanlocks(vp, ddi_get_pid(), 0);
 217         cleanshares(vp, ddi_get_pid());
 218 
 219         ZFS_ENTER(zfsvfs);
 220         ZFS_VERIFY_ZP(zp);
 221 
 222         /* Decrement the synchronous opens in the znode */
 223         if ((flag & (FSYNC | FDSYNC)) && (count == 1))
 224                 atomic_dec_32(&zp->z_sync_cnt);
 225 
 226         if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
 227             ZTOV(zp)->v_type == VREG &&
 228             !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
 229                 VERIFY(fs_vscan(vp, cr, 1) == 0);
 230 
 231         ZFS_EXIT(zfsvfs);
 232         return (0);
 233 }
 234 
 235 /*
 236  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
 237  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
 238  */
 239 static int
 240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
 241 {
 242         znode_t *zp = VTOZ(vp);
 243         uint64_t noff = (uint64_t)*off; /* new offset */
 244         uint64_t file_sz;
 245         int error;
 246         boolean_t hole;
 247 
 248         file_sz = zp->z_size;
 249         if (noff >= file_sz)  {
 250                 return (ENXIO);
 251         }
 252 
 253         if (cmd == _FIO_SEEK_HOLE)
 254                 hole = B_TRUE;
 255         else
 256                 hole = B_FALSE;
 257 
 258         error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
 259 
 260         /* end of file? */
 261         if ((error == ESRCH) || (noff > file_sz)) {
 262                 /*
 263                  * Handle the virtual hole at the end of file.
 264                  */
 265                 if (hole) {
 266                         *off = file_sz;
 267                         return (0);
 268                 }
 269                 return (ENXIO);
 270         }
 271 
 272         if (noff < *off)
 273                 return (error);
 274         *off = noff;
 275         return (error);
 276 }
 277 
 278 /* ARGSUSED */
 279 static int
 280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
 281     int *rvalp, caller_context_t *ct)
 282 {
 283         offset_t off;
 284         int error;
 285         zfsvfs_t *zfsvfs;
 286         znode_t *zp;
 287 
 288         switch (com) {
 289         case _FIOFFS:
 290                 return (zfs_sync(vp->v_vfsp, 0, cred));
 291 
 292                 /*
 293                  * The following two ioctls are used by bfu.  Faking out,
 294                  * necessary to avoid bfu errors.
 295                  */
 296         case _FIOGDIO:
 297         case _FIOSDIO:
 298                 return (0);
 299 
 300         case _FIO_SEEK_DATA:
 301         case _FIO_SEEK_HOLE:
 302                 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
 303                         return (EFAULT);
 304 
 305                 zp = VTOZ(vp);
 306                 zfsvfs = zp->z_zfsvfs;
 307                 ZFS_ENTER(zfsvfs);
 308                 ZFS_VERIFY_ZP(zp);
 309 
 310                 /* offset parameter is in/out */
 311                 error = zfs_holey(vp, com, &off);
 312                 ZFS_EXIT(zfsvfs);
 313                 if (error)
 314                         return (error);
 315                 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
 316                         return (EFAULT);
 317                 return (0);
 318         }
 319         return (ENOTTY);
 320 }
 321 
 322 /*
 323  * Utility functions to map and unmap a single physical page.  These
 324  * are used to manage the mappable copies of ZFS file data, and therefore
 325  * do not update ref/mod bits.
 326  */
 327 caddr_t
 328 zfs_map_page(page_t *pp, enum seg_rw rw)
 329 {
 330         if (kpm_enable)
 331                 return (hat_kpm_mapin(pp, 0));
 332         ASSERT(rw == S_READ || rw == S_WRITE);
 333         return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
 334             (caddr_t)-1));
 335 }
 336 
 337 void
 338 zfs_unmap_page(page_t *pp, caddr_t addr)
 339 {
 340         if (kpm_enable) {
 341                 hat_kpm_mapout(pp, 0, addr);
 342         } else {
 343                 ppmapout(addr);
 344         }
 345 }
 346 
 347 /*
 348  * When a file is memory mapped, we must keep the IO data synchronized
 349  * between the DMU cache and the memory mapped pages.  What this means:
 350  *
 351  * On Write:    If we find a memory mapped page, we write to *both*
 352  *              the page and the dmu buffer.
 353  */
 354 static void
 355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
 356 {
 357         int64_t off;
 358 
 359         off = start & PAGEOFFSET;
 360         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 361                 page_t *pp;
 362                 uint64_t nbytes = MIN(PAGESIZE - off, len);
 363 
 364                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 365                         caddr_t va;
 366 
 367                         va = zfs_map_page(pp, S_WRITE);
 368                         (void) dmu_read(os, oid, start+off, nbytes, va+off,
 369                             DMU_READ_PREFETCH);
 370                         zfs_unmap_page(pp, va);
 371                         page_unlock(pp);
 372                 }
 373                 len -= nbytes;
 374                 off = 0;
 375         }
 376 }
 377 
 378 /*
 379  * When a file is memory mapped, we must keep the IO data synchronized
 380  * between the DMU cache and the memory mapped pages.  What this means:
 381  *
 382  * On Read:     We "read" preferentially from memory mapped pages,
 383  *              else we default from the dmu buffer.
 384  *
 385  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
 386  *      the file is memory mapped.
 387  */
 388 static int
 389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
 390 {
 391         znode_t *zp = VTOZ(vp);
 392         objset_t *os = zp->z_zfsvfs->z_os;
 393         int64_t start, off;
 394         int len = nbytes;
 395         int error = 0;
 396 
 397         start = uio->uio_loffset;
 398         off = start & PAGEOFFSET;
 399         for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
 400                 page_t *pp;
 401                 uint64_t bytes = MIN(PAGESIZE - off, len);
 402 
 403                 if (pp = page_lookup(vp, start, SE_SHARED)) {
 404                         caddr_t va;
 405 
 406                         va = zfs_map_page(pp, S_READ);
 407                         error = uiomove(va + off, bytes, UIO_READ, uio);
 408                         zfs_unmap_page(pp, va);
 409                         page_unlock(pp);
 410                 } else {
 411                         error = dmu_read_uio(os, zp->z_id, uio, bytes);
 412                 }
 413                 len -= bytes;
 414                 off = 0;
 415                 if (error)
 416                         break;
 417         }
 418         return (error);
 419 }
 420 
 421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
 422 
 423 /*
 424  * Read bytes from specified file into supplied buffer.
 425  *
 426  *      IN:     vp      - vnode of file to be read from.
 427  *              uio     - structure supplying read location, range info,
 428  *                        and return buffer.
 429  *              ioflag  - SYNC flags; used to provide FRSYNC semantics.
 430  *              cr      - credentials of caller.
 431  *              ct      - caller context
 432  *
 433  *      OUT:    uio     - updated offset and range, buffer filled.
 434  *
 435  *      RETURN: 0 if success
 436  *              error code if failure
 437  *
 438  * Side Effects:
 439  *      vp - atime updated if byte count > 0
 440  */
 441 /* ARGSUSED */
 442 static int
 443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 444 {
 445         znode_t         *zp = VTOZ(vp);
 446         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 447         objset_t        *os;
 448         ssize_t         n, nbytes;
 449         int             error;
 450         rl_t            *rl;
 451         xuio_t          *xuio = NULL;
 452 
 453         ZFS_ENTER(zfsvfs);
 454         ZFS_VERIFY_ZP(zp);
 455         os = zfsvfs->z_os;
 456 
 457         if (zp->z_pflags & ZFS_AV_QUARANTINED) {
 458                 ZFS_EXIT(zfsvfs);
 459                 return (EACCES);
 460         }
 461 
 462         /*
 463          * Validate file offset
 464          */
 465         if (uio->uio_loffset < (offset_t)0) {
 466                 ZFS_EXIT(zfsvfs);
 467                 return (EINVAL);
 468         }
 469 
 470         /*
 471          * Fasttrack empty reads
 472          */
 473         if (uio->uio_resid == 0) {
 474                 ZFS_EXIT(zfsvfs);
 475                 return (0);
 476         }
 477 
 478         /*
 479          * Check for mandatory locks
 480          */
 481         if (MANDMODE(zp->z_mode)) {
 482                 if (error = chklock(vp, FREAD,
 483                     uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
 484                         ZFS_EXIT(zfsvfs);
 485                         return (error);
 486                 }
 487         }
 488 
 489         /*
 490          * If we're in FRSYNC mode, sync out this znode before reading it.
 491          */
 492         if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 493                 zil_commit(zfsvfs->z_log, zp->z_id);
 494 
 495         /*
 496          * Lock the range against changes.
 497          */
 498         rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
 499 
 500         /*
 501          * If we are reading past end-of-file we can skip
 502          * to the end; but we might still need to set atime.
 503          */
 504         if (uio->uio_loffset >= zp->z_size) {
 505                 error = 0;
 506                 goto out;
 507         }
 508 
 509         ASSERT(uio->uio_loffset < zp->z_size);
 510         n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
 511 
 512         if ((uio->uio_extflg == UIO_XUIO) &&
 513             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
 514                 int nblk;
 515                 int blksz = zp->z_blksz;
 516                 uint64_t offset = uio->uio_loffset;
 517 
 518                 xuio = (xuio_t *)uio;
 519                 if ((ISP2(blksz))) {
 520                         nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
 521                             blksz)) / blksz;
 522                 } else {
 523                         ASSERT(offset + n <= blksz);
 524                         nblk = 1;
 525                 }
 526                 (void) dmu_xuio_init(xuio, nblk);
 527 
 528                 if (vn_has_cached_data(vp)) {
 529                         /*
 530                          * For simplicity, we always allocate a full buffer
 531                          * even if we only expect to read a portion of a block.
 532                          */
 533                         while (--nblk >= 0) {
 534                                 (void) dmu_xuio_add(xuio,
 535                                     dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 536                                     blksz), 0, blksz);
 537                         }
 538                 }
 539         }
 540 
 541         while (n > 0) {
 542                 nbytes = MIN(n, zfs_read_chunk_size -
 543                     P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
 544 
 545                 if (vn_has_cached_data(vp))
 546                         error = mappedread(vp, nbytes, uio);
 547                 else
 548                         error = dmu_read_uio(os, zp->z_id, uio, nbytes);
 549                 if (error) {
 550                         /* convert checksum errors into IO errors */
 551                         if (error == ECKSUM)
 552                                 error = EIO;
 553                         break;
 554                 }
 555 
 556                 n -= nbytes;
 557         }
 558 out:
 559         zfs_range_unlock(rl);
 560 
 561         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
 562         ZFS_EXIT(zfsvfs);
 563         return (error);
 564 }
 565 
 566 /*
 567  * Write the bytes to a file.
 568  *
 569  *      IN:     vp      - vnode of file to be written to.
 570  *              uio     - structure supplying write location, range info,
 571  *                        and data buffer.
 572  *              ioflag  - FAPPEND flag set if in append mode.
 573  *              cr      - credentials of caller.
 574  *              ct      - caller context (NFS/CIFS fem monitor only)
 575  *
 576  *      OUT:    uio     - updated offset and range.
 577  *
 578  *      RETURN: 0 if success
 579  *              error code if failure
 580  *
 581  * Timestamps:
 582  *      vp - ctime|mtime updated if byte count > 0
 583  */
 584 
 585 /* ARGSUSED */
 586 static int
 587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
 588 {
 589         znode_t         *zp = VTOZ(vp);
 590         rlim64_t        limit = uio->uio_llimit;
 591         ssize_t         start_resid = uio->uio_resid;
 592         ssize_t         tx_bytes;
 593         uint64_t        end_size;
 594         dmu_tx_t        *tx;
 595         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
 596         zilog_t         *zilog;
 597         offset_t        woff;
 598         ssize_t         n, nbytes;
 599         rl_t            *rl;
 600         int             max_blksz = zfsvfs->z_max_blksz;
 601         int             error;
 602         arc_buf_t       *abuf;
 603         iovec_t         *aiov;
 604         xuio_t          *xuio = NULL;
 605         int             i_iov = 0;
 606         int             iovcnt = uio->uio_iovcnt;
 607         iovec_t         *iovp = uio->uio_iov;
 608         int             write_eof;
 609         int             count = 0;
 610         sa_bulk_attr_t  bulk[4];
 611         uint64_t        mtime[2], ctime[2];
 612 
 613         /*
 614          * Fasttrack empty write
 615          */
 616         n = start_resid;
 617         if (n == 0)
 618                 return (0);
 619 
 620         if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
 621                 limit = MAXOFFSET_T;
 622 
 623         ZFS_ENTER(zfsvfs);
 624         ZFS_VERIFY_ZP(zp);
 625 
 626         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
 627         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
 628         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
 629             &zp->z_size, 8);
 630         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
 631             &zp->z_pflags, 8);
 632 
 633         /*
 634          * If immutable or not appending then return EPERM
 635          */
 636         if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
 637             ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
 638             (uio->uio_loffset < zp->z_size))) {
 639                 ZFS_EXIT(zfsvfs);
 640                 return (EPERM);
 641         }
 642 
 643         zilog = zfsvfs->z_log;
 644 
 645         /*
 646          * Validate file offset
 647          */
 648         woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
 649         if (woff < 0) {
 650                 ZFS_EXIT(zfsvfs);
 651                 return (EINVAL);
 652         }
 653 
 654         /*
 655          * Check for mandatory locks before calling zfs_range_lock()
 656          * in order to prevent a deadlock with locks set via fcntl().
 657          */
 658         if (MANDMODE((mode_t)zp->z_mode) &&
 659             (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
 660                 ZFS_EXIT(zfsvfs);
 661                 return (error);
 662         }
 663 
 664         /*
 665          * Pre-fault the pages to ensure slow (eg NFS) pages
 666          * don't hold up txg.
 667          * Skip this if uio contains loaned arc_buf.
 668          */
 669         if ((uio->uio_extflg == UIO_XUIO) &&
 670             (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
 671                 xuio = (xuio_t *)uio;
 672         else
 673                 uio_prefaultpages(MIN(n, max_blksz), uio);
 674 
 675         /*
 676          * If in append mode, set the io offset pointer to eof.
 677          */
 678         if (ioflag & FAPPEND) {
 679                 /*
 680                  * Obtain an appending range lock to guarantee file append
 681                  * semantics.  We reset the write offset once we have the lock.
 682                  */
 683                 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
 684                 woff = rl->r_off;
 685                 if (rl->r_len == UINT64_MAX) {
 686                         /*
 687                          * We overlocked the file because this write will cause
 688                          * the file block size to increase.
 689                          * Note that zp_size cannot change with this lock held.
 690                          */
 691                         woff = zp->z_size;
 692                 }
 693                 uio->uio_loffset = woff;
 694         } else {
 695                 /*
 696                  * Note that if the file block size will change as a result of
 697                  * this write, then this range lock will lock the entire file
 698                  * so that we can re-write the block safely.
 699                  */
 700                 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
 701         }
 702 
 703         if (woff >= limit) {
 704                 zfs_range_unlock(rl);
 705                 ZFS_EXIT(zfsvfs);
 706                 return (EFBIG);
 707         }
 708 
 709         if ((woff + n) > limit || woff > (limit - n))
 710                 n = limit - woff;
 711 
 712         /* Will this write extend the file length? */
 713         write_eof = (woff + n > zp->z_size);
 714 
 715         end_size = MAX(zp->z_size, woff + n);
 716 
 717         /*
 718          * Write the file in reasonable size chunks.  Each chunk is written
 719          * in a separate transaction; this keeps the intent log records small
 720          * and allows us to do more fine-grained space accounting.
 721          */
 722         while (n > 0) {
 723                 abuf = NULL;
 724                 woff = uio->uio_loffset;
 725 again:
 726                 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
 727                     zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
 728                         if (abuf != NULL)
 729                                 dmu_return_arcbuf(abuf);
 730                         error = EDQUOT;
 731                         break;
 732                 }
 733 
 734                 if (xuio && abuf == NULL) {
 735                         ASSERT(i_iov < iovcnt);
 736                         aiov = &iovp[i_iov];
 737                         abuf = dmu_xuio_arcbuf(xuio, i_iov);
 738                         dmu_xuio_clear(xuio, i_iov);
 739                         DTRACE_PROBE3(zfs_cp_write, int, i_iov,
 740                             iovec_t *, aiov, arc_buf_t *, abuf);
 741                         ASSERT((aiov->iov_base == abuf->b_data) ||
 742                             ((char *)aiov->iov_base - (char *)abuf->b_data +
 743                             aiov->iov_len == arc_buf_size(abuf)));
 744                         i_iov++;
 745                 } else if (abuf == NULL && n >= max_blksz &&
 746                     woff >= zp->z_size &&
 747                     P2PHASE(woff, max_blksz) == 0 &&
 748                     zp->z_blksz == max_blksz) {
 749                         /*
 750                          * This write covers a full block.  "Borrow" a buffer
 751                          * from the dmu so that we can fill it before we enter
 752                          * a transaction.  This avoids the possibility of
 753                          * holding up the transaction if the data copy hangs
 754                          * up on a pagefault (e.g., from an NFS server mapping).
 755                          */
 756                         size_t cbytes;
 757 
 758                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
 759                             max_blksz);
 760                         ASSERT(abuf != NULL);
 761                         ASSERT(arc_buf_size(abuf) == max_blksz);
 762                         if (error = uiocopy(abuf->b_data, max_blksz,
 763                             UIO_WRITE, uio, &cbytes)) {
 764                                 dmu_return_arcbuf(abuf);
 765                                 break;
 766                         }
 767                         ASSERT(cbytes == max_blksz);
 768                 }
 769 
 770                 /*
 771                  * Start a transaction.
 772                  */
 773                 tx = dmu_tx_create(zfsvfs->z_os);
 774                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
 775                 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
 776                 zfs_sa_upgrade_txholds(tx, zp);
 777                 error = dmu_tx_assign(tx, TXG_NOWAIT);
 778                 if (error) {
 779                         if (error == ERESTART) {
 780                                 dmu_tx_wait(tx);
 781                                 dmu_tx_abort(tx);
 782                                 goto again;
 783                         }
 784                         dmu_tx_abort(tx);
 785                         if (abuf != NULL)
 786                                 dmu_return_arcbuf(abuf);
 787                         break;
 788                 }
 789 
 790                 /*
 791                  * If zfs_range_lock() over-locked we grow the blocksize
 792                  * and then reduce the lock range.  This will only happen
 793                  * on the first iteration since zfs_range_reduce() will
 794                  * shrink down r_len to the appropriate size.
 795                  */
 796                 if (rl->r_len == UINT64_MAX) {
 797                         uint64_t new_blksz;
 798 
 799                         if (zp->z_blksz > max_blksz) {
 800                                 ASSERT(!ISP2(zp->z_blksz));
 801                                 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
 802                         } else {
 803                                 new_blksz = MIN(end_size, max_blksz);
 804                         }
 805                         zfs_grow_blocksize(zp, new_blksz, tx);
 806                         zfs_range_reduce(rl, woff, n);
 807                 }
 808 
 809                 /*
 810                  * XXX - should we really limit each write to z_max_blksz?
 811                  * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
 812                  */
 813                 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
 814 
 815                 if (abuf == NULL) {
 816                         tx_bytes = uio->uio_resid;
 817                         error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
 818                             uio, nbytes, tx);
 819                         tx_bytes -= uio->uio_resid;
 820                 } else {
 821                         tx_bytes = nbytes;
 822                         ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
 823                         /*
 824                          * If this is not a full block write, but we are
 825                          * extending the file past EOF and this data starts
 826                          * block-aligned, use assign_arcbuf().  Otherwise,
 827                          * write via dmu_write().
