1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * This file contains all the routines used when modifying on-disk SPA state. 30 * This includes opening, importing, destroying, exporting a pool, and syncing a 31 * pool. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/ddt.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/metaslab.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/dsl_scan.h> 65 #include <sys/zfeature.h> 66 67 #ifdef _KERNEL 68 #include <sys/bootprops.h> 69 #include <sys/callb.h> 70 #include <sys/cpupart.h> 71 #include <sys/pool.h> 72 #include <sys/sysdc.h> 73 #include <sys/zone.h> 74 #endif /* _KERNEL */ 75 76 #include "zfs_prop.h" 77 #include "zfs_comutil.h" 78 79 typedef enum zti_modes { 80 zti_mode_fixed, /* value is # of threads (min 1) */ 81 zti_mode_online_percent, /* value is % of online CPUs */ 82 zti_mode_batch, /* cpu-intensive; value is ignored */ 83 zti_mode_null, /* don't create a taskq */ 84 zti_nmodes 85 } zti_modes_t; 86 87 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 88 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 89 #define ZTI_BATCH { zti_mode_batch, 0 } 90 #define ZTI_NULL { zti_mode_null, 0 } 91 92 #define ZTI_ONE ZTI_FIX(1) 93 94 typedef struct zio_taskq_info { 95 enum zti_modes zti_mode; 96 uint_t zti_value; 97 } zio_taskq_info_t; 98 99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 100 "issue", "issue_high", "intr", "intr_high" 101 }; 102 103 /* 104 * Define the taskq threads for the following I/O types: 105 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 106 */ 107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 108 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 111 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 112 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 115 }; 116 117 static dsl_syncfunc_t spa_sync_version; 118 static dsl_syncfunc_t spa_sync_props; 119 static boolean_t spa_has_active_shared_spare(spa_t *spa); 120 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 121 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 122 char **ereport); 123 static void spa_vdev_resilver_done(spa_t *spa); 124 125 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 126 id_t zio_taskq_psrset_bind = PS_NONE; 127 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 128 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 129 130 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 131 132 /* 133 * This (illegal) pool name is used when temporarily importing a spa_t in order 134 * to get the vdev stats associated with the imported devices. 135 */ 136 #define TRYIMPORT_NAME "$import" 137 138 /* 139 * ========================================================================== 140 * SPA properties routines 141 * ========================================================================== 142 */ 143 144 /* 145 * Add a (source=src, propname=propval) list to an nvlist. 146 */ 147 static void 148 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 149 uint64_t intval, zprop_source_t src) 150 { 151 const char *propname = zpool_prop_to_name(prop); 152 nvlist_t *propval; 153 154 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 155 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 156 157 if (strval != NULL) 158 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 159 else 160 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 161 162 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 163 nvlist_free(propval); 164 } 165 166 /* 167 * Get property values from the spa configuration. 168 */ 169 static void 170 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 171 { 172 vdev_t *rvd = spa->spa_root_vdev; 173 dsl_pool_t *pool = spa->spa_dsl_pool; 174 uint64_t size; 175 uint64_t alloc; 176 uint64_t space; 177 uint64_t cap, version; 178 zprop_source_t src = ZPROP_SRC_NONE; 179 spa_config_dirent_t *dp; 180 181 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 182 183 if (rvd != NULL) { 184 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 185 size = metaslab_class_get_space(spa_normal_class(spa)); 186 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 187 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 188 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 189 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 190 size - alloc, src); 191 192 space = 0; 193 for (int c = 0; c < rvd->vdev_children; c++) { 194 vdev_t *tvd = rvd->vdev_child[c]; 195 space += tvd->vdev_max_asize - tvd->vdev_asize; 196 } 197 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 198 src); 199 200 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 201 (spa_mode(spa) == FREAD), src); 202 203 cap = (size == 0) ? 0 : (alloc * 100 / size); 204 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 205 206 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 207 ddt_get_pool_dedup_ratio(spa), src); 208 209 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 210 rvd->vdev_state, src); 211 212 version = spa_version(spa); 213 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 214 src = ZPROP_SRC_DEFAULT; 215 else 216 src = ZPROP_SRC_LOCAL; 217 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 218 } 219 220 if (pool != NULL) { 221 dsl_dir_t *freedir = pool->dp_free_dir; 222 223 /* 224 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 225 * when opening pools before this version freedir will be NULL. 226 */ 227 if (freedir != NULL) { 228 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 229 freedir->dd_phys->dd_used_bytes, src); 230 } else { 231 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 232 NULL, 0, src); 233 } 234 } 235 236 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 237 238 if (spa->spa_comment != NULL) { 239 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 240 0, ZPROP_SRC_LOCAL); 241 } 242 243 if (spa->spa_root != NULL) 244 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 245 0, ZPROP_SRC_LOCAL); 246 247 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 248 if (dp->scd_path == NULL) { 249 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 250 "none", 0, ZPROP_SRC_LOCAL); 251 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 252 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 253 dp->scd_path, 0, ZPROP_SRC_LOCAL); 254 } 255 } 256 } 257 258 /* 259 * Get zpool property values. 260 */ 261 int 262 spa_prop_get(spa_t *spa, nvlist_t **nvp) 263 { 264 objset_t *mos = spa->spa_meta_objset; 265 zap_cursor_t zc; 266 zap_attribute_t za; 267 int err; 268 269 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 270 271 mutex_enter(&spa->spa_props_lock); 272 273 /* 274 * Get properties from the spa config. 275 */ 276 spa_prop_get_config(spa, nvp); 277 278 /* If no pool property object, no more prop to get. */ 279 if (mos == NULL || spa->spa_pool_props_object == 0) { 280 mutex_exit(&spa->spa_props_lock); 281 return (0); 282 } 283 284 /* 285 * Get properties from the MOS pool property object. 286 */ 287 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 288 (err = zap_cursor_retrieve(&zc, &za)) == 0; 289 zap_cursor_advance(&zc)) { 290 uint64_t intval = 0; 291 char *strval = NULL; 292 zprop_source_t src = ZPROP_SRC_DEFAULT; 293 zpool_prop_t prop; 294 295 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 296 continue; 297 298 switch (za.za_integer_length) { 299 case 8: 300 /* integer property */ 301 if (za.za_first_integer != 302 zpool_prop_default_numeric(prop)) 303 src = ZPROP_SRC_LOCAL; 304 305 if (prop == ZPOOL_PROP_BOOTFS) { 306 dsl_pool_t *dp; 307 dsl_dataset_t *ds = NULL; 308 309 dp = spa_get_dsl(spa); 310 rw_enter(&dp->dp_config_rwlock, RW_READER); 311 if (err = dsl_dataset_hold_obj(dp, 312 za.za_first_integer, FTAG, &ds)) { 313 rw_exit(&dp->dp_config_rwlock); 314 break; 315 } 316 317 strval = kmem_alloc( 318 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 319 KM_SLEEP); 320 dsl_dataset_name(ds, strval); 321 dsl_dataset_rele(ds, FTAG); 322 rw_exit(&dp->dp_config_rwlock); 323 } else { 324 strval = NULL; 325 intval = za.za_first_integer; 326 } 327 328 spa_prop_add_list(*nvp, prop, strval, intval, src); 329 330 if (strval != NULL) 331 kmem_free(strval, 332 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 333 334 break; 335 336 case 1: 337 /* string property */ 338 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 339 err = zap_lookup(mos, spa->spa_pool_props_object, 340 za.za_name, 1, za.za_num_integers, strval); 341 if (err) { 342 kmem_free(strval, za.za_num_integers); 343 break; 344 } 345 spa_prop_add_list(*nvp, prop, strval, 0, src); 346 kmem_free(strval, za.za_num_integers); 347 break; 348 349 default: 350 break; 351 } 352 } 353 zap_cursor_fini(&zc); 354 mutex_exit(&spa->spa_props_lock); 355 out: 356 if (err && err != ENOENT) { 357 nvlist_free(*nvp); 358 *nvp = NULL; 359 return (err); 360 } 361 362 return (0); 363 } 364 365 /* 366 * Validate the given pool properties nvlist and modify the list 367 * for the property values to be set. 368 */ 369 static int 370 spa_prop_validate(spa_t *spa, nvlist_t *props) 371 { 372 nvpair_t *elem; 373 int error = 0, reset_bootfs = 0; 374 uint64_t objnum; 375 boolean_t has_feature = B_FALSE; 376 377 elem = NULL; 378 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 379 uint64_t intval; 380 char *strval, *slash, *check, *fname; 381 const char *propname = nvpair_name(elem); 382 zpool_prop_t prop = zpool_name_to_prop(propname); 383 384 switch (prop) { 385 case ZPROP_INVAL: 386 if (!zpool_prop_feature(propname)) { 387 error = EINVAL; 388 break; 389 } 390 391 /* 392 * Sanitize the input. 393 */ 394 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 395 error = EINVAL; 396 break; 397 } 398 399 if (nvpair_value_uint64(elem, &intval) != 0) { 400 error = EINVAL; 401 break; 402 } 403 404 if (intval != 0) { 405 error = EINVAL; 406 break; 407 } 408 409 fname = strchr(propname, '@') + 1; 410 if (zfeature_lookup_name(fname, NULL) != 0) { 411 error = EINVAL; 412 break; 413 } 414 415 has_feature = B_TRUE; 416 break; 417 418 case ZPOOL_PROP_VERSION: 419 error = nvpair_value_uint64(elem, &intval); 420 if (!error && 421 (intval < spa_version(spa) || 422 intval > SPA_VERSION_BEFORE_FEATURES || 423 has_feature)) 424 error = EINVAL; 425 break; 426 427 case ZPOOL_PROP_DELEGATION: 428 case ZPOOL_PROP_AUTOREPLACE: 429 case ZPOOL_PROP_LISTSNAPS: 430 case ZPOOL_PROP_AUTOEXPAND: 431 error = nvpair_value_uint64(elem, &intval); 432 if (!error && intval > 1) 433 error = EINVAL; 434 break; 435 436 case ZPOOL_PROP_BOOTFS: 437 /* 438 * If the pool version is less than SPA_VERSION_BOOTFS, 439 * or the pool is still being created (version == 0), 440 * the bootfs property cannot be set. 441 */ 442 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 443 error = ENOTSUP; 444 break; 445 } 446 447 /* 448 * Make sure the vdev config is bootable 449 */ 450 if (!vdev_is_bootable(spa->spa_root_vdev)) { 451 error = ENOTSUP; 452 break; 453 } 454 455 reset_bootfs = 1; 456 457 error = nvpair_value_string(elem, &strval); 458 459 if (!error) { 460 objset_t *os; 461 uint64_t compress; 462 463 if (strval == NULL || strval[0] == '\0') { 464 objnum = zpool_prop_default_numeric( 465 ZPOOL_PROP_BOOTFS); 466 break; 467 } 468 469 if (error = dmu_objset_hold(strval, FTAG, &os)) 470 break; 471 472 /* Must be ZPL and not gzip compressed. */ 473 474 if (dmu_objset_type(os) != DMU_OST_ZFS) { 475 error = ENOTSUP; 476 } else if ((error = dsl_prop_get_integer(strval, 477 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 478 &compress, NULL)) == 0 && 479 !BOOTFS_COMPRESS_VALID(compress)) { 480 error = ENOTSUP; 481 } else { 482 objnum = dmu_objset_id(os); 483 } 484 dmu_objset_rele(os, FTAG); 485 } 486 break; 487 488 case ZPOOL_PROP_FAILUREMODE: 489 error = nvpair_value_uint64(elem, &intval); 490 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 491 intval > ZIO_FAILURE_MODE_PANIC)) 492 error = EINVAL; 493 494 /* 495 * This is a special case which only occurs when 496 * the pool has completely failed. This allows 497 * the user to change the in-core failmode property 498 * without syncing it out to disk (I/Os might 499 * currently be blocked). We do this by returning 500 * EIO to the caller (spa_prop_set) to trick it 501 * into thinking we encountered a property validation 502 * error. 503 */ 504 if (!error && spa_suspended(spa)) { 505 spa->spa_failmode = intval; 506 error = EIO; 507 } 508 break; 509 510 case ZPOOL_PROP_CACHEFILE: 511 if ((error = nvpair_value_string(elem, &strval)) != 0) 512 break; 513 514 if (strval[0] == '\0') 515 break; 516 517 if (strcmp(strval, "none") == 0) 518 break; 519 520 if (strval[0] != '/') { 521 error = EINVAL; 522 break; 523 } 524 525 slash = strrchr(strval, '/'); 526 ASSERT(slash != NULL); 527 528 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 529 strcmp(slash, "/..") == 0) 530 error = EINVAL; 531 break; 532 533 case ZPOOL_PROP_COMMENT: 534 if ((error = nvpair_value_string(elem, &strval)) != 0) 535 break; 536 for (check = strval; *check != '\0'; check++) { 537 /* 538 * The kernel doesn't have an easy isprint() 539 * check. For this kernel check, we merely 540 * check ASCII apart from DEL. Fix this if 541 * there is an easy-to-use kernel isprint(). 542 */ 543 if (*check >= 0x7f) { 544 error = EINVAL; 545 break; 546 } 547 check++; 548 } 549 if (strlen(strval) > ZPROP_MAX_COMMENT) 550 error = E2BIG; 551 break; 552 553 case ZPOOL_PROP_DEDUPDITTO: 554 if (spa_version(spa) < SPA_VERSION_DEDUP) 555 error = ENOTSUP; 556 else 557 error = nvpair_value_uint64(elem, &intval); 558 if (error == 0 && 559 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 560 error = EINVAL; 561 break; 562 } 563 564 if (error) 565 break; 566 } 567 568 if (!error && reset_bootfs) { 569 error = nvlist_remove(props, 570 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 571 572 if (!error) { 573 error = nvlist_add_uint64(props, 574 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 575 } 576 } 577 578 return (error); 579 } 580 581 void 582 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 583 { 584 char *cachefile; 585 spa_config_dirent_t *dp; 586 587 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 588 &cachefile) != 0) 589 return; 590 591 dp = kmem_alloc(sizeof (spa_config_dirent_t), 592 KM_SLEEP); 593 594 if (cachefile[0] == '\0') 595 dp->scd_path = spa_strdup(spa_config_path); 596 else if (strcmp(cachefile, "none") == 0) 597 dp->scd_path = NULL; 598 else 599 dp->scd_path = spa_strdup(cachefile); 600 601 list_insert_head(&spa->spa_config_list, dp); 602 if (need_sync) 603 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 604 } 605 606 int 607 spa_prop_set(spa_t *spa, nvlist_t *nvp) 608 { 609 int error; 610 nvpair_t *elem = NULL; 611 boolean_t need_sync = B_FALSE; 612 613 if ((error = spa_prop_validate(spa, nvp)) != 0) 614 return (error); 615 616 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 617 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 618 619 if (prop == ZPOOL_PROP_CACHEFILE || 620 prop == ZPOOL_PROP_ALTROOT || 621 prop == ZPOOL_PROP_READONLY) 622 continue; 623 624 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 625 uint64_t ver; 626 627 if (prop == ZPOOL_PROP_VERSION) { 628 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 629 } else { 630 ASSERT(zpool_prop_feature(nvpair_name(elem))); 631 ver = SPA_VERSION_FEATURES; 632 need_sync = B_TRUE; 633 } 634 635 /* Save time if the version is already set. */ 636 if (ver == spa_version(spa)) 637 continue; 638 639 /* 640 * In addition to the pool directory object, we might 641 * create the pool properties object, the features for 642 * read object, the features for write object, or the 643 * feature descriptions object. 644 */ 645 error = dsl_sync_task_do(spa_get_dsl(spa), NULL, 646 spa_sync_version, spa, &ver, 6); 647 if (error) 648 return (error); 649 continue; 650 } 651 652 need_sync = B_TRUE; 653 break; 654 } 655 656 if (need_sync) { 657 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 658 spa, nvp, 6)); 659 } 660 661 return (0); 662 } 663 664 /* 665 * If the bootfs property value is dsobj, clear it. 666 */ 667 void 668 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 669 { 670 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 671 VERIFY(zap_remove(spa->spa_meta_objset, 672 spa->spa_pool_props_object, 673 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 674 spa->spa_bootfs = 0; 675 } 676 } 677 678 /* 679 * Change the GUID for the pool. This is done so that we can later 680 * re-import a pool built from a clone of our own vdevs. We will modify 681 * the root vdev's guid, our own pool guid, and then mark all of our 682 * vdevs dirty. Note that we must make sure that all our vdevs are 683 * online when we do this, or else any vdevs that weren't present 684 * would be orphaned from our pool. We are also going to issue a 685 * sysevent to update any watchers. 686 */ 687 int 688 spa_change_guid(spa_t *spa) 689 { 690 uint64_t oldguid, newguid; 691 uint64_t txg; 692 693 if (!(spa_mode_global & FWRITE)) 694 return (EROFS); 695 696 txg = spa_vdev_enter(spa); 697 698 if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY) 699 return (spa_vdev_exit(spa, NULL, txg, ENXIO)); 700 701 oldguid = spa_guid(spa); 702 newguid = spa_generate_guid(NULL); 703 ASSERT3U(oldguid, !=, newguid); 704 705 spa->spa_root_vdev->vdev_guid = newguid; 706 spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid); 707 708 vdev_config_dirty(spa->spa_root_vdev); 709 710 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 711 712 return (spa_vdev_exit(spa, NULL, txg, 0)); 713 } 714 715 /* 716 * ========================================================================== 717 * SPA state manipulation (open/create/destroy/import/export) 718 * ========================================================================== 719 */ 720 721 static int 722 spa_error_entry_compare(const void *a, const void *b) 723 { 724 spa_error_entry_t *sa = (spa_error_entry_t *)a; 725 spa_error_entry_t *sb = (spa_error_entry_t *)b; 726 int ret; 727 728 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 729 sizeof (zbookmark_t)); 730 731 if (ret < 0) 732 return (-1); 733 else if (ret > 0) 734 return (1); 735 else 736 return (0); 737 } 738 739 /* 740 * Utility function which retrieves copies of the current logs and 741 * re-initializes them in the process. 742 */ 743 void 744 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 745 { 746 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 747 748 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 749 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 750 751 avl_create(&spa->spa_errlist_scrub, 752 spa_error_entry_compare, sizeof (spa_error_entry_t), 753 offsetof(spa_error_entry_t, se_avl)); 754 avl_create(&spa->spa_errlist_last, 755 spa_error_entry_compare, sizeof (spa_error_entry_t), 756 offsetof(spa_error_entry_t, se_avl)); 757 } 758 759 static taskq_t * 760 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 761 uint_t value) 762 { 763 uint_t flags = 0; 764 boolean_t batch = B_FALSE; 765 766 switch (mode) { 767 case zti_mode_null: 768 return (NULL); /* no taskq needed */ 769 770 case zti_mode_fixed: 771 ASSERT3U(value, >=, 1); 772 value = MAX(value, 1); 773 break; 774 775 case zti_mode_batch: 776 batch = B_TRUE; 777 flags |= TASKQ_THREADS_CPU_PCT; 778 value = zio_taskq_batch_pct; 779 break; 780 781 case zti_mode_online_percent: 782 flags |= TASKQ_THREADS_CPU_PCT; 783 break; 784 785 default: 786 panic("unrecognized mode for %s taskq (%u:%u) in " 787 "spa_activate()", 788 name, mode, value); 789 break; 790 } 791 792 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 793 if (batch) 794 flags |= TASKQ_DC_BATCH; 795 796 return (taskq_create_sysdc(name, value, 50, INT_MAX, 797 spa->spa_proc, zio_taskq_basedc, flags)); 798 } 799 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 800 spa->spa_proc, flags)); 801 } 802 803 static void 804 spa_create_zio_taskqs(spa_t *spa) 805 { 806 for (int t = 0; t < ZIO_TYPES; t++) { 807 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 808 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 809 enum zti_modes mode = ztip->zti_mode; 810 uint_t value = ztip->zti_value; 811 char name[32]; 812 813 (void) snprintf(name, sizeof (name), 814 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 815 816 spa->spa_zio_taskq[t][q] = 817 spa_taskq_create(spa, name, mode, value); 818 } 819 } 820 } 821 822 #ifdef _KERNEL 823 static void 824 spa_thread(void *arg) 825 { 826 callb_cpr_t cprinfo; 827 828 spa_t *spa = arg; 829 user_t *pu = PTOU(curproc); 830 831 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 832 spa->spa_name); 833 834 ASSERT(curproc != &p0); 835 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 836 "zpool-%s", spa->spa_name); 837 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 838 839 /* bind this thread to the requested psrset */ 840 if (zio_taskq_psrset_bind != PS_NONE) { 841 pool_lock(); 842 mutex_enter(&cpu_lock); 843 mutex_enter(&pidlock); 844 mutex_enter(&curproc->p_lock); 845 846 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 847 0, NULL, NULL) == 0) { 848 curthread->t_bind_pset = zio_taskq_psrset_bind; 849 } else { 850 cmn_err(CE_WARN, 851 "Couldn't bind process for zfs pool \"%s\" to " 852 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 853 } 854 855 mutex_exit(&curproc->p_lock); 856 mutex_exit(&pidlock); 857 mutex_exit(&cpu_lock); 858 pool_unlock(); 859 } 860 861 if (zio_taskq_sysdc) { 862 sysdc_thread_enter(curthread, 100, 0); 863 } 864 865 spa->spa_proc = curproc; 866 spa->spa_did = curthread->t_did; 867 868 spa_create_zio_taskqs(spa); 869 870 mutex_enter(&spa->spa_proc_lock); 871 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 872 873 spa->spa_proc_state = SPA_PROC_ACTIVE; 874 cv_broadcast(&spa->spa_proc_cv); 875 876 CALLB_CPR_SAFE_BEGIN(&cprinfo); 877 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 878 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 879 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 880 881 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 882 spa->spa_proc_state = SPA_PROC_GONE; 883 spa->spa_proc = &p0; 884 cv_broadcast(&spa->spa_proc_cv); 885 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 886 887 mutex_enter(&curproc->p_lock); 888 lwp_exit(); 889 } 890 #endif 891 892 /* 893 * Activate an uninitialized pool. 894 */ 895 static void 896 spa_activate(spa_t *spa, int mode) 897 { 898 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 899 900 spa->spa_state = POOL_STATE_ACTIVE; 901 spa->spa_mode = mode; 902 903 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 904 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 905 906 /* Try to create a covering process */ 907 mutex_enter(&spa->spa_proc_lock); 908 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 909 ASSERT(spa->spa_proc == &p0); 910 spa->spa_did = 0; 911 912 /* Only create a process if we're going to be around a while. */ 913 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 914 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 915 NULL, 0) == 0) { 916 spa->spa_proc_state = SPA_PROC_CREATED; 917 while (spa->spa_proc_state == SPA_PROC_CREATED) { 918 cv_wait(&spa->spa_proc_cv, 919 &spa->spa_proc_lock); 920 } 921 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 922 ASSERT(spa->spa_proc != &p0); 923 ASSERT(spa->spa_did != 0); 924 } else { 925 #ifdef _KERNEL 926 cmn_err(CE_WARN, 927 "Couldn't create process for zfs pool \"%s\"\n", 928 spa->spa_name); 929 #endif 930 } 931 } 932 mutex_exit(&spa->spa_proc_lock); 933 934 /* If we didn't create a process, we need to create our taskqs. */ 935 if (spa->spa_proc == &p0) { 936 spa_create_zio_taskqs(spa); 937 } 938 939 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 940 offsetof(vdev_t, vdev_config_dirty_node)); 941 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 942 offsetof(vdev_t, vdev_state_dirty_node)); 943 944 txg_list_create(&spa->spa_vdev_txg_list, 945 offsetof(struct vdev, vdev_txg_node)); 946 947 avl_create(&spa->spa_errlist_scrub, 948 spa_error_entry_compare, sizeof (spa_error_entry_t), 949 offsetof(spa_error_entry_t, se_avl)); 950 avl_create(&spa->spa_errlist_last, 951 spa_error_entry_compare, sizeof (spa_error_entry_t), 952 offsetof(spa_error_entry_t, se_avl)); 953 } 954 955 /* 956 * Opposite of spa_activate(). 