Print this page
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/dnode.c
+++ new/usr/src/uts/common/fs/zfs/dnode.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 24 */
25 25
26 26 #include <sys/zfs_context.h>
27 27 #include <sys/dbuf.h>
28 28 #include <sys/dnode.h>
29 29 #include <sys/dmu.h>
30 30 #include <sys/dmu_impl.h>
31 31 #include <sys/dmu_tx.h>
32 32 #include <sys/dmu_objset.h>
33 33 #include <sys/dsl_dir.h>
34 34 #include <sys/dsl_dataset.h>
35 35 #include <sys/spa.h>
36 36 #include <sys/zio.h>
37 37 #include <sys/dmu_zfetch.h>
38 38
39 39 static int free_range_compar(const void *node1, const void *node2);
40 40
41 41 static kmem_cache_t *dnode_cache;
42 42 /*
43 43 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
44 44 * turned on when DEBUG is also defined.
45 45 */
46 46 #ifdef DEBUG
47 47 #define DNODE_STATS
48 48 #endif /* DEBUG */
49 49
50 50 #ifdef DNODE_STATS
51 51 #define DNODE_STAT_ADD(stat) ((stat)++)
52 52 #else
53 53 #define DNODE_STAT_ADD(stat) /* nothing */
54 54 #endif /* DNODE_STATS */
55 55
56 56 static dnode_phys_t dnode_phys_zero;
57 57
58 58 int zfs_default_bs = SPA_MINBLOCKSHIFT;
59 59 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
60 60
61 61 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
62 62
63 63 /* ARGSUSED */
64 64 static int
65 65 dnode_cons(void *arg, void *unused, int kmflag)
66 66 {
67 67 dnode_t *dn = arg;
68 68 int i;
69 69
70 70 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
71 71 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
72 72 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
73 73 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
74 74
75 75 refcount_create(&dn->dn_holds);
76 76 refcount_create(&dn->dn_tx_holds);
77 77 list_link_init(&dn->dn_link);
78 78
79 79 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
80 80 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
81 81 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
82 82 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
83 83 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
84 84 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
85 85 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
86 86
87 87 for (i = 0; i < TXG_SIZE; i++) {
88 88 list_link_init(&dn->dn_dirty_link[i]);
89 89 avl_create(&dn->dn_ranges[i], free_range_compar,
90 90 sizeof (free_range_t),
91 91 offsetof(struct free_range, fr_node));
92 92 list_create(&dn->dn_dirty_records[i],
93 93 sizeof (dbuf_dirty_record_t),
94 94 offsetof(dbuf_dirty_record_t, dr_dirty_node));
95 95 }
96 96
97 97 dn->dn_allocated_txg = 0;
98 98 dn->dn_free_txg = 0;
99 99 dn->dn_assigned_txg = 0;
100 100 dn->dn_dirtyctx = 0;
101 101 dn->dn_dirtyctx_firstset = NULL;
102 102 dn->dn_bonus = NULL;
103 103 dn->dn_have_spill = B_FALSE;
104 104 dn->dn_zio = NULL;
105 105 dn->dn_oldused = 0;
106 106 dn->dn_oldflags = 0;
107 107 dn->dn_olduid = 0;
108 108 dn->dn_oldgid = 0;
109 109 dn->dn_newuid = 0;
110 110 dn->dn_newgid = 0;
111 111 dn->dn_id_flags = 0;
112 112
113 113 dn->dn_dbufs_count = 0;
114 114 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
115 115 offsetof(dmu_buf_impl_t, db_link));
116 116
117 117 dn->dn_moved = 0;
118 118 return (0);
119 119 }
120 120
121 121 /* ARGSUSED */
122 122 static void
123 123 dnode_dest(void *arg, void *unused)
124 124 {
125 125 int i;
126 126 dnode_t *dn = arg;
127 127
128 128 rw_destroy(&dn->dn_struct_rwlock);
129 129 mutex_destroy(&dn->dn_mtx);
↓ open down ↓ |
129 lines elided |
↑ open up ↑ |
130 130 mutex_destroy(&dn->dn_dbufs_mtx);
131 131 cv_destroy(&dn->dn_notxholds);
132 132 refcount_destroy(&dn->dn_holds);
133 133 refcount_destroy(&dn->dn_tx_holds);
134 134 ASSERT(!list_link_active(&dn->dn_link));
135 135
136 136 for (i = 0; i < TXG_SIZE; i++) {
137 137 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
138 138 avl_destroy(&dn->dn_ranges[i]);
139 139 list_destroy(&dn->dn_dirty_records[i]);
140 - ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
141 - ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
142 - ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
143 - ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
144 - ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
145 - ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
146 - ASSERT3U(dn->dn_next_blksz[i], ==, 0);
140 + ASSERT0(dn->dn_next_nblkptr[i]);
141 + ASSERT0(dn->dn_next_nlevels[i]);
142 + ASSERT0(dn->dn_next_indblkshift[i]);
143 + ASSERT0(dn->dn_next_bonustype[i]);
144 + ASSERT0(dn->dn_rm_spillblk[i]);
145 + ASSERT0(dn->dn_next_bonuslen[i]);
146 + ASSERT0(dn->dn_next_blksz[i]);
147 147 }
148 148
149 - ASSERT3U(dn->dn_allocated_txg, ==, 0);
150 - ASSERT3U(dn->dn_free_txg, ==, 0);
151 - ASSERT3U(dn->dn_assigned_txg, ==, 0);
152 - ASSERT3U(dn->dn_dirtyctx, ==, 0);
149 + ASSERT0(dn->dn_allocated_txg);
150 + ASSERT0(dn->dn_free_txg);
151 + ASSERT0(dn->dn_assigned_txg);
152 + ASSERT0(dn->dn_dirtyctx);
153 153 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
154 154 ASSERT3P(dn->dn_bonus, ==, NULL);
155 155 ASSERT(!dn->dn_have_spill);
156 156 ASSERT3P(dn->dn_zio, ==, NULL);
157 - ASSERT3U(dn->dn_oldused, ==, 0);
158 - ASSERT3U(dn->dn_oldflags, ==, 0);
159 - ASSERT3U(dn->dn_olduid, ==, 0);
160 - ASSERT3U(dn->dn_oldgid, ==, 0);
161 - ASSERT3U(dn->dn_newuid, ==, 0);
162 - ASSERT3U(dn->dn_newgid, ==, 0);
163 - ASSERT3U(dn->dn_id_flags, ==, 0);
157 + ASSERT0(dn->dn_oldused);
158 + ASSERT0(dn->dn_oldflags);
159 + ASSERT0(dn->dn_olduid);
160 + ASSERT0(dn->dn_oldgid);
161 + ASSERT0(dn->dn_newuid);
162 + ASSERT0(dn->dn_newgid);
163 + ASSERT0(dn->dn_id_flags);
164 164
165 - ASSERT3U(dn->dn_dbufs_count, ==, 0);
165 + ASSERT0(dn->dn_dbufs_count);
166 166 list_destroy(&dn->dn_dbufs);
167 167 }
168 168
169 169 void
170 170 dnode_init(void)
171 171 {
172 172 ASSERT(dnode_cache == NULL);
173 173 dnode_cache = kmem_cache_create("dnode_t",
174 174 sizeof (dnode_t),
175 175 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
176 176 kmem_cache_set_move(dnode_cache, dnode_move);
177 177 }
178 178
179 179 void
180 180 dnode_fini(void)
181 181 {
182 182 kmem_cache_destroy(dnode_cache);
183 183 dnode_cache = NULL;
184 184 }
185 185
186 186
187 187 #ifdef ZFS_DEBUG
188 188 void
189 189 dnode_verify(dnode_t *dn)
190 190 {
191 191 int drop_struct_lock = FALSE;
192 192
193 193 ASSERT(dn->dn_phys);
194 194 ASSERT(dn->dn_objset);
195 195 ASSERT(dn->dn_handle->dnh_dnode == dn);
196 196
197 197 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
198 198
199 199 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
200 200 return;
201 201
202 202 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
203 203 rw_enter(&dn->dn_struct_rwlock, RW_READER);
204 204 drop_struct_lock = TRUE;
205 205 }
206 206 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
207 207 int i;
208 208 ASSERT3U(dn->dn_indblkshift, >=, 0);
209 209 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
210 210 if (dn->dn_datablkshift) {
211 211 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
212 212 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
213 213 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
214 214 }
215 215 ASSERT3U(dn->dn_nlevels, <=, 30);
216 216 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
217 217 ASSERT3U(dn->dn_nblkptr, >=, 1);
218 218 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
219 219 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
220 220 ASSERT3U(dn->dn_datablksz, ==,
221 221 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
222 222 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
223 223 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
224 224 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
225 225 for (i = 0; i < TXG_SIZE; i++) {
226 226 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
227 227 }
228 228 }
229 229 if (dn->dn_phys->dn_type != DMU_OT_NONE)
230 230 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
231 231 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
232 232 if (dn->dn_dbuf != NULL) {
233 233 ASSERT3P(dn->dn_phys, ==,
234 234 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
235 235 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
236 236 }
237 237 if (drop_struct_lock)
238 238 rw_exit(&dn->dn_struct_rwlock);
239 239 }
240 240 #endif
241 241
242 242 void
243 243 dnode_byteswap(dnode_phys_t *dnp)
244 244 {
245 245 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
246 246 int i;
247 247
248 248 if (dnp->dn_type == DMU_OT_NONE) {
249 249 bzero(dnp, sizeof (dnode_phys_t));
250 250 return;
251 251 }
252 252
253 253 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
254 254 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
255 255 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
256 256 dnp->dn_used = BSWAP_64(dnp->dn_used);
257 257
258 258 /*
259 259 * dn_nblkptr is only one byte, so it's OK to read it in either
260 260 * byte order. We can't read dn_bouslen.