 828                          */
 829                         if (tx_bytes < max_blksz && (!write_eof ||
 830                             aiov->iov_base != abuf->b_data)) {
 831                                 ASSERT(xuio);
 832                                 dmu_write(zfsvfs->z_os, zp->z_id, woff,
 833                                     aiov->iov_len, aiov->iov_base, tx);
 834                                 dmu_return_arcbuf(abuf);
 835                                 xuio_stat_wbuf_copied();
 836                         } else {
 837                                 ASSERT(xuio || tx_bytes == max_blksz);
 838                                 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
 839                                     woff, abuf, tx);
 840                         }
 841                         ASSERT(tx_bytes <= uio->uio_resid);
 842                         uioskip(uio, tx_bytes);
 843                 }
 844                 if (tx_bytes && vn_has_cached_data(vp)) {
 845                         update_pages(vp, woff,
 846                             tx_bytes, zfsvfs->z_os, zp->z_id);
 847                 }
 848 
 849                 /*
 850                  * If we made no progress, we're done.  If we made even
 851                  * partial progress, update the znode and ZIL accordingly.
 852                  */
 853                 if (tx_bytes == 0) {
 854                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
 855                             (void *)&zp->z_size, sizeof (uint64_t), tx);
 856                         dmu_tx_commit(tx);
 857                         ASSERT(error != 0);
 858                         break;
 859                 }
 860 
 861                 /*
 862                  * Clear Set-UID/Set-GID bits on successful write if not
 863                  * privileged and at least one of the excute bits is set.
 864                  *
 865                  * It would be nice to to this after all writes have
 866                  * been done, but that would still expose the ISUID/ISGID
 867                  * to another app after the partial write is committed.
 868                  *
 869                  * Note: we don't call zfs_fuid_map_id() here because
 870                  * user 0 is not an ephemeral uid.
 871                  */
 872                 mutex_enter(&zp->z_acl_lock);
 873                 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
 874                     (S_IXUSR >> 6))) != 0 &&
 875                     (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
 876                     secpolicy_vnode_setid_retain(cr,
 877                     (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
 878                         uint64_t newmode;
 879                         zp->z_mode &= ~(S_ISUID | S_ISGID);
 880                         newmode = zp->z_mode;
 881                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
 882                             (void *)&newmode, sizeof (uint64_t), tx);
 883                 }
 884                 mutex_exit(&zp->z_acl_lock);
 885 
 886                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
 887                     B_TRUE);
 888 
 889                 /*
 890                  * Update the file size (zp_size) if it has changed;
 891                  * account for possible concurrent updates.
 892                  */
 893                 while ((end_size = zp->z_size) < uio->uio_loffset) {
 894                         (void) atomic_cas_64(&zp->z_size, end_size,
 895                             uio->uio_loffset);
 896                         ASSERT(error == 0);
 897                 }
 898                 /*
 899                  * If we are replaying and eof is non zero then force
 900                  * the file size to the specified eof. Note, there's no
 901                  * concurrency during replay.
 902                  */
 903                 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
 904                         zp->z_size = zfsvfs->z_replay_eof;
 905 
 906                 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
 907 
 908                 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
 909                 dmu_tx_commit(tx);
 910 
 911                 if (error != 0)
 912                         break;
 913                 ASSERT(tx_bytes == nbytes);
 914                 n -= nbytes;
 915 
 916                 if (!xuio && n > 0)
 917                         uio_prefaultpages(MIN(n, max_blksz), uio);
 918         }
 919 
 920         zfs_range_unlock(rl);
 921 
 922         /*
 923          * If we're in replay mode, or we made no progress, return error.
 924          * Otherwise, it's at least a partial write, so it's successful.
 925          */
 926         if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
 927                 ZFS_EXIT(zfsvfs);
 928                 return (error);
 929         }
 930 
 931         if (ioflag & (FSYNC | FDSYNC) ||
 932             zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 933                 zil_commit(zilog, zp->z_id);
 934 
 935         ZFS_EXIT(zfsvfs);
 936         return (0);
 937 }
 938 
 939 void
 940 zfs_get_done(zgd_t *zgd, int error)
 941 {
 942         znode_t *zp = zgd->zgd_private;
 943         objset_t *os = zp->z_zfsvfs->z_os;
 944 
 945         if (zgd->zgd_db)
 946                 dmu_buf_rele(zgd->zgd_db, zgd);
 947 
 948         zfs_range_unlock(zgd->zgd_rl);
 949 
 950         /*
 951          * Release the vnode asynchronously as we currently have the
 952          * txg stopped from syncing.
 953          */
 954         VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
 955 
 956         if (error == 0 && zgd->zgd_bp)
 957                 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
 958 
 959         kmem_free(zgd, sizeof (zgd_t));
 960 }
 961 
 962 #ifdef DEBUG
 963 static int zil_fault_io = 0;
 964 #endif
 965 
 966 /*
 967  * Get data to generate a TX_WRITE intent log record.
 968  */
 969 int
 970 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
 971 {
 972         zfsvfs_t *zfsvfs = arg;
 973         objset_t *os = zfsvfs->z_os;
 974         znode_t *zp;
 975         uint64_t object = lr->lr_foid;
 976         uint64_t offset = lr->lr_offset;
 977         uint64_t size = lr->lr_length;
 978         blkptr_t *bp = &lr->lr_blkptr;
 979         dmu_buf_t *db;
 980         zgd_t *zgd;
 981         int error = 0;
 982 
 983         ASSERT(zio != NULL);
 984         ASSERT(size != 0);
 985 
 986         /*
 987          * Nothing to do if the file has been removed
 988          */
 989         if (zfs_zget(zfsvfs, object, &zp) != 0)
 990                 return (ENOENT);
 991         if (zp->z_unlinked) {
 992                 /*
 993                  * Release the vnode asynchronously as we currently have the
 994                  * txg stopped from syncing.
 995                  */
 996                 VN_RELE_ASYNC(ZTOV(zp),
 997                     dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
 998                 return (ENOENT);
 999         }
1000 
1001         zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1002         zgd->zgd_zilog = zfsvfs->z_log;
1003         zgd->zgd_private = zp;
1004 
1005         /*
1006          * Write records come in two flavors: immediate and indirect.
1007          * For small writes it's cheaper to store the data with the
1008          * log record (immediate); for large writes it's cheaper to
1009          * sync the data and get a pointer to it (indirect) so that
1010          * we don't have to write the data twice.
1011          */
1012         if (buf != NULL) { /* immediate write */
1013                 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1014                 /* test for truncation needs to be done while range locked */
1015                 if (offset >= zp->z_size) {
1016                         error = ENOENT;
1017                 } else {
1018                         error = dmu_read(os, object, offset, size, buf,
1019                             DMU_READ_NO_PREFETCH);
1020                 }
1021                 ASSERT(error == 0 || error == ENOENT);
1022         } else { /* indirect write */
1023                 /*
1024                  * Have to lock the whole block to ensure when it's
1025                  * written out and it's checksum is being calculated
1026                  * that no one can change the data. We need to re-check
1027                  * blocksize after we get the lock in case it's changed!
1028                  */
1029                 for (;;) {
1030                         uint64_t blkoff;
1031                         size = zp->z_blksz;
1032                         blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1033                         offset -= blkoff;
1034                         zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1035                             RL_READER);
1036                         if (zp->z_blksz == size)
1037                                 break;
1038                         offset += blkoff;
1039                         zfs_range_unlock(zgd->zgd_rl);
1040                 }
1041                 /* test for truncation needs to be done while range locked */
1042                 if (lr->lr_offset >= zp->z_size)
1043                         error = ENOENT;
1044 #ifdef DEBUG
1045                 if (zil_fault_io) {
1046                         error = EIO;
1047                         zil_fault_io = 0;
1048                 }
1049 #endif
1050                 if (error == 0)
1051                         error = dmu_buf_hold(os, object, offset, zgd, &db,
1052                             DMU_READ_NO_PREFETCH);
1053 
1054                 if (error == 0) {
1055                         zgd->zgd_db = db;
1056                         zgd->zgd_bp = bp;
1057 
1058                         ASSERT(db->db_offset == offset);
1059                         ASSERT(db->db_size == size);
1060 
1061                         error = dmu_sync(zio, lr->lr_common.lrc_txg,
1062                             zfs_get_done, zgd);
1063                         ASSERT(error || lr->lr_length <= zp->z_blksz);
1064 
1065                         /*
1066                          * On success, we need to wait for the write I/O
1067                          * initiated by dmu_sync() to complete before we can
1068                          * release this dbuf.  We will finish everything up
1069                          * in the zfs_get_done() callback.
1070                          */
1071                         if (error == 0)
1072                                 return (0);
1073 
1074                         if (error == EALREADY) {
1075                                 lr->lr_common.lrc_txtype = TX_WRITE2;
1076                                 error = 0;
1077                         }
1078                 }
1079         }
1080 
1081         zfs_get_done(zgd, error);
1082 
1083         return (error);
1084 }
1085 
1086 /*ARGSUSED*/
1087 static int
1088 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1089     caller_context_t *ct)
1090 {
1091         znode_t *zp = VTOZ(vp);
1092         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1093         int error;
1094 
1095         ZFS_ENTER(zfsvfs);
1096         ZFS_VERIFY_ZP(zp);
1097 
1098         if (flag & V_ACE_MASK)
1099                 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1100         else
1101                 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1102 
1103         ZFS_EXIT(zfsvfs);
1104         return (error);
1105 }
1106 
1107 /*
1108  * If vnode is for a device return a specfs vnode instead.
1109  */
1110 static int
1111 specvp_check(vnode_t **vpp, cred_t *cr)
1112 {
1113         int error = 0;
1114 
1115         if (IS_DEVVP(*vpp)) {
1116                 struct vnode *svp;
1117 
1118                 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1119                 VN_RELE(*vpp);
1120                 if (svp == NULL)
1121                         error = ENOSYS;
1122                 *vpp = svp;
1123         }
1124         return (error);
1125 }
1126 
1127 
1128 /*
1129  * Lookup an entry in a directory, or an extended attribute directory.
1130  * If it exists, return a held vnode reference for it.
1131  *
1132  *      IN:     dvp     - vnode of directory to search.
1133  *              nm      - name of entry to lookup.
1134  *              pnp     - full pathname to lookup [UNUSED].
1135  *              flags   - LOOKUP_XATTR set if looking for an attribute.
1136  *              rdir    - root directory vnode [UNUSED].
1137  *              cr      - credentials of caller.
1138  *              ct      - caller context
1139  *              direntflags - directory lookup flags
1140  *              realpnp - returned pathname.
1141  *
1142  *      OUT:    vpp     - vnode of located entry, NULL if not found.
1143  *
1144  *      RETURN: 0 if success
1145  *              error code if failure
1146  *
1147  * Timestamps:
1148  *      NA
1149  */
1150 /* ARGSUSED */
1151 static int
1152 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1153     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1154     int *direntflags, pathname_t *realpnp)
1155 {
1156         znode_t *zdp = VTOZ(dvp);
1157         zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1158         int     error = 0;
1159 
1160         /* fast path */
1161         if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1162 
1163                 if (dvp->v_type != VDIR) {
1164                         return (ENOTDIR);
1165                 } else if (zdp->z_sa_hdl == NULL) {
1166                         return (EIO);
1167                 }
1168 
1169                 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1170                         error = zfs_fastaccesschk_execute(zdp, cr);
1171                         if (!error) {
1172                                 *vpp = dvp;
1173                                 VN_HOLD(*vpp);
1174                                 return (0);
1175                         }
1176                         return (error);
1177                 } else {
1178                         vnode_t *tvp = dnlc_lookup(dvp, nm);
1179 
1180                         if (tvp) {
1181                                 error = zfs_fastaccesschk_execute(zdp, cr);
1182                                 if (error) {
1183                                         VN_RELE(tvp);
1184                                         return (error);
1185                                 }
1186                                 if (tvp == DNLC_NO_VNODE) {
1187                                         VN_RELE(tvp);
1188                                         return (ENOENT);
1189                                 } else {
1190                                         *vpp = tvp;
1191                                         return (specvp_check(vpp, cr));
1192                                 }
1193                         }
1194                 }
1195         }
1196 
1197         DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1198 
1199         ZFS_ENTER(zfsvfs);
1200         ZFS_VERIFY_ZP(zdp);
1201 
1202         *vpp = NULL;
1203 
1204         if (flags & LOOKUP_XATTR) {
1205                 /*
1206                  * If the xattr property is off, refuse the lookup request.
1207                  */
1208                 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1209                         ZFS_EXIT(zfsvfs);
1210                         return (EINVAL);
1211                 }
1212 
1213                 /*
1214                  * We don't allow recursive attributes..
1215                  * Maybe someday we will.
1216                  */
1217                 if (zdp->z_pflags & ZFS_XATTR) {
1218                         ZFS_EXIT(zfsvfs);
1219                         return (EINVAL);
1220                 }
1221 
1222                 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1223                         ZFS_EXIT(zfsvfs);
1224                         return (error);
1225                 }
1226 
1227                 /*
1228                  * Do we have permission to get into attribute directory?
1229                  */
1230 
1231                 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1232                     B_FALSE, cr)) {
1233                         VN_RELE(*vpp);
1234                         *vpp = NULL;
1235                 }
1236 
1237                 ZFS_EXIT(zfsvfs);
1238                 return (error);
1239         }
1240 
1241         if (dvp->v_type != VDIR) {
1242                 ZFS_EXIT(zfsvfs);
1243                 return (ENOTDIR);
1244         }
1245 
1246         /*
1247          * Check accessibility of directory.
1248          */
1249 
1250         if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1251                 ZFS_EXIT(zfsvfs);
1252                 return (error);
1253         }
1254 
1255         if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1256             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1257                 ZFS_EXIT(zfsvfs);
1258                 return (EILSEQ);
1259         }
1260 
1261         error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1262         if (error == 0)
1263                 error = specvp_check(vpp, cr);
1264 
1265         ZFS_EXIT(zfsvfs);
1266         return (error);
1267 }
1268 
1269 /*
1270  * Attempt to create a new entry in a directory.  If the entry
1271  * already exists, truncate the file if permissible, else return
1272  * an error.  Return the vp of the created or trunc'd file.
1273  *
1274  *      IN:     dvp     - vnode of directory to put new file entry in.
1275  *              name    - name of new file entry.
1276  *              vap     - attributes of new file.
1277  *              excl    - flag indicating exclusive or non-exclusive mode.
1278  *              mode    - mode to open file with.
1279  *              cr      - credentials of caller.
1280  *              flag    - large file flag [UNUSED].
1281  *              ct      - caller context
1282  *              vsecp   - ACL to be set
1283  *
1284  *      OUT:    vpp     - vnode of created or trunc'd entry.
1285  *
1286  *      RETURN: 0 if success
1287  *              error code if failure
1288  *
1289  * Timestamps:
1290  *      dvp - ctime|mtime updated if new entry created
1291  *       vp - ctime|mtime always, atime if new
1292  */
1293 
1294 /* ARGSUSED */
1295 static int
1296 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1297     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1298     vsecattr_t *vsecp)
1299 {
1300         znode_t         *zp, *dzp = VTOZ(dvp);
1301         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1302         zilog_t         *zilog;
1303         objset_t        *os;
1304         zfs_dirlock_t   *dl;
1305         dmu_tx_t        *tx;
1306         int             error;
1307         ksid_t          *ksid;
1308         uid_t           uid;
1309         gid_t           gid = crgetgid(cr);
1310         zfs_acl_ids_t   acl_ids;
1311         boolean_t       fuid_dirtied;
1312         boolean_t       have_acl = B_FALSE;
1313 
1314         /*
1315          * If we have an ephemeral id, ACL, or XVATTR then
1316          * make sure file system is at proper version
1317          */
1318 
1319         ksid = crgetsid(cr, KSID_OWNER);
1320         if (ksid)
1321                 uid = ksid_getid(ksid);
1322         else
1323                 uid = crgetuid(cr);
1324 
1325         if (zfsvfs->z_use_fuids == B_FALSE &&
1326             (vsecp || (vap->va_mask & AT_XVATTR) ||
1327             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1328                 return (EINVAL);
1329 
1330         ZFS_ENTER(zfsvfs);
1331         ZFS_VERIFY_ZP(dzp);
1332         os = zfsvfs->z_os;
1333         zilog = zfsvfs->z_log;
1334 
1335         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1336             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1337                 ZFS_EXIT(zfsvfs);
1338                 return (EILSEQ);
1339         }
1340 
1341         if (vap->va_mask & AT_XVATTR) {
1342                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1343                     crgetuid(cr), cr, vap->va_type)) != 0) {
1344                         ZFS_EXIT(zfsvfs);
1345                         return (error);
1346                 }
1347         }
1348 top:
1349         *vpp = NULL;
1350 
1351         if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1352                 vap->va_mode &= ~VSVTX;
1353 
1354         if (*name == '\0') {
1355                 /*
1356                  * Null component name refers to the directory itself.
1357                  */
1358                 VN_HOLD(dvp);
1359                 zp = dzp;
1360                 dl = NULL;
1361                 error = 0;
1362         } else {
1363                 /* possible VN_HOLD(zp) */
1364                 int zflg = 0;
1365 
1366                 if (flag & FIGNORECASE)
1367                         zflg |= ZCILOOK;
1368 
1369                 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1370                     NULL, NULL);
1371                 if (error) {
1372                         if (have_acl)
1373                                 zfs_acl_ids_free(&acl_ids);
1374                         if (strcmp(name, "..") == 0)
1375                                 error = EISDIR;
1376                         ZFS_EXIT(zfsvfs);
1377                         return (error);
1378                 }
1379         }
1380 
1381         if (zp == NULL) {
1382                 uint64_t txtype;
1383 
1384                 /*
1385                  * Create a new file object and update the directory
1386                  * to reference it.
1387                  */
1388                 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1389                         if (have_acl)
1390                                 zfs_acl_ids_free(&acl_ids);
1391                         goto out;
1392                 }
1393 
1394                 /*
1395                  * We only support the creation of regular files in
1396                  * extended attribute directories.
1397                  */
1398 
1399                 if ((dzp->z_pflags & ZFS_XATTR) &&
1400                     (vap->va_type != VREG)) {
1401                         if (have_acl)
1402                                 zfs_acl_ids_free(&acl_ids);
1403                         error = EINVAL;
1404                         goto out;
1405                 }
1406 
1407                 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1408                     cr, vsecp, &acl_ids)) != 0)
1409                         goto out;
1410                 have_acl = B_TRUE;
1411 
1412                 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1413                         zfs_acl_ids_free(&acl_ids);
1414                         error = EDQUOT;
1415                         goto out;
1416                 }
1417 
1418                 tx = dmu_tx_create(os);
1419 
1420                 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1421                     ZFS_SA_BASE_ATTR_SIZE);
1422 
1423                 fuid_dirtied = zfsvfs->z_fuid_dirty;
1424                 if (fuid_dirtied)
1425                         zfs_fuid_txhold(zfsvfs, tx);
1426                 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1427                 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1428                 if (!zfsvfs->z_use_sa &&
1429                     acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1430                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1431                             0, acl_ids.z_aclp->z_acl_bytes);
1432                 }
1433                 error = dmu_tx_assign(tx, TXG_NOWAIT);
1434                 if (error) {
1435                         zfs_dirent_unlock(dl);
1436                         if (error == ERESTART) {
1437                                 dmu_tx_wait(tx);
1438                                 dmu_tx_abort(tx);
1439                                 goto top;
1440                         }
1441                         zfs_acl_ids_free(&acl_ids);
1442                         dmu_tx_abort(tx);
1443                         ZFS_EXIT(zfsvfs);
1444                         return (error);
1445                 }
1446                 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1447 
1448                 if (fuid_dirtied)
1449                         zfs_fuid_sync(zfsvfs, tx);
1450 
1451                 (void) zfs_link_create(dl, zp, tx, ZNEW);
1452                 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1453                 if (flag & FIGNORECASE)
1454                         txtype |= TX_CI;
1455                 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1456                     vsecp, acl_ids.z_fuidp, vap);
1457                 zfs_acl_ids_free(&acl_ids);
1458                 dmu_tx_commit(tx);
1459         } else {
1460                 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1461 
1462                 if (have_acl)
1463                         zfs_acl_ids_free(&acl_ids);
1464                 have_acl = B_FALSE;
1465 
1466                 /*
1467                  * A directory entry already exists for this name.
1468                  */
1469                 /*
1470                  * Can't truncate an existing file if in exclusive mode.
1471                  */
1472                 if (excl == EXCL) {
1473                         error = EEXIST;
1474                         goto out;
1475                 }
1476                 /*
1477                  * Can't open a directory for writing.
1478                  */
1479                 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1480                         error = EISDIR;
1481                         goto out;
1482                 }
1483                 /*
1484                  * Verify requested access to file.
1485                  */
1486                 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1487                         goto out;
1488                 }
1489 
1490                 mutex_enter(&dzp->z_lock);
1491                 dzp->z_seq++;
1492                 mutex_exit(&dzp->z_lock);
1493 
1494                 /*
1495                  * Truncate regular files if requested.
1496                  */
1497                 if ((ZTOV(zp)->v_type == VREG) &&
1498                     (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1499                         /* we can't hold any locks when calling zfs_freesp() */
1500                         zfs_dirent_unlock(dl);
1501                         dl = NULL;
1502                         error = zfs_freesp(zp, 0, 0, mode, TRUE);
1503                         if (error == 0) {
1504                                 vnevent_create(ZTOV(zp), ct);
1505                         }
1506                 }
1507         }
1508 out:
1509 
1510         if (dl)
1511                 zfs_dirent_unlock(dl);
1512 
1513         if (error) {
1514                 if (zp)
1515                         VN_RELE(ZTOV(zp));
1516         } else {
1517                 *vpp = ZTOV(zp);
1518                 error = specvp_check(vpp, cr);
1519         }
1520 
1521         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1522                 zil_commit(zilog, 0);
1523 
1524         ZFS_EXIT(zfsvfs);
1525         return (error);
1526 }
1527 
1528 /*
1529  * Remove an entry from a directory.
1530  *
1531  *      IN:     dvp     - vnode of directory to remove entry from.
1532  *              name    - name of entry to remove.
1533  *              cr      - credentials of caller.
1534  *              ct      - caller context
1535  *              flags   - case flags
1536  *
1537  *      RETURN: 0 if success
1538  *              error code if failure
1539  *
1540  * Timestamps:
1541  *      dvp - ctime|mtime
1542  *       vp - ctime (if nlink > 0)
1543  */
1544 
1545 uint64_t null_xattr = 0;
1546 
1547 /*ARGSUSED*/
1548 static int
1549 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1550     int flags)
1551 {
1552         znode_t         *zp, *dzp = VTOZ(dvp);
1553         znode_t         *xzp;
1554         vnode_t         *vp;
1555         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1556         zilog_t         *zilog;
1557         uint64_t        acl_obj, xattr_obj;
1558         uint64_t        xattr_obj_unlinked = 0;
1559         uint64_t        obj = 0;
1560         zfs_dirlock_t   *dl;
1561         dmu_tx_t        *tx;
1562         boolean_t       may_delete_now, delete_now = FALSE;
1563         boolean_t       unlinked, toobig = FALSE;
1564         uint64_t        txtype;
1565         pathname_t      *realnmp = NULL;
1566         pathname_t      realnm;
1567         int             error;
1568         int             zflg = ZEXISTS;
1569 
1570         ZFS_ENTER(zfsvfs);
1571         ZFS_VERIFY_ZP(dzp);
1572         zilog = zfsvfs->z_log;
1573 
1574         if (flags & FIGNORECASE) {
1575                 zflg |= ZCILOOK;
1576                 pn_alloc(&realnm);
1577                 realnmp = &realnm;
1578         }
1579 
1580 top:
1581         xattr_obj = 0;
1582         xzp = NULL;
1583         /*
1584          * Attempt to lock directory; fail if entry doesn't exist.
1585          */
1586         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1587             NULL, realnmp)) {
1588                 if (realnmp)
1589                         pn_free(realnmp);
1590                 ZFS_EXIT(zfsvfs);
1591                 return (error);
1592         }
1593 
1594         vp = ZTOV(zp);
1595 
1596         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1597                 goto out;
1598         }
1599 
1600         /*
1601          * Need to use rmdir for removing directories.
1602          */
1603         if (vp->v_type == VDIR) {
1604                 error = EPERM;
1605                 goto out;
1606         }
1607 
1608         vnevent_remove(vp, dvp, name, ct);
1609 
1610         if (realnmp)
1611                 dnlc_remove(dvp, realnmp->pn_buf);
1612         else
1613                 dnlc_remove(dvp, name);
1614 
1615         mutex_enter(&vp->v_lock);
1616         may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1617         mutex_exit(&vp->v_lock);
1618 
1619         /*
1620          * We may delete the znode now, or we may put it in the unlinked set;
1621          * it depends on whether we're the last link, and on whether there are
1622          * other holds on the vnode.  So we dmu_tx_hold() the right things to
1623          * allow for either case.
1624          */
1625         obj = zp->z_id;
1626         tx = dmu_tx_create(zfsvfs->z_os);
1627         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1628         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1629         zfs_sa_upgrade_txholds(tx, zp);
1630         zfs_sa_upgrade_txholds(tx, dzp);
1631         if (may_delete_now) {
1632                 toobig =
1633                     zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1634                 /* if the file is too big, only hold_free a token amount */
1635                 dmu_tx_hold_free(tx, zp->z_id, 0,
1636                     (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1637         }
1638 
1639         /* are there any extended attributes? */
1640         error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1641             &xattr_obj, sizeof (xattr_obj));
1642         if (error == 0 && xattr_obj) {
1643                 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1644                 ASSERT3U(error, ==, 0);
1645                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1646                 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1647         }
1648 
1649         mutex_enter(&zp->z_lock);
1650         if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1651                 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1652         mutex_exit(&zp->z_lock);
1653 
1654         /* charge as an update -- would be nice not to charge at all */
1655         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1656 
1657         error = dmu_tx_assign(tx, TXG_NOWAIT);
1658         if (error) {
1659                 zfs_dirent_unlock(dl);
1660                 VN_RELE(vp);
1661                 if (xzp)
1662                         VN_RELE(ZTOV(xzp));
1663                 if (error == ERESTART) {
1664                         dmu_tx_wait(tx);
1665                         dmu_tx_abort(tx);
1666                         goto top;
1667                 }
1668                 if (realnmp)
1669                         pn_free(realnmp);
1670                 dmu_tx_abort(tx);
1671                 ZFS_EXIT(zfsvfs);
1672                 return (error);
1673         }
1674 
1675         /*
1676          * Remove the directory entry.
1677          */
1678         error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1679 
1680         if (error) {
1681                 dmu_tx_commit(tx);
1682                 goto out;
1683         }
1684 
1685         if (unlinked) {
1686 
1687                 /*
1688                  * Hold z_lock so that we can make sure that the ACL obj
1689                  * hasn't changed.  Could have been deleted due to
1690                  * zfs_sa_upgrade().
1691                  */
1692                 mutex_enter(&zp->z_lock);
1693                 mutex_enter(&vp->v_lock);
1694                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1695                     &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1696                 delete_now = may_delete_now && !toobig &&
1697                     vp->v_count == 1 && !vn_has_cached_data(vp) &&
1698                     xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1699                     acl_obj;
1700                 mutex_exit(&vp->v_lock);
1701         }
1702 
1703         if (delete_now) {
1704                 if (xattr_obj_unlinked) {
1705                         ASSERT3U(xzp->z_links, ==, 2);
1706                         mutex_enter(&xzp->z_lock);
1707                         xzp->z_unlinked = 1;
1708                         xzp->z_links = 0;
1709                         error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1710                             &xzp->z_links, sizeof (xzp->z_links), tx);
1711                         ASSERT3U(error,  ==,  0);
1712                         mutex_exit(&xzp->z_lock);
1713                         zfs_unlinked_add(xzp, tx);
1714 
1715                         if (zp->z_is_sa)
1716                                 error = sa_remove(zp->z_sa_hdl,
1717                                     SA_ZPL_XATTR(zfsvfs), tx);
1718                         else
1719                                 error = sa_update(zp->z_sa_hdl,
1720                                     SA_ZPL_XATTR(zfsvfs), &null_xattr,
1721                                     sizeof (uint64_t), tx);
1722                         ASSERT3U(error, ==, 0);
1723                 }
1724                 mutex_enter(&vp->v_lock);
1725                 vp->v_count--;
1726                 ASSERT3U(vp->v_count, ==, 0);
1727                 mutex_exit(&vp->v_lock);
1728                 mutex_exit(&zp->z_lock);
1729                 zfs_znode_delete(zp, tx);
1730         } else if (unlinked) {
1731                 mutex_exit(&zp->z_lock);
1732                 zfs_unlinked_add(zp, tx);
1733         }
1734 
1735         txtype = TX_REMOVE;
1736         if (flags & FIGNORECASE)
1737                 txtype |= TX_CI;
1738         zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1739 
1740         dmu_tx_commit(tx);
1741 out:
1742         if (realnmp)
1743                 pn_free(realnmp);
1744 
1745         zfs_dirent_unlock(dl);
1746 
1747         if (!delete_now)
1748                 VN_RELE(vp);
1749         if (xzp)
1750                 VN_RELE(ZTOV(xzp));
1751 
1752         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1753                 zil_commit(zilog, 0);
1754 
1755         ZFS_EXIT(zfsvfs);
1756         return (error);
1757 }
1758 
1759 /*
1760  * Create a new directory and insert it into dvp using the name
1761  * provided.  Return a pointer to the inserted directory.
1762  *
1763  *      IN:     dvp     - vnode of directory to add subdir to.
1764  *              dirname - name of new directory.
1765  *              vap     - attributes of new directory.
1766  *              cr      - credentials of caller.
1767  *              ct      - caller context
1768  *              vsecp   - ACL to be set
1769  *
1770  *      OUT:    vpp     - vnode of created directory.
1771  *
1772  *      RETURN: 0 if success
1773  *              error code if failure
1774  *
1775  * Timestamps:
1776  *      dvp - ctime|mtime updated
1777  *       vp - ctime|mtime|atime updated
1778  */
1779 /*ARGSUSED*/
1780 static int
1781 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1782     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1783 {
1784         znode_t         *zp, *dzp = VTOZ(dvp);
1785         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1786         zilog_t         *zilog;
1787         zfs_dirlock_t   *dl;
1788         uint64_t        txtype;
1789         dmu_tx_t        *tx;
1790         int             error;
1791         int             zf = ZNEW;
1792         ksid_t          *ksid;
1793         uid_t           uid;
1794         gid_t           gid = crgetgid(cr);
1795         zfs_acl_ids_t   acl_ids;
1796         boolean_t       fuid_dirtied;
1797 
1798         ASSERT(vap->va_type == VDIR);
1799 
1800         /*
1801          * If we have an ephemeral id, ACL, or XVATTR then
1802          * make sure file system is at proper version
1803          */
1804 
1805         ksid = crgetsid(cr, KSID_OWNER);
1806         if (ksid)
1807                 uid = ksid_getid(ksid);
1808         else
1809                 uid = crgetuid(cr);
1810         if (zfsvfs->z_use_fuids == B_FALSE &&
1811             (vsecp || (vap->va_mask & AT_XVATTR) ||
1812             IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1813                 return (EINVAL);
1814 
1815         ZFS_ENTER(zfsvfs);
1816         ZFS_VERIFY_ZP(dzp);
1817         zilog = zfsvfs->z_log;
1818 
1819         if (dzp->z_pflags & ZFS_XATTR) {
1820                 ZFS_EXIT(zfsvfs);
1821                 return (EINVAL);
1822         }
1823 
1824         if (zfsvfs->z_utf8 && u8_validate(dirname,
1825             strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1826                 ZFS_EXIT(zfsvfs);
1827                 return (EILSEQ);
1828         }
1829         if (flags & FIGNORECASE)
1830                 zf |= ZCILOOK;
1831 
1832         if (vap->va_mask & AT_XVATTR) {
1833                 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1834                     crgetuid(cr), cr, vap->va_type)) != 0) {
1835                         ZFS_EXIT(zfsvfs);
1836                         return (error);
1837                 }
1838         }
1839 
1840         if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1841             vsecp, &acl_ids)) != 0) {
1842                 ZFS_EXIT(zfsvfs);
1843                 return (error);
1844         }
1845         /*
1846          * First make sure the new directory doesn't exist.
1847          *
1848          * Existence is checked first to make sure we don't return
1849          * EACCES instead of EEXIST which can cause some applications
1850          * to fail.
1851          */
1852 top:
1853         *vpp = NULL;
1854 
1855         if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1856             NULL, NULL)) {
1857                 zfs_acl_ids_free(&acl_ids);
1858                 ZFS_EXIT(zfsvfs);
1859                 return (error);
1860         }
1861 
1862         if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1863                 zfs_acl_ids_free(&acl_ids);
1864                 zfs_dirent_unlock(dl);
1865                 ZFS_EXIT(zfsvfs);
1866                 return (error);
1867         }
1868 
1869         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1870                 zfs_acl_ids_free(&acl_ids);
1871                 zfs_dirent_unlock(dl);
1872                 ZFS_EXIT(zfsvfs);
1873                 return (EDQUOT);
1874         }
1875 
1876         /*
1877          * Add a new entry to the directory.
1878          */
1879         tx = dmu_tx_create(zfsvfs->z_os);
1880         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1881         dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1882         fuid_dirtied = zfsvfs->z_fuid_dirty;
1883         if (fuid_dirtied)
1884                 zfs_fuid_txhold(zfsvfs, tx);
1885         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1886                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1887                     acl_ids.z_aclp->z_acl_bytes);
1888         }
1889 
1890         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1891             ZFS_SA_BASE_ATTR_SIZE);
1892 
1893         error = dmu_tx_assign(tx, TXG_NOWAIT);
1894         if (error) {
1895                 zfs_dirent_unlock(dl);
1896                 if (error == ERESTART) {
1897                         dmu_tx_wait(tx);
1898                         dmu_tx_abort(tx);
1899                         goto top;
1900                 }
1901                 zfs_acl_ids_free(&acl_ids);
1902                 dmu_tx_abort(tx);
1903                 ZFS_EXIT(zfsvfs);
1904                 return (error);
1905         }
1906 
1907         /*
1908          * Create new node.
1909          */
1910         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1911 
1912         if (fuid_dirtied)
1913                 zfs_fuid_sync(zfsvfs, tx);
1914 
1915         /*
1916          * Now put new name in parent dir.
1917          */
1918         (void) zfs_link_create(dl, zp, tx, ZNEW);
1919 
1920         *vpp = ZTOV(zp);
1921 
1922         txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1923         if (flags & FIGNORECASE)
1924                 txtype |= TX_CI;
1925         zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1926             acl_ids.z_fuidp, vap);
1927 
1928         zfs_acl_ids_free(&acl_ids);
1929 
1930         dmu_tx_commit(tx);
1931 
1932         zfs_dirent_unlock(dl);
1933 
1934         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1935                 zil_commit(zilog, 0);
1936 
1937         ZFS_EXIT(zfsvfs);
1938         return (0);
1939 }
1940 
1941 /*
1942  * Remove a directory subdir entry.  If the current working
1943  * directory is the same as the subdir to be removed, the
1944  * remove will fail.
1945  *
1946  *      IN:     dvp     - vnode of directory to remove from.
1947  *              name    - name of directory to be removed.
1948  *              cwd     - vnode of current working directory.
1949  *              cr      - credentials of caller.
1950  *              ct      - caller context
1951  *              flags   - case flags
1952  *
1953  *      RETURN: 0 if success
1954  *              error code if failure
1955  *
1956  * Timestamps:
1957  *      dvp - ctime|mtime updated
1958  */
1959 /*ARGSUSED*/
1960 static int
1961 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1962     caller_context_t *ct, int flags)
1963 {
1964         znode_t         *dzp = VTOZ(dvp);
1965         znode_t         *zp;
1966         vnode_t         *vp;
1967         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
1968         zilog_t         *zilog;
1969         zfs_dirlock_t   *dl;
1970         dmu_tx_t        *tx;
1971         int             error;
1972         int             zflg = ZEXISTS;
1973 
1974         ZFS_ENTER(zfsvfs);
1975         ZFS_VERIFY_ZP(dzp);
1976         zilog = zfsvfs->z_log;
1977 
1978         if (flags & FIGNORECASE)
1979                 zflg |= ZCILOOK;
1980 top:
1981         zp = NULL;
1982 
1983         /*
1984          * Attempt to lock directory; fail if entry doesn't exist.
1985          */
1986         if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1987             NULL, NULL)) {
1988                 ZFS_EXIT(zfsvfs);
1989                 return (error);
1990         }
1991 
1992         vp = ZTOV(zp);
1993 
1994         if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1995                 goto out;
1996         }
1997 
1998         if (vp->v_type != VDIR) {
1999                 error = ENOTDIR;
2000                 goto out;
2001         }
2002 
2003         if (vp == cwd) {
2004                 error = EINVAL;
2005                 goto out;
2006         }
2007 
2008         vnevent_rmdir(vp, dvp, name, ct);
2009 
2010         /*
2011          * Grab a lock on the directory to make sure that noone is
2012          * trying to add (or lookup) entries while we are removing it.
2013          */
2014         rw_enter(&zp->z_name_lock, RW_WRITER);
2015 
2016         /*
2017          * Grab a lock on the parent pointer to make sure we play well
2018          * with the treewalk and directory rename code.
2019          */
2020         rw_enter(&zp->z_parent_lock, RW_WRITER);
2021 
2022         tx = dmu_tx_create(zfsvfs->z_os);
2023         dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2024         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2025         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2026         zfs_sa_upgrade_txholds(tx, zp);
2027         zfs_sa_upgrade_txholds(tx, dzp);
2028         error = dmu_tx_assign(tx, TXG_NOWAIT);
2029         if (error) {
2030                 rw_exit(&zp->z_parent_lock);
2031                 rw_exit(&zp->z_name_lock);
2032                 zfs_dirent_unlock(dl);
2033                 VN_RELE(vp);
2034                 if (error == ERESTART) {
2035                         dmu_tx_wait(tx);
2036                         dmu_tx_abort(tx);
2037                         goto top;
2038                 }
2039                 dmu_tx_abort(tx);
2040                 ZFS_EXIT(zfsvfs);
2041                 return (error);
2042         }
2043 
2044         error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2045 
2046         if (error == 0) {
2047                 uint64_t txtype = TX_RMDIR;
2048                 if (flags & FIGNORECASE)
2049                         txtype |= TX_CI;
2050                 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2051         }
2052 
2053         dmu_tx_commit(tx);
2054 
2055         rw_exit(&zp->z_parent_lock);
2056         rw_exit(&zp->z_name_lock);
2057 out:
2058         zfs_dirent_unlock(dl);
2059 
2060         VN_RELE(vp);
2061 
2062         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2063                 zil_commit(zilog, 0);
2064 
2065         ZFS_EXIT(zfsvfs);
2066         return (error);
2067 }
2068 
2069 /*
2070  * Read as many directory entries as will fit into the provided
2071  * buffer from the given directory cursor position (specified in
2072  * the uio structure.
2073  *
2074  *      IN:     vp      - vnode of directory to read.
2075  *              uio     - structure supplying read location, range info,
2076  *                        and return buffer.