957 */ 958 static void 959 spa_deactivate(spa_t *spa) 960 { 961 ASSERT(spa->spa_sync_on == B_FALSE); 962 ASSERT(spa->spa_dsl_pool == NULL); 963 ASSERT(spa->spa_root_vdev == NULL); 964 ASSERT(spa->spa_async_zio_root == NULL); 965 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 966 967 txg_list_destroy(&spa->spa_vdev_txg_list); 968 969 list_destroy(&spa->spa_config_dirty_list); 970 list_destroy(&spa->spa_state_dirty_list); 971 972 for (int t = 0; t < ZIO_TYPES; t++) { 973 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 974 if (spa->spa_zio_taskq[t][q] != NULL) 975 taskq_destroy(spa->spa_zio_taskq[t][q]); 976 spa->spa_zio_taskq[t][q] = NULL; 977 } 978 } 979 980 metaslab_class_destroy(spa->spa_normal_class); 981 spa->spa_normal_class = NULL; 982 983 metaslab_class_destroy(spa->spa_log_class); 984 spa->spa_log_class = NULL; 985 986 /* 987 * If this was part of an import or the open otherwise failed, we may 988 * still have errors left in the queues. Empty them just in case. 989 */ 990 spa_errlog_drain(spa); 991 992 avl_destroy(&spa->spa_errlist_scrub); 993 avl_destroy(&spa->spa_errlist_last); 994 995 spa->spa_state = POOL_STATE_UNINITIALIZED; 996 997 mutex_enter(&spa->spa_proc_lock); 998 if (spa->spa_proc_state != SPA_PROC_NONE) { 999 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1000 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1001 cv_broadcast(&spa->spa_proc_cv); 1002 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1003 ASSERT(spa->spa_proc != &p0); 1004 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1005 } 1006 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1007 spa->spa_proc_state = SPA_PROC_NONE; 1008 } 1009 ASSERT(spa->spa_proc == &p0); 1010 mutex_exit(&spa->spa_proc_lock); 1011 1012 /* 1013 * We want to make sure spa_thread() has actually exited the ZFS 1014 * module, so that the module can't be unloaded out from underneath 1015 * it. 1016 */ 1017 if (spa->spa_did != 0) { 1018 thread_join(spa->spa_did); 1019 spa->spa_did = 0; 1020 } 1021 } 1022 1023 /* 1024 * Verify a pool configuration, and construct the vdev tree appropriately. This 1025 * will create all the necessary vdevs in the appropriate layout, with each vdev 1026 * in the CLOSED state. This will prep the pool before open/creation/import. 1027 * All vdev validation is done by the vdev_alloc() routine. 1028 */ 1029 static int 1030 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1031 uint_t id, int atype) 1032 { 1033 nvlist_t **child; 1034 uint_t children; 1035 int error; 1036 1037 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1038 return (error); 1039 1040 if ((*vdp)->vdev_ops->vdev_op_leaf) 1041 return (0); 1042 1043 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1044 &child, &children); 1045 1046 if (error == ENOENT) 1047 return (0); 1048 1049 if (error) { 1050 vdev_free(*vdp); 1051 *vdp = NULL; 1052 return (EINVAL); 1053 } 1054 1055 for (int c = 0; c < children; c++) { 1056 vdev_t *vd; 1057 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1058 atype)) != 0) { 1059 vdev_free(*vdp); 1060 *vdp = NULL; 1061 return (error); 1062 } 1063 } 1064 1065 ASSERT(*vdp != NULL); 1066 1067 return (0); 1068 } 1069 1070 /* 1071 * Opposite of spa_load(). 1072 */ 1073 static void 1074 spa_unload(spa_t *spa) 1075 { 1076 int i; 1077 1078 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1079 1080 /* 1081 * Stop async tasks. 1082 */ 1083 spa_async_suspend(spa); 1084 1085 /* 1086 * Stop syncing. 1087 */ 1088 if (spa->spa_sync_on) { 1089 txg_sync_stop(spa->spa_dsl_pool); 1090 spa->spa_sync_on = B_FALSE; 1091 } 1092 1093 /* 1094 * Wait for any outstanding async I/O to complete. 1095 */ 1096 if (spa->spa_async_zio_root != NULL) { 1097 (void) zio_wait(spa->spa_async_zio_root); 1098 spa->spa_async_zio_root = NULL; 1099 } 1100 1101 bpobj_close(&spa->spa_deferred_bpobj); 1102 1103 /* 1104 * Close the dsl pool. 1105 */ 1106 if (spa->spa_dsl_pool) { 1107 dsl_pool_close(spa->spa_dsl_pool); 1108 spa->spa_dsl_pool = NULL; 1109 spa->spa_meta_objset = NULL; 1110 } 1111 1112 ddt_unload(spa); 1113 1114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1115 1116 /* 1117 * Drop and purge level 2 cache 1118 */ 1119 spa_l2cache_drop(spa); 1120 1121 /* 1122 * Close all vdevs. 1123 */ 1124 if (spa->spa_root_vdev) 1125 vdev_free(spa->spa_root_vdev); 1126 ASSERT(spa->spa_root_vdev == NULL); 1127 1128 for (i = 0; i < spa->spa_spares.sav_count; i++) 1129 vdev_free(spa->spa_spares.sav_vdevs[i]); 1130 if (spa->spa_spares.sav_vdevs) { 1131 kmem_free(spa->spa_spares.sav_vdevs, 1132 spa->spa_spares.sav_count * sizeof (void *)); 1133 spa->spa_spares.sav_vdevs = NULL; 1134 } 1135 if (spa->spa_spares.sav_config) { 1136 nvlist_free(spa->spa_spares.sav_config); 1137 spa->spa_spares.sav_config = NULL; 1138 } 1139 spa->spa_spares.sav_count = 0; 1140 1141 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1142 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1143 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1144 } 1145 if (spa->spa_l2cache.sav_vdevs) { 1146 kmem_free(spa->spa_l2cache.sav_vdevs, 1147 spa->spa_l2cache.sav_count * sizeof (void *)); 1148 spa->spa_l2cache.sav_vdevs = NULL; 1149 } 1150 if (spa->spa_l2cache.sav_config) { 1151 nvlist_free(spa->spa_l2cache.sav_config); 1152 spa->spa_l2cache.sav_config = NULL; 1153 } 1154 spa->spa_l2cache.sav_count = 0; 1155 1156 spa->spa_async_suspended = 0; 1157 1158 if (spa->spa_comment != NULL) { 1159 spa_strfree(spa->spa_comment); 1160 spa->spa_comment = NULL; 1161 } 1162 1163 spa_config_exit(spa, SCL_ALL, FTAG); 1164 } 1165 1166 /* 1167 * Load (or re-load) the current list of vdevs describing the active spares for 1168 * this pool. When this is called, we have some form of basic information in 1169 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1170 * then re-generate a more complete list including status information. 1171 */ 1172 static void 1173 spa_load_spares(spa_t *spa) 1174 { 1175 nvlist_t **spares; 1176 uint_t nspares; 1177 int i; 1178 vdev_t *vd, *tvd; 1179 1180 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1181 1182 /* 1183 * First, close and free any existing spare vdevs. 1184 */ 1185 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1186 vd = spa->spa_spares.sav_vdevs[i]; 1187 1188 /* Undo the call to spa_activate() below */ 1189 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1190 B_FALSE)) != NULL && tvd->vdev_isspare) 1191 spa_spare_remove(tvd); 1192 vdev_close(vd); 1193 vdev_free(vd); 1194 } 1195 1196 if (spa->spa_spares.sav_vdevs) 1197 kmem_free(spa->spa_spares.sav_vdevs, 1198 spa->spa_spares.sav_count * sizeof (void *)); 1199 1200 if (spa->spa_spares.sav_config == NULL) 1201 nspares = 0; 1202 else 1203 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1204 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1205 1206 spa->spa_spares.sav_count = (int)nspares; 1207 spa->spa_spares.sav_vdevs = NULL; 1208 1209 if (nspares == 0) 1210 return; 1211 1212 /* 1213 * Construct the array of vdevs, opening them to get status in the 1214 * process. For each spare, there is potentially two different vdev_t 1215 * structures associated with it: one in the list of spares (used only 1216 * for basic validation purposes) and one in the active vdev 1217 * configuration (if it's spared in). During this phase we open and 1218 * validate each vdev on the spare list. If the vdev also exists in the 1219 * active configuration, then we also mark this vdev as an active spare. 1220 */ 1221 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1222 KM_SLEEP); 1223 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1224 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1225 VDEV_ALLOC_SPARE) == 0); 1226 ASSERT(vd != NULL); 1227 1228 spa->spa_spares.sav_vdevs[i] = vd; 1229 1230 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1231 B_FALSE)) != NULL) { 1232 if (!tvd->vdev_isspare) 1233 spa_spare_add(tvd); 1234 1235 /* 1236 * We only mark the spare active if we were successfully 1237 * able to load the vdev. Otherwise, importing a pool 1238 * with a bad active spare would result in strange 1239 * behavior, because multiple pool would think the spare 1240 * is actively in use. 1241 * 1242 * There is a vulnerability here to an equally bizarre 1243 * circumstance, where a dead active spare is later 1244 * brought back to life (onlined or otherwise). Given 1245 * the rarity of this scenario, and the extra complexity 1246 * it adds, we ignore the possibility. 1247 */ 1248 if (!vdev_is_dead(tvd)) 1249 spa_spare_activate(tvd); 1250 } 1251 1252 vd->vdev_top = vd; 1253 vd->vdev_aux = &spa->spa_spares; 1254 1255 if (vdev_open(vd) != 0) 1256 continue; 1257 1258 if (vdev_validate_aux(vd) == 0) 1259 spa_spare_add(vd); 1260 } 1261 1262 /* 1263 * Recompute the stashed list of spares, with status information 1264 * this time. 1265 */ 1266 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1267 DATA_TYPE_NVLIST_ARRAY) == 0); 1268 1269 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1270 KM_SLEEP); 1271 for (i = 0; i < spa->spa_spares.sav_count; i++) 1272 spares[i] = vdev_config_generate(spa, 1273 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1274 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1275 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1276 for (i = 0; i < spa->spa_spares.sav_count; i++) 1277 nvlist_free(spares[i]); 1278 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1279 } 1280 1281 /* 1282 * Load (or re-load) the current list of vdevs describing the active l2cache for 1283 * this pool. When this is called, we have some form of basic information in 1284 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1285 * then re-generate a more complete list including status information. 1286 * Devices which are already active have their details maintained, and are 1287 * not re-opened. 1288 */ 1289 static void 1290 spa_load_l2cache(spa_t *spa) 1291 { 1292 nvlist_t **l2cache; 1293 uint_t nl2cache; 1294 int i, j, oldnvdevs; 1295 uint64_t guid; 1296 vdev_t *vd, **oldvdevs, **newvdevs; 1297 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1298 1299 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1300 1301 if (sav->sav_config != NULL) { 1302 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1303 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1304 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1305 } else { 1306 nl2cache = 0; 1307 } 1308 1309 oldvdevs = sav->sav_vdevs; 1310 oldnvdevs = sav->sav_count; 1311 sav->sav_vdevs = NULL; 1312 sav->sav_count = 0; 1313 1314 /* 1315 * Process new nvlist of vdevs. 1316 */ 1317 for (i = 0; i < nl2cache; i++) { 1318 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1319 &guid) == 0); 1320 1321 newvdevs[i] = NULL; 1322 for (j = 0; j < oldnvdevs; j++) { 1323 vd = oldvdevs[j]; 1324 if (vd != NULL && guid == vd->vdev_guid) { 1325 /* 1326 * Retain previous vdev for add/remove ops. 1327 */ 1328 newvdevs[i] = vd; 1329 oldvdevs[j] = NULL; 1330 break; 1331 } 1332 } 1333 1334 if (newvdevs[i] == NULL) { 1335 /* 1336 * Create new vdev 1337 */ 1338 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1339 VDEV_ALLOC_L2CACHE) == 0); 1340 ASSERT(vd != NULL); 1341 newvdevs[i] = vd; 1342 1343 /* 1344 * Commit this vdev as an l2cache device, 1345 * even if it fails to open. 1346 */ 1347 spa_l2cache_add(vd); 1348 1349 vd->vdev_top = vd; 1350 vd->vdev_aux = sav; 1351 1352 spa_l2cache_activate(vd); 1353 1354 if (vdev_open(vd) != 0) 1355 continue; 1356 1357 (void) vdev_validate_aux(vd); 1358 1359 if (!vdev_is_dead(vd)) 1360 l2arc_add_vdev(spa, vd); 1361 } 1362 } 1363 1364 /* 1365 * Purge vdevs that were dropped 1366 */ 1367 for (i = 0; i < oldnvdevs; i++) { 1368 uint64_t pool; 1369 1370 vd = oldvdevs[i]; 1371 if (vd != NULL) { 1372 ASSERT(vd->vdev_isl2cache); 1373 1374 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1375 pool != 0ULL && l2arc_vdev_present(vd)) 1376 l2arc_remove_vdev(vd); 1377 vdev_clear_stats(vd); 1378 vdev_free(vd); 1379 } 1380 } 1381 1382 if (oldvdevs) 1383 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1384 1385 if (sav->sav_config == NULL) 1386 goto out; 1387 1388 sav->sav_vdevs = newvdevs; 1389 sav->sav_count = (int)nl2cache; 1390 1391 /* 1392 * Recompute the stashed list of l2cache devices, with status 1393 * information this time. 1394 */ 1395 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1396 DATA_TYPE_NVLIST_ARRAY) == 0); 1397 1398 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1399 for (i = 0; i < sav->sav_count; i++) 1400 l2cache[i] = vdev_config_generate(spa, 1401 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1402 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1403 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1404 out: 1405 for (i = 0; i < sav->sav_count; i++) 1406 nvlist_free(l2cache[i]); 1407 if (sav->sav_count) 1408 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1409 } 1410 1411 static int 1412 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1413 { 1414 dmu_buf_t *db; 1415 char *packed = NULL; 1416 size_t nvsize = 0; 1417 int error; 1418 *value = NULL; 1419 1420 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1421 nvsize = *(uint64_t *)db->db_data; 1422 dmu_buf_rele(db, FTAG); 1423 1424 packed = kmem_alloc(nvsize, KM_SLEEP); 1425 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1426 DMU_READ_PREFETCH); 1427 if (error == 0) 1428 error = nvlist_unpack(packed, nvsize, value, 0); 1429 kmem_free(packed, nvsize); 1430 1431 return (error); 1432 } 1433 1434 /* 1435 * Checks to see if the given vdev could not be opened, in which case we post a 1436 * sysevent to notify the autoreplace code that the device has been removed. 1437 */ 1438 static void 1439 spa_check_removed(vdev_t *vd) 1440 { 1441 for (int c = 0; c < vd->vdev_children; c++) 1442 spa_check_removed(vd->vdev_child[c]); 1443 1444 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1445 zfs_post_autoreplace(vd->vdev_spa, vd); 1446 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1447 } 1448 } 1449 1450 /* 1451 * Validate the current config against the MOS config 1452 */ 1453 static boolean_t 1454 spa_config_valid(spa_t *spa, nvlist_t *config) 1455 { 1456 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1457 nvlist_t *nv; 1458 1459 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1460 1461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1462 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1463 1464 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1465 1466 /* 1467 * If we're doing a normal import, then build up any additional 1468 * diagnostic information about missing devices in this config. 1469 * We'll pass this up to the user for further processing. 1470 */ 1471 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1472 nvlist_t **child, *nv; 1473 uint64_t idx = 0; 1474 1475 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1476 KM_SLEEP); 1477 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1478 1479 for (int c = 0; c < rvd->vdev_children; c++) { 1480 vdev_t *tvd = rvd->vdev_child[c]; 1481 vdev_t *mtvd = mrvd->vdev_child[c]; 1482 1483 if (tvd->vdev_ops == &vdev_missing_ops && 1484 mtvd->vdev_ops != &vdev_missing_ops && 1485 mtvd->vdev_islog) 1486 child[idx++] = vdev_config_generate(spa, mtvd, 1487 B_FALSE, 0); 1488 } 1489 1490 if (idx) { 1491 VERIFY(nvlist_add_nvlist_array(nv, 1492 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1493 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1494 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1495 1496 for (int i = 0; i < idx; i++) 1497 nvlist_free(child[i]); 1498 } 1499 nvlist_free(nv); 1500 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1501 } 1502 1503 /* 1504 * Compare the root vdev tree with the information we have 1505 * from the MOS config (mrvd). Check each top-level vdev 1506 * with the corresponding MOS config top-level (mtvd). 1507 */ 1508 for (int c = 0; c < rvd->vdev_children; c++) { 1509 vdev_t *tvd = rvd->vdev_child[c]; 1510 vdev_t *mtvd = mrvd->vdev_child[c]; 1511 1512 /* 1513 * Resolve any "missing" vdevs in the current configuration. 1514 * If we find that the MOS config has more accurate information 1515 * about the top-level vdev then use that vdev instead. 1516 */ 1517 if (tvd->vdev_ops == &vdev_missing_ops && 1518 mtvd->vdev_ops != &vdev_missing_ops) { 1519 1520 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1521 continue; 1522 1523 /* 1524 * Device specific actions. 1525 */ 1526 if (mtvd->vdev_islog) { 1527 spa_set_log_state(spa, SPA_LOG_CLEAR); 1528 } else { 1529 /* 1530 * XXX - once we have 'readonly' pool 1531 * support we should be able to handle 1532 * missing data devices by transitioning 1533 * the pool to readonly. 1534 */ 1535 continue; 1536 } 1537 1538 /* 1539 * Swap the missing vdev with the data we were 1540 * able to obtain from the MOS config. 1541 */ 1542 vdev_remove_child(rvd, tvd); 1543 vdev_remove_child(mrvd, mtvd); 1544 1545 vdev_add_child(rvd, mtvd); 1546 vdev_add_child(mrvd, tvd); 1547 1548 spa_config_exit(spa, SCL_ALL, FTAG); 1549 vdev_load(mtvd); 1550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1551 1552 vdev_reopen(rvd); 1553 } else if (mtvd->vdev_islog) { 1554 /* 1555 * Load the slog device's state from the MOS config 1556 * since it's possible that the label does not 1557 * contain the most up-to-date information. 1558 */ 1559 vdev_load_log_state(tvd, mtvd); 1560 vdev_reopen(tvd); 1561 } 1562 } 1563 vdev_free(mrvd); 1564 spa_config_exit(spa, SCL_ALL, FTAG); 1565 1566 /* 1567 * Ensure we were able to validate the config. 1568 */ 1569 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1570 } 1571 1572 /* 1573 * Check for missing log devices 1574 */ 1575 static int 1576 spa_check_logs(spa_t *spa) 1577 { 1578 switch (spa->spa_log_state) { 1579 case SPA_LOG_MISSING: 1580 /* need to recheck in case slog has been restored */ 1581 case SPA_LOG_UNKNOWN: 1582 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1583 DS_FIND_CHILDREN)) { 1584 spa_set_log_state(spa, SPA_LOG_MISSING); 1585 return (1); 1586 } 1587 break; 1588 } 1589 return (0); 1590 } 1591 1592 static boolean_t 1593 spa_passivate_log(spa_t *spa) 1594 { 1595 vdev_t *rvd = spa->spa_root_vdev; 1596 boolean_t slog_found = B_FALSE; 1597 1598 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1599 1600 if (!spa_has_slogs(spa)) 1601 return (B_FALSE); 1602 1603 for (int c = 0; c < rvd->vdev_children; c++) { 1604 vdev_t *tvd = rvd->vdev_child[c]; 1605 metaslab_group_t *mg = tvd->vdev_mg; 1606 1607 if (tvd->vdev_islog) { 1608 metaslab_group_passivate(mg); 1609 slog_found = B_TRUE; 1610 } 1611 } 1612 1613 return (slog_found); 1614 } 1615 1616 static void 1617 spa_activate_log(spa_t *spa) 1618 { 1619 vdev_t *rvd = spa->spa_root_vdev; 1620 1621 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1622 1623 for (int c = 0; c < rvd->vdev_children; c++) { 1624 vdev_t *tvd = rvd->vdev_child[c]; 1625 metaslab_group_t *mg = tvd->vdev_mg; 1626 1627 if (tvd->vdev_islog) 1628 metaslab_group_activate(mg); 1629 } 1630 } 1631 1632 int 1633 spa_offline_log(spa_t *spa) 1634 { 1635 int error = 0; 1636 1637 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1638 NULL, DS_FIND_CHILDREN)) == 0) { 1639 1640 /* 1641 * We successfully offlined the log device, sync out the 1642 * current txg so that the "stubby" block can be removed 1643 * by zil_sync(). 1644 */ 1645 txg_wait_synced(spa->spa_dsl_pool, 0); 1646 } 1647 return (error); 1648 } 1649 1650 static void 1651 spa_aux_check_removed(spa_aux_vdev_t *sav) 1652 { 1653 for (int i = 0; i < sav->sav_count; i++) 1654 spa_check_removed(sav->sav_vdevs[i]); 1655 } 1656 1657 void 1658 spa_claim_notify(zio_t *zio) 1659 { 1660 spa_t *spa = zio->io_spa; 1661 1662 if (zio->io_error) 1663 return; 1664 1665 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1666 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1667 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1668 mutex_exit(&spa->spa_props_lock); 1669 } 1670 1671 typedef struct spa_load_error { 1672 uint64_t sle_meta_count; 1673 uint64_t sle_data_count; 1674 } spa_load_error_t; 1675 1676 static void 1677 spa_load_verify_done(zio_t *zio) 1678 { 1679 blkptr_t *bp = zio->io_bp; 1680 spa_load_error_t *sle = zio->io_private; 1681 dmu_object_type_t type = BP_GET_TYPE(bp); 1682 int error = zio->io_error; 1683 1684 if (error) { 1685 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1686 type != DMU_OT_INTENT_LOG) 1687 atomic_add_64(&sle->sle_meta_count, 1); 1688 else 1689 atomic_add_64(&sle->sle_data_count, 1); 1690 } 1691 zio_data_buf_free(zio->io_data, zio->io_size); 1692 } 1693 1694 /*ARGSUSED*/ 1695 static int 1696 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1697 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1698 { 1699 if (bp != NULL) { 1700 zio_t *rio = arg; 1701 size_t size = BP_GET_PSIZE(bp); 1702 void *data = zio_data_buf_alloc(size); 1703 1704 zio_nowait(zio_read(rio, spa, bp, data, size, 1705 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1706 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1707 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1708 } 1709 return (0); 1710 } 1711 1712 static int 1713 spa_load_verify(spa_t *spa) 1714 { 1715 zio_t *rio; 1716 spa_load_error_t sle = { 0 }; 1717 zpool_rewind_policy_t policy; 1718 boolean_t verify_ok = B_FALSE; 1719 int error; 1720 1721 zpool_get_rewind_policy(spa->spa_config, &policy); 1722 1723 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1724 return (0); 1725 1726 rio = zio_root(spa, NULL, &sle, 1727 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1728 1729 error = traverse_pool(spa, spa->spa_verify_min_txg, 1730 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1731 1732 (void) zio_wait(rio); 1733 1734 spa->spa_load_meta_errors = sle.sle_meta_count; 1735 spa->spa_load_data_errors = sle.sle_data_count; 1736 1737 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1738 sle.sle_data_count <= policy.zrp_maxdata) { 1739 int64_t loss = 0; 1740 1741 verify_ok = B_TRUE; 1742 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1743 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1744 1745 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1746 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1747 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1748 VERIFY(nvlist_add_int64(spa->spa_load_info, 1749 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1750 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1751 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1752 } else { 1753 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1754 } 1755 1756 if (error) { 1757 if (error != ENXIO && error != EIO) 1758 error = EIO; 1759 return (error); 1760 } 1761 1762 return (verify_ok ? 