261 261 */
262 262 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
263 263 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
264 264 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
265 265 buf64[i] = BSWAP_64(buf64[i]);
266 266
267 267 /*
268 268 * OK to check dn_bonuslen for zero, because it won't matter if
269 269 * we have the wrong byte order. This is necessary because the
270 270 * dnode dnode is smaller than a regular dnode.
271 271 */
272 272 if (dnp->dn_bonuslen != 0) {
273 273 /*
274 274 * Note that the bonus length calculated here may be
275 275 * longer than the actual bonus buffer. This is because
276 276 * we always put the bonus buffer after the last block
277 277 * pointer (instead of packing it against the end of the
278 278 * dnode buffer).
279 279 */
280 280 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
281 281 size_t len = DN_MAX_BONUSLEN - off;
282 282 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
283 283 dmu_object_byteswap_t byteswap =
284 284 DMU_OT_BYTESWAP(dnp->dn_bonustype);
285 285 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
286 286 }
287 287
288 288 /* Swap SPILL block if we have one */
289 289 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
290 290 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
291 291
292 292 }
293 293
294 294 void
295 295 dnode_buf_byteswap(void *vbuf, size_t size)
296 296 {
297 297 dnode_phys_t *buf = vbuf;
298 298 int i;
299 299
300 300 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
301 301 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
302 302
303 303 size >>= DNODE_SHIFT;
304 304 for (i = 0; i < size; i++) {
305 305 dnode_byteswap(buf);
306 306 buf++;
307 307 }
308 308 }
309 309
310 310 static int
311 311 free_range_compar(const void *node1, const void *node2)
312 312 {
313 313 const free_range_t *rp1 = node1;
314 314 const free_range_t *rp2 = node2;
315 315
316 316 if (rp1->fr_blkid < rp2->fr_blkid)
317 317 return (-1);
318 318 else if (rp1->fr_blkid > rp2->fr_blkid)
319 319 return (1);
320 320 else return (0);
321 321 }
322 322
323 323 void
324 324 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
325 325 {
326 326 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
327 327
328 328 dnode_setdirty(dn, tx);
329 329 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
330 330 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
331 331 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
332 332 dn->dn_bonuslen = newsize;
333 333 if (newsize == 0)
334 334 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
335 335 else
336 336 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
337 337 rw_exit(&dn->dn_struct_rwlock);
338 338 }
339 339
340 340 void
341 341 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
342 342 {
343 343 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
344 344 dnode_setdirty(dn, tx);
345 345 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
346 346 dn->dn_bonustype = newtype;
347 347 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
348 348 rw_exit(&dn->dn_struct_rwlock);
349 349 }
350 350
351 351 void
352 352 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
353 353 {
↓ open down ↓ |
178 lines elided |
↑ open up ↑ |
354 354 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
355 355 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
356 356 dnode_setdirty(dn, tx);
357 357 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
358 358 dn->dn_have_spill = B_FALSE;
359 359 }
360 360
361 361 static void
362 362 dnode_setdblksz(dnode_t *dn, int size)
363 363 {
364 - ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
364 + ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
365 365 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
366 366 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
367 367 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
368 368 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
369 369 dn->dn_datablksz = size;
370 370 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
371 371 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
372 372 }
373 373
374 374 static dnode_t *
375 375 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
376 376 uint64_t object, dnode_handle_t *dnh)
377 377 {
378 378 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
379 379
380 380 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
381 381 dn->dn_moved = 0;
382 382
383 383 /*
384 384 * Defer setting dn_objset until the dnode is ready to be a candidate
385 385 * for the dnode_move() callback.
386 386 */
387 387 dn->dn_object = object;
388 388 dn->dn_dbuf = db;
389 389 dn->dn_handle = dnh;
390 390 dn->dn_phys = dnp;
391 391
392 392 if (dnp->dn_datablkszsec) {
393 393 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
394 394 } else {
395 395 dn->dn_datablksz = 0;
396 396 dn->dn_datablkszsec = 0;
397 397 dn->dn_datablkshift = 0;
398 398 }
399 399 dn->dn_indblkshift = dnp->dn_indblkshift;
400 400 dn->dn_nlevels = dnp->dn_nlevels;
401 401 dn->dn_type = dnp->dn_type;
402 402 dn->dn_nblkptr = dnp->dn_nblkptr;
403 403 dn->dn_checksum = dnp->dn_checksum;
404 404 dn->dn_compress = dnp->dn_compress;
405 405 dn->dn_bonustype = dnp->dn_bonustype;
406 406 dn->dn_bonuslen = dnp->dn_bonuslen;
407 407 dn->dn_maxblkid = dnp->dn_maxblkid;
408 408 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
409 409 dn->dn_id_flags = 0;
410 410
411 411 dmu_zfetch_init(&dn->dn_zfetch, dn);
412 412
413 413 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
414 414
415 415 mutex_enter(&os->os_lock);
416 416 list_insert_head(&os->os_dnodes, dn);
417 417 membar_producer();
418 418 /*
419 419 * Everything else must be valid before assigning dn_objset makes the
420 420 * dnode eligible for dnode_move().
421 421 */
422 422 dn->dn_objset = os;
423 423 mutex_exit(&os->os_lock);
424 424
425 425 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
426 426 return (dn);
427 427 }
428 428
429 429 /*
430 430 * Caller must be holding the dnode handle, which is released upon return.
431 431 */
432 432 static void
433 433 dnode_destroy(dnode_t *dn)
434 434 {
435 435 objset_t *os = dn->dn_objset;
436 436
437 437 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
438 438
439 439 mutex_enter(&os->os_lock);
440 440 POINTER_INVALIDATE(&dn->dn_objset);
441 441 list_remove(&os->os_dnodes, dn);
442 442 mutex_exit(&os->os_lock);
443 443
444 444 /* the dnode can no longer move, so we can release the handle */
445 445 zrl_remove(&dn->dn_handle->dnh_zrlock);
446 446
447 447 dn->dn_allocated_txg = 0;
448 448 dn->dn_free_txg = 0;
449 449 dn->dn_assigned_txg = 0;
450 450
451 451 dn->dn_dirtyctx = 0;
452 452 if (dn->dn_dirtyctx_firstset != NULL) {
453 453 kmem_free(dn->dn_dirtyctx_firstset, 1);
454 454 dn->dn_dirtyctx_firstset = NULL;
455 455 }
456 456 if (dn->dn_bonus != NULL) {
457 457 mutex_enter(&dn->dn_bonus->db_mtx);
458 458 dbuf_evict(dn->dn_bonus);
459 459 dn->dn_bonus = NULL;
460 460 }
461 461 dn->dn_zio = NULL;
462 462
463 463 dn->dn_have_spill = B_FALSE;
464 464 dn->dn_oldused = 0;
465 465 dn->dn_oldflags = 0;
466 466 dn->dn_olduid = 0;
467 467 dn->dn_oldgid = 0;
468 468 dn->dn_newuid = 0;
469 469 dn->dn_newgid = 0;
470 470 dn->dn_id_flags = 0;
471 471
472 472 dmu_zfetch_rele(&dn->dn_zfetch);
473 473 kmem_cache_free(dnode_cache, dn);
474 474 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
475 475 }
476 476
477 477 void
478 478 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
479 479 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
480 480 {
481 481 int i;
482 482
483 483 if (blocksize == 0)
484 484 blocksize = 1 << zfs_default_bs;
485 485 else if (blocksize > SPA_MAXBLOCKSIZE)
486 486 blocksize = SPA_MAXBLOCKSIZE;
487 487 else
488 488 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
489 489
490 490 if (ibs == 0)
491 491 ibs = zfs_default_ibs;
492 492
493 493 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
494 494
495 495 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
496 496 dn->dn_object, tx->tx_txg, blocksize, ibs);
497 497
498 498 ASSERT(dn->dn_type == DMU_OT_NONE);
↓ open down ↓ |
124 lines elided |
↑ open up ↑ |
499 499 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
500 500 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
501 501 ASSERT(ot != DMU_OT_NONE);
502 502 ASSERT(DMU_OT_IS_VALID(ot));
503 503 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
504 504 (bonustype == DMU_OT_SA && bonuslen == 0) ||
505 505 (bonustype != DMU_OT_NONE && bonuslen != 0));
506 506 ASSERT(DMU_OT_IS_VALID(bonustype));
507 507 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
508 508 ASSERT(dn->dn_type == DMU_OT_NONE);
509 - ASSERT3U(dn->dn_maxblkid, ==, 0);
510 - ASSERT3U(dn->dn_allocated_txg, ==, 0);
511 - ASSERT3U(dn->dn_assigned_txg, ==, 0);
509 + ASSERT0(dn->dn_maxblkid);
510 + ASSERT0(dn->dn_allocated_txg);
511 + ASSERT0(dn->dn_assigned_txg);
512 512 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
513 513 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
514 514 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
515 515
516 516 for (i = 0; i < TXG_SIZE; i++) {
517 - ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
518 - ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
519 - ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