2077  *              cr      - credentials of caller.
2078  *              ct      - caller context
2079  *              flags   - case flags
2080  *
2081  *      OUT:    uio     - updated offset and range, buffer filled.
2082  *              eofp    - set to true if end-of-file detected.
2083  *
2084  *      RETURN: 0 if success
2085  *              error code if failure
2086  *
2087  * Timestamps:
2088  *      vp - atime updated
2089  *
2090  * Note that the low 4 bits of the cookie returned by zap is always zero.
2091  * This allows us to use the low range for "special" directory entries:
2092  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2093  * we use the offset 2 for the '.zfs' directory.
2094  */
2095 /* ARGSUSED */
2096 static int
2097 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2098     caller_context_t *ct, int flags)
2099 {
2100         znode_t         *zp = VTOZ(vp);
2101         iovec_t         *iovp;
2102         edirent_t       *eodp;
2103         dirent64_t      *odp;
2104         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2105         objset_t        *os;
2106         caddr_t         outbuf;
2107         size_t          bufsize;
2108         zap_cursor_t    zc;
2109         zap_attribute_t zap;
2110         uint_t          bytes_wanted;
2111         uint64_t        offset; /* must be unsigned; checks for < 1 */
2112         uint64_t        parent;
2113         int             local_eof;
2114         int             outcount;
2115         int             error;
2116         uint8_t         prefetch;
2117         boolean_t       check_sysattrs;
2118 
2119         ZFS_ENTER(zfsvfs);
2120         ZFS_VERIFY_ZP(zp);
2121 
2122         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2123             &parent, sizeof (parent))) != 0) {
2124                 ZFS_EXIT(zfsvfs);
2125                 return (error);
2126         }
2127 
2128         /*
2129          * If we are not given an eof variable,
2130          * use a local one.
2131          */
2132         if (eofp == NULL)
2133                 eofp = &local_eof;
2134 
2135         /*
2136          * Check for valid iov_len.
2137          */
2138         if (uio->uio_iov->iov_len <= 0) {
2139                 ZFS_EXIT(zfsvfs);
2140                 return (EINVAL);
2141         }
2142 
2143         /*
2144          * Quit if directory has been removed (posix)
2145          */
2146         if ((*eofp = zp->z_unlinked) != 0) {
2147                 ZFS_EXIT(zfsvfs);
2148                 return (0);
2149         }
2150 
2151         error = 0;
2152         os = zfsvfs->z_os;
2153         offset = uio->uio_loffset;
2154         prefetch = zp->z_zn_prefetch;
2155 
2156         /*
2157          * Initialize the iterator cursor.
2158          */
2159         if (offset <= 3) {
2160                 /*
2161                  * Start iteration from the beginning of the directory.
2162                  */
2163                 zap_cursor_init(&zc, os, zp->z_id);
2164         } else {
2165                 /*
2166                  * The offset is a serialized cursor.
2167                  */
2168                 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2169         }
2170 
2171         /*
2172          * Get space to change directory entries into fs independent format.
2173          */
2174         iovp = uio->uio_iov;
2175         bytes_wanted = iovp->iov_len;
2176         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2177                 bufsize = bytes_wanted;
2178                 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2179                 odp = (struct dirent64 *)outbuf;
2180         } else {
2181                 bufsize = bytes_wanted;
2182                 odp = (struct dirent64 *)iovp->iov_base;
2183         }
2184         eodp = (struct edirent *)odp;
2185 
2186         /*
2187          * If this VFS supports the system attribute view interface; and
2188          * we're looking at an extended attribute directory; and we care
2189          * about normalization conflicts on this vfs; then we must check
2190          * for normalization conflicts with the sysattr name space.
2191          */
2192         check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2193             (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2194             (flags & V_RDDIR_ENTFLAGS);
2195 
2196         /*
2197          * Transform to file-system independent format
2198          */
2199         outcount = 0;
2200         while (outcount < bytes_wanted) {
2201                 ino64_t objnum;
2202                 ushort_t reclen;
2203                 off64_t *next = NULL;
2204 
2205                 /*
2206                  * Special case `.', `..', and `.zfs'.
2207                  */
2208                 if (offset == 0) {
2209                         (void) strcpy(zap.za_name, ".");
2210                         zap.za_normalization_conflict = 0;
2211                         objnum = zp->z_id;
2212                 } else if (offset == 1) {
2213                         (void) strcpy(zap.za_name, "..");
2214                         zap.za_normalization_conflict = 0;
2215                         objnum = parent;
2216                 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2217                         (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2218                         zap.za_normalization_conflict = 0;
2219                         objnum = ZFSCTL_INO_ROOT;
2220                 } else {
2221                         /*
2222                          * Grab next entry.
2223                          */
2224                         if (error = zap_cursor_retrieve(&zc, &zap)) {
2225                                 if ((*eofp = (error == ENOENT)) != 0)
2226                                         break;
2227                                 else
2228                                         goto update;
2229                         }
2230 
2231                         if (zap.za_integer_length != 8 ||
2232                             zap.za_num_integers != 1) {
2233                                 cmn_err(CE_WARN, "zap_readdir: bad directory "
2234                                     "entry, obj = %lld, offset = %lld\n",
2235                                     (u_longlong_t)zp->z_id,
2236                                     (u_longlong_t)offset);
2237                                 error = ENXIO;
2238                                 goto update;
2239                         }
2240 
2241                         objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2242                         /*
2243                          * MacOS X can extract the object type here such as:
2244                          * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2245                          */
2246 
2247                         if (check_sysattrs && !zap.za_normalization_conflict) {
2248                                 zap.za_normalization_conflict =
2249                                     xattr_sysattr_casechk(zap.za_name);
2250                         }
2251                 }
2252 
2253                 if (flags & V_RDDIR_ACCFILTER) {
2254                         /*
2255                          * If we have no access at all, don't include
2256                          * this entry in the returned information
2257                          */
2258                         znode_t *ezp;
2259                         if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2260                                 goto skip_entry;
2261                         if (!zfs_has_access(ezp, cr)) {
2262                                 VN_RELE(ZTOV(ezp));
2263                                 goto skip_entry;
2264                         }
2265                         VN_RELE(ZTOV(ezp));
2266                 }
2267 
2268                 if (flags & V_RDDIR_ENTFLAGS)
2269                         reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2270                 else
2271                         reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2272 
2273                 /*
2274                  * Will this entry fit in the buffer?
2275                  */
2276                 if (outcount + reclen > bufsize) {
2277                         /*
2278                          * Did we manage to fit anything in the buffer?
2279                          */
2280                         if (!outcount) {
2281                                 error = EINVAL;
2282                                 goto update;
2283                         }
2284                         break;
2285                 }
2286                 if (flags & V_RDDIR_ENTFLAGS) {
2287                         /*
2288                          * Add extended flag entry:
2289                          */
2290                         eodp->ed_ino = objnum;
2291                         eodp->ed_reclen = reclen;
2292                         /* NOTE: ed_off is the offset for the *next* entry */
2293                         next = &(eodp->ed_off);
2294                         eodp->ed_eflags = zap.za_normalization_conflict ?
2295                             ED_CASE_CONFLICT : 0;
2296                         (void) strncpy(eodp->ed_name, zap.za_name,
2297                             EDIRENT_NAMELEN(reclen));
2298                         eodp = (edirent_t *)((intptr_t)eodp + reclen);
2299                 } else {
2300                         /*
2301                          * Add normal entry:
2302                          */
2303                         odp->d_ino = objnum;
2304                         odp->d_reclen = reclen;
2305                         /* NOTE: d_off is the offset for the *next* entry */
2306                         next = &(odp->d_off);
2307                         (void) strncpy(odp->d_name, zap.za_name,
2308                             DIRENT64_NAMELEN(reclen));
2309                         odp = (dirent64_t *)((intptr_t)odp + reclen);
2310                 }
2311                 outcount += reclen;
2312 
2313                 ASSERT(outcount <= bufsize);
2314 
2315                 /* Prefetch znode */
2316                 if (prefetch)
2317                         dmu_prefetch(os, objnum, 0, 0);
2318 
2319         skip_entry:
2320                 /*
2321                  * Move to the next entry, fill in the previous offset.
2322                  */
2323                 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2324                         zap_cursor_advance(&zc);
2325                         offset = zap_cursor_serialize(&zc);
2326                 } else {
2327                         offset += 1;
2328                 }
2329                 if (next)
2330                         *next = offset;
2331         }
2332         zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2333 
2334         if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2335                 iovp->iov_base += outcount;
2336                 iovp->iov_len -= outcount;
2337                 uio->uio_resid -= outcount;
2338         } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2339                 /*
2340                  * Reset the pointer.
2341                  */
2342                 offset = uio->uio_loffset;
2343         }
2344 
2345 update:
2346         zap_cursor_fini(&zc);
2347         if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2348                 kmem_free(outbuf, bufsize);
2349 
2350         if (error == ENOENT)
2351                 error = 0;
2352 
2353         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2354 
2355         uio->uio_loffset = offset;
2356         ZFS_EXIT(zfsvfs);
2357         return (error);
2358 }
2359 
2360 ulong_t zfs_fsync_sync_cnt = 4;
2361 
2362 static int
2363 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2364 {
2365         znode_t *zp = VTOZ(vp);
2366         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2367 
2368         /*
2369          * Regardless of whether this is required for standards conformance,
2370          * this is the logical behavior when fsync() is called on a file with
2371          * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2372          * going to be pushed out as part of the zil_commit().
2373          */
2374         if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2375             (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2376                 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2377 
2378         (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2379 
2380         if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2381                 ZFS_ENTER(zfsvfs);
2382                 ZFS_VERIFY_ZP(zp);
2383                 zil_commit(zfsvfs->z_log, zp->z_id);
2384                 ZFS_EXIT(zfsvfs);
2385         }
2386         return (0);
2387 }
2388 
2389 
2390 /*
2391  * Get the requested file attributes and place them in the provided
2392  * vattr structure.
2393  *
2394  *      IN:     vp      - vnode of file.
2395  *              vap     - va_mask identifies requested attributes.
2396  *                        If AT_XVATTR set, then optional attrs are requested
2397  *              flags   - ATTR_NOACLCHECK (CIFS server context)
2398  *              cr      - credentials of caller.
2399  *              ct      - caller context
2400  *
2401  *      OUT:    vap     - attribute values.
2402  *
2403  *      RETURN: 0 (always succeeds)
2404  */
2405 /* ARGSUSED */
2406 static int
2407 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2408     caller_context_t *ct)
2409 {
2410         znode_t *zp = VTOZ(vp);
2411         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2412         int     error = 0;
2413         uint64_t links;
2414         uint64_t mtime[2], ctime[2];
2415         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2416         xoptattr_t *xoap = NULL;
2417         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2418         sa_bulk_attr_t bulk[2];
2419         int count = 0;
2420 
2421         ZFS_ENTER(zfsvfs);
2422         ZFS_VERIFY_ZP(zp);
2423 
2424         zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2425 
2426         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2427         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2428 
2429         if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2430                 ZFS_EXIT(zfsvfs);
2431                 return (error);
2432         }
2433 
2434         /*
2435          * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2436          * Also, if we are the owner don't bother, since owner should
2437          * always be allowed to read basic attributes of file.
2438          */
2439         if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2440             (vap->va_uid != crgetuid(cr))) {
2441                 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2442                     skipaclchk, cr)) {
2443                         ZFS_EXIT(zfsvfs);
2444                         return (error);
2445                 }
2446         }
2447 
2448         /*
2449          * Return all attributes.  It's cheaper to provide the answer
2450          * than to determine whether we were asked the question.
2451          */
2452 
2453         mutex_enter(&zp->z_lock);
2454         vap->va_type = vp->v_type;
2455         vap->va_mode = zp->z_mode & MODEMASK;
2456         vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2457         vap->va_nodeid = zp->z_id;
2458         if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2459                 links = zp->z_links + 1;
2460         else
2461                 links = zp->z_links;
2462         vap->va_nlink = MIN(links, UINT32_MAX);      /* nlink_t limit! */
2463         vap->va_size = zp->z_size;
2464         vap->va_rdev = vp->v_rdev;
2465         vap->va_seq = zp->z_seq;
2466 
2467         /*
2468          * Add in any requested optional attributes and the create time.
2469          * Also set the corresponding bits in the returned attribute bitmap.
2470          */
2471         if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2472                 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2473                         xoap->xoa_archive =
2474                             ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2475                         XVA_SET_RTN(xvap, XAT_ARCHIVE);
2476                 }
2477 
2478                 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2479                         xoap->xoa_readonly =
2480                             ((zp->z_pflags & ZFS_READONLY) != 0);
2481                         XVA_SET_RTN(xvap, XAT_READONLY);
2482                 }
2483 
2484                 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2485                         xoap->xoa_system =
2486                             ((zp->z_pflags & ZFS_SYSTEM) != 0);
2487                         XVA_SET_RTN(xvap, XAT_SYSTEM);
2488                 }
2489 
2490                 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2491                         xoap->xoa_hidden =
2492                             ((zp->z_pflags & ZFS_HIDDEN) != 0);
2493                         XVA_SET_RTN(xvap, XAT_HIDDEN);
2494                 }
2495 
2496                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2497                         xoap->xoa_nounlink =
2498                             ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2499                         XVA_SET_RTN(xvap, XAT_NOUNLINK);
2500                 }
2501 
2502                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2503                         xoap->xoa_immutable =
2504                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2505                         XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2506                 }
2507 
2508                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2509                         xoap->xoa_appendonly =
2510                             ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2511                         XVA_SET_RTN(xvap, XAT_APPENDONLY);
2512                 }
2513 
2514                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2515                         xoap->xoa_nodump =
2516                             ((zp->z_pflags & ZFS_NODUMP) != 0);
2517                         XVA_SET_RTN(xvap, XAT_NODUMP);
2518                 }
2519 
2520                 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2521                         xoap->xoa_opaque =
2522                             ((zp->z_pflags & ZFS_OPAQUE) != 0);
2523                         XVA_SET_RTN(xvap, XAT_OPAQUE);
2524                 }
2525 
2526                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2527                         xoap->xoa_av_quarantined =
2528                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2529                         XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2530                 }
2531 
2532                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2533                         xoap->xoa_av_modified =
2534                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2535                         XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2536                 }
2537 
2538                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2539                     vp->v_type == VREG) {
2540                         zfs_sa_get_scanstamp(zp, xvap);
2541                 }
2542 
2543                 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2544                         uint64_t times[2];
2545 
2546                         (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2547                             times, sizeof (times));
2548                         ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2549                         XVA_SET_RTN(xvap, XAT_CREATETIME);
2550                 }
2551 
2552                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2553                         xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2554                         XVA_SET_RTN(xvap, XAT_REPARSE);
2555                 }
2556                 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2557                         xoap->xoa_generation = zp->z_gen;
2558                         XVA_SET_RTN(xvap, XAT_GEN);
2559                 }
2560 
2561                 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2562                         xoap->xoa_offline =
2563                             ((zp->z_pflags & ZFS_OFFLINE) != 0);
2564                         XVA_SET_RTN(xvap, XAT_OFFLINE);
2565                 }
2566 
2567                 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2568                         xoap->xoa_sparse =
2569                             ((zp->z_pflags & ZFS_SPARSE) != 0);
2570                         XVA_SET_RTN(xvap, XAT_SPARSE);
2571                 }
2572         }
2573 
2574         ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2575         ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2576         ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2577 
2578         mutex_exit(&zp->z_lock);
2579 
2580         sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2581 
2582         if (zp->z_blksz == 0) {
2583                 /*
2584                  * Block size hasn't been set; suggest maximal I/O transfers.
2585                  */
2586                 vap->va_blksize = zfsvfs->z_max_blksz;
2587         }
2588 
2589         ZFS_EXIT(zfsvfs);
2590         return (0);
2591 }
2592 
2593 /*
2594  * Set the file attributes to the values contained in the
2595  * vattr structure.
2596  *
2597  *      IN:     vp      - vnode of file to be modified.
2598  *              vap     - new attribute values.
2599  *                        If AT_XVATTR set, then optional attrs are being set
2600  *              flags   - ATTR_UTIME set if non-default time values provided.
2601  *                      - ATTR_NOACLCHECK (CIFS context only).
2602  *              cr      - credentials of caller.
2603  *              ct      - caller context
2604  *
2605  *      RETURN: 0 if success
2606  *              error code if failure
2607  *
2608  * Timestamps:
2609  *      vp - ctime updated, mtime updated if size changed.
2610  */
2611 /* ARGSUSED */
2612 static int
2613 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2614         caller_context_t *ct)
2615 {
2616         znode_t         *zp = VTOZ(vp);
2617         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
2618         zilog_t         *zilog;
2619         dmu_tx_t        *tx;
2620         vattr_t         oldva;
2621         xvattr_t        tmpxvattr;
2622         uint_t          mask = vap->va_mask;
2623         uint_t          saved_mask;
2624         int             trim_mask = 0;
2625         uint64_t        new_mode;
2626         uint64_t        new_uid, new_gid;
2627         uint64_t        xattr_obj;
2628         uint64_t        mtime[2], ctime[2];
2629         znode_t         *attrzp;
2630         int             need_policy = FALSE;
2631         int             err, err2;
2632         zfs_fuid_info_t *fuidp = NULL;
2633         xvattr_t *xvap = (xvattr_t *)vap;       /* vap may be an xvattr_t * */
2634         xoptattr_t      *xoap;
2635         zfs_acl_t       *aclp;
2636         boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2637         boolean_t       fuid_dirtied = B_FALSE;
2638         sa_bulk_attr_t  bulk[7], xattr_bulk[7];
2639         int             count = 0, xattr_count = 0;
2640 
2641         if (mask == 0)
2642                 return (0);
2643 
2644         if (mask & AT_NOSET)
2645                 return (EINVAL);
2646 
2647         ZFS_ENTER(zfsvfs);
2648         ZFS_VERIFY_ZP(zp);
2649 
2650         zilog = zfsvfs->z_log;
2651 
2652         /*
2653          * Make sure that if we have ephemeral uid/gid or xvattr specified
2654          * that file system is at proper version level
2655          */
2656 
2657         if (zfsvfs->z_use_fuids == B_FALSE &&
2658             (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2659             ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2660             (mask & AT_XVATTR))) {
2661                 ZFS_EXIT(zfsvfs);
2662                 return (EINVAL);
2663         }
2664 
2665         if (mask & AT_SIZE && vp->v_type == VDIR) {
2666                 ZFS_EXIT(zfsvfs);
2667                 return (EISDIR);
2668         }
2669 
2670         if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2671                 ZFS_EXIT(zfsvfs);
2672                 return (EINVAL);
2673         }
2674 
2675         /*
2676          * If this is an xvattr_t, then get a pointer to the structure of
2677          * optional attributes.  If this is NULL, then we have a vattr_t.
2678          */
2679         xoap = xva_getxoptattr(xvap);
2680 
2681         xva_init(&tmpxvattr);
2682 
2683         /*
2684          * Immutable files can only alter immutable bit and atime
2685          */
2686         if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2687             ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2688             ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2689                 ZFS_EXIT(zfsvfs);
2690                 return (EPERM);
2691         }
2692 
2693         if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2694                 ZFS_EXIT(zfsvfs);
2695                 return (EPERM);
2696         }
2697 
2698         /*
2699          * Verify timestamps doesn't overflow 32 bits.
2700          * ZFS can handle large timestamps, but 32bit syscalls can't
2701          * handle times greater than 2039.  This check should be removed
2702          * once large timestamps are fully supported.
2703          */
2704         if (mask & (AT_ATIME | AT_MTIME)) {
2705                 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2706                     ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2707                         ZFS_EXIT(zfsvfs);
2708                         return (EOVERFLOW);
2709                 }
2710         }
2711 
2712 top:
2713         attrzp = NULL;
2714         aclp = NULL;
2715 
2716         /* Can this be moved to before the top label? */
2717         if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2718                 ZFS_EXIT(zfsvfs);
2719                 return (EROFS);
2720         }
2721 
2722         /*
2723          * First validate permissions
2724          */
2725 
2726         if (mask & AT_SIZE) {
2727                 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2728                 if (err) {
2729                         ZFS_EXIT(zfsvfs);
2730                         return (err);
2731                 }
2732                 /*
2733                  * XXX - Note, we are not providing any open
2734                  * mode flags here (like FNDELAY), so we may
2735                  * block if there are locks present... this
2736                  * should be addressed in openat().
2737                  */
2738                 /* XXX - would it be OK to generate a log record here? */
2739                 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2740                 if (err) {
2741                         ZFS_EXIT(zfsvfs);
2742                         return (err);
2743                 }
2744         }
2745 
2746         if (mask & (AT_ATIME|AT_MTIME) ||
2747             ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2748             XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2749             XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2750             XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2751             XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2752             XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2753             XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2754                 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2755                     skipaclchk, cr);
2756         }
2757 
2758         if (mask & (AT_UID|AT_GID)) {
2759                 int     idmask = (mask & (AT_UID|AT_GID));
2760                 int     take_owner;
2761                 int     take_group;
2762 
2763                 /*
2764                  * NOTE: even if a new mode is being set,
2765                  * we may clear S_ISUID/S_ISGID bits.
2766                  */
2767 
2768                 if (!(mask & AT_MODE))
2769                         vap->va_mode = zp->z_mode;
2770 
2771                 /*
2772                  * Take ownership or chgrp to group we are a member of
2773                  */
2774 
2775                 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2776                 take_group = (mask & AT_GID) &&
2777                     zfs_groupmember(zfsvfs, vap->va_gid, cr);
2778 
2779                 /*
2780                  * If both AT_UID and AT_GID are set then take_owner and
2781                  * take_group must both be set in order to allow taking
2782                  * ownership.
2783                  *
2784                  * Otherwise, send the check through secpolicy_vnode_setattr()
2785                  *
2786                  */
2787 
2788                 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2789                     ((idmask == AT_UID) && take_owner) ||
2790                     ((idmask == AT_GID) && take_group)) {
2791                         if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2792                             skipaclchk, cr) == 0) {
2793                                 /*
2794                                  * Remove setuid/setgid for non-privileged users
2795                                  */
2796                                 secpolicy_setid_clear(vap, cr);
2797                                 trim_mask = (mask & (AT_UID|AT_GID));
2798                         } else {
2799                                 need_policy =  TRUE;
2800                         }
2801                 } else {
2802                         need_policy =  TRUE;
2803                 }
2804         }
2805 
2806         mutex_enter(&zp->z_lock);
2807         oldva.va_mode = zp->z_mode;
2808         zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2809         if (mask & AT_XVATTR) {
2810                 /*
2811                  * Update xvattr mask to include only those attributes
2812                  * that are actually changing.
2813                  *
2814                  * the bits will be restored prior to actually setting
2815                  * the attributes so the caller thinks they were set.
2816                  */
2817                 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2818                         if (xoap->xoa_appendonly !=
2819                             ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2820                                 need_policy = TRUE;
2821                         } else {
2822                                 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2823                                 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2824                         }
2825                 }
2826 
2827                 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2828                         if (xoap->xoa_nounlink !=
2829                             ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2830                                 need_policy = TRUE;
2831                         } else {
2832                                 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2833                                 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2834                         }
2835                 }
2836 
2837                 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2838                         if (xoap->xoa_immutable !=
2839                             ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2840                                 need_policy = TRUE;
2841                         } else {
2842                                 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2843                                 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2844                         }
2845                 }
2846 
2847                 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2848                         if (xoap->xoa_nodump !=
2849                             ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2850                                 need_policy = TRUE;
2851                         } else {
2852                                 XVA_CLR_REQ(xvap, XAT_NODUMP);
2853                                 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2854                         }
2855                 }
2856 
2857                 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2858                         if (xoap->xoa_av_modified !=
2859                             ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2860                                 need_policy = TRUE;
2861                         } else {
2862                                 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2863                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2864                         }
2865                 }
2866 
2867                 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2868                         if ((vp->v_type != VREG &&
2869                             xoap->xoa_av_quarantined) ||
2870                             xoap->xoa_av_quarantined !=
2871                             ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2872                                 need_policy = TRUE;
2873                         } else {
2874                                 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2875                                 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2876                         }
2877                 }
2878 
2879                 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2880                         mutex_exit(&zp->z_lock);
2881                         ZFS_EXIT(zfsvfs);
2882                         return (EPERM);
2883                 }
2884 
2885                 if (need_policy == FALSE &&
2886                     (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2887                     XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2888                         need_policy = TRUE;
2889                 }
2890         }
2891 
2892         mutex_exit(&zp->z_lock);
2893 
2894         if (mask & AT_MODE) {
2895                 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2896                         err = secpolicy_setid_setsticky_clear(vp, vap,
2897                             &oldva, cr);
2898                         if (err) {
2899                                 ZFS_EXIT(zfsvfs);
2900                                 return (err);
2901                         }
2902                         trim_mask |= AT_MODE;
2903                 } else {
2904                         need_policy = TRUE;
2905                 }
2906         }
2907 
2908         if (need_policy) {
2909                 /*
2910                  * If trim_mask is set then take ownership
2911                  * has been granted or write_acl is present and user
2912                  * has the ability to modify mode.  In that case remove
2913                  * UID|GID and or MODE from mask so that
2914                  * secpolicy_vnode_setattr() doesn't revoke it.
2915                  */
2916 
2917                 if (trim_mask) {
2918                         saved_mask = vap->va_mask;
2919                         vap->va_mask &= ~trim_mask;
2920                 }
2921                 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2922                     (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2923                 if (err) {
2924                         ZFS_EXIT(zfsvfs);
2925                         return (err);
2926                 }
2927 
2928                 if (trim_mask)
2929                         vap->va_mask |= saved_mask;
2930         }
2931 
2932         /*
2933          * secpolicy_vnode_setattr, or take ownership may have
2934          * changed va_mask
2935          */
2936         mask = vap->va_mask;
2937 
2938         if ((mask & (AT_UID | AT_GID))) {
2939                 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2940                     &xattr_obj, sizeof (xattr_obj));
2941 
2942                 if (err == 0 && xattr_obj) {
2943                         err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2944                         if (err)
2945                                 goto out2;
2946                 }
2947                 if (mask & AT_UID) {
2948                         new_uid = zfs_fuid_create(zfsvfs,
2949                             (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2950                         if (new_uid != zp->z_uid &&
2951                             zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2952                                 if (attrzp)
2953                                         VN_RELE(ZTOV(attrzp));
2954                                 err = EDQUOT;
2955                                 goto out2;
2956                         }
2957                 }
2958 
2959                 if (mask & AT_GID) {
2960                         new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2961                             cr, ZFS_GROUP, &fuidp);
2962                         if (new_gid != zp->z_gid &&
2963                             zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2964                                 if (attrzp)
2965                                         VN_RELE(ZTOV(attrzp));
2966                                 err = EDQUOT;
2967                                 goto out2;
2968                         }
2969                 }
2970         }
2971         tx = dmu_tx_create(zfsvfs->z_os);
2972 
2973         if (mask & AT_MODE) {
2974                 uint64_t pmode = zp->z_mode;
2975                 uint64_t acl_obj;
2976                 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2977 
2978                 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2979                         goto out;
2980 
2981                 mutex_enter(&zp->z_lock);
2982                 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2983                         /*
2984                          * Are we upgrading ACL from old V0 format
2985                          * to V1 format?
2986                          */
2987                         if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2988                             zfs_znode_acl_version(zp) ==
2989                             ZFS_ACL_VERSION_INITIAL) {
2990                                 dmu_tx_hold_free(tx, acl_obj, 0,
2991                                     DMU_OBJECT_END);
2992                                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2993                                     0, aclp->z_acl_bytes);
2994                         } else {
2995                                 dmu_tx_hold_write(tx, acl_obj, 0,
2996                                     aclp->z_acl_bytes);
2997                         }
2998                 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2999                         dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3000                             0, aclp->z_acl_bytes);
3001                 }
3002                 mutex_exit(&zp->z_lock);
3003                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3004         } else {
3005                 if ((mask & AT_XVATTR) &&
3006                     XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3007                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3008                 else
3009                         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3010         }
3011 
3012         if (attrzp) {
3013                 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3014         }
3015 
3016         fuid_dirtied = zfsvfs->z_fuid_dirty;
3017         if (fuid_dirtied)
3018                 zfs_fuid_txhold(zfsvfs, tx);
3019 
3020         zfs_sa_upgrade_txholds(tx, zp);
3021 
3022         err = dmu_tx_assign(tx, TXG_NOWAIT);
3023         if (err) {
3024                 if (err == ERESTART)
3025                         dmu_tx_wait(tx);
3026                 goto out;
3027         }
3028 
3029         count = 0;
3030         /*
3031          * Set each attribute requested.
3032          * We group settings according to the locks they need to acquire.
3033          *
3034          * Note: you cannot set ctime directly, although it will be
3035          * updated as a side-effect of calling this function.
3036          */
3037 
3038 
3039         if (mask & (AT_UID|AT_GID|AT_MODE))
3040                 mutex_enter(&zp->z_acl_lock);
3041         mutex_enter(&zp->z_lock);
3042 
3043         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3044             &zp->z_pflags, sizeof (zp->z_pflags));
3045 
3046         if (attrzp) {
3047                 if (mask & (AT_UID|AT_GID|AT_MODE))
3048                         mutex_enter(&attrzp->z_acl_lock);
3049                 mutex_enter(&attrzp->z_lock);
3050                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3051                     SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3052                     sizeof (attrzp->z_pflags));
3053         }
3054 
3055         if (mask & (AT_UID|AT_GID)) {
3056 
3057                 if (mask & AT_UID) {
3058                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3059                             &new_uid, sizeof (new_uid));
3060                         zp->z_uid = new_uid;
3061                         if (attrzp) {
3062                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3063                                     SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3064                                     sizeof (new_uid));
3065                                 attrzp->z_uid = new_uid;
3066                         }
3067                 }
3068 
3069                 if (mask & AT_GID) {
3070                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3071                             NULL, &new_gid, sizeof (new_gid));
3072                         zp->z_gid = new_gid;
3073                         if (attrzp) {
3074                                 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3075                                     SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3076                                     sizeof (new_gid));
3077                                 attrzp->z_gid = new_gid;
3078                         }
3079                 }
3080                 if (!(mask & AT_MODE)) {
3081                         SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3082                             NULL, &new_mode, sizeof (new_mode));
3083                         new_mode = zp->z_mode;
3084                 }
3085                 err = zfs_acl_chown_setattr(zp);
3086                 ASSERT(err == 0);
3087                 if (attrzp) {
3088                         err = zfs_acl_chown_setattr(attrzp);
3089                         ASSERT(err == 0);
3090                 }
3091         }
3092 
3093         if (mask & AT_MODE) {
3094                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3095                     &new_mode, sizeof (new_mode));
3096                 zp->z_mode = new_mode;
3097                 ASSERT3U((uintptr_t)aclp, !=, NULL);
3098                 err = zfs_aclset_common(zp, aclp, cr, tx);
3099                 ASSERT3U(err, ==, 0);
3100                 if (zp->z_acl_cached)
3101                         zfs_acl_free(zp->z_acl_cached);
3102                 zp->z_acl_cached = aclp;
3103                 aclp = NULL;
3104         }
3105 
3106 
3107         if (mask & AT_ATIME) {
3108                 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3109                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3110                     &zp->z_atime, sizeof (zp->z_atime));
3111         }
3112 
3113         if (mask & AT_MTIME) {
3114                 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3115                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3116                     mtime, sizeof (mtime));
3117         }
3118 
3119         /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3120         if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3121                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3122                     NULL, mtime, sizeof (mtime));
3123                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3124                     &ctime, sizeof (ctime));
3125                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3126                     B_TRUE);
3127         } else if (mask != 0) {
3128                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3129                     &ctime, sizeof (ctime));
3130                 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3131                     B_TRUE);
3132                 if (attrzp) {
3133                         SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3134                             SA_ZPL_CTIME(zfsvfs), NULL,
3135                             &ctime, sizeof (ctime));
3136                         zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3137                             mtime, ctime, B_TRUE);
3138                 }
3139         }
3140         /*
3141          * Do this after setting timestamps to prevent timestamp
3142          * update from toggling bit
3143          */
3144 
3145         if (xoap && (mask & AT_XVATTR)) {
3146 
3147                 /*
3148                  * restore trimmed off masks
3149                  * so that return masks can be set for caller.
3150                  */
3151 
3152                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3153                         XVA_SET_REQ(xvap, XAT_APPENDONLY);
3154                 }
3155                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3156                         XVA_SET_REQ(xvap, XAT_NOUNLINK);
3157                 }
3158                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3159                         XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3160                 }
3161                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3162                         XVA_SET_REQ(xvap, XAT_NODUMP);
3163                 }
3164                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3165                         XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3166                 }
3167                 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3168                         XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3169                 }
3170 
3171                 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3172                         ASSERT(vp->v_type == VREG);
3173 
3174                 zfs_xvattr_set(zp, xvap, tx);
3175         }
3176 
3177         if (fuid_dirtied)
3178                 zfs_fuid_sync(zfsvfs, tx);
3179 
3180         if (mask != 0)
3181                 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3182 
3183         mutex_exit(&zp->z_lock);
3184         if (mask & (AT_UID|AT_GID|AT_MODE))
3185                 mutex_exit(&zp->z_acl_lock);
3186 
3187         if (attrzp) {
3188                 if (mask & (AT_UID|AT_GID|AT_MODE))
3189                         mutex_exit(&attrzp->z_acl_lock);
3190                 mutex_exit(&attrzp->z_lock);
3191         }
3192 out:
3193         if (err == 0 && attrzp) {
3194                 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3195                     xattr_count, tx);
3196                 ASSERT(err2 == 0);
3197         }
3198 
3199         if (attrzp)
3200                 VN_RELE(ZTOV(attrzp));
3201         if (aclp)
3202                 zfs_acl_free(aclp);
3203 
3204         if (fuidp) {
3205                 zfs_fuid_info_free(fuidp);
3206                 fuidp = NULL;
3207         }
3208 
3209         if (err) {
3210                 dmu_tx_abort(tx);
3211                 if (err == ERESTART)
3212                         goto top;
3213         } else {
3214                 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3215                 dmu_tx_commit(tx);
3216         }
3217 
3218 out2:
3219         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3220                 zil_commit(zilog, 0);
3221 
3222         ZFS_EXIT(zfsvfs);
3223         return (err);
3224 }
3225 
3226 typedef struct zfs_zlock {
3227         krwlock_t       *zl_rwlock;     /* lock we acquired */
3228         znode_t         *zl_znode;      /* znode we held */
3229         struct zfs_zlock *zl_next;      /* next in list */
3230 } zfs_zlock_t;
3231 
3232 /*
3233  * Drop locks and release vnodes that were held by zfs_rename_lock().
3234  */
3235 static void
3236 zfs_rename_unlock(zfs_zlock_t **zlpp)
3237 {
3238         zfs_zlock_t *zl;
3239 
3240         while ((zl = *zlpp) != NULL) {
3241                 if (zl->zl_znode != NULL)
3242                         VN_RELE(ZTOV(zl->zl_znode));
3243                 rw_exit(zl->zl_rwlock);
3244                 *zlpp = zl->zl_next;
3245                 kmem_free(zl, sizeof (*zl));
3246         }
3247 }
3248 
3249 /*
3250  * Search back through the directory tree, using the ".." entries.
3251  * Lock each directory in the chain to prevent concurrent renames.
3252  * Fail any attempt to move a directory into one of its own descendants.
3253  * XXX - z_parent_lock can overlap with map or grow locks
3254  */
3255 static int
3256 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3257 {
3258         zfs_zlock_t     *zl;
3259         znode_t         *zp = tdzp;
3260         uint64_t        rootid = zp->z_zfsvfs->z_root;
3261         uint64_t        oidp = zp->z_id;
3262         krwlock_t       *rwlp = &szp->z_parent_lock;
3263         krw_t           rw = RW_WRITER;
3264 
3265         /*
3266          * First pass write-locks szp and compares to zp->z_id.
3267          * Later passes read-lock zp and compare to zp->z_parent.
3268          */
3269         do {
3270                 if (!rw_tryenter(rwlp, rw)) {
3271                         /*
3272                          * Another thread is renaming in this path.
3273                          * Note that if we are a WRITER, we don't have any
3274                          * parent_locks held yet.
3275                          */
3276                         if (rw == RW_READER && zp->z_id > szp->z_id) {
3277                                 /*
3278                                  * Drop our locks and restart
3279                                  */
3280                                 zfs_rename_unlock(&zl);
3281                                 *zlpp = NULL;
3282                                 zp = tdzp;
3283                                 oidp = zp->z_id;
3284                                 rwlp = &szp->z_parent_lock;
3285                                 rw = RW_WRITER;
3286                                 continue;
3287                         } else {
3288                                 /*
3289                                  * Wait for other thread to drop its locks
3290                                  */
3291                                 rw_enter(rwlp, rw);
3292                         }
3293                 }
3294 
3295                 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3296                 zl->zl_rwlock = rwlp;
3297                 zl->zl_znode = NULL;
3298                 zl->zl_next = *zlpp;
3299                 *zlpp = zl;
3300 
3301                 if (oidp == szp->z_id)               /* We're a descendant of szp */
3302                         return (EINVAL);
3303 
3304                 if (oidp == rootid)             /* We've hit the top */
3305                         return (0);
3306 
3307                 if (rw == RW_READER) {          /* i.e. not the first pass */
3308                         int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3309                         if (error)
3310                                 return (error);
3311                         zl->zl_znode = zp;
3312                 }
3313                 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3314                     &oidp, sizeof (oidp));
3315                 rwlp = &zp->z_parent_lock;
3316                 rw = RW_READER;
3317 
3318         } while (zp->z_id != sdzp->z_id);
3319 
3320         return (0);
3321 }
3322 
3323 /*
3324  * Move an entry from the provided source directory to the target
3325  * directory.  Change the entry name as indicated.
3326  *
3327  *      IN:     sdvp    - Source directory containing the "old entry".
3328  *              snm     - Old entry name.
3329  *              tdvp    - Target directory to contain the "new entry".
3330  *              tnm     - New entry name.
3331  *              cr      - credentials of caller.
3332  *              ct      - caller context
3333  *              flags   - case flags
3334  *
3335  *      RETURN: 0 if success
3336  *              error code if failure
3337  *
3338  * Timestamps:
3339  *      sdvp,tdvp - ctime|mtime updated
3340  */
3341 /*ARGSUSED*/
3342 static int
3343 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3344     caller_context_t *ct, int flags)
3345 {
3346         znode_t         *tdzp, *szp, *tzp;
3347         znode_t         *sdzp = VTOZ(sdvp);
3348         zfsvfs_t        *zfsvfs = sdzp->z_zfsvfs;
3349         zilog_t         *zilog;
3350         vnode_t         *realvp;
3351         zfs_dirlock_t   *sdl, *tdl;
3352         dmu_tx_t        *tx;
3353         zfs_zlock_t     *zl;
3354         int             cmp, serr, terr;
3355         int             error = 0;
3356         int             zflg = 0;
3357 
3358         ZFS_ENTER(zfsvfs);
3359         ZFS_VERIFY_ZP(sdzp);
3360         zilog = zfsvfs->z_log;
3361 
3362         /*
3363          * Make sure we have the real vp for the target directory.
3364          */
3365         if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3366                 tdvp = realvp;
3367 
3368         if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3369                 ZFS_EXIT(zfsvfs);
3370                 return (EXDEV);
3371         }
3372 
3373         tdzp = VTOZ(tdvp);
3374         ZFS_VERIFY_ZP(tdzp);
3375         if (zfsvfs->z_utf8 && u8_validate(tnm,
3376             strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3377                 ZFS_EXIT(zfsvfs);
3378                 return (EILSEQ);
3379         }
3380 
3381         if (flags & FIGNORECASE)
3382                 zflg |= ZCILOOK;
3383 
3384 top:
3385         szp = NULL;
3386         tzp = NULL;
3387         zl = NULL;
3388 
3389         /*
3390          * This is to prevent the creation of links into attribute space
3391          * by renaming a linked file into/outof an attribute directory.
3392          * See the comment in zfs_link() for why this is considered bad.
3393          */
3394         if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3395                 ZFS_EXIT(zfsvfs);
3396                 return (EINVAL);
3397         }
3398 
3399         /*
3400          * Lock source and target directory entries.  To prevent deadlock,
3401          * a lock ordering must be defined.  We lock the directory with
3402          * the smallest object id first, or if it's a tie, the one with
3403          * the lexically first name.
3404          */
3405         if (sdzp->z_id < tdzp->z_id) {
3406                 cmp = -1;
3407         } else if (sdzp->z_id > tdzp->z_id) {
3408                 cmp = 1;
3409         } else {
3410                 /*
3411                  * First compare the two name arguments without
3412                  * considering any case folding.
3413                  */
3414                 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3415 
3416                 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3417                 ASSERT(error == 0 || !zfsvfs->z_utf8);
3418                 if (cmp == 0) {
3419                         /*
3420                          * POSIX: "If the old argument and the new argument
3421                          * both refer to links to the same existing file,
3422                          * the rename() function shall return successfully
3423                          * and perform no other action."
3424                          */
3425                         ZFS_EXIT(zfsvfs);
3426                         return (0);
3427                 }
3428                 /*
3429                  * If the file system is case-folding, then we may
3430                  * have some more checking to do.  A case-folding file
3431                  * system is either supporting mixed case sensitivity
3432                  * access or is completely case-insensitive.  Note
3433                  * that the file system is always case preserving.
3434                  *
3435                  * In mixed sensitivity mode case sensitive behavior
3436                  * is the default.  FIGNORECASE must be used to
3437                  * explicitly request case insensitive behavior.
3438                  *
3439                  * If the source and target names provided differ only
3440                  * by case (e.g., a request to rename 'tim' to 'Tim'),
3441                  * we will treat this as a special case in the
3442                  * case-insensitive mode: as long as the source name
3443                  * is an exact match, we will allow this to proceed as
3444                  * a name-change request.
3445                  */
3446                 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3447                     (zfsvfs->z_case == ZFS_CASE_MIXED &&
3448                     flags & FIGNORECASE)) &&
3449                     u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3450                     &error) == 0) {
3451                         /*
3452                          * case preserving rename request, require exact
3453                          * name matches
3454                          */
3455                         zflg |= ZCIEXACT;
3456                         zflg &= ~ZCILOOK;
3457                 }
3458         }
3459 
3460         /*
3461          * If the source and destination directories are the same, we should
3462          * grab the z_name_lock of that directory only once.
3463          */
3464         if (sdzp == tdzp) {
3465                 zflg |= ZHAVELOCK;
3466                 rw_enter(&sdzp->z_name_lock, RW_READER);
3467         }
3468 
3469         if (cmp < 0) {
3470                 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3471                     ZEXISTS | zflg, NULL, NULL);
3472                 terr = zfs_dirent_lock(&tdl,
3473                     tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3474         } else {
3475                 terr = zfs_dirent_lock(&tdl,
3476                     tdzp, tnm, &tzp, zflg, NULL, NULL);
3477                 serr = zfs_dirent_lock(&sdl,
3478                     sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3479                     NULL, NULL);
3480         }
3481 
3482         if (serr) {
3483                 /*
3484                  * Source entry invalid or not there.
3485                  */
3486                 if (!terr) {
3487                         zfs_dirent_unlock(tdl);
3488                         if (tzp)
3489                                 VN_RELE(ZTOV(tzp));
3490                 }
3491 
3492                 if (sdzp == tdzp)
3493                         rw_exit(&sdzp->z_name_lock);
3494 
3495                 if (strcmp(snm, "..") == 0)
3496                         serr = EINVAL;
3497                 ZFS_EXIT(zfsvfs);
3498                 return (serr);
3499         }
3500         if (terr) {
3501                 zfs_dirent_unlock(sdl);
3502                 VN_RELE(ZTOV(szp));
3503 
3504                 if (sdzp == tdzp)
3505                         rw_exit(&sdzp->z_name_lock);
3506 
3507                 if (strcmp(tnm, "..") == 0)
3508                         terr = EINVAL;
3509                 ZFS_EXIT(zfsvfs);
3510                 return (terr);
3511         }
3512 
3513         /*
3514          * Must have write access at the source to remove the old entry
3515          * and write access at the target to create the new entry.
3516          * Note that if target and source are the same, this can be
3517          * done in a single check.
3518          */
3519 
3520         if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3521                 goto out;
3522 
3523         if (ZTOV(szp)->v_type == VDIR) {
3524                 /*
3525                  * Check to make sure rename is valid.
3526                  * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3527                  */
3528                 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3529                         goto out;
3530         }
3531 
3532         /*
3533          * Does target exist?
3534          */
3535         if (tzp) {
3536                 /*
3537                  * Source and target must be the same type.
3538                  */
3539                 if (ZTOV(szp)->v_type == VDIR) {
3540                         if (ZTOV(tzp)->v_type != VDIR) {
3541                                 error = ENOTDIR;
3542                                 goto out;
3543                         }
3544                 } else {
3545                         if (ZTOV(tzp)->v_type == VDIR) {
3546                                 error = EISDIR;
3547                                 goto out;
3548                         }
3549                 }
3550                 /*
3551                  * POSIX dictates that when the source and target
3552                  * entries refer to the same file object, rename
3553                  * must do nothing and exit without error.
3554                  */
3555                 if (szp->z_id == tzp->z_id) {
3556                         error = 0;
3557                         goto out;
3558                 }
3559         }
3560 
3561         vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3562         if (tzp)
3563                 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3564 
3565         /*
3566          * notify the target directory if it is not the same
3567          * as source directory.
3568          */
3569         if (tdvp != sdvp) {
3570                 vnevent_rename_dest_dir(tdvp, ct);
3571         }
3572 
3573         tx = dmu_tx_create(zfsvfs->z_os);
3574         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3575         dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3576         dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3577         dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3578         if (sdzp != tdzp) {
3579                 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3580                 zfs_sa_upgrade_txholds(tx, tdzp);
3581         }
3582         if (tzp) {
3583                 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3584                 zfs_sa_upgrade_txholds(tx, tzp);
3585         }
3586 
3587         zfs_sa_upgrade_txholds(tx, szp);
3588         dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3589         error = dmu_tx_assign(tx, TXG_NOWAIT);
3590         if (error) {
3591                 if (zl != NULL)
3592                         zfs_rename_unlock(&zl);
3593                 zfs_dirent_unlock(sdl);
3594                 zfs_dirent_unlock(tdl);
3595 
3596                 if (sdzp == tdzp)
3597                         rw_exit(&sdzp->z_name_lock);
3598 
3599                 VN_RELE(ZTOV(szp));
3600                 if (tzp)
3601                         VN_RELE(ZTOV(tzp));
3602                 if (error == ERESTART) {
3603                         dmu_tx_wait(tx);
3604                         dmu_tx_abort(tx);
3605                         goto top;
3606                 }
3607                 dmu_tx_abort(tx);
3608                 ZFS_EXIT(zfsvfs);
3609                 return (error);
3610         }
3611 
3612         if (tzp)        /* Attempt to remove the existing target */
3613                 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3614 
3615         if (error == 0) {
3616                 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3617                 if (error == 0) {
3618                         szp->z_pflags |= ZFS_AV_MODIFIED;
3619 
3620                         error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3621                             (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3622                         ASSERT3U(error, ==, 0);
3623 
3624                         error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3625                         if (error == 0) {
3626                                 zfs_log_rename(zilog, tx, TX_RENAME |
3627                                     (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3628                                     sdl->dl_name, tdzp, tdl->dl_name, szp);
3629 
3630                                 /*
3631                                  * Update path information for the target vnode
3632                                  */
3633                                 vn_renamepath(tdvp, ZTOV(szp), tnm,
3634                                     strlen(tnm));
3635                         } else {
3636                                 /*
3637                                  * At this point, we have successfully created
3638                                  * the target name, but have failed to remove
3639                                  * the source name.  Since the create was done
3640                                  * with the ZRENAMING flag, there are
3641                                  * complications; for one, the link count is
3642                                  * wrong.  The easiest way to deal with this
3643                                  * is to remove the newly created target, and
3644                                  * return the original error.  This must
3645                                  * succeed; fortunately, it is very unlikely to
3646                                  * fail, since we just created it.
3647                                  */
3648                                 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3649                                     ZRENAMING, NULL), ==, 0);
3650                         }
3651                 }
3652         }
3653 
3654         dmu_tx_commit(tx);
3655 out:
3656         if (zl != NULL)
3657                 zfs_rename_unlock(&zl);
3658 
3659         zfs_dirent_unlock(sdl);
3660         zfs_dirent_unlock(tdl);
3661 
3662         if (sdzp == tdzp)
3663                 rw_exit(&sdzp->z_name_lock);
3664 
3665 
3666         VN_RELE(ZTOV(szp));
3667         if (tzp)
3668                 VN_RELE(ZTOV(tzp));
3669 
3670         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3671                 zil_commit(zilog, 0);
3672 
3673         ZFS_EXIT(zfsvfs);
3674         return (error);
3675 }
3676 
3677 /*
3678  * Insert the indicated symbolic reference entry into the directory.
3679  *
3680  *      IN:     dvp     - Directory to contain new symbolic link.
3681  *              link    - Name for new symlink entry.
3682  *              vap     - Attributes of new entry.
3683  *              target  - Target path of new symlink.
3684  *              cr      - credentials of caller.
3685  *              ct      - caller context
3686  *              flags   - case flags
3687  *
3688  *      RETURN: 0 if success
3689  *              error code if failure
3690  *
3691  * Timestamps:
3692  *      dvp - ctime|mtime updated
3693  */
3694 /*ARGSUSED*/
3695 static int
3696 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3697     caller_context_t *ct, int flags)
3698 {
3699         znode_t         *zp, *dzp = VTOZ(dvp);
3700         zfs_dirlock_t   *dl;
3701         dmu_tx_t        *tx;
3702         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3703         zilog_t         *zilog;
3704         uint64_t        len = strlen(link);
3705         int             error;
3706         int             zflg = ZNEW;
3707         zfs_acl_ids_t   acl_ids;
3708         boolean_t       fuid_dirtied;
3709         uint64_t        txtype = TX_SYMLINK;
3710 
3711         ASSERT(vap->va_type == VLNK);
3712 
3713         ZFS_ENTER(zfsvfs);
3714         ZFS_VERIFY_ZP(dzp);
3715         zilog = zfsvfs->z_log;
3716 
3717         if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3718             NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3719                 ZFS_EXIT(zfsvfs);
3720                 return (EILSEQ);
3721         }
3722         if (flags & FIGNORECASE)
3723                 zflg |= ZCILOOK;
3724 
3725         if (len > MAXPATHLEN) {
3726                 ZFS_EXIT(zfsvfs);
3727                 return (ENAMETOOLONG);
3728         }
3729 
3730         if ((error = zfs_acl_ids_create(dzp, 0,
3731             vap, cr, NULL, &acl_ids)) != 0) {
3732                 ZFS_EXIT(zfsvfs);
3733                 return (error);
3734         }
3735 top:
3736         /*
3737          * Attempt to lock directory; fail if entry already exists.
3738          */
3739         error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3740         if (error) {
3741                 zfs_acl_ids_free(&acl_ids);
3742                 ZFS_EXIT(zfsvfs);
3743                 return (error);
3744         }
3745 
3746         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3747                 zfs_acl_ids_free(&acl_ids);
3748                 zfs_dirent_unlock(dl);
3749                 ZFS_EXIT(zfsvfs);
3750                 return (error);
3751         }
3752 
3753         if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3754                 zfs_acl_ids_free(&acl_ids);
3755                 zfs_dirent_unlock(dl);
3756                 ZFS_EXIT(zfsvfs);
3757                 return (EDQUOT);
3758         }
3759         tx = dmu_tx_create(zfsvfs->z_os);
3760         fuid_dirtied = zfsvfs->z_fuid_dirty;
3761         dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3762         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3763         dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3764             ZFS_SA_BASE_ATTR_SIZE + len);
3765         dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3766         if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3767                 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3768                     acl_ids.z_aclp->z_acl_bytes);
3769         }
3770         if (fuid_dirtied)
3771                 zfs_fuid_txhold(zfsvfs, tx);
3772         error = dmu_tx_assign(tx, TXG_NOWAIT);
3773         if (error) {
3774                 zfs_dirent_unlock(dl);
3775                 if (error == ERESTART) {
3776                         dmu_tx_wait(tx);
3777                         dmu_tx_abort(tx);
3778                         goto top;
3779                 }
3780                 zfs_acl_ids_free(&acl_ids);
3781                 dmu_tx_abort(tx);
3782                 ZFS_EXIT(zfsvfs);
3783                 return (error);
3784         }
3785 
3786         /*
3787          * Create a new object for the symlink.
3788          * for version 4 ZPL datsets the symlink will be an SA attribute
3789          */
3790         zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3791 
3792         if (fuid_dirtied)
3793                 zfs_fuid_sync(zfsvfs, tx);
3794 
3795         mutex_enter(&zp->z_lock);
3796         if (zp->z_is_sa)
3797                 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3798                     link, len, tx);
3799         else
3800                 zfs_sa_symlink(zp, link, len, tx);
3801         mutex_exit(&zp->z_lock);
3802 
3803         zp->z_size = len;
3804         (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3805             &zp->z_size, sizeof (zp->z_size), tx);
3806         /*
3807          * Insert the new object into the directory.
3808          */
3809         (void) zfs_link_create(dl, zp, tx, ZNEW);
3810 
3811         if (flags & FIGNORECASE)
3812                 txtype |= TX_CI;
3813         zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3814 
3815         zfs_acl_ids_free(&acl_ids);
3816 
3817         dmu_tx_commit(tx);
3818 
3819         zfs_dirent_unlock(dl);
3820 
3821         VN_RELE(ZTOV(zp));
3822 
3823         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3824                 zil_commit(zilog, 0);
3825 
3826         ZFS_EXIT(zfsvfs);
3827         return (error);
3828 }
3829 
3830 /*
3831  * Return, in the buffer contained in the provided uio structure,
3832  * the symbolic path referred to by vp.
3833  *
3834  *      IN:     vp      - vnode of symbolic link.
3835  *              uoip    - structure to contain the link path.
3836  *              cr      - credentials of caller.
3837  *              ct      - caller context
3838  *
3839  *      OUT:    uio     - structure to contain the link path.
3840  *
3841  *      RETURN: 0 if success
3842  *              error code if failure
3843  *
3844  * Timestamps:
3845  *      vp - atime updated
3846  */
3847 /* ARGSUSED */
3848 static int
3849 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3850 {
3851         znode_t         *zp = VTOZ(vp);
3852         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
3853         int             error;
3854 
3855         ZFS_ENTER(zfsvfs);
3856         ZFS_VERIFY_ZP(zp);
3857 
3858         mutex_enter(&zp->z_lock);
3859         if (zp->z_is_sa)
3860                 error = sa_lookup_uio(zp->z_sa_hdl,
3861                     SA_ZPL_SYMLINK(zfsvfs), uio);
3862         else
3863                 error = zfs_sa_readlink(zp, uio);
3864         mutex_exit(&zp->z_lock);
3865 
3866         ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3867 
3868         ZFS_EXIT(zfsvfs);
3869         return (error);
3870 }
3871 
3872 /*
3873  * Insert a new entry into directory tdvp referencing svp.
3874  *
3875  *      IN:     tdvp    - Directory to contain new entry.
3876  *              svp     - vnode of new entry.
3877  *              name    - name of new entry.
3878  *              cr      - credentials of caller.
3879  *              ct      - caller context
3880  *
3881  *      RETURN: 0 if success
3882  *              error code if failure
3883  *
3884  * Timestamps:
3885  *      tdvp - ctime|mtime updated
3886  *       svp - ctime updated
3887  */
3888 /* ARGSUSED */
3889 static int
3890 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3891     caller_context_t *ct, int flags)
3892 {
3893         znode_t         *dzp = VTOZ(tdvp);
3894         znode_t         *tzp, *szp;
3895         zfsvfs_t        *zfsvfs = dzp->z_zfsvfs;
3896         zilog_t         *zilog;
3897         zfs_dirlock_t   *dl;
3898         dmu_tx_t        *tx;
3899         vnode_t         *realvp;
3900         int             error;
3901         int             zf = ZNEW;
3902         uint64_t        parent;
3903         uid_t           owner;
3904 
3905         ASSERT(tdvp->v_type == VDIR);
3906 
3907         ZFS_ENTER(zfsvfs);
3908         ZFS_VERIFY_ZP(dzp);
3909         zilog = zfsvfs->z_log;
3910 
3911         if (VOP_REALVP(svp, &realvp, ct) == 0)
3912                 svp = realvp;
3913 
3914         /*
3915          * POSIX dictates that we return EPERM here.
3916          * Better choices include ENOTSUP or EISDIR.
3917          */
3918         if (svp->v_type == VDIR) {
3919                 ZFS_EXIT(zfsvfs);
3920                 return (EPERM);
3921         }
3922 
3923         if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3924                 ZFS_EXIT(zfsvfs);
3925                 return (EXDEV);
3926         }
3927 
3928         szp = VTOZ(svp);
3929         ZFS_VERIFY_ZP(szp);
3930 
3931         /* Prevent links to .zfs/shares files */
3932 
3933         if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3934             &parent, sizeof (uint64_t))) != 0) {
3935                 ZFS_EXIT(zfsvfs);
3936                 return (error);
3937         }
3938         if (parent == zfsvfs->z_shares_dir) {
3939                 ZFS_EXIT(zfsvfs);
3940                 return (EPERM);
3941         }
3942 
3943         if (zfsvfs->z_utf8 && u8_validate(name,
3944             strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3945                 ZFS_EXIT(zfsvfs);
3946                 return (EILSEQ);
3947         }
3948         if (flags & FIGNORECASE)
3949                 zf |= ZCILOOK;
3950 
3951         /*
3952          * We do not support links between attributes and non-attributes
3953          * because of the potential security risk of creating links
3954          * into "normal" file space in order to circumvent restrictions
3955          * imposed in attribute space.
3956          */
3957         if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3958                 ZFS_EXIT(zfsvfs);
3959                 return (EINVAL);
3960         }
3961 
3962 
3963         owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3964         if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3965                 ZFS_EXIT(zfsvfs);
3966                 return (EPERM);
3967         }
3968 
3969         if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3970                 ZFS_EXIT(zfsvfs);
3971                 return (error);
3972         }
3973 
3974 top:
3975         /*
3976          * Attempt to lock directory; fail if entry already exists.
3977          */
3978         error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3979         if (error) {
3980                 ZFS_EXIT(zfsvfs);
3981                 return (error);
3982         }
3983 
3984         tx = dmu_tx_create(zfsvfs->z_os);
3985         dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3986         dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3987         zfs_sa_upgrade_txholds(tx, szp);
3988         zfs_sa_upgrade_txholds(tx, dzp);
3989         error = dmu_tx_assign(tx, TXG_NOWAIT);
3990         if (error) {
3991                 zfs_dirent_unlock(dl);
3992                 if (error == ERESTART) {
3993                         dmu_tx_wait(tx);
3994                         dmu_tx_abort(tx);
3995                         goto top;
3996                 }
3997                 dmu_tx_abort(tx);
3998                 ZFS_EXIT(zfsvfs);
3999                 return (error);
4000         }
4001 
4002         error = zfs_link_create(dl, szp, tx, 0);
4003 
4004         if (error == 0) {
4005                 uint64_t txtype = TX_LINK;
4006                 if (flags & FIGNORECASE)
4007                         txtype |= TX_CI;
4008                 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4009         }
4010 
4011         dmu_tx_commit(tx);
4012 
4013         zfs_dirent_unlock(dl);
4014 
4015         if (error == 0) {
4016                 vnevent_link(svp, ct);
4017         }
4018 
4019         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4020                 zil_commit(zilog, 0);
4021 
4022         ZFS_EXIT(zfsvfs);
4023         return (error);
4024 }
4025 
4026 /*
4027  * zfs_null_putapage() is used when the file system has been force
4028  * unmounted. It just drops the pages.
4029  */
4030 /* ARGSUSED */
4031 static int
4032 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4033                 size_t *lenp, int flags, cred_t *cr)
4034 {
4035         pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4036         return (0);
4037 }
4038 
4039 /*
4040  * Push a page out to disk, klustering if possible.
4041  *
4042  *      IN:     vp      - file to push page to.
4043  *              pp      - page to push.
4044  *              flags   - additional flags.
4045  *              cr      - credentials of caller.
4046  *
4047  *      OUT:    offp    - start of range pushed.
4048  *              lenp    - len of range pushed.
4049  *
4050  *      RETURN: 0 if success
4051  *              error code if failure
4052  *
4053  * NOTE: callers must have locked the page to be pushed.  On
4054  * exit, the page (and all other pages in the kluster) must be
4055  * unlocked.
4056  */
4057 /* ARGSUSED */
4058 static int
4059 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4060                 size_t *lenp, int flags, cred_t *cr)
4061 {
4062         znode_t         *zp = VTOZ(vp);
4063         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4064         dmu_tx_t        *tx;
4065         u_offset_t      off, koff;
4066         size_t          len, klen;
4067         int             err;
4068 
4069         off = pp->p_offset;
4070         len = PAGESIZE;
4071         /*
4072          * If our blocksize is bigger than the page size, try to kluster
4073          * multiple pages so that we write a full block (thus avoiding
4074          * a read-modify-write).
4075          */
4076         if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4077                 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4078                 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4079                 ASSERT(koff <= zp->z_size);
4080                 if (koff + klen > zp->z_size)
4081                         klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4082                 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4083         }
4084         ASSERT3U(btop(len), ==, btopr(len));
4085 
4086         /*
4087          * Can't push pages past end-of-file.
4088          */
4089         if (off >= zp->z_size) {
4090                 /* ignore all pages */
4091                 err = 0;
4092                 goto out;
4093         } else if (off + len > zp->z_size) {
4094                 int npages = btopr(zp->z_size - off);
4095                 page_t *trunc;
4096 
4097                 page_list_break(&pp, &trunc, npages);
4098                 /* ignore pages past end of file */
4099                 if (trunc)
4100                         pvn_write_done(trunc, flags);
4101                 len = zp->z_size - off;
4102         }
4103 
4104         if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4105             zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4106                 err = EDQUOT;
4107                 goto out;
4108         }
4109 top:
4110         tx = dmu_tx_create(zfsvfs->z_os);
4111         dmu_tx_hold_write(tx, zp->z_id, off, len);
4112 
4113         dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4114         zfs_sa_upgrade_txholds(tx, zp);
4115         err = dmu_tx_assign(tx, TXG_NOWAIT);
4116         if (err != 0) {
4117                 if (err == ERESTART) {
4118                         dmu_tx_wait(tx);
4119                         dmu_tx_abort(tx);
4120                         goto top;
4121                 }
4122                 dmu_tx_abort(tx);
4123                 goto out;
4124         }
4125 
4126         if (zp->z_blksz <= PAGESIZE) {
4127                 caddr_t va = zfs_map_page(pp, S_READ);
4128                 ASSERT3U(len, <=, PAGESIZE);
4129                 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4130                 zfs_unmap_page(pp, va);
4131         } else {
4132                 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4133         }
4134 
4135         if (err == 0) {
4136                 uint64_t mtime[2], ctime[2];
4137                 sa_bulk_attr_t bulk[3];
4138                 int count = 0;
4139 
4140                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4141                     &mtime, 16);
4142                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4143                     &ctime, 16);
4144                 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4145                     &zp->z_pflags, 8);
4146                 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4147                     B_TRUE);
4148                 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4149         }
4150         dmu_tx_commit(tx);
4151 
4152 out:
4153         pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4154         if (offp)
4155                 *offp = off;
4156         if (lenp)
4157                 *lenp = len;
4158 
4159         return (err);
4160 }
4161 
4162 /*
4163  * Copy the portion of the file indicated from pages into the file.
4164  * The pages are stored in a page list attached to the files vnode.
4165  *
4166  *      IN:     vp      - vnode of file to push page data to.
4167  *              off     - position in file to put data.
4168  *              len     - amount of data to write.
4169  *              flags   - flags to control the operation.
4170  *              cr      - credentials of caller.
4171  *              ct      - caller context.
4172  *
4173  *      RETURN: 0 if success
4174  *              error code if failure
4175  *
4176  * Timestamps:
4177  *      vp - ctime|mtime updated
4178  */
4179 /*ARGSUSED*/
4180 static int
4181 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4182     caller_context_t *ct)
4183 {
4184         znode_t         *zp = VTOZ(vp);
4185         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4186         page_t          *pp;
4187         size_t          io_len;
4188         u_offset_t      io_off;
4189         uint_t          blksz;
4190         rl_t            *rl;
4191         int             error = 0;
4192 
4193         ZFS_ENTER(zfsvfs);
4194         ZFS_VERIFY_ZP(zp);
4195 
4196         /*
4197          * There's nothing to do if no data is cached.
4198          */
4199         if (!vn_has_cached_data(vp)) {
4200                 ZFS_EXIT(zfsvfs);
4201                 return (0);
4202         }
4203 
4204         /*
4205          * Align this request to the file block size in case we kluster.
4206          * XXX - this can result in pretty aggresive locking, which can
4207          * impact simultanious read/write access.  One option might be
4208          * to break up long requests (len == 0) into block-by-block
4209          * operations to get narrower locking.
4210          */
4211         blksz = zp->z_blksz;
4212         if (ISP2(blksz))
4213                 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4214         else
4215                 io_off = 0;
4216         if (len > 0 && ISP2(blksz))
4217                 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4218         else
4219                 io_len = 0;
4220 
4221         if (io_len == 0) {
4222                 /*
4223                  * Search the entire vp list for pages >= io_off.
4224                  */
4225                 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4226                 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4227                 goto out;
4228         }
4229         rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4230 
4231         if (off > zp->z_size) {
4232                 /* past end of file */
4233                 zfs_range_unlock(rl);
4234                 ZFS_EXIT(zfsvfs);
4235                 return (0);
4236         }
4237 
4238         len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4239 
4240         for (off = io_off; io_off < off + len; io_off += io_len) {
4241                 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4242                         pp = page_lookup(vp, io_off,
4243                             (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4244                 } else {
4245                         pp = page_lookup_nowait(vp, io_off,
4246                             (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4247                 }
4248 
4249                 if (pp != NULL && pvn_getdirty(pp, flags)) {
4250                         int err;
4251 
4252                         /*
4253                          * Found a dirty page to push
4254                          */
4255                         err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4256                         if (err)
4257                                 error = err;
4258                 } else {
4259                         io_len = PAGESIZE;
4260                 }
4261         }
4262 out:
4263         zfs_range_unlock(rl);
4264         if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4265                 zil_commit(zfsvfs->z_log, zp->z_id);
4266         ZFS_EXIT(zfsvfs);
4267         return (error);
4268 }
4269 
4270 /*ARGSUSED*/
4271 void
4272 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4273 {
4274         znode_t *zp = VTOZ(vp);
4275         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4276         int error;
4277 
4278         rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4279         if (zp->z_sa_hdl == NULL) {
4280                 /*
4281                  * The fs has been unmounted, or we did a
4282                  * suspend/resume and this file no longer exists.
4283                  */
4284                 if (vn_has_cached_data(vp)) {
4285                         (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4286                             B_INVAL, cr);
4287                 }
4288 
4289                 mutex_enter(&zp->z_lock);
4290                 mutex_enter(&vp->v_lock);
4291                 ASSERT(vp->v_count == 1);
4292                 vp->v_count = 0;
4293                 mutex_exit(&vp->v_lock);
4294                 mutex_exit(&zp->z_lock);
4295                 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4296                 zfs_znode_free(zp);
4297                 return;
4298         }
4299 
4300         /*
4301          * Attempt to push any data in the page cache.  If this fails
4302          * we will get kicked out later in zfs_zinactive().
4303          */
4304         if (vn_has_cached_data(vp)) {
4305                 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4306                     cr);
4307         }
4308 
4309         if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4310                 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4311 
4312                 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4313                 zfs_sa_upgrade_txholds(tx, zp);
4314                 error = dmu_tx_assign(tx, TXG_WAIT);
4315                 if (error) {
4316                         dmu_tx_abort(tx);
4317                 } else {
4318                         mutex_enter(&zp->z_lock);
4319                         (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4320                             (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4321                         zp->z_atime_dirty = 0;
4322                         mutex_exit(&zp->z_lock);
4323                         dmu_tx_commit(tx);
4324                 }
4325         }
4326 
4327         zfs_zinactive(zp);
4328         rw_exit(&zfsvfs->z_teardown_inactive_lock);
4329 }
4330 
4331 /*
4332  * Bounds-check the seek operation.
4333  *
4334  *      IN:     vp      - vnode seeking within
4335  *              ooff    - old file offset
4336  *              noffp   - pointer to new file offset
4337  *              ct      - caller context
4338  *
4339  *      RETURN: 0 if success
4340  *              EINVAL if new offset invalid
4341  */
4342 /* ARGSUSED */
4343 static int
4344 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4345     caller_context_t *ct)
4346 {
4347         if (vp->v_type == VDIR)
4348                 return (0);
4349         return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4350 }
4351 
4352 /*
4353  * Pre-filter the generic locking function to trap attempts to place
4354  * a mandatory lock on a memory mapped file.
4355  */
4356 static int
4357 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4358     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4359 {
4360         znode_t *zp = VTOZ(vp);
4361         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4362 
4363         ZFS_ENTER(zfsvfs);
4364         ZFS_VERIFY_ZP(zp);
4365 
4366         /*
4367          * We are following the UFS semantics with respect to mapcnt
4368          * here: If we see that the file is mapped already, then we will
4369          * return an error, but we don't worry about races between this
4370          * function and zfs_map().
4371          */
4372         if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4373                 ZFS_EXIT(zfsvfs);
4374                 return (EAGAIN);
4375         }
4376         ZFS_EXIT(zfsvfs);
4377         return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4378 }
4379 
4380 /*
4381  * If we can't find a page in the cache, we will create a new page
4382  * and fill it with file data.  For efficiency, we may try to fill
4383  * multiple pages at once (klustering) to fill up the supplied page
4384  * list.  Note that the pages to be filled are held with an exclusive
4385  * lock to prevent access by other threads while they are being filled.
4386  */
4387 static int
4388 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4389     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4390 {
4391         znode_t *zp = VTOZ(vp);
4392         page_t *pp, *cur_pp;
4393         objset_t *os = zp->z_zfsvfs->z_os;
4394         u_offset_t io_off, total;
4395         size_t io_len;
4396         int err;
4397 
4398         if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4399                 /*
4400                  * We only have a single page, don't bother klustering
4401                  */
4402                 io_off = off;
4403                 io_len = PAGESIZE;
4404                 pp = page_create_va(vp, io_off, io_len,
4405                     PG_EXCL | PG_WAIT, seg, addr);
4406         } else {
4407                 /*
4408                  * Try to find enough pages to fill the page list
4409                  */
4410                 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4411                     &io_len, off, plsz, 0);
4412         }
4413         if (pp == NULL) {
4414                 /*
4415                  * The page already exists, nothing to do here.
4416                  */
4417                 *pl = NULL;
4418                 return (0);
4419         }
4420 
4421         /*
4422          * Fill the pages in the kluster.
4423          */
4424         cur_pp = pp;
4425         for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4426                 caddr_t va;
4427 
4428                 ASSERT3U(io_off, ==, cur_pp->p_offset);
4429                 va = zfs_map_page(cur_pp, S_WRITE);
4430                 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4431                     DMU_READ_PREFETCH);
4432                 zfs_unmap_page(cur_pp, va);
4433                 if (err) {
4434                         /* On error, toss the entire kluster */
4435                         pvn_read_done(pp, B_ERROR);
4436                         /* convert checksum errors into IO errors */
4437                         if (err == ECKSUM)
4438                                 err = EIO;
4439                         return (err);
4440                 }
4441                 cur_pp = cur_pp->p_next;
4442         }
4443 
4444         /*
4445          * Fill in the page list array from the kluster starting
4446          * from the desired offset `off'.
4447          * NOTE: the page list will always be null terminated.
4448          */
4449         pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4450         ASSERT(pl == NULL || (*pl)->p_offset == off);
4451 
4452         return (0);
4453 }
4454 
4455 /*
4456  * Return pointers to the pages for the file region [off, off + len]
4457  * in the pl array.  If plsz is greater than len, this function may
4458  * also return page pointers from after the specified region
4459  * (i.e. the region [off, off + plsz]).  These additional pages are
4460  * only returned if they are already in the cache, or were created as
4461  * part of a klustered read.
4462  *
4463  *      IN:     vp      - vnode of file to get data from.
4464  *              off     - position in file to get data from.
4465  *              len     - amount of data to retrieve.
4466  *              plsz    - length of provided page list.
4467  *              seg     - segment to obtain pages for.
4468  *              addr    - virtual address of fault.
4469  *              rw      - mode of created pages.
4470  *              cr      - credentials of caller.
4471  *              ct      - caller context.
4472  *
4473  *      OUT:    protp   - protection mode of created pages.
4474  *              pl      - list of pages created.
4475  *
4476  *      RETURN: 0 if success
4477  *              error code if failure
4478  *
4479  * Timestamps:
4480  *      vp - atime updated
4481  */
4482 /* ARGSUSED */
4483 static int
4484 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4485         page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4486         enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4487 {
4488         znode_t         *zp = VTOZ(vp);
4489         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4490         page_t          **pl0 = pl;
4491         int             err = 0;
4492 
4493         /* we do our own caching, faultahead is unnecessary */
4494         if (pl == NULL)
4495                 return (0);
4496         else if (len > plsz)
4497                 len = plsz;
4498         else
4499                 len = P2ROUNDUP(len, PAGESIZE);
4500         ASSERT(plsz >= len);
4501 
4502         ZFS_ENTER(zfsvfs);
4503         ZFS_VERIFY_ZP(zp);
4504 
4505         if (protp)
4506                 *protp = PROT_ALL;
4507 
4508         /*
4509          * Loop through the requested range [off, off + len) looking
4510          * for pages.  If we don't find a page, we will need to create
4511          * a new page and fill it with data from the file.
4512          */
4513         while (len > 0) {
4514                 if (*pl = page_lookup(vp, off, SE_SHARED))
4515                         *(pl+1) = NULL;
4516                 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4517                         goto out;
4518                 while (*pl) {
4519                         ASSERT3U((*pl)->p_offset, ==, off);
4520                         off += PAGESIZE;
4521                         addr += PAGESIZE;
4522                         if (len > 0) {
4523                                 ASSERT3U(len, >=, PAGESIZE);
4524                                 len -= PAGESIZE;
4525                         }
4526                         ASSERT3U(plsz, >=, PAGESIZE);
4527                         plsz -= PAGESIZE;
4528                         pl++;
4529                 }
4530         }
4531 
4532         /*
4533          * Fill out the page array with any pages already in the cache.
4534          */
4535         while (plsz > 0 &&
4536             (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4537                         off += PAGESIZE;
4538                         plsz -= PAGESIZE;
4539         }
4540 out:
4541         if (err) {
4542                 /*
4543                  * Release any pages we have previously locked.
4544                  */
4545                 while (pl > pl0)
4546                         page_unlock(*--pl);
4547         } else {
4548                 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4549         }
4550 
4551         *pl = NULL;
4552 
4553         ZFS_EXIT(zfsvfs);
4554         return (err);
4555 }
4556 
4557 /*
4558  * Request a memory map for a section of a file.  This code interacts
4559  * with common code and the VM system as follows:
4560  *
4561  *      common code calls mmap(), which ends up in smmap_common()
4562  *
4563  *      this calls VOP_MAP(), which takes you into (say) zfs
4564  *
4565  *      zfs_map() calls as_map(), passing segvn_create() as the callback
4566  *
4567  *      segvn_create() creates the new segment and calls VOP_ADDMAP()
4568  *
4569  *      zfs_addmap() updates z_mapcnt
4570  */
4571 /*ARGSUSED*/
4572 static int
4573 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4574     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4575     caller_context_t *ct)
4576 {
4577         znode_t *zp = VTOZ(vp);
4578         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4579         segvn_crargs_t  vn_a;
4580         int             error;
4581 
4582         ZFS_ENTER(zfsvfs);
4583         ZFS_VERIFY_ZP(zp);
4584 
4585         if ((prot & PROT_WRITE) && (zp->z_pflags &
4586             (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4587                 ZFS_EXIT(zfsvfs);
4588                 return (EPERM);
4589         }
4590 
4591         if ((prot & (PROT_READ | PROT_EXEC)) &&
4592             (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4593                 ZFS_EXIT(zfsvfs);
4594                 return (EACCES);
4595         }
4596 
4597         if (vp->v_flag & VNOMAP) {
4598                 ZFS_EXIT(zfsvfs);
4599                 return (ENOSYS);
4600         }
4601 
4602         if (off < 0 || len > MAXOFFSET_T - off) {
4603                 ZFS_EXIT(zfsvfs);
4604                 return (ENXIO);
4605         }
4606 
4607         if (vp->v_type != VREG) {
4608                 ZFS_EXIT(zfsvfs);
4609                 return (ENODEV);
4610         }
4611 
4612         /*
4613          * If file is locked, disallow mapping.
4614          */
4615         if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4616                 ZFS_EXIT(zfsvfs);
4617                 return (EAGAIN);
4618         }
4619 
4620         as_rangelock(as);
4621         error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4622         if (error != 0) {
4623                 as_rangeunlock(as);
4624                 ZFS_EXIT(zfsvfs);
4625                 return (error);
4626         }
4627 
4628         vn_a.vp = vp;
4629         vn_a.offset = (u_offset_t)off;
4630         vn_a.type = flags & MAP_TYPE;
4631         vn_a.prot = prot;
4632         vn_a.maxprot = maxprot;
4633         vn_a.cred = cr;
4634         vn_a.amp = NULL;
4635         vn_a.flags = flags & ~MAP_TYPE;
4636         vn_a.szc = 0;
4637         vn_a.lgrp_mem_policy_flags = 0;
4638 
4639         error = as_map(as, *addrp, len, segvn_create, &vn_a);
4640 
4641         as_rangeunlock(as);
4642         ZFS_EXIT(zfsvfs);
4643         return (error);
4644 }
4645 
4646 /* ARGSUSED */
4647 static int
4648 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4649     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4650     caller_context_t *ct)
4651 {
4652         uint64_t pages = btopr(len);
4653 
4654         atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4655         return (0);
4656 }
4657 
4658 /*
4659  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4660  * more accurate mtime for the associated file.  Since we don't have a way of
4661  * detecting when the data was actually modified, we have to resort to
4662  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4663  * last page is pushed.  The problem occurs when the msync() call is omitted,
4664  * which by far the most common case:
4665  *
4666  *      open()
4667  *      mmap()
4668  *      <modify memory>
4669  *      munmap()
4670  *      close()
4671  *      <time lapse>
4672  *      putpage() via fsflush
4673  *
4674  * If we wait until fsflush to come along, we can have a modification time that
4675  * is some arbitrary point in the future.  In order to prevent this in the
4676  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4677  * torn down.
4678  */
4679 /* ARGSUSED */
4680 static int
4681 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4682     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4683     caller_context_t *ct)
4684 {
4685         uint64_t pages = btopr(len);
4686 
4687         ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4688         atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4689 
4690         if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4691             vn_has_cached_data(vp))
4692                 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4693 
4694         return (0);
4695 }
4696 
4697 /*
4698  * Free or allocate space in a file.  Currently, this function only
4699  * supports the `F_FREESP' command.  However, this command is somewhat
4700  * misnamed, as its functionality includes the ability to allocate as
4701  * well as free space.
4702  *
4703  *      IN:     vp      - vnode of file to free data in.
4704  *              cmd     - action to take (only F_FREESP supported).
4705  *              bfp     - section of file to free/alloc.
4706  *              flag    - current file open mode flags.
4707  *              offset  - current file offset.
4708  *              cr      - credentials of caller [UNUSED].
4709  *              ct      - caller context.
4710  *
4711  *      RETURN: 0 if success
4712  *              error code if failure
4713  *
4714  * Timestamps:
4715  *      vp - ctime|mtime updated
4716  */
4717 /* ARGSUSED */
4718 static int
4719 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4720     offset_t offset, cred_t *cr, caller_context_t *ct)
4721 {
4722         znode_t         *zp = VTOZ(vp);
4723         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4724         uint64_t        off, len;
4725         int             error;
4726 
4727         ZFS_ENTER(zfsvfs);
4728         ZFS_VERIFY_ZP(zp);
4729 
4730         if (cmd != F_FREESP) {
4731                 ZFS_EXIT(zfsvfs);
4732                 return (EINVAL);
4733         }
4734 
4735         if (error = convoff(vp, bfp, 0, offset)) {
4736                 ZFS_EXIT(zfsvfs);
4737                 return (error);
4738         }
4739 
4740         if (bfp->l_len < 0) {
4741                 ZFS_EXIT(zfsvfs);
4742                 return (EINVAL);
4743         }
4744 
4745         off = bfp->l_start;
4746         len = bfp->l_len; /* 0 means from off to end of file */
4747 
4748         error = zfs_freesp(zp, off, len, flag, TRUE);
4749 
4750         ZFS_EXIT(zfsvfs);
4751         return (error);
4752 }
4753 
4754 /*ARGSUSED*/
4755 static int
4756 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4757 {
4758         znode_t         *zp = VTOZ(vp);
4759         zfsvfs_t        *zfsvfs = zp->z_zfsvfs;
4760         uint32_t        gen;
4761         uint64_t        gen64;
4762         uint64_t        object = zp->z_id;
4763         zfid_short_t    *zfid;
4764         int             size, i, error;
4765 
4766         ZFS_ENTER(zfsvfs);
4767         ZFS_VERIFY_ZP(zp);
4768 
4769         if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4770             &gen64, sizeof (uint64_t))) != 0) {
4771                 ZFS_EXIT(zfsvfs);
4772                 return (error);
4773         }
4774 
4775         gen = (uint32_t)gen64;
4776 
4777         size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4778         if (fidp->fid_len < size) {
4779                 fidp->fid_len = size;
4780                 ZFS_EXIT(zfsvfs);
4781                 return (ENOSPC);
4782         }
4783 
4784         zfid = (zfid_short_t *)fidp;
4785 
4786         zfid->zf_len = size;
4787 
4788         for (i = 0; i < sizeof (zfid->zf_object); i++)
4789                 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4790 
4791         /* Must have a non-zero generation number to distinguish from .zfs */
4792         if (gen == 0)
4793                 gen = 1;
4794         for (i = 0; i < sizeof (zfid->zf_gen); i++)
4795                 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4796 
4797         if (size == LONG_FID_LEN) {
4798                 uint64_t        objsetid = dmu_objset_id(zfsvfs->z_os);
4799                 zfid_long_t     *zlfid;
4800 
4801                 zlfid = (zfid_long_t *)fidp;
4802 
4803                 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4804                         zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4805 
4806                 /* XXX - this should be the generation number for the objset */
4807                 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4808                         zlfid->zf_setgen[i] = 0;
4809         }
4810 
4811         ZFS_EXIT(zfsvfs);
4812         return (0);
4813 }
4814 
4815 static int
4816 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4817     caller_context_t *ct)
4818 {
4819         znode_t         *zp, *xzp;
4820         zfsvfs_t        *zfsvfs;
4821         zfs_dirlock_t   *dl;
4822         int             error;
4823 
4824         switch (cmd) {
4825         case _PC_LINK_MAX:
4826                 *valp = ULONG_MAX;
4827                 return (0);
4828 
4829         case _PC_FILESIZEBITS:
4830                 *valp = 64;
4831                 return (0);
4832 
4833         case _PC_XATTR_EXISTS:
4834                 zp = VTOZ(vp);
4835                 zfsvfs = zp->z_zfsvfs;
4836                 ZFS_ENTER(zfsvfs);
4837                 ZFS_VERIFY_ZP(zp);
4838                 *valp = 0;
4839                 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4840                     ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4841                 if (error == 0) {
4842                         zfs_dirent_unlock(dl);
4843                         if (!zfs_dirempty(xzp))
4844                                 *valp = 1;
4845                         VN_RELE(ZTOV(xzp));
4846                 } else if (error == ENOENT) {
4847                         /*
4848                          * If there aren't extended attributes, it's the
4849                          * same as having zero of them.
4850                          */
4851                         error = 0;
4852                 }
4853                 ZFS_EXIT(zfsvfs);
4854                 return (error);
4855 
4856         case _PC_SATTR_ENABLED:
4857         case _PC_SATTR_EXISTS:
4858                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4859                     (vp->v_type == VREG || vp->v_type == VDIR);
4860                 return (0);
4861 
4862         case _PC_ACCESS_FILTERING:
4863                 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4864                     vp->v_type == VDIR;
4865                 return (0);
4866 
4867         case _PC_ACL_ENABLED:
4868                 *valp = _ACL_ACE_ENABLED;
4869                 return (0);
4870 
4871         case _PC_MIN_HOLE_SIZE:
4872                 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4873                 return (0);
4874 
4875         case _PC_TIMESTAMP_RESOLUTION:
4876                 /* nanosecond timestamp resolution */
4877                 *valp = 1L;
4878                 return (0);
4879 
4880         default:
4881                 return (fs_pathconf(vp, cmd, valp, cr, ct));
4882         }
4883 }
4884 
4885 /*ARGSUSED*/
4886 static int
4887 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4888     caller_context_t *ct)
4889 {
4890         znode_t *zp = VTOZ(vp);
4891         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4892         int error;
4893         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4894 
4895         ZFS_ENTER(zfsvfs);
4896         ZFS_VERIFY_ZP(zp);
4897         error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4898         ZFS_EXIT(zfsvfs);
4899 
4900         return (error);
4901 }
4902 
4903 /*ARGSUSED*/
4904 static int
4905 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4906     caller_context_t *ct)
4907 {
4908         znode_t *zp = VTOZ(vp);
4909         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4910         int error;
4911         boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4912         zilog_t *zilog = zfsvfs->z_log;
4913 
4914         ZFS_ENTER(zfsvfs);
4915         ZFS_VERIFY_ZP(zp);
4916 
4917         error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4918 
4919         if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4920                 zil_commit(zilog, 0);
4921 
4922         ZFS_EXIT(zfsvfs);
4923         return (error);
4924 }
4925 
4926 /*
4927  * Tunable, both must be a power of 2.
4928  *
4929  * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4930  * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4931  *                an arcbuf for a partial block read
4932  */
4933 int zcr_blksz_min = (1 << 10);    /* 1K */
4934 int zcr_blksz_max = (1 << 17);    /* 128K */
4935 
4936 /*ARGSUSED*/
4937 static int
4938 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4939     caller_context_t *ct)
4940 {
4941         znode_t *zp = VTOZ(vp);
4942         zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4943         int max_blksz = zfsvfs->z_max_blksz;
4944         uio_t *uio = &xuio->xu_uio;
4945         ssize_t size = uio->uio_resid;
4946         offset_t offset = uio->uio_loffset;
4947         int blksz;
4948         int fullblk, i;
4949         arc_buf_t *abuf;
4950         ssize_t maxsize;
4951         int preamble, postamble;
4952 
4953         if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4954                 return (EINVAL);
4955 
4956         ZFS_ENTER(zfsvfs);
4957         ZFS_VERIFY_ZP(zp);
4958         switch (ioflag) {
4959         case UIO_WRITE:
4960                 /*
4961                  * Loan out an arc_buf for write if write size is bigger than
4962                  * max_blksz, and the file's block size is also max_blksz.
4963                  */
4964                 blksz = max_blksz;
4965                 if (size < blksz || zp->z_blksz != blksz) {
4966                         ZFS_EXIT(zfsvfs);
4967                         return (EINVAL);
4968                 }
4969                 /*
4970                  * Caller requests buffers for write before knowing where the
4971                  * write offset might be (e.g. NFS TCP write).
4972                  */
4973                 if (offset == -1) {
4974                         preamble = 0;
4975                 } else {
4976                         preamble = P2PHASE(offset, blksz);
4977                         if (preamble) {
4978                                 preamble = blksz - preamble;
4979                                 size -= preamble;
4980                         }
4981                 }
4982 
4983                 postamble = P2PHASE(size, blksz);
4984                 size -= postamble;
4985 
4986                 fullblk = size / blksz;
4987                 (void) dmu_xuio_init(xuio,
4988                     (preamble != 0) + fullblk + (postamble != 0));
4989                 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4990                     int, postamble, int,
4991                     (preamble != 0) + fullblk + (postamble != 0));
4992 
4993                 /*
4994                  * Have to fix iov base/len for partial buffers.  They
4995                  * currently represent full arc_buf's.
4996                  */
4997                 if (preamble) {
4998                         /* data begins in the middle of the arc_buf */
4999                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5000                             blksz);
5001                         ASSERT(abuf);
5002                         (void) dmu_xuio_add(xuio, abuf,
5003                             blksz - preamble, preamble);
5004                 }
5005 
5006                 for (i = 0; i < fullblk; i++) {
5007                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5008                             blksz);
5009                         ASSERT(abuf);
5010                         (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5011                 }
5012 
5013                 if (postamble) {
5014                         /* data ends in the middle of the arc_buf */
5015                         abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5016                             blksz);
5017                         ASSERT(abuf);
5018                         (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5019                 }
5020                 break;
5021         case UIO_READ:
5022                 /*
5023                  * Loan out an arc_buf for read if the read size is larger than
5024                  * the current file block size.  Block alignment is not
5025                  * considered.  Partial arc_buf will be loaned out for read.
5026                  */
5027                 blksz = zp->z_blksz;
5028                 if (blksz < zcr_blksz_min)
5029                         blksz = zcr_blksz_min;
5030                 if (blksz > zcr_blksz_max)
5031                         blksz = zcr_blksz_max;
5032                 /* avoid potential complexity of dealing with it */
5033                 if (blksz > max_blksz) {
5034                         ZFS_EXIT(zfsvfs);
5035                         return (EINVAL);
5036                 }
5037 
5038                 maxsize = zp->z_size - uio->uio_loffset;
5039                 if (size > maxsize)
5040                         size = maxsize;
5041 
5042                 if (size < blksz || vn_has_cached_data(vp)) {
5043                         ZFS_EXIT(zfsvfs);
5044                         return (EINVAL);
5045                 }
5046                 break;
5047         default:
5048                 ZFS_EXIT(zfsvfs);
5049                 return (EINVAL);
5050         }
5051 
5052         uio->uio_extflg = UIO_XUIO;
5053         XUIO_XUZC_RW(xuio) = ioflag;
5054         ZFS_EXIT(zfsvfs);
5055         return (0);
5056 }
5057 
5058 /*ARGSUSED*/
5059 static int
5060 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5061 {
5062         int i;
5063         arc_buf_t *abuf;
5064         int ioflag = XUIO_XUZC_RW(xuio);
5065 
5066         ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5067 
5068         i = dmu_xuio_cnt(xuio);
5069         while (i-- > 0) {
5070                 abuf = dmu_xuio_arcbuf(xuio, i);
5071                 /*
5072                  * if abuf == NULL, it must be a write buffer
5073                  * that has been returned in zfs_write().
5074                  */
5075                 if (abuf)
5076                         dmu_return_arcbuf(abuf);
5077                 ASSERT(abuf || ioflag == UIO_WRITE);
5078         }
5079 
5080         dmu_xuio_fini(xuio);
5081         return (0);
5082 }
5083 
5084 /*
5085  * Predeclare these here so that the compiler assumes that
5086  * this is an "old style" function declaration that does
5087  * not include arguments => we won't get type mismatch errors
5088  * in the initializations that follow.
5089  */
5090 static int zfs_inval();
5091 static int zfs_isdir();
5092 
5093 static int
5094 zfs_inval()
5095 {
5096         return (EINVAL);
5097 }
5098 
5099 static int
5100 zfs_isdir()
5101 {
5102         return (EISDIR);
5103 }
5104 /*
5105  * Directory vnode operations template
5106  */
5107 vnodeops_t *zfs_dvnodeops;
5108 const fs_operation_def_t zfs_dvnodeops_template[] = {
5109         VOPNAME_OPEN,           { .vop_open = zfs_open },
5110         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5111         VOPNAME_READ,           { .error = zfs_isdir },
5112         VOPNAME_WRITE,          { .error = zfs_isdir },
5113         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5114         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5115         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5116         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5117         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5118         VOPNAME_CREATE,         { .vop_create = zfs_create },
5119         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5120         VOPNAME_LINK,           { .vop_link = zfs_link },
5121         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5122         VOPNAME_MKDIR,          { .vop_mkdir = zfs_mkdir },
5123         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5124         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5125         VOPNAME_SYMLINK,        { .vop_symlink = zfs_symlink },
5126         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5127         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5128         VOPNAME_FID,            { .vop_fid = zfs_fid },
5129         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5130         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5131         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5132         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5133         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5134         NULL,                   NULL
5135 };
5136 
5137 /*
5138  * Regular file vnode operations template
5139  */
5140 vnodeops_t *zfs_fvnodeops;
5141 const fs_operation_def_t zfs_fvnodeops_template[] = {
5142         VOPNAME_OPEN,           { .vop_open = zfs_open },
5143         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5144         VOPNAME_READ,           { .vop_read = zfs_read },
5145         VOPNAME_WRITE,          { .vop_write = zfs_write },
5146         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5147         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5148         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5149         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5150         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5151         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5152         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5153         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5154         VOPNAME_FID,            { .vop_fid = zfs_fid },
5155         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5156         VOPNAME_FRLOCK,         { .vop_frlock = zfs_frlock },
5157         VOPNAME_SPACE,          { .vop_space = zfs_space },
5158         VOPNAME_GETPAGE,        { .vop_getpage = zfs_getpage },
5159         VOPNAME_PUTPAGE,        { .vop_putpage = zfs_putpage },
5160         VOPNAME_MAP,            { .vop_map = zfs_map },
5161         VOPNAME_ADDMAP,         { .vop_addmap = zfs_addmap },
5162         VOPNAME_DELMAP,         { .vop_delmap = zfs_delmap },
5163         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5164         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5165         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5166         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5167         VOPNAME_REQZCBUF,       { .vop_reqzcbuf = zfs_reqzcbuf },
5168         VOPNAME_RETZCBUF,       { .vop_retzcbuf = zfs_retzcbuf },
5169         NULL,                   NULL
5170 };
5171 
5172 /*
5173  * Symbolic link vnode operations template
5174  */
5175 vnodeops_t *zfs_symvnodeops;
5176 const fs_operation_def_t zfs_symvnodeops_template[] = {
5177         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5178         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5179         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5180         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5181         VOPNAME_READLINK,       { .vop_readlink = zfs_readlink },
5182         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5183         VOPNAME_FID,            { .vop_fid = zfs_fid },
5184         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5185         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5186         NULL,                   NULL
5187 };
5188 
5189 /*
5190  * special share hidden files vnode operations template
5191  */
5192 vnodeops_t *zfs_sharevnodeops;
5193 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5194         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5195         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5196         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5197         VOPNAME_FID,            { .vop_fid = zfs_fid },
5198         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5199         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5200         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5201         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5202         NULL,                   NULL
5203 };
5204 
5205 /*
5206  * Extended attribute directory vnode operations template
5207  *      This template is identical to the directory vnodes
5208  *      operation template except for restricted operations:
5209  *              VOP_MKDIR()
5210  *              VOP_SYMLINK()
5211  * Note that there are other restrictions embedded in:
5212  *      zfs_create()    - restrict type to VREG
5213  *      zfs_link()      - no links into/out of attribute space
5214  *      zfs_rename()    - no moves into/out of attribute space
5215  */
5216 vnodeops_t *zfs_xdvnodeops;
5217 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5218         VOPNAME_OPEN,           { .vop_open = zfs_open },
5219         VOPNAME_CLOSE,          { .vop_close = zfs_close },
5220         VOPNAME_IOCTL,          { .vop_ioctl = zfs_ioctl },
5221         VOPNAME_GETATTR,        { .vop_getattr = zfs_getattr },
5222         VOPNAME_SETATTR,        { .vop_setattr = zfs_setattr },
5223         VOPNAME_ACCESS,         { .vop_access = zfs_access },
5224         VOPNAME_LOOKUP,         { .vop_lookup = zfs_lookup },
5225         VOPNAME_CREATE,         { .vop_create = zfs_create },
5226         VOPNAME_REMOVE,         { .vop_remove = zfs_remove },
5227         VOPNAME_LINK,           { .vop_link = zfs_link },
5228         VOPNAME_RENAME,         { .vop_rename = zfs_rename },
5229         VOPNAME_MKDIR,          { .error = zfs_inval },
5230         VOPNAME_RMDIR,          { .vop_rmdir = zfs_rmdir },
5231         VOPNAME_READDIR,        { .vop_readdir = zfs_readdir },
5232         VOPNAME_SYMLINK,        { .error = zfs_inval },
5233         VOPNAME_FSYNC,          { .vop_fsync = zfs_fsync },
5234         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5235         VOPNAME_FID,            { .vop_fid = zfs_fid },
5236         VOPNAME_SEEK,           { .vop_seek = zfs_seek },
5237         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5238         VOPNAME_GETSECATTR,     { .vop_getsecattr = zfs_getsecattr },
5239         VOPNAME_SETSECATTR,     { .vop_setsecattr = zfs_setsecattr },
5240         VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
5241         NULL,                   NULL
5242 };
5243 
5244 /*
5245  * Error vnode operations template
5246  */
5247 vnodeops_t *zfs_evnodeops;
5248 const fs_operation_def_t zfs_evnodeops_template[] = {
5249         VOPNAME_INACTIVE,       { .vop_inactive = zfs_inactive },
5250         VOPNAME_PATHCONF,       { .vop_pathconf = zfs_pathconf },
5251         NULL,                   NULL
5252 };