0 : EIO); 1763 } 1764 1765 /* 1766 * Find a value in the pool props object. 1767 */ 1768 static void 1769 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1770 { 1771 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1772 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1773 } 1774 1775 /* 1776 * Find a value in the pool directory object. 1777 */ 1778 static int 1779 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1780 { 1781 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1782 name, sizeof (uint64_t), 1, val)); 1783 } 1784 1785 static int 1786 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1787 { 1788 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1789 return (err); 1790 } 1791 1792 /* 1793 * Fix up config after a partly-completed split. This is done with the 1794 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1795 * pool have that entry in their config, but only the splitting one contains 1796 * a list of all the guids of the vdevs that are being split off. 1797 * 1798 * This function determines what to do with that list: either rejoin 1799 * all the disks to the pool, or complete the splitting process. To attempt 1800 * the rejoin, each disk that is offlined is marked online again, and 1801 * we do a reopen() call. If the vdev label for every disk that was 1802 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1803 * then we call vdev_split() on each disk, and complete the split. 1804 * 1805 * Otherwise we leave the config alone, with all the vdevs in place in 1806 * the original pool. 1807 */ 1808 static void 1809 spa_try_repair(spa_t *spa, nvlist_t *config) 1810 { 1811 uint_t extracted; 1812 uint64_t *glist; 1813 uint_t i, gcount; 1814 nvlist_t *nvl; 1815 vdev_t **vd; 1816 boolean_t attempt_reopen; 1817 1818 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1819 return; 1820 1821 /* check that the config is complete */ 1822 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1823 &glist, &gcount) != 0) 1824 return; 1825 1826 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1827 1828 /* attempt to online all the vdevs & validate */ 1829 attempt_reopen = B_TRUE; 1830 for (i = 0; i < gcount; i++) { 1831 if (glist[i] == 0) /* vdev is hole */ 1832 continue; 1833 1834 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1835 if (vd[i] == NULL) { 1836 /* 1837 * Don't bother attempting to reopen the disks; 1838 * just do the split. 1839 */ 1840 attempt_reopen = B_FALSE; 1841 } else { 1842 /* attempt to re-online it */ 1843 vd[i]->vdev_offline = B_FALSE; 1844 } 1845 } 1846 1847 if (attempt_reopen) { 1848 vdev_reopen(spa->spa_root_vdev); 1849 1850 /* check each device to see what state it's in */ 1851 for (extracted = 0, i = 0; i < gcount; i++) { 1852 if (vd[i] != NULL && 1853 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1854 break; 1855 ++extracted; 1856 } 1857 } 1858 1859 /* 1860 * If every disk has been moved to the new pool, or if we never 1861 * even attempted to look at them, then we split them off for 1862 * good. 1863 */ 1864 if (!attempt_reopen || gcount == extracted) { 1865 for (i = 0; i < gcount; i++) 1866 if (vd[i] != NULL) 1867 vdev_split(vd[i]); 1868 vdev_reopen(spa->spa_root_vdev); 1869 } 1870 1871 kmem_free(vd, gcount * sizeof (vdev_t *)); 1872 } 1873 1874 static int 1875 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1876 boolean_t mosconfig) 1877 { 1878 nvlist_t *config = spa->spa_config; 1879 char *ereport = FM_EREPORT_ZFS_POOL; 1880 char *comment; 1881 int error; 1882 uint64_t pool_guid; 1883 nvlist_t *nvl; 1884 1885 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1886 return (EINVAL); 1887 1888 ASSERT(spa->spa_comment == NULL); 1889 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 1890 spa->spa_comment = spa_strdup(comment); 1891 1892 /* 1893 * Versioning wasn't explicitly added to the label until later, so if 1894 * it's not present treat it as the initial version. 1895 */ 1896 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1897 &spa->spa_ubsync.ub_version) != 0) 1898 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1899 1900 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1901 &spa->spa_config_txg); 1902 1903 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1904 spa_guid_exists(pool_guid, 0)) { 1905 error = EEXIST; 1906 } else { 1907 spa->spa_config_guid = pool_guid; 1908 1909 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1910 &nvl) == 0) { 1911 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1912 KM_SLEEP) == 0); 1913 } 1914 1915 nvlist_free(spa->spa_load_info); 1916 spa->spa_load_info = fnvlist_alloc(); 1917 1918 gethrestime(&spa->spa_loaded_ts); 1919 error = spa_load_impl(spa, pool_guid, config, state, type, 1920 mosconfig, &ereport); 1921 } 1922 1923 spa->spa_minref = refcount_count(&spa->spa_refcount); 1924 if (error) { 1925 if (error != EEXIST) { 1926 spa->spa_loaded_ts.tv_sec = 0; 1927 spa->spa_loaded_ts.tv_nsec = 0; 1928 } 1929 if (error != EBADF) { 1930 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1931 } 1932 } 1933 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1934 spa->spa_ena = 0; 1935 1936 return (error); 1937 } 1938 1939 /* 1940 * Load an existing storage pool, using the pool's builtin spa_config as a 1941 * source of configuration information. 1942 */ 1943 static int 1944 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1945 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1946 char **ereport) 1947 { 1948 int error = 0; 1949 nvlist_t *nvroot = NULL; 1950 nvlist_t *label; 1951 vdev_t *rvd; 1952 uberblock_t *ub = &spa->spa_uberblock; 1953 uint64_t children, config_cache_txg = spa->spa_config_txg; 1954 int orig_mode = spa->spa_mode; 1955 int parse; 1956 uint64_t obj; 1957 boolean_t missing_feat_write = B_FALSE; 1958 1959 /* 1960 * If this is an untrusted config, access the pool in read-only mode. 1961 * This prevents things like resilvering recently removed devices. 1962 */ 1963 if (!mosconfig) 1964 spa->spa_mode = FREAD; 1965 1966 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1967 1968 spa->spa_load_state = state; 1969 1970 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1971 return (EINVAL); 1972 1973 parse = (type == SPA_IMPORT_EXISTING ? 1974 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1975 1976 /* 1977 * Create "The Godfather" zio to hold all async IOs 1978 */ 1979 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1980 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1981 1982 /* 1983 * Parse the configuration into a vdev tree. We explicitly set the 1984 * value that will be returned by spa_version() since parsing the 1985 * configuration requires knowing the version number. 1986 */ 1987 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1988 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1989 spa_config_exit(spa, SCL_ALL, FTAG); 1990 1991 if (error != 0) 1992 return (error); 1993 1994 ASSERT(spa->spa_root_vdev == rvd); 1995 1996 if (type != SPA_IMPORT_ASSEMBLE) { 1997 ASSERT(spa_guid(spa) == pool_guid); 1998 } 1999 2000 /* 2001 * Try to open all vdevs, loading each label in the process. 2002 */ 2003 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2004 error = vdev_open(rvd); 2005 spa_config_exit(spa, SCL_ALL, FTAG); 2006 if (error != 0) 2007 return (error); 2008 2009 /* 2010 * We need to validate the vdev labels against the configuration that 2011 * we have in hand, which is dependent on the setting of mosconfig. If 2012 * mosconfig is true then we're validating the vdev labels based on 2013 * that config. Otherwise, we're validating against the cached config 2014 * (zpool.cache) that was read when we loaded the zfs module, and then 2015 * later we will recursively call spa_load() and validate against 2016 * the vdev config. 2017 * 2018 * If we're assembling a new pool that's been split off from an 2019 * existing pool, the labels haven't yet been updated so we skip 2020 * validation for now. 2021 */ 2022 if (type != SPA_IMPORT_ASSEMBLE) { 2023 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2024 error = vdev_validate(rvd, mosconfig); 2025 spa_config_exit(spa, SCL_ALL, FTAG); 2026 2027 if (error != 0) 2028 return (error); 2029 2030 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2031 return (ENXIO); 2032 } 2033 2034 /* 2035 * Find the best uberblock. 2036 */ 2037 vdev_uberblock_load(rvd, ub, &label); 2038 2039 /* 2040 * If we weren't able to find a single valid uberblock, return failure. 2041 */ 2042 if (ub->ub_txg == 0) { 2043 nvlist_free(label); 2044 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2045 } 2046 2047 /* 2048 * If the pool has an unsupported version we can't open it. 2049 */ 2050 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2051 nvlist_free(label); 2052 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2053 } 2054 2055 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2056 nvlist_t *features; 2057 2058 /* 2059 * If we weren't able to find what's necessary for reading the 2060 * MOS in the label, return failure. 2061 */ 2062 if (label == NULL || nvlist_lookup_nvlist(label, 2063 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2064 nvlist_free(label); 2065 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2066 ENXIO)); 2067 } 2068 2069 /* 2070 * Update our in-core representation with the definitive values 2071 * from the label. 2072 */ 2073 nvlist_free(spa->spa_label_features); 2074 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2075 } 2076 2077 nvlist_free(label); 2078 2079 /* 2080 * Look through entries in the label nvlist's features_for_read. If 2081 * there is a feature listed there which we don't understand then we 2082 * cannot open a pool. 2083 */ 2084 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2085 nvlist_t *unsup_feat; 2086 2087 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2088 0); 2089 2090 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2091 NULL); nvp != NULL; 2092 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2093 if (!zfeature_is_supported(nvpair_name(nvp))) { 2094 VERIFY(nvlist_add_string(unsup_feat, 2095 nvpair_name(nvp), "") == 0); 2096 } 2097 } 2098 2099 if (!nvlist_empty(unsup_feat)) { 2100 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2101 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2102 nvlist_free(unsup_feat); 2103 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2104 ENOTSUP)); 2105 } 2106 2107 nvlist_free(unsup_feat); 2108 } 2109 2110 /* 2111 * If the vdev guid sum doesn't match the uberblock, we have an 2112 * incomplete configuration. We first check to see if the pool 2113 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2114 * If it is, defer the vdev_guid_sum check till later so we 2115 * can handle missing vdevs. 2116 */ 2117 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2118 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2119 rvd->vdev_guid_sum != ub->ub_guid_sum) 2120 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2121 2122 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2123 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2124 spa_try_repair(spa, config); 2125 spa_config_exit(spa, SCL_ALL, FTAG); 2126 nvlist_free(spa->spa_config_splitting); 2127 spa->spa_config_splitting = NULL; 2128 } 2129 2130 /* 2131 * Initialize internal SPA structures. 2132 */ 2133 spa->spa_state = POOL_STATE_ACTIVE; 2134 spa->spa_ubsync = spa->spa_uberblock; 2135 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2136 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2137 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2138 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2139 spa->spa_claim_max_txg = spa->spa_first_txg; 2140 spa->spa_prev_software_version = ub->ub_software_version; 2141 2142 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2143 if (error) 2144 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2145 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2146 2147 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2148 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2149 2150 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2151 boolean_t missing_feat_read = B_FALSE; 2152 nvlist_t *unsup_feat; 2153 2154 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2155 &spa->spa_feat_for_read_obj) != 0) { 2156 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2157 } 2158 2159 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2160 &spa->spa_feat_for_write_obj) != 0) { 2161 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2162 } 2163 2164 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2165 &spa->spa_feat_desc_obj) != 0) { 2166 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2167 } 2168 2169 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2170 0); 2171 2172 if (!feature_is_supported(spa->spa_meta_objset, 2173 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2174 unsup_feat)) 2175 missing_feat_read = B_TRUE; 2176 2177 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2178 if (!feature_is_supported(spa->spa_meta_objset, 2179 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2180 unsup_feat)) 2181 missing_feat_write = B_TRUE; 2182 } 2183 2184 if (!nvlist_empty(unsup_feat)) { 2185 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2186 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2187 } 2188 2189 nvlist_free(unsup_feat); 2190 2191 if (!missing_feat_read) { 2192 fnvlist_add_boolean(spa->spa_load_info, 2193 ZPOOL_CONFIG_CAN_RDONLY); 2194 } 2195 2196 /* 2197 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2198 * twofold: to determine whether the pool is available for 2199 * import in read-write mode and (if it is not) whether the 2200 * pool is available for import in read-only mode. If the pool 2201 * is available for import in read-write mode, it is displayed 2202 * as available in userland; if it is not available for import 2203 * in read-only mode, it is displayed as unavailable in 2204 * userland. If the pool is available for import in read-only 2205 * mode but not read-write mode, it is displayed as unavailable 2206 * in userland with a special note that the pool is actually 2207 * available for open in read-only mode. 2208 * 2209 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2210 * missing a feature for write, we must first determine whether 2211 * the pool can be opened read-only before returning to 2212 * userland in order to know whether to display the 2213 * abovementioned note. 2214 */ 2215 if (missing_feat_read || (missing_feat_write && 2216 spa_writeable(spa))) { 2217 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2218 ENOTSUP)); 2219 } 2220 } 2221 2222 spa->spa_is_initializing = B_TRUE; 2223 error = dsl_pool_open(spa->spa_dsl_pool); 2224 spa->spa_is_initializing = B_FALSE; 2225 if (error != 0) 2226 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2227 2228 if (!mosconfig) { 2229 uint64_t hostid; 2230 nvlist_t *policy = NULL, *nvconfig; 2231 2232 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2233 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2234 2235 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2236 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2237 char *hostname; 2238 unsigned long myhostid = 0; 2239 2240 VERIFY(nvlist_lookup_string(nvconfig, 2241 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2242 2243 #ifdef _KERNEL 2244 myhostid = zone_get_hostid(NULL); 2245 #else /* _KERNEL */ 2246 /* 2247 * We're emulating the system's hostid in userland, so 2248 * we can't use zone_get_hostid(). 2249 */ 2250 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2251 #endif /* _KERNEL */ 2252 if (hostid != 0 && myhostid != 0 && 2253 hostid != myhostid) { 2254 nvlist_free(nvconfig); 2255 cmn_err(CE_WARN, "pool '%s' could not be " 2256 "loaded as it was last accessed by " 2257 "another system (host: %s hostid: 0x%lx). " 2258 "See: http://illumos.org/msg/ZFS-8000-EY", 2259 spa_name(spa), hostname, 2260 (unsigned long)hostid); 2261 return (EBADF); 2262 } 2263 } 2264 if (nvlist_lookup_nvlist(spa->spa_config, 2265 ZPOOL_REWIND_POLICY, &policy) == 0) 2266 VERIFY(nvlist_add_nvlist(nvconfig, 2267 ZPOOL_REWIND_POLICY, policy) == 0); 2268 2269 spa_config_set(spa, nvconfig); 2270 spa_unload(spa); 2271 spa_deactivate(spa); 2272 spa_activate(spa, orig_mode); 2273 2274 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2275 } 2276 2277 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2279 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2280 if (error != 0) 2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2282 2283 /* 2284 * Load the bit that tells us to use the new accounting function 2285 * (raid-z deflation). If we have an older pool, this will not 2286 * be present. 2287 */ 2288 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2289 if (error != 0 && error != ENOENT) 2290 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2291 2292 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2293 &spa->spa_creation_version); 2294 if (error != 0 && error != ENOENT) 2295 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2296 2297 /* 2298 * Load the persistent error log. If we have an older pool, this will 2299 * not be present. 2300 */ 2301 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2302 if (error != 0 && error != ENOENT) 2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2304 2305 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2306 &spa->spa_errlog_scrub); 2307 if (error != 0 && error != ENOENT) 2308 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2309 2310 /* 2311 * Load the history object. If we have an older pool, this 2312 * will not be present. 2313 */ 2314 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2315 if (error != 0 && error != ENOENT) 2316 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2317 2318 /* 2319 * If we're assembling the pool from the split-off vdevs of 2320 * an existing pool, we don't want to attach the spares & cache 2321 * devices. 2322 */ 2323 2324 /* 2325 * Load any hot spares for this pool. 2326 */ 2327 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2328 if (error != 0 && error != ENOENT) 2329 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2330 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2331 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2332 if (load_nvlist(spa, spa->spa_spares.sav_object, 2333 &spa->spa_spares.sav_config) != 0) 2334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2335 2336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2337 spa_load_spares(spa); 2338 spa_config_exit(spa, SCL_ALL, FTAG); 2339 } else if (error == 0) { 2340 spa->spa_spares.sav_sync = B_TRUE; 2341 } 2342 2343 /* 2344 * Load any level 2 ARC devices for this pool. 2345 */ 2346 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2347 &spa->spa_l2cache.sav_object); 2348 if (error != 0 && error != ENOENT) 2349 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2350 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2351 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2352 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2353 &spa->spa_l2cache.sav_config) != 0) 2354 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2355 2356 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2357 spa_load_l2cache(spa); 2358 spa_config_exit(spa, SCL_ALL, FTAG); 2359 } else if (error == 0) { 2360 spa->spa_l2cache.sav_sync = B_TRUE; 2361 } 2362 2363 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2364 2365 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2366 if (error && error != ENOENT) 2367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2368 2369 if (error == 0) { 2370 uint64_t autoreplace; 2371 2372 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2373 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2374 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2375 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2376 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2377 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2378 &spa->spa_dedup_ditto); 2379 2380 spa->spa_autoreplace = (autoreplace != 0); 2381 } 2382 2383 /* 2384 * If the 'autoreplace' property is set, then post a resource notifying 2385 * the ZFS DE that it should not issue any faults for unopenable 2386 * devices. We also iterate over the vdevs, and post a sysevent for any 2387 * unopenable vdevs so that the normal autoreplace handler can take 2388 * over. 2389 */ 2390 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2391 spa_check_removed(spa->spa_root_vdev); 2392 /* 2393 * For the import case, this is done in spa_import(), because 2394 * at this point we're using the spare definitions from 2395 * the MOS config, not necessarily from the userland config. 2396 */ 2397 if (state != SPA_LOAD_IMPORT) { 2398 spa_aux_check_removed(&spa->spa_spares); 2399 spa_aux_check_removed(&spa->spa_l2cache); 2400 } 2401 } 2402 2403 /* 2404 * Load the vdev state for all toplevel vdevs. 2405 */ 2406 vdev_load(rvd); 2407 2408 /* 2409 * Propagate the leaf DTLs we just loaded all the way up the tree. 2410 */ 2411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2412 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2413 spa_config_exit(spa, SCL_ALL, FTAG); 2414 2415 /* 2416 * Load the DDTs (dedup tables). 2417 */ 2418 error = ddt_load(spa); 2419 if (error != 0) 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2421 2422 spa_update_dspace(spa); 2423 2424 /* 2425 * Validate the config, using the MOS config to fill in any 2426 * information which might be missing. If we fail to validate 2427 * the config then declare the pool unfit for use. If we're 2428 * assembling a pool from a split, the log is not transferred 2429 * over. 2430 */ 2431 if (type != SPA_IMPORT_ASSEMBLE) { 2432 nvlist_t *nvconfig; 2433 2434 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2436 2437 if (!spa_config_valid(spa, nvconfig)) { 2438 nvlist_free(nvconfig); 2439 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2440 ENXIO)); 2441 } 2442 nvlist_free(nvconfig); 2443 2444 /* 2445 * Now that we've validated the config, check the state of the 2446 * root vdev. If it can't be opened, it indicates one or 2447 * more toplevel vdevs are faulted. 2448 */ 2449 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2450 return (ENXIO); 2451 2452 if (spa_check_logs(spa)) { 2453 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2454 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2455 } 2456 } 2457 2458 if (missing_feat_write) { 2459 ASSERT(state == SPA_LOAD_TRYIMPORT); 2460 2461 /* 2462 * At this point, we know that we can open the pool in 2463 * read-only mode but not read-write mode. We now have enough 2464 * information and can return to userland. 2465 */ 2466 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2467 } 2468 2469 /* 2470 * We've successfully opened the pool, verify that we're ready 2471 * to start pushing transactions. 2472 */ 2473 if (state != SPA_LOAD_TRYIMPORT) { 2474 if (error = spa_load_verify(spa)) 2475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2476 error)); 2477 } 2478 2479 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2480 spa->spa_load_max_txg == UINT64_MAX)) { 2481 dmu_tx_t *tx; 2482 int need_update = B_FALSE; 2483 2484 ASSERT(state != SPA_LOAD_TRYIMPORT); 2485 2486 /* 2487 * Claim log blocks that haven't been committed yet. 2488 * This must all happen in a single txg. 2489 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2490 * invoked from zil_claim_log_block()'s i/o done callback. 2491 * Price of rollback is that we abandon the log. 2492 */ 2493 spa->spa_claiming = B_TRUE; 2494 2495 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2496 spa_first_txg(spa)); 2497 (void) dmu_objset_find(spa_name(spa), 2498 zil_claim, tx, DS_FIND_CHILDREN); 2499 dmu_tx_commit(tx); 2500 2501 spa->spa_claiming = B_FALSE; 2502 2503 spa_set_log_state(spa, SPA_LOG_GOOD); 2504 spa->spa_sync_on = B_TRUE; 2505 txg_sync_start(spa->spa_dsl_pool); 2506 2507 /* 2508 * Wait for all claims to sync. We sync up to the highest 2509 * claimed log block birth time so that claimed log blocks 2510 * don't appear to be from the future. spa_claim_max_txg 2511 * will have been set for us by either zil_check_log_chain() 2512 * (invoked from spa_check_logs()) or zil_claim() above. 2513 */ 2514 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2515 2516 /* 2517 * If the config cache is stale, or we have uninitialized 2518 * metaslabs (see spa_vdev_add()), then update the config. 2519 * 2520 * If this is a verbatim import, trust the current 2521 * in-core spa_config and update the disk labels. 2522 */ 2523 if (config_cache_txg != spa->spa_config_txg || 2524 state == SPA_LOAD_IMPORT || 2525 state == SPA_LOAD_RECOVER || 2526 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2527 need_update = B_TRUE; 2528 2529 for (int c = 0; c < rvd->vdev_children; c++) 2530 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2531 need_update = B_TRUE; 2532 2533 /* 2534 * Update the config cache asychronously in case we're the 2535 * root pool, in which case the config cache isn't writable yet. 2536 */ 2537 if (need_update) 2538 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2539 2540 /* 2541 * Check all DTLs to see if anything needs resilvering. 2542 */ 2543 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2544 vdev_resilver_needed(rvd, NULL, NULL)) 2545 spa_async_request(spa, SPA_ASYNC_RESILVER); 2546 2547 /* 2548 * Log the fact that we booted up (so that we can detect if 2549 * we rebooted in the middle of an operation). 2550 */ 2551 spa_history_log_version(spa, "open"); 2552 2553 /* 2554 * Delete any inconsistent datasets. 2555 */ 2556 (void) dmu_objset_find(spa_name(spa), 2557 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2558 2559 /* 2560 * Clean up any stale temporary dataset userrefs. 2561 */ 2562 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2563 } 2564 2565 return (0); 2566 } 2567 2568 static int 2569 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2570 { 2571 int mode = spa->spa_mode; 2572 2573 spa_unload(spa); 2574 spa_deactivate(spa); 2575 2576 spa->spa_load_max_txg--; 2577 2578 spa_activate(spa, mode); 2579 spa_async_suspend(spa); 2580 2581 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2582 } 2583 2584 /* 2585 * If spa_load() fails this function will try loading prior txg's. If 2586 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2587 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2588 * function will not rewind the pool and will return the same error as 2589 * spa_load(). 2590 */ 2591 static int 2592 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2593 uint64_t max_request, int rewind_flags) 2594 { 2595 nvlist_t *loadinfo = NULL; 2596 nvlist_t *config = NULL; 2597 int load_error, rewind_error; 2598 uint64_t safe_rewind_txg; 2599 uint64_t min_txg; 2600 2601 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2602 spa->spa_load_max_txg = spa->spa_load_txg; 2603 spa_set_log_state(spa, SPA_LOG_CLEAR); 2604 } else { 2605 spa->spa_load_max_txg = max_request; 2606 } 2607 2608 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2609 mosconfig); 2610 if (load_error == 0) 2611 return (0); 2612 2613 if (spa->spa_root_vdev != NULL) 2614 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2615 2616 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2617 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2618 2619 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2620 nvlist_free(config); 2621 return (load_error); 2622 } 2623 2624 if (state == SPA_LOAD_RECOVER) { 2625 /* Price of rolling back is discarding txgs, including log */ 2626 spa_set_log_state(spa, SPA_LOG_CLEAR); 2627 } else { 2628 /* 2629 * If we aren't rolling back save the load info from our first 2630 * import attempt so that we can restore it after attempting 2631 * to rewind. 2632 */ 2633 loadinfo = spa->spa_load_info; 2634 spa->spa_load_info = fnvlist_alloc(); 2635 } 2636 2637 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2638 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2639 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2640 TXG_INITIAL : safe_rewind_txg; 2641 2642 /* 2643 * Continue as long as we're finding errors, we're still within 2644 * the acceptable rewind range, and we're still finding uberblocks 2645 */ 2646 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2647 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2648 if (spa->spa_load_max_txg < safe_rewind_txg) 2649 spa->spa_extreme_rewind = B_TRUE; 2650 rewind_error = spa_load_retry(spa, state, mosconfig); 2651 } 2652 2653 spa->spa_extreme_rewind = B_FALSE; 2654 spa->spa_load_max_txg = UINT64_MAX; 2655 2656 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2657 spa_config_set(spa, config); 2658 2659 if (state == SPA_LOAD_RECOVER) { 2660 ASSERT3P(loadinfo, ==, NULL); 2661 return (rewind_error); 2662 } else { 2663 /* Store the rewind info as part of the initial load info */ 2664 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2665 spa->spa_load_info); 2666 2667 /* Restore the initial load info */ 2668 fnvlist_free(spa->spa_load_info); 2669 spa->spa_load_info = loadinfo; 2670 2671 return (load_error); 2672 } 2673 } 2674 2675 /* 2676 * Pool Open/Import 2677 * 2678 * The import case is identical to an open except that the configuration is sent 2679 * down from userland, instead of grabbed from the configuration cache. For the 2680 * case of an open, the pool configuration will exist in the 2681 * POOL_STATE_UNINITIALIZED state. 2682 * 2683 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2684 * the same time open the pool, without having to keep around the spa_t in some 2685 * ambiguous state. 2686 */ 2687 static int 2688 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2689 nvlist_t **config) 2690 { 2691 spa_t *spa; 2692 spa_load_state_t state = SPA_LOAD_OPEN; 2693 int error; 2694 int locked = B_FALSE; 2695 2696 *spapp = NULL; 2697 2698 /* 2699 * As disgusting as this is, we need to support recursive calls to this 2700 * function because dsl_dir_open() is called during spa_load(), and ends 2701 * up calling spa_open() again. The real fix is to figure out how to 2702 * avoid dsl_dir_open() calling this in the first place. 2703 */ 2704 if (mutex_owner(&spa_namespace_lock) != curthread) { 2705 mutex_enter(&spa_namespace_lock); 2706 locked = B_TRUE; 2707 } 2708 2709 if ((spa = spa_lookup(pool)) == NULL) { 2710 if (locked) 2711 mutex_exit(&spa_namespace_lock); 2712 return (ENOENT); 2713 } 2714 2715 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2716 zpool_rewind_policy_t policy; 2717 2718 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2719 &policy); 2720 if (policy.zrp_request & ZPOOL_DO_REWIND) 2721 state = SPA_LOAD_RECOVER; 2722 2723 spa_activate(spa, spa_mode_global); 2724 2725 if (state != SPA_LOAD_RECOVER) 2726 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2727 2728 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2729 policy.zrp_request); 2730 2731 if (error == EBADF) { 2732 /* 2733 * If vdev_validate() returns failure (indicated by 2734 * EBADF), it indicates that one of the vdevs indicates 2735 * that the pool has been exported or destroyed. If 2736 * this is the case, the config cache is out of sync and 2737 * we should remove the pool from the namespace. 2738 */ 2739 spa_unload(spa); 2740 spa_deactivate(spa); 2741 spa_config_sync(spa, B_TRUE, B_TRUE); 2742 spa_remove(spa); 2743 if (locked) 2744 mutex_exit(&spa_namespace_lock); 2745 return (ENOENT); 2746 } 2747 2748 if (error) { 2749 /* 2750 * We can't open the pool, but we still have useful 2751 * information: the state of each vdev after the 2752 * attempted vdev_open(). Return this to the user. 2753 */ 2754 if (config != NULL && spa->spa_config) { 2755 VERIFY(nvlist_dup(spa->spa_config, config, 2756 KM_SLEEP) == 0); 2757 VERIFY(nvlist_add_nvlist(*config, 2758 ZPOOL_CONFIG_LOAD_INFO, 2759 spa->spa_load_info) == 0); 2760 } 2761 spa_unload(spa); 2762 spa_deactivate(spa); 2763 spa->spa_last_open_failed = error; 2764 if (locked) 2765 mutex_exit(&spa_namespace_lock); 2766 *spapp = NULL; 2767 return (error); 2768 } 2769 } 2770 2771 spa_open_ref(spa, tag); 2772 2773 if (config != NULL) 2774 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2775 2776 /* 2777 * If we've recovered the pool, pass back any information we 2778 * gathered while doing the load. 2779 */ 2780 if (state == SPA_LOAD_RECOVER) { 2781 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2782 spa->spa_load_info) == 0); 2783 } 2784 2785 if (locked) { 2786 spa->spa_last_open_failed = 0; 2787 spa->spa_last_ubsync_txg = 0; 2788 spa->spa_load_txg = 0; 2789 mutex_exit(&spa_namespace_lock); 2790 } 2791 2792 *spapp = spa; 2793 2794 return (0); 2795 } 2796 2797 int 2798 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2799 nvlist_t **config) 2800 { 2801 return (spa_open_common(name, spapp, tag, policy, config)); 2802 } 2803 2804 int 2805 spa_open(const char *name, spa_t **spapp, void *tag) 2806 { 2807 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2808 } 2809 2810 /* 2811 * Lookup the given spa_t, incrementing the inject count in the process, 2812 * preventing it from being exported or destroyed. 2813 */ 2814 spa_t * 2815 spa_inject_addref(char *name) 2816 { 2817 spa_t *spa; 2818 2819 mutex_enter(&spa_namespace_lock); 2820 if ((spa = spa_lookup(name)) == NULL) { 2821 mutex_exit(&spa_namespace_lock); 2822 return (NULL); 2823 } 2824 spa->spa_inject_ref++; 2825 mutex_exit(&spa_namespace_lock); 2826 2827 return (spa); 2828 } 2829 2830 void 2831 spa_inject_delref(spa_t *spa) 2832 { 2833 mutex_enter(&spa_namespace_lock); 2834 spa->spa_inject_ref--; 2835 mutex_exit(&spa_namespace_lock); 2836 } 2837 2838 /* 2839 * Add spares device information to the nvlist. 2840 */ 2841 static void 2842 spa_add_spares(spa_t *spa, nvlist_t *config) 2843 { 2844 nvlist_t **spares; 2845 uint_t i, nspares; 2846 nvlist_t *nvroot; 2847 uint64_t guid; 2848 vdev_stat_t *vs; 2849 uint_t vsc; 2850 uint64_t pool; 2851 2852 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2853 2854 if (spa->spa_spares.sav_count == 0) 2855 return; 2856 2857 VERIFY(nvlist_lookup_nvlist(config, 2858 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2859 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2860 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2861 if (nspares != 0) { 2862 VERIFY(nvlist_add_nvlist_array(nvroot, 2863 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2864 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2865 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2866 2867 /* 2868 * Go through and find any spares which have since been 2869 * repurposed as an active spare. If this is the case, update 2870 * their status appropriately. 2871 */ 2872 for (i = 0; i < nspares; i++) { 2873 VERIFY(nvlist_lookup_uint64(spares[i], 2874 ZPOOL_CONFIG_GUID, &guid) == 0); 2875 if (spa_spare_exists(guid, &pool, NULL) && 2876 pool != 0ULL) { 2877 VERIFY(nvlist_lookup_uint64_array( 2878 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2879 (uint64_t **)&vs, &vsc) == 0); 2880 vs->vs_state = VDEV_STATE_CANT_OPEN; 2881 vs->vs_aux = VDEV_AUX_SPARED; 2882 } 2883 } 2884 } 2885 } 2886 2887 /* 2888 * Add l2cache device information to the nvlist, including vdev stats. 2889 */ 2890 static void 2891 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2892 { 2893 nvlist_t **l2cache; 2894 uint_t i, j, nl2cache; 2895 nvlist_t *nvroot; 2896 uint64_t guid; 2897 vdev_t *vd; 2898 vdev_stat_t *vs; 2899 uint_t vsc; 2900 2901 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2902 2903 if (spa->spa_l2cache.sav_count == 0) 2904 return; 2905 2906 VERIFY(nvlist_lookup_nvlist(config, 2907 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2908 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2909 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2910 if (nl2cache != 0) { 2911 VERIFY(nvlist_add_nvlist_array(nvroot, 2912 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2913 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2914 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2915 2916 /* 2917 * Update level 2 cache device stats. 2918 */ 2919 2920 for (i = 0; i < nl2cache; i++) { 2921 VERIFY(nvlist_lookup_uint64(l2cache[i], 2922 ZPOOL_CONFIG_GUID, &guid) == 0); 2923 2924 vd = NULL; 2925 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2926 if (guid == 2927 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2928 vd = spa->spa_l2cache.sav_vdevs[j]; 2929 break; 2930 } 2931 } 2932 ASSERT(vd != NULL); 2933 2934 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2935 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2936 == 0); 2937 vdev_get_stats(vd, vs); 2938 } 2939 } 2940 } 2941 2942 static void 2943 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 2944 { 2945 nvlist_t *features; 2946 zap_cursor_t zc; 2947 zap_attribute_t za; 2948 2949 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2950 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2951 2952 if (spa->spa_feat_for_read_obj != 0) { 2953 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2954 spa->spa_feat_for_read_obj); 2955 zap_cursor_retrieve(&zc, &za) == 0; 2956 zap_cursor_advance(&zc)) { 2957 ASSERT(za.za_integer_length == sizeof (uint64_t) && 2958 za.za_num_integers == 1); 2959 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 2960 za.za_first_integer)); 2961 } 2962 zap_cursor_fini(&zc); 2963 } 2964 2965 if (spa->spa_feat_for_write_obj != 0) { 2966 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2967 spa->spa_feat_for_write_obj); 2968 zap_cursor_retrieve(&zc, &za) == 0; 2969 zap_cursor_advance(&zc)) { 2970 ASSERT(za.za_integer_length == sizeof (uint64_t) && 2971 za.za_num_integers == 1); 2972 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 2973 za.za_first_integer)); 2974 } 2975 zap_cursor_fini(&zc); 2976 } 2977 2978 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 2979 features) == 0); 2980 nvlist_free(features); 2981 } 2982 2983 int 2984 spa_get_stats(const char *name, nvlist_t **config, 2985 char *altroot, size_t buflen) 2986 { 2987 int error; 2988 spa_t *spa; 2989 2990 *config = NULL; 2991 error = spa_open_common(name, &spa, FTAG, NULL, config); 2992 2993 if (spa != NULL) { 2994 /* 2995 * This still leaves a window of inconsistency where the spares 2996 * or l2cache devices could change and the config would be 2997 * self-inconsistent. 2998 */ 2999 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3000 3001 if (*config != NULL) { 3002 uint64_t loadtimes[2]; 3003 3004 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3005 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3006 VERIFY(nvlist_add_uint64_array(*config, 3007 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3008 3009 VERIFY(nvlist_add_uint64(*config, 3010 ZPOOL_CONFIG_ERRCOUNT, 3011 spa_get_errlog_size(spa)) == 0); 3012 3013 if (spa_suspended(spa)) 3014 VERIFY(nvlist_add_uint64(*config, 3015 ZPOOL_CONFIG_SUSPENDED, 3016 spa->spa_failmode) == 0); 3017 3018 spa_add_spares(spa, *config); 3019 spa_add_l2cache(spa, *config); 3020 spa_add_feature_stats(spa, *config); 3021 } 3022 } 3023 3024 /* 3025 * We want to get the alternate root even for faulted pools, so we cheat 3026 * and call spa_lookup() directly. 3027 */ 3028 if (altroot) { 3029 if (spa == NULL) { 3030 mutex_enter(&spa_namespace_lock); 3031 spa = spa_lookup(name); 3032 if (spa) 3033 spa_altroot(spa, altroot, buflen); 3034 else 3035 altroot[0] = '\0'; 3036 spa = NULL; 3037 mutex_exit(&spa_namespace_lock); 3038 } else { 3039 spa_altroot(spa, altroot, buflen); 3040 } 3041 } 3042 3043 if (spa != NULL) { 3044 spa_config_exit(spa, SCL_CONFIG, FTAG); 3045 spa_close(spa, FTAG); 3046 } 3047 3048 return (error); 3049 } 3050 3051 /* 3052 * Validate that the auxiliary device array is well formed. We must have an 3053 * array of nvlists, each which describes a valid leaf vdev. If this is an 3054 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3055 * specified, as long as they are well-formed. 3056 */ 3057 static int 3058 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3059 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3060 vdev_labeltype_t label) 3061 { 3062 nvlist_t **dev; 3063 uint_t i, ndev; 3064 vdev_t *vd; 3065 int error; 3066 3067 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3068 3069 /* 3070 * It's acceptable to have no devs specified. 3071 */ 3072 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3073 return (0); 3074 3075 if (ndev == 0) 3076 return (EINVAL); 3077 3078 /* 3079 * Make sure the pool is formatted with a version that supports this 3080 * device type. 3081 */ 3082 if (spa_version(spa) < version) 3083 return (ENOTSUP); 3084 3085 /* 3086 * Set the pending device list so we correctly handle device in-use 3087 * checking. 3088 */ 3089 sav->sav_pending = dev; 3090 sav->sav_npending = ndev; 3091 3092 for (i = 0; i < ndev; i++) { 3093 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3094 mode)) != 0) 3095 goto out; 3096 3097 if (!vd->vdev_ops->vdev_op_leaf) { 3098 vdev_free(vd); 3099 error = EINVAL; 3100 goto out; 3101 } 3102 3103 /* 3104 * The L2ARC currently only supports disk devices in 3105 * kernel context. For user-level testing, we allow it. 3106 */ 3107 #ifdef _KERNEL 3108 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3109 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3110 error = ENOTBLK; 3111 vdev_free(vd); 3112 goto out; 3113 } 3114 #endif 3115 vd->vdev_top = vd; 3116 3117 if ((error = vdev_open(vd)) == 0 && 3118 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3119 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3120 vd->vdev_guid) == 0); 3121 } 3122 3123 vdev_free(vd); 3124 3125 if (error && 3126 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3127 goto out; 3128 else 3129 error = 0; 3130 } 3131 3132 out: 3133 sav->sav_pending = NULL; 3134 sav->sav_npending = 0; 3135 return (error); 3136 } 3137 3138 static int 3139 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3140 { 3141 int error; 3142 3143 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3144 3145 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3146 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3147 VDEV_LABEL_SPARE)) != 0) { 3148 return (error); 3149 } 3150 3151 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3152 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3153 VDEV_LABEL_L2CACHE)); 3154 } 3155 3156 static void 3157 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3158 const char *config) 3159 { 3160 int i; 3161 3162 if (sav->sav_config != NULL) { 3163 nvlist_t **olddevs; 3164 uint_t oldndevs; 3165 nvlist_t **newdevs; 3166 3167 /* 3168 * Generate new dev list by concatentating with the 3169 * current dev list. 3170 */ 3171 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3172 &olddevs, &oldndevs) == 0); 3173 3174 newdevs = kmem_alloc(sizeof (void *) * 3175 (ndevs + oldndevs), KM_SLEEP); 3176 for (i = 0; i < oldndevs; i++) 3177 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3178 KM_SLEEP) == 0); 3179 for (i = 0; i < ndevs; i++) 3180 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3181 KM_SLEEP) == 0); 3182 3183 VERIFY(nvlist_remove(sav->sav_config, config, 3184 DATA_TYPE_NVLIST_ARRAY) == 0); 3185 3186 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3187 config, newdevs, ndevs + oldndevs) == 0); 3188 for (i = 0; i < oldndevs + ndevs; i++) 3189 nvlist_free(newdevs[i]); 3190 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3191 } else { 3192 /* 3193 * Generate a new dev list. 3194 */ 3195 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3196 KM_SLEEP) == 0); 3197 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3198 devs, ndevs) == 0); 3199 } 3200 } 3201 3202 /* 3203 * Stop and drop level 2 ARC devices 3204 */ 3205 void 3206 spa_l2cache_drop(spa_t *spa) 3207 { 3208 vdev_t *vd; 3209 int i; 3210 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3211 3212 for (i = 0; i < sav->sav_count; i++) { 3213 uint64_t pool; 3214 3215 vd = sav->sav_vdevs[i]; 3216 ASSERT(vd != NULL); 3217 3218 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3219 pool != 0ULL && l2arc_vdev_present(vd)) 3220 l2arc_remove_vdev(vd); 3221 } 3222 } 3223 3224 /* 3225 * Pool Creation 3226 */ 3227 int 3228 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3229 nvlist_t *zplprops) 3230 { 3231 spa_t *spa; 3232 char *altroot = NULL; 3233 vdev_t *rvd; 3234 dsl_pool_t *dp; 3235 dmu_tx_t *tx; 3236 int error = 0; 3237 uint64_t txg = TXG_INITIAL; 3238 nvlist_t **spares, **l2cache; 3239 uint_t nspares, nl2cache; 3240 uint64_t version, obj; 3241 boolean_t has_features; 3242 3243 /* 3244 * If this pool already exists, return failure. 3245 */ 3246 mutex_enter(&spa_namespace_lock); 3247 if (spa_lookup(pool) != NULL) { 3248 mutex_exit(&spa_namespace_lock); 3249 return (EEXIST); 3250 } 3251 3252 /* 3253 * Allocate a new spa_t structure. 3254 */ 3255 (void) nvlist_lookup_string(props, 3256 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3257 spa = spa_add(pool, NULL, altroot); 3258 spa_activate(spa, spa_mode_global); 3259 3260 if (props && (error = spa_prop_validate(spa, props))) { 3261 spa_deactivate(spa); 3262 spa_remove(spa); 3263 mutex_exit(&spa_namespace_lock); 3264 return (error); 3265 } 3266 3267 has_features = B_FALSE; 3268 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3269 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3270 if (zpool_prop_feature(nvpair_name(elem))) 3271 has_features = B_TRUE; 3272 } 3273 3274 if (has_features || nvlist_lookup_uint64(props, 3275 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3276 version = SPA_VERSION; 3277 } 3278 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3279 3280 spa->spa_first_txg = txg; 3281 spa->spa_uberblock.ub_txg = txg - 1; 3282 spa->spa_uberblock.ub_version = version; 3283 spa->spa_ubsync = spa->spa_uberblock; 3284 3285 /* 3286 * Create "The Godfather" zio to hold all async IOs 3287 */ 3288 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3289 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3290 3291 /* 3292 * Create the root vdev. 3293 */ 3294 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3295 3296 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3297 3298 ASSERT(error != 0 || rvd != NULL); 3299 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3300 3301 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3302 error = EINVAL; 3303 3304 if (error == 0 && 3305 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3306 (error = spa_validate_aux(spa, nvroot, txg, 3307 VDEV_ALLOC_ADD)) == 0) { 3308 for (int c = 0; c < rvd->vdev_children; c++) { 3309 vdev_metaslab_set_size(rvd->vdev_child[c]); 3310 vdev_expand(rvd->vdev_child[c], txg); 3311 } 3312 } 3313 3314 spa_config_exit(spa, SCL_ALL, FTAG); 3315 3316 if (error != 0) { 3317 spa_unload(spa); 3318 spa_deactivate(spa); 3319 spa_remove(spa); 3320 mutex_exit(&spa_namespace_lock); 3321 return (error); 3322 } 3323 3324 /* 3325 * Get the list of spares, if specified. 3326 */ 3327 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3328 &spares, &nspares) == 0) { 3329 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3330 KM_SLEEP) == 0); 3331 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3332 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3333 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3334 spa_load_spares(spa); 3335 spa_config_exit(spa, SCL_ALL, FTAG); 3336 spa->spa_spares.sav_sync = B_TRUE; 3337 } 3338 3339 /* 3340 * Get the list of level 2 cache devices, if specified. 3341 */ 3342 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3343 &l2cache, &nl2cache) == 0) { 3344 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3345 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3346 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3347 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3348 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3349 spa_load_l2cache(spa); 3350 spa_config_exit(spa, SCL_ALL, FTAG); 3351 spa->spa_l2cache.sav_sync = B_TRUE; 3352 } 3353 3354 spa->spa_is_initializing = B_TRUE; 3355 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3356 spa->spa_meta_objset = dp->dp_meta_objset; 3357 spa->spa_is_initializing = B_FALSE; 3358 3359 /* 3360 * Create DDTs (dedup tables). 3361 */ 3362 ddt_create(spa); 3363 3364 spa_update_dspace(spa); 3365 3366 tx = dmu_tx_create_assigned(dp, txg); 3367 3368 /* 3369 * Create the pool config object. 3370 */ 3371 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3372 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3373 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3374 3375 if (zap_add(spa->spa_meta_objset, 3376 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3377 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3378 cmn_err(CE_PANIC, "failed to add pool config"); 3379 } 3380 3381 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3382 spa_feature_create_zap_objects(spa, tx); 3383 3384 if (zap_add(spa->spa_meta_objset, 3385 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3386 sizeof (uint64_t), 1, &version, tx) != 0) { 3387 cmn_err(CE_PANIC, "failed to add pool version"); 3388 } 3389 3390 /* Newly created pools with the right version are always deflated. */ 3391 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3392 spa->spa_deflate = TRUE; 3393 if (zap_add(spa->spa_meta_objset, 3394 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3395 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3396 cmn_err(CE_PANIC, "failed to add deflate"); 3397 } 3398 } 3399 3400 /* 3401 * Create the deferred-free bpobj. Turn off compression 3402 * because sync-to-convergence takes longer if the blocksize 3403 * keeps changing. 3404 */ 3405 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3406 dmu_object_set_compress(spa->spa_meta_objset, obj, 3407 ZIO_COMPRESS_OFF, tx); 3408 if (zap_add(spa->spa_meta_objset, 3409 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3410 sizeof (uint64_t), 1, &obj, tx) != 0) { 3411 cmn_err(CE_PANIC, "failed to add bpobj"); 3412 } 3413 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3414 spa->spa_meta_objset, obj)); 3415 3416 /* 3417 * Create the pool's history object. 3418 */ 3419 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3420 spa_history_create_obj(spa, tx); 3421 3422 /* 3423 * Set pool properties. 3424 */ 3425 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3426 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3427 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3428 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3429 3430 if (props != NULL) { 3431 spa_configfile_set(spa, props, B_FALSE); 3432 spa_sync_props(spa, props, tx); 3433 } 3434 3435 dmu_tx_commit(tx); 3436 3437 spa->spa_sync_on = B_TRUE; 3438 txg_sync_start(spa->spa_dsl_pool); 3439 3440 /* 3441 * We explicitly wait for the first transaction to complete so that our 3442 * bean counters are appropriately updated. 3443 */ 3444 txg_wait_synced(spa->spa_dsl_pool, txg); 3445 3446 spa_config_sync(spa, B_FALSE, B_TRUE); 3447 3448 spa_history_log_version(spa, "create"); 3449 3450 spa->spa_minref = refcount_count(&spa->spa_refcount); 3451 3452 mutex_exit(&spa_namespace_lock); 3453 3454 return (0); 3455 } 3456 3457 #ifdef _KERNEL 3458 /* 3459 * Get the root pool information from the root disk, then import the root pool 3460 * during the system boot up time. 3461 */ 3462 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3463 3464 static nvlist_t * 3465 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3466 { 3467 nvlist_t *config; 3468 nvlist_t *nvtop, *nvroot; 3469 uint64_t pgid; 3470 3471 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3472 return (NULL); 3473 3474 /* 3475 * Add this top-level vdev to the child array. 3476 */ 3477 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3478 &nvtop) == 0); 3479 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3480 &pgid) == 0); 3481 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3482 3483 /* 3484 * Put this pool's top-level vdevs into a root vdev. 3485 */ 3486 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3487 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3488 VDEV_TYPE_ROOT) == 0); 3489 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3490 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3491 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3492 &nvtop, 1) == 0); 3493 3494 /* 3495 * Replace the existing vdev_tree with the new root vdev in 3496 * this pool's configuration (remove the old, add the new). 3497 */ 3498 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3499 nvlist_free(nvroot); 3500 return (config); 3501 } 3502 3503 /* 3504 * Walk the vdev tree and see if we can find a device with "better" 3505 * configuration. A configuration is "better" if the label on that 3506 * device has a more recent txg. 3507 */ 3508 static void 3509 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3510 { 3511 for (int c = 0; c < vd->vdev_children; c++) 3512 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3513 3514 if (vd->vdev_ops->vdev_op_leaf) { 3515 nvlist_t *label; 3516 uint64_t label_txg; 3517 3518 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3519 &label) != 0) 3520 return; 3521 3522 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3523 &label_txg) == 0); 3524 3525 /* 3526 * Do we have a better boot device? 3527 */ 3528 if (label_txg > *txg) { 3529 *txg = label_txg; 3530 *avd = vd; 3531 } 3532 nvlist_free(label); 3533 } 3534 } 3535 3536 /* 3537 * Import a root pool. 3538 * 3539 * For x86. devpath_list will consist of devid and/or physpath name of 3540 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3541 * The GRUB "findroot" command will return the vdev we should boot. 3542 * 3543 * For Sparc, devpath_list consists the physpath name of the booting device 3544 * no matter the rootpool is a single device pool or a mirrored pool. 3545 * e.g. 3546 * "/pci@1f,0/ide@d/disk@0,0:a" 3547 */ 3548 int 3549 spa_import_rootpool(char *devpath, char *devid) 3550 { 3551 spa_t *spa; 3552 vdev_t *rvd, *bvd, *avd = NULL; 3553 nvlist_t *config, *nvtop; 3554 uint64_t guid, txg; 3555 char *pname; 3556 int error; 3557 3558 /* 3559 * Read the label from the boot device and generate a configuration. 3560 */ 3561 config = spa_generate_rootconf(devpath, devid, &guid); 3562 #if defined(_OBP) && defined(_KERNEL) 3563 if (config == NULL) { 3564 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3565 /* iscsi boot */ 3566 get_iscsi_bootpath_phy(devpath); 3567 config = spa_generate_rootconf(devpath, devid, &guid); 3568 } 3569 } 3570 #endif 3571 if (config == NULL) { 3572 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3573 devpath); 3574 return (EIO); 3575 } 3576 3577 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3578 &pname) == 0); 3579 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3580 3581 mutex_enter(&spa_namespace_lock); 3582 if ((spa = spa_lookup(pname)) != NULL) { 3583 /* 3584 * Remove the existing root pool from the namespace so that we 3585 * can replace it with the correct config we just read in. 3586 */ 3587 spa_remove(spa); 3588 } 3589 3590 spa = spa_add(pname, config, NULL); 3591 spa->spa_is_root = B_TRUE; 3592 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3593 3594 /* 3595 * Build up a vdev tree based on the boot device's label config. 3596 */ 3597 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3598 &nvtop) == 0); 3599 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3600 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3601 VDEV_ALLOC_ROOTPOOL); 3602 spa_config_exit(spa, SCL_ALL, FTAG); 3603 if (error) { 3604 mutex_exit(&spa_namespace_lock); 3605 nvlist_free(config); 3606 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3607 pname); 3608 return (error); 3609 } 3610 3611 /* 3612 * Get the boot vdev. 3613 */ 3614 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3615 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3616 (u_longlong_t)guid); 3617 error = ENOENT; 3618 goto out; 3619 } 3620 3621 /* 3622 * Determine if there is a better boot device. 3623 */ 3624 avd = bvd; 3625 spa_alt_rootvdev(rvd, &avd, &txg); 3626 if (avd != bvd) { 3627 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3628 "try booting from '%s'", avd->vdev_path); 3629 error = EINVAL; 3630 goto out; 3631 } 3632 3633 /* 3634 * If the boot device is part of a spare vdev then ensure that 3635 * we're booting off the active spare. 3636 */ 3637 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3638 !bvd->vdev_isspare) { 3639 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3640 "try booting from '%s'", 3641 bvd->vdev_parent-> 3642 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3643 error = EINVAL; 3644 goto out; 3645 } 3646 3647 error = 0; 3648 out: 3649 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3650 vdev_free(rvd); 3651 spa_config_exit(spa, SCL_ALL, FTAG); 3652 mutex_exit(&spa_namespace_lock); 3653 3654 nvlist_free(config); 3655 return (error); 3656 } 3657 3658 #endif 3659 3660 /* 3661 * Import a non-root pool into the system. 3662 */ 3663 int 3664 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3665 { 3666 spa_t *spa; 3667 char *altroot = NULL; 3668 spa_load_state_t state = SPA_LOAD_IMPORT; 3669 zpool_rewind_policy_t policy; 3670 uint64_t mode = spa_mode_global; 3671 uint64_t readonly = B_FALSE; 3672 int error; 3673 nvlist_t *nvroot; 3674 nvlist_t **spares, **l2cache; 3675 uint_t nspares, nl2cache; 3676 3677 /* 3678 * If a pool with this name exists, return failure. 3679 */ 3680 mutex_enter(&spa_namespace_lock); 3681 if (spa_lookup(pool) != NULL) { 3682 mutex_exit(&spa_namespace_lock); 3683 return (EEXIST); 3684 } 3685 3686 /* 3687 * Create and initialize the spa structure. 3688 */ 3689 (void) nvlist_lookup_string(props, 3690 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3691 (void) nvlist_lookup_uint64(props, 3692 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3693 if (readonly) 3694 mode = FREAD; 3695 spa = spa_add(pool, config, altroot); 3696 spa->spa_import_flags = flags; 3697 3698 /* 3699 * Verbatim import - Take a pool and insert it into the namespace 3700 * as if it had been loaded at boot. 3701 */ 3702 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3703 if (props != NULL) 3704 spa_configfile_set(spa, props, B_FALSE); 3705 3706 spa_config_sync(spa, B_FALSE, B_TRUE); 3707 3708 mutex_exit(&spa_namespace_lock); 3709 spa_history_log_version(spa, "import"); 3710 3711 return (0); 3712 } 3713 3714 spa_activate(spa, mode); 3715 3716 /* 3717 * Don't start async tasks until we know everything is healthy. 3718 */ 3719 spa_async_suspend(spa); 3720 3721 zpool_get_rewind_policy(config, &policy); 3722 if (policy.zrp_request & ZPOOL_DO_REWIND) 3723 state = SPA_LOAD_RECOVER; 3724 3725 /* 3726 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3727 * because the user-supplied config is actually the one to trust when 3728 * doing an import. 3729 */ 3730 if (state != SPA_LOAD_RECOVER) 3731 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3732 3733 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3734 policy.zrp_request); 3735 3736 /* 3737 * Propagate anything learned while loading the pool and pass it 3738 * back to caller (i.e. rewind info, missing devices, etc). 3739 */ 3740 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3741 spa->spa_load_info) == 0); 3742 3743 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3744 /* 3745 * Toss any existing sparelist, as it doesn't have any validity 3746 * anymore, and conflicts with spa_has_spare(). 3747 */ 3748 if (spa->spa_spares.sav_config) { 3749 nvlist_free(spa->spa_spares.sav_config); 3750 spa->spa_spares.sav_config = NULL; 3751 spa_load_spares(spa); 3752 } 3753 if (spa->spa_l2cache.sav_config) { 3754 nvlist_free(spa->spa_l2cache.sav_config); 3755 spa->spa_l2cache.sav_config = NULL; 3756 spa_load_l2cache(spa); 3757 } 3758 3759 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3760 &nvroot) == 0); 3761 if (error == 0) 3762 error = spa_validate_aux(spa, nvroot, -1ULL, 3763 VDEV_ALLOC_SPARE); 3764 if (error == 0) 3765 error = spa_validate_aux(spa, nvroot, -1ULL, 3766 VDEV_ALLOC_L2CACHE); 3767 spa_config_exit(spa, SCL_ALL, FTAG); 3768 3769 if (props != NULL) 3770 spa_configfile_set(spa, props, B_FALSE); 3771 3772 if (error != 0 || (props && spa_writeable(spa) && 3773 (error = spa_prop_set(spa, props)))) { 3774 spa_unload(spa); 3775 spa_deactivate(spa); 3776 spa_remove(spa); 3777 mutex_exit(&spa_namespace_lock); 3778 return (error); 3779 } 3780 3781 spa_async_resume(spa); 3782 3783 /* 3784 * Override any spares and level 2 cache devices as specified by 3785 * the user, as these may have correct device names/devids, etc. 3786 */ 3787 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3788 &spares, &nspares) == 0) { 3789 if (spa->spa_spares.sav_config) 3790 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3791 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3792 else 3793 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3794 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3795 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3796 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3797 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3798 spa_load_spares(spa); 3799 spa_config_exit(spa, SCL_ALL, FTAG); 3800 spa->spa_spares.sav_sync = B_TRUE; 3801 } 3802 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3803 &l2cache, &nl2cache) == 0) { 3804 if (spa->spa_l2cache.sav_config) 3805 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3806 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3807 else 3808 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3809 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3810 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3811 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3812 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3813 spa_load_l2cache(spa); 3814 spa_config_exit(spa, SCL_ALL, FTAG); 3815 spa->spa_l2cache.sav_sync = B_TRUE; 3816 } 3817 3818 /* 3819 * Check for any removed devices. 3820 */ 3821 if (spa->spa_autoreplace) { 3822 spa_aux_check_removed(&spa->spa_spares); 3823 spa_aux_check_removed(&spa->spa_l2cache); 3824 } 3825 3826 if (spa_writeable(spa)) { 3827 /* 3828 * Update the config cache to include the newly-imported pool. 3829 */ 3830 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3831 } 3832 3833 /* 3834 * It's possible that the pool was expanded while it was exported. 3835 * We kick off an async task to handle this for us. 3836 */ 3837 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3838 3839 mutex_exit(&spa_namespace_lock); 3840 spa_history_log_version(spa, "import"); 3841 3842 return (0); 3843 } 3844 3845 nvlist_t * 3846 spa_tryimport(nvlist_t *tryconfig) 3847 { 3848 nvlist_t *config = NULL; 3849 char *poolname; 3850 spa_t *spa; 3851 uint64_t state; 3852 int error; 3853 3854 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3855 return (NULL); 3856 3857 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3858 return (NULL); 3859 3860 /* 3861 * Create and initialize the spa structure. 3862 */ 3863 mutex_enter(&spa_namespace_lock); 3864 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3865 spa_activate(spa, FREAD); 3866 3867 /* 3868 * Pass off the heavy lifting to spa_load(). 3869 * Pass TRUE for mosconfig because the user-supplied config 3870 * is actually the one to trust when doing an import. 3871 */ 3872 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3873 3874 /* 3875 * If 'tryconfig' was at least parsable, return the current config. 3876 */ 3877 if (spa->spa_root_vdev != NULL) { 3878 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3879 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3880 poolname) == 0); 3881 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3882 state) == 0); 3883 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3884 spa->spa_uberblock.ub_timestamp) == 0); 3885 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3886 spa->spa_load_info) == 0); 3887 3888 /* 3889 * If the bootfs property exists on this pool then we 3890 * copy it out so that external consumers can tell which 3891 * pools are bootable. 3892 */ 3893 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3894 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3895 3896 /* 3897 * We have to play games with the name since the 3898 * pool was opened as TRYIMPORT_NAME. 3899 */ 3900 if (dsl_dsobj_to_dsname(spa_name(spa), 3901 spa->spa_bootfs, tmpname) == 0) { 3902 char *cp; 3903 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3904 3905 cp = strchr(tmpname, '/'); 3906 if (cp == NULL) { 3907 (void) strlcpy(dsname, tmpname, 3908 MAXPATHLEN); 3909 } else { 3910 (void) snprintf(dsname, MAXPATHLEN, 3911 "%s/%s", poolname, ++cp); 3912 } 3913 VERIFY(nvlist_add_string(config, 3914 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3915 kmem_free(dsname, MAXPATHLEN); 3916 } 3917 kmem_free(tmpname, MAXPATHLEN); 3918 } 3919 3920 /* 3921 * Add the list of hot spares and level 2 cache devices. 3922 */ 3923 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3924 spa_add_spares(spa, config); 3925 spa_add_l2cache(spa, config); 3926 spa_config_exit(spa, SCL_CONFIG, FTAG); 3927 } 3928 3929 spa_unload(spa); 3930 spa_deactivate(spa); 3931 spa_remove(spa); 3932 mutex_exit(&spa_namespace_lock); 3933 3934 return (config); 3935 } 3936 3937 /* 3938 * Pool export/destroy 3939 * 3940 * The act of destroying or exporting a pool is very simple. We make sure there 3941 * is no more pending I/O and any references to the pool are gone. Then, we 3942 * update the pool state and sync all the labels to disk, removing the 3943 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3944 * we don't sync the labels or remove the configuration cache. 3945 */ 3946 static int 3947 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3948 boolean_t force, boolean_t hardforce) 3949 { 3950 spa_t *spa; 3951 3952 if (oldconfig) 3953 *oldconfig = NULL; 3954 3955 if (!(spa_mode_global & FWRITE)) 3956 return (EROFS); 3957 3958 mutex_enter(&spa_namespace_lock); 3959 if ((spa = spa_lookup(pool)) == NULL) { 3960 mutex_exit(&spa_namespace_lock); 3961 return (ENOENT); 3962 } 3963 3964 /* 3965 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3966 * reacquire the namespace lock, and see if we can export. 3967 */ 3968 spa_open_ref(spa, FTAG); 3969 mutex_exit(&spa_namespace_lock); 3970 spa_async_suspend(spa); 3971 mutex_enter(&spa_namespace_lock); 3972 spa_close(spa, FTAG); 3973 3974 /* 3975 * The pool will be in core if it's openable, 3976 * in which case we can modify its state. 3977 */ 3978 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3979 /* 3980 * Objsets may be open only because they're dirty, so we 3981 * have to force it to sync before checking spa_refcnt. 3982 */ 3983 txg_wait_synced(spa->spa_dsl_pool, 0); 3984 3985 /* 3986 * A pool cannot be exported or destroyed if there are active 3987 * references. If we are resetting a pool, allow references by 3988 * fault injection handlers. 3989 */ 3990 if (!spa_refcount_zero(spa) || 3991 (spa->spa_inject_ref != 0 && 3992 new_state != POOL_STATE_UNINITIALIZED)) { 3993 spa_async_resume(spa); 3994 mutex_exit(&spa_namespace_lock); 3995 return (EBUSY); 3996 } 3997 3998 /* 3999 * A pool cannot be exported if it has an active shared spare. 4000 * This is to prevent other pools stealing the active spare 4001 * from an exported pool. At user's own will, such pool can 4002 * be forcedly exported. 4003 */ 4004 if (!force && new_state == POOL_STATE_EXPORTED && 4005 spa_has_active_shared_spare(spa)) { 4006 spa_async_resume(spa); 4007 mutex_exit(&spa_namespace_lock); 4008 return (EXDEV); 4009 } 4010 4011 /* 4012 * We want this to be reflected on every label, 4013 * so mark them all dirty. spa_unload() will do the 4014 * final sync that pushes these changes out. 4015 */ 4016 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4017 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4018 spa->spa_state = new_state; 4019 spa->spa_final_txg = spa_last_synced_txg(spa) + 4020 TXG_DEFER_SIZE + 1; 4021 vdev_config_dirty(spa->spa_root_vdev); 4022 spa_config_exit(spa, SCL_ALL, FTAG); 4023 } 4024 } 4025 4026 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4027 4028 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4029 spa_unload(spa); 4030 spa_deactivate(spa); 4031 } 4032 4033 if (oldconfig && spa->spa_config) 4034 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4035 4036 if (new_state != POOL_STATE_UNINITIALIZED) { 4037 if (!hardforce) 4038 spa_config_sync(spa, B_TRUE, B_TRUE); 4039 spa_remove(spa); 4040 } 4041 mutex_exit(&spa_namespace_lock); 4042 4043 return (0); 4044 } 4045 4046 /* 4047 * Destroy a storage pool. 4048 */ 4049 int 4050 spa_destroy(char *pool) 4051 { 4052 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4053 B_FALSE, B_FALSE)); 4054 } 4055 4056 /* 4057 * Export a storage pool. 4058 */ 4059 int 4060 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4061 boolean_t hardforce) 4062 { 4063 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4064 force, hardforce)); 4065 } 4066 4067 /* 4068 * Similar to spa_export(), this unloads the spa_t without actually removing it 4069 * from the namespace in any way. 4070 */ 4071 int 4072 spa_reset(char *pool) 4073 { 4074 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4075 B_FALSE, B_FALSE)); 4076 } 4077 4078 /* 4079 * ========================================================================== 4080 * Device manipulation 4081 * ========================================================================== 4082 */ 4083 4084 /* 4085 * Add a device to a storage pool. 4086 */ 4087 int 4088 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4089 { 4090 uint64_t txg, id; 4091 int error; 4092 vdev_t *rvd = spa->spa_root_vdev; 4093 vdev_t *vd, *tvd; 4094 nvlist_t **spares, **l2cache; 4095 uint_t nspares, nl2cache; 4096 4097 ASSERT(spa_writeable(spa)); 4098 4099 txg = spa_vdev_enter(spa); 4100 4101 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4102 VDEV_ALLOC_ADD)) != 0) 4103 return (spa_vdev_exit(spa, NULL, txg, error)); 4104 4105 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4106 4107 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4108 &nspares) != 0) 4109 nspares = 0; 4110 4111 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4112 &nl2cache) != 0) 4113 nl2cache = 0; 4114 4115 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4116 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4117 4118 if (vd->vdev_children != 0 && 4119 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4120 return (spa_vdev_exit(spa, vd, txg, error)); 4121 4122 /* 4123 * We must validate the spares and l2cache devices after checking the 4124 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4125 */ 4126 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4127 return (spa_vdev_exit(spa, vd, txg, error)); 4128 4129 /* 4130 * Transfer each new top-level vdev from vd to rvd. 4131 */ 4132 for (int c = 0; c < vd->vdev_children; c++) { 4133 4134 /* 4135 * Set the vdev id to the first hole, if one exists. 4136 */ 4137 for (id = 0; id < rvd->vdev_children; id++) { 4138 if (rvd->vdev_child[id]->vdev_ishole) { 4139 vdev_free(rvd->vdev_child[id]); 4140 break; 4141 } 4142 } 4143 tvd = vd->vdev_child[c]; 4144 vdev_remove_child(vd, tvd); 4145 tvd->vdev_id = id; 4146 vdev_add_child(rvd, tvd); 4147 vdev_config_dirty(tvd); 4148 } 4149 4150 if (nspares != 0) { 4151 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4152 ZPOOL_CONFIG_SPARES); 4153 spa_load_spares(spa); 4154 spa->spa_spares.sav_sync = B_TRUE; 4155 } 4156 4157 if (nl2cache != 0) { 4158 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4159 ZPOOL_CONFIG_L2CACHE); 4160 spa_load_l2cache(spa); 4161 spa->spa_l2cache.sav_sync = B_TRUE; 4162 } 4163 4164 /* 4165 * We have to be careful when adding new vdevs to an existing pool. 4166 * If other threads start allocating from these vdevs before we 4167 * sync the config cache, and we lose power, then upon reboot we may 4168 * fail to open the pool because there are DVAs that the config cache 4169 * can't translate. Therefore, we first add the vdevs without 4170 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4171 * and then let spa_config_update() initialize the new metaslabs. 4172 * 4173 * spa_load() checks for added-but-not-initialized vdevs, so that 4174 * if we lose power at any point in this sequence, the remaining 4175 * steps will be completed the next time we load the pool. 4176 */ 4177 (void) spa_vdev_exit(spa, vd, txg, 0); 4178 4179 mutex_enter(&spa_namespace_lock); 4180 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4181 mutex_exit(&spa_namespace_lock); 4182 4183 return (0); 4184 } 4185 4186 /* 4187 * Attach a device to a mirror. The arguments are the path to any device 4188 * in the mirror, and the nvroot for the new device. If the path specifies 4189 * a device that is not mirrored, we automatically insert the mirror vdev. 4190 * 4191 * If 'replacing' is specified, the new device is intended to replace the 4192 * existing device; in this case the two devices are made into their own 4193 * mirror using the 'replacing' vdev, which is functionally identical to 4194 * the mirror vdev (it actually reuses all the same ops) but has a few 4195 * extra rules: you can't attach to it after it's been created, and upon 4196 * completion of resilvering, the first disk (the one being replaced) 4197 * is automatically detached. 4198 */ 4199 int 4200 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4201 { 4202 uint64_t txg, dtl_max_txg; 4203 vdev_t *rvd = spa->spa_root_vdev; 4204 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4205 vdev_ops_t *pvops; 4206 char *oldvdpath, *newvdpath; 4207 int newvd_isspare; 4208 int error; 4209 4210 ASSERT(spa_writeable(spa)); 4211 4212 txg = spa_vdev_enter(spa); 4213 4214 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4215 4216 if (oldvd == NULL) 4217 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4218 4219 if (!oldvd->vdev_ops->vdev_op_leaf) 4220 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4221 4222 pvd = oldvd->vdev_parent; 4223 4224 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4225 VDEV_ALLOC_ATTACH)) != 0) 4226 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4227 4228 if (newrootvd->vdev_children != 1) 4229 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4230 4231 newvd = newrootvd->vdev_child[0]; 4232 4233 if (!newvd->vdev_ops->vdev_op_leaf) 4234 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4235 4236 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4237 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4238 4239 /* 4240 * Spares can't replace logs 4241 */ 4242 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4243 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4244 4245 if (!replacing) { 4246 /* 4247 * For attach, the only allowable parent is a mirror or the root 4248 * vdev. 4249 */ 4250 if (pvd->vdev_ops != &vdev_mirror_ops && 4251 pvd->vdev_ops != &vdev_root_ops) 4252 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4253 4254 pvops = &vdev_mirror_ops; 4255 } else { 4256 /* 4257 * Active hot spares can only be replaced by inactive hot 4258 * spares. 4259 */ 4260 if (pvd->vdev_ops == &vdev_spare_ops && 4261 oldvd->vdev_isspare && 4262 !spa_has_spare(spa, newvd->vdev_guid)) 4263 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4264 4265 /* 4266 * If the source is a hot spare, and the parent isn't already a 4267 * spare, then we want to create a new hot spare. Otherwise, we 4268 * want to create a replacing vdev. The user is not allowed to 4269 * attach to a spared vdev child unless the 'isspare' state is 4270 * the same (spare replaces spare, non-spare replaces 4271 * non-spare). 4272 */ 4273 if (pvd->vdev_ops == &vdev_replacing_ops && 4274 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4275 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4276 } else if (pvd->vdev_ops == &vdev_spare_ops && 4277 newvd->vdev_isspare != oldvd->vdev_isspare) { 4278 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4279 } 4280 4281 if (newvd->vdev_isspare) 4282 pvops = &vdev_spare_ops; 4283 else 4284 pvops = &vdev_replacing_ops; 4285 } 4286 4287 /* 4288 * Make sure the new device is big enough. 4289 */ 4290 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4291 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4292 4293 /* 4294 * The new device cannot have a higher alignment requirement 4295 * than the top-level vdev. 4296 */ 4297 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4298 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4299 4300 /* 4301 * If this is an in-place replacement, update oldvd's path and devid 4302 * to make it distinguishable from newvd, and unopenable from now on. 4303 */ 4304 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4305 spa_strfree(oldvd->vdev_path); 4306 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4307 KM_SLEEP); 4308 (void) sprintf(oldvd->vdev_path, "%s/%s", 4309 newvd->vdev_path, "old"); 4310 if (oldvd->vdev_devid != NULL) { 4311 spa_strfree(oldvd->vdev_devid); 4312 oldvd->vdev_devid = NULL; 4313 } 4314 } 4315 4316 /* mark the device being resilvered */ 4317 newvd->vdev_resilvering = B_TRUE; 4318 4319 /* 4320 * If the parent is not a mirror, or if we're replacing, insert the new 4321 * mirror/replacing/spare vdev above oldvd. 4322 */ 4323 if (pvd->vdev_ops != pvops) 4324 pvd = vdev_add_parent(oldvd, pvops); 4325 4326 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4327 ASSERT(pvd->vdev_ops == pvops); 4328 ASSERT(oldvd->vdev_parent == pvd); 4329 4330 /* 4331 * Extract the new device from its root and add it to pvd. 4332 */ 4333 vdev_remove_child(newrootvd, newvd); 4334 newvd->vdev_id = pvd->vdev_children; 4335 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4336 vdev_add_child(pvd, newvd); 4337 4338 tvd = newvd->vdev_top; 4339 ASSERT(pvd->vdev_top == tvd); 4340 ASSERT(tvd->vdev_parent == rvd); 4341 4342 vdev_config_dirty(tvd); 4343 4344 /* 4345 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4346 * for any dmu_sync-ed blocks. It will propagate upward when 4347 * spa_vdev_exit() calls vdev_dtl_reassess(). 4348 */ 4349 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4350 4351 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4352 dtl_max_txg - TXG_INITIAL); 4353 4354 if (newvd->vdev_isspare) { 4355 spa_spare_activate(newvd); 4356 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4357 } 4358 4359 oldvdpath = spa_strdup(oldvd->vdev_path); 4360 newvdpath = spa_strdup(newvd->vdev_path); 4361 newvd_isspare = newvd->vdev_isspare; 4362 4363 /* 4364 * Mark newvd's DTL dirty in this txg. 4365 */ 4366 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4367 4368 /* 4369 * Restart the resilver 4370 */ 4371 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4372 4373 /* 4374 * Commit the config 4375 */ 4376 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4377 4378 spa_history_log_internal(spa, "vdev attach", NULL, 4379 "%s vdev=%s %s vdev=%s", 4380 replacing && newvd_isspare ? "spare in" : 4381 replacing ? "replace" : "attach", newvdpath, 4382 replacing ? "for" : "to", oldvdpath); 4383 4384 spa_strfree(oldvdpath); 4385 spa_strfree(newvdpath); 4386 4387 if (spa->spa_bootfs) 4388 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4389 4390 return (0); 4391 } 4392 4393 /* 4394 * Detach a device from a mirror or replacing vdev. 4395 * If 'replace_done' is specified, only detach if the parent 4396 * is a replacing vdev. 4397 */ 4398 int 4399 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4400 { 4401 uint64_t txg; 4402 int error; 4403 vdev_t *rvd = spa->spa_root_vdev; 4404 vdev_t *vd, *pvd, *cvd, *tvd; 4405 boolean_t unspare = B_FALSE; 4406 uint64_t unspare_guid; 4407 char *vdpath; 4408 4409 ASSERT(spa_writeable(spa)); 4410 4411 txg = spa_vdev_enter(spa); 4412 4413 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4414 4415 if (vd == NULL) 4416 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4417 4418 if (!vd->vdev_ops->vdev_op_leaf) 4419 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4420 4421 pvd = vd->vdev_parent; 4422 4423 /* 4424 * If the parent/child relationship is not as expected, don't do it. 4425 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4426 * vdev that's replacing B with C. The user's intent in replacing 4427 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4428 * the replace by detaching C, the expected behavior is to end up 4429 * M(A,B). But suppose that right after deciding to detach C, 4430 * the replacement of B completes. We would have M(A,C), and then 4431 * ask to detach C, which would leave us with just A -- not what 4432 * the user wanted. To prevent this, we make sure that the 4433 * parent/child relationship hasn't changed -- in this example, 4434 * that C's parent is still the replacing vdev R. 4435 */ 4436 if (pvd->vdev_guid != pguid && pguid != 0) 4437 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4438 4439 /* 4440 * Only 'replacing' or 'spare' vdevs can be replaced. 4441 */ 4442 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4443 pvd->vdev_ops != &vdev_spare_ops) 4444 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4445 4446 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4447 spa_version(spa) >= SPA_VERSION_SPARES); 4448 4449 /* 4450 * Only mirror, replacing, and spare vdevs support detach. 4451 */ 4452 if (pvd->vdev_ops != &vdev_replacing_ops && 4453 pvd->vdev_ops != &vdev_mirror_ops && 4454 pvd->vdev_ops != &vdev_spare_ops) 4455 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4456 4457 /* 4458 * If this device has the only valid copy of some data, 4459 * we cannot safely detach it. 4460 */ 4461 if (vdev_dtl_required(vd)) 4462 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4463 4464 ASSERT(pvd->vdev_children >= 2); 4465 4466 /* 4467 * If we are detaching the second disk from a replacing vdev, then 4468 * check to see if we changed the original vdev's path to have "/old" 4469 * at the end in spa_vdev_attach(). If so, undo that change now. 4470 */ 4471 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4472 vd->vdev_path != NULL) { 4473 size_t len = strlen(vd->vdev_path); 4474 4475 for (int c = 0; c < pvd->vdev_children; c++) { 4476 cvd = pvd->vdev_child[c]; 4477 4478 if (cvd == vd || cvd->vdev_path == NULL) 4479 continue; 4480 4481 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4482 strcmp(cvd->vdev_path + len, "/old") == 0) { 4483 spa_strfree(cvd->vdev_path); 4484 cvd->vdev_path = spa_strdup(vd->vdev_path); 4485 break; 4486 } 4487 } 4488 } 4489 4490 /* 4491 * If we are detaching the original disk from a spare, then it implies 4492 * that the spare should become a real disk, and be removed from the 4493 * active spare list for the pool. 4494 */ 4495 if (pvd->vdev_ops == &vdev_spare_ops && 4496 vd->vdev_id == 0 && 4497 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4498 unspare = B_TRUE; 4499 4500 /* 4501 * Erase the disk labels so the disk can be used for other things. 4502 * This must be done after all other error cases are handled, 4503 * but before we disembowel vd (so we can still do I/O to it). 4504 * But if we can't do it, don't treat the error as fatal -- 4505 * it may be that the unwritability of the disk is the reason 4506 * it's being detached! 4507 */ 4508 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4509 4510 /* 4511 * Remove vd from its parent and compact the parent's children. 4512 */ 4513 vdev_remove_child(pvd, vd); 4514 vdev_compact_children(pvd); 4515 4516 /* 4517 * Remember one of the remaining children so we can get tvd below. 4518 */ 4519 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4520 4521 /* 4522 * If we need to remove the remaining child from the list of hot spares, 4523 * do it now, marking the vdev as no longer a spare in the process. 4524 * We must do this before vdev_remove_parent(), because that can 4525 * change the GUID if it creates a new toplevel GUID. For a similar 4526 * reason, we must remove the spare now, in the same txg as the detach; 4527 * otherwise someone could attach a new sibling, change the GUID, and 4528 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4529 */ 4530 if (unspare) { 4531 ASSERT(cvd->vdev_isspare); 4532 spa_spare_remove(cvd); 4533 unspare_guid = cvd->vdev_guid; 4534 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4535 cvd->vdev_unspare = B_TRUE; 4536 } 4537 4538 /* 4539 * If the parent mirror/replacing vdev only has one child, 4540 * the parent is no longer needed. Remove it from the tree. 4541 */ 4542 if (pvd->vdev_children == 1) { 4543 if (pvd->vdev_ops == &vdev_spare_ops) 4544 cvd->vdev_unspare = B_FALSE; 4545 vdev_remove_parent(cvd); 4546 cvd->vdev_resilvering = B_FALSE; 4547 } 4548 4549 4550 /* 4551 * We don't set tvd until now because the parent we just removed 4552 * may have been the previous top-level vdev. 4553 */ 4554 tvd = cvd->vdev_top; 4555 ASSERT(tvd->vdev_parent == rvd); 4556 4557 /* 4558 * Reevaluate the parent vdev state. 4559 */ 4560 vdev_propagate_state(cvd); 4561 4562 /* 4563 * If the 'autoexpand' property is set on the pool then automatically 4564 * try to expand the size of the pool. For example if the device we 4565 * just detached was smaller than the others, it may be possible to 4566 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4567 * first so that we can obtain the updated sizes of the leaf vdevs. 4568 */ 4569 if (spa->spa_autoexpand) { 4570 vdev_reopen(tvd); 4571 vdev_expand(tvd, txg); 4572 } 4573 4574 vdev_config_dirty(tvd); 4575 4576 /* 4577 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4578 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4579 * But first make sure we're not on any *other* txg's DTL list, to 4580 * prevent vd from being accessed after it's freed. 4581 */ 4582 vdpath = spa_strdup(vd->vdev_path); 4583 for (int t = 0; t < TXG_SIZE; t++) 4584 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4585 vd->vdev_detached = B_TRUE; 4586 vdev_dirty(tvd, VDD_DTL, vd, txg); 4587 4588 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4589 4590 /* hang on to the spa before we release the lock */ 4591 spa_open_ref(spa, FTAG); 4592 4593 error = spa_vdev_exit(spa, vd, txg, 0); 4594 4595 spa_history_log_internal(spa, "detach", NULL, 4596 "vdev=%s", vdpath); 4597 spa_strfree(vdpath); 4598 4599 /* 4600 * If this was the removal of the original device in a hot spare vdev, 4601 * then we want to go through and remove the device from the hot spare 4602 * list of every other pool. 4603 */ 4604 if (unspare) { 4605 spa_t *altspa = NULL; 4606 4607 mutex_enter(&spa_namespace_lock); 4608 while ((altspa = spa_next(altspa)) != NULL) { 4609 if (altspa->spa_state != POOL_STATE_ACTIVE || 4610 altspa == spa) 4611 continue; 4612 4613 spa_open_ref(altspa, FTAG); 4614 mutex_exit(&spa_namespace_lock); 4615 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4616 mutex_enter(&spa_namespace_lock); 4617 spa_close(altspa, FTAG); 4618 } 4619 mutex_exit(&spa_namespace_lock); 4620 4621 /* search the rest of the vdevs for spares to remove */ 4622 spa_vdev_resilver_done(spa); 4623 } 4624 4625 /* all done with the spa; OK to release */ 4626 mutex_enter(&spa_namespace_lock); 4627 spa_close(spa, FTAG); 4628 mutex_exit(&spa_namespace_lock); 4629 4630 return (error); 4631 } 4632 4633 /* 4634 * Split a set of devices from their mirrors, and create a new pool from them. 4635 */ 4636 int 4637 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4638 nvlist_t *props, boolean_t exp) 4639 { 4640 int error = 0; 4641 uint64_t txg, *glist; 4642 spa_t *newspa; 4643 uint_t c, children, lastlog; 4644 nvlist_t **child, *nvl, *tmp; 4645 dmu_tx_t *tx; 4646 char *altroot = NULL; 4647 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4648 boolean_t activate_slog; 4649 4650 ASSERT(spa_writeable(spa)); 4651 4652 txg = spa_vdev_enter(spa); 4653 4654 /* clear the log and flush everything up to now */ 4655 activate_slog = spa_passivate_log(spa); 4656 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4657 error = spa_offline_log(spa); 4658 txg = spa_vdev_config_enter(spa); 4659 4660 if (activate_slog) 4661 spa_activate_log(spa); 4662 4663 if (error != 0) 4664 return (spa_vdev_exit(spa, NULL, txg, error)); 4665 4666 /* check new spa name before going any further */ 4667 if (spa_lookup(newname) != NULL) 4668 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4669 4670 /* 4671 * scan through all the children to ensure they're all mirrors 4672 */ 4673 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4674 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4675 &children) != 0) 4676 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4677 4678 /* first, check to ensure we've got the right child count */ 4679 rvd = spa->spa_root_vdev; 4680 lastlog = 0; 4681 for (c = 0; c < rvd->vdev_children; c++) { 4682 vdev_t *vd = rvd->vdev_child[c]; 4683 4684 /* don't count the holes & logs as children */ 4685 if (vd->vdev_islog || vd->vdev_ishole) { 4686 if (lastlog == 0) 4687 lastlog = c; 4688 continue; 4689 } 4690 4691 lastlog = 0; 4692 } 4693 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4694 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4695 4696 /* next, ensure no spare or cache devices are part of the split */ 4697 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4698 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4699 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4700 4701 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4702 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4703 4704 /* then, loop over each vdev and validate it */ 4705 for (c = 0; c < children; c++) { 4706 uint64_t is_hole = 0; 4707 4708 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4709 &is_hole); 4710 4711 if (is_hole != 0) { 4712 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4713 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4714 continue; 4715 } else { 4716 error = EINVAL; 4717 break; 4718 } 4719 } 4720 4721 /* which disk is going to be split? */ 4722 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4723 &glist[c]) != 0) { 4724 error = EINVAL; 4725 break; 4726 } 4727 4728 /* look it up in the spa */ 4729 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4730 if (vml[c] == NULL) { 4731 error = ENODEV; 4732 break; 4733 } 4734 4735 /* make sure there's nothing stopping the split */ 4736 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4737 vml[c]->vdev_islog || 4738 vml[c]->vdev_ishole || 4739 vml[c]->vdev_isspare || 4740 vml[c]->vdev_isl2cache || 4741 !vdev_writeable(vml[c]) || 4742 vml[c]->vdev_children != 0 || 4743 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4744 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4745 error = EINVAL; 4746 break; 4747 } 4748 4749 if (vdev_dtl_required(vml[c])) { 4750 error = EBUSY; 4751 break; 4752 } 4753 4754 /* we need certain info from the top level */ 4755 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4756 vml[c]->vdev_top->vdev_ms_array) == 0); 4757 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4758 vml[c]->vdev_top->vdev_ms_shift) == 0); 4759 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4760 vml[c]->vdev_top->vdev_asize) == 0); 4761 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4762 vml[c]->vdev_top->vdev_ashift) == 0); 4763 } 4764 4765 if (error != 0) { 4766 kmem_free(vml, children * sizeof (vdev_t *)); 4767 kmem_free(glist, children * sizeof (uint64_t)); 4768 return (spa_vdev_exit(spa, NULL, txg, error)); 4769 } 4770 4771 /* stop writers from using the disks */ 4772 for (c = 0; c < children; c++) { 4773 if (vml[c] != NULL) 4774 vml[c]->vdev_offline = B_TRUE; 4775 } 4776 vdev_reopen(spa->spa_root_vdev); 4777 4778 /* 4779 * Temporarily record the splitting vdevs in the spa config. This 4780 * will disappear once the config is regenerated. 4781 */ 4782 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4783 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4784 glist, children) == 0); 4785 kmem_free(glist, children * sizeof (uint64_t)); 4786 4787 mutex_enter(&spa->spa_props_lock); 4788 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4789 nvl) == 0); 4790 mutex_exit(&spa->spa_props_lock); 4791 spa->spa_config_splitting = nvl; 4792 vdev_config_dirty(spa->spa_root_vdev); 4793 4794 /* configure and create the new pool */ 4795 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4796 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4797 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4798 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4799 spa_version(spa)) == 0); 4800 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4801 spa->spa_config_txg) == 0); 4802 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4803 spa_generate_guid(NULL)) == 0); 4804 (void) nvlist_lookup_string(props, 4805 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4806 4807 /* add the new pool to the namespace */ 4808 newspa = spa_add(newname, config, altroot); 4809 newspa->spa_config_txg = spa->spa_config_txg; 4810 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4811 4812 /* release the spa config lock, retaining the namespace lock */ 4813 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4814 4815 if (zio_injection_enabled) 4816 zio_handle_panic_injection(spa, FTAG, 1); 4817 4818 spa_activate(newspa, spa_mode_global); 4819 spa_async_suspend(newspa); 4820 4821 /* create the new pool from the disks of the original pool */ 4822 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4823 if (error) 4824 goto out; 4825 4826 /* if that worked, generate a real config for the new pool */ 4827 if (newspa->spa_root_vdev != NULL) { 4828 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4829 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4830 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4831 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4832 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4833 B_TRUE)); 4834 } 4835 4836 /* set the props */ 4837 if (props != NULL) { 4838 spa_configfile_set(newspa, props, B_FALSE); 4839 error = spa_prop_set(newspa, props); 4840 if (error) 4841 goto out; 4842 } 4843 4844 /* flush everything */ 4845 txg = spa_vdev_config_enter(newspa); 4846 vdev_config_dirty(newspa->spa_root_vdev); 4847 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4848 4849 if (zio_injection_enabled) 4850 zio_handle_panic_injection(spa, FTAG, 2); 4851 4852 spa_async_resume(newspa); 4853 4854 /* finally, update the original pool's config */ 4855 txg = spa_vdev_config_enter(spa); 4856 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4857 error = dmu_tx_assign(tx, TXG_WAIT); 4858 if (error != 0) 4859 dmu_tx_abort(tx); 4860 for (c = 0; c < children; c++) { 4861 if (vml[c] != NULL) { 4862 vdev_split(vml[c]); 4863 if (error == 0) 4864 spa_history_log_internal(spa, "detach", tx, 4865 "vdev=%s", vml[c]->vdev_path); 4866 vdev_free(vml[c]); 4867 } 4868 } 4869 vdev_config_dirty(spa->spa_root_vdev); 4870 spa->spa_config_splitting = NULL; 4871 nvlist_free(nvl); 4872 if (error == 0) 4873 dmu_tx_commit(tx); 4874 (void) spa_vdev_exit(spa, NULL, txg, 0); 4875 4876 if (zio_injection_enabled) 4877 zio_handle_panic_injection(spa, FTAG, 3); 4878 4879 /* split is complete; log a history record */ 4880 spa_history_log_internal(newspa, "split", NULL, 4881 "from pool %s", spa_name(spa)); 4882 4883 kmem_free(vml, children * sizeof (vdev_t *)); 4884 4885 /* if we're not going to mount the filesystems in userland, export */ 4886 if (exp) 4887 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4888 B_FALSE, B_FALSE); 4889 4890 return (error); 4891 4892 out: 4893 spa_unload(newspa); 4894 spa_deactivate(newspa); 4895 spa_remove(newspa); 4896 4897 txg = spa_vdev_config_enter(spa); 4898 4899 /* re-online all offlined disks */ 4900 for (c = 0; c < children; c++) { 4901 if (vml[c] != NULL) 4902 vml[c]->vdev_offline = B_FALSE; 4903 } 4904 vdev_reopen(spa->spa_root_vdev); 4905 4906 nvlist_free(spa->spa_config_splitting); 4907 spa->spa_config_splitting = NULL; 4908 (void) spa_vdev_exit(spa, NULL, txg, error); 4909 4910 kmem_free(vml, children * sizeof (vdev_t *)); 4911 return (error); 4912 } 4913 4914 static nvlist_t * 4915 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4916 { 4917 for (int i = 0; i < count; i++) { 4918 uint64_t guid; 4919 4920 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4921 &guid) == 0); 4922 4923 if (guid == target_guid) 4924 return (nvpp[i]); 4925 } 4926 4927 return (NULL); 4928 } 4929 4930 static void 4931 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4932 nvlist_t *dev_to_remove) 4933 { 4934 nvlist_t **newdev = NULL; 4935 4936 if (count > 1) 4937 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4938 4939 for (int i = 0, j = 0; i < count; i++) { 4940 if (dev[i] == dev_to_remove) 4941 continue; 4942 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4943 } 4944 4945 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4946 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4947 4948 for (int i = 0; i < count - 1; i++) 4949 nvlist_free(newdev[i]); 4950 4951 if (count > 1) 4952 kmem_free(newdev, (count - 1) * sizeof (void *)); 4953 } 4954 4955 /* 4956 * Evacuate the device. 4957 */ 4958 static int 4959 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4960 { 4961 uint64_t txg; 4962 int error = 0; 4963 4964 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4965 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4966 ASSERT(vd == vd->vdev_top); 4967 4968 /* 4969 * Evacuate the device. We don't hold the config lock as writer 4970 * since we need to do I/O but we do keep the 4971 * spa_namespace_lock held. Once this completes the device 4972 * should no longer have any blocks allocated on it. 4973 */ 4974 if (vd->vdev_islog) { 4975 if (vd->vdev_stat.vs_alloc != 0) 4976 error = spa_offline_log(spa); 4977 } else { 4978 error = ENOTSUP; 4979 } 4980 4981 if (error) 4982 return (error); 4983 4984 /* 4985 * The evacuation succeeded. Remove any remaining MOS metadata 4986 * associated with this vdev, and wait for these changes to sync. 4987 */ 4988 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4989 txg = spa_vdev_config_enter(spa); 4990 vd->vdev_removing = B_TRUE; 4991 vdev_dirty(vd, 0, NULL, txg); 4992 vdev_config_dirty(vd); 4993 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4994 4995 return (0); 4996 } 4997 4998 /* 4999 * Complete the removal by cleaning up the namespace. 5000 */ 5001 static void 5002 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5003 { 5004 vdev_t *rvd = spa->spa_root_vdev; 5005 uint64_t id = vd->vdev_id; 5006 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5007 5008 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5009 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5010 ASSERT(vd == vd->vdev_top); 5011 5012 /* 5013 * Only remove any devices which are empty. 5014 */ 5015 if (vd->vdev_stat.vs_alloc != 0) 5016 return; 5017 5018 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5019 5020 if (list_link_active(&vd->vdev_state_dirty_node)) 5021 vdev_state_clean(vd); 5022 if (list_link_active(&vd->vdev_config_dirty_node)) 5023 vdev_config_clean(vd); 5024 5025 vdev_free(vd); 5026 5027 if (last_vdev) { 5028 vdev_compact_children(rvd); 5029 } else { 5030 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5031 vdev_add_child(rvd, vd); 5032 } 5033 vdev_config_dirty(rvd); 5034 5035 /* 5036 * Reassess the health of our root vdev. 5037 */ 5038 vdev_reopen(rvd); 5039 } 5040 5041 /* 5042 * Remove a device from the pool - 5043 * 5044 * Removing a device from the vdev namespace requires several steps 5045 * and can take a significant amount of time. As a result we use 5046 * the spa_vdev_config_[enter/exit] functions which allow us to 5047 * grab and release the spa_config_lock while still holding the namespace 5048 * lock. During each step the configuration is synced out. 5049 */ 5050 5051 /* 5052 * Remove a device from the pool. Currently, this supports removing only hot 5053 * spares, slogs, and level 2 ARC devices. 5054 */ 5055 int 5056 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5057 { 5058 vdev_t *vd; 5059 metaslab_group_t *mg; 5060 nvlist_t **spares, **l2cache, *nv; 5061 uint64_t txg = 0; 5062 uint_t nspares, nl2cache; 5063 int error = 0; 5064 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5065 5066 ASSERT(spa_writeable(spa)); 5067 5068 if (!locked) 5069 txg = spa_vdev_enter(spa); 5070 5071 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5072 5073 if (spa->spa_spares.sav_vdevs != NULL && 5074 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5075 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5076 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5077 /* 5078 * Only remove the hot spare if it's not currently in use 5079 * in this pool. 5080 */ 5081 if (vd == NULL || unspare) { 5082 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5083 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5084 spa_load_spares(spa); 5085 spa->spa_spares.sav_sync = B_TRUE; 5086 } else { 5087 error = EBUSY; 5088 } 5089 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5090 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5091 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5092 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5093 /* 5094 * Cache devices can always be removed. 5095 */ 5096 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5097 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5098 spa_load_l2cache(spa); 5099 spa->spa_l2cache.sav_sync = B_TRUE; 5100 } else if (vd != NULL && vd->vdev_islog) { 5101 ASSERT(!locked); 5102 ASSERT(vd == vd->vdev_top); 5103 5104 /* 5105 * XXX - Once we have bp-rewrite this should 5106 * become the common case. 5107 */ 5108 5109 mg = vd->vdev_mg; 5110 5111 /* 5112 * Stop allocating from this vdev. 5113 */ 5114 metaslab_group_passivate(mg); 5115 5116 /* 5117 * Wait for the youngest allocations and frees to sync, 5118 * and then wait for the deferral of those frees to finish. 5119 */ 5120 spa_vdev_config_exit(spa, NULL, 5121 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5122 5123 /* 5124 * Attempt to evacuate the vdev. 5125 */ 5126 error = spa_vdev_remove_evacuate(spa, vd); 5127 5128 txg = spa_vdev_config_enter(spa); 5129 5130 /* 5131 * If we couldn't evacuate the vdev, unwind. 5132 */ 5133 if (error) { 5134 metaslab_group_activate(mg); 5135 return (spa_vdev_exit(spa, NULL, txg, error)); 5136 } 5137 5138 /* 5139 * Clean up the vdev namespace. 5140 */ 5141 spa_vdev_remove_from_namespace(spa, vd); 5142 5143 } else if (vd != NULL) { 5144 /* 5145 * Normal vdevs cannot be removed (yet). 5146 */ 5147 error = ENOTSUP; 5148 } else { 5149 /* 5150 * There is no vdev of any kind with the specified guid. 5151 */ 5152 error = ENOENT; 5153 } 5154 5155 if (!locked) 5156 return (spa_vdev_exit(spa, NULL, txg, error)); 5157 5158 return (error); 5159 } 5160 5161 /* 5162 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5163 * current spared, so we can detach it. 5164 */ 5165 static vdev_t * 5166 spa_vdev_resilver_done_hunt(vdev_t *vd) 5167 { 5168 vdev_t *newvd, *oldvd; 5169 5170 for (int c = 0; c < vd->vdev_children; c++) { 5171 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5172 if (oldvd != NULL) 5173 return (oldvd); 5174 } 5175 5176 /* 5177 * Check for a completed replacement. We always consider the first 5178 * vdev in the list to be the oldest vdev, and the last one to be 5179 * the newest (see spa_vdev_attach() for how that works). In 5180 * the case where the newest vdev is faulted, we will not automatically 5181 * remove it after a resilver completes. This is OK as it will require 5182 * user intervention to determine which disk the admin wishes to keep. 5183 */ 5184 if (vd->vdev_ops == &vdev_replacing_ops) { 5185 ASSERT(vd->vdev_children > 1); 5186 5187 newvd = vd->vdev_child[vd->vdev_children - 1]; 5188 oldvd = vd->vdev_child[0]; 5189 5190 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5191 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5192 !vdev_dtl_required(oldvd)) 5193 return (oldvd); 5194 } 5195 5196 /* 5197 * Check for a completed resilver with the 'unspare' flag set. 5198 */ 5199 if (vd->vdev_ops == &vdev_spare_ops) { 5200 vdev_t *first = vd->vdev_child[0]; 5201 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5202 5203 if (last->vdev_unspare) { 5204 oldvd = first; 5205 newvd = last; 5206 } else if (first->vdev_unspare) { 5207 oldvd = last; 5208 newvd = first; 5209 } else { 5210 oldvd = NULL; 5211 } 5212 5213 if (oldvd != NULL && 5214 vdev_dtl_empty(newvd, DTL_MISSING) && 5215 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5216 !vdev_dtl_required(oldvd)) 5217 return (oldvd); 5218 5219 /* 5220 * If there are more than two spares attached to a disk, 5221 * and those spares are not required, then we want to 5222 * attempt to free them up now so that they can be used 5223 * by other pools. Once we're back down to a single 5224 * disk+spare, we stop removing them. 5225 */ 5226 if (vd->vdev_children > 2) { 5227 newvd = vd->vdev_child[1]; 5228 5229 if (newvd->vdev_isspare && last->vdev_isspare && 5230 vdev_dtl_empty(last, DTL_MISSING) && 5231 vdev_dtl_empty(last, DTL_OUTAGE) && 5232 !vdev_dtl_required(newvd)) 5233 return (newvd); 5234 } 5235 } 5236 5237 return (NULL); 5238 } 5239 5240 static void 5241 spa_vdev_resilver_done(spa_t *spa) 5242 { 5243 vdev_t *vd, *pvd, *ppvd; 5244 uint64_t guid, sguid, pguid, ppguid; 5245 5246 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5247 5248 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5249 pvd = vd->vdev_parent; 5250 ppvd = pvd->vdev_parent; 5251 guid = vd->vdev_guid; 5252 pguid = pvd->vdev_guid; 5253 ppguid = ppvd->vdev_guid; 5254 sguid = 0; 5255 /* 5256 * If we have just finished replacing a hot spared device, then 5257 * we need to detach the parent's first child (the original hot 5258 * spare) as well. 5259 */ 5260 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5261 ppvd->vdev_children == 2) { 5262 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5263 sguid = ppvd->vdev_child[1]->vdev_guid; 5264 } 5265 spa_config_exit(spa, SCL_ALL, FTAG); 5266 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5267 return; 5268 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5269 return; 5270 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5271 } 5272 5273 spa_config_exit(spa, SCL_ALL, FTAG); 5274 } 5275 5276 /* 5277 * Update the stored path or FRU for this vdev. 5278 */ 5279 int 5280 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5281 boolean_t ispath) 5282 { 5283 vdev_t *vd; 5284 boolean_t sync = B_FALSE; 5285 5286 ASSERT(spa_writeable(spa)); 5287 5288 spa_vdev_state_enter(spa, SCL_ALL); 5289 5290 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5291 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5292 5293 if (!vd->vdev_ops->vdev_op_leaf) 5294 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5295 5296 if (ispath) { 5297 if (strcmp(value, vd->vdev_path) != 0) { 5298 spa_strfree(vd->vdev_path); 5299 vd->vdev_path = spa_strdup(value); 5300 sync = B_TRUE; 5301 } 5302 } else { 5303 if (vd->vdev_fru == NULL) { 5304 vd->vdev_fru = spa_strdup(value); 5305 sync = B_TRUE; 5306 } else if (strcmp(value, vd->vdev_fru) != 0) { 5307 spa_strfree(vd->vdev_fru); 5308 vd->vdev_fru = spa_strdup(value); 5309 sync = B_TRUE; 5310 } 5311 } 5312 5313 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5314 } 5315 5316 int 5317 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5318 { 5319 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5320 } 5321 5322 int 5323 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5324 { 5325 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5326 } 5327 5328 /* 5329 * ========================================================================== 5330 * SPA Scanning 5331 * ========================================================================== 5332 */ 5333 5334 int 5335 spa_scan_stop(spa_t *spa) 5336 { 5337 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5338 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5339 return (EBUSY); 5340 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5341 } 5342 5343 int 5344 spa_scan(spa_t *spa, pool_scan_func_t func) 5345 { 5346 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5347 5348 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5349 return (ENOTSUP); 5350 5351 /* 5352 * If a resilver was requested, but there is no DTL on a 5353 * writeable leaf device, we have nothing to do. 5354 */ 5355 if (func == POOL_SCAN_RESILVER && 5356 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5357 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5358 return (0); 5359 } 5360 5361 return (dsl_scan(spa->spa_dsl_pool, func)); 5362 } 5363 5364 /* 5365 * ========================================================================== 5366 * SPA async task processing 5367 * ========================================================================== 5368 */ 5369 5370 static void 5371 spa_async_remove(spa_t *spa, vdev_t *vd) 5372 { 5373 if (vd->vdev_remove_wanted) { 5374 vd->vdev_remove_wanted = B_FALSE; 5375 vd->vdev_delayed_close = B_FALSE; 5376 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5377 5378 /* 5379 * We want to clear the stats, but we don't want to do a full 5380 * vdev_clear() as that will cause us to throw away 5381 * degraded/faulted state as well as attempt to reopen the 5382 * device, all of which is a waste. 5383 */ 5384 vd->vdev_stat.vs_read_errors = 0; 5385 vd->vdev_stat.vs_write_errors = 0; 5386 vd->vdev_stat.vs_checksum_errors = 0; 5387 5388 vdev_state_dirty(vd->vdev_top); 5389 } 5390 5391 for (int c = 0; c < vd->vdev_children; c++) 5392 spa_async_remove(spa, vd->vdev_child[c]); 5393 } 5394 5395 static void 5396 spa_async_probe(spa_t *spa, vdev_t *vd) 5397 { 5398 if (vd->vdev_probe_wanted) { 5399 vd->vdev_probe_wanted = B_FALSE; 5400 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5401 } 5402 5403 for (int c = 0; c < vd->vdev_children; c++) 5404 spa_async_probe(spa, vd->vdev_child[c]); 5405 } 5406 5407 static void 5408 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5409 { 5410 sysevent_id_t eid; 5411 nvlist_t *attr; 5412 char *physpath; 5413 5414 if (!spa->spa_autoexpand) 5415 return; 5416 5417 for (int c = 0; c < vd->vdev_children; c++) { 5418 vdev_t *cvd = vd->vdev_child[c]; 5419 spa_async_autoexpand(spa, cvd); 5420 } 5421 5422 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5423 return; 5424 5425 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5426 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5427 5428 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5429 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5430 5431 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5432 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5433 5434 nvlist_free(attr); 5435 kmem_free(physpath, MAXPATHLEN); 5436 } 5437 5438 static void 5439 spa_async_thread(spa_t *spa) 5440 { 5441 int tasks; 5442 5443 ASSERT(spa->spa_sync_on); 5444 5445 mutex_enter(&spa->spa_async_lock); 5446 tasks = spa->spa_async_tasks; 5447 spa->spa_async_tasks = 0; 5448 mutex_exit(&spa->spa_async_lock); 5449 5450 /* 5451 * See if the config needs to be updated. 5452 */ 5453 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5454 uint64_t old_space, new_space; 5455 5456 mutex_enter(&spa_namespace_lock); 5457 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5458 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5459 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5460 mutex_exit(&spa_namespace_lock); 5461 5462 /* 5463 * If the pool grew as a result of the config update, 5464 * then log an internal history event. 5465 */ 5466 if (new_space != old_space) { 5467 spa_history_log_internal(spa, "vdev online", NULL, 5468 "pool '%s' size: %llu(+%llu)", 5469 spa_name(spa), new_space, new_space - old_space); 5470 } 5471 } 5472 5473 /* 5474 * See if any devices need to be marked REMOVED. 5475 */ 5476 if (tasks & SPA_ASYNC_REMOVE) { 5477 spa_vdev_state_enter(spa, SCL_NONE); 5478 spa_async_remove(spa, spa->spa_root_vdev); 5479 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5480 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5481 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5482 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5483 (void) spa_vdev_state_exit(spa, NULL, 0); 5484 } 5485 5486 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5487 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5488 spa_async_autoexpand(spa, spa->spa_root_vdev); 5489 spa_config_exit(spa, SCL_CONFIG, FTAG); 5490 } 5491 5492 /* 5493 * See if any devices need to be probed. 5494 */ 5495 if (tasks & SPA_ASYNC_PROBE) { 5496 spa_vdev_state_enter(spa, SCL_NONE); 5497 spa_async_probe(spa, spa->spa_root_vdev); 5498 (void) spa_vdev_state_exit(spa, NULL, 0); 5499 } 5500 5501 /* 5502 * If any devices are done replacing, detach them. 5503 */ 5504 if (tasks & SPA_ASYNC_RESILVER_DONE) 5505 spa_vdev_resilver_done(spa); 5506 5507 /* 5508 * Kick off a resilver. 5509 */ 5510 if (tasks & SPA_ASYNC_RESILVER) 5511 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5512 5513 /* 5514 * Let the world know that we're done. 5515 */ 5516 mutex_enter(&spa->spa_async_lock); 5517 spa->spa_async_thread = NULL; 5518 cv_broadcast(&spa->spa_async_cv); 5519 mutex_exit(&spa->spa_async_lock); 5520 thread_exit(); 5521 } 5522 5523 void 5524 spa_async_suspend(spa_t *spa) 5525 { 5526 mutex_enter(&spa->spa_async_lock); 5527 spa->spa_async_suspended++; 5528 while (spa->spa_async_thread != NULL) 5529 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5530 mutex_exit(&spa->spa_async_lock); 5531 } 5532 5533 void 5534 spa_async_resume(spa_t *spa) 5535 { 5536 mutex_enter(&spa->spa_async_lock); 5537 ASSERT(spa->spa_async_suspended != 0); 5538 spa->spa_async_suspended--; 5539 mutex_exit(&spa->spa_async_lock); 5540 } 5541 5542 static void 5543 spa_async_dispatch(spa_t *spa) 5544 { 5545 mutex_enter(&spa->spa_async_lock); 5546 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5547 spa->spa_async_thread == NULL && 5548 rootdir != NULL && !vn_is_readonly(rootdir)) 5549 spa->spa_async_thread = thread_create(NULL, 0, 5550 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5551 mutex_exit(&spa->spa_async_lock); 5552 } 5553 5554 void 5555 spa_async_request(spa_t *spa, int task) 5556 { 5557 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5558 mutex_enter(&spa->spa_async_lock); 5559 spa->spa_async_tasks |= task; 5560 mutex_exit(&spa->spa_async_lock); 5561 } 5562 5563 /* 5564 * ========================================================================== 5565 * SPA syncing routines 5566 * ========================================================================== 5567 */ 5568 5569 static int 5570 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5571 { 5572 bpobj_t *bpo = arg; 5573 bpobj_enqueue(bpo, bp, tx); 5574 return (0); 5575 } 5576 5577 static int 5578 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5579 { 5580 zio_t *zio = arg; 5581 5582 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5583 zio->io_flags)); 5584 return (0); 5585 } 5586 5587 static void 5588 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5589 { 5590 char *packed = NULL; 5591 size_t bufsize; 5592 size_t nvsize = 0; 5593 dmu_buf_t *db; 5594 5595 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5596 5597 /* 5598 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5599 * information. This avoids the dbuf_will_dirty() path and 5600 * saves us a pre-read to get data we don't actually care about. 5601 */ 5602 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5603 packed = kmem_alloc(bufsize, KM_SLEEP); 5604 5605 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5606 KM_SLEEP) == 0); 5607 bzero(packed + nvsize, bufsize - nvsize); 5608 5609 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5610 5611 kmem_free(packed, bufsize); 5612 5613 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5614 dmu_buf_will_dirty(db, tx); 5615 *(uint64_t *)db->db_data = nvsize; 5616 dmu_buf_rele(db, FTAG); 5617 } 5618 5619 static void 5620 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5621 const char *config, const char *entry) 5622 { 5623 nvlist_t *nvroot; 5624 nvlist_t **list; 5625 int i; 5626 5627 if (!sav->sav_sync) 5628 return; 5629 5630 /* 5631 * Update the MOS nvlist describing the list of available devices. 5632 * spa_validate_aux() will have already made sure this nvlist is 5633 * valid and the vdevs are labeled appropriately. 5634 */ 5635 if (sav->sav_object == 0) { 5636 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5637 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5638 sizeof (uint64_t), tx); 5639 VERIFY(zap_update(spa->spa_meta_objset, 5640 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5641 &sav->sav_object, tx) == 0); 5642 } 5643 5644 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5645 if (sav->sav_count == 0) { 5646 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5647 } else { 5648 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5649 for (i = 0; i < sav->sav_count; i++) 5650 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5651 B_FALSE, VDEV_CONFIG_L2CACHE); 5652 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5653 sav->sav_count) == 0); 5654 for (i = 0; i < sav->sav_count; i++) 5655 nvlist_free(list[i]); 5656 kmem_free(list, sav->sav_count * sizeof (void *)); 5657 } 5658 5659 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5660 nvlist_free(nvroot); 5661 5662 sav->sav_sync = B_FALSE; 5663 } 5664 5665 static void 5666 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5667 { 5668 nvlist_t *config; 5669 5670 if (list_is_empty(&spa->spa_config_dirty_list)) 5671 return; 5672 5673 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5674 5675 config = spa_config_generate(spa, spa->spa_root_vdev, 5676 dmu_tx_get_txg(tx), B_FALSE); 5677 5678 spa_config_exit(spa, SCL_STATE, FTAG); 5679 5680 if (spa->spa_config_syncing) 5681 nvlist_free(spa->spa_config_syncing); 5682 spa->spa_config_syncing = config; 5683 5684 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5685 } 5686 5687 static void 5688 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx) 5689 { 5690 spa_t *spa = arg1; 5691 uint64_t version = *(uint64_t *)arg2; 5692 5693 /* 5694 * Setting the version is special cased when first creating the pool. 5695 */ 5696 ASSERT(tx->tx_txg != TXG_INITIAL); 5697 5698 ASSERT(version <= SPA_VERSION); 5699 ASSERT(version >= spa_version(spa)); 5700 5701 spa->spa_uberblock.ub_version = version; 5702 vdev_config_dirty(spa->spa_root_vdev); 5703 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5704 } 5705 5706 /* 5707 * Set zpool properties. 5708 */ 5709 static void 5710 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5711 { 5712 spa_t *spa = arg1; 5713 objset_t *mos = spa->spa_meta_objset; 5714 nvlist_t *nvp = arg2; 5715 nvpair_t *elem = NULL; 5716 5717 mutex_enter(&spa->spa_props_lock); 5718 5719 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5720 uint64_t intval; 5721 char *strval, *fname; 5722 zpool_prop_t prop; 5723 const char *propname; 5724 zprop_type_t proptype; 5725 zfeature_info_t *feature; 5726 5727 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5728 case ZPROP_INVAL: 5729 /* 5730 * We checked this earlier in spa_prop_validate(). 5731 */ 5732 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5733 5734 fname = strchr(nvpair_name(elem), '@') + 1; 5735 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5736 5737 spa_feature_enable(spa, feature, tx); 5738 spa_history_log_internal(spa, "set", tx, 5739 "%s=enabled", nvpair_name(elem)); 5740 break; 5741 5742 case ZPOOL_PROP_VERSION: 5743 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5744 /* 5745 * The version is synced seperatly before other 5746 * properties and should be correct by now. 5747 */ 5748 ASSERT3U(spa_version(spa), >=, intval); 5749 break; 5750 5751 case ZPOOL_PROP_ALTROOT: 5752 /* 5753 * 'altroot' is a non-persistent property. It should 5754 * have been set temporarily at creation or import time. 5755 */ 5756 ASSERT(spa->spa_root != NULL); 5757 break; 5758 5759 case ZPOOL_PROP_READONLY: 5760 case ZPOOL_PROP_CACHEFILE: 5761 /* 5762 * 'readonly' and 'cachefile' are also non-persisitent 5763 * properties. 5764 */ 5765 break; 5766 case ZPOOL_PROP_COMMENT: 5767 VERIFY(nvpair_value_string(elem, &strval) == 0); 5768 if (spa->spa_comment != NULL) 5769 spa_strfree(spa->spa_comment); 5770 spa->spa_comment = spa_strdup(strval); 5771 /* 5772 * We need to dirty the configuration on all the vdevs 5773 * so that their labels get updated. It's unnecessary 5774 * to do this for pool creation since the vdev's 5775 * configuratoin has already been dirtied. 5776 */ 5777 if (tx->tx_txg != TXG_INITIAL) 5778 vdev_config_dirty(spa->spa_root_vdev); 5779 spa_history_log_internal(spa, "set", tx, 5780 "%s=%s", nvpair_name(elem), strval); 5781 break; 5782 default: 5783 /* 5784 * Set pool property values in the poolprops mos object. 5785 */ 5786 if (spa->spa_pool_props_object == 0) { 5787 spa->spa_pool_props_object = 5788 zap_create_link(mos, DMU_OT_POOL_PROPS, 5789 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5790 tx); 5791 } 5792 5793 /* normalize the property name */ 5794 propname = zpool_prop_to_name(prop); 5795 proptype = zpool_prop_get_type(prop); 5796 5797 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5798 ASSERT(proptype == PROP_TYPE_STRING); 5799 VERIFY(nvpair_value_string(elem, &strval) == 0); 5800 VERIFY(zap_update(mos, 5801 spa->spa_pool_props_object, propname, 5802 1, strlen(strval) + 1, strval, tx) == 0); 5803 spa_history_log_internal(spa, "set", tx, 5804 "%s=%s", nvpair_name(elem), strval); 5805 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5806 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5807 5808 if (proptype == PROP_TYPE_INDEX) { 5809 const char *unused; 5810 VERIFY(zpool_prop_index_to_string( 5811 prop, intval, &unused) == 0); 5812 } 5813 VERIFY(zap_update(mos, 5814 spa->spa_pool_props_object, propname, 5815 8, 1, &intval, tx) == 0); 5816 spa_history_log_internal(spa, "set", tx, 5817 "%s=%lld", nvpair_name(elem), intval); 5818 } else { 5819 ASSERT(0); /* not allowed */ 5820 } 5821 5822 switch (prop) { 5823 case ZPOOL_PROP_DELEGATION: 5824 spa->spa_delegation = intval; 5825 break; 5826 case ZPOOL_PROP_BOOTFS: 5827 spa->spa_bootfs = intval; 5828 break; 5829 case ZPOOL_PROP_FAILUREMODE: 5830 spa->spa_failmode = intval; 5831 break; 5832 case ZPOOL_PROP_AUTOEXPAND: 5833 spa->spa_autoexpand = intval; 5834 if (tx->tx_txg != TXG_INITIAL) 5835 spa_async_request(spa, 5836 SPA_ASYNC_AUTOEXPAND); 5837 break; 5838 case ZPOOL_PROP_DEDUPDITTO: 5839 spa->spa_dedup_ditto = intval; 5840 break; 5841 default: 5842 break; 5843 } 5844 } 5845 5846 } 5847 5848 mutex_exit(&spa->spa_props_lock); 5849 } 5850 5851 /* 5852 * Perform one-time upgrade on-disk changes. spa_version() does not 5853 * reflect the new version this txg, so there must be no changes this 5854 * txg to anything that the upgrade code depends on after it executes. 5855 * Therefore this must be called after dsl_pool_sync() does the sync 5856 * tasks. 5857 */ 5858 static void 5859 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5860 { 5861 dsl_pool_t *dp = spa->spa_dsl_pool; 5862 5863 ASSERT(spa->spa_sync_pass == 1); 5864 5865 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5866 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5867 dsl_pool_create_origin(dp, tx); 5868 5869 /* Keeping the origin open increases spa_minref */ 5870 spa->spa_minref += 3; 5871 } 5872 5873 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5874 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5875 dsl_pool_upgrade_clones(dp, tx); 5876 } 5877 5878 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5879 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5880 dsl_pool_upgrade_dir_clones(dp, tx); 5881 5882 /* Keeping the freedir open increases spa_minref */ 5883 spa->spa_minref += 3; 5884 } 5885 5886 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 5887 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 5888 spa_feature_create_zap_objects(spa, tx); 5889 } 5890 } 5891 5892 /* 5893 * Sync the specified transaction group. New blocks may be dirtied as 5894 * part of the process, so we iterate until it converges. 5895 */ 5896 void 5897 spa_sync(spa_t *spa, uint64_t txg) 5898 { 5899 dsl_pool_t *dp = spa->spa_dsl_pool; 5900 objset_t *mos = spa->spa_meta_objset; 5901 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5902 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5903 vdev_t *rvd = spa->spa_root_vdev; 5904 vdev_t *vd; 5905 dmu_tx_t *tx; 5906 int error; 5907 5908 VERIFY(spa_writeable(spa)); 5909 5910 /* 5911 * Lock out configuration changes. 5912 */ 5913 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5914 5915 spa->spa_syncing_txg = txg; 5916 spa->spa_sync_pass = 0; 5917 5918 /* 5919 * If there are any pending vdev state changes, convert them 5920 * into config changes that go out with this transaction group. 5921 */ 5922 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5923 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5924 /* 5925 * We need the write lock here because, for aux vdevs, 5926 * calling vdev_config_dirty() modifies sav_config. 5927 * This is ugly and will become unnecessary when we 5928 * eliminate the aux vdev wart by integrating all vdevs 5929 * into the root vdev tree. 5930 */ 5931 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5932 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5933 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5934 vdev_state_clean(vd); 5935 vdev_config_dirty(vd); 5936 } 5937 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5938 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5939 } 5940 spa_config_exit(spa, SCL_STATE, FTAG); 5941 5942 tx = dmu_tx_create_assigned(dp, txg); 5943 5944 /* 5945 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5946 * set spa_deflate if we have no raid-z vdevs. 5947 */ 5948 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5949 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5950 int i; 5951 5952 for (i = 0; i < rvd->vdev_children; i++) { 5953 vd = rvd->vdev_child[i]; 5954 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5955 break; 5956 } 5957 if (i == rvd->vdev_children) { 5958 spa->spa_deflate = TRUE; 5959 VERIFY(0 == zap_add(spa->spa_meta_objset, 5960 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5961 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5962 } 5963 } 5964 5965 /* 5966 * If anything has changed in this txg, or if someone is waiting 5967 * for this txg to sync (eg, spa_vdev_remove()), push the 5968 * deferred frees from the previous txg. If not, leave them 5969 * alone so that we don't generate work on an otherwise idle 5970 * system. 5971 */ 5972 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5973 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5974 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5975 ((dsl_scan_active(dp->dp_scan) || 5976 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 5977 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5978 VERIFY3U(bpobj_iterate(defer_bpo, 5979 spa_free_sync_cb, zio, tx), ==, 0); 5980 VERIFY3U(zio_wait(zio), ==, 0); 5981 } 5982 5983 /* 5984 * Iterate to convergence. 5985 */ 5986 do { 5987 int pass = ++spa->spa_sync_pass; 5988 5989 spa_sync_config_object(spa, tx); 5990 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5991 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5992 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5993 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5994 spa_errlog_sync(spa, txg); 5995 dsl_pool_sync(dp, txg); 5996 5997 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5998 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5999 bplist_iterate(free_bpl, spa_free_sync_cb, 6000 zio, tx); 6001 VERIFY(zio_wait(zio) == 0); 6002 } else { 6003 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6004 defer_bpo, tx); 6005 } 6006 6007 ddt_sync(spa, txg); 6008 dsl_scan_sync(dp, tx); 6009 6010 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6011 vdev_sync(vd, txg); 6012 6013 if (pass == 1) 6014 spa_sync_upgrades(spa, tx); 6015 6016 } while (dmu_objset_is_dirty(mos, txg)); 6017 6018 /* 6019 * Rewrite the vdev configuration (which includes the uberblock) 6020 * to commit the transaction group. 6021 * 6022 * If there are no dirty vdevs, we sync the uberblock to a few 6023 * random top-level vdevs that are known to be visible in the 6024 * config cache (see spa_vdev_add() for a complete description). 6025 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6026 */ 6027 for (;;) { 6028 /* 6029 * We hold SCL_STATE to prevent vdev open/close/etc. 6030 * while we're attempting to write the vdev labels. 6031 */ 6032 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6033 6034 if (list_is_empty(&spa->spa_config_dirty_list)) { 6035 vdev_t *svd[SPA_DVAS_PER_BP]; 6036 int svdcount = 0; 6037 int children = rvd->vdev_children; 6038 int c0 = spa_get_random(children); 6039 6040 for (int c = 0; c < children; c++) { 6041 vd = rvd->vdev_child[(c0 + c) % children]; 6042 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6043 continue; 6044 svd[svdcount++] = vd; 6045 if (svdcount == SPA_DVAS_PER_BP) 6046 break; 6047 } 6048 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6049 if (error != 0) 6050 error = vdev_config_sync(svd, svdcount, txg, 6051 B_TRUE); 6052 } else { 6053 error = vdev_config_sync(rvd->vdev_child, 6054 rvd->vdev_children, txg, B_FALSE); 6055 if (error != 0) 6056 error = vdev_config_sync(rvd->vdev_child, 6057 rvd->vdev_children, txg, B_TRUE); 6058 } 6059 6060 spa_config_exit(spa, SCL_STATE, FTAG); 6061 6062 if (error == 0) 6063 break; 6064 zio_suspend(spa, NULL); 6065 zio_resume_wait(spa); 6066 } 6067 dmu_tx_commit(tx); 6068 6069 /* 6070 * Clear the dirty config list. 6071 */ 6072 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6073 vdev_config_clean(vd); 6074 6075 /* 6076 * Now that the new config has synced transactionally, 6077 * let it become visible to the config cache. 6078 */ 6079 if (spa->spa_config_syncing != NULL) { 6080 spa_config_set(spa, spa->spa_config_syncing); 6081 spa->spa_config_txg = txg; 6082 spa->spa_config_syncing = NULL; 6083 } 6084 6085 spa->spa_ubsync = spa->spa_uberblock; 6086 6087 dsl_pool_sync_done(dp, txg); 6088 6089 /* 6090 * Update usable space statistics. 6091 */ 6092 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6093 vdev_sync_done(vd, txg); 6094 6095 spa_update_dspace(spa); 6096 6097 /* 6098 * It had better be the case that we didn't dirty anything 6099 * since vdev_config_sync(). 6100 */ 6101 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6102 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6103 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6104 6105 spa->spa_sync_pass = 0; 6106 6107 spa_config_exit(spa, SCL_CONFIG, FTAG); 6108 6109 spa_handle_ignored_writes(spa); 6110 6111 /* 6112 * If any async tasks have been requested, kick them off. 6113 */ 6114 spa_async_dispatch(spa); 6115 } 6116 6117 /* 6118 * Sync all pools. We don't want to hold the namespace lock across these 6119 * operations, so we take a reference on the spa_t and drop the lock during the 6120 * sync. 6121 */ 6122 void 6123 spa_sync_allpools(void) 6124 { 6125 spa_t *spa = NULL; 6126 mutex_enter(&spa_namespace_lock); 6127 while ((spa = spa_next(spa)) != NULL) { 6128 if (spa_state(spa) != POOL_STATE_ACTIVE || 6129 !spa_writeable(spa) || spa_suspended(spa)) 6130 continue; 6131 spa_open_ref(spa, FTAG); 6132 mutex_exit(&spa_namespace_lock); 6133 txg_wait_synced(spa_get_dsl(spa), 0); 6134 mutex_enter(&spa_namespace_lock); 6135 spa_close(spa, FTAG); 6136 } 6137 mutex_exit(&spa_namespace_lock); 6138 } 6139 6140 /* 6141 * ========================================================================== 6142 * Miscellaneous routines 6143 * ========================================================================== 6144 */ 6145 6146 /* 6147 * Remove all pools in the system. 6148 */ 6149 void 6150 spa_evict_all(void) 6151 { 6152 spa_t *spa; 6153 6154 /* 6155 * Remove all cached state. All pools should be closed now, 6156 * so every spa in the AVL tree should be unreferenced. 6157 */ 6158 mutex_enter(&spa_namespace_lock); 6159 while ((spa = spa_next(NULL)) != NULL) { 6160 /* 6161 * Stop async tasks. The async thread may need to detach 6162 * a device that's been replaced, which requires grabbing 6163 * spa_namespace_lock, so we must drop it here. 6164 */ 6165 spa_open_ref(spa, FTAG); 6166 mutex_exit(&spa_namespace_lock); 6167 spa_async_suspend(spa); 6168 mutex_enter(&spa_namespace_lock); 6169 spa_close(spa, FTAG); 6170 6171 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6172 spa_unload(spa); 6173 spa_deactivate(spa); 6174 } 6175 spa_remove(spa); 6176 } 6177 mutex_exit(&spa_namespace_lock); 6178 } 6179 6180 vdev_t * 6181 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6182 { 6183 vdev_t *vd; 6184 int i; 6185 6186 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6187 return (vd); 6188 6189 if (aux) { 6190 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6191 vd = spa->spa_l2cache.sav_vdevs[i]; 6192 if (vd->vdev_guid == guid) 6193 return (vd); 6194 } 6195 6196 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6197 vd = spa->spa_spares.sav_vdevs[i]; 6198 if (vd->vdev_guid == guid) 6199 return (vd); 6200 } 6201 } 6202 6203 return (NULL); 6204 } 6205 6206 void 6207 spa_upgrade(spa_t *spa, uint64_t version) 6208 { 6209 ASSERT(spa_writeable(spa)); 6210 6211 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6212 6213 /* 6214 * This should only be called for a non-faulted pool, and since a 6215 * future version would result in an unopenable pool, this shouldn't be 6216 * possible. 6217 */ 6218 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 6219 ASSERT(version >= spa->spa_uberblock.ub_version); 6220 6221 spa->spa_uberblock.ub_version = version; 6222 vdev_config_dirty(spa->spa_root_vdev); 6223 6224 spa_config_exit(spa, SCL_ALL, FTAG); 6225 6226 txg_wait_synced(spa_get_dsl(spa), 0); 6227 } 6228 6229 boolean_t 6230 spa_has_spare(spa_t *spa, uint64_t guid) 6231 { 6232 int i; 6233 uint64_t spareguid; 6234 spa_aux_vdev_t *sav = &spa->spa_spares; 6235 6236 for (i = 0; i < sav->sav_count; i++) 6237 if (sav->sav_vdevs[i]->vdev_guid == guid) 6238 return (B_TRUE); 6239 6240 for (i = 0; i < sav->sav_npending; i++) { 6241 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6242 &spareguid) == 0 && spareguid == guid) 6243 return (B_TRUE); 6244 } 6245 6246 return (B_FALSE); 6247 } 6248 6249 /* 6250 * Check if a pool has an active shared spare device. 6251 * Note: reference count of an active spare is 2, as a spare and as a replace 6252 */ 6253 static boolean_t 6254 spa_has_active_shared_spare(spa_t *spa) 6255 { 6256 int i, refcnt; 6257 uint64_t pool; 6258 spa_aux_vdev_t *sav = &spa->spa_spares; 6259 6260 for (i = 0; i < sav->sav_count; i++) { 6261 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6262 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6263 refcnt > 2) 6264 return (B_TRUE); 6265 } 6266 6267 return (B_FALSE); 6268 } 6269 6270 /* 6271 * Post a sysevent corresponding to the given event. The 'name' must be one of 6272 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6273 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6274 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6275 * or zdb as real changes. 6276 */ 6277 void 6278 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6279 { 6280 #ifdef _KERNEL 6281 sysevent_t *ev; 6282 sysevent_attr_list_t *attr = NULL; 6283 sysevent_value_t value; 6284 sysevent_id_t eid; 6285 6286 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6287 SE_SLEEP); 6288 6289 value.value_type = SE_DATA_TYPE_STRING; 6290 value.value.sv_string = spa_name(spa); 6291 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6292 goto done; 6293 6294 value.value_type = SE_DATA_TYPE_UINT64; 6295 value.value.sv_uint64 = spa_guid(spa); 6296 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6297 goto done; 6298 6299 if (vd) { 6300 value.value_type = SE_DATA_TYPE_UINT64; 6301 value.value.sv_uint64 = vd->vdev_guid; 6302 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6303 SE_SLEEP) != 0) 6304 goto done; 6305 6306 if (vd->vdev_path) { 6307 value.value_type = SE_DATA_TYPE_STRING; 6308 value.value.sv_string = vd->vdev_path; 6309 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6310 &value, SE_SLEEP) != 0) 6311 goto done; 6312 } 6313 } 6314 6315 if (sysevent_attach_attributes(ev, attr) != 0) 6316 goto done; 6317 attr = NULL; 6318 6319 (void) log_sysevent(ev, SE_SLEEP, &eid); 6320 6321 done: 6322 if (attr) 6323 sysevent_free_attr(attr); 6324 sysevent_free(ev); 6325 #endif 6326 }