520 - ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
521 - ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
522 - ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
523 - ASSERT3U(dn->dn_next_blksz[i], ==, 0);
517 + ASSERT0(dn->dn_next_nblkptr[i]);
518 + ASSERT0(dn->dn_next_nlevels[i]);
519 + ASSERT0(dn->dn_next_indblkshift[i]);
520 + ASSERT0(dn->dn_next_bonuslen[i]);
521 + ASSERT0(dn->dn_next_bonustype[i]);
522 + ASSERT0(dn->dn_rm_spillblk[i]);
523 + ASSERT0(dn->dn_next_blksz[i]);
524 524 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
525 525 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
526 - ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
526 + ASSERT0(avl_numnodes(&dn->dn_ranges[i]));
527 527 }
528 528
529 529 dn->dn_type = ot;
530 530 dnode_setdblksz(dn, blocksize);
531 531 dn->dn_indblkshift = ibs;
532 532 dn->dn_nlevels = 1;
533 533 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
534 534 dn->dn_nblkptr = 1;
535 535 else
536 536 dn->dn_nblkptr = 1 +
537 537 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
538 538 dn->dn_bonustype = bonustype;
539 539 dn->dn_bonuslen = bonuslen;
540 540 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
541 541 dn->dn_compress = ZIO_COMPRESS_INHERIT;
542 542 dn->dn_dirtyctx = 0;
543 543
544 544 dn->dn_free_txg = 0;
545 545 if (dn->dn_dirtyctx_firstset) {
546 546 kmem_free(dn->dn_dirtyctx_firstset, 1);
547 547 dn->dn_dirtyctx_firstset = NULL;
548 548 }
549 549
550 550 dn->dn_allocated_txg = tx->tx_txg;
551 551 dn->dn_id_flags = 0;
552 552
553 553 dnode_setdirty(dn, tx);
554 554 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
555 555 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
556 556 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
557 557 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
↓ open down ↓ |
21 lines elided |
↑ open up ↑ |
558 558 }
559 559
560 560 void
561 561 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
562 562 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
563 563 {
564 564 int nblkptr;
565 565
566 566 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
567 567 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
568 - ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
568 + ASSERT0(blocksize % SPA_MINBLOCKSIZE);
569 569 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
570 570 ASSERT(tx->tx_txg != 0);
571 571 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
572 572 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
573 573 (bonustype == DMU_OT_SA && bonuslen == 0));
574 574 ASSERT(DMU_OT_IS_VALID(bonustype));
575 575 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
576 576
577 577 /* clean up any unreferenced dbufs */
578 578 dnode_evict_dbufs(dn);
579 579
580 580 dn->dn_id_flags = 0;
581 581
582 582 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
583 583 dnode_setdirty(dn, tx);
584 584 if (dn->dn_datablksz != blocksize) {
585 585 /* change blocksize */
586 586 ASSERT(dn->dn_maxblkid == 0 &&
587 587 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
588 588 dnode_block_freed(dn, 0)));
589 589 dnode_setdblksz(dn, blocksize);
590 590 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
591 591 }
592 592 if (dn->dn_bonuslen != bonuslen)
593 593 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
594 594
595 595 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
596 596 nblkptr = 1;
597 597 else
598 598 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
599 599 if (dn->dn_bonustype != bonustype)
600 600 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
601 601 if (dn->dn_nblkptr != nblkptr)
602 602 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
603 603 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
604 604 dbuf_rm_spill(dn, tx);
605 605 dnode_rm_spill(dn, tx);
606 606 }
607 607 rw_exit(&dn->dn_struct_rwlock);
608 608
609 609 /* change type */
610 610 dn->dn_type = ot;
611 611
612 612 /* change bonus size and type */
613 613 mutex_enter(&dn->dn_mtx);
614 614 dn->dn_bonustype = bonustype;
615 615 dn->dn_bonuslen = bonuslen;
616 616 dn->dn_nblkptr = nblkptr;
617 617 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
618 618 dn->dn_compress = ZIO_COMPRESS_INHERIT;
619 619 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
620 620
621 621 /* fix up the bonus db_size */
622 622 if (dn->dn_bonus) {
623 623 dn->dn_bonus->db.db_size =
624 624 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
625 625 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
626 626 }
627 627
628 628 dn->dn_allocated_txg = tx->tx_txg;
629 629 mutex_exit(&dn->dn_mtx);
630 630 }
631 631
632 632 #ifdef DNODE_STATS
633 633 static struct {
634 634 uint64_t dms_dnode_invalid;
635 635 uint64_t dms_dnode_recheck1;
636 636 uint64_t dms_dnode_recheck2;
637 637 uint64_t dms_dnode_special;
638 638 uint64_t dms_dnode_handle;
639 639 uint64_t dms_dnode_rwlock;
640 640 uint64_t dms_dnode_active;
641 641 } dnode_move_stats;
642 642 #endif /* DNODE_STATS */
643 643
644 644 static void
645 645 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
646 646 {
647 647 int i;
648 648
649 649 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
650 650 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
651 651 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
652 652 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
653 653
654 654 /* Copy fields. */
655 655 ndn->dn_objset = odn->dn_objset;
656 656 ndn->dn_object = odn->dn_object;
657 657 ndn->dn_dbuf = odn->dn_dbuf;
658 658 ndn->dn_handle = odn->dn_handle;
659 659 ndn->dn_phys = odn->dn_phys;
660 660 ndn->dn_type = odn->dn_type;
661 661 ndn->dn_bonuslen = odn->dn_bonuslen;
662 662 ndn->dn_bonustype = odn->dn_bonustype;
663 663 ndn->dn_nblkptr = odn->dn_nblkptr;
664 664 ndn->dn_checksum = odn->dn_checksum;
665 665 ndn->dn_compress = odn->dn_compress;
666 666 ndn->dn_nlevels = odn->dn_nlevels;
667 667 ndn->dn_indblkshift = odn->dn_indblkshift;
668 668 ndn->dn_datablkshift = odn->dn_datablkshift;
669 669 ndn->dn_datablkszsec = odn->dn_datablkszsec;
670 670 ndn->dn_datablksz = odn->dn_datablksz;
671 671 ndn->dn_maxblkid = odn->dn_maxblkid;
672 672 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
673 673 sizeof (odn->dn_next_nblkptr));
674 674 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
675 675 sizeof (odn->dn_next_nlevels));
676 676 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
677 677 sizeof (odn->dn_next_indblkshift));
678 678 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
679 679 sizeof (odn->dn_next_bonustype));
680 680 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
681 681 sizeof (odn->dn_rm_spillblk));
682 682 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
683 683 sizeof (odn->dn_next_bonuslen));
684 684 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
685 685 sizeof (odn->dn_next_blksz));
686 686 for (i = 0; i < TXG_SIZE; i++) {
687 687 list_move_tail(&ndn->dn_dirty_records[i],
688 688 &odn->dn_dirty_records[i]);
689 689 }
690 690 bcopy(&odn->dn_ranges[0], &ndn->dn_ranges[0], sizeof (odn->dn_ranges));
691 691 ndn->dn_allocated_txg = odn->dn_allocated_txg;
692 692 ndn->dn_free_txg = odn->dn_free_txg;
693 693 ndn->dn_assigned_txg = odn->dn_assigned_txg;
694 694 ndn->dn_dirtyctx = odn->dn_dirtyctx;
695 695 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
696 696 ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
697 697 refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
698 698 ASSERT(list_is_empty(&ndn->dn_dbufs));
699 699 list_move_tail(&ndn->dn_dbufs, &odn->dn_dbufs);
700 700 ndn->dn_dbufs_count = odn->dn_dbufs_count;
701 701 ndn->dn_bonus = odn->dn_bonus;
702 702 ndn->dn_have_spill = odn->dn_have_spill;
703 703 ndn->dn_zio = odn->dn_zio;
704 704 ndn->dn_oldused = odn->dn_oldused;
705 705 ndn->dn_oldflags = odn->dn_oldflags;
706 706 ndn->dn_olduid = odn->dn_olduid;
707 707 ndn->dn_oldgid = odn->dn_oldgid;
708 708 ndn->dn_newuid = odn->dn_newuid;
709 709 ndn->dn_newgid = odn->dn_newgid;
710 710 ndn->dn_id_flags = odn->dn_id_flags;
711 711 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
712 712 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
713 713 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
714 714 ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
715 715 ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
716 716
717 717 /*
718 718 * Update back pointers. Updating the handle fixes the back pointer of
719 719 * every descendant dbuf as well as the bonus dbuf.
720 720 */
721 721 ASSERT(ndn->dn_handle->dnh_dnode == odn);
722 722 ndn->dn_handle->dnh_dnode = ndn;
723 723 if (ndn->dn_zfetch.zf_dnode == odn) {
724 724 ndn->dn_zfetch.zf_dnode = ndn;
725 725 }
726 726
727 727 /*
728 728 * Invalidate the original dnode by clearing all of its back pointers.
729 729 */
730 730 odn->dn_dbuf = NULL;
731 731 odn->dn_handle = NULL;
732 732 list_create(&odn->dn_dbufs, sizeof (dmu_buf_impl_t),
733 733 offsetof(dmu_buf_impl_t, db_link));
734 734 odn->dn_dbufs_count = 0;
735 735 odn->dn_bonus = NULL;
736 736 odn->dn_zfetch.zf_dnode = NULL;
737 737
738 738 /*
739 739 * Set the low bit of the objset pointer to ensure that dnode_move()
740 740 * recognizes the dnode as invalid in any subsequent callback.
741 741 */
742 742 POINTER_INVALIDATE(&odn->dn_objset);
743 743
744 744 /*
745 745 * Satisfy the destructor.
