Print this page
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/zfs_vfsops.c
+++ new/usr/src/uts/common/fs/zfs/zfs_vfsops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 24 */
25 25
26 26 /* Portions Copyright 2010 Robert Milkowski */
27 27
28 28 #include <sys/types.h>
29 29 #include <sys/param.h>
30 30 #include <sys/systm.h>
31 31 #include <sys/sysmacros.h>
32 32 #include <sys/kmem.h>
33 33 #include <sys/pathname.h>
34 34 #include <sys/vnode.h>
35 35 #include <sys/vfs.h>
36 36 #include <sys/vfs_opreg.h>
37 37 #include <sys/mntent.h>
38 38 #include <sys/mount.h>
39 39 #include <sys/cmn_err.h>
40 40 #include "fs/fs_subr.h"
41 41 #include <sys/zfs_znode.h>
42 42 #include <sys/zfs_dir.h>
43 43 #include <sys/zil.h>
44 44 #include <sys/fs/zfs.h>
45 45 #include <sys/dmu.h>
46 46 #include <sys/dsl_prop.h>
47 47 #include <sys/dsl_dataset.h>
48 48 #include <sys/dsl_deleg.h>
49 49 #include <sys/spa.h>
50 50 #include <sys/zap.h>
51 51 #include <sys/sa.h>
52 52 #include <sys/varargs.h>
53 53 #include <sys/policy.h>
54 54 #include <sys/atomic.h>
55 55 #include <sys/mkdev.h>
56 56 #include <sys/modctl.h>
57 57 #include <sys/refstr.h>
58 58 #include <sys/zfs_ioctl.h>
59 59 #include <sys/zfs_ctldir.h>
60 60 #include <sys/zfs_fuid.h>
61 61 #include <sys/bootconf.h>
62 62 #include <sys/sunddi.h>
63 63 #include <sys/dnlc.h>
64 64 #include <sys/dmu_objset.h>
65 65 #include <sys/spa_boot.h>
66 66 #include <sys/sa.h>
67 67 #include "zfs_comutil.h"
68 68
69 69 int zfsfstype;
70 70 vfsops_t *zfs_vfsops = NULL;
71 71 static major_t zfs_major;
72 72 static minor_t zfs_minor;
73 73 static kmutex_t zfs_dev_mtx;
74 74
75 75 extern int sys_shutdown;
76 76
77 77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78 78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79 79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80 80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81 81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82 82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83 83 static void zfs_freevfs(vfs_t *vfsp);
84 84
85 85 static const fs_operation_def_t zfs_vfsops_template[] = {
86 86 VFSNAME_MOUNT, { .vfs_mount = zfs_mount },
87 87 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot },
88 88 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount },
89 89 VFSNAME_ROOT, { .vfs_root = zfs_root },
90 90 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs },
91 91 VFSNAME_SYNC, { .vfs_sync = zfs_sync },
92 92 VFSNAME_VGET, { .vfs_vget = zfs_vget },
93 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
94 94 NULL, NULL
95 95 };
96 96
97 97 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 98 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs },
99 99 NULL, NULL
100 100 };
101 101
102 102 /*
103 103 * We need to keep a count of active fs's.
104 104 * This is necessary to prevent our module
105 105 * from being unloaded after a umount -f
106 106 */
107 107 static uint32_t zfs_active_fs_count = 0;
108 108
109 109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110 110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111 111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112 112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
113 113
114 114 /*
115 115 * MO_DEFAULT is not used since the default value is determined
116 116 * by the equivalent property.
117 117 */
118 118 static mntopt_t mntopts[] = {
119 119 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 120 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 121 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 122 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
123 123 };
124 124
125 125 static mntopts_t zfs_mntopts = {
126 126 sizeof (mntopts) / sizeof (mntopt_t),
127 127 mntopts
128 128 };
129 129
130 130 /*ARGSUSED*/
131 131 int
132 132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
133 133 {
134 134 /*
135 135 * Data integrity is job one. We don't want a compromised kernel
136 136 * writing to the storage pool, so we never sync during panic.
137 137 */
138 138 if (panicstr)
139 139 return (0);
140 140
141 141 /*
142 142 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 143 * to sync metadata, which they would otherwise cache indefinitely.
144 144 * Semantically, the only requirement is that the sync be initiated.
145 145 * The DMU syncs out txgs frequently, so there's nothing to do.
146 146 */
147 147 if (flag & SYNC_ATTR)
148 148 return (0);
149 149
150 150 if (vfsp != NULL) {
151 151 /*
152 152 * Sync a specific filesystem.
153 153 */
154 154 zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 155 dsl_pool_t *dp;
156 156
157 157 ZFS_ENTER(zfsvfs);
158 158 dp = dmu_objset_pool(zfsvfs->z_os);
159 159
160 160 /*
161 161 * If the system is shutting down, then skip any
162 162 * filesystems which may exist on a suspended pool.
163 163 */
164 164 if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 165 ZFS_EXIT(zfsvfs);
166 166 return (0);
167 167 }
168 168
169 169 if (zfsvfs->z_log != NULL)
170 170 zil_commit(zfsvfs->z_log, 0);
171 171
172 172 ZFS_EXIT(zfsvfs);
173 173 } else {
174 174 /*
175 175 * Sync all ZFS filesystems. This is what happens when you
176 176 * run sync(1M). Unlike other filesystems, ZFS honors the
177 177 * request by waiting for all pools to commit all dirty data.
178 178 */
179 179 spa_sync_allpools();
180 180 }
181 181
182 182 return (0);
183 183 }
184 184
185 185 static int
186 186 zfs_create_unique_device(dev_t *dev)
187 187 {
188 188 major_t new_major;
189 189
190 190 do {
191 191 ASSERT3U(zfs_minor, <=, MAXMIN32);
192 192 minor_t start = zfs_minor;
193 193 do {
194 194 mutex_enter(&zfs_dev_mtx);
195 195 if (zfs_minor >= MAXMIN32) {
196 196 /*
197 197 * If we're still using the real major
198 198 * keep out of /dev/zfs and /dev/zvol minor
199 199 * number space. If we're using a getudev()'ed
200 200 * major number, we can use all of its minors.
201 201 */
202 202 if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 203 zfs_minor = ZFS_MIN_MINOR;
204 204 else
205 205 zfs_minor = 0;
206 206 } else {
207 207 zfs_minor++;
208 208 }
209 209 *dev = makedevice(zfs_major, zfs_minor);
210 210 mutex_exit(&zfs_dev_mtx);
211 211 } while (vfs_devismounted(*dev) && zfs_minor != start);
212 212 if (zfs_minor == start) {
213 213 /*
214 214 * We are using all ~262,000 minor numbers for the
215 215 * current major number. Create a new major number.
216 216 */
217 217 if ((new_major = getudev()) == (major_t)-1) {
218 218 cmn_err(CE_WARN,
219 219 "zfs_mount: Can't get unique major "
220 220 "device number.");
221 221 return (-1);
222 222 }
223 223 mutex_enter(&zfs_dev_mtx);
224 224 zfs_major = new_major;
225 225 zfs_minor = 0;
226 226
227 227 mutex_exit(&zfs_dev_mtx);
228 228 } else {
229 229 break;
230 230 }
231 231 /* CONSTANTCONDITION */
232 232 } while (1);
233 233
234 234 return (0);
235 235 }
236 236
237 237 static void
238 238 atime_changed_cb(void *arg, uint64_t newval)
239 239 {
240 240 zfsvfs_t *zfsvfs = arg;
241 241
242 242 if (newval == TRUE) {
243 243 zfsvfs->z_atime = TRUE;
244 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 246 } else {
247 247 zfsvfs->z_atime = FALSE;
248 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
250 250 }
251 251 }
252 252
253 253 static void
254 254 xattr_changed_cb(void *arg, uint64_t newval)
255 255 {
256 256 zfsvfs_t *zfsvfs = arg;
257 257
258 258 if (newval == TRUE) {
259 259 /* XXX locking on vfs_flag? */
260 260 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 261 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 262 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 263 } else {
264 264 /* XXX locking on vfs_flag? */
265 265 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
268 268 }
269 269 }
270 270
271 271 static void
272 272 blksz_changed_cb(void *arg, uint64_t newval)
273 273 {
274 274 zfsvfs_t *zfsvfs = arg;
275 275
276 276 if (newval < SPA_MINBLOCKSIZE ||
277 277 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
278 278 newval = SPA_MAXBLOCKSIZE;
279 279
280 280 zfsvfs->z_max_blksz = newval;
281 281 zfsvfs->z_vfs->vfs_bsize = newval;
282 282 }
283 283
284 284 static void
285 285 readonly_changed_cb(void *arg, uint64_t newval)
286 286 {
287 287 zfsvfs_t *zfsvfs = arg;
288 288
289 289 if (newval) {
290 290 /* XXX locking on vfs_flag? */
291 291 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 292 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 293 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 294 } else {
295 295 /* XXX locking on vfs_flag? */
296 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 299 }
300 300 }
301 301
302 302 static void
303 303 devices_changed_cb(void *arg, uint64_t newval)
304 304 {
305 305 zfsvfs_t *zfsvfs = arg;
306 306
307 307 if (newval == FALSE) {
308 308 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 311 } else {
312 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 315 }
316 316 }
317 317
318 318 static void
319 319 setuid_changed_cb(void *arg, uint64_t newval)
320 320 {
321 321 zfsvfs_t *zfsvfs = arg;
322 322
323 323 if (newval == FALSE) {
324 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 327 } else {
328 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 331 }
332 332 }
333 333
334 334 static void
335 335 exec_changed_cb(void *arg, uint64_t newval)
336 336 {
337 337 zfsvfs_t *zfsvfs = arg;
338 338
339 339 if (newval == FALSE) {
340 340 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 343 } else {
344 344 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 347 }
348 348 }
349 349
350 350 /*
351 351 * The nbmand mount option can be changed at mount time.
352 352 * We can't allow it to be toggled on live file systems or incorrect
353 353 * behavior may be seen from cifs clients
354 354 *
355 355 * This property isn't registered via dsl_prop_register(), but this callback
356 356 * will be called when a file system is first mounted
357 357 */
358 358 static void
359 359 nbmand_changed_cb(void *arg, uint64_t newval)
360 360 {
361 361 zfsvfs_t *zfsvfs = arg;
362 362 if (newval == FALSE) {
363 363 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 364 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 365 } else {
366 366 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 367 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 368 }
369 369 }
370 370
371 371 static void
372 372 snapdir_changed_cb(void *arg, uint64_t newval)
373 373 {
374 374 zfsvfs_t *zfsvfs = arg;
375 375
376 376 zfsvfs->z_show_ctldir = newval;
377 377 }
378 378
379 379 static void
380 380 vscan_changed_cb(void *arg, uint64_t newval)
381 381 {
382 382 zfsvfs_t *zfsvfs = arg;
383 383
384 384 zfsvfs->z_vscan = newval;
385 385 }
386 386
387 387 static void
388 388 acl_mode_changed_cb(void *arg, uint64_t newval)
389 389 {
390 390 zfsvfs_t *zfsvfs = arg;
391 391
392 392 zfsvfs->z_acl_mode = newval;
393 393 }
394 394
395 395 static void
396 396 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 397 {
398 398 zfsvfs_t *zfsvfs = arg;
399 399
400 400 zfsvfs->z_acl_inherit = newval;
401 401 }
402 402
403 403 static int
404 404 zfs_register_callbacks(vfs_t *vfsp)
405 405 {
406 406 struct dsl_dataset *ds = NULL;
407 407 objset_t *os = NULL;
408 408 zfsvfs_t *zfsvfs = NULL;
409 409 uint64_t nbmand;
410 410 int readonly, do_readonly = B_FALSE;
411 411 int setuid, do_setuid = B_FALSE;
412 412 int exec, do_exec = B_FALSE;
413 413 int devices, do_devices = B_FALSE;
414 414 int xattr, do_xattr = B_FALSE;
415 415 int atime, do_atime = B_FALSE;
416 416 int error = 0;
417 417
418 418 ASSERT(vfsp);
419 419 zfsvfs = vfsp->vfs_data;
420 420 ASSERT(zfsvfs);
421 421 os = zfsvfs->z_os;
422 422
423 423 /*
424 424 * The act of registering our callbacks will destroy any mount
425 425 * options we may have. In order to enable temporary overrides
426 426 * of mount options, we stash away the current values and
427 427 * restore them after we register the callbacks.
428 428 */
429 429 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
430 430 !spa_writeable(dmu_objset_spa(os))) {
431 431 readonly = B_TRUE;
432 432 do_readonly = B_TRUE;
433 433 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
434 434 readonly = B_FALSE;
435 435 do_readonly = B_TRUE;
436 436 }
437 437 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
438 438 devices = B_FALSE;
439 439 setuid = B_FALSE;
440 440 do_devices = B_TRUE;
441 441 do_setuid = B_TRUE;
442 442 } else {
443 443 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
444 444 devices = B_FALSE;
445 445 do_devices = B_TRUE;
446 446 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
447 447 devices = B_TRUE;
448 448 do_devices = B_TRUE;
449 449 }
450 450
451 451 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
452 452 setuid = B_FALSE;
453 453 do_setuid = B_TRUE;
454 454 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
455 455 setuid = B_TRUE;
456 456 do_setuid = B_TRUE;
457 457 }
458 458 }
459 459 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
460 460 exec = B_FALSE;
461 461 do_exec = B_TRUE;
462 462 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
463 463 exec = B_TRUE;
464 464 do_exec = B_TRUE;
465 465 }
466 466 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
467 467 xattr = B_FALSE;
468 468 do_xattr = B_TRUE;
469 469 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
470 470 xattr = B_TRUE;
471 471 do_xattr = B_TRUE;
472 472 }
473 473 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
474 474 atime = B_FALSE;
475 475 do_atime = B_TRUE;
476 476 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
477 477 atime = B_TRUE;
478 478 do_atime = B_TRUE;
479 479 }
480 480
481 481 /*
482 482 * nbmand is a special property. It can only be changed at
483 483 * mount time.
484 484 *
485 485 * This is weird, but it is documented to only be changeable
486 486 * at mount time.
487 487 */
488 488 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
489 489 nbmand = B_FALSE;
490 490 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
491 491 nbmand = B_TRUE;
492 492 } else {
493 493 char osname[MAXNAMELEN];
494 494
495 495 dmu_objset_name(os, osname);
496 496 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
497 497 NULL)) {
498 498 return (error);
499 499 }
500 500 }
501 501
502 502 /*
503 503 * Register property callbacks.
504 504 *
505 505 * It would probably be fine to just check for i/o error from
506 506 * the first prop_register(), but I guess I like to go
507 507 * overboard...
508 508 */
509 509 ds = dmu_objset_ds(os);
510 510 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
511 511 error = error ? error : dsl_prop_register(ds,
512 512 "xattr", xattr_changed_cb, zfsvfs);
513 513 error = error ? error : dsl_prop_register(ds,
514 514 "recordsize", blksz_changed_cb, zfsvfs);
515 515 error = error ? error : dsl_prop_register(ds,
516 516 "readonly", readonly_changed_cb, zfsvfs);
517 517 error = error ? error : dsl_prop_register(ds,
518 518 "devices", devices_changed_cb, zfsvfs);
519 519 error = error ? error : dsl_prop_register(ds,
520 520 "setuid", setuid_changed_cb, zfsvfs);
521 521 error = error ? error : dsl_prop_register(ds,
522 522 "exec", exec_changed_cb, zfsvfs);
523 523 error = error ? error : dsl_prop_register(ds,
524 524 "snapdir", snapdir_changed_cb, zfsvfs);
525 525 error = error ? error : dsl_prop_register(ds,
526 526 "aclmode", acl_mode_changed_cb, zfsvfs);
527 527 error = error ? error : dsl_prop_register(ds,
528 528 "aclinherit", acl_inherit_changed_cb, zfsvfs);
529 529 error = error ? error : dsl_prop_register(ds,
530 530 "vscan", vscan_changed_cb, zfsvfs);
531 531 if (error)
532 532 goto unregister;
533 533
534 534 /*
535 535 * Invoke our callbacks to restore temporary mount options.
536 536 */
537 537 if (do_readonly)
538 538 readonly_changed_cb(zfsvfs, readonly);
539 539 if (do_setuid)
540 540 setuid_changed_cb(zfsvfs, setuid);
541 541 if (do_exec)
542 542 exec_changed_cb(zfsvfs, exec);
543 543 if (do_devices)
544 544 devices_changed_cb(zfsvfs, devices);
545 545 if (do_xattr)
546 546 xattr_changed_cb(zfsvfs, xattr);
547 547 if (do_atime)
548 548 atime_changed_cb(zfsvfs, atime);
549 549
550 550 nbmand_changed_cb(zfsvfs, nbmand);
551 551
552 552 return (0);
553 553
554 554 unregister:
555 555 /*
556 556 * We may attempt to unregister some callbacks that are not
557 557 * registered, but this is OK; it will simply return ENOMSG,
558 558 * which we will ignore.
559 559 */
560 560 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
561 561 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
562 562 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
563 563 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
564 564 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
565 565 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
566 566 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
567 567 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
568 568 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
569 569 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
570 570 zfsvfs);
571 571 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
572 572 return (error);
573 573
574 574 }
575 575
576 576 static int
577 577 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
578 578 uint64_t *userp, uint64_t *groupp)
579 579 {
580 580 znode_phys_t *znp = data;
581 581 int error = 0;
582 582
583 583 /*
584 584 * Is it a valid type of object to track?
585 585 */
586 586 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
587 587 return (ENOENT);
588 588
589 589 /*
590 590 * If we have a NULL data pointer
591 591 * then assume the id's aren't changing and
592 592 * return EEXIST to the dmu to let it know to
593 593 * use the same ids
594 594 */
595 595 if (data == NULL)
596 596 return (EEXIST);
597 597
598 598 if (bonustype == DMU_OT_ZNODE) {
599 599 *userp = znp->zp_uid;
600 600 *groupp = znp->zp_gid;
601 601 } else {
602 602 int hdrsize;
603 603
604 604 ASSERT(bonustype == DMU_OT_SA);
605 605 hdrsize = sa_hdrsize(data);
606 606
607 607 if (hdrsize != 0) {
608 608 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
609 609 SA_UID_OFFSET));
610 610 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
611 611 SA_GID_OFFSET));
612 612 } else {
613 613 /*
614 614 * This should only happen for newly created
615 615 * files that haven't had the znode data filled
616 616 * in yet.
617 617 */
618 618 *userp = 0;
619 619 *groupp = 0;
620 620 }
621 621 }
622 622 return (error);
623 623 }
624 624
625 625 static void
626 626 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
627 627 char *domainbuf, int buflen, uid_t *ridp)
628 628 {
629 629 uint64_t fuid;
630 630 const char *domain;
631 631
632 632 fuid = strtonum(fuidstr, NULL);
633 633
634 634 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
635 635 if (domain)
636 636 (void) strlcpy(domainbuf, domain, buflen);
637 637 else
638 638 domainbuf[0] = '\0';
639 639 *ridp = FUID_RID(fuid);
640 640 }
641 641
642 642 static uint64_t
643 643 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
644 644 {
645 645 switch (type) {
646 646 case ZFS_PROP_USERUSED:
647 647 return (DMU_USERUSED_OBJECT);
648 648 case ZFS_PROP_GROUPUSED:
649 649 return (DMU_GROUPUSED_OBJECT);
650 650 case ZFS_PROP_USERQUOTA:
651 651 return (zfsvfs->z_userquota_obj);
652 652 case ZFS_PROP_GROUPQUOTA:
653 653 return (zfsvfs->z_groupquota_obj);
654 654 }
655 655 return (0);
656 656 }
657 657
658 658 int
659 659 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
660 660 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
661 661 {
662 662 int error;
663 663 zap_cursor_t zc;
664 664 zap_attribute_t za;
665 665 zfs_useracct_t *buf = vbuf;
666 666 uint64_t obj;
667 667
668 668 if (!dmu_objset_userspace_present(zfsvfs->z_os))
669 669 return (ENOTSUP);
670 670
671 671 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
672 672 if (obj == 0) {
673 673 *bufsizep = 0;
674 674 return (0);
675 675 }
676 676
677 677 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
678 678 (error = zap_cursor_retrieve(&zc, &za)) == 0;
679 679 zap_cursor_advance(&zc)) {
680 680 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
681 681 *bufsizep)
682 682 break;
683 683
684 684 fuidstr_to_sid(zfsvfs, za.za_name,
685 685 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
686 686
687 687 buf->zu_space = za.za_first_integer;
688 688 buf++;
689 689 }
690 690 if (error == ENOENT)
691 691 error = 0;
692 692
693 693 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
694 694 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
695 695 *cookiep = zap_cursor_serialize(&zc);
696 696 zap_cursor_fini(&zc);
697 697 return (error);
698 698 }
699 699
700 700 /*
701 701 * buf must be big enough (eg, 32 bytes)
702 702 */
703 703 static int
704 704 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
705 705 char *buf, boolean_t addok)
706 706 {
707 707 uint64_t fuid;
708 708 int domainid = 0;
709 709
710 710 if (domain && domain[0]) {
711 711 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
712 712 if (domainid == -1)
713 713 return (ENOENT);
714 714 }
715 715 fuid = FUID_ENCODE(domainid, rid);
716 716 (void) sprintf(buf, "%llx", (longlong_t)fuid);
717 717 return (0);
718 718 }
719 719
720 720 int
721 721 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
722 722 const char *domain, uint64_t rid, uint64_t *valp)
723 723 {
724 724 char buf[32];
725 725 int err;
726 726 uint64_t obj;
727 727
728 728 *valp = 0;
729 729
730 730 if (!dmu_objset_userspace_present(zfsvfs->z_os))
731 731 return (ENOTSUP);
732 732
733 733 obj = zfs_userquota_prop_to_obj(zfsvfs, type);
734 734 if (obj == 0)
735 735 return (0);
736 736
737 737 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
738 738 if (err)
739 739 return (err);
740 740
741 741 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
742 742 if (err == ENOENT)
743 743 err = 0;
744 744 return (err);
745 745 }
746 746
747 747 int
748 748 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
749 749 const char *domain, uint64_t rid, uint64_t quota)
750 750 {
751 751 char buf[32];
752 752 int err;
753 753 dmu_tx_t *tx;
754 754 uint64_t *objp;
755 755 boolean_t fuid_dirtied;
756 756
757 757 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
758 758 return (EINVAL);
759 759
760 760 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
761 761 return (ENOTSUP);
762 762
763 763 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
764 764 &zfsvfs->z_groupquota_obj;
765 765
766 766 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
767 767 if (err)
768 768 return (err);
769 769 fuid_dirtied = zfsvfs->z_fuid_dirty;
770 770
771 771 tx = dmu_tx_create(zfsvfs->z_os);
772 772 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
773 773 if (*objp == 0) {
774 774 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
775 775 zfs_userquota_prop_prefixes[type]);
776 776 }
777 777 if (fuid_dirtied)
778 778 zfs_fuid_txhold(zfsvfs, tx);
779 779 err = dmu_tx_assign(tx, TXG_WAIT);
780 780 if (err) {
781 781 dmu_tx_abort(tx);
782 782 return (err);
783 783 }
784 784
785 785 mutex_enter(&zfsvfs->z_lock);
786 786 if (*objp == 0) {
787 787 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
788 788 DMU_OT_NONE, 0, tx);
789 789 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
790 790 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
791 791 }
792 792 mutex_exit(&zfsvfs->z_lock);
793 793
794 794 if (quota == 0) {
795 795 err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
796 796 if (err == ENOENT)
797 797 err = 0;
798 798 } else {
799 799 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx);
800 800 }
801 801 ASSERT(err == 0);
802 802 if (fuid_dirtied)
803 803 zfs_fuid_sync(zfsvfs, tx);
804 804 dmu_tx_commit(tx);
805 805 return (err);
806 806 }
807 807
808 808 boolean_t
809 809 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
810 810 {
811 811 char buf[32];
812 812 uint64_t used, quota, usedobj, quotaobj;
813 813 int err;
814 814
815 815 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
816 816 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
817 817
818 818 if (quotaobj == 0 || zfsvfs->z_replay)
819 819 return (B_FALSE);
820 820
821 821 (void) sprintf(buf, "%llx", (longlong_t)fuid);
822 822 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a);
823 823 if (err != 0)
824 824 return (B_FALSE);
825 825
826 826 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
827 827 if (err != 0)
828 828 return (B_FALSE);
829 829 return (used >= quota);
830 830 }
831 831
832 832 boolean_t
833 833 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
834 834 {
835 835 uint64_t fuid;
836 836 uint64_t quotaobj;
837 837
838 838 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
839 839
840 840 fuid = isgroup ? zp->z_gid : zp->z_uid;
841 841
842 842 if (quotaobj == 0 || zfsvfs->z_replay)
843 843 return (B_FALSE);
844 844
845 845 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
846 846 }
847 847
848 848 int
849 849 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
850 850 {
851 851 objset_t *os;
852 852 zfsvfs_t *zfsvfs;
853 853 uint64_t zval;
854 854 int i, error;
855 855 uint64_t sa_obj;
856 856
857 857 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
858 858
859 859 /*
860 860 * We claim to always be readonly so we can open snapshots;
861 861 * other ZPL code will prevent us from writing to snapshots.
862 862 */
863 863 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
864 864 if (error) {
865 865 kmem_free(zfsvfs, sizeof (zfsvfs_t));
866 866 return (error);
867 867 }
868 868
869 869 /*
870 870 * Initialize the zfs-specific filesystem structure.
871 871 * Should probably make this a kmem cache, shuffle fields,
872 872 * and just bzero up to z_hold_mtx[].
873 873 */
874 874 zfsvfs->z_vfs = NULL;
875 875 zfsvfs->z_parent = zfsvfs;
876 876 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
877 877 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
878 878 zfsvfs->z_os = os;
879 879
880 880 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
881 881 if (error) {
882 882 goto out;
883 883 } else if (zfsvfs->z_version >
884 884 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
885 885 (void) printf("Can't mount a version %lld file system "
886 886 "on a version %lld pool\n. Pool must be upgraded to mount "
887 887 "this file system.", (u_longlong_t)zfsvfs->z_version,
888 888 (u_longlong_t)spa_version(dmu_objset_spa(os)));
889 889 error = ENOTSUP;
890 890 goto out;
891 891 }
892 892 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
893 893 goto out;
894 894 zfsvfs->z_norm = (int)zval;
895 895
896 896 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
897 897 goto out;
898 898 zfsvfs->z_utf8 = (zval != 0);
899 899
900 900 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
901 901 goto out;
902 902 zfsvfs->z_case = (uint_t)zval;
903 903
904 904 /*
905 905 * Fold case on file systems that are always or sometimes case
906 906 * insensitive.
907 907 */
908 908 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
909 909 zfsvfs->z_case == ZFS_CASE_MIXED)
910 910 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
911 911
912 912 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
913 913 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
914 914
915 915 if (zfsvfs->z_use_sa) {
916 916 /* should either have both of these objects or none */
917 917 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
918 918 &sa_obj);
919 919 if (error)
920 920 return (error);
921 921 } else {
922 922 /*
923 923 * Pre SA versions file systems should never touch
924 924 * either the attribute registration or layout objects.
925 925 */
926 926 sa_obj = 0;
927 927 }
928 928
929 929 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
930 930 &zfsvfs->z_attr_table);
931 931 if (error)
932 932 goto out;
933 933
934 934 if (zfsvfs->z_version >= ZPL_VERSION_SA)
935 935 sa_register_update_callback(os, zfs_sa_upgrade);
936 936
937 937 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
938 938 &zfsvfs->z_root);
939 939 if (error)
940 940 goto out;
941 941 ASSERT(zfsvfs->z_root != 0);
942 942
943 943 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
944 944 &zfsvfs->z_unlinkedobj);
945 945 if (error)
946 946 goto out;
947 947
948 948 error = zap_lookup(os, MASTER_NODE_OBJ,
949 949 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
950 950 8, 1, &zfsvfs->z_userquota_obj);
951 951 if (error && error != ENOENT)
952 952 goto out;
953 953
954 954 error = zap_lookup(os, MASTER_NODE_OBJ,
955 955 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
956 956 8, 1, &zfsvfs->z_groupquota_obj);
957 957 if (error && error != ENOENT)
958 958 goto out;
959 959
960 960 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
961 961 &zfsvfs->z_fuid_obj);
962 962 if (error && error != ENOENT)
963 963 goto out;
964 964
965 965 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
966 966 &zfsvfs->z_shares_dir);
967 967 if (error && error != ENOENT)
968 968 goto out;
969 969
970 970 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
971 971 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
972 972 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
973 973 offsetof(znode_t, z_link_node));
974 974 rrw_init(&zfsvfs->z_teardown_lock);
975 975 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
976 976 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
977 977 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
978 978 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
979 979
980 980 *zfvp = zfsvfs;
981 981 return (0);
982 982
983 983 out:
984 984 dmu_objset_disown(os, zfsvfs);
985 985 *zfvp = NULL;
986 986 kmem_free(zfsvfs, sizeof (zfsvfs_t));
987 987 return (error);
988 988 }
989 989
990 990 static int
991 991 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
992 992 {
993 993 int error;
994 994
995 995 error = zfs_register_callbacks(zfsvfs->z_vfs);
996 996 if (error)
997 997 return (error);
998 998
999 999 /*
1000 1000 * Set the objset user_ptr to track its zfsvfs.
1001 1001 */
1002 1002 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1003 1003 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1004 1004 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1005 1005
1006 1006 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1007 1007
1008 1008 /*
1009 1009 * If we are not mounting (ie: online recv), then we don't
1010 1010 * have to worry about replaying the log as we blocked all
1011 1011 * operations out since we closed the ZIL.
1012 1012 */
1013 1013 if (mounting) {
1014 1014 boolean_t readonly;
1015 1015
1016 1016 /*
1017 1017 * During replay we remove the read only flag to
1018 1018 * allow replays to succeed.
1019 1019 */
1020 1020 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1021 1021 if (readonly != 0)
1022 1022 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1023 1023 else
1024 1024 zfs_unlinked_drain(zfsvfs);
1025 1025
1026 1026 /*
1027 1027 * Parse and replay the intent log.
1028 1028 *
1029 1029 * Because of ziltest, this must be done after
1030 1030 * zfs_unlinked_drain(). (Further note: ziltest
1031 1031 * doesn't use readonly mounts, where
1032 1032 * zfs_unlinked_drain() isn't called.) This is because
1033 1033 * ziltest causes spa_sync() to think it's committed,
1034 1034 * but actually it is not, so the intent log contains
1035 1035 * many txg's worth of changes.
1036 1036 *
1037 1037 * In particular, if object N is in the unlinked set in
1038 1038 * the last txg to actually sync, then it could be
1039 1039 * actually freed in a later txg and then reallocated
1040 1040 * in a yet later txg. This would write a "create
1041 1041 * object N" record to the intent log. Normally, this
1042 1042 * would be fine because the spa_sync() would have
1043 1043 * written out the fact that object N is free, before
1044 1044 * we could write the "create object N" intent log
1045 1045 * record.
1046 1046 *
1047 1047 * But when we are in ziltest mode, we advance the "open
1048 1048 * txg" without actually spa_sync()-ing the changes to
1049 1049 * disk. So we would see that object N is still
1050 1050 * allocated and in the unlinked set, and there is an
1051 1051 * intent log record saying to allocate it.
1052 1052 */
1053 1053 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1054 1054 if (zil_replay_disable) {
1055 1055 zil_destroy(zfsvfs->z_log, B_FALSE);
1056 1056 } else {
1057 1057 zfsvfs->z_replay = B_TRUE;
1058 1058 zil_replay(zfsvfs->z_os, zfsvfs,
1059 1059 zfs_replay_vector);
1060 1060 zfsvfs->z_replay = B_FALSE;
1061 1061 }
1062 1062 }
1063 1063 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1064 1064 }
1065 1065
1066 1066 return (0);
1067 1067 }
1068 1068
1069 1069 void
1070 1070 zfsvfs_free(zfsvfs_t *zfsvfs)
1071 1071 {
1072 1072 int i;
1073 1073 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1074 1074
1075 1075 /*
1076 1076 * This is a barrier to prevent the filesystem from going away in
1077 1077 * zfs_znode_move() until we can safely ensure that the filesystem is
1078 1078 * not unmounted. We consider the filesystem valid before the barrier
1079 1079 * and invalid after the barrier.
1080 1080 */
1081 1081 rw_enter(&zfsvfs_lock, RW_READER);
1082 1082 rw_exit(&zfsvfs_lock);
1083 1083
1084 1084 zfs_fuid_destroy(zfsvfs);
1085 1085
1086 1086 mutex_destroy(&zfsvfs->z_znodes_lock);
1087 1087 mutex_destroy(&zfsvfs->z_lock);
1088 1088 list_destroy(&zfsvfs->z_all_znodes);
1089 1089 rrw_destroy(&zfsvfs->z_teardown_lock);
1090 1090 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1091 1091 rw_destroy(&zfsvfs->z_fuid_lock);
1092 1092 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1093 1093 mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1094 1094 kmem_free(zfsvfs, sizeof (zfsvfs_t));
1095 1095 }
1096 1096
1097 1097 static void
1098 1098 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1099 1099 {
1100 1100 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1101 1101 if (zfsvfs->z_vfs) {
1102 1102 if (zfsvfs->z_use_fuids) {
1103 1103 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1104 1104 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1105 1105 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1106 1106 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1107 1107 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1108 1108 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1109 1109 } else {
1110 1110 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1111 1111 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1112 1112 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1113 1113 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1114 1114 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1115 1115 vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1116 1116 }
1117 1117 }
1118 1118 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1119 1119 }
1120 1120
1121 1121 static int
1122 1122 zfs_domount(vfs_t *vfsp, char *osname)
1123 1123 {
1124 1124 dev_t mount_dev;
1125 1125 uint64_t recordsize, fsid_guid;
1126 1126 int error = 0;
1127 1127 zfsvfs_t *zfsvfs;
1128 1128
1129 1129 ASSERT(vfsp);
1130 1130 ASSERT(osname);
1131 1131
1132 1132 error = zfsvfs_create(osname, &zfsvfs);
1133 1133 if (error)
1134 1134 return (error);
1135 1135 zfsvfs->z_vfs = vfsp;
1136 1136
1137 1137 /* Initialize the generic filesystem structure. */
1138 1138 vfsp->vfs_bcount = 0;
1139 1139 vfsp->vfs_data = NULL;
1140 1140
1141 1141 if (zfs_create_unique_device(&mount_dev) == -1) {
1142 1142 error = ENODEV;
1143 1143 goto out;
1144 1144 }
1145 1145 ASSERT(vfs_devismounted(mount_dev) == 0);
1146 1146
1147 1147 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1148 1148 NULL))
1149 1149 goto out;
1150 1150
1151 1151 vfsp->vfs_dev = mount_dev;
1152 1152 vfsp->vfs_fstype = zfsfstype;
1153 1153 vfsp->vfs_bsize = recordsize;
1154 1154 vfsp->vfs_flag |= VFS_NOTRUNC;
1155 1155 vfsp->vfs_data = zfsvfs;
1156 1156
1157 1157 /*
1158 1158 * The fsid is 64 bits, composed of an 8-bit fs type, which
1159 1159 * separates our fsid from any other filesystem types, and a
1160 1160 * 56-bit objset unique ID. The objset unique ID is unique to
1161 1161 * all objsets open on this system, provided by unique_create().
1162 1162 * The 8-bit fs type must be put in the low bits of fsid[1]
1163 1163 * because that's where other Solaris filesystems put it.
1164 1164 */
1165 1165 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1166 1166 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1167 1167 vfsp->vfs_fsid.val[0] = fsid_guid;
1168 1168 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1169 1169 zfsfstype & 0xFF;
1170 1170
1171 1171 /*
1172 1172 * Set features for file system.
1173 1173 */
1174 1174 zfs_set_fuid_feature(zfsvfs);
1175 1175 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1176 1176 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1177 1177 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1178 1178 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1179 1179 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1180 1180 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1181 1181 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1182 1182 }
1183 1183 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1184 1184
1185 1185 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1186 1186 uint64_t pval;
1187 1187
1188 1188 atime_changed_cb(zfsvfs, B_FALSE);
1189 1189 readonly_changed_cb(zfsvfs, B_TRUE);
1190 1190 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1191 1191 goto out;
1192 1192 xattr_changed_cb(zfsvfs, pval);
1193 1193 zfsvfs->z_issnap = B_TRUE;
1194 1194 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1195 1195
1196 1196 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1197 1197 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1198 1198 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1199 1199 } else {
1200 1200 error = zfsvfs_setup(zfsvfs, B_TRUE);
1201 1201 }
1202 1202
1203 1203 if (!zfsvfs->z_issnap)
1204 1204 zfsctl_create(zfsvfs);
1205 1205 out:
1206 1206 if (error) {
1207 1207 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1208 1208 zfsvfs_free(zfsvfs);
1209 1209 } else {
1210 1210 atomic_add_32(&zfs_active_fs_count, 1);
1211 1211 }
1212 1212
1213 1213 return (error);
1214 1214 }
1215 1215
1216 1216 void
1217 1217 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1218 1218 {
1219 1219 objset_t *os = zfsvfs->z_os;
1220 1220 struct dsl_dataset *ds;
1221 1221
1222 1222 /*
1223 1223 * Unregister properties.
1224 1224 */
1225 1225 if (!dmu_objset_is_snapshot(os)) {
1226 1226 ds = dmu_objset_ds(os);
1227 1227 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1228 1228 zfsvfs) == 0);
1229 1229
1230 1230 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1231 1231 zfsvfs) == 0);
1232 1232
1233 1233 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1234 1234 zfsvfs) == 0);
1235 1235
1236 1236 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1237 1237 zfsvfs) == 0);
1238 1238
1239 1239 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1240 1240 zfsvfs) == 0);
1241 1241
1242 1242 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1243 1243 zfsvfs) == 0);
1244 1244
1245 1245 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1246 1246 zfsvfs) == 0);
1247 1247
1248 1248 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1249 1249 zfsvfs) == 0);
1250 1250
1251 1251 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1252 1252 zfsvfs) == 0);
1253 1253
1254 1254 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1255 1255 acl_inherit_changed_cb, zfsvfs) == 0);
1256 1256
1257 1257 VERIFY(dsl_prop_unregister(ds, "vscan",
1258 1258 vscan_changed_cb, zfsvfs) == 0);
1259 1259 }
1260 1260 }
1261 1261
1262 1262 /*
1263 1263 * Convert a decimal digit string to a uint64_t integer.
1264 1264 */
1265 1265 static int
1266 1266 str_to_uint64(char *str, uint64_t *objnum)
1267 1267 {
1268 1268 uint64_t num = 0;
1269 1269
1270 1270 while (*str) {
1271 1271 if (*str < '0' || *str > '9')
1272 1272 return (EINVAL);
1273 1273
1274 1274 num = num*10 + *str++ - '0';
1275 1275 }
1276 1276
1277 1277 *objnum = num;
1278 1278 return (0);
1279 1279 }
1280 1280
1281 1281 /*
1282 1282 * The boot path passed from the boot loader is in the form of
1283 1283 * "rootpool-name/root-filesystem-object-number'. Convert this
1284 1284 * string to a dataset name: "rootpool-name/root-filesystem-name".
1285 1285 */
1286 1286 static int
1287 1287 zfs_parse_bootfs(char *bpath, char *outpath)
1288 1288 {
1289 1289 char *slashp;
1290 1290 uint64_t objnum;
1291 1291 int error;
1292 1292
1293 1293 if (*bpath == 0 || *bpath == '/')
1294 1294 return (EINVAL);
1295 1295
1296 1296 (void) strcpy(outpath, bpath);
1297 1297
1298 1298 slashp = strchr(bpath, '/');
1299 1299
1300 1300 /* if no '/', just return the pool name */
1301 1301 if (slashp == NULL) {
1302 1302 return (0);
1303 1303 }
1304 1304
1305 1305 /* if not a number, just return the root dataset name */
1306 1306 if (str_to_uint64(slashp+1, &objnum)) {
1307 1307 return (0);
1308 1308 }
1309 1309
1310 1310 *slashp = '\0';
1311 1311 error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1312 1312 *slashp = '/';
1313 1313
1314 1314 return (error);
1315 1315 }
1316 1316
1317 1317 /*
1318 1318 * zfs_check_global_label:
1319 1319 * Check that the hex label string is appropriate for the dataset
1320 1320 * being mounted into the global_zone proper.
1321 1321 *
1322 1322 * Return an error if the hex label string is not default or
1323 1323 * admin_low/admin_high. For admin_low labels, the corresponding
1324 1324 * dataset must be readonly.
1325 1325 */
1326 1326 int
1327 1327 zfs_check_global_label(const char *dsname, const char *hexsl)
1328 1328 {
1329 1329 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1330 1330 return (0);
1331 1331 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1332 1332 return (0);
1333 1333 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1334 1334 /* must be readonly */
1335 1335 uint64_t rdonly;
1336 1336
1337 1337 if (dsl_prop_get_integer(dsname,
1338 1338 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1339 1339 return (EACCES);
1340 1340 return (rdonly ? 0 : EACCES);
1341 1341 }
1342 1342 return (EACCES);
1343 1343 }
1344 1344
1345 1345 /*
1346 1346 * zfs_mount_label_policy:
1347 1347 * Determine whether the mount is allowed according to MAC check.
1348 1348 * by comparing (where appropriate) label of the dataset against
1349 1349 * the label of the zone being mounted into. If the dataset has
1350 1350 * no label, create one.
1351 1351 *
1352 1352 * Returns:
1353 1353 * 0 : access allowed
1354 1354 * >0 : error code, such as EACCES
1355 1355 */
1356 1356 static int
1357 1357 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1358 1358 {
1359 1359 int error, retv;
1360 1360 zone_t *mntzone = NULL;
1361 1361 ts_label_t *mnt_tsl;
1362 1362 bslabel_t *mnt_sl;
1363 1363 bslabel_t ds_sl;
1364 1364 char ds_hexsl[MAXNAMELEN];
1365 1365
1366 1366 retv = EACCES; /* assume the worst */
1367 1367
1368 1368 /*
1369 1369 * Start by getting the dataset label if it exists.
1370 1370 */
1371 1371 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1372 1372 1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1373 1373 if (error)
1374 1374 return (EACCES);
1375 1375
1376 1376 /*
1377 1377 * If labeling is NOT enabled, then disallow the mount of datasets
1378 1378 * which have a non-default label already. No other label checks
1379 1379 * are needed.
1380 1380 */
1381 1381 if (!is_system_labeled()) {
1382 1382 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1383 1383 return (0);
1384 1384 return (EACCES);
1385 1385 }
1386 1386
1387 1387 /*
1388 1388 * Get the label of the mountpoint. If mounting into the global
1389 1389 * zone (i.e. mountpoint is not within an active zone and the
1390 1390 * zoned property is off), the label must be default or
1391 1391 * admin_low/admin_high only; no other checks are needed.
1392 1392 */
1393 1393 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1394 1394 if (mntzone->zone_id == GLOBAL_ZONEID) {
1395 1395 uint64_t zoned;
1396 1396
1397 1397 zone_rele(mntzone);
1398 1398
1399 1399 if (dsl_prop_get_integer(osname,
1400 1400 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1401 1401 return (EACCES);
1402 1402 if (!zoned)
1403 1403 return (zfs_check_global_label(osname, ds_hexsl));
1404 1404 else
1405 1405 /*
1406 1406 * This is the case of a zone dataset being mounted
1407 1407 * initially, before the zone has been fully created;
1408 1408 * allow this mount into global zone.
1409 1409 */
1410 1410 return (0);
1411 1411 }
1412 1412
1413 1413 mnt_tsl = mntzone->zone_slabel;
1414 1414 ASSERT(mnt_tsl != NULL);
1415 1415 label_hold(mnt_tsl);
1416 1416 mnt_sl = label2bslabel(mnt_tsl);
1417 1417
1418 1418 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1419 1419 /*
1420 1420 * The dataset doesn't have a real label, so fabricate one.
1421 1421 */
1422 1422 char *str = NULL;
1423 1423
1424 1424 if (l_to_str_internal(mnt_sl, &str) == 0 &&
1425 1425 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1426 1426 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1427 1427 retv = 0;
1428 1428 if (str != NULL)
1429 1429 kmem_free(str, strlen(str) + 1);
1430 1430 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1431 1431 /*
1432 1432 * Now compare labels to complete the MAC check. If the
1433 1433 * labels are equal then allow access. If the mountpoint
1434 1434 * label dominates the dataset label, allow readonly access.
1435 1435 * Otherwise, access is denied.
1436 1436 */
1437 1437 if (blequal(mnt_sl, &ds_sl))
1438 1438 retv = 0;
1439 1439 else if (bldominates(mnt_sl, &ds_sl)) {
1440 1440 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1441 1441 retv = 0;
1442 1442 }
1443 1443 }
1444 1444
1445 1445 label_rele(mnt_tsl);
1446 1446 zone_rele(mntzone);
1447 1447 return (retv);
1448 1448 }
1449 1449
1450 1450 static int
1451 1451 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1452 1452 {
1453 1453 int error = 0;
1454 1454 static int zfsrootdone = 0;
1455 1455 zfsvfs_t *zfsvfs = NULL;
1456 1456 znode_t *zp = NULL;
1457 1457 vnode_t *vp = NULL;
1458 1458 char *zfs_bootfs;
1459 1459 char *zfs_devid;
1460 1460
1461 1461 ASSERT(vfsp);
1462 1462
1463 1463 /*
1464 1464 * The filesystem that we mount as root is defined in the
1465 1465 * boot property "zfs-bootfs" with a format of
1466 1466 * "poolname/root-dataset-objnum".
1467 1467 */
1468 1468 if (why == ROOT_INIT) {
1469 1469 if (zfsrootdone++)
1470 1470 return (EBUSY);
1471 1471 /*
1472 1472 * the process of doing a spa_load will require the
1473 1473 * clock to be set before we could (for example) do
1474 1474 * something better by looking at the timestamp on
1475 1475 * an uberblock, so just set it to -1.
1476 1476 */
1477 1477 clkset(-1);
1478 1478
1479 1479 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1480 1480 cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1481 1481 "bootfs name");
1482 1482 return (EINVAL);
1483 1483 }
1484 1484 zfs_devid = spa_get_bootprop("diskdevid");
1485 1485 error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1486 1486 if (zfs_devid)
1487 1487 spa_free_bootprop(zfs_devid);
1488 1488 if (error) {
1489 1489 spa_free_bootprop(zfs_bootfs);
1490 1490 cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1491 1491 error);
1492 1492 return (error);
1493 1493 }
1494 1494 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1495 1495 spa_free_bootprop(zfs_bootfs);
1496 1496 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1497 1497 error);
1498 1498 return (error);
1499 1499 }
1500 1500
1501 1501 spa_free_bootprop(zfs_bootfs);
1502 1502
1503 1503 if (error = vfs_lock(vfsp))
1504 1504 return (error);
1505 1505
1506 1506 if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1507 1507 cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1508 1508 goto out;
1509 1509 }
1510 1510
1511 1511 zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1512 1512 ASSERT(zfsvfs);
1513 1513 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1514 1514 cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1515 1515 goto out;
1516 1516 }
1517 1517
1518 1518 vp = ZTOV(zp);
1519 1519 mutex_enter(&vp->v_lock);
1520 1520 vp->v_flag |= VROOT;
1521 1521 mutex_exit(&vp->v_lock);
1522 1522 rootvp = vp;
1523 1523
1524 1524 /*
1525 1525 * Leave rootvp held. The root file system is never unmounted.
1526 1526 */
1527 1527
1528 1528 vfs_add((struct vnode *)0, vfsp,
1529 1529 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1530 1530 out:
1531 1531 vfs_unlock(vfsp);
1532 1532 return (error);
1533 1533 } else if (why == ROOT_REMOUNT) {
1534 1534 readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1535 1535 vfsp->vfs_flag |= VFS_REMOUNT;
1536 1536
1537 1537 /* refresh mount options */
1538 1538 zfs_unregister_callbacks(vfsp->vfs_data);
1539 1539 return (zfs_register_callbacks(vfsp));
1540 1540
1541 1541 } else if (why == ROOT_UNMOUNT) {
1542 1542 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1543 1543 (void) zfs_sync(vfsp, 0, 0);
1544 1544 return (0);
1545 1545 }
1546 1546
1547 1547 /*
1548 1548 * if "why" is equal to anything else other than ROOT_INIT,
1549 1549 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1550 1550 */
1551 1551 return (ENOTSUP);
1552 1552 }
1553 1553
1554 1554 /*ARGSUSED*/
1555 1555 static int
1556 1556 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1557 1557 {
1558 1558 char *osname;
1559 1559 pathname_t spn;
1560 1560 int error = 0;
1561 1561 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ?
1562 1562 UIO_SYSSPACE : UIO_USERSPACE;
1563 1563 int canwrite;
1564 1564
1565 1565 if (mvp->v_type != VDIR)
1566 1566 return (ENOTDIR);
1567 1567
1568 1568 mutex_enter(&mvp->v_lock);
1569 1569 if ((uap->flags & MS_REMOUNT) == 0 &&
1570 1570 (uap->flags & MS_OVERLAY) == 0 &&
1571 1571 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1572 1572 mutex_exit(&mvp->v_lock);
1573 1573 return (EBUSY);
1574 1574 }
1575 1575 mutex_exit(&mvp->v_lock);
1576 1576
1577 1577 /*
1578 1578 * ZFS does not support passing unparsed data in via MS_DATA.
1579 1579 * Users should use the MS_OPTIONSTR interface; this means
1580 1580 * that all option parsing is already done and the options struct
1581 1581 * can be interrogated.
1582 1582 */
1583 1583 if ((uap->flags & MS_DATA) && uap->datalen > 0)
1584 1584 return (EINVAL);
1585 1585
1586 1586 /*
1587 1587 * Get the objset name (the "special" mount argument).
1588 1588 */
1589 1589 if (error = pn_get(uap->spec, fromspace, &spn))
1590 1590 return (error);
1591 1591
1592 1592 osname = spn.pn_path;
1593 1593
1594 1594 /*
1595 1595 * Check for mount privilege?
1596 1596 *
1597 1597 * If we don't have privilege then see if
1598 1598 * we have local permission to allow it
1599 1599 */
1600 1600 error = secpolicy_fs_mount(cr, mvp, vfsp);
1601 1601 if (error) {
1602 1602 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1603 1603 vattr_t vattr;
1604 1604
1605 1605 /*
1606 1606 * Make sure user is the owner of the mount point
1607 1607 * or has sufficient privileges.
1608 1608 */
1609 1609
1610 1610 vattr.va_mask = AT_UID;
1611 1611
1612 1612 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1613 1613 goto out;
1614 1614 }
1615 1615
1616 1616 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1617 1617 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1618 1618 goto out;
1619 1619 }
1620 1620 secpolicy_fs_mount_clearopts(cr, vfsp);
1621 1621 } else {
1622 1622 goto out;
1623 1623 }
1624 1624 }
1625 1625
1626 1626 /*
1627 1627 * Refuse to mount a filesystem if we are in a local zone and the
1628 1628 * dataset is not visible.
1629 1629 */
1630 1630 if (!INGLOBALZONE(curproc) &&
1631 1631 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1632 1632 error = EPERM;
1633 1633 goto out;
1634 1634 }
1635 1635
1636 1636 error = zfs_mount_label_policy(vfsp, osname);
1637 1637 if (error)
1638 1638 goto out;
1639 1639
1640 1640 /*
1641 1641 * When doing a remount, we simply refresh our temporary properties
1642 1642 * according to those options set in the current VFS options.
1643 1643 */
1644 1644 if (uap->flags & MS_REMOUNT) {
1645 1645 /* refresh mount options */
1646 1646 zfs_unregister_callbacks(vfsp->vfs_data);
1647 1647 error = zfs_register_callbacks(vfsp);
1648 1648 goto out;
1649 1649 }
1650 1650
1651 1651 error = zfs_domount(vfsp, osname);
1652 1652
1653 1653 /*
1654 1654 * Add an extra VFS_HOLD on our parent vfs so that it can't
1655 1655 * disappear due to a forced unmount.
1656 1656 */
1657 1657 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1658 1658 VFS_HOLD(mvp->v_vfsp);
1659 1659
1660 1660 out:
1661 1661 pn_free(&spn);
1662 1662 return (error);
1663 1663 }
1664 1664
1665 1665 static int
1666 1666 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1667 1667 {
1668 1668 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1669 1669 dev32_t d32;
1670 1670 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1671 1671
1672 1672 ZFS_ENTER(zfsvfs);
1673 1673
1674 1674 dmu_objset_space(zfsvfs->z_os,
1675 1675 &refdbytes, &availbytes, &usedobjs, &availobjs);
1676 1676
1677 1677 /*
1678 1678 * The underlying storage pool actually uses multiple block sizes.
1679 1679 * We report the fragsize as the smallest block size we support,
1680 1680 * and we report our blocksize as the filesystem's maximum blocksize.
1681 1681 */
1682 1682 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1683 1683 statp->f_bsize = zfsvfs->z_max_blksz;
1684 1684
1685 1685 /*
1686 1686 * The following report "total" blocks of various kinds in the
1687 1687 * file system, but reported in terms of f_frsize - the
1688 1688 * "fragment" size.
1689 1689 */
1690 1690
1691 1691 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1692 1692 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1693 1693 statp->f_bavail = statp->f_bfree; /* no root reservation */
1694 1694
1695 1695 /*
1696 1696 * statvfs() should really be called statufs(), because it assumes
1697 1697 * static metadata. ZFS doesn't preallocate files, so the best
1698 1698 * we can do is report the max that could possibly fit in f_files,
1699 1699 * and that minus the number actually used in f_ffree.
1700 1700 * For f_ffree, report the smaller of the number of object available
1701 1701 * and the number of blocks (each object will take at least a block).
1702 1702 */
1703 1703 statp->f_ffree = MIN(availobjs, statp->f_bfree);
1704 1704 statp->f_favail = statp->f_ffree; /* no "root reservation" */
1705 1705 statp->f_files = statp->f_ffree + usedobjs;
1706 1706
1707 1707 (void) cmpldev(&d32, vfsp->vfs_dev);
1708 1708 statp->f_fsid = d32;
1709 1709
1710 1710 /*
1711 1711 * We're a zfs filesystem.
1712 1712 */
1713 1713 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1714 1714
1715 1715 statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1716 1716
1717 1717 statp->f_namemax = ZFS_MAXNAMELEN;
1718 1718
1719 1719 /*
1720 1720 * We have all of 32 characters to stuff a string here.
1721 1721 * Is there anything useful we could/should provide?
1722 1722 */
1723 1723 bzero(statp->f_fstr, sizeof (statp->f_fstr));
1724 1724
1725 1725 ZFS_EXIT(zfsvfs);
1726 1726 return (0);
1727 1727 }
1728 1728
1729 1729 static int
1730 1730 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1731 1731 {
1732 1732 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1733 1733 znode_t *rootzp;
1734 1734 int error;
1735 1735
1736 1736 ZFS_ENTER(zfsvfs);
1737 1737
1738 1738 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1739 1739 if (error == 0)
1740 1740 *vpp = ZTOV(rootzp);
1741 1741
1742 1742 ZFS_EXIT(zfsvfs);
1743 1743 return (error);
1744 1744 }
1745 1745
1746 1746 /*
1747 1747 * Teardown the zfsvfs::z_os.
1748 1748 *
1749 1749 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1750 1750 * and 'z_teardown_inactive_lock' held.
1751 1751 */
1752 1752 static int
1753 1753 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1754 1754 {
1755 1755 znode_t *zp;
1756 1756
1757 1757 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1758 1758
1759 1759 if (!unmounting) {
1760 1760 /*
1761 1761 * We purge the parent filesystem's vfsp as the parent
1762 1762 * filesystem and all of its snapshots have their vnode's
1763 1763 * v_vfsp set to the parent's filesystem's vfsp. Note,
1764 1764 * 'z_parent' is self referential for non-snapshots.
1765 1765 */
1766 1766 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1767 1767 }
1768 1768
1769 1769 /*
1770 1770 * Close the zil. NB: Can't close the zil while zfs_inactive
1771 1771 * threads are blocked as zil_close can call zfs_inactive.
1772 1772 */
1773 1773 if (zfsvfs->z_log) {
1774 1774 zil_close(zfsvfs->z_log);
1775 1775 zfsvfs->z_log = NULL;
1776 1776 }
1777 1777
1778 1778 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1779 1779
1780 1780 /*
1781 1781 * If we are not unmounting (ie: online recv) and someone already
1782 1782 * unmounted this file system while we were doing the switcheroo,
1783 1783 * or a reopen of z_os failed then just bail out now.
1784 1784 */
1785 1785 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1786 1786 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1787 1787 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1788 1788 return (EIO);
1789 1789 }
1790 1790
1791 1791 /*
1792 1792 * At this point there are no vops active, and any new vops will
1793 1793 * fail with EIO since we have z_teardown_lock for writer (only
1794 1794 * relavent for forced unmount).
1795 1795 *
1796 1796 * Release all holds on dbufs.
1797 1797 */
1798 1798 mutex_enter(&zfsvfs->z_znodes_lock);
1799 1799 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1800 1800 zp = list_next(&zfsvfs->z_all_znodes, zp))
1801 1801 if (zp->z_sa_hdl) {
1802 1802 ASSERT(ZTOV(zp)->v_count > 0);
1803 1803 zfs_znode_dmu_fini(zp);
1804 1804 }
1805 1805 mutex_exit(&zfsvfs->z_znodes_lock);
1806 1806
1807 1807 /*
1808 1808 * If we are unmounting, set the unmounted flag and let new vops
1809 1809 * unblock. zfs_inactive will have the unmounted behavior, and all
1810 1810 * other vops will fail with EIO.
1811 1811 */
1812 1812 if (unmounting) {
1813 1813 zfsvfs->z_unmounted = B_TRUE;
1814 1814 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1815 1815 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1816 1816 }
1817 1817
1818 1818 /*
1819 1819 * z_os will be NULL if there was an error in attempting to reopen
1820 1820 * zfsvfs, so just return as the properties had already been
1821 1821 * unregistered and cached data had been evicted before.
1822 1822 */
1823 1823 if (zfsvfs->z_os == NULL)
1824 1824 return (0);
1825 1825
1826 1826 /*
1827 1827 * Unregister properties.
1828 1828 */
1829 1829 zfs_unregister_callbacks(zfsvfs);
1830 1830
1831 1831 /*
1832 1832 * Evict cached data
1833 1833 */
1834 1834 if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1835 1835 if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1836 1836 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1837 1837 (void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1838 1838
1839 1839 return (0);
1840 1840 }
1841 1841
1842 1842 /*ARGSUSED*/
1843 1843 static int
1844 1844 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1845 1845 {
1846 1846 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1847 1847 objset_t *os;
1848 1848 int ret;
1849 1849
1850 1850 ret = secpolicy_fs_unmount(cr, vfsp);
1851 1851 if (ret) {
1852 1852 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1853 1853 ZFS_DELEG_PERM_MOUNT, cr))
1854 1854 return (ret);
1855 1855 }
1856 1856
1857 1857 /*
1858 1858 * We purge the parent filesystem's vfsp as the parent filesystem
1859 1859 * and all of its snapshots have their vnode's v_vfsp set to the
1860 1860 * parent's filesystem's vfsp. Note, 'z_parent' is self
1861 1861 * referential for non-snapshots.
1862 1862 */
1863 1863 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1864 1864
1865 1865 /*
1866 1866 * Unmount any snapshots mounted under .zfs before unmounting the
1867 1867 * dataset itself.
1868 1868 */
1869 1869 if (zfsvfs->z_ctldir != NULL &&
1870 1870 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1871 1871 return (ret);
1872 1872 }
1873 1873
1874 1874 if (!(fflag & MS_FORCE)) {
1875 1875 /*
1876 1876 * Check the number of active vnodes in the file system.
1877 1877 * Our count is maintained in the vfs structure, but the
1878 1878 * number is off by 1 to indicate a hold on the vfs
1879 1879 * structure itself.
1880 1880 *
1881 1881 * The '.zfs' directory maintains a reference of its
1882 1882 * own, and any active references underneath are
1883 1883 * reflected in the vnode count.
1884 1884 */
1885 1885 if (zfsvfs->z_ctldir == NULL) {
1886 1886 if (vfsp->vfs_count > 1)
1887 1887 return (EBUSY);
1888 1888 } else {
1889 1889 if (vfsp->vfs_count > 2 ||
1890 1890 zfsvfs->z_ctldir->v_count > 1)
1891 1891 return (EBUSY);
1892 1892 }
1893 1893 }
1894 1894
1895 1895 vfsp->vfs_flag |= VFS_UNMOUNTED;
1896 1896
1897 1897 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1898 1898 os = zfsvfs->z_os;
1899 1899
1900 1900 /*
1901 1901 * z_os will be NULL if there was an error in
1902 1902 * attempting to reopen zfsvfs.
1903 1903 */
1904 1904 if (os != NULL) {
1905 1905 /*
1906 1906 * Unset the objset user_ptr.
1907 1907 */
1908 1908 mutex_enter(&os->os_user_ptr_lock);
1909 1909 dmu_objset_set_user(os, NULL);
1910 1910 mutex_exit(&os->os_user_ptr_lock);
1911 1911
1912 1912 /*
1913 1913 * Finally release the objset
1914 1914 */
1915 1915 dmu_objset_disown(os, zfsvfs);
1916 1916 }
1917 1917
1918 1918 /*
1919 1919 * We can now safely destroy the '.zfs' directory node.
1920 1920 */
1921 1921 if (zfsvfs->z_ctldir != NULL)
1922 1922 zfsctl_destroy(zfsvfs);
1923 1923
1924 1924 return (0);
1925 1925 }
1926 1926
1927 1927 static int
1928 1928 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1929 1929 {
1930 1930 zfsvfs_t *zfsvfs = vfsp->vfs_data;
1931 1931 znode_t *zp;
1932 1932 uint64_t object = 0;
1933 1933 uint64_t fid_gen = 0;
1934 1934 uint64_t gen_mask;
1935 1935 uint64_t zp_gen;
1936 1936 int i, err;
1937 1937
1938 1938 *vpp = NULL;
1939 1939
1940 1940 ZFS_ENTER(zfsvfs);
1941 1941
1942 1942 if (fidp->fid_len == LONG_FID_LEN) {
1943 1943 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1944 1944 uint64_t objsetid = 0;
1945 1945 uint64_t setgen = 0;
1946 1946
1947 1947 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1948 1948 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1949 1949
1950 1950 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1951 1951 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1952 1952
1953 1953 ZFS_EXIT(zfsvfs);
1954 1954
1955 1955 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1956 1956 if (err)
1957 1957 return (EINVAL);
1958 1958 ZFS_ENTER(zfsvfs);
1959 1959 }
1960 1960
1961 1961 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1962 1962 zfid_short_t *zfid = (zfid_short_t *)fidp;
1963 1963
1964 1964 for (i = 0; i < sizeof (zfid->zf_object); i++)
1965 1965 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1966 1966
1967 1967 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1968 1968 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1969 1969 } else {
1970 1970 ZFS_EXIT(zfsvfs);
1971 1971 return (EINVAL);
1972 1972 }
1973 1973
1974 1974 /* A zero fid_gen means we are in the .zfs control directories */
1975 1975 if (fid_gen == 0 &&
1976 1976 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1977 1977 *vpp = zfsvfs->z_ctldir;
1978 1978 ASSERT(*vpp != NULL);
1979 1979 if (object == ZFSCTL_INO_SNAPDIR) {
1980 1980 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1981 1981 0, NULL, NULL, NULL, NULL, NULL) == 0);
1982 1982 } else {
1983 1983 VN_HOLD(*vpp);
1984 1984 }
1985 1985 ZFS_EXIT(zfsvfs);
1986 1986 return (0);
1987 1987 }
1988 1988
1989 1989 gen_mask = -1ULL >> (64 - 8 * i);
1990 1990
1991 1991 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1992 1992 if (err = zfs_zget(zfsvfs, object, &zp)) {
1993 1993 ZFS_EXIT(zfsvfs);
1994 1994 return (err);
1995 1995 }
1996 1996 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1997 1997 sizeof (uint64_t));
1998 1998 zp_gen = zp_gen & gen_mask;
1999 1999 if (zp_gen == 0)
2000 2000 zp_gen = 1;
2001 2001 if (zp->z_unlinked || zp_gen != fid_gen) {
2002 2002 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2003 2003 VN_RELE(ZTOV(zp));
2004 2004 ZFS_EXIT(zfsvfs);
2005 2005 return (EINVAL);
2006 2006 }
2007 2007
2008 2008 *vpp = ZTOV(zp);
2009 2009 ZFS_EXIT(zfsvfs);
2010 2010 return (0);
2011 2011 }
2012 2012
2013 2013 /*
2014 2014 * Block out VOPs and close zfsvfs_t::z_os
2015 2015 *
2016 2016 * Note, if successful, then we return with the 'z_teardown_lock' and
2017 2017 * 'z_teardown_inactive_lock' write held.
2018 2018 */
2019 2019 int
2020 2020 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2021 2021 {
2022 2022 int error;
2023 2023
2024 2024 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2025 2025 return (error);
2026 2026 dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2027 2027
2028 2028 return (0);
2029 2029 }
2030 2030
2031 2031 /*
2032 2032 * Reopen zfsvfs_t::z_os and release VOPs.
2033 2033 */
2034 2034 int
2035 2035 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2036 2036 {
2037 2037 int err;
2038 2038
2039 2039 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2040 2040 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2041 2041
2042 2042 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2043 2043 &zfsvfs->z_os);
2044 2044 if (err) {
2045 2045 zfsvfs->z_os = NULL;
2046 2046 } else {
2047 2047 znode_t *zp;
2048 2048 uint64_t sa_obj = 0;
2049 2049
2050 2050 /*
2051 2051 * Make sure version hasn't changed
2052 2052 */
2053 2053
2054 2054 err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2055 2055 &zfsvfs->z_version);
2056 2056
2057 2057 if (err)
2058 2058 goto bail;
2059 2059
2060 2060 err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2061 2061 ZFS_SA_ATTRS, 8, 1, &sa_obj);
2062 2062
2063 2063 if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2064 2064 goto bail;
2065 2065
2066 2066 if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2067 2067 zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0)
2068 2068 goto bail;
2069 2069
2070 2070 if (zfsvfs->z_version >= ZPL_VERSION_SA)
2071 2071 sa_register_update_callback(zfsvfs->z_os,
2072 2072 zfs_sa_upgrade);
2073 2073
2074 2074 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2075 2075
2076 2076 zfs_set_fuid_feature(zfsvfs);
2077 2077
2078 2078 /*
2079 2079 * Attempt to re-establish all the active znodes with
2080 2080 * their dbufs. If a zfs_rezget() fails, then we'll let
2081 2081 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2082 2082 * when they try to use their znode.
2083 2083 */
2084 2084 mutex_enter(&zfsvfs->z_znodes_lock);
2085 2085 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2086 2086 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2087 2087 (void) zfs_rezget(zp);
2088 2088 }
2089 2089 mutex_exit(&zfsvfs->z_znodes_lock);
2090 2090 }
2091 2091
2092 2092 bail:
2093 2093 /* release the VOPs */
2094 2094 rw_exit(&zfsvfs->z_teardown_inactive_lock);
2095 2095 rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2096 2096
2097 2097 if (err) {
2098 2098 /*
2099 2099 * Since we couldn't reopen zfsvfs::z_os, or
2100 2100 * setup the sa framework force unmount this file system.
2101 2101 */
2102 2102 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2103 2103 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2104 2104 }
2105 2105 return (err);
2106 2106 }
2107 2107
2108 2108 static void
2109 2109 zfs_freevfs(vfs_t *vfsp)
2110 2110 {
2111 2111 zfsvfs_t *zfsvfs = vfsp->vfs_data;
2112 2112
2113 2113 /*
2114 2114 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2115 2115 * from zfs_mount(). Release it here. If we came through
2116 2116 * zfs_mountroot() instead, we didn't grab an extra hold, so
2117 2117 * skip the VFS_RELE for rootvfs.
2118 2118 */
2119 2119 if (zfsvfs->z_issnap && (vfsp != rootvfs))
2120 2120 VFS_RELE(zfsvfs->z_parent->z_vfs);
2121 2121
2122 2122 zfsvfs_free(zfsvfs);
2123 2123
2124 2124 atomic_add_32(&zfs_active_fs_count, -1);
2125 2125 }
2126 2126
2127 2127 /*
2128 2128 * VFS_INIT() initialization. Note that there is no VFS_FINI(),
2129 2129 * so we can't safely do any non-idempotent initialization here.
2130 2130 * Leave that to zfs_init() and zfs_fini(), which are called
2131 2131 * from the module's _init() and _fini() entry points.
2132 2132 */
2133 2133 /*ARGSUSED*/
2134 2134 static int
2135 2135 zfs_vfsinit(int fstype, char *name)
2136 2136 {
2137 2137 int error;
2138 2138
2139 2139 zfsfstype = fstype;
2140 2140
2141 2141 /*
2142 2142 * Setup vfsops and vnodeops tables.
2143 2143 */
2144 2144 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2145 2145 if (error != 0) {
2146 2146 cmn_err(CE_WARN, "zfs: bad vfs ops template");
2147 2147 }
2148 2148
2149 2149 error = zfs_create_op_tables();
2150 2150 if (error) {
2151 2151 zfs_remove_op_tables();
2152 2152 cmn_err(CE_WARN, "zfs: bad vnode ops template");
2153 2153 (void) vfs_freevfsops_by_type(zfsfstype);
2154 2154 return (error);
2155 2155 }
2156 2156
2157 2157 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2158 2158
2159 2159 /*
2160 2160 * Unique major number for all zfs mounts.
2161 2161 * If we run out of 32-bit minors, we'll getudev() another major.
2162 2162 */
2163 2163 zfs_major = ddi_name_to_major(ZFS_DRIVER);
2164 2164 zfs_minor = ZFS_MIN_MINOR;
2165 2165
2166 2166 return (0);
2167 2167 }
2168 2168
2169 2169 void
2170 2170 zfs_init(void)
2171 2171 {
2172 2172 /*
2173 2173 * Initialize .zfs directory structures
2174 2174 */
2175 2175 zfsctl_init();
2176 2176
2177 2177 /*
2178 2178 * Initialize znode cache, vnode ops, etc...
2179 2179 */
2180 2180 zfs_znode_init();
2181 2181
2182 2182 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2183 2183 }
2184 2184
2185 2185 void
2186 2186 zfs_fini(void)
2187 2187 {
2188 2188 zfsctl_fini();
2189 2189 zfs_znode_fini();
2190 2190 }
2191 2191
2192 2192 int
2193 2193 zfs_busy(void)
2194 2194 {
2195 2195 return (zfs_active_fs_count != 0);
2196 2196 }
2197 2197
2198 2198 int
2199 2199 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2200 2200 {
2201 2201 int error;
2202 2202 objset_t *os = zfsvfs->z_os;
2203 2203 dmu_tx_t *tx;
2204 2204
2205 2205 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2206 2206 return (EINVAL);
2207 2207
2208 2208 if (newvers < zfsvfs->z_version)
2209 2209 return (EINVAL);
2210 2210
2211 2211 if (zfs_spa_version_map(newvers) >
2212 2212 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2213 2213 return (ENOTSUP);
2214 2214
2215 2215 tx = dmu_tx_create(os);
2216 2216 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2217 2217 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2218 2218 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2219 2219 ZFS_SA_ATTRS);
2220 2220 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2221 2221 }
2222 2222 error = dmu_tx_assign(tx, TXG_WAIT);
2223 2223 if (error) {
2224 2224 dmu_tx_abort(tx);
2225 2225 return (error);
2226 2226 }
2227 2227
2228 2228 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2229 2229 8, 1, &newvers, tx);
2230 2230
2231 2231 if (error) {
2232 2232 dmu_tx_commit(tx);
2233 2233 return (error);
2234 2234 }
2235 2235
↓ open down ↓ |
2235 lines elided |
↑ open up ↑ |
2236 2236 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2237 2237 uint64_t sa_obj;
2238 2238
2239 2239 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2240 2240 SPA_VERSION_SA);
2241 2241 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2242 2242 DMU_OT_NONE, 0, tx);
2243 2243
2244 2244 error = zap_add(os, MASTER_NODE_OBJ,
2245 2245 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2246 - ASSERT3U(error, ==, 0);
2246 + ASSERT0(error);
2247 2247
2248 2248 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2249 2249 sa_register_update_callback(os, zfs_sa_upgrade);
2250 2250 }
2251 2251
2252 2252 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2253 2253 "from %llu to %llu", zfsvfs->z_version, newvers);
2254 2254
2255 2255 dmu_tx_commit(tx);
2256 2256
2257 2257 zfsvfs->z_version = newvers;
2258 2258
2259 2259 zfs_set_fuid_feature(zfsvfs);
2260 2260
2261 2261 return (0);
2262 2262 }
2263 2263
2264 2264 /*
2265 2265 * Read a property stored within the master node.
2266 2266 */
2267 2267 int
2268 2268 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2269 2269 {
2270 2270 const char *pname;
2271 2271 int error = ENOENT;
2272 2272
2273 2273 /*
2274 2274 * Look up the file system's value for the property. For the
2275 2275 * version property, we look up a slightly different string.
2276 2276 */
2277 2277 if (prop == ZFS_PROP_VERSION)
2278 2278 pname = ZPL_VERSION_STR;
2279 2279 else
2280 2280 pname = zfs_prop_to_name(prop);
2281 2281
2282 2282 if (os != NULL)
2283 2283 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2284 2284
2285 2285 if (error == ENOENT) {
2286 2286 /* No value set, use the default value */
2287 2287 switch (prop) {
2288 2288 case ZFS_PROP_VERSION:
2289 2289 *value = ZPL_VERSION;
2290 2290 break;
2291 2291 case ZFS_PROP_NORMALIZE:
2292 2292 case ZFS_PROP_UTF8ONLY:
2293 2293 *value = 0;
2294 2294 break;
2295 2295 case ZFS_PROP_CASE:
2296 2296 *value = ZFS_CASE_SENSITIVE;
2297 2297 break;
2298 2298 default:
2299 2299 return (error);
2300 2300 }
2301 2301 error = 0;
2302 2302 }
2303 2303 return (error);
2304 2304 }
2305 2305
2306 2306 static vfsdef_t vfw = {
2307 2307 VFSDEF_VERSION,
2308 2308 MNTTYPE_ZFS,
2309 2309 zfs_vfsinit,
2310 2310 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2311 2311 VSW_XID|VSW_ZMOUNT,
2312 2312 &zfs_mntopts
2313 2313 };
2314 2314
2315 2315 struct modlfs zfs_modlfs = {
2316 2316 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2317 2317 };
↓ open down ↓ |
61 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX