1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 31 32 /* 33 * This file contains the code to implement file range locking in 34 * ZFS, although there isn't much specific to ZFS (all that comes to mind 35 * support for growing the blocksize). 36 * 37 * Interface 38 * --------- 39 * Defined in zfs_rlock.h but essentially: 40 * rl = zfs_range_lock(zp, off, len, lock_type); 41 * zfs_range_unlock(rl); 42 * zfs_range_reduce(rl, off, len); 43 * 44 * AVL tree 45 * -------- 46 * An AVL tree is used to maintain the state of the existing ranges 47 * that are locked for exclusive (writer) or shared (reader) use. 48 * The starting range offset is used for searching and sorting the tree. 49 * 50 * Common case 51 * ----------- 52 * The (hopefully) usual case is of no overlaps or contention for 53 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree 54 * searched that finds no overlap, and *this* rl_t is placed in the tree. 55 * 56 * Overlaps/Reference counting/Proxy locks 57 * --------------------------------------- 58 * The avl code only allows one node at a particular offset. Also it's very 59 * inefficient to search through all previous entries looking for overlaps 60 * (because the very 1st in the ordered list might be at offset 0 but 61 * cover the whole file). 62 * So this implementation uses reference counts and proxy range locks. 63 * Firstly, only reader locks use reference counts and proxy locks, 64 * because writer locks are exclusive. 65 * When a reader lock overlaps with another then a proxy lock is created 66 * for that range and replaces the original lock. If the overlap 67 * is exact then the reference count of the proxy is simply incremented. 68 * Otherwise, the proxy lock is split into smaller lock ranges and 69 * new proxy locks created for non overlapping ranges. 70 * The reference counts are adjusted accordingly. 71 * Meanwhile, the orginal lock is kept around (this is the callers handle) 72 * and its offset and length are used when releasing the lock. 73 * 74 * Thread coordination 75 * ------------------- 76 * In order to make wakeups efficient and to ensure multiple continuous 77 * readers on a range don't starve a writer for the same range lock, 78 * two condition variables are allocated in each rl_t. 79 * If a writer (or reader) can't get a range it initialises the writer 80 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting; 81 * and waits on that cv. When a thread unlocks that range it wakes up all 82 * writers then all readers before destroying the lock. 83 * 84 * Append mode writes 85 * ------------------ 86 * Append mode writes need to lock a range at the end of a file. 87 * The offset of the end of the file is determined under the 88 * range locking mutex, and the lock type converted from RL_APPEND to 89 * RL_WRITER and the range locked. 90 * 91 * Grow block handling 92 * ------------------- 93 * ZFS supports multiple block sizes currently upto 128K. The smallest 94 * block size is used for the file which is grown as needed. During this 95 * growth all other writers and readers must be excluded. 96 * So if the block size needs to be grown then the whole file is 97 * exclusively locked, then later the caller will reduce the lock 98 * range to just the range to be written using zfs_reduce_range. 99 */ 100 101 #include <sys/zfs_rlock.h> 102 103 /* 104 * Check if a write lock can be grabbed, or wait and recheck until available. 105 */ 106 static void 107 zfs_range_lock_writer(znode_t *zp, rl_t *new) 108 { 109 avl_tree_t *tree = &zp->z_range_avl; 110 rl_t *rl; 111 avl_index_t where; 112 uint64_t end_size; 113 uint64_t off = new->r_off; 114 uint64_t len = new->r_len; 115 116 for (;;) { 117 /* 118 * Range locking is also used by zvol and uses a 119 * dummied up znode. However, for zvol, we don't need to 120 * append or grow blocksize, and besides we don't have 121 * a "sa" data or z_zfsvfs - so skip that processing. 122 * 123 * Yes, this is ugly, and would be solved by not handling 124 * grow or append in range lock code. If that was done then 125 * we could make the range locking code generically available 126 * to other non-zfs consumers. 127 */ 128 if (zp->z_vnode) { /* caller is ZPL */ 129 /* 130 * If in append mode pick up the current end of file. 131 * This is done under z_range_lock to avoid races. 132 */ 133 if (new->r_type == RL_APPEND) 134 new->r_off = zp->z_size; 135 136 /* 137 * If we need to grow the block size then grab the whole 138 * file range. This is also done under z_range_lock to 139 * avoid races. 140 */ 141 end_size = MAX(zp->z_size, new->r_off + len); 142 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) || 143 zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) { 144 new->r_off = 0; 145 new->r_len = UINT64_MAX; 146 } 147 } 148 149 /* 150 * First check for the usual case of no locks 151 */ 152 if (avl_numnodes(tree) == 0) { 153 new->r_type = RL_WRITER; /* convert to writer */ 154 avl_add(tree, new); 155 return; 156 } 157 158 /* 159 * Look for any locks in the range. 160 */ 161 rl = avl_find(tree, new, &where); 162 if (rl) 163 goto wait; /* already locked at same offset */ 164 165 rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 166 if (rl && (rl->r_off < new->r_off + new->r_len)) 167 goto wait; 168 169 rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 170 if (rl && rl->r_off + rl->r_len > new->r_off) 171 goto wait; 172 173 new->r_type = RL_WRITER; /* convert possible RL_APPEND */ 174 avl_insert(tree, new, where); 175 return; 176 wait: 177 if (!rl->r_write_wanted) { 178 cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL); 179 rl->r_write_wanted = B_TRUE; 180 } 181 cv_wait(&rl->r_wr_cv, &zp->z_range_lock); 182 183 /* reset to original */ 184 new->r_off = off; 185 new->r_len = len; 186 } 187 } 188 189 /* 190 * If this is an original (non-proxy) lock then replace it by 191 * a proxy and return the proxy. 192 */ 193 static rl_t * 194 zfs_range_proxify(avl_tree_t *tree, rl_t *rl) 195 { 196 rl_t *proxy; 197 198 if (rl->r_proxy) 199 return (rl); /* already a proxy */ 200 201 ASSERT3U(rl->r_cnt, ==, 1); 202 ASSERT(rl->r_write_wanted == B_FALSE); 203 ASSERT(rl->r_read_wanted == B_FALSE); 204 avl_remove(tree, rl); 205 rl->r_cnt = 0; 206 207 /* create a proxy range lock */ 208 proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP); 209 proxy->r_off = rl->r_off; 210 proxy->r_len = rl->r_len; 211 proxy->r_cnt = 1; 212 proxy->r_type = RL_READER; 213 proxy->r_proxy = B_TRUE; 214 proxy->r_write_wanted = B_FALSE; 215 proxy->r_read_wanted = B_FALSE; 216 avl_add(tree, proxy); 217 218 return (proxy); 219 } 220 221 /* 222 * Split the range lock at the supplied offset 223 * returning the *front* proxy. 224 */ 225 static rl_t * 226 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off) 227 { 228 rl_t *front, *rear; 229 230 ASSERT3U(rl->r_len, >, 1); 231 ASSERT3U(off, >, rl->r_off); 232 ASSERT3U(off, <, rl->r_off + rl->r_len); 233 ASSERT(rl->r_write_wanted == B_FALSE); 234 ASSERT(rl->r_read_wanted == B_FALSE); 235 236 /* create the rear proxy range lock */ 237 rear = kmem_alloc(sizeof (rl_t), KM_SLEEP); 238 rear->r_off = off; 239 rear->r_len = rl->r_off + rl->r_len - off; 240 rear->r_cnt = rl->r_cnt; 241 rear->r_type = RL_READER; 242 rear->r_proxy = B_TRUE; 243 rear->r_write_wanted = B_FALSE; 244 rear->r_read_wanted = B_FALSE; 245 246 front = zfs_range_proxify(tree, rl); 247 front->r_len = off - rl->r_off; 248 249 avl_insert_here(tree, rear, front, AVL_AFTER); 250 return (front); 251 } 252 253 /* 254 * Create and add a new proxy range lock for the supplied range. 255 */ 256 static void 257 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len) 258 { 259 rl_t *rl; 260 261 ASSERT(len); 262 rl = kmem_alloc(sizeof (rl_t), KM_SLEEP); 263 rl->r_off = off; 264 rl->r_len = len; 265 rl->r_cnt = 1; 266 rl->r_type = RL_READER; 267 rl->r_proxy = B_TRUE; 268 rl->r_write_wanted = B_FALSE; 269 rl->r_read_wanted = B_FALSE; 270 avl_add(tree, rl); 271 } 272 273 static void 274 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where) 275 { 276 rl_t *next; 277 uint64_t off = new->r_off; 278 uint64_t len = new->r_len; 279 280 /* 281 * prev arrives either: 282 * - pointing to an entry at the same offset 283 * - pointing to the entry with the closest previous offset whose 284 * range may overlap with the new range 285 * - null, if there were no ranges starting before the new one 286 */ 287 if (prev) { 288 if (prev->r_off + prev->r_len <= off) { 289 prev = NULL; 290 } else if (prev->r_off != off) { 291 /* 292 * convert to proxy if needed then 293 * split this entry and bump ref count 294 */ 295 prev = zfs_range_split(tree, prev, off); 296 prev = AVL_NEXT(tree, prev); /* move to rear range */ 297 } 298 } 299 ASSERT((prev == NULL) || (prev->r_off == off)); 300 301 if (prev) 302 next = prev; 303 else 304 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 305 306 if (next == NULL || off + len <= next->r_off) { 307 /* no overlaps, use the original new rl_t in the tree */ 308 avl_insert(tree, new, where); 309 return; 310 } 311 312 if (off < next->r_off) { 313 /* Add a proxy for initial range before the overlap */ 314 zfs_range_new_proxy(tree, off, next->r_off - off); 315 } 316 317 new->r_cnt = 0; /* will use proxies in tree */ 318 /* 319 * We now search forward through the ranges, until we go past the end 320 * of the new range. For each entry we make it a proxy if it 321 * isn't already, then bump its reference count. If there's any 322 * gaps between the ranges then we create a new proxy range. 323 */ 324 for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) { 325 if (off + len <= next->r_off) 326 break; 327 if (prev && prev->r_off + prev->r_len < next->r_off) { 328 /* there's a gap */ 329 ASSERT3U(next->r_off, >, prev->r_off + prev->r_len); 330 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 331 next->r_off - (prev->r_off + prev->r_len)); 332 } 333 if (off + len == next->r_off + next->r_len) { 334 /* exact overlap with end */ 335 next = zfs_range_proxify(tree, next); 336 next->r_cnt++; 337 return; 338 } 339 if (off + len < next->r_off + next->r_len) { 340 /* new range ends in the middle of this block */ 341 next = zfs_range_split(tree, next, off + len); 342 next->r_cnt++; 343 return; 344 } 345 ASSERT3U(off + len, >, next->r_off + next->r_len); 346 next = zfs_range_proxify(tree, next); 347 next->r_cnt++; 348 } 349 350 /* Add the remaining end range. */ 351 zfs_range_new_proxy(tree, prev->r_off + prev->r_len, 352 (off + len) - (prev->r_off + prev->r_len)); 353 } 354 355 /* 356 * Check if a reader lock can be grabbed, or wait and recheck until available. 357 */ 358 static void 359 zfs_range_lock_reader(znode_t *zp, rl_t *new) 360 { 361 avl_tree_t *tree = &zp->z_range_avl; 362 rl_t *prev, *next; 363 avl_index_t where; 364 uint64_t off = new->r_off; 365 uint64_t len = new->r_len; 366 367 /* 368 * Look for any writer locks in the range. 369 */ 370 retry: 371 prev = avl_find(tree, new, &where); 372 if (prev == NULL) 373 prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE); 374 375 /* 376 * Check the previous range for a writer lock overlap. 377 */ 378 if (prev && (off < prev->r_off + prev->r_len)) { 379 if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) { 380 if (!prev->r_read_wanted) { 381 cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL); 382 prev->r_read_wanted = B_TRUE; 383 } 384 cv_wait(&prev->r_rd_cv, &zp->z_range_lock); 385 goto retry; 386 } 387 if (off + len < prev->r_off + prev->r_len) 388 goto got_lock; 389 } 390 391 /* 392 * Search through the following ranges to see if there's 393 * write lock any overlap. 394 */ 395 if (prev) 396 next = AVL_NEXT(tree, prev); 397 else 398 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER); 399 for (; next; next = AVL_NEXT(tree, next)) { 400 if (off + len <= next->r_off) 401 goto got_lock; 402 if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) { 403 if (!next->r_read_wanted) { 404 cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL); 405 next->r_read_wanted = B_TRUE; 406 } 407 cv_wait(&next->r_rd_cv, &zp->z_range_lock); 408 goto retry; 409 } 410 if (off + len <= next->r_off + next->r_len) 411 goto got_lock; 412 } 413 414 got_lock: 415 /* 416 * Add the read lock, which may involve splitting existing 417 * locks and bumping ref counts (r_cnt). 418 */ 419 zfs_range_add_reader(tree, new, prev, where); 420 } 421 422 /* 423 * Lock a range (offset, length) as either shared (RL_READER) 424 * or exclusive (RL_WRITER). Returns the range lock structure 425 * for later unlocking or reduce range (if entire file 426 * previously locked as RL_WRITER). 427 */ 428 rl_t * 429 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type) 430 { 431 rl_t *new; 432 433 ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND); 434 435 new = kmem_alloc(sizeof (rl_t), KM_SLEEP); 436 new->r_zp = zp; 437 new->r_off = off; 438 if (len + off < off) /* overflow */ 439 len = UINT64_MAX - off; 440 new->r_len = len; 441 new->r_cnt = 1; /* assume it's going to be in the tree */ 442 new->r_type = type; 443 new->r_proxy = B_FALSE; 444 new->r_write_wanted = B_FALSE; 445 new->r_read_wanted = B_FALSE; 446 447 mutex_enter(&zp->z_range_lock); 448 if (type == RL_READER) { 449 /* 450 * First check for the usual case of no locks 451 */ 452 if (avl_numnodes(&zp->z_range_avl) == 0) 453 avl_add(&zp->z_range_avl, new); 454 else 455 zfs_range_lock_reader(zp, new); 456 } else 457 zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */ 458 mutex_exit(&zp->z_range_lock); 459 return (new); 460 } 461 462 /* 463 * Unlock a reader lock 464 */ 465 static void 466 zfs_range_unlock_reader(znode_t *zp, rl_t *remove) 467 { 468 avl_tree_t *tree = &zp->z_range_avl; 469 rl_t *rl, *next; 470 uint64_t len; 471 472 /* 473 * The common case is when the remove entry is in the tree 474 * (cnt == 1) meaning there's been no other reader locks overlapping 475 * with this one. Otherwise the remove entry will have been 476 * removed from the tree and replaced by proxies (one or 477 * more ranges mapping to the entire range). 478 */ 479 if (remove->r_cnt == 1) { 480 avl_remove(tree, remove); 481 if (remove->r_write_wanted) { 482 cv_broadcast(&remove->r_wr_cv); 483 cv_destroy(&remove->r_wr_cv); 484 } 485 if (remove->r_read_wanted) { 486 cv_broadcast(&remove->r_rd_cv); 487 cv_destroy(&remove->r_rd_cv); 488 } 489 } else { 490 ASSERT0(remove->r_cnt); 491 ASSERT0(remove->r_write_wanted); 492 ASSERT0(remove->r_read_wanted); 493 /* 494 * Find start proxy representing this reader lock, 495 * then decrement ref count on all proxies 496 * that make up this range, freeing them as needed. 497 */ 498 rl = avl_find(tree, remove, NULL); 499 ASSERT(rl); 500 ASSERT(rl->r_cnt); 501 ASSERT(rl->r_type == RL_READER); 502 for (len = remove->r_len; len != 0; rl = next) { 503 len -= rl->r_len; 504 if (len) { 505 next = AVL_NEXT(tree, rl); 506 ASSERT(next); 507 ASSERT(rl->r_off + rl->r_len == next->r_off); 508 ASSERT(next->r_cnt); 509 ASSERT(next->r_type == RL_READER); 510 } 511 rl->r_cnt--; 512 if (rl->r_cnt == 0) { 513 avl_remove(tree, rl); 514 if (rl->r_write_wanted) { 515 cv_broadcast(&rl->r_wr_cv); 516 cv_destroy(&rl->r_wr_cv); 517 } 518 if (rl->r_read_wanted) { 519 cv_broadcast(&rl->r_rd_cv); 520 cv_destroy(&rl->r_rd_cv); 521 } 522 kmem_free(rl, sizeof (rl_t)); 523 } 524 } 525 } 526 kmem_free(remove, sizeof (rl_t)); 527 } 528 529 /* 530 * Unlock range and destroy range lock structure. 531 */ 532 void 533 zfs_range_unlock(rl_t *rl) 534 { 535 znode_t *zp = rl->r_zp; 536 537 ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER); 538 ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0); 539 ASSERT(!rl->r_proxy); 540 541 mutex_enter(&zp->z_range_lock); 542 if (rl->r_type == RL_WRITER) { 543 /* writer locks can't be shared or split */ 544 avl_remove(&zp->z_range_avl, rl); 545 mutex_exit(&zp->z_range_lock); 546 if (rl->r_write_wanted) { 547 cv_broadcast(&rl->r_wr_cv); 548 cv_destroy(&rl->r_wr_cv); 549 } 550 if (rl->r_read_wanted) { 551 cv_broadcast(&rl->r_rd_cv); 552 cv_destroy(&rl->r_rd_cv); 553 } 554 kmem_free(rl, sizeof (rl_t)); 555 } else { 556 /* 557 * lock may be shared, let zfs_range_unlock_reader() 558 * release the lock and free the rl_t 559 */ 560 zfs_range_unlock_reader(zp, rl); 561 mutex_exit(&zp->z_range_lock); 562 } 563 } 564 565 /* 566 * Reduce range locked as RL_WRITER from whole file to specified range. 567 * Asserts the whole file is exclusivly locked and so there's only one 568 * entry in the tree. 569 */ 570 void 571 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len) 572 { 573 znode_t *zp = rl->r_zp; 574 575 /* Ensure there are no other locks */ 576 ASSERT(avl_numnodes(&zp->z_range_avl) == 1); 577 ASSERT(rl->r_off == 0); 578 ASSERT(rl->r_type == RL_WRITER); 579 ASSERT(!rl->r_proxy); 580 ASSERT3U(rl->r_len, ==, UINT64_MAX); 581 ASSERT3U(rl->r_cnt, ==, 1); 582 583 mutex_enter(&zp->z_range_lock); 584 rl->r_off = off; 585 rl->r_len = len; 586 mutex_exit(&zp->z_range_lock); 587 if (rl->r_write_wanted) 588 cv_broadcast(&rl->r_wr_cv); 589 if (rl->r_read_wanted) 590 cv_broadcast(&rl->r_rd_cv); 591 } 592 593 /* 594 * AVL comparison function used to order range locks 595 * Locks are ordered on the start offset of the range. 596 */ 597 int 598 zfs_range_compare(const void *arg1, const void *arg2) 599 { 600 const rl_t *rl1 = arg1; 601 const rl_t *rl2 = arg2; 602 603 if (rl1->r_off > rl2->r_off) 604 return (1); 605 if (rl1->r_off < rl2->r_off) 606 return (-1); 607 return (0); 608 }