746 746 */
747 747 for (i = 0; i < TXG_SIZE; i++) {
748 748 list_create(&odn->dn_dirty_records[i],
749 749 sizeof (dbuf_dirty_record_t),
750 750 offsetof(dbuf_dirty_record_t, dr_dirty_node));
751 751 odn->dn_ranges[i].avl_root = NULL;
752 752 odn->dn_ranges[i].avl_numnodes = 0;
753 753 odn->dn_next_nlevels[i] = 0;
754 754 odn->dn_next_indblkshift[i] = 0;
755 755 odn->dn_next_bonustype[i] = 0;
756 756 odn->dn_rm_spillblk[i] = 0;
757 757 odn->dn_next_bonuslen[i] = 0;
758 758 odn->dn_next_blksz[i] = 0;
759 759 }
760 760 odn->dn_allocated_txg = 0;
761 761 odn->dn_free_txg = 0;
762 762 odn->dn_assigned_txg = 0;
763 763 odn->dn_dirtyctx = 0;
764 764 odn->dn_dirtyctx_firstset = NULL;
765 765 odn->dn_have_spill = B_FALSE;
766 766 odn->dn_zio = NULL;
767 767 odn->dn_oldused = 0;
768 768 odn->dn_oldflags = 0;
769 769 odn->dn_olduid = 0;
770 770 odn->dn_oldgid = 0;
771 771 odn->dn_newuid = 0;
772 772 odn->dn_newgid = 0;
773 773 odn->dn_id_flags = 0;
774 774
775 775 /*
776 776 * Mark the dnode.
777 777 */
778 778 ndn->dn_moved = 1;
779 779 odn->dn_moved = (uint8_t)-1;
780 780 }
781 781
782 782 #ifdef _KERNEL
783 783 /*ARGSUSED*/
784 784 static kmem_cbrc_t
785 785 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
786 786 {
787 787 dnode_t *odn = buf, *ndn = newbuf;
788 788 objset_t *os;
789 789 int64_t refcount;
790 790 uint32_t dbufs;
791 791
792 792 /*
793 793 * The dnode is on the objset's list of known dnodes if the objset
794 794 * pointer is valid. We set the low bit of the objset pointer when
795 795 * freeing the dnode to invalidate it, and the memory patterns written
796 796 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
797 797 * A newly created dnode sets the objset pointer last of all to indicate
798 798 * that the dnode is known and in a valid state to be moved by this
799 799 * function.
800 800 */
801 801 os = odn->dn_objset;
802 802 if (!POINTER_IS_VALID(os)) {
803 803 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
804 804 return (KMEM_CBRC_DONT_KNOW);
805 805 }
806 806
807 807 /*
808 808 * Ensure that the objset does not go away during the move.
809 809 */
810 810 rw_enter(&os_lock, RW_WRITER);
811 811 if (os != odn->dn_objset) {
812 812 rw_exit(&os_lock);
813 813 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
814 814 return (KMEM_CBRC_DONT_KNOW);
815 815 }
816 816
817 817 /*
818 818 * If the dnode is still valid, then so is the objset. We know that no
819 819 * valid objset can be freed while we hold os_lock, so we can safely
820 820 * ensure that the objset remains in use.
821 821 */
822 822 mutex_enter(&os->os_lock);
823 823
824 824 /*
825 825 * Recheck the objset pointer in case the dnode was removed just before
826 826 * acquiring the lock.
827 827 */
828 828 if (os != odn->dn_objset) {
829 829 mutex_exit(&os->os_lock);
830 830 rw_exit(&os_lock);
831 831 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
832 832 return (KMEM_CBRC_DONT_KNOW);
833 833 }
834 834
835 835 /*
836 836 * At this point we know that as long as we hold os->os_lock, the dnode
837 837 * cannot be freed and fields within the dnode can be safely accessed.
838 838 * The objset listing this dnode cannot go away as long as this dnode is
839 839 * on its list.
840 840 */
841 841 rw_exit(&os_lock);
842 842 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
843 843 mutex_exit(&os->os_lock);
844 844 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
845 845 return (KMEM_CBRC_NO);
846 846 }
847 847 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
848 848
849 849 /*
850 850 * Lock the dnode handle to prevent the dnode from obtaining any new
851 851 * holds. This also prevents the descendant dbufs and the bonus dbuf
852 852 * from accessing the dnode, so that we can discount their holds. The
853 853 * handle is safe to access because we know that while the dnode cannot
854 854 * go away, neither can its handle. Once we hold dnh_zrlock, we can
855 855 * safely move any dnode referenced only by dbufs.
856 856 */
857 857 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
858 858 mutex_exit(&os->os_lock);
859 859 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
860 860 return (KMEM_CBRC_LATER);
861 861 }
862 862
863 863 /*
864 864 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
865 865 * We need to guarantee that there is a hold for every dbuf in order to
866 866 * determine whether the dnode is actively referenced. Falsely matching
867 867 * a dbuf to an active hold would lead to an unsafe move. It's possible
868 868 * that a thread already having an active dnode hold is about to add a
869 869 * dbuf, and we can't compare hold and dbuf counts while the add is in
870 870 * progress.
871 871 */
872 872 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
873 873 zrl_exit(&odn->dn_handle->dnh_zrlock);
874 874 mutex_exit(&os->os_lock);
875 875 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
876 876 return (KMEM_CBRC_LATER);
877 877 }
878 878
879 879 /*
880 880 * A dbuf may be removed (evicted) without an active dnode hold. In that
881 881 * case, the dbuf count is decremented under the handle lock before the
882 882 * dbuf's hold is released. This order ensures that if we count the hold
883 883 * after the dbuf is removed but before its hold is released, we will
884 884 * treat the unmatched hold as active and exit safely. If we count the
885 885 * hold before the dbuf is removed, the hold is discounted, and the
886 886 * removal is blocked until the move completes.
887 887 */
888 888 refcount = refcount_count(&odn->dn_holds);
889 889 ASSERT(refcount >= 0);
890 890 dbufs = odn->dn_dbufs_count;
891 891
892 892 /* We can't have more dbufs than dnode holds. */
893 893 ASSERT3U(dbufs, <=, refcount);
894 894 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
895 895 uint32_t, dbufs);
896 896
897 897 if (refcount > dbufs) {
898 898 rw_exit(&odn->dn_struct_rwlock);
899 899 zrl_exit(&odn->dn_handle->dnh_zrlock);
900 900 mutex_exit(&os->os_lock);
901 901 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
902 902 return (KMEM_CBRC_LATER);
903 903 }
904 904
905 905 rw_exit(&odn->dn_struct_rwlock);
906 906
907 907 /*
908 908 * At this point we know that anyone with a hold on the dnode is not
909 909 * actively referencing it. The dnode is known and in a valid state to
910 910 * move. We're holding the locks needed to execute the critical section.
911 911 */
912 912 dnode_move_impl(odn, ndn);
913 913
914 914 list_link_replace(&odn->dn_link, &ndn->dn_link);
915 915 /* If the dnode was safe to move, the refcount cannot have changed. */
916 916 ASSERT(refcount == refcount_count(&ndn->dn_holds));
917 917 ASSERT(dbufs == ndn->dn_dbufs_count);
918 918 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
919 919 mutex_exit(&os->os_lock);
920 920
921 921 return (KMEM_CBRC_YES);
922 922 }
923 923 #endif /* _KERNEL */
924 924
925 925 void
926 926 dnode_special_close(dnode_handle_t *dnh)
927 927 {
928 928 dnode_t *dn = dnh->dnh_dnode;
929 929
930 930 /*
931 931 * Wait for final references to the dnode to clear. This can
932 932 * only happen if the arc is asyncronously evicting state that
933 933 * has a hold on this dnode while we are trying to evict this
934 934 * dnode.
935 935 */
936 936 while (refcount_count(&dn->dn_holds) > 0)
937 937 delay(1);
938 938 zrl_add(&dnh->dnh_zrlock);
939 939 dnode_destroy(dn); /* implicit zrl_remove() */
940 940 zrl_destroy(&dnh->dnh_zrlock);
941 941 dnh->dnh_dnode = NULL;
942 942 }
943 943
944 944 dnode_t *
945 945 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
946 946 dnode_handle_t *dnh)
947 947 {
948 948 dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
949 949 dnh->dnh_dnode = dn;
950 950 zrl_init(&dnh->dnh_zrlock);
951 951 DNODE_VERIFY(dn);
952 952 return (dn);
953 953 }
954 954
955 955 static void
956 956 dnode_buf_pageout(dmu_buf_t *db, void *arg)
957 957 {
958 958 dnode_children_t *children_dnodes = arg;
959 959 int i;
960 960 int epb = db->db_size >> DNODE_SHIFT;
961 961
962 962 ASSERT(epb == children_dnodes->dnc_count);
963 963
964 964 for (i = 0; i < epb; i++) {
965 965 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
966 966 dnode_t *dn;
967 967
968 968 /*
969 969 * The dnode handle lock guards against the dnode moving to
970 970 * another valid address, so there is no need here to guard
971 971 * against changes to or from NULL.
972 972 */
973 973 if (dnh->dnh_dnode == NULL) {
974 974 zrl_destroy(&dnh->dnh_zrlock);
975 975 continue;
976 976 }
977 977
978 978 zrl_add(&dnh->dnh_zrlock);
979 979 dn = dnh->dnh_dnode;
980 980 /*
981 981 * If there are holds on this dnode, then there should
982 982 * be holds on the dnode's containing dbuf as well; thus
983 983 * it wouldn't be eligible for eviction and this function
984 984 * would not have been called.
985 985 */
986 986 ASSERT(refcount_is_zero(&dn->dn_holds));
987 987 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
988 988
989 989 dnode_destroy(dn); /* implicit zrl_remove() */
990 990 zrl_destroy(&dnh->dnh_zrlock);
991 991 dnh->dnh_dnode = NULL;
992 992 }
993 993 kmem_free(children_dnodes, sizeof (dnode_children_t) +
994 994 (epb - 1) * sizeof (dnode_handle_t));
995 995 }
996 996
997 997 /*
998 998 * errors:
999 999 * EINVAL - invalid object number.
1000 1000 * EIO - i/o error.
1001 1001 * succeeds even for free dnodes.
1002 1002 */
1003 1003 int
1004 1004 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1005 1005 void *tag, dnode_t **dnp)
1006 1006 {
1007 1007 int epb, idx, err;
1008 1008 int drop_struct_lock = FALSE;
1009 1009 int type;
1010 1010 uint64_t blk;
1011 1011 dnode_t *mdn, *dn;
1012 1012 dmu_buf_impl_t *db;
1013 1013 dnode_children_t *children_dnodes;
1014 1014 dnode_handle_t *dnh;
1015 1015
1016 1016 /*
1017 1017 * If you are holding the spa config lock as writer, you shouldn't
1018 1018 * be asking the DMU to do *anything* unless it's the root pool
1019 1019 * which may require us to read from the root filesystem while
1020 1020 * holding some (not all) of the locks as writer.
1021 1021 */
1022 1022 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1023 1023 (spa_is_root(os->os_spa) &&
1024 1024 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1025 1025
1026 1026 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1027 1027 dn = (object == DMU_USERUSED_OBJECT) ?
1028 1028 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1029 1029 if (dn == NULL)
1030 1030 return (ENOENT);
1031 1031 type = dn->dn_type;
1032 1032 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1033 1033 return (ENOENT);
1034 1034 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1035 1035 return (EEXIST);
1036 1036 DNODE_VERIFY(dn);
1037 1037 (void) refcount_add(&dn->dn_holds, tag);
1038 1038 *dnp = dn;
1039 1039 return (0);
1040 1040 }
1041 1041
1042 1042 if (object == 0 || object >= DN_MAX_OBJECT)
1043 1043 return (EINVAL);
1044 1044
1045 1045 mdn = DMU_META_DNODE(os);
1046 1046 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1047 1047
1048 1048 DNODE_VERIFY(mdn);
1049 1049
1050 1050 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1051 1051 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1052 1052 drop_struct_lock = TRUE;
1053 1053 }
1054 1054
1055 1055 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1056 1056
1057 1057 db = dbuf_hold(mdn, blk, FTAG);
1058 1058 if (drop_struct_lock)
1059 1059 rw_exit(&mdn->dn_struct_rwlock);
1060 1060 if (db == NULL)
1061 1061 return (EIO);
1062 1062 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1063 1063 if (err) {
1064 1064 dbuf_rele(db, FTAG);
1065 1065 return (err);
1066 1066 }
1067 1067
1068 1068 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1069 1069 epb = db->db.db_size >> DNODE_SHIFT;
1070 1070
1071 1071 idx = object & (epb-1);
1072 1072
1073 1073 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1074 1074 children_dnodes = dmu_buf_get_user(&db->db);
1075 1075 if (children_dnodes == NULL) {
1076 1076 int i;
1077 1077 dnode_children_t *winner;
1078 1078 children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
1079 1079 (epb - 1) * sizeof (dnode_handle_t), KM_SLEEP);
1080 1080 children_dnodes->dnc_count = epb;
1081 1081 dnh = &children_dnodes->dnc_children[0];
1082 1082 for (i = 0; i < epb; i++) {
1083 1083 zrl_init(&dnh[i].dnh_zrlock);
1084 1084 dnh[i].dnh_dnode = NULL;
1085 1085 }
1086 1086 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
1087 1087 dnode_buf_pageout)) {
1088 1088 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1089 1089 (epb - 1) * sizeof (dnode_handle_t));
1090 1090 children_dnodes = winner;
1091 1091 }
1092 1092 }
1093 1093 ASSERT(children_dnodes->dnc_count == epb);
1094 1094
1095 1095 dnh = &children_dnodes->dnc_children[idx];
1096 1096 zrl_add(&dnh->dnh_zrlock);
1097 1097 if ((dn = dnh->dnh_dnode) == NULL) {
1098 1098 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1099 1099 dnode_t *winner;
1100 1100
1101 1101 dn = dnode_create(os, phys, db, object, dnh);
1102 1102 winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1103 1103 if (winner != NULL) {
1104 1104 zrl_add(&dnh->dnh_zrlock);
1105 1105 dnode_destroy(dn); /* implicit zrl_remove() */
1106 1106 dn = winner;
1107 1107 }
1108 1108 }
1109 1109
1110 1110 mutex_enter(&dn->dn_mtx);
1111 1111 type = dn->dn_type;
1112 1112 if (dn->dn_free_txg ||
1113 1113 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1114 1114 ((flag & DNODE_MUST_BE_FREE) &&
1115 1115 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1116 1116 mutex_exit(&dn->dn_mtx);
1117 1117 zrl_remove(&dnh->dnh_zrlock);
1118 1118 dbuf_rele(db, FTAG);
1119 1119 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1120 1120 }
1121 1121 mutex_exit(&dn->dn_mtx);
1122 1122
1123 1123 if (refcount_add(&dn->dn_holds, tag) == 1)
1124 1124 dbuf_add_ref(db, dnh);
1125 1125 /* Now we can rely on the hold to prevent the dnode from moving. */
1126 1126 zrl_remove(&dnh->dnh_zrlock);
1127 1127
1128 1128 DNODE_VERIFY(dn);
1129 1129 ASSERT3P(dn->dn_dbuf, ==, db);
1130 1130 ASSERT3U(dn->dn_object, ==, object);
1131 1131 dbuf_rele(db, FTAG);
1132 1132
1133 1133 *dnp = dn;
1134 1134 return (0);
1135 1135 }
1136 1136
1137 1137 /*
1138 1138 * Return held dnode if the object is allocated, NULL if not.
1139 1139 */
1140 1140 int
1141 1141 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1142 1142 {
1143 1143 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1144 1144 }
1145 1145
1146 1146 /*
1147 1147 * Can only add a reference if there is already at least one
1148 1148 * reference on the dnode. Returns FALSE if unable to add a
1149 1149 * new reference.
1150 1150 */
1151 1151 boolean_t
1152 1152 dnode_add_ref(dnode_t *dn, void *tag)
1153 1153 {
1154 1154 mutex_enter(&dn->dn_mtx);
1155 1155 if (refcount_is_zero(&dn->dn_holds)) {
1156 1156 mutex_exit(&dn->dn_mtx);
1157 1157 return (FALSE);
1158 1158 }
1159 1159 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1160 1160 mutex_exit(&dn->dn_mtx);
1161 1161 return (TRUE);
1162 1162 }
1163 1163
1164 1164 void
1165 1165 dnode_rele(dnode_t *dn, void *tag)
1166 1166 {
1167 1167 uint64_t refs;
1168 1168 /* Get while the hold prevents the dnode from moving. */
1169 1169 dmu_buf_impl_t *db = dn->dn_dbuf;
1170 1170 dnode_handle_t *dnh = dn->dn_handle;
1171 1171
1172 1172 mutex_enter(&dn->dn_mtx);
1173 1173 refs = refcount_remove(&dn->dn_holds, tag);
1174 1174 mutex_exit(&dn->dn_mtx);
1175 1175
1176 1176 /*
1177 1177 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1178 1178 * indirectly by dbuf_rele() while relying on the dnode handle to
1179 1179 * prevent the dnode from moving, since releasing the last hold could
1180 1180 * result in the dnode's parent dbuf evicting its dnode handles. For
1181 1181 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1182 1182 * other direct or indirect hold on the dnode must first drop the dnode
1183 1183 * handle.
1184 1184 */
1185 1185 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1186 1186
1187 1187 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1188 1188 if (refs == 0 && db != NULL) {
1189 1189 /*
1190 1190 * Another thread could add a hold to the dnode handle in
1191 1191 * dnode_hold_impl() while holding the parent dbuf. Since the
1192 1192 * hold on the parent dbuf prevents the handle from being
1193 1193 * destroyed, the hold on the handle is OK. We can't yet assert
1194 1194 * that the handle has zero references, but that will be
1195 1195 * asserted anyway when the handle gets destroyed.
1196 1196 */
1197 1197 dbuf_rele(db, dnh);
1198 1198 }
1199 1199 }
1200 1200
1201 1201 void
1202 1202 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1203 1203 {
1204 1204 objset_t *os = dn->dn_objset;
1205 1205 uint64_t txg = tx->tx_txg;
1206 1206
1207 1207 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1208 1208 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1209 1209 return;
1210 1210 }
1211 1211
1212 1212 DNODE_VERIFY(dn);
1213 1213
1214 1214 #ifdef ZFS_DEBUG
1215 1215 mutex_enter(&dn->dn_mtx);
1216 1216 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1217 1217 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1218 1218 mutex_exit(&dn->dn_mtx);
1219 1219 #endif
1220 1220
1221 1221 /*
1222 1222 * Determine old uid/gid when necessary
1223 1223 */
1224 1224 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1225 1225
1226 1226 mutex_enter(&os->os_lock);
1227 1227
↓ open down ↓ |
649 lines elided |
↑ open up ↑ |
1228 1228 /*
1229 1229 * If we are already marked dirty, we're done.
1230 1230 */
1231 1231 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1232 1232 mutex_exit(&os->os_lock);
1233 1233 return;
1234 1234 }
1235 1235
1236 1236 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
1237 1237 ASSERT(dn->dn_datablksz != 0);
1238 - ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
1239 - ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
1240 - ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0);
1238 + ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1239 + ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1240 + ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1241 1241
1242 1242 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1243 1243 dn->dn_object, txg);
1244 1244
1245 1245 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1246 1246 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1247 1247 } else {
1248 1248 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1249 1249 }
1250 1250
1251 1251 mutex_exit(&os->os_lock);
1252 1252
1253 1253 /*
1254 1254 * The dnode maintains a hold on its containing dbuf as
1255 1255 * long as there are holds on it. Each instantiated child
1256 1256 * dbuf maintains a hold on the dnode. When the last child
1257 1257 * drops its hold, the dnode will drop its hold on the
1258 1258 * containing dbuf. We add a "dirty hold" here so that the
1259 1259 * dnode will hang around after we finish processing its
1260 1260 * children.
1261 1261 */
1262 1262 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1263 1263
1264 1264 (void) dbuf_dirty(dn->dn_dbuf, tx);
1265 1265
1266 1266 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1267 1267 }
1268 1268
1269 1269 void
1270 1270 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1271 1271 {
1272 1272 int txgoff = tx->tx_txg & TXG_MASK;
1273 1273
1274 1274 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1275 1275
1276 1276 /* we should be the only holder... hopefully */
1277 1277 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1278 1278
1279 1279 mutex_enter(&dn->dn_mtx);
1280 1280 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1281 1281 mutex_exit(&dn->dn_mtx);
1282 1282 return;
1283 1283 }
1284 1284 dn->dn_free_txg = tx->tx_txg;
1285 1285 mutex_exit(&dn->dn_mtx);
1286 1286
1287 1287 /*
1288 1288 * If the dnode is already dirty, it needs to be moved from
1289 1289 * the dirty list to the free list.
1290 1290 */
1291 1291 mutex_enter(&dn->dn_objset->os_lock);
1292 1292 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1293 1293 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1294 1294 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1295 1295 mutex_exit(&dn->dn_objset->os_lock);
1296 1296 } else {
1297 1297 mutex_exit(&dn->dn_objset->os_lock);
1298 1298 dnode_setdirty(dn, tx);
1299 1299 }
1300 1300 }
1301 1301
1302 1302 /*
1303 1303 * Try to change the block size for the indicated dnode. This can only
1304 1304 * succeed if there are no blocks allocated or dirty beyond first block
1305 1305 */
1306 1306 int
1307 1307 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1308 1308 {
1309 1309 dmu_buf_impl_t *db, *db_next;
1310 1310 int err;
1311 1311
1312 1312 if (size == 0)
1313 1313 size = SPA_MINBLOCKSIZE;
1314 1314 if (size > SPA_MAXBLOCKSIZE)
1315 1315 size = SPA_MAXBLOCKSIZE;
1316 1316 else
1317 1317 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1318 1318
1319 1319 if (ibs == dn->dn_indblkshift)
1320 1320 ibs = 0;
1321 1321
1322 1322 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1323 1323 return (0);
1324 1324
1325 1325 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1326 1326
1327 1327 /* Check for any allocated blocks beyond the first */
1328 1328 if (dn->dn_phys->dn_maxblkid != 0)
1329 1329 goto fail;
1330 1330
1331 1331 mutex_enter(&dn->dn_dbufs_mtx);
1332 1332 for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
1333 1333 db_next = list_next(&dn->dn_dbufs, db);
1334 1334
1335 1335 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1336 1336 db->db_blkid != DMU_SPILL_BLKID) {
1337 1337 mutex_exit(&dn->dn_dbufs_mtx);
1338 1338 goto fail;
1339 1339 }
1340 1340 }
1341 1341 mutex_exit(&dn->dn_dbufs_mtx);
1342 1342
1343 1343 if (ibs && dn->dn_nlevels != 1)
1344 1344 goto fail;
1345 1345
1346 1346 /* resize the old block */
1347 1347 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1348 1348 if (err == 0)
1349 1349 dbuf_new_size(db, size, tx);
1350 1350 else if (err != ENOENT)
1351 1351 goto fail;
1352 1352
1353 1353 dnode_setdblksz(dn, size);
1354 1354 dnode_setdirty(dn, tx);
1355 1355 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1356 1356 if (ibs) {
1357 1357 dn->dn_indblkshift = ibs;
1358 1358 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1359 1359 }
1360 1360 /* rele after we have fixed the blocksize in the dnode */
1361 1361 if (db)
1362 1362 dbuf_rele(db, FTAG);
1363 1363
1364 1364 rw_exit(&dn->dn_struct_rwlock);
1365 1365 return (0);
1366 1366
1367 1367 fail:
1368 1368 rw_exit(&dn->dn_struct_rwlock);
1369 1369 return (ENOTSUP);
1370 1370 }
1371 1371
1372 1372 /* read-holding callers must not rely on the lock being continuously held */
1373 1373 void
1374 1374 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1375 1375 {
1376 1376 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1377 1377 int epbs, new_nlevels;
1378 1378 uint64_t sz;
1379 1379
1380 1380 ASSERT(blkid != DMU_BONUS_BLKID);
1381 1381
1382 1382 ASSERT(have_read ?
1383 1383 RW_READ_HELD(&dn->dn_struct_rwlock) :
1384 1384 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1385 1385
1386 1386 /*
1387 1387 * if we have a read-lock, check to see if we need to do any work
1388 1388 * before upgrading to a write-lock.
1389 1389 */
1390 1390 if (have_read) {
1391 1391 if (blkid <= dn->dn_maxblkid)
1392 1392 return;
1393 1393
1394 1394 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1395 1395 rw_exit(&dn->dn_struct_rwlock);
1396 1396 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1397 1397 }
1398 1398 }
1399 1399
1400 1400 if (blkid <= dn->dn_maxblkid)
1401 1401 goto out;
1402 1402
1403 1403 dn->dn_maxblkid = blkid;
1404 1404
1405 1405 /*
1406 1406 * Compute the number of levels necessary to support the new maxblkid.
1407 1407 */
1408 1408 new_nlevels = 1;
1409 1409 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1410 1410 for (sz = dn->dn_nblkptr;
1411 1411 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1412 1412 new_nlevels++;
1413 1413
1414 1414 if (new_nlevels > dn->dn_nlevels) {
1415 1415 int old_nlevels = dn->dn_nlevels;
1416 1416 dmu_buf_impl_t *db;
1417 1417 list_t *list;
1418 1418 dbuf_dirty_record_t *new, *dr, *dr_next;
1419 1419
1420 1420 dn->dn_nlevels = new_nlevels;
1421 1421
1422 1422 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1423 1423 dn->dn_next_nlevels[txgoff] = new_nlevels;
1424 1424
1425 1425 /* dirty the left indirects */
1426 1426 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1427 1427 ASSERT(db != NULL);
1428 1428 new = dbuf_dirty(db, tx);
1429 1429 dbuf_rele(db, FTAG);
1430 1430
1431 1431 /* transfer the dirty records to the new indirect */
1432 1432 mutex_enter(&dn->dn_mtx);
1433 1433 mutex_enter(&new->dt.di.dr_mtx);
1434 1434 list = &dn->dn_dirty_records[txgoff];
1435 1435 for (dr = list_head(list); dr; dr = dr_next) {
1436 1436 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1437 1437 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1438 1438 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1439 1439 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1440 1440 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1441 1441 list_remove(&dn->dn_dirty_records[txgoff], dr);
1442 1442 list_insert_tail(&new->dt.di.dr_children, dr);
1443 1443 dr->dr_parent = new;
1444 1444 }
1445 1445 }
1446 1446 mutex_exit(&new->dt.di.dr_mtx);
1447 1447 mutex_exit(&dn->dn_mtx);
1448 1448 }
1449 1449
1450 1450 out:
1451 1451 if (have_read)
1452 1452 rw_downgrade(&dn->dn_struct_rwlock);
1453 1453 }
1454 1454
1455 1455 void
1456 1456 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
1457 1457 {
1458 1458 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1459 1459 avl_index_t where;
1460 1460 free_range_t *rp;
1461 1461 free_range_t rp_tofind;
1462 1462 uint64_t endblk = blkid + nblks;
1463 1463
1464 1464 ASSERT(MUTEX_HELD(&dn->dn_mtx));
1465 1465 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */
1466 1466
1467 1467 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1468 1468 blkid, nblks, tx->tx_txg);
1469 1469 rp_tofind.fr_blkid = blkid;
1470 1470 rp = avl_find(tree, &rp_tofind, &where);
1471 1471 if (rp == NULL)
1472 1472 rp = avl_nearest(tree, where, AVL_BEFORE);
1473 1473 if (rp == NULL)
1474 1474 rp = avl_nearest(tree, where, AVL_AFTER);
1475 1475
1476 1476 while (rp && (rp->fr_blkid <= blkid + nblks)) {
1477 1477 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks;
1478 1478 free_range_t *nrp = AVL_NEXT(tree, rp);
1479 1479
1480 1480 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) {
1481 1481 /* clear this entire range */
1482 1482 avl_remove(tree, rp);
1483 1483 kmem_free(rp, sizeof (free_range_t));
1484 1484 } else if (blkid <= rp->fr_blkid &&
1485 1485 endblk > rp->fr_blkid && endblk < fr_endblk) {
1486 1486 /* clear the beginning of this range */
1487 1487 rp->fr_blkid = endblk;
1488 1488 rp->fr_nblks = fr_endblk - endblk;
1489 1489 } else if (blkid > rp->fr_blkid && blkid < fr_endblk &&
1490 1490 endblk >= fr_endblk) {
1491 1491 /* clear the end of this range */
1492 1492 rp->fr_nblks = blkid - rp->fr_blkid;
1493 1493 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) {
1494 1494 /* clear a chunk out of this range */
1495 1495 free_range_t *new_rp =
1496 1496 kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1497 1497
1498 1498 new_rp->fr_blkid = endblk;
1499 1499 new_rp->fr_nblks = fr_endblk - endblk;
1500 1500 avl_insert_here(tree, new_rp, rp, AVL_AFTER);
1501 1501 rp->fr_nblks = blkid - rp->fr_blkid;
1502 1502 }
1503 1503 /* there may be no overlap */
1504 1504 rp = nrp;
1505 1505 }
1506 1506 }
1507 1507
1508 1508 void
1509 1509 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1510 1510 {
1511 1511 dmu_buf_impl_t *db;
1512 1512 uint64_t blkoff, blkid, nblks;
1513 1513 int blksz, blkshift, head, tail;
1514 1514 int trunc = FALSE;
1515 1515 int epbs;
1516 1516
1517 1517 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1518 1518 blksz = dn->dn_datablksz;
1519 1519 blkshift = dn->dn_datablkshift;
1520 1520 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1521 1521
1522 1522 if (len == -1ULL) {
1523 1523 len = UINT64_MAX - off;
1524 1524 trunc = TRUE;
1525 1525 }
1526 1526
1527 1527 /*
1528 1528 * First, block align the region to free:
1529 1529 */
1530 1530 if (ISP2(blksz)) {
1531 1531 head = P2NPHASE(off, blksz);
1532 1532 blkoff = P2PHASE(off, blksz);
1533 1533 if ((off >> blkshift) > dn->dn_maxblkid)
1534 1534 goto out;
1535 1535 } else {
1536 1536 ASSERT(dn->dn_maxblkid == 0);
1537 1537 if (off == 0 && len >= blksz) {
1538 1538 /* Freeing the whole block; fast-track this request */
1539 1539 blkid = 0;
1540 1540 nblks = 1;
1541 1541 goto done;
1542 1542 } else if (off >= blksz) {
1543 1543 /* Freeing past end-of-data */
1544 1544 goto out;
1545 1545 } else {
1546 1546 /* Freeing part of the block. */
1547 1547 head = blksz - off;
1548 1548 ASSERT3U(head, >, 0);
1549 1549 }
1550 1550 blkoff = off;
1551 1551 }
1552 1552 /* zero out any partial block data at the start of the range */
1553 1553 if (head) {
1554 1554 ASSERT3U(blkoff + head, ==, blksz);
1555 1555 if (len < head)
1556 1556 head = len;
1557 1557 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1558 1558 FTAG, &db) == 0) {
1559 1559 caddr_t data;
1560 1560
1561 1561 /* don't dirty if it isn't on disk and isn't dirty */
1562 1562 if (db->db_last_dirty ||
1563 1563 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1564 1564 rw_exit(&dn->dn_struct_rwlock);
1565 1565 dbuf_will_dirty(db, tx);
1566 1566 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1567 1567 data = db->db.db_data;
1568 1568 bzero(data + blkoff, head);
1569 1569 }
1570 1570 dbuf_rele(db, FTAG);
1571 1571 }
1572 1572 off += head;
1573 1573 len -= head;
1574 1574 }
1575 1575
1576 1576 /* If the range was less than one block, we're done */
1577 1577 if (len == 0)
1578 1578 goto out;
1579 1579
↓ open down ↓ |
329 lines elided |
↑ open up ↑ |
1580 1580 /* If the remaining range is past end of file, we're done */
1581 1581 if ((off >> blkshift) > dn->dn_maxblkid)
1582 1582 goto out;
1583 1583
1584 1584 ASSERT(ISP2(blksz));
1585 1585 if (trunc)
1586 1586 tail = 0;
1587 1587 else
1588 1588 tail = P2PHASE(len, blksz);
1589 1589
1590 - ASSERT3U(P2PHASE(off, blksz), ==, 0);
1590 + ASSERT0(P2PHASE(off, blksz));
1591 1591 /* zero out any partial block data at the end of the range */
1592 1592 if (tail) {
1593 1593 if (len < tail)
1594 1594 tail = len;
1595 1595 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1596 1596 TRUE, FTAG, &db) == 0) {
1597 1597 /* don't dirty if not on disk and not dirty */
1598 1598 if (db->db_last_dirty ||
1599 1599 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1600 1600 rw_exit(&dn->dn_struct_rwlock);
1601 1601 dbuf_will_dirty(db, tx);
1602 1602 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1603 1603 bzero(db->db.db_data, tail);
1604 1604 }
1605 1605 dbuf_rele(db, FTAG);
1606 1606 }
1607 1607 len -= tail;
1608 1608 }
1609 1609
1610 1610 /* If the range did not include a full block, we are done */
1611 1611 if (len == 0)
1612 1612 goto out;
1613 1613
1614 1614 ASSERT(IS_P2ALIGNED(off, blksz));
1615 1615 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1616 1616 blkid = off >> blkshift;
1617 1617 nblks = len >> blkshift;
1618 1618 if (trunc)
1619 1619 nblks += 1;
1620 1620
1621 1621 /*
1622 1622 * Read in and mark all the level-1 indirects dirty,
1623 1623 * so that they will stay in memory until syncing phase.
1624 1624 * Always dirty the first and last indirect to make sure
1625 1625 * we dirty all the partial indirects.
1626 1626 */
1627 1627 if (dn->dn_nlevels > 1) {
1628 1628 uint64_t i, first, last;
1629 1629 int shift = epbs + dn->dn_datablkshift;
1630 1630
1631 1631 first = blkid >> epbs;
1632 1632 if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1633 1633 dbuf_will_dirty(db, tx);
1634 1634 dbuf_rele(db, FTAG);
1635 1635 }
1636 1636 if (trunc)
1637 1637 last = dn->dn_maxblkid >> epbs;
1638 1638 else
1639 1639 last = (blkid + nblks - 1) >> epbs;
1640 1640 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1641 1641 dbuf_will_dirty(db, tx);
1642 1642 dbuf_rele(db, FTAG);
1643 1643 }
1644 1644 for (i = first + 1; i < last; i++) {
1645 1645 uint64_t ibyte = i << shift;
1646 1646 int err;
1647 1647
1648 1648 err = dnode_next_offset(dn,
1649 1649 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1650 1650 i = ibyte >> shift;
1651 1651 if (err == ESRCH || i >= last)
1652 1652 break;
1653 1653 ASSERT(err == 0);
1654 1654 db = dbuf_hold_level(dn, 1, i, FTAG);
1655 1655 if (db) {
1656 1656 dbuf_will_dirty(db, tx);
1657 1657 dbuf_rele(db, FTAG);
1658 1658 }
1659 1659 }
1660 1660 }
1661 1661 done:
1662 1662 /*
1663 1663 * Add this range to the dnode range list.
1664 1664 * We will finish up this free operation in the syncing phase.
1665 1665 */
1666 1666 mutex_enter(&dn->dn_mtx);
1667 1667 dnode_clear_range(dn, blkid, nblks, tx);
1668 1668 {
1669 1669 free_range_t *rp, *found;
1670 1670 avl_index_t where;
1671 1671 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];
1672 1672
1673 1673 /* Add new range to dn_ranges */
1674 1674 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1675 1675 rp->fr_blkid = blkid;
1676 1676 rp->fr_nblks = nblks;
1677 1677 found = avl_find(tree, rp, &where);
1678 1678 ASSERT(found == NULL);
1679 1679 avl_insert(tree, rp, where);
1680 1680 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1681 1681 blkid, nblks, tx->tx_txg);
1682 1682 }
1683 1683 mutex_exit(&dn->dn_mtx);
1684 1684
1685 1685 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1686 1686 dnode_setdirty(dn, tx);
1687 1687 out:
1688 1688 if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1689 1689 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);
1690 1690
1691 1691 rw_exit(&dn->dn_struct_rwlock);
1692 1692 }
1693 1693
1694 1694 static boolean_t
1695 1695 dnode_spill_freed(dnode_t *dn)
1696 1696 {
1697 1697 int i;
1698 1698
1699 1699 mutex_enter(&dn->dn_mtx);
1700 1700 for (i = 0; i < TXG_SIZE; i++) {
1701 1701 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1702 1702 break;
1703 1703 }
1704 1704 mutex_exit(&dn->dn_mtx);
1705 1705 return (i < TXG_SIZE);
1706 1706 }
1707 1707
1708 1708 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1709 1709 uint64_t
1710 1710 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1711 1711 {
1712 1712 free_range_t range_tofind;
1713 1713 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1714 1714 int i;
1715 1715
1716 1716 if (blkid == DMU_BONUS_BLKID)
1717 1717 return (FALSE);
1718 1718
1719 1719 /*
1720 1720 * If we're in the process of opening the pool, dp will not be
1721 1721 * set yet, but there shouldn't be anything dirty.
1722 1722 */
1723 1723 if (dp == NULL)
1724 1724 return (FALSE);
1725 1725
1726 1726 if (dn->dn_free_txg)
1727 1727 return (TRUE);
1728 1728
1729 1729 if (blkid == DMU_SPILL_BLKID)
1730 1730 return (dnode_spill_freed(dn));
1731 1731
1732 1732 range_tofind.fr_blkid = blkid;
1733 1733 mutex_enter(&dn->dn_mtx);
1734 1734 for (i = 0; i < TXG_SIZE; i++) {
1735 1735 free_range_t *range_found;
1736 1736 avl_index_t idx;
1737 1737
1738 1738 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx);
1739 1739 if (range_found) {
1740 1740 ASSERT(range_found->fr_nblks > 0);
1741 1741 break;
1742 1742 }
1743 1743 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE);
1744 1744 if (range_found &&
1745 1745 range_found->fr_blkid + range_found->fr_nblks > blkid)
1746 1746 break;
1747 1747 }
1748 1748 mutex_exit(&dn->dn_mtx);
1749 1749 return (i < TXG_SIZE);
1750 1750 }
1751 1751
1752 1752 /* call from syncing context when we actually write/free space for this dnode */
1753 1753 void
1754 1754 dnode_diduse_space(dnode_t *dn, int64_t delta)
1755 1755 {
1756 1756 uint64_t space;
1757 1757 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1758 1758 dn, dn->dn_phys,
1759 1759 (u_longlong_t)dn->dn_phys->dn_used,
1760 1760 (longlong_t)delta);
1761 1761
↓ open down ↓ |
161 lines elided |
↑ open up ↑ |
1762 1762 mutex_enter(&dn->dn_mtx);
1763 1763 space = DN_USED_BYTES(dn->dn_phys);
1764 1764 if (delta > 0) {
1765 1765 ASSERT3U(space + delta, >=, space); /* no overflow */
1766 1766 } else {
1767 1767 ASSERT3U(space, >=, -delta); /* no underflow */
1768 1768 }
1769 1769 space += delta;
1770 1770 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1771 1771 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1772 - ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1772 + ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1773 1773 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1774 1774 } else {
1775 1775 dn->dn_phys->dn_used = space;
1776 1776 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1777 1777 }
1778 1778 mutex_exit(&dn->dn_mtx);
1779 1779 }
1780 1780
1781 1781 /*
1782 1782 * Call when we think we're going to write/free space in open context.
1783 1783 * Be conservative (ie. OK to write less than this or free more than
1784 1784 * this, but don't write more or free less).
1785 1785 */
1786 1786 void
1787 1787 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1788 1788 {
1789 1789 objset_t *os = dn->dn_objset;
1790 1790 dsl_dataset_t *ds = os->os_dsl_dataset;
1791 1791
1792 1792 if (space > 0)
1793 1793 space = spa_get_asize(os->os_spa, space);
1794 1794
1795 1795 if (ds)
1796 1796 dsl_dir_willuse_space(ds->ds_dir, space, tx);
1797 1797
1798 1798 dmu_tx_willuse_space(tx, space);
1799 1799 }
1800 1800
1801 1801 /*
1802 1802 * This function scans a block at the indicated "level" looking for
1803 1803 * a hole or data (depending on 'flags'). If level > 0, then we are
1804 1804 * scanning an indirect block looking at its pointers. If level == 0,
1805 1805 * then we are looking at a block of dnodes. If we don't find what we
1806 1806 * are looking for in the block, we return ESRCH. Otherwise, return
1807 1807 * with *offset pointing to the beginning (if searching forwards) or
1808 1808 * end (if searching backwards) of the range covered by the block
1809 1809 * pointer we matched on (or dnode).
1810 1810 *
1811 1811 * The basic search algorithm used below by dnode_next_offset() is to
1812 1812 * use this function to search up the block tree (widen the search) until
1813 1813 * we find something (i.e., we don't return ESRCH) and then search back
1814 1814 * down the tree (narrow the search) until we reach our original search
1815 1815 * level.
1816 1816 */
1817 1817 static int
1818 1818 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1819 1819 int lvl, uint64_t blkfill, uint64_t txg)
1820 1820 {
1821 1821 dmu_buf_impl_t *db = NULL;
1822 1822 void *data = NULL;
1823 1823 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1824 1824 uint64_t epb = 1ULL << epbs;
1825 1825 uint64_t minfill, maxfill;
1826 1826 boolean_t hole;
1827 1827 int i, inc, error, span;
1828 1828
1829 1829 dprintf("probing object %llu offset %llx level %d of %u\n",
1830 1830 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1831 1831
1832 1832 hole = ((flags & DNODE_FIND_HOLE) != 0);
1833 1833 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1834 1834 ASSERT(txg == 0 || !hole);
1835 1835
1836 1836 if (lvl == dn->dn_phys->dn_nlevels) {
1837 1837 error = 0;
1838 1838 epb = dn->dn_phys->dn_nblkptr;
1839 1839 data = dn->dn_phys->dn_blkptr;
1840 1840 } else {
1841 1841 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1842 1842 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1843 1843 if (error) {
1844 1844 if (error != ENOENT)
1845 1845 return (error);
1846 1846 if (hole)
1847 1847 return (0);
1848 1848 /*
1849 1849 * This can only happen when we are searching up
1850 1850 * the block tree for data. We don't really need to
1851 1851 * adjust the offset, as we will just end up looking
1852 1852 * at the pointer to this block in its parent, and its
1853 1853 * going to be unallocated, so we will skip over it.
1854 1854 */
1855 1855 return (ESRCH);
1856 1856 }
1857 1857 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1858 1858 if (error) {
1859 1859 dbuf_rele(db, FTAG);
1860 1860 return (error);
1861 1861 }
1862 1862 data = db->db.db_data;
1863 1863 }
1864 1864
1865 1865 if (db && txg &&
1866 1866 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) {
1867 1867 /*
1868 1868 * This can only happen when we are searching up the tree
1869 1869 * and these conditions mean that we need to keep climbing.
1870 1870 */
1871 1871 error = ESRCH;
1872 1872 } else if (lvl == 0) {
1873 1873 dnode_phys_t *dnp = data;
1874 1874 span = DNODE_SHIFT;
1875 1875 ASSERT(dn->dn_type == DMU_OT_DNODE);
1876 1876
1877 1877 for (i = (*offset >> span) & (blkfill - 1);
1878 1878 i >= 0 && i < blkfill; i += inc) {
1879 1879 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1880 1880 break;
1881 1881 *offset += (1ULL << span) * inc;
1882 1882 }
1883 1883 if (i < 0 || i == blkfill)
1884 1884 error = ESRCH;
1885 1885 } else {
1886 1886 blkptr_t *bp = data;
1887 1887 uint64_t start = *offset;
1888 1888 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1889 1889 minfill = 0;
1890 1890 maxfill = blkfill << ((lvl - 1) * epbs);
1891 1891
1892 1892 if (hole)
1893 1893 maxfill--;
1894 1894 else
1895 1895 minfill++;
1896 1896
1897 1897 *offset = *offset >> span;
1898 1898 for (i = BF64_GET(*offset, 0, epbs);
1899 1899 i >= 0 && i < epb; i += inc) {
1900 1900 if (bp[i].blk_fill >= minfill &&
1901 1901 bp[i].blk_fill <= maxfill &&
1902 1902 (hole || bp[i].blk_birth > txg))
1903 1903 break;
1904 1904 if (inc > 0 || *offset > 0)
1905 1905 *offset += inc;
1906 1906 }
1907 1907 *offset = *offset << span;
1908 1908 if (inc < 0) {
1909 1909 /* traversing backwards; position offset at the end */
1910 1910 ASSERT3U(*offset, <=, start);
1911 1911 *offset = MIN(*offset + (1ULL << span) - 1, start);
1912 1912 } else if (*offset < start) {
1913 1913 *offset = start;
1914 1914 }
1915 1915 if (i < 0 || i >= epb)
1916 1916 error = ESRCH;
1917 1917 }
1918 1918
1919 1919 if (db)
1920 1920 dbuf_rele(db, FTAG);
1921 1921
1922 1922 return (error);
1923 1923 }
1924 1924
1925 1925 /*
1926 1926 * Find the next hole, data, or sparse region at or after *offset.
1927 1927 * The value 'blkfill' tells us how many items we expect to find
1928 1928 * in an L0 data block; this value is 1 for normal objects,
1929 1929 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1930 1930 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1931 1931 *
1932 1932 * Examples:
1933 1933 *
1934 1934 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1935 1935 * Finds the next/previous hole/data in a file.
1936 1936 * Used in dmu_offset_next().
1937 1937 *
1938 1938 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1939 1939 * Finds the next free/allocated dnode an objset's meta-dnode.
1940 1940 * Only finds objects that have new contents since txg (ie.
1941 1941 * bonus buffer changes and content removal are ignored).
1942 1942 * Used in dmu_object_next().
1943 1943 *
1944 1944 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1945 1945 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
1946 1946 * Used in dmu_object_alloc().
1947 1947 */
1948 1948 int
1949 1949 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1950 1950 int minlvl, uint64_t blkfill, uint64_t txg)
1951 1951 {
1952 1952 uint64_t initial_offset = *offset;
1953 1953 int lvl, maxlvl;
1954 1954 int error = 0;
1955 1955
1956 1956 if (!(flags & DNODE_FIND_HAVELOCK))
1957 1957 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1958 1958
1959 1959 if (dn->dn_phys->dn_nlevels == 0) {
1960 1960 error = ESRCH;
1961 1961 goto out;
1962 1962 }
1963 1963
1964 1964 if (dn->dn_datablkshift == 0) {
1965 1965 if (*offset < dn->dn_datablksz) {
1966 1966 if (flags & DNODE_FIND_HOLE)
1967 1967 *offset = dn->dn_datablksz;
1968 1968 } else {
1969 1969 error = ESRCH;
1970 1970 }
1971 1971 goto out;
1972 1972 }
1973 1973
1974 1974 maxlvl = dn->dn_phys->dn_nlevels;
1975 1975
1976 1976 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1977 1977 error = dnode_next_offset_level(dn,
1978 1978 flags, offset, lvl, blkfill, txg);
1979 1979 if (error != ESRCH)
1980 1980 break;
1981 1981 }
1982 1982
1983 1983 while (error == 0 && --lvl >= minlvl) {
1984 1984 error = dnode_next_offset_level(dn,
1985 1985 flags, offset, lvl, blkfill, txg);
1986 1986 }
1987 1987
1988 1988 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1989 1989 initial_offset < *offset : initial_offset > *offset))
1990 1990 error = ESRCH;
1991 1991 out:
1992 1992 if (!(flags & DNODE_FIND_HAVELOCK))
1993 1993 rw_exit(&dn->dn_struct_rwlock);
1994 1994
1995 1995 return (error);
1996 1996 }
↓ open down ↓ |
214 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX