
new/usr/src/cmd/zdb/Makefile.com 1

**
 1754 Thu Jul 26 14:18:53 2012
new/usr/src/cmd/zdb/Makefile.com
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # Copyright (c) 2012 by Delphix. All rights reserved.
27 #

29 PROG:sh= cd ..; basename ‘pwd‘
30 SRCS= ../$(PROG).c ../zdb_il.c
31 OBJS= $(PROG).o zdb_il.o

33 include ../../Makefile.cmd
34 include ../../Makefile.ctf

36 INCS += -I../../../lib/libzpool/common
37 INCS += -I../../../uts/common/fs/zfs
38 INCS += -I../../../common/zfs

40 LDLIBS += -lzpool -lumem -lnvpair -lzfs -lavl

42 C99MODE= -xc99=%all
43 C99LMODE= -Xc99=%all

45 CFLAGS += $(CCVERBOSE)
46 CFLAGS64 += $(CCVERBOSE)
47 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT $(INCS) -DDEBUG
45 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT $(INCS)

49 # lint complains about unused _umem_* functions
50 LINTFLAGS += -xerroff=E_NAME_DEF_NOT_USED2
51 LINTFLAGS64 += -xerroff=E_NAME_DEF_NOT_USED2

53 .KEEP_STATE:

55 all: $(PROG)

57 $(PROG): $(OBJS)
58 $(LINK.c) -o $(PROG) $(OBJS) $(LDLIBS)
59 $(POST_PROCESS)

new/usr/src/cmd/zdb/Makefile.com 2

61 clean:

63 lint: lint_SRCS

65 include ../../Makefile.targ

67 %.o: ../%.c
68 $(COMPILE.c) $<
69 $(POST_PROCESS_O)

new/usr/src/cmd/zdb/zdb.c 1

**
 83672 Thu Jul 26 14:18:54 2012
new/usr/src/cmd/zdb/zdb.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

515 static void
516 dump_spacemap(objset_t *os, space_map_obj_t *smo, space_map_t *sm)
517 {
518 uint64_t alloc, offset, entry;
519 uint8_t mapshift = sm->sm_shift;
520 uint64_t mapstart = sm->sm_start;
521 char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
522 "INVALID", "INVALID", "INVALID", "INVALID" };

524 if (smo->smo_object == 0)
525 return;

527 /*
528 * Print out the freelist entries in both encoded and decoded form.
529 */
530 alloc = 0;
531 for (offset = 0; offset < smo->smo_objsize; offset += sizeof (entry)) {
532 VERIFY0(dmu_read(os, smo->smo_object, offset,
532 VERIFY3U(0, ==, dmu_read(os, smo->smo_object, offset,
533 sizeof (entry), &entry, DMU_READ_PREFETCH));
534 if (SM_DEBUG_DECODE(entry)) {
535 (void) printf("\t [%6llu] %s: txg %llu, pass %llu\n",
536 (u_longlong_t)(offset / sizeof (entry)),
537 ddata[SM_DEBUG_ACTION_DECODE(entry)],
538 (u_longlong_t)SM_DEBUG_TXG_DECODE(entry),
539 (u_longlong_t)SM_DEBUG_SYNCPASS_DECODE(entry));
540 } else {
541 (void) printf("\t [%6llu] %c range:"
542 " %010llx-%010llx size: %06llx\n",
543 (u_longlong_t)(offset / sizeof (entry)),
544 SM_TYPE_DECODE(entry) == SM_ALLOC ? ’A’ : ’F’,
545 (u_longlong_t)((SM_OFFSET_DECODE(entry) <<
546 mapshift) + mapstart),
547 (u_longlong_t)((SM_OFFSET_DECODE(entry) <<
548 mapshift) + mapstart + (SM_RUN_DECODE(entry) <<
549 mapshift)),
550 (u_longlong_t)(SM_RUN_DECODE(entry) << mapshift));
551 if (SM_TYPE_DECODE(entry) == SM_ALLOC)
552 alloc += SM_RUN_DECODE(entry) << mapshift;
553 else
554 alloc -= SM_RUN_DECODE(entry) << mapshift;
555 }
556 }
557 if (alloc != smo->smo_alloc) {
558 (void) printf("space_map_object alloc (%llu) INCONSISTENT "
559 "with space map summary (%llu)\n",
560 (u_longlong_t)smo->smo_alloc, (u_longlong_t)alloc);
561 }
562 }

______unchanged_portion_omitted_

1181 static void
1182 dump_bptree(objset_t *os, uint64_t obj, char *name)
1183 {
1184 char bytes[32];
1185 bptree_phys_t *bt;
1186 dmu_buf_t *db;

1188 if (dump_opt[’d’] < 3)

new/usr/src/cmd/zdb/zdb.c 2

1189 return;

1191 VERIFY0(dmu_bonus_hold(os, obj, FTAG, &db));
1191 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
1192 bt = db->db_data;
1193 zdb_nicenum(bt->bt_bytes, bytes);
1194 (void) printf("\n %s: %llu datasets, %s\n",
1195 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
1196 dmu_buf_rele(db, FTAG);

1198 if (dump_opt[’d’] < 5)
1199 return;

1201 (void) printf("\n");

1203 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
1204 }
______unchanged_portion_omitted_

2241 static int
2242 dump_block_stats(spa_t *spa)
2243 {
2244 zdb_cb_t zcb = { 0 };
2245 zdb_blkstats_t *zb, *tzb;
2246 uint64_t norm_alloc, norm_space, total_alloc, total_found;
2247 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | TRAVERSE_HARD;
2248 int leaks = 0;

2250 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n",
2251 (dump_opt[’c’] || !dump_opt[’L’]) ? "to verify " : "",
2252 (dump_opt[’c’] == 1) ? "metadata " : "",
2253 dump_opt[’c’] ? "checksums " : "",
2254 (dump_opt[’c’] && !dump_opt[’L’]) ? "and verify " : "",
2255 !dump_opt[’L’] ? "nothing leaked " : "");

2257 /*
2258 * Load all space maps as SM_ALLOC maps, then traverse the pool
2259 * claiming each block we discover. If the pool is perfectly
2260 * consistent, the space maps will be empty when we’re done.
2261 * Anything left over is a leak; any block we can’t claim (because
2262 * it’s not part of any space map) is a double allocation,
2263 * reference to a freed block, or an unclaimed log block.
2264 */
2265 zdb_leak_init(spa, &zcb);

2267 /*
2268 * If there’s a deferred-free bplist, process that first.
2269 */
2270 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
2271 count_block_cb, &zcb, NULL);
2272 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
2273 count_block_cb, &zcb, NULL);
2274 if (spa_feature_is_active(spa,
2275 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
2276 VERIFY0(bptree_iterate(spa->spa_meta_objset,
2276 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
2277 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
2278 &zcb, NULL));
2279 }

2281 if (dump_opt[’c’] > 1)
2282 flags |= TRAVERSE_PREFETCH_DATA;

2284 zcb.zcb_haderrors |= traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb);

2286 if (zcb.zcb_haderrors) {

new/usr/src/cmd/zdb/zdb.c 3

2287 (void) printf("\nError counts:\n\n");
2288 (void) printf("\t%5s %s\n", "errno", "count");
2289 for (int e = 0; e < 256; e++) {
2290 if (zcb.zcb_errors[e] != 0) {
2291 (void) printf("\t%5d %llu\n",
2292 e, (u_longlong_t)zcb.zcb_errors[e]);
2293 }
2294 }
2295 }

2297 /*
2298 * Report any leaked segments.
2299 */
2300 zdb_leak_fini(spa);

2302 tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];

2304 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
2305 norm_space = metaslab_class_get_space(spa_normal_class(spa));

2307 total_alloc = norm_alloc + metaslab_class_get_alloc(spa_log_class(spa));
2308 total_found = tzb->zb_asize - zcb.zcb_dedup_asize;

2310 if (total_found == total_alloc) {
2311 if (!dump_opt[’L’])
2312 (void) printf("\n\tNo leaks (block sum matches space"
2313 " maps exactly)\n");
2314 } else {
2315 (void) printf("block traversal size %llu != alloc %llu "
2316 "(%s %lld)\n",
2317 (u_longlong_t)total_found,
2318 (u_longlong_t)total_alloc,
2319 (dump_opt[’L’]) ? "unreachable" : "leaked",
2320 (longlong_t)(total_alloc - total_found));
2321 leaks = 1;
2322 }

2324 if (tzb->zb_count == 0)
2325 return (2);

2327 (void) printf("\n");
2328 (void) printf("\tbp count: %10llu\n",
2329 (u_longlong_t)tzb->zb_count);
2330 (void) printf("\tbp logical: %10llu avg: %6llu\n",
2331 (u_longlong_t)tzb->zb_lsize,
2332 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
2333 (void) printf("\tbp physical: %10llu avg:"
2334 " %6llu compression: %6.2f\n",
2335 (u_longlong_t)tzb->zb_psize,
2336 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
2337 (double)tzb->zb_lsize / tzb->zb_psize);
2338 (void) printf("\tbp allocated: %10llu avg:"
2339 " %6llu compression: %6.2f\n",
2340 (u_longlong_t)tzb->zb_asize,
2341 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
2342 (double)tzb->zb_lsize / tzb->zb_asize);
2343 (void) printf("\tbp deduped: %10llu ref>1:"
2344 " %6llu deduplication: %6.2f\n",
2345 (u_longlong_t)zcb.zcb_dedup_asize,
2346 (u_longlong_t)zcb.zcb_dedup_blocks,
2347 (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0);
2348 (void) printf("\tSPA allocated: %10llu used: %5.2f%%\n",
2349 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);

2351 if (dump_opt[’b’] >= 2) {
2352 int l, t, level;

new/usr/src/cmd/zdb/zdb.c 4

2353 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
2354 "\t avg\t comp\t%%Total\tType\n");

2356 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
2357 char csize[32], lsize[32], psize[32], asize[32];
2358 char avg[32];
2359 char *typename;

2361 if (t < DMU_OT_NUMTYPES)
2362 typename = dmu_ot[t].ot_name;
2363 else
2364 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];

2366 if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) {
2367 (void) printf("%6s\t%5s\t%5s\t%5s"
2368 "\t%5s\t%5s\t%6s\t%s\n",
2369 "-",
2370 "-",
2371 "-",
2372 "-",
2373 "-",
2374 "-",
2375 "-",
2376 typename);
2377 continue;
2378 }

2380 for (l = ZB_TOTAL - 1; l >= -1; l--) {
2381 level = (l == -1 ? ZB_TOTAL : l);
2382 zb = &zcb.zcb_type[level][t];

2384 if (zb->zb_asize == 0)
2385 continue;

2387 if (dump_opt[’b’] < 3 && level != ZB_TOTAL)
2388 continue;

2390 if (level == 0 && zb->zb_asize ==
2391 zcb.zcb_type[ZB_TOTAL][t].zb_asize)
2392 continue;

2394 zdb_nicenum(zb->zb_count, csize);
2395 zdb_nicenum(zb->zb_lsize, lsize);
2396 zdb_nicenum(zb->zb_psize, psize);
2397 zdb_nicenum(zb->zb_asize, asize);
2398 zdb_nicenum(zb->zb_asize / zb->zb_count, avg);

2400 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
2401 "\t%5.2f\t%6.2f\t",
2402 csize, lsize, psize, asize, avg,
2403 (double)zb->zb_lsize / zb->zb_psize,
2404 100.0 * zb->zb_asize / tzb->zb_asize);

2406 if (level == ZB_TOTAL)
2407 (void) printf("%s\n", typename);
2408 else
2409 (void) printf(" L%d %s\n",
2410 level, typename);
2411 }
2412 }
2413 }

2415 (void) printf("\n");

2417 if (leaks)
2418 return (2);

new/usr/src/cmd/zdb/zdb.c 5

2420 if (zcb.zcb_haderrors)
2421 return (3);

2423 return (0);
2424 }
______unchanged_portion_omitted_

new/usr/src/cmd/zhack/Makefile.com 1

**
 1573 Thu Jul 26 14:18:55 2012
new/usr/src/cmd/zhack/Makefile.com
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # Copyright (c) 2012 by Delphix. All rights reserved.
29 #

31 PROG= zhack
32 SRCS= ../$(PROG).c
33 OBJS= $(PROG).o

35 include ../../Makefile.cmd
36 include ../../Makefile.ctf

38 INCS += -I../../../lib/libzpool/common
39 INCS += -I../../../uts/common/fs/zfs
40 INCS += -I../../../common/zfs

42 LDLIBS += -lzpool -lumem -lnvpair -lzfs

44 C99MODE= -xc99=%all
45 C99LMODE= -Xc99=%all

47 CFLAGS += $(CCVERBOSE)
48 CFLAGS64 += $(CCVERBOSE)
49 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT -DDEBUG $(INCS)
49 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT $(INCS)

51 .KEEP_STATE:

53 all: $(PROG)

55 $(PROG): $(OBJS)
56 $(LINK.c) -o $(PROG) $(OBJS) $(LDLIBS)
57 $(POST_PROCESS)

59 clean:

new/usr/src/cmd/zhack/Makefile.com 2

61 lint: lint_SRCS

63 include ../../Makefile.targ

65 %.o: ../%.c
66 $(COMPILE.c) $<
67 $(POST_PROCESS_O)

new/usr/src/cmd/zhack/zhack.c 1

**
 12718 Thu Jul 26 14:18:56 2012
new/usr/src/cmd/zhack/zhack.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

287 static void
288 zhack_do_feature_enable(int argc, char **argv)
289 {
290 char c;
291 char *desc, *target;
292 spa_t *spa;
293 objset_t *mos;
294 zfeature_info_t feature;
295 zfeature_info_t *nodeps[] = { NULL };

297 /*
298 * Features are not added to the pool’s label until their refcounts
299 * are incremented, so fi_mos can just be left as false for now.
300 */
301 desc = NULL;
302 feature.fi_uname = "zhack";
303 feature.fi_mos = B_FALSE;
304 feature.fi_can_readonly = B_FALSE;
305 feature.fi_depends = nodeps;

307 optind = 1;
308 while ((c = getopt(argc, argv, "rmd:")) != -1) {
309 switch (c) {
310 case ’r’:
311 feature.fi_can_readonly = B_TRUE;
312 break;
313 case ’d’:
314 desc = strdup(optarg);
315 break;
316 default:
317 usage();
318 break;
319 }
320 }

322 if (desc == NULL)
323 desc = strdup("zhack injected");
324 feature.fi_desc = desc;

326 argc -= optind;
327 argv += optind;

329 if (argc < 2) {
330 (void) fprintf(stderr, "error: missing feature or pool name\n");
331 usage();
332 }
333 target = argv[0];
334 feature.fi_guid = argv[1];

336 if (!zfeature_is_valid_guid(feature.fi_guid))
337 fatal("invalid feature guid: %s", feature.fi_guid);

339 zhack_spa_open(target, B_FALSE, FTAG, &spa);
340 mos = spa->spa_meta_objset;

342 if (0 == zfeature_lookup_guid(feature.fi_guid, NULL))
343 fatal("’%s’ is a real feature, will not enable");
344 if (0 == zap_contains(mos, spa->spa_feat_desc_obj, feature.fi_guid))
345 fatal("feature already enabled: %s", feature.fi_guid);

new/usr/src/cmd/zhack/zhack.c 2

347 VERIFY0(dsl_sync_task_do(spa->spa_dsl_pool, NULL,
347 VERIFY3U(0, ==, dsl_sync_task_do(spa->spa_dsl_pool, NULL,
348 feature_enable_sync, spa, &feature, 5));

350 spa_close(spa, FTAG);

352 free(desc);
353 }

______unchanged_portion_omitted_

377 static void
378 zhack_do_feature_ref(int argc, char **argv)
379 {
380 char c;
381 char *target;
382 boolean_t decr = B_FALSE;
383 spa_t *spa;
384 objset_t *mos;
385 zfeature_info_t feature;
386 zfeature_info_t *nodeps[] = { NULL };

388 /*
389 * fi_desc does not matter here because it was written to disk
390 * when the feature was enabled, but we need to properly set the
391 * feature for read or write based on the information we read off
392 * disk later.
393 */
394 feature.fi_uname = "zhack";
395 feature.fi_mos = B_FALSE;
396 feature.fi_desc = NULL;
397 feature.fi_depends = nodeps;

399 optind = 1;
400 while ((c = getopt(argc, argv, "md")) != -1) {
401 switch (c) {
402 case ’m’:
403 feature.fi_mos = B_TRUE;
404 break;
405 case ’d’:
406 decr = B_TRUE;
407 break;
408 default:
409 usage();
410 break;
411 }
412 }
413 argc -= optind;
414 argv += optind;

416 if (argc < 2) {
417 (void) fprintf(stderr, "error: missing feature or pool name\n");
418 usage();
419 }
420 target = argv[0];
421 feature.fi_guid = argv[1];

423 if (!zfeature_is_valid_guid(feature.fi_guid))
424 fatal("invalid feature guid: %s", feature.fi_guid);

426 zhack_spa_open(target, B_FALSE, FTAG, &spa);
427 mos = spa->spa_meta_objset;

429 if (0 == zfeature_lookup_guid(feature.fi_guid, NULL))
430 fatal("’%s’ is a real feature, will not change refcount");

new/usr/src/cmd/zhack/zhack.c 3

432 if (0 == zap_contains(mos, spa->spa_feat_for_read_obj,
433 feature.fi_guid)) {
434 feature.fi_can_readonly = B_FALSE;
435 } else if (0 == zap_contains(mos, spa->spa_feat_for_write_obj,
436 feature.fi_guid)) {
437 feature.fi_can_readonly = B_TRUE;
438 } else {
439 fatal("feature is not enabled: %s", feature.fi_guid);
440 }

442 if (decr && !spa_feature_is_active(spa, &feature))
443 fatal("feature refcount already 0: %s", feature.fi_guid);

445 VERIFY0(dsl_sync_task_do(spa->spa_dsl_pool, NULL,
445 VERIFY3U(0, ==, dsl_sync_task_do(spa->spa_dsl_pool, NULL,
446 decr ? feature_decr_sync : feature_incr_sync, spa, &feature, 5));

448 spa_close(spa, FTAG);
449 }

______unchanged_portion_omitted_

new/usr/src/cmd/ztest/Makefile.com 1

**
 1706 Thu Jul 26 14:18:57 2012
new/usr/src/cmd/ztest/Makefile.com
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright (c) 2012 by Delphix. All rights reserved.
24 #

26 PROG= ztest
27 OBJS= $(PROG).o
28 SRCS= $(OBJS:%.o=../%.c)

30 include ../../Makefile.cmd
31 include ../../Makefile.ctf

33 INCS += -I../../../lib/libzpool/common
34 INCS += -I../../../uts/common/fs/zfs
35 INCS += -I../../../common/zfs

37 LDLIBS += -lumem -lzpool -lcmdutils -lm -lnvpair

39 C99MODE= -xc99=%all
40 C99LMODE= -Xc99=%all
41 CFLAGS += -g $(CCVERBOSE)
42 CFLAGS64 += -g $(CCVERBOSE)
43 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT $(INCS) -DDEBUG
43 CPPFLAGS += -D_LARGEFILE64_SOURCE=1 -D_REENTRANT $(INCS)

45 # lint complains about unused _umem_* functions
46 LINTFLAGS += -xerroff=E_NAME_DEF_NOT_USED2
47 LINTFLAGS64 += -xerroff=E_NAME_DEF_NOT_USED2

49 .KEEP_STATE:

51 all: $(PROG)

53 $(PROG): $(OBJS)
54 $(LINK.c) -o $(PROG) $(OBJS) $(LDLIBS)
55 $(POST_PROCESS)

57 clean:

59 lint: lint_SRCS

new/usr/src/cmd/ztest/Makefile.com 2

61 include ../../Makefile.targ

63 %.o: ../%.c
64 $(COMPILE.c) $<
65 $(POST_PROCESS_O)

new/usr/src/cmd/ztest/ztest.c 1

**
 152861 Thu Jul 26 14:18:58 2012
new/usr/src/cmd/ztest/ztest.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

957 static int
958 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
959 boolean_t inherit)
960 {
961 const char *propname = zfs_prop_to_name(prop);
962 const char *valname;
963 char setpoint[MAXPATHLEN];
964 uint64_t curval;
965 int error;

967 error = dsl_prop_set(osname, propname,
968 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL),
969 sizeof (value), 1, &value);

971 if (error == ENOSPC) {
972 ztest_record_enospc(FTAG);
973 return (error);
974 }
975 ASSERT0(error);
975 ASSERT3U(error, ==, 0);

977 VERIFY3U(dsl_prop_get(osname, propname, sizeof (curval),
978 1, &curval, setpoint), ==, 0);

980 if (ztest_opts.zo_verbose >= 6) {
981 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0);
982 (void) printf("%s %s = %s at ’%s’\n",
983 osname, propname, valname, setpoint);
984 }

986 return (error);
987 }

989 static int
990 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
991 {
992 spa_t *spa = ztest_spa;
993 nvlist_t *props = NULL;
994 int error;

996 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0);
997 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0);

999 error = spa_prop_set(spa, props);

1001 nvlist_free(props);

1003 if (error == ENOSPC) {
1004 ztest_record_enospc(FTAG);
1005 return (error);
1006 }
1007 ASSERT0(error);
1007 ASSERT3U(error, ==, 0);

1009 return (error);
1010 }
______unchanged_portion_omitted_

1347 /*

new/usr/src/cmd/ztest/ztest.c 2

1348 * ZIL replay ops
1349 */
1350 static int
1351 ztest_replay_create(ztest_ds_t *zd, lr_create_t *lr, boolean_t byteswap)
1352 {
1353 char *name = (void *)(lr + 1); /* name follows lr */
1354 objset_t *os = zd->zd_os;
1355 ztest_block_tag_t *bbt;
1356 dmu_buf_t *db;
1357 dmu_tx_t *tx;
1358 uint64_t txg;
1359 int error = 0;

1361 if (byteswap)
1362 byteswap_uint64_array(lr, sizeof (*lr));

1364 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1365 ASSERT(name[0] != ’\0’);

1367 tx = dmu_tx_create(os);

1369 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);

1371 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1372 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1373 } else {
1374 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1375 }

1377 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1378 if (txg == 0)
1379 return (ENOSPC);

1381 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid);

1383 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1384 if (lr->lr_foid == 0) {
1385 lr->lr_foid = zap_create(os,
1386 lr->lrz_type, lr->lrz_bonustype,
1387 lr->lrz_bonuslen, tx);
1388 } else {
1389 error = zap_create_claim(os, lr->lr_foid,
1390 lr->lrz_type, lr->lrz_bonustype,
1391 lr->lrz_bonuslen, tx);
1392 }
1393 } else {
1394 if (lr->lr_foid == 0) {
1395 lr->lr_foid = dmu_object_alloc(os,
1396 lr->lrz_type, 0, lr->lrz_bonustype,
1397 lr->lrz_bonuslen, tx);
1398 } else {
1399 error = dmu_object_claim(os, lr->lr_foid,
1400 lr->lrz_type, 0, lr->lrz_bonustype,
1401 lr->lrz_bonuslen, tx);
1402 }
1403 }

1405 if (error) {
1406 ASSERT3U(error, ==, EEXIST);
1407 ASSERT(zd->zd_zilog->zl_replay);
1408 dmu_tx_commit(tx);
1409 return (error);
1410 }

1412 ASSERT(lr->lr_foid != 0);

new/usr/src/cmd/ztest/ztest.c 3

1414 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
1415 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
1415 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid,
1416 lr->lrz_blocksize, lr->lrz_ibshift, tx));

1418 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1418 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1419 bbt = ztest_bt_bonus(db);
1420 dmu_buf_will_dirty(db, tx);
1421 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg);
1422 dmu_buf_rele(db, FTAG);

1424 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1424 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
1425 &lr->lr_foid, tx));

1427 (void) ztest_log_create(zd, tx, lr);

1429 dmu_tx_commit(tx);

1431 return (0);
1432 }

1434 static int
1435 ztest_replay_remove(ztest_ds_t *zd, lr_remove_t *lr, boolean_t byteswap)
1436 {
1437 char *name = (void *)(lr + 1); /* name follows lr */
1438 objset_t *os = zd->zd_os;
1439 dmu_object_info_t doi;
1440 dmu_tx_t *tx;
1441 uint64_t object, txg;

1443 if (byteswap)
1444 byteswap_uint64_array(lr, sizeof (*lr));

1446 ASSERT(lr->lr_doid == ZTEST_DIROBJ);
1447 ASSERT(name[0] != ’\0’);

1449 VERIFY0(
1449 VERIFY3U(0, ==,
1450 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
1451 ASSERT(object != 0);

1453 ztest_object_lock(zd, object, RL_WRITER);

1455 VERIFY0(dmu_object_info(os, object, &doi));
1455 VERIFY3U(0, ==, dmu_object_info(os, object, &doi));

1457 tx = dmu_tx_create(os);

1459 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
1460 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);

1462 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1463 if (txg == 0) {
1464 ztest_object_unlock(zd, object);
1465 return (ENOSPC);
1466 }

1468 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
1469 VERIFY0(zap_destroy(os, object, tx));
1469 VERIFY3U(0, ==, zap_destroy(os, object, tx));
1470 } else {
1471 VERIFY0(dmu_object_free(os, object, tx));
1471 VERIFY3U(0, ==, dmu_object_free(os, object, tx));
1472 }

new/usr/src/cmd/ztest/ztest.c 4

1474 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
1474 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx));

1476 (void) ztest_log_remove(zd, tx, lr, object);

1478 dmu_tx_commit(tx);

1480 ztest_object_unlock(zd, object);

1482 return (0);
1483 }

1485 static int
1486 ztest_replay_write(ztest_ds_t *zd, lr_write_t *lr, boolean_t byteswap)
1487 {
1488 objset_t *os = zd->zd_os;
1489 void *data = lr + 1; /* data follows lr */
1490 uint64_t offset, length;
1491 ztest_block_tag_t *bt = data;
1492 ztest_block_tag_t *bbt;
1493 uint64_t gen, txg, lrtxg, crtxg;
1494 dmu_object_info_t doi;
1495 dmu_tx_t *tx;
1496 dmu_buf_t *db;
1497 arc_buf_t *abuf = NULL;
1498 rl_t *rl;

1500 if (byteswap)
1501 byteswap_uint64_array(lr, sizeof (*lr));

1503 offset = lr->lr_offset;
1504 length = lr->lr_length;

1506 /* If it’s a dmu_sync() block, write the whole block */
1507 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
1508 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
1509 if (length < blocksize) {
1510 offset -= offset % blocksize;
1511 length = blocksize;
1512 }
1513 }

1515 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
1516 byteswap_uint64_array(bt, sizeof (*bt));

1518 if (bt->bt_magic != BT_MAGIC)
1519 bt = NULL;

1521 ztest_object_lock(zd, lr->lr_foid, RL_READER);
1522 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);

1524 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1524 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));

1526 dmu_object_info_from_db(db, &doi);

1528 bbt = ztest_bt_bonus(db);
1529 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1530 gen = bbt->bt_gen;
1531 crtxg = bbt->bt_crtxg;
1532 lrtxg = lr->lr_common.lrc_txg;

1534 tx = dmu_tx_create(os);

1536 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);

new/usr/src/cmd/ztest/ztest.c 5

1538 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
1539 P2PHASE(offset, length) == 0)
1540 abuf = dmu_request_arcbuf(db, length);

1542 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1543 if (txg == 0) {
1544 if (abuf != NULL)
1545 dmu_return_arcbuf(abuf);
1546 dmu_buf_rele(db, FTAG);
1547 ztest_range_unlock(rl);
1548 ztest_object_unlock(zd, lr->lr_foid);
1549 return (ENOSPC);
1550 }

1552 if (bt != NULL) {
1553 /*
1554 * Usually, verify the old data before writing new data --
1555 * but not always, because we also want to verify correct
1556 * behavior when the data was not recently read into cache.
1557 */
1558 ASSERT(offset % doi.doi_data_block_size == 0);
1559 if (ztest_random(4) != 0) {
1560 int prefetch = ztest_random(2) ?
1561 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
1562 ztest_block_tag_t rbt;

1564 VERIFY(dmu_read(os, lr->lr_foid, offset,
1565 sizeof (rbt), &rbt, prefetch) == 0);
1566 if (rbt.bt_magic == BT_MAGIC) {
1567 ztest_bt_verify(&rbt, os, lr->lr_foid,
1568 offset, gen, txg, crtxg);
1569 }
1570 }

1572 /*
1573 * Writes can appear to be newer than the bonus buffer because
1574 * the ztest_get_data() callback does a dmu_read() of the
1575 * open-context data, which may be different than the data
1576 * as it was when the write was generated.
1577 */
1578 if (zd->zd_zilog->zl_replay) {
1579 ztest_bt_verify(bt, os, lr->lr_foid, offset,
1580 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
1581 bt->bt_crtxg);
1582 }

1584 /*
1585 * Set the bt’s gen/txg to the bonus buffer’s gen/txg
1586 * so that all of the usual ASSERTs will work.
1587 */
1588 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg);
1589 }

1591 if (abuf == NULL) {
1592 dmu_write(os, lr->lr_foid, offset, length, data, tx);
1593 } else {
1594 bcopy(data, abuf->b_data, length);
1595 dmu_assign_arcbuf(db, offset, abuf, tx);
1596 }

1598 (void) ztest_log_write(zd, tx, lr);

1600 dmu_buf_rele(db, FTAG);

1602 dmu_tx_commit(tx);

new/usr/src/cmd/ztest/ztest.c 6

1604 ztest_range_unlock(rl);
1605 ztest_object_unlock(zd, lr->lr_foid);

1607 return (0);
1608 }
______unchanged_portion_omitted_

1649 static int
1650 ztest_replay_setattr(ztest_ds_t *zd, lr_setattr_t *lr, boolean_t byteswap)
1651 {
1652 objset_t *os = zd->zd_os;
1653 dmu_tx_t *tx;
1654 dmu_buf_t *db;
1655 ztest_block_tag_t *bbt;
1656 uint64_t txg, lrtxg, crtxg;

1658 if (byteswap)
1659 byteswap_uint64_array(lr, sizeof (*lr));

1661 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);

1663 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
1663 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));

1665 tx = dmu_tx_create(os);
1666 dmu_tx_hold_bonus(tx, lr->lr_foid);

1668 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1669 if (txg == 0) {
1670 dmu_buf_rele(db, FTAG);
1671 ztest_object_unlock(zd, lr->lr_foid);
1672 return (ENOSPC);
1673 }

1675 bbt = ztest_bt_bonus(db);
1676 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1677 crtxg = bbt->bt_crtxg;
1678 lrtxg = lr->lr_common.lrc_txg;

1680 if (zd->zd_zilog->zl_replay) {
1681 ASSERT(lr->lr_size != 0);
1682 ASSERT(lr->lr_mode != 0);
1683 ASSERT(lrtxg != 0);
1684 } else {
1685 /*
1686 * Randomly change the size and increment the generation.
1687 */
1688 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
1689 sizeof (*bbt);
1690 lr->lr_mode = bbt->bt_gen + 1;
1691 ASSERT(lrtxg == 0);
1692 }

1694 /*
1695 * Verify that the current bonus buffer is not newer than our txg.
1696 */
1697 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode,
1698 MAX(txg, lrtxg), crtxg);

1700 dmu_buf_will_dirty(db, tx);

1702 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
1703 ASSERT3U(lr->lr_size, <=, db->db_size);
1704 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
1704 VERIFY3U(dmu_set_bonus(db, lr->lr_size, tx), ==, 0);

new/usr/src/cmd/ztest/ztest.c 7

1705 bbt = ztest_bt_bonus(db);

1707 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg);

1709 dmu_buf_rele(db, FTAG);

1711 (void) ztest_log_setattr(zd, tx, lr);

1713 dmu_tx_commit(tx);

1715 ztest_object_unlock(zd, lr->lr_foid);

1717 return (0);
1718 }
______unchanged_portion_omitted_

1868 /*
1869 * Lookup a bunch of objects. Returns the number of objects not found.
1870 */
1871 static int
1872 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1873 {
1874 int missing = 0;
1875 int error;

1877 ASSERT(_mutex_held(&zd->zd_dirobj_lock));

1879 for (int i = 0; i < count; i++, od++) {
1880 od->od_object = 0;
1881 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
1882 sizeof (uint64_t), 1, &od->od_object);
1883 if (error) {
1884 ASSERT(error == ENOENT);
1885 ASSERT(od->od_object == 0);
1886 missing++;
1887 } else {
1888 dmu_buf_t *db;
1889 ztest_block_tag_t *bbt;
1890 dmu_object_info_t doi;

1892 ASSERT(od->od_object != 0);
1893 ASSERT(missing == 0); /* there should be no gaps */

1895 ztest_object_lock(zd, od->od_object, RL_READER);
1896 VERIFY0(dmu_bonus_hold(zd->zd_os,
1896 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os,
1897 od->od_object, FTAG, &db));
1898 dmu_object_info_from_db(db, &doi);
1899 bbt = ztest_bt_bonus(db);
1900 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
1901 od->od_type = doi.doi_type;
1902 od->od_blocksize = doi.doi_data_block_size;
1903 od->od_gen = bbt->bt_gen;
1904 dmu_buf_rele(db, FTAG);
1905 ztest_object_unlock(zd, od->od_object);
1906 }
1907 }

1909 return (missing);
1910 }
______unchanged_portion_omitted_

2238 /*
2239 * Verify that we can’t destroy an active pool, create an existing pool,
2240 * or create a pool with a bad vdev spec.
2241 */

new/usr/src/cmd/ztest/ztest.c 8

2242 /* ARGSUSED */
2243 void
2244 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2245 {
2246 ztest_shared_opts_t *zo = &ztest_opts;
2247 spa_t *spa;
2248 nvlist_t *nvroot;

2250 /*
2251 * Attempt to create using a bad file.
2252 */
2253 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2254 VERIFY3U(ENOENT, ==,
2255 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2256 nvlist_free(nvroot);

2258 /*
2259 * Attempt to create using a bad mirror.
2260 */
2261 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
2262 VERIFY3U(ENOENT, ==,
2263 spa_create("ztest_bad_mirror", nvroot, NULL, NULL));
2264 nvlist_free(nvroot);

2266 /*
2267 * Attempt to create an existing pool. It shouldn’t matter
2268 * what’s in the nvroot; we should fail with EEXIST.
2269 */
2270 (void) rw_rdlock(&ztest_name_lock);
2271 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2272 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2273 nvlist_free(nvroot);
2274 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2274 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG));
2275 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2276 spa_close(spa, FTAG);

2278 (void) rw_unlock(&ztest_name_lock);
2279 }
______unchanged_portion_omitted_

3022 /* ARGSUSED */
3023 static int
3024 ztest_objset_destroy_cb(const char *name, void *arg)
3025 {
3026 objset_t *os;
3027 dmu_object_info_t doi;
3028 int error;

3030 /*
3031 * Verify that the dataset contains a directory object.
3032 */
3033 VERIFY0(dmu_objset_hold(name, FTAG, &os));
3033 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os));
3034 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
3035 if (error != ENOENT) {
3036 /* We could have crashed in the middle of destroying it */
3037 ASSERT0(error);
3037 ASSERT3U(error, ==, 0);
3038 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
3039 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
3040 }
3041 dmu_objset_rele(os, FTAG);

3043 /*
3044 * Destroy the dataset.

new/usr/src/cmd/ztest/ztest.c 9

3045 */
3046 VERIFY0(dmu_objset_destroy(name, B_FALSE));
3046 VERIFY3U(0, ==, dmu_objset_destroy(name, B_FALSE));
3047 return (0);
3048 }
______unchanged_portion_omitted_

3084 /* ARGSUSED */
3085 void
3086 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
3087 {
3088 ztest_ds_t zdtmp;
3089 int iters;
3090 int error;
3091 objset_t *os, *os2;
3092 char name[MAXNAMELEN];
3093 zilog_t *zilog;

3095 (void) rw_rdlock(&ztest_name_lock);

3097 (void) snprintf(name, MAXNAMELEN, "%s/temp_%llu",
3098 ztest_opts.zo_pool, (u_longlong_t)id);

3100 /*
3101 * If this dataset exists from a previous run, process its replay log
3102 * half of the time. If we don’t replay it, then dmu_objset_destroy()
3103 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
3104 */
3105 if (ztest_random(2) == 0 &&
3106 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) {
3107 ztest_zd_init(&zdtmp, NULL, os);
3108 zil_replay(os, &zdtmp, ztest_replay_vector);
3109 ztest_zd_fini(&zdtmp);
3110 dmu_objset_disown(os, FTAG);
3111 }

3113 /*
3114 * There may be an old instance of the dataset we’re about to
3115 * create lying around from a previous run. If so, destroy it
3116 * and all of its snapshots.
3117 */
3118 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
3119 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);

3121 /*
3122 * Verify that the destroyed dataset is no longer in the namespace.
3123 */
3124 VERIFY3U(ENOENT, ==, dmu_objset_hold(name, FTAG, &os));

3126 /*
3127 * Verify that we can create a new dataset.
3128 */
3129 error = ztest_dataset_create(name);
3130 if (error) {
3131 if (error == ENOSPC) {
3132 ztest_record_enospc(FTAG);
3133 (void) rw_unlock(&ztest_name_lock);
3134 return;
3135 }
3136 fatal(0, "dmu_objset_create(%s) = %d", name, error);
3137 }

3139 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));
3139 VERIFY3U(0, ==,
3140 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os));

new/usr/src/cmd/ztest/ztest.c 10

3141 ztest_zd_init(&zdtmp, NULL, os);

3143 /*
3144 * Open the intent log for it.
3145 */
3146 zilog = zil_open(os, ztest_get_data);

3148 /*
3149 * Put some objects in there, do a little I/O to them,
3150 * and randomly take a couple of snapshots along the way.
3151 */
3152 iters = ztest_random(5);
3153 for (int i = 0; i < iters; i++) {
3154 ztest_dmu_object_alloc_free(&zdtmp, id);
3155 if (ztest_random(iters) == 0)
3156 (void) ztest_snapshot_create(name, i);
3157 }

3159 /*
3160 * Verify that we cannot create an existing dataset.
3161 */
3162 VERIFY3U(EEXIST, ==,
3163 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL));

3165 /*
3166 * Verify that we can hold an objset that is also owned.
3167 */
3168 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
3169 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2));
3169 dmu_objset_rele(os2, FTAG);

3171 /*
3172 * Verify that we cannot own an objset that is already owned.
3173 */
3174 VERIFY3U(EBUSY, ==,
3175 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2));

3177 zil_close(zilog);
3178 dmu_objset_disown(os, FTAG);
3179 ztest_zd_fini(&zdtmp);

3181 (void) rw_unlock(&ztest_name_lock);
3182 }
______unchanged_portion_omitted_

3352 /*
3353 * Verify that dmu_{read,write} work as expected.
3354 */
3355 void
3356 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
3357 {
3358 objset_t *os = zd->zd_os;
3359 ztest_od_t od[2];
3360 dmu_tx_t *tx;
3361 int i, freeit, error;
3362 uint64_t n, s, txg;
3363 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
3364 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3365 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
3366 uint64_t regions = 997;
3367 uint64_t stride = 123456789ULL;
3368 uint64_t width = 40;
3369 int free_percent = 5;

3371 /*
3372 * This test uses two objects, packobj and bigobj, that are always

new/usr/src/cmd/ztest/ztest.c 11

3373 * updated together (i.e. in the same tx) so that their contents are
3374 * in sync and can be compared. Their contents relate to each other
3375 * in a simple way: packobj is a dense array of ’bufwad’ structures,
3376 * while bigobj is a sparse array of the same bufwads. Specifically,
3377 * for any index n, there are three bufwads that should be identical:
3378 *
3379 * packobj, at offset n * sizeof (bufwad_t)
3380 * bigobj, at the head of the nth chunk
3381 * bigobj, at the tail of the nth chunk
3382 *
3383 * The chunk size is arbitrary. It doesn’t have to be a power of two,
3384 * and it doesn’t have any relation to the object blocksize.
3385 * The only requirement is that it can hold at least two bufwads.
3386 *
3387 * Normally, we write the bufwad to each of these locations.
3388 * However, free_percent of the time we instead write zeroes to
3389 * packobj and perform a dmu_free_range() on bigobj. By comparing
3390 * bigobj to packobj, we can verify that the DMU is correctly
3391 * tracking which parts of an object are allocated and free,
3392 * and that the contents of the allocated blocks are correct.
3393 */

3395 /*
3396 * Read the directory info. If it’s the first time, set things up.
3397 */
3398 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize);
3399 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);

3401 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3402 return;

3404 bigobj = od[0].od_object;
3405 packobj = od[1].od_object;
3406 chunksize = od[0].od_gen;
3407 ASSERT(chunksize == od[1].od_gen);

3409 /*
3410 * Prefetch a random chunk of the big object.
3411 * Our aim here is to get some async reads in flight
3412 * for blocks that we may free below; the DMU should
3413 * handle this race correctly.
3414 */
3415 n = ztest_random(regions) * stride + ztest_random(width);
3416 s = 1 + ztest_random(2 * width - 1);
3417 dmu_prefetch(os, bigobj, n * chunksize, s * chunksize);

3419 /*
3420 * Pick a random index and compute the offsets into packobj and bigobj.
3421 */
3422 n = ztest_random(regions) * stride + ztest_random(width);
3423 s = 1 + ztest_random(width - 1);

3425 packoff = n * sizeof (bufwad_t);
3426 packsize = s * sizeof (bufwad_t);

3428 bigoff = n * chunksize;
3429 bigsize = s * chunksize;

3431 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
3432 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);

3434 /*
3435 * free_percent of the time, free a range of bigobj rather than
3436 * overwriting it.
3437 */
3438 freeit = (ztest_random(100) < free_percent);

new/usr/src/cmd/ztest/ztest.c 12

3440 /*
3441 * Read the current contents of our objects.
3442 */
3443 error = dmu_read(os, packobj, packoff, packsize, packbuf,
3444 DMU_READ_PREFETCH);
3445 ASSERT0(error);
3446 ASSERT3U(error, ==, 0);
3446 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
3447 DMU_READ_PREFETCH);
3448 ASSERT0(error);
3449 ASSERT3U(error, ==, 0);

3450 /*
3451 * Get a tx for the mods to both packobj and bigobj.
3452 */
3453 tx = dmu_tx_create(os);

3455 dmu_tx_hold_write(tx, packobj, packoff, packsize);

3457 if (freeit)
3458 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
3459 else
3460 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);

3462 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3463 if (txg == 0) {
3464 umem_free(packbuf, packsize);
3465 umem_free(bigbuf, bigsize);
3466 return;
3467 }

3469 dmu_object_set_checksum(os, bigobj,
3470 (enum zio_checksum)ztest_random_dsl_prop(ZFS_PROP_CHECKSUM), tx);

3472 dmu_object_set_compress(os, bigobj,
3473 (enum zio_compress)ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), tx);

3475 /*
3476 * For each index from n to n + s, verify that the existing bufwad
3477 * in packobj matches the bufwads at the head and tail of the
3478 * corresponding chunk in bigobj. Then update all three bufwads
3479 * with the new values we want to write out.
3480 */
3481 for (i = 0; i < s; i++) {
3482 /* LINTED */
3483 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
3484 /* LINTED */
3485 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
3486 /* LINTED */
3487 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;

3489 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize);
3490 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize);

3492 if (pack->bw_txg > txg)
3493 fatal(0, "future leak: got %llx, open txg is %llx",
3494 pack->bw_txg, txg);

3496 if (pack->bw_data != 0 && pack->bw_index != n + i)
3497 fatal(0, "wrong index: got %llx, wanted %llx+%llx",
3498 pack->bw_index, n, i);

3500 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0)
3501 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH);

new/usr/src/cmd/ztest/ztest.c 13

3503 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0)
3504 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT);

3506 if (freeit) {
3507 bzero(pack, sizeof (bufwad_t));
3508 } else {
3509 pack->bw_index = n + i;
3510 pack->bw_txg = txg;
3511 pack->bw_data = 1 + ztest_random(-2ULL);
3512 }
3513 *bigH = *pack;
3514 *bigT = *pack;
3515 }

3517 /*
3518 * We’ve verified all the old bufwads, and made new ones.
3519 * Now write them out.
3520 */
3521 dmu_write(os, packobj, packoff, packsize, packbuf, tx);

3523 if (freeit) {
3524 if (ztest_opts.zo_verbose >= 7) {
3525 (void) printf("freeing offset %llx size %llx"
3526 " txg %llx\n",
3527 (u_longlong_t)bigoff,
3528 (u_longlong_t)bigsize,
3529 (u_longlong_t)txg);
3530 }
3531 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx));
3532 } else {
3533 if (ztest_opts.zo_verbose >= 7) {
3534 (void) printf("writing offset %llx size %llx"
3535 " txg %llx\n",
3536 (u_longlong_t)bigoff,
3537 (u_longlong_t)bigsize,
3538 (u_longlong_t)txg);
3539 }
3540 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
3541 }

3543 dmu_tx_commit(tx);

3545 /*
3546 * Sanity check the stuff we just wrote.
3547 */
3548 {
3549 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3550 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);

3552 VERIFY(0 == dmu_read(os, packobj, packoff,
3553 packsize, packcheck, DMU_READ_PREFETCH));
3554 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3555 bigsize, bigcheck, DMU_READ_PREFETCH));

3557 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3558 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);

3560 umem_free(packcheck, packsize);
3561 umem_free(bigcheck, bigsize);
3562 }

3564 umem_free(packbuf, packsize);
3565 umem_free(bigbuf, bigsize);
3566 }
______unchanged_portion_omitted_

new/usr/src/cmd/ztest/ztest.c 14

3617 void
3618 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
3619 {
3620 objset_t *os = zd->zd_os;
3621 ztest_od_t od[2];
3622 dmu_tx_t *tx;
3623 uint64_t i;
3624 int error;
3625 uint64_t n, s, txg;
3626 bufwad_t *packbuf, *bigbuf;
3627 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
3628 uint64_t blocksize = ztest_random_blocksize();
3629 uint64_t chunksize = blocksize;
3630 uint64_t regions = 997;
3631 uint64_t stride = 123456789ULL;
3632 uint64_t width = 9;
3633 dmu_buf_t *bonus_db;
3634 arc_buf_t **bigbuf_arcbufs;
3635 dmu_object_info_t doi;

3637 /*
3638 * This test uses two objects, packobj and bigobj, that are always
3639 * updated together (i.e. in the same tx) so that their contents are
3640 * in sync and can be compared. Their contents relate to each other
3641 * in a simple way: packobj is a dense array of ’bufwad’ structures,
3642 * while bigobj is a sparse array of the same bufwads. Specifically,
3643 * for any index n, there are three bufwads that should be identical:
3644 *
3645 * packobj, at offset n * sizeof (bufwad_t)
3646 * bigobj, at the head of the nth chunk
3647 * bigobj, at the tail of the nth chunk
3648 *
3649 * The chunk size is set equal to bigobj block size so that
3650 * dmu_assign_arcbuf() can be tested for object updates.
3651 */

3653 /*
3654 * Read the directory info. If it’s the first time, set things up.
3655 */
3656 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0);
3657 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize);

3659 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
3660 return;

3662 bigobj = od[0].od_object;
3663 packobj = od[1].od_object;
3664 blocksize = od[0].od_blocksize;
3665 chunksize = blocksize;
3666 ASSERT(chunksize == od[1].od_gen);

3668 VERIFY(dmu_object_info(os, bigobj, &doi) == 0);
3669 VERIFY(ISP2(doi.doi_data_block_size));
3670 VERIFY(chunksize == doi.doi_data_block_size);
3671 VERIFY(chunksize >= 2 * sizeof (bufwad_t));

3673 /*
3674 * Pick a random index and compute the offsets into packobj and bigobj.
3675 */
3676 n = ztest_random(regions) * stride + ztest_random(width);
3677 s = 1 + ztest_random(width - 1);

3679 packoff = n * sizeof (bufwad_t);
3680 packsize = s * sizeof (bufwad_t);

3682 bigoff = n * chunksize;

new/usr/src/cmd/ztest/ztest.c 15

3683 bigsize = s * chunksize;

3685 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
3686 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);

3688 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
3689 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));

3690 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);

3692 /*
3693 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
3694 * Iteration 1 test zcopy to already referenced dbufs.
3695 * Iteration 2 test zcopy to dirty dbuf in the same txg.
3696 * Iteration 3 test zcopy to dbuf dirty in previous txg.
3697 * Iteration 4 test zcopy when dbuf is no longer dirty.
3698 * Iteration 5 test zcopy when it can’t be done.
3699 * Iteration 6 one more zcopy write.
3700 */
3701 for (i = 0; i < 7; i++) {
3702 uint64_t j;
3703 uint64_t off;

3705 /*
3706 * In iteration 5 (i == 5) use arcbufs
3707 * that don’t match bigobj blksz to test
3708 * dmu_assign_arcbuf() when it can’t directly
3709 * assign an arcbuf to a dbuf.
3710 */
3711 for (j = 0; j < s; j++) {
3712 if (i != 5) {
3713 bigbuf_arcbufs[j] =
3714 dmu_request_arcbuf(bonus_db, chunksize);
3715 } else {
3716 bigbuf_arcbufs[2 * j] =
3717 dmu_request_arcbuf(bonus_db, chunksize / 2);
3718 bigbuf_arcbufs[2 * j + 1] =
3719 dmu_request_arcbuf(bonus_db, chunksize / 2);
3720 }
3721 }

3723 /*
3724 * Get a tx for the mods to both packobj and bigobj.
3725 */
3726 tx = dmu_tx_create(os);

3728 dmu_tx_hold_write(tx, packobj, packoff, packsize);
3729 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);

3731 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3732 if (txg == 0) {
3733 umem_free(packbuf, packsize);
3734 umem_free(bigbuf, bigsize);
3735 for (j = 0; j < s; j++) {
3736 if (i != 5) {
3737 dmu_return_arcbuf(bigbuf_arcbufs[j]);
3738 } else {
3739 dmu_return_arcbuf(
3740 bigbuf_arcbufs[2 * j]);
3741 dmu_return_arcbuf(
3742 bigbuf_arcbufs[2 * j + 1]);
3743 }
3744 }
3745 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3746 dmu_buf_rele(bonus_db, FTAG);
3747 return;

new/usr/src/cmd/ztest/ztest.c 16

3748 }

3750 /*
3751 * 50% of the time don’t read objects in the 1st iteration to
3752 * test dmu_assign_arcbuf() for the case when there’re no
3753 * existing dbufs for the specified offsets.
3754 */
3755 if (i != 0 || ztest_random(2) != 0) {
3756 error = dmu_read(os, packobj, packoff,
3757 packsize, packbuf, DMU_READ_PREFETCH);
3758 ASSERT0(error);
3759 ASSERT3U(error, ==, 0);
3759 error = dmu_read(os, bigobj, bigoff, bigsize,
3760 bigbuf, DMU_READ_PREFETCH);
3761 ASSERT0(error);
3762 ASSERT3U(error, ==, 0);
3762 }
3763 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
3764 n, chunksize, txg);

3766 /*
3767 * We’ve verified all the old bufwads, and made new ones.
3768 * Now write them out.
3769 */
3770 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
3771 if (ztest_opts.zo_verbose >= 7) {
3772 (void) printf("writing offset %llx size %llx"
3773 " txg %llx\n",
3774 (u_longlong_t)bigoff,
3775 (u_longlong_t)bigsize,
3776 (u_longlong_t)txg);
3777 }
3778 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
3779 dmu_buf_t *dbt;
3780 if (i != 5) {
3781 bcopy((caddr_t)bigbuf + (off - bigoff),
3782 bigbuf_arcbufs[j]->b_data, chunksize);
3783 } else {
3784 bcopy((caddr_t)bigbuf + (off - bigoff),
3785 bigbuf_arcbufs[2 * j]->b_data,
3786 chunksize / 2);
3787 bcopy((caddr_t)bigbuf + (off - bigoff) +
3788 chunksize / 2,
3789 bigbuf_arcbufs[2 * j + 1]->b_data,
3790 chunksize / 2);
3791 }

3793 if (i == 1) {
3794 VERIFY(dmu_buf_hold(os, bigobj, off,
3795 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
3796 }
3797 if (i != 5) {
3798 dmu_assign_arcbuf(bonus_db, off,
3799 bigbuf_arcbufs[j], tx);
3800 } else {
3801 dmu_assign_arcbuf(bonus_db, off,
3802 bigbuf_arcbufs[2 * j], tx);
3803 dmu_assign_arcbuf(bonus_db,
3804 off + chunksize / 2,
3805 bigbuf_arcbufs[2 * j + 1], tx);
3806 }
3807 if (i == 1) {
3808 dmu_buf_rele(dbt, FTAG);
3809 }
3810 }
3811 dmu_tx_commit(tx);

new/usr/src/cmd/ztest/ztest.c 17

3813 /*
3814 * Sanity check the stuff we just wrote.
3815 */
3816 {
3817 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
3818 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);

3820 VERIFY(0 == dmu_read(os, packobj, packoff,
3821 packsize, packcheck, DMU_READ_PREFETCH));
3822 VERIFY(0 == dmu_read(os, bigobj, bigoff,
3823 bigsize, bigcheck, DMU_READ_PREFETCH));

3825 ASSERT(bcmp(packbuf, packcheck, packsize) == 0);
3826 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0);

3828 umem_free(packcheck, packsize);
3829 umem_free(bigcheck, bigsize);
3830 }
3831 if (i == 2) {
3832 txg_wait_open(dmu_objset_pool(os), 0);
3833 } else if (i == 3) {
3834 txg_wait_synced(dmu_objset_pool(os), 0);
3835 }
3836 }

3838 dmu_buf_rele(bonus_db, FTAG);
3839 umem_free(packbuf, packsize);
3840 umem_free(bigbuf, bigsize);
3841 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
3842 }
______unchanged_portion_omitted_

3900 /*
3901 * Verify that zap_{create,destroy,add,remove,update} work as expected.
3902 */
3903 #define ZTEST_ZAP_MIN_INTS 1
3904 #define ZTEST_ZAP_MAX_INTS 4
3905 #define ZTEST_ZAP_MAX_PROPS 1000

3907 void
3908 ztest_zap(ztest_ds_t *zd, uint64_t id)
3909 {
3910 objset_t *os = zd->zd_os;
3911 ztest_od_t od[1];
3912 uint64_t object;
3913 uint64_t txg, last_txg;
3914 uint64_t value[ZTEST_ZAP_MAX_INTS];
3915 uint64_t zl_ints, zl_intsize, prop;
3916 int i, ints;
3917 dmu_tx_t *tx;
3918 char propname[100], txgname[100];
3919 int error;
3920 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };

3922 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0);

3924 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0)
3925 return;

3927 object = od[0].od_object;

3929 /*
3930 * Generate a known hash collision, and verify that
3931 * we can lookup and remove both entries.
3932 */

new/usr/src/cmd/ztest/ztest.c 18

3933 tx = dmu_tx_create(os);
3934 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
3935 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
3936 if (txg == 0)
3937 return;
3938 for (i = 0; i < 2; i++) {
3939 value[i] = i;
3940 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
3941 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t),
3941 1, &value[i], tx));
3942 }
3943 for (i = 0; i < 2; i++) {
3944 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
3945 sizeof (uint64_t), 1, &value[i], tx));
3946 VERIFY0(zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
3947 VERIFY3U(0, ==,
3948 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
3947 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3948 ASSERT3U(zl_ints, ==, 1);
3949 }
3950 for (i = 0; i < 2; i++) {
3951 VERIFY0(zap_remove(os, object, hc[i], tx));
3953 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx));
3952 }
3953 dmu_tx_commit(tx);

3955 /*
3956 * Generate a buch of random entries.
3957 */
3958 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);

3960 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
3961 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
3962 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);
3963 bzero(value, sizeof (value));
3964 last_txg = 0;

3966 /*
3967 * If these zap entries already exist, validate their contents.
3968 */
3969 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
3970 if (error == 0) {
3971 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3972 ASSERT3U(zl_ints, ==, 1);

3974 VERIFY(zap_lookup(os, object, txgname, zl_intsize,
3975 zl_ints, &last_txg) == 0);

3977 VERIFY(zap_length(os, object, propname, &zl_intsize,
3978 &zl_ints) == 0);

3980 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
3981 ASSERT3U(zl_ints, ==, ints);

3983 VERIFY(zap_lookup(os, object, propname, zl_intsize,
3984 zl_ints, value) == 0);

3986 for (i = 0; i < ints; i++) {
3987 ASSERT3U(value[i], ==, last_txg + object + i);
3988 }
3989 } else {
3990 ASSERT3U(error, ==, ENOENT);
3991 }

3993 /*
3994 * Atomically update two entries in our zap object.

new/usr/src/cmd/ztest/ztest.c 19

3995 * The first is named txg_%llu, and contains the txg
3996 * in which the property was last updated. The second
3997 * is named prop_%llu, and the nth element of its value
3998 * should be txg + object + n.
3999 */
4000 tx = dmu_tx_create(os);
4001 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4002 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4003 if (txg == 0)
4004 return;

4006 if (last_txg > txg)
4007 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg);

4009 for (i = 0; i < ints; i++)
4010 value[i] = txg + object + i;

4012 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
4014 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t),
4013 1, &txg, tx));
4014 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
4016 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t),
4015 ints, value, tx));

4017 dmu_tx_commit(tx);

4019 /*
4020 * Remove a random pair of entries.
4021 */
4022 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
4023 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop);
4024 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop);

4026 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);

4028 if (error == ENOENT)
4029 return;

4031 ASSERT0(error);
4033 ASSERT3U(error, ==, 0);

4033 tx = dmu_tx_create(os);
4034 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
4035 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4036 if (txg == 0)
4037 return;
4038 VERIFY0(zap_remove(os, object, txgname, tx));
4039 VERIFY0(zap_remove(os, object, propname, tx));
4040 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx));
4041 VERIFY3U(0, ==, zap_remove(os, object, propname, tx));
4040 dmu_tx_commit(tx);
4041 }
______unchanged_portion_omitted_

4207 /* This is the actual commit callback function */
4208 static void
4209 ztest_commit_callback(void *arg, int error)
4210 {
4211 ztest_cb_data_t *data = arg;
4212 uint64_t synced_txg;

4214 VERIFY(data != NULL);
4215 VERIFY3S(data->zcd_expected_err, ==, error);
4216 VERIFY(!data->zcd_called);

4218 synced_txg = spa_last_synced_txg(data->zcd_spa);

new/usr/src/cmd/ztest/ztest.c 20

4219 if (data->zcd_txg > synced_txg)
4220 fatal(0, "commit callback of txg %" PRIu64 " called prematurely"
4221 ", last synced txg = %" PRIu64 "\n", data->zcd_txg,
4222 synced_txg);

4224 data->zcd_called = B_TRUE;

4226 if (error == ECANCELED) {
4227 ASSERT0(data->zcd_txg);
4229 ASSERT3U(data->zcd_txg, ==, 0);
4228 ASSERT(!data->zcd_added);

4230 /*
4231 * The private callback data should be destroyed here, but
4232 * since we are going to check the zcd_called field after
4233 * dmu_tx_abort(), we will destroy it there.
4234 */
4235 return;
4236 }

4238 /* Was this callback added to the global callback list? */
4239 if (!data->zcd_added)
4240 goto out;

4242 ASSERT3U(data->zcd_txg, !=, 0);

4244 /* Remove our callback from the list */
4245 (void) mutex_lock(&zcl.zcl_callbacks_lock);
4246 list_remove(&zcl.zcl_callbacks, data);
4247 (void) mutex_unlock(&zcl.zcl_callbacks_lock);

4249 out:
4250 umem_free(data, sizeof (ztest_cb_data_t));
4251 }
______unchanged_portion_omitted_

4421 /* ARGSUSED */
4422 void
4423 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
4424 {
4425 nvlist_t *props = NULL;

4427 (void) rw_rdlock(&ztest_name_lock);

4429 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO,
4430 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN));

4432 VERIFY0(spa_prop_get(ztest_spa, &props));
4434 VERIFY3U(spa_prop_get(ztest_spa, &props), ==, 0);

4434 if (ztest_opts.zo_verbose >= 6)
4435 dump_nvlist(props, 4);

4437 nvlist_free(props);

4439 (void) rw_unlock(&ztest_name_lock);
4440 }
______unchanged_portion_omitted_

4868 /*
4869 * Rename the pool to a different name and then rename it back.
4870 */
4871 /* ARGSUSED */
4872 void
4873 ztest_spa_rename(ztest_ds_t *zd, uint64_t id)
4874 {

new/usr/src/cmd/ztest/ztest.c 21

4875 char *oldname, *newname;
4876 spa_t *spa;

4878 (void) rw_wrlock(&ztest_name_lock);

4880 oldname = ztest_opts.zo_pool;
4881 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL);
4882 (void) strcpy(newname, oldname);
4883 (void) strcat(newname, "_tmp");

4885 /*
4886 * Do the rename
4887 */
4888 VERIFY0(spa_rename(oldname, newname));
4890 VERIFY3U(0, ==, spa_rename(oldname, newname));

4890 /*
4891 * Try to open it under the old name, which shouldn’t exist
4892 */
4893 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));

4895 /*
4896 * Open it under the new name and make sure it’s still the same spa_t.
4897 */
4898 VERIFY0(spa_open(newname, &spa, FTAG));
4900 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));

4900 ASSERT(spa == ztest_spa);
4901 spa_close(spa, FTAG);

4903 /*
4904 * Rename it back to the original
4905 */
4906 VERIFY0(spa_rename(newname, oldname));
4908 VERIFY3U(0, ==, spa_rename(newname, oldname));

4908 /*
4909 * Make sure it can still be opened
4910 */
4911 VERIFY0(spa_open(oldname, &spa, FTAG));
4913 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));

4913 ASSERT(spa == ztest_spa);
4914 spa_close(spa, FTAG);

4916 umem_free(newname, strlen(newname) + 1);

4918 (void) rw_unlock(&ztest_name_lock);
4919 }
______unchanged_portion_omitted_

4991 static void
4992 ztest_spa_import_export(char *oldname, char *newname)
4993 {
4994 nvlist_t *config, *newconfig;
4995 uint64_t pool_guid;
4996 spa_t *spa;

4998 if (ztest_opts.zo_verbose >= 4) {
4999 (void) printf("import/export: old = %s, new = %s\n",
5000 oldname, newname);
5001 }

5003 /*
5004 * Clean up from previous runs.
5005 */

new/usr/src/cmd/ztest/ztest.c 22

5006 (void) spa_destroy(newname);

5008 /*
5009 * Get the pool’s configuration and guid.
5010 */
5011 VERIFY0(spa_open(oldname, &spa, FTAG));
5013 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG));

5013 /*
5014 * Kick off a scrub to tickle scrub/export races.
5015 */
5016 if (ztest_random(2) == 0)
5017 (void) spa_scan(spa, POOL_SCAN_SCRUB);

5019 pool_guid = spa_guid(spa);
5020 spa_close(spa, FTAG);

5022 ztest_walk_pool_directory("pools before export");

5024 /*
5025 * Export it.
5026 */
5027 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
5029 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE));

5029 ztest_walk_pool_directory("pools after export");

5031 /*
5032 * Try to import it.
5033 */
5034 newconfig = spa_tryimport(config);
5035 ASSERT(newconfig != NULL);
5036 nvlist_free(newconfig);

5038 /*
5039 * Import it under the new name.
5040 */
5041 VERIFY0(spa_import(newname, config, NULL, 0));
5043 VERIFY3U(0, ==, spa_import(newname, config, NULL, 0));

5043 ztest_walk_pool_directory("pools after import");

5045 /*
5046 * Try to import it again -- should fail with EEXIST.
5047 */
5048 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));

5050 /*
5051 * Try to import it under a different name -- should fail with EEXIST.
5052 */
5053 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));

5055 /*
5056 * Verify that the pool is no longer visible under the old name.
5057 */
5058 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));

5060 /*
5061 * Verify that we can open and close the pool using the new name.
5062 */
5063 VERIFY0(spa_open(newname, &spa, FTAG));
5065 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG));
5064 ASSERT(pool_guid == spa_guid(spa));
5065 spa_close(spa, FTAG);

5067 nvlist_free(config);

new/usr/src/cmd/ztest/ztest.c 23

5068 }
______unchanged_portion_omitted_

5205 static void
5206 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
5207 {
5208 uint64_t usedobjs, dirobjs, scratch;

5210 /*
5211 * ZTEST_DIROBJ is the object directory for the entire dataset.
5212 * Therefore, the number of objects in use should equal the
5213 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
5214 * If not, we have an object leak.
5215 *
5216 * Note that we can only check this in ztest_dataset_open(),
5217 * when the open-context and syncing-context values agree.
5218 * That’s because zap_count() returns the open-context value,
5219 * while dmu_objset_space() returns the rootbp fill count.
5220 */
5221 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5223 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
5222 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
5223 ASSERT3U(dirobjs + 1, ==, usedobjs);
5224 }

5226 static int
5227 ztest_dataset_open(int d)
5228 {
5229 ztest_ds_t *zd = &ztest_ds[d];
5230 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
5231 objset_t *os;
5232 zilog_t *zilog;
5233 char name[MAXNAMELEN];
5234 int error;

5236 ztest_dataset_name(name, ztest_opts.zo_pool, d);

5238 (void) rw_rdlock(&ztest_name_lock);

5240 error = ztest_dataset_create(name);
5241 if (error == ENOSPC) {
5242 (void) rw_unlock(&ztest_name_lock);
5243 ztest_record_enospc(FTAG);
5244 return (error);
5245 }
5246 ASSERT(error == 0 || error == EEXIST);

5248 VERIFY0(dmu_objset_hold(name, zd, &os));
5250 VERIFY3U(dmu_objset_hold(name, zd, &os), ==, 0);
5249 (void) rw_unlock(&ztest_name_lock);

5251 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);

5253 zilog = zd->zd_zilog;

5255 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
5256 zilog->zl_header->zh_claim_lr_seq < committed_seq)
5257 fatal(0, "missing log records: claimed %llu < committed %llu",
5258 zilog->zl_header->zh_claim_lr_seq, committed_seq);

5260 ztest_dataset_dirobj_verify(zd);

5262 zil_replay(os, zd, ztest_replay_vector);

5264 ztest_dataset_dirobj_verify(zd);

new/usr/src/cmd/ztest/ztest.c 24

5266 if (ztest_opts.zo_verbose >= 6)
5267 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n",
5268 zd->zd_name,
5269 (u_longlong_t)zilog->zl_parse_blk_count,
5270 (u_longlong_t)zilog->zl_parse_lr_count,
5271 (u_longlong_t)zilog->zl_replaying_seq);

5273 zilog = zil_open(os, ztest_get_data);

5275 if (zilog->zl_replaying_seq != 0 &&
5276 zilog->zl_replaying_seq < committed_seq)
5277 fatal(0, "missing log records: replayed %llu < committed %llu",
5278 zilog->zl_replaying_seq, committed_seq);

5280 return (0);
5281 }
______unchanged_portion_omitted_

5294 /*
5295 * Kick off threads to run tests on all datasets in parallel.
5296 */
5297 static void
5298 ztest_run(ztest_shared_t *zs)
5299 {
5300 thread_t *tid;
5301 spa_t *spa;
5302 objset_t *os;
5303 thread_t resume_tid;
5304 int error;

5306 ztest_exiting = B_FALSE;

5308 /*
5309 * Initialize parent/child shared state.
5310 */
5311 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5312 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);

5314 zs->zs_thread_start = gethrtime();
5315 zs->zs_thread_stop =
5316 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
5317 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
5318 zs->zs_thread_kill = zs->zs_thread_stop;
5319 if (ztest_random(100) < ztest_opts.zo_killrate) {
5320 zs->zs_thread_kill -=
5321 ztest_random(ztest_opts.zo_passtime * NANOSEC);
5322 }

5324 (void) _mutex_init(&zcl.zcl_callbacks_lock, USYNC_THREAD, NULL);

5326 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5327 offsetof(ztest_cb_data_t, zcd_node));

5329 /*
5330 * Open our pool.
5331 */
5332 kernel_init(FREAD | FWRITE);
5333 VERIFY(spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0);
5334 spa->spa_debug = B_TRUE;
5335 ztest_spa = spa;

5337 VERIFY0(dmu_objset_hold(ztest_opts.zo_pool, FTAG, &os));
5339 VERIFY3U(0, ==, dmu_objset_hold(ztest_opts.zo_pool, FTAG, &os));
5338 zs->zs_guid = dmu_objset_fsid_guid(os);
5339 dmu_objset_rele(os, FTAG);

new/usr/src/cmd/ztest/ztest.c 25

5341 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN;

5343 /*
5344 * We don’t expect the pool to suspend unless maxfaults == 0,
5345 * in which case ztest_fault_inject() temporarily takes away
5346 * the only valid replica.
5347 */
5348 if (MAXFAULTS() == 0)
5349 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT;
5350 else
5351 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;

5353 /*
5354 * Create a thread to periodically resume suspended I/O.
5355 */
5356 VERIFY(thr_create(0, 0, ztest_resume_thread, spa, THR_BOUND,
5357 &resume_tid) == 0);

5359 /*
5360 * Create a deadman thread to abort() if we hang.
5361 */
5362 VERIFY(thr_create(0, 0, ztest_deadman_thread, zs, THR_BOUND,
5363 NULL) == 0);

5365 /*
5366 * Verify that we can safely inquire about about any object,
5367 * whether it’s allocated or not. To make it interesting,
5368 * we probe a 5-wide window around each power of two.
5369 * This hits all edge cases, including zero and the max.
5370 */
5371 for (int t = 0; t < 64; t++) {
5372 for (int d = -5; d <= 5; d++) {
5373 error = dmu_object_info(spa->spa_meta_objset,
5374 (1ULL << t) + d, NULL);
5375 ASSERT(error == 0 || error == ENOENT ||
5376 error == EINVAL);
5377 }
5378 }

5380 /*
5381 * If we got any ENOSPC errors on the previous run, destroy something.
5382 */
5383 if (zs->zs_enospc_count != 0) {
5384 int d = ztest_random(ztest_opts.zo_datasets);
5385 ztest_dataset_destroy(d);
5386 }
5387 zs->zs_enospc_count = 0;

5389 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (thread_t),
5390 UMEM_NOFAIL);

5392 if (ztest_opts.zo_verbose >= 4)
5393 (void) printf("starting main threads...\n");

5395 /*
5396 * Kick off all the tests that run in parallel.
5397 */
5398 for (int t = 0; t < ztest_opts.zo_threads; t++) {
5399 if (t < ztest_opts.zo_datasets &&
5400 ztest_dataset_open(t) != 0)
5401 return;
5402 VERIFY(thr_create(0, 0, ztest_thread, (void *)(uintptr_t)t,
5403 THR_BOUND, &tid[t]) == 0);
5404 }

5406 /*

new/usr/src/cmd/ztest/ztest.c 26

5407 * Wait for all of the tests to complete. We go in reverse order
5408 * so we don’t close datasets while threads are still using them.
5409 */
5410 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {
5411 VERIFY(thr_join(tid[t], NULL, NULL) == 0);
5412 if (t < ztest_opts.zo_datasets)
5413 ztest_dataset_close(t);
5414 }

5416 txg_wait_synced(spa_get_dsl(spa), 0);

5418 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
5419 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));

5421 umem_free(tid, ztest_opts.zo_threads * sizeof (thread_t));

5423 /* Kill the resume thread */
5424 ztest_exiting = B_TRUE;
5425 VERIFY(thr_join(resume_tid, NULL, NULL) == 0);
5426 ztest_resume(spa);

5428 /*
5429 * Right before closing the pool, kick off a bunch of async I/O;
5430 * spa_close() should wait for it to complete.
5431 */
5432 for (uint64_t object = 1; object < 50; object++)
5433 dmu_prefetch(spa->spa_meta_objset, object, 0, 1ULL << 20);

5435 spa_close(spa, FTAG);

5437 /*
5438 * Verify that we can loop over all pools.
5439 */
5440 mutex_enter(&spa_namespace_lock);
5441 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
5442 if (ztest_opts.zo_verbose > 3)
5443 (void) printf("spa_next: found %s\n", spa_name(spa));
5444 mutex_exit(&spa_namespace_lock);

5446 /*
5447 * Verify that we can export the pool and reimport it under a
5448 * different name.
5449 */
5450 if (ztest_random(2) == 0) {
5451 char name[MAXNAMELEN];
5452 (void) snprintf(name, MAXNAMELEN, "%s_import",
5453 ztest_opts.zo_pool);
5454 ztest_spa_import_export(ztest_opts.zo_pool, name);
5455 ztest_spa_import_export(name, ztest_opts.zo_pool);
5456 }

5458 kernel_fini();

5460 list_destroy(&zcl.zcl_callbacks);

5462 (void) _mutex_destroy(&zcl.zcl_callbacks_lock);

5464 (void) rwlock_destroy(&ztest_name_lock);
5465 (void) _mutex_destroy(&ztest_vdev_lock);
5466 }

5468 static void
5469 ztest_freeze(void)
5470 {
5471 ztest_ds_t *zd = &ztest_ds[0];
5472 spa_t *spa;

new/usr/src/cmd/ztest/ztest.c 27

5473 int numloops = 0;

5475 if (ztest_opts.zo_verbose >= 3)
5476 (void) printf("testing spa_freeze()...\n");

5478 kernel_init(FREAD | FWRITE);
5479 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5480 VERIFY0(ztest_dataset_open(0));
5481 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5482 VERIFY3U(0, ==, ztest_dataset_open(0));

5482 /*
5483 * Force the first log block to be transactionally allocated.
5484 * We have to do this before we freeze the pool -- otherwise
5485 * the log chain won’t be anchored.
5486 */
5487 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
5488 ztest_dmu_object_alloc_free(zd, 0);
5489 zil_commit(zd->zd_zilog, 0);
5490 }

5492 txg_wait_synced(spa_get_dsl(spa), 0);

5494 /*
5495 * Freeze the pool. This stops spa_sync() from doing anything,
5496 * so that the only way to record changes from now on is the ZIL.
5497 */
5498 spa_freeze(spa);

5500 /*
5501 * Run tests that generate log records but don’t alter the pool config
5502 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
5503 * We do a txg_wait_synced() after each iteration to force the txg
5504 * to increase well beyond the last synced value in the uberblock.
5505 * The ZIL should be OK with that.
5506 */
5507 while (ztest_random(10) != 0 &&
5508 numloops++ < ztest_opts.zo_maxloops) {
5509 ztest_dmu_write_parallel(zd, 0);
5510 ztest_dmu_object_alloc_free(zd, 0);
5511 txg_wait_synced(spa_get_dsl(spa), 0);
5512 }

5514 /*
5515 * Commit all of the changes we just generated.
5516 */
5517 zil_commit(zd->zd_zilog, 0);
5518 txg_wait_synced(spa_get_dsl(spa), 0);

5520 /*
5521 * Close our dataset and close the pool.
5522 */
5523 ztest_dataset_close(0);
5524 spa_close(spa, FTAG);
5525 kernel_fini();

5527 /*
5528 * Open and close the pool and dataset to induce log replay.
5529 */
5530 kernel_init(FREAD | FWRITE);
5531 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5532 VERIFY0(ztest_dataset_open(0));
5533 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5534 VERIFY3U(0, ==, ztest_dataset_open(0));
5533 ztest_dataset_close(0);
5534 spa_close(spa, FTAG);

new/usr/src/cmd/ztest/ztest.c 28

5535 kernel_fini();
5536 }
______unchanged_portion_omitted_

5576 /*
5577 * Create a storage pool with the given name and initial vdev size.
5578 * Then test spa_freeze() functionality.
5579 */
5580 static void
5581 ztest_init(ztest_shared_t *zs)
5582 {
5583 spa_t *spa;
5584 nvlist_t *nvroot, *props;

5586 VERIFY(_mutex_init(&ztest_vdev_lock, USYNC_THREAD, NULL) == 0);
5587 VERIFY(rwlock_init(&ztest_name_lock, USYNC_THREAD, NULL) == 0);

5589 kernel_init(FREAD | FWRITE);

5591 /*
5592 * Create the storage pool.
5593 */
5594 (void) spa_destroy(ztest_opts.zo_pool);
5595 ztest_shared->zs_vdev_next_leaf = 0;
5596 zs->zs_splits = 0;
5597 zs->zs_mirrors = ztest_opts.zo_mirrors;
5598 nvroot = make_vdev_root(NULL, NULL, ztest_opts.zo_vdev_size, 0,
5599 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1);
5600 props = make_random_props();
5601 for (int i = 0; i < SPA_FEATURES; i++) {
5602 char buf[1024];
5603 (void) snprintf(buf, sizeof (buf), "feature@%s",
5604 spa_feature_table[i].fi_uname);
5605 VERIFY0(nvlist_add_uint64(props, buf, 0));
5607 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0));
5606 }
5607 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5609 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL));
5608 nvlist_free(nvroot);

5610 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
5612 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG));
5611 zs->zs_metaslab_sz =
5612 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;

5614 spa_close(spa, FTAG);

5616 kernel_fini();

5618 ztest_run_zdb(ztest_opts.zo_pool);

5620 ztest_freeze();

5622 ztest_run_zdb(ztest_opts.zo_pool);

5624 (void) rwlock_destroy(&ztest_name_lock);
5625 (void) _mutex_destroy(&ztest_vdev_lock);
5626 }
______unchanged_portion_omitted_

5657 static void
5658 setup_hdr(void)
5659 {
5660 int size;
5661 ztest_shared_hdr_t *hdr;

new/usr/src/cmd/ztest/ztest.c 29

5663 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
5664 PROT_READ | PROT_WRITE, MAP_SHARED, ZTEST_FD_DATA, 0);
5665 ASSERT(hdr != MAP_FAILED);

5667 VERIFY0(ftruncate(ZTEST_FD_DATA, sizeof (ztest_shared_hdr_t)));
5669 VERIFY3U(0, ==, ftruncate(ZTEST_FD_DATA, sizeof (ztest_shared_hdr_t)));

5669 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
5670 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
5671 hdr->zh_size = sizeof (ztest_shared_t);
5672 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
5673 hdr->zh_stats_count = ZTEST_FUNCS;
5674 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
5675 hdr->zh_ds_count = ztest_opts.zo_datasets;

5677 size = shared_data_size(hdr);
5678 VERIFY0(ftruncate(ZTEST_FD_DATA, size));
5680 VERIFY3U(0, ==, ftruncate(ZTEST_FD_DATA, size));

5680 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
5681 }
______unchanged_portion_omitted_

new/usr/src/common/nvpair/fnvpair.c 1

**
 9708 Thu Jul 26 14:18:59 2012
new/usr/src/common/nvpair/fnvpair.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

26 #include <sys/nvpair.h>
27 #include <sys/kmem.h>
28 #include <sys/debug.h>
29 #ifndef _KERNEL
30 #include <stdlib.h>
31 #endif

33 /*
34 * "Force" nvlist wrapper.
35 *
36 * These functions wrap the nvlist_* functions with assertions that assume
37 * the operation is successful. This allows the caller’s code to be much
38 * more readable, especially for the fnvlist_lookup_* and fnvpair_value_*
39 * functions, which can return the requested value (rather than filling in
40 * a pointer).
41 *
42 * These functions use NV_UNIQUE_NAME, encoding NV_ENCODE_NATIVE, and allocate
43 * with KM_SLEEP.
44 *
45 * More wrappers should be added as needed -- for example
46 * nvlist_lookup_*_array and nvpair_value_*_array.
47 */

49 nvlist_t *
50 fnvlist_alloc(void)
51 {
52 nvlist_t *nvl;
53 VERIFY0(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP));
53 VERIFY3U(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP), ==, 0);
54 return (nvl);
55 }

______unchanged_portion_omitted_

63 size_t
64 fnvlist_size(nvlist_t *nvl)
65 {

new/usr/src/common/nvpair/fnvpair.c 2

66 size_t size;
67 VERIFY0(nvlist_size(nvl, &size, NV_ENCODE_NATIVE));
67 VERIFY3U(nvlist_size(nvl, &size, NV_ENCODE_NATIVE), ==, 0);
68 return (size);
69 }

______unchanged_portion_omitted_

95 nvlist_t *
96 fnvlist_unpack(char *buf, size_t buflen)
97 {
98 nvlist_t *rv;
99 VERIFY0(nvlist_unpack(buf, buflen, &rv, KM_SLEEP));
99 VERIFY3U(nvlist_unpack(buf, buflen, &rv, KM_SLEEP), ==, 0);
100 return (rv);
101 }

103 nvlist_t *
104 fnvlist_dup(nvlist_t *nvl)
105 {
106 nvlist_t *rv;
107 VERIFY0(nvlist_dup(nvl, &rv, KM_SLEEP));
107 VERIFY3U(nvlist_dup(nvl, &rv, KM_SLEEP), ==, 0);
108 return (rv);
109 }

111 void
112 fnvlist_merge(nvlist_t *dst, nvlist_t *src)
113 {
114 VERIFY0(nvlist_merge(dst, src, KM_SLEEP));
114 VERIFY3U(nvlist_merge(dst, src, KM_SLEEP), ==, 0);
115 }

117 void
118 fnvlist_add_boolean(nvlist_t *nvl, const char *name)
119 {
120 VERIFY0(nvlist_add_boolean(nvl, name));
120 VERIFY3U(nvlist_add_boolean(nvl, name), ==, 0);
121 }

123 void
124 fnvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
125 {
126 VERIFY0(nvlist_add_boolean_value(nvl, name, val));
126 VERIFY3U(nvlist_add_boolean_value(nvl, name, val), ==, 0);
127 }

129 void
130 fnvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
131 {
132 VERIFY0(nvlist_add_byte(nvl, name, val));
132 VERIFY3U(nvlist_add_byte(nvl, name, val), ==, 0);
133 }

135 void
136 fnvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
137 {
138 VERIFY0(nvlist_add_int8(nvl, name, val));
138 VERIFY3U(nvlist_add_int8(nvl, name, val), ==, 0);
139 }

141 void
142 fnvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
143 {
144 VERIFY0(nvlist_add_uint8(nvl, name, val));
144 VERIFY3U(nvlist_add_uint8(nvl, name, val), ==, 0);
145 }

new/usr/src/common/nvpair/fnvpair.c 3

147 void
148 fnvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
149 {
150 VERIFY0(nvlist_add_int16(nvl, name, val));
150 VERIFY3U(nvlist_add_int16(nvl, name, val), ==, 0);
151 }

153 void
154 fnvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
155 {
156 VERIFY0(nvlist_add_uint16(nvl, name, val));
156 VERIFY3U(nvlist_add_uint16(nvl, name, val), ==, 0);
157 }

159 void
160 fnvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
161 {
162 VERIFY0(nvlist_add_int32(nvl, name, val));
162 VERIFY3U(nvlist_add_int32(nvl, name, val), ==, 0);
163 }

165 void
166 fnvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
167 {
168 VERIFY0(nvlist_add_uint32(nvl, name, val));
168 VERIFY3U(nvlist_add_uint32(nvl, name, val), ==, 0);
169 }

171 void
172 fnvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
173 {
174 VERIFY0(nvlist_add_int64(nvl, name, val));
174 VERIFY3U(nvlist_add_int64(nvl, name, val), ==, 0);
175 }

177 void
178 fnvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
179 {
180 VERIFY0(nvlist_add_uint64(nvl, name, val));
180 VERIFY3U(nvlist_add_uint64(nvl, name, val), ==, 0);
181 }

183 void
184 fnvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
185 {
186 VERIFY0(nvlist_add_string(nvl, name, val));
186 VERIFY3U(nvlist_add_string(nvl, name, val), ==, 0);
187 }

189 void
190 fnvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
191 {
192 VERIFY0(nvlist_add_nvlist(nvl, name, val));
192 VERIFY3U(nvlist_add_nvlist(nvl, name, val), ==, 0);
193 }

195 void
196 fnvlist_add_nvpair(nvlist_t *nvl, nvpair_t *pair)
197 {
198 VERIFY0(nvlist_add_nvpair(nvl, pair));
198 VERIFY3U(nvlist_add_nvpair(nvl, pair), ==, 0);
199 }

201 void
202 fnvlist_add_boolean_array(nvlist_t *nvl, const char *name,

new/usr/src/common/nvpair/fnvpair.c 4

203 boolean_t *val, uint_t n)
204 {
205 VERIFY0(nvlist_add_boolean_array(nvl, name, val, n));
205 VERIFY3U(nvlist_add_boolean_array(nvl, name, val, n), ==, 0);
206 }

208 void
209 fnvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *val, uint_t n)
210 {
211 VERIFY0(nvlist_add_byte_array(nvl, name, val, n));
211 VERIFY3U(nvlist_add_byte_array(nvl, name, val, n), ==, 0);
212 }

214 void
215 fnvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *val, uint_t n)
216 {
217 VERIFY0(nvlist_add_int8_array(nvl, name, val, n));
217 VERIFY3U(nvlist_add_int8_array(nvl, name, val, n), ==, 0);
218 }

220 void
221 fnvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *val, uint_t n)
222 {
223 VERIFY0(nvlist_add_uint8_array(nvl, name, val, n));
223 VERIFY3U(nvlist_add_uint8_array(nvl, name, val, n), ==, 0);
224 }

226 void
227 fnvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *val, uint_t n)
228 {
229 VERIFY0(nvlist_add_int16_array(nvl, name, val, n));
229 VERIFY3U(nvlist_add_int16_array(nvl, name, val, n), ==, 0);
230 }

232 void
233 fnvlist_add_uint16_array(nvlist_t *nvl, const char *name,
234 uint16_t *val, uint_t n)
235 {
236 VERIFY0(nvlist_add_uint16_array(nvl, name, val, n));
236 VERIFY3U(nvlist_add_uint16_array(nvl, name, val, n), ==, 0);
237 }

239 void
240 fnvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *val, uint_t n)
241 {
242 VERIFY0(nvlist_add_int32_array(nvl, name, val, n));
242 VERIFY3U(nvlist_add_int32_array(nvl, name, val, n), ==, 0);
243 }

245 void
246 fnvlist_add_uint32_array(nvlist_t *nvl, const char *name,
247 uint32_t *val, uint_t n)
248 {
249 VERIFY0(nvlist_add_uint32_array(nvl, name, val, n));
249 VERIFY3U(nvlist_add_uint32_array(nvl, name, val, n), ==, 0);
250 }

252 void
253 fnvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *val, uint_t n)
254 {
255 VERIFY0(nvlist_add_int64_array(nvl, name, val, n));
255 VERIFY3U(nvlist_add_int64_array(nvl, name, val, n), ==, 0);
256 }

258 void
259 fnvlist_add_uint64_array(nvlist_t *nvl, const char *name,

new/usr/src/common/nvpair/fnvpair.c 5

260 uint64_t *val, uint_t n)
261 {
262 VERIFY0(nvlist_add_uint64_array(nvl, name, val, n));
262 VERIFY3U(nvlist_add_uint64_array(nvl, name, val, n), ==, 0);
263 }

265 void
266 fnvlist_add_string_array(nvlist_t *nvl, const char *name,
267 char * const *val, uint_t n)
268 {
269 VERIFY0(nvlist_add_string_array(nvl, name, val, n));
269 VERIFY3U(nvlist_add_string_array(nvl, name, val, n), ==, 0);
270 }

272 void
273 fnvlist_add_nvlist_array(nvlist_t *nvl, const char *name,
274 nvlist_t **val, uint_t n)
275 {
276 VERIFY0(nvlist_add_nvlist_array(nvl, name, val, n));
276 VERIFY3U(nvlist_add_nvlist_array(nvl, name, val, n), ==, 0);
277 }

279 void
280 fnvlist_remove(nvlist_t *nvl, const char *name)
281 {
282 VERIFY0(nvlist_remove_all(nvl, name));
282 VERIFY3U(nvlist_remove_all(nvl, name), ==, 0);
283 }

285 void
286 fnvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *pair)
287 {
288 VERIFY0(nvlist_remove_nvpair(nvl, pair));
288 VERIFY3U(nvlist_remove_nvpair(nvl, pair), ==, 0);
289 }

291 nvpair_t *
292 fnvlist_lookup_nvpair(nvlist_t *nvl, const char *name)
293 {
294 nvpair_t *rv;
295 VERIFY0(nvlist_lookup_nvpair(nvl, name, &rv));
295 VERIFY3U(nvlist_lookup_nvpair(nvl, name, &rv), ==, 0);
296 return (rv);
297 }

______unchanged_portion_omitted_

306 boolean_t
307 fnvlist_lookup_boolean_value(nvlist_t *nvl, const char *name)
308 {
309 boolean_t rv;
310 VERIFY0(nvlist_lookup_boolean_value(nvl, name, &rv));
310 VERIFY3U(nvlist_lookup_boolean_value(nvl, name, &rv), ==, 0);
311 return (rv);
312 }

314 uchar_t
315 fnvlist_lookup_byte(nvlist_t *nvl, const char *name)
316 {
317 uchar_t rv;
318 VERIFY0(nvlist_lookup_byte(nvl, name, &rv));
318 VERIFY3U(nvlist_lookup_byte(nvl, name, &rv), ==, 0);
319 return (rv);
320 }

322 int8_t
323 fnvlist_lookup_int8(nvlist_t *nvl, const char *name)

new/usr/src/common/nvpair/fnvpair.c 6

324 {
325 int8_t rv;
326 VERIFY0(nvlist_lookup_int8(nvl, name, &rv));
326 VERIFY3U(nvlist_lookup_int8(nvl, name, &rv), ==, 0);
327 return (rv);
328 }

330 int16_t
331 fnvlist_lookup_int16(nvlist_t *nvl, const char *name)
332 {
333 int16_t rv;
334 VERIFY0(nvlist_lookup_int16(nvl, name, &rv));
334 VERIFY3U(nvlist_lookup_int16(nvl, name, &rv), ==, 0);
335 return (rv);
336 }

338 int32_t
339 fnvlist_lookup_int32(nvlist_t *nvl, const char *name)
340 {
341 int32_t rv;
342 VERIFY0(nvlist_lookup_int32(nvl, name, &rv));
342 VERIFY3U(nvlist_lookup_int32(nvl, name, &rv), ==, 0);
343 return (rv);
344 }

346 int64_t
347 fnvlist_lookup_int64(nvlist_t *nvl, const char *name)
348 {
349 int64_t rv;
350 VERIFY0(nvlist_lookup_int64(nvl, name, &rv));
350 VERIFY3U(nvlist_lookup_int64(nvl, name, &rv), ==, 0);
351 return (rv);
352 }

354 uint8_t
355 fnvlist_lookup_uint8_t(nvlist_t *nvl, const char *name)
356 {
357 uint8_t rv;
358 VERIFY0(nvlist_lookup_uint8(nvl, name, &rv));
358 VERIFY3U(nvlist_lookup_uint8(nvl, name, &rv), ==, 0);
359 return (rv);
360 }

362 uint16_t
363 fnvlist_lookup_uint16(nvlist_t *nvl, const char *name)
364 {
365 uint16_t rv;
366 VERIFY0(nvlist_lookup_uint16(nvl, name, &rv));
366 VERIFY3U(nvlist_lookup_uint16(nvl, name, &rv), ==, 0);
367 return (rv);
368 }

370 uint32_t
371 fnvlist_lookup_uint32(nvlist_t *nvl, const char *name)
372 {
373 uint32_t rv;
374 VERIFY0(nvlist_lookup_uint32(nvl, name, &rv));
374 VERIFY3U(nvlist_lookup_uint32(nvl, name, &rv), ==, 0);
375 return (rv);
376 }

378 uint64_t
379 fnvlist_lookup_uint64(nvlist_t *nvl, const char *name)
380 {
381 uint64_t rv;
382 VERIFY0(nvlist_lookup_uint64(nvl, name, &rv));

new/usr/src/common/nvpair/fnvpair.c 7

382 VERIFY3U(nvlist_lookup_uint64(nvl, name, &rv), ==, 0);
383 return (rv);
384 }

386 char *
387 fnvlist_lookup_string(nvlist_t *nvl, const char *name)
388 {
389 char *rv;
390 VERIFY0(nvlist_lookup_string(nvl, name, &rv));
390 VERIFY3U(nvlist_lookup_string(nvl, name, &rv), ==, 0);
391 return (rv);
392 }

394 nvlist_t *
395 fnvlist_lookup_nvlist(nvlist_t *nvl, const char *name)
396 {
397 nvlist_t *rv;
398 VERIFY0(nvlist_lookup_nvlist(nvl, name, &rv));
398 VERIFY3U(nvlist_lookup_nvlist(nvl, name, &rv), ==, 0);
399 return (rv);
400 }

402 boolean_t
403 fnvpair_value_boolean_value(nvpair_t *nvp)
404 {
405 boolean_t rv;
406 VERIFY0(nvpair_value_boolean_value(nvp, &rv));
406 VERIFY3U(nvpair_value_boolean_value(nvp, &rv), ==, 0);
407 return (rv);
408 }

410 uchar_t
411 fnvpair_value_byte(nvpair_t *nvp)
412 {
413 uchar_t rv;
414 VERIFY0(nvpair_value_byte(nvp, &rv));
414 VERIFY3U(nvpair_value_byte(nvp, &rv), ==, 0);
415 return (rv);
416 }

418 int8_t
419 fnvpair_value_int8(nvpair_t *nvp)
420 {
421 int8_t rv;
422 VERIFY0(nvpair_value_int8(nvp, &rv));
422 VERIFY3U(nvpair_value_int8(nvp, &rv), ==, 0);
423 return (rv);
424 }

426 int16_t
427 fnvpair_value_int16(nvpair_t *nvp)
428 {
429 int16_t rv;
430 VERIFY0(nvpair_value_int16(nvp, &rv));
430 VERIFY3U(nvpair_value_int16(nvp, &rv), ==, 0);
431 return (rv);
432 }

434 int32_t
435 fnvpair_value_int32(nvpair_t *nvp)
436 {
437 int32_t rv;
438 VERIFY0(nvpair_value_int32(nvp, &rv));
438 VERIFY3U(nvpair_value_int32(nvp, &rv), ==, 0);
439 return (rv);
440 }

new/usr/src/common/nvpair/fnvpair.c 8

442 int64_t
443 fnvpair_value_int64(nvpair_t *nvp)
444 {
445 int64_t rv;
446 VERIFY0(nvpair_value_int64(nvp, &rv));
446 VERIFY3U(nvpair_value_int64(nvp, &rv), ==, 0);
447 return (rv);
448 }

450 uint8_t
451 fnvpair_value_uint8_t(nvpair_t *nvp)
452 {
453 uint8_t rv;
454 VERIFY0(nvpair_value_uint8(nvp, &rv));
454 VERIFY3U(nvpair_value_uint8(nvp, &rv), ==, 0);
455 return (rv);
456 }

458 uint16_t
459 fnvpair_value_uint16(nvpair_t *nvp)
460 {
461 uint16_t rv;
462 VERIFY0(nvpair_value_uint16(nvp, &rv));
462 VERIFY3U(nvpair_value_uint16(nvp, &rv), ==, 0);
463 return (rv);
464 }

466 uint32_t
467 fnvpair_value_uint32(nvpair_t *nvp)
468 {
469 uint32_t rv;
470 VERIFY0(nvpair_value_uint32(nvp, &rv));
470 VERIFY3U(nvpair_value_uint32(nvp, &rv), ==, 0);
471 return (rv);
472 }

474 uint64_t
475 fnvpair_value_uint64(nvpair_t *nvp)
476 {
477 uint64_t rv;
478 VERIFY0(nvpair_value_uint64(nvp, &rv));
478 VERIFY3U(nvpair_value_uint64(nvp, &rv), ==, 0);
479 return (rv);
480 }

482 char *
483 fnvpair_value_string(nvpair_t *nvp)
484 {
485 char *rv;
486 VERIFY0(nvpair_value_string(nvp, &rv));
486 VERIFY3U(nvpair_value_string(nvp, &rv), ==, 0);
487 return (rv);
488 }

490 nvlist_t *
491 fnvpair_value_nvlist(nvpair_t *nvp)
492 {
493 nvlist_t *rv;
494 VERIFY0(nvpair_value_nvlist(nvp, &rv));
494 VERIFY3U(nvpair_value_nvlist(nvp, &rv), ==, 0);
495 return (rv);
496 }

______unchanged_portion_omitted_

new/usr/src/lib/libc/port/threads/assfail.c 1

**
 12567 Thu Jul 26 14:19:00 2012
new/usr/src/lib/libc/port/threads/assfail.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

449 void
450 assfail3(const char *assertion, uintmax_t lv, const char *op, uintmax_t rv,
451 const char *filename, int line_num)
452 {
453 char buf[1000];
454 (void) strcpy(buf, assertion);
455 (void) strcat(buf, " (");
455 (void) strcat(buf, " (0x");
456 ultos((uint64_t)lv, 16, buf + strlen(buf));
457 (void) strcat(buf, " ");
458 (void) strcat(buf, op);
459 (void) strcat(buf, " ");
459 (void) strcat(buf, " 0x");
460 ultos((uint64_t)rv, 16, buf + strlen(buf));
461 (void) strcat(buf, ")");
462 __assfail(buf, filename, line_num);
463 }

______unchanged_portion_omitted_

new/usr/src/lib/libzpool/Makefile.com 1

**
 2139 Thu Jul 26 14:19:01 2012
new/usr/src/lib/libzpool/Makefile.com
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright (c) 2012 by Delphix. All rights reserved.
24 #

26 LIBRARY= libzpool.a
27 VERS= .1

29 # include the list of ZFS sources
30 include ../../../uts/common/Makefile.files
31 KERNEL_OBJS = kernel.o taskq.o util.o

33 OBJECTS=$(ZFS_COMMON_OBJS) $(ZFS_SHARED_OBJS) $(KERNEL_OBJS)

35 # include library definitions
36 include ../../Makefile.lib

38 ZFS_COMMON_SRCS= $(ZFS_COMMON_OBJS:%.o=../../../uts/common/fs/zfs/%.c)
39 ZFS_SHARED_SRCS= $(ZFS_SHARED_OBJS:%.o=../../../common/zfs/%.c)
40 KERNEL_SRCS= $(KERNEL_OBJS:%.o=../common/%.c)

42 SRCS=$(ZFS_COMMON_SRCS) $(ZFS_SHARED_SRCS) $(KERNEL_SRCS)
43 SRCDIR= ../common

45 # There should be a mapfile here
46 MAPFILES =

48 LIBS += $(LINTLIB)

50 INCS += -I../common
51 INCS += -I../../../uts/common/fs/zfs
52 INCS += -I../../../common/zfs
53 INCS += -I../../../common

55 $(LINTLIB) := SRCS= $(SRCDIR)/$(LINTSRC)

57 C99MODE= -xc99=%all
58 C99LMODE= -Xc99=%all

60 CFLAGS += -g $(CCVERBOSE) $(CNOGLOBAL)
61 CFLAGS64 += -g $(CCVERBOSE) $(CNOGLOBAL)

new/usr/src/lib/libzpool/Makefile.com 2

62 LDLIBS += -lcmdutils -lumem -lavl -lnvpair -lz -lc -lsysevent -lmd
63 CPPFLAGS += $(INCS) -DDEBUG
62 CPPFLAGS += $(INCS)

65 .KEEP_STATE:

67 all: $(LIBS)

69 lint: $(LINTLIB)

71 include ../../Makefile.targ

73 pics/%.o: ../../../uts/common/fs/zfs/%.c
74 $(COMPILE.c) -o $@ $<
75 $(POST_PROCESS_O)

77 pics/%.o: ../../../common/zfs/%.c
78 $(COMPILE.c) -o $@ $<
79 $(POST_PROCESS_O)

new/usr/src/lib/libzpool/common/sys/zfs_context.h 1

**
 15333 Thu Jul 26 14:19:02 2012
new/usr/src/lib/libzpool/common/sys/zfs_context.h
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 */

28 #ifndef _SYS_ZFS_CONTEXT_H
29 #define _SYS_ZFS_CONTEXT_H

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #define _SYS_MUTEX_H
36 #define _SYS_RWLOCK_H
37 #define _SYS_CONDVAR_H
38 #define _SYS_SYSTM_H
39 #define _SYS_DEBUG_H
39 #define _SYS_T_LOCK_H
40 #define _SYS_VNODE_H
41 #define _SYS_VFS_H
42 #define _SYS_SUNDDI_H
43 #define _SYS_CALLB_H

45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <stddef.h>
48 #include <stdarg.h>
49 #include <fcntl.h>
50 #include <unistd.h>
51 #include <errno.h>
52 #include <string.h>
53 #include <strings.h>
54 #include <synch.h>
55 #include <thread.h>
56 #include <assert.h>
57 #include <alloca.h>
58 #include <umem.h>
59 #include <limits.h>
60 #include <atomic.h>

new/usr/src/lib/libzpool/common/sys/zfs_context.h 2

61 #include <dirent.h>
62 #include <time.h>
63 #include <libsysevent.h>
64 #include <sys/note.h>
65 #include <sys/types.h>
66 #include <sys/cred.h>
67 #include <sys/sysmacros.h>
68 #include <sys/bitmap.h>
69 #include <sys/resource.h>
70 #include <sys/byteorder.h>
71 #include <sys/list.h>
72 #include <sys/uio.h>
73 #include <sys/zfs_debug.h>
74 #include <sys/sdt.h>
75 #include <sys/kstat.h>
76 #include <sys/u8_textprep.h>
77 #include <sys/sysevent/eventdefs.h>
78 #include <sys/sysevent/dev.h>
79 #include <sys/sunddi.h>
80 #include <sys/debug.h>

82 /*
83 * Debugging
84 */

86 /*
87 * Note that we are not using the debugging levels.
88 */

90 #define CE_CONT 0 /* continuation */
91 #define CE_NOTE 1 /* notice */
92 #define CE_WARN 2 /* warning */
93 #define CE_PANIC 3 /* panic */
94 #define CE_IGNORE 4 /* print nothing */

96 /*
97 * ZFS debugging
98 */

100 #ifdef ZFS_DEBUG
101 extern void dprintf_setup(int *argc, char **argv);
102 #endif /* ZFS_DEBUG */

104 extern void cmn_err(int, const char *, ...);
105 extern void vcmn_err(int, const char *, __va_list);
106 extern void panic(const char *, ...);
107 extern void vpanic(const char *, __va_list);

109 #define fm_panic panic

111 extern int aok;

113 /* This definition is copied from assert.h. */
114 #if defined(__STDC__)
115 #if __STDC_VERSION__ - 0 >= 199901L
116 #define zverify(EX) (void)((EX) || (aok) || \
117 (__assert_c99(#EX, __FILE__, __LINE__, __func__), 0))
118 #else
119 #define zverify(EX) (void)((EX) || (aok) || \
120 (__assert(#EX, __FILE__, __LINE__), 0))
121 #endif /* __STDC_VERSION__ - 0 >= 199901L */
122 #else
123 #define zverify(EX) (void)((EX) || (aok) || \
124 (_assert("EX", __FILE__, __LINE__), 0))
125 #endif /* __STDC__ */

new/usr/src/lib/libzpool/common/sys/zfs_context.h 3

128 #define VERIFY zverify
129 #define ASSERT zverify
130 #undef assert
131 #define assert zverify

133 extern void __assert(const char *, const char *, int);

135 #ifdef lint
136 #define VERIFY3_IMPL(x, y, z, t) if (x == z) ((void)0)
137 #else
138 /* BEGIN CSTYLED */
139 #define VERIFY3_IMPL(LEFT, OP, RIGHT, TYPE) do { \
140 const TYPE __left = (TYPE)(LEFT); \
141 const TYPE __right = (TYPE)(RIGHT); \
142 if (!(__left OP __right) && (!aok)) { \
143 char *__buf = alloca(256); \
144 (void) snprintf(__buf, 256, "%s %s %s (0x%llx %s 0x%llx)", \
145 #LEFT, #OP, #RIGHT, \
146 (u_longlong_t)__left, #OP, (u_longlong_t)__right); \
147 __assert(__buf, __FILE__, __LINE__); \
148 } \
149 _NOTE(CONSTCOND) } while (0)
150 /* END CSTYLED */
151 #endif /* lint */

153 #define VERIFY3S(x, y, z) VERIFY3_IMPL(x, y, z, int64_t)
154 #define VERIFY3U(x, y, z) VERIFY3_IMPL(x, y, z, uint64_t)
155 #define VERIFY3P(x, y, z) VERIFY3_IMPL(x, y, z, uintptr_t)

157 #ifdef NDEBUG
158 #define ASSERT3S(x, y, z) ((void)0)
159 #define ASSERT3U(x, y, z) ((void)0)
160 #define ASSERT3P(x, y, z) ((void)0)
161 #else
162 #define ASSERT3S(x, y, z) VERIFY3S(x, y, z)
163 #define ASSERT3U(x, y, z) VERIFY3U(x, y, z)
164 #define ASSERT3P(x, y, z) VERIFY3P(x, y, z)
165 #endif

113 /*
114 * DTrace SDT probes have different signatures in userland than they do in
115 * kernel. If they’re being used in kernel code, re-define them out of
116 * existence for their counterparts in libzpool.
117 */

119 #ifdef DTRACE_PROBE
120 #undef DTRACE_PROBE
121 #define DTRACE_PROBE(a) ((void)0)
122 #endif /* DTRACE_PROBE */

124 #ifdef DTRACE_PROBE1
125 #undef DTRACE_PROBE1
126 #define DTRACE_PROBE1(a, b, c) ((void)0)
127 #endif /* DTRACE_PROBE1 */

129 #ifdef DTRACE_PROBE2
130 #undef DTRACE_PROBE2
131 #define DTRACE_PROBE2(a, b, c, d, e) ((void)0)
132 #endif /* DTRACE_PROBE2 */

134 #ifdef DTRACE_PROBE3
135 #undef DTRACE_PROBE3
136 #define DTRACE_PROBE3(a, b, c, d, e, f, g) ((void)0)
137 #endif /* DTRACE_PROBE3 */

new/usr/src/lib/libzpool/common/sys/zfs_context.h 4

139 #ifdef DTRACE_PROBE4
140 #undef DTRACE_PROBE4
141 #define DTRACE_PROBE4(a, b, c, d, e, f, g, h, i) ((void)0)
142 #endif /* DTRACE_PROBE4 */

144 /*
145 * Threads
146 */
147 #define curthread ((void *)(uintptr_t)thr_self())

149 typedef struct kthread kthread_t;

151 #define thread_create(stk, stksize, func, arg, len, pp, state, pri) \
152 zk_thread_create(func, arg)
153 #define thread_exit() thr_exit(NULL)
154 #define thread_join(t) panic("libzpool cannot join threads")

156 #define newproc(f, a, cid, pri, ctp, pid) (ENOSYS)

158 /* in libzpool, p0 exists only to have its address taken */
159 struct proc {
160 uintptr_t this_is_never_used_dont_dereference_it;
161 };

______unchanged_portion_omitted_

new/usr/src/uts/common/disp/sysdc.c 1

**
 37877 Thu Jul 26 14:19:03 2012
new/usr/src/uts/common/disp/sysdc.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

26 /*
27 * The System Duty Cycle (SDC) scheduling class
28 * --
29 *
30 * Background
31 *
32 * Kernel threads in Solaris have traditionally not been large consumers
33 * of CPU time. They typically wake up, perform a small amount of
34 * work, then go back to sleep waiting for either a timeout or another
35 * signal. On the assumption that the small amount of work that they do
36 * is important for the behavior of the whole system, these threads are
37 * treated kindly by the dispatcher and the SYS scheduling class: they run
38 * without preemption from anything other than real-time and interrupt
39 * threads; when preempted, they are put at the front of the queue, so they
40 * generally do not migrate between CPUs; and they are allowed to stay
41 * running until they voluntarily give up the CPU.
42 *
43 * As Solaris has evolved, new workloads have emerged which require the
44 * kernel to perform significant amounts of CPU-intensive work. One
45 * example of such a workload is ZFS’s transaction group sync processing.
46 * Each sync operation generates a large batch of I/Os, and each I/O
47 * may need to be compressed and/or checksummed before it is written to
48 * storage. The taskq threads which perform the compression and checksums
49 * will run nonstop as long as they have work to do; a large sync operation
50 * on a compression-heavy dataset can keep them busy for seconds on end.
51 * This causes human-time-scale dispatch latency bubbles for any other
52 * threads which have the misfortune to share a CPU with the taskq threads.
53 *
54 * The SDC scheduling class is a solution to this problem.
55 *
56 *
57 * Overview
58 *
59 * SDC is centered around the concept of a thread’s duty cycle (DC):
60 *
61 * ONPROC time

new/usr/src/uts/common/disp/sysdc.c 2

62 * Duty Cycle = ----------------------
63 * ONPROC + Runnable time
64 *
65 * This is the ratio of the time that the thread spent running on a CPU
66 * divided by the time it spent running or trying to run. It is unaffected
67 * by any time the thread spent sleeping, stopped, etc.
68 *
69 * A thread joining the SDC class specifies a "target" DC that it wants
70 * to run at. To implement this policy, the routine sysdc_update() scans
71 * the list of active SDC threads every few ticks and uses each thread’s
72 * microstate data to compute the actual duty cycle that that thread
73 * has experienced recently. If the thread is under its target DC, its
74 * priority is increased to the maximum available (sysdc_maxpri, which is
75 * 99 by default). If the thread is over its target DC, its priority is
76 * reduced to the minimum available (sysdc_minpri, 0 by default). This
77 * is a fairly primitive approach, in that it doesn’t use any of the
78 * intermediate priorities, but it’s not completely inappropriate. Even
79 * though threads in the SDC class might take a while to do their job, they
80 * are by some definition important if they’re running inside the kernel,
81 * so it is reasonable that they should get to run at priority 99.
82 *
83 * If a thread is running when sysdc_update() calculates its actual duty
84 * cycle, and there are other threads of equal or greater priority on its
85 * CPU’s dispatch queue, sysdc_update() preempts that thread. The thread
86 * acknowledges the preemption by calling sysdc_preempt(), which calls
87 * setbackdq(), which gives other threads with the same priority a chance
88 * to run. This creates a de facto time quantum for threads in the SDC
89 * scheduling class.
90 *
91 * An SDC thread which is assigned priority 0 can continue to run if
92 * nothing else needs to use the CPU that it’s running on. Similarly, an
93 * SDC thread at priority 99 might not get to run as much as it wants to
94 * if there are other priority-99 or higher threads on its CPU. These
95 * situations would cause the thread to get ahead of or behind its target
96 * DC; the longer the situations lasted, the further ahead or behind the
97 * thread would get. Rather than condemning a thread to a lifetime of
98 * paying for its youthful indiscretions, SDC keeps "base" values for
99 * ONPROC and Runnable times in each thread’s sysdc data, and updates these
100 * values periodically. The duty cycle is then computed using the elapsed
101 * amount of ONPROC and Runnable times since those base times.
102 *
103 * Since sysdc_update() scans SDC threads fairly frequently, it tries to
104 * keep the list of "active" threads small by pruning out threads which
105 * have been asleep for a brief time. They are not pruned immediately upon
106 * going to sleep, since some threads may bounce back and forth between
107 * sleeping and being runnable.
108 *
109 *
110 * Interfaces
111 *
112 * void sysdc_thread_enter(t, dc, flags)
113 *
114 * Moves a kernel thread from the SYS scheduling class to the
115 * SDC class. t must have an associated LWP (created by calling
116 * lwp_kernel_create()). The thread will have a target DC of dc.
117 * Flags should be either 0 or SYSDC_THREAD_BATCH. If
118 * SYSDC_THREAD_BATCH is specified, the thread is expected to be
119 * doing large amounts of processing.
120 *
121 *
122 * Complications
123 *
124 * - Run queue balancing
125 *
126 * The Solaris dispatcher is biased towards letting a thread run
127 * on the same CPU which it last ran on, if no more than 3 ticks

new/usr/src/uts/common/disp/sysdc.c 3

128 * (i.e. rechoose_interval) have passed since the thread last ran.
129 * This helps to preserve cache warmth. On the other hand, it also
130 * tries to keep the per-CPU run queues fairly balanced; if the CPU
131 * chosen for a runnable thread has a run queue which is three or
132 * more threads longer than a neighboring CPU’s queue, the runnable
133 * thread is dispatched onto the neighboring CPU instead.
134 *
135 * These policies work well for some workloads, but not for many SDC
136 * threads. The taskq client of SDC, for example, has many discrete
137 * units of work to do. The work units are largely independent, so
138 * cache warmth is not an important consideration. It is important
139 * that the threads fan out quickly to different CPUs, since the
140 * amount of work these threads have to do (a few seconds worth at a
141 * time) doesn’t leave much time to correct thread placement errors
142 * (i.e. two SDC threads being dispatched to the same CPU).
143 *
144 * To fix this, SDC uses the TS_RUNQMATCH flag introduced for FSS.
145 * This tells the dispatcher to keep neighboring run queues’ lengths
146 * more evenly matched, which allows SDC threads to migrate more
147 * easily.
148 *
149 * - LWPs and system processes
150 *
151 * SDC can only be used for kernel threads. Since SDC uses microstate
152 * accounting data to compute each thread’s actual duty cycle, all
153 * threads entering the SDC class must have associated LWPs (which
154 * store the microstate data). This means that the threads have to
155 * be associated with an SSYS process, i.e. one created by newproc().
156 * If the microstate accounting information is ever moved into the
157 * kthread_t, this restriction could be lifted.
158 *
159 * - Dealing with oversubscription
160 *
161 * Since SDC duty cycles are per-thread, it is possible that the
162 * aggregate requested duty cycle of all SDC threads in a processor
163 * set could be greater than the total CPU time available in that set.
164 * The FSS scheduling class has an analogous situation, which it deals
165 * with by reducing each thread’s allotted CPU time proportionally.
166 * Since SDC doesn’t need to be as precise as FSS, it uses a simpler
167 * solution to the oversubscription problem.
168 *
169 * sysdc_update() accumulates the amount of time that max-priority SDC
170 * threads have spent on-CPU in each processor set, and uses that sum
171 * to create an implied duty cycle for that processor set:
172 *
173 * accumulated CPU time
174 * pset DC = -----------------------------------
175 * (# CPUs) * time since last update
176 *
177 * If this implied duty cycle is above a maximum pset duty cycle (90%
178 * by default), sysdc_update() sets the priority of all SDC threads
179 * in that processor set to sysdc_minpri for a "break" period. After
180 * the break period, it waits for a "nobreak" period before trying to
181 * enforce the pset duty cycle limit again.
182 *
183 * - Processor sets
184 *
185 * As the above implies, SDC is processor set aware, but it does not
186 * currently allow threads to change processor sets while in the SDC
187 * class. Instead, those threads must join the desired processor set
188 * before entering SDC. [1]
189 *
190 * - Batch threads
191 *
192 * A thread joining the SDC class can specify the SDC_THREAD_BATCH
193 * flag. This flag currently has no effect, but marks threads which

new/usr/src/uts/common/disp/sysdc.c 4

194 * do bulk processing.
195 *
196 * - t_kpri_req
197 *
198 * The TS and FSS scheduling classes pay attention to t_kpri_req,
199 * which provides a simple form of priority inheritance for
200 * synchronization primitives (such as rwlocks held as READER) which
201 * cannot be traced to a unique thread. The SDC class does not honor
202 * t_kpri_req, for a few reasons:
203 *
204 * 1. t_kpri_req is notoriously inaccurate. A measure of its
205 * inaccuracy is that it needs to be cleared every time a thread
206 * returns to user mode, because it is frequently non-zero at that
207 * point. This can happen because "ownership" of synchronization
208 * primitives that use t_kpri_req can be silently handed off,
209 * leaving no opportunity to will the t_kpri_req inheritance.
210 *
211 * 2. Unlike in TS and FSS, threads in SDC *will* eventually run at
212 * kernel priority. This means that even if an SDC thread
213 * is holding a synchronization primitive and running at low
214 * priority, its priority will eventually be raised above 60,
215 * allowing it to drive on and release the resource.
216 *
217 * 3. The first consumer of SDC uses the taskq subsystem, which holds
218 * a reader lock for the duration of the task’s execution. This
219 * would mean that SDC threads would never drop below kernel
220 * priority in practice, which defeats one of the purposes of SDC.
221 *
222 * - Why not FSS?
223 *
224 * It might seem that the existing FSS scheduling class could solve
225 * the problems that SDC is attempting to solve. FSS’s more precise
226 * solution to the oversubscription problem would hardly cause
227 * trouble, as long as it performed well. SDC is implemented as
228 * a separate scheduling class for two main reasons: the initial
229 * consumer of SDC does not map well onto the "project" abstraction
230 * that is central to FSS, and FSS does not expect to run at kernel
231 * priorities.
232 *
233 *
234 * Tunables
235 *
236 * - sysdc_update_interval_msec: Number of milliseconds between
237 * consecutive thread priority updates.
238 *
239 * - sysdc_reset_interval_msec: Number of milliseconds between
240 * consecutive resets of a thread’s base ONPROC and Runnable
241 * times.
242 *
243 * - sysdc_prune_interval_msec: Number of milliseconds of sleeping
244 * before a thread is pruned from the active list.
245 *
246 * - sysdc_max_pset_DC: Allowable percentage of a processor set’s
247 * CPU time which SDC can give to its high-priority threads.
248 *
249 * - sysdc_break_msec: Number of milliseconds of "break" taken when
250 * sysdc_max_pset_DC is exceeded.
251 *
252 *
253 * Future work (in SDC and related subsystems)
254 *
255 * - Per-thread rechoose interval (0 for SDC)
256 *
257 * Allow each thread to specify its own rechoose interval. SDC
258 * threads would specify an interval of zero, which would rechoose
259 * the CPU with the lowest priority once per update.

new/usr/src/uts/common/disp/sysdc.c 5

260 *
261 * - Allow threads to change processor sets after joining the SDC class
262 *
263 * - Thread groups and per-group DC
264 *
265 * It might be nice to be able to specify a duty cycle which applies
266 * to a group of threads in aggregate.
267 *
268 * - Per-group DC callback to allow dynamic DC tuning
269 *
270 * Currently, DCs are assigned when the thread joins SDC. Some
271 * workloads could benefit from being able to tune their DC using
272 * subsystem-specific knowledge about the workload.
273 *
274 * - Finer-grained priority updates
275 *
276 * - More nuanced management of oversubscription
277 *
278 * - Moving other CPU-intensive threads into SDC
279 *
280 * - Move msacct data into kthread_t
281 *
282 * This would allow kernel threads without LWPs to join SDC.
283 *
284 *
285 * Footnotes
286 *
287 * [1] The details of doing so are left as an exercise for the reader.
288 */

290 #include <sys/types.h>
291 #include <sys/sysdc.h>
292 #include <sys/sysdc_impl.h>

294 #include <sys/class.h>
295 #include <sys/cmn_err.h>
296 #include <sys/cpuvar.h>
297 #include <sys/cpupart.h>
298 #include <sys/debug.h>
299 #include <sys/disp.h>
300 #include <sys/errno.h>
301 #include <sys/inline.h>
302 #include <sys/kmem.h>
303 #include <sys/modctl.h>
304 #include <sys/schedctl.h>
305 #include <sys/sdt.h>
306 #include <sys/sunddi.h>
307 #include <sys/sysmacros.h>
308 #include <sys/systm.h>
309 #include <sys/var.h>

311 /*
312 * Tunables - loaded into the internal state at module load time
313 */
314 uint_t sysdc_update_interval_msec = 20;
315 uint_t sysdc_reset_interval_msec = 400;
316 uint_t sysdc_prune_interval_msec = 100;
317 uint_t sysdc_max_pset_DC = 90;
318 uint_t sysdc_break_msec = 80;

320 /*
321 * Internal state - constants set up by sysdc_initparam()
322 */
323 static clock_t sysdc_update_ticks; /* ticks between updates */
324 static uint_t sysdc_prune_updates; /* updates asleep before pruning */
325 static uint_t sysdc_reset_updates; /* # of updates before reset */

new/usr/src/uts/common/disp/sysdc.c 6

326 static uint_t sysdc_break_updates; /* updates to break */
327 static uint_t sysdc_nobreak_updates; /* updates to not check */
328 static uint_t sysdc_minDC; /* minimum allowed DC */
329 static uint_t sysdc_maxDC; /* maximum allowed DC */
330 static pri_t sysdc_minpri; /* minimum allowed priority */
331 static pri_t sysdc_maxpri; /* maximum allowed priority */

333 /*
334 * Internal state
335 */
336 static kmutex_t sysdc_pset_lock; /* lock protecting pset data */
337 static list_t sysdc_psets; /* list of psets with SDC threads */
338 static uint_t sysdc_param_init; /* sysdc_initparam() has been called */
339 static uint_t sysdc_update_timeout_started; /* update timeout is active */
340 static hrtime_t sysdc_last_update; /* time of last sysdc_update() */
341 static sysdc_t sysdc_dummy; /* used to terminate active lists */

343 /*
344 * Internal state - active hash table
345 */
346 #define SYSDC_NLISTS 8
347 #define SYSDC_HASH(sdc) (((uintptr_t)(sdc) >> 6) & (SYSDC_NLISTS - 1))
348 static sysdc_list_t sysdc_active[SYSDC_NLISTS];
349 #define SYSDC_LIST(sdc) (&sysdc_active[SYSDC_HASH(sdc)])

351 #ifdef DEBUG
352 static struct {
353 uint64_t sysdc_update_times_asleep;
354 uint64_t sysdc_update_times_base_ran_backwards;
355 uint64_t sysdc_update_times_already_done;
356 uint64_t sysdc_update_times_cur_ran_backwards;
357 uint64_t sysdc_compute_pri_breaking;
358 uint64_t sysdc_activate_enter;
359 uint64_t sysdc_update_enter;
360 uint64_t sysdc_update_exited;
361 uint64_t sysdc_update_not_sdc;
362 uint64_t sysdc_update_idle;
363 uint64_t sysdc_update_take_break;
364 uint64_t sysdc_update_no_psets;
365 uint64_t sysdc_tick_not_sdc;
366 uint64_t sysdc_tick_quantum_expired;
367 uint64_t sysdc_thread_enter_enter;
368 } sysdc_stats;

______unchanged_portion_omitted_

1291 /* --- consolidation-private interfaces --- */
1292 void
1293 sysdc_thread_enter(kthread_t *t, uint_t dc, uint_t flags)
1294 {
1295 void *buf = NULL;
1296 sysdc_params_t sdp;

1298 SYSDC_INC_STAT(sysdc_thread_enter_enter);

1300 ASSERT(sysdc_param_init);
1301 ASSERT(sysdccid >= 0);

1303 ASSERT((flags & ~SYSDC_THREAD_BATCH) == 0);

1305 sdp.sdp_minpri = sysdc_minpri;
1306 sdp.sdp_maxpri = sysdc_maxpri;
1307 sdp.sdp_DC = MAX(MIN(dc, sysdc_maxDC), sysdc_minDC);

1309 VERIFY0(CL_ALLOC(&buf, sysdccid, KM_SLEEP));
1308 VERIFY3U(CL_ALLOC(&buf, sysdccid, KM_SLEEP), ==, 0);

new/usr/src/uts/common/disp/sysdc.c 7

1311 ASSERT(t->t_lwp != NULL);
1312 ASSERT(t->t_cid == syscid);
1313 ASSERT(t->t_cldata == NULL);
1314 VERIFY0(CL_CANEXIT(t, NULL));
1315 VERIFY0(CL_ENTERCLASS(t, sysdccid, &sdp, kcred, buf));
1313 VERIFY3U(CL_CANEXIT(t, NULL), ==, 0);
1314 VERIFY3U(CL_ENTERCLASS(t, sysdccid, &sdp, kcred, buf), ==, 0);
1316 CL_EXITCLASS(syscid, NULL);
1317 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/arc.c 1

**
 131604 Thu Jul 26 14:19:03 2012
new/usr/src/uts/common/fs/zfs/arc.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

997 static void
998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
999 {

1000 ASSERT(MUTEX_HELD(hash_lock));

1002 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1003 (ab->b_state != arc_anon)) {
1004 uint64_t delta = ab->b_size * ab->b_datacnt;
1005 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1006 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];

1008 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1009 mutex_enter(&ab->b_state->arcs_mtx);
1010 ASSERT(list_link_active(&ab->b_arc_node));
1011 list_remove(list, ab);
1012 if (GHOST_STATE(ab->b_state)) {
1013 ASSERT0(ab->b_datacnt);
1013 ASSERT3U(ab->b_datacnt, ==, 0);
1014 ASSERT3P(ab->b_buf, ==, NULL);
1015 delta = ab->b_size;
1016 }
1017 ASSERT(delta > 0);
1018 ASSERT3U(*size, >=, delta);
1019 atomic_add_64(size, -delta);
1020 mutex_exit(&ab->b_state->arcs_mtx);
1021 /* remove the prefetch flag if we get a reference */
1022 if (ab->b_flags & ARC_PREFETCH)
1023 ab->b_flags &= ~ARC_PREFETCH;
1024 }
1025 }
______unchanged_portion_omitted_

1590 /*
1591 * Evict buffers from list until we’ve removed the specified number of
1592 * bytes. Move the removed buffers to the appropriate evict state.
1593 * If the recycle flag is set, then attempt to "recycle" a buffer:
1594 * - look for a buffer to evict that is ‘bytes’ long.
1595 * - return the data block from this buffer rather than freeing it.
1596 * This flag is used by callers that are trying to make space for a
1597 * new buffer in a full arc cache.
1598 *
1599 * This function makes a "best effort". It skips over any buffers
1600 * it can’t get a hash_lock on, and so may not catch all candidates.
1601 * It may also return without evicting as much space as requested.
1602 */
1603 static void *
1604 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
1605 arc_buf_contents_t type)
1606 {
1607 arc_state_t *evicted_state;
1608 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1609 arc_buf_hdr_t *ab, *ab_prev = NULL;
1610 list_t *list = &state->arcs_list[type];
1611 kmutex_t *hash_lock;
1612 boolean_t have_lock;
1613 void *stolen = NULL;

1615 ASSERT(state == arc_mru || state == arc_mfu);

new/usr/src/uts/common/fs/zfs/arc.c 2

1617 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;

1619 mutex_enter(&state->arcs_mtx);
1620 mutex_enter(&evicted_state->arcs_mtx);

1622 for (ab = list_tail(list); ab; ab = ab_prev) {
1623 ab_prev = list_prev(list, ab);
1624 /* prefetch buffers have a minimum lifespan */
1625 if (HDR_IO_IN_PROGRESS(ab) ||
1626 (spa && ab->b_spa != spa) ||
1627 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
1628 ddi_get_lbolt() - ab->b_arc_access <
1629 arc_min_prefetch_lifespan)) {
1630 skipped++;
1631 continue;
1632 }
1633 /* "lookahead" for better eviction candidate */
1634 if (recycle && ab->b_size != bytes &&
1635 ab_prev && ab_prev->b_size == bytes)
1636 continue;
1637 hash_lock = HDR_LOCK(ab);
1638 have_lock = MUTEX_HELD(hash_lock);
1639 if (have_lock || mutex_tryenter(hash_lock)) {
1640 ASSERT0(refcount_count(&ab->b_refcnt));
1640 ASSERT3U(refcount_count(&ab->b_refcnt), ==, 0);
1641 ASSERT(ab->b_datacnt > 0);
1642 while (ab->b_buf) {
1643 arc_buf_t *buf = ab->b_buf;
1644 if (!mutex_tryenter(&buf->b_evict_lock)) {
1645 missed += 1;
1646 break;
1647 }
1648 if (buf->b_data) {
1649 bytes_evicted += ab->b_size;
1650 if (recycle && ab->b_type == type &&
1651 ab->b_size == bytes &&
1652 !HDR_L2_WRITING(ab)) {
1653 stolen = buf->b_data;
1654 recycle = FALSE;
1655 }
1656 }
1657 if (buf->b_efunc) {
1658 mutex_enter(&arc_eviction_mtx);
1659 arc_buf_destroy(buf,
1660 buf->b_data == stolen, FALSE);
1661 ab->b_buf = buf->b_next;
1662 buf->b_hdr = &arc_eviction_hdr;
1663 buf->b_next = arc_eviction_list;
1664 arc_eviction_list = buf;
1665 mutex_exit(&arc_eviction_mtx);
1666 mutex_exit(&buf->b_evict_lock);
1667 } else {
1668 mutex_exit(&buf->b_evict_lock);
1669 arc_buf_destroy(buf,
1670 buf->b_data == stolen, TRUE);
1671 }
1672 }

1674 if (ab->b_l2hdr) {
1675 ARCSTAT_INCR(arcstat_evict_l2_cached,
1676 ab->b_size);
1677 } else {
1678 if (l2arc_write_eligible(ab->b_spa, ab)) {
1679 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1680 ab->b_size);
1681 } else {

new/usr/src/uts/common/fs/zfs/arc.c 3

1682 ARCSTAT_INCR(
1683 arcstat_evict_l2_ineligible,
1684 ab->b_size);
1685 }
1686 }

1688 if (ab->b_datacnt == 0) {
1689 arc_change_state(evicted_state, ab, hash_lock);
1690 ASSERT(HDR_IN_HASH_TABLE(ab));
1691 ab->b_flags |= ARC_IN_HASH_TABLE;
1692 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1693 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1694 }
1695 if (!have_lock)
1696 mutex_exit(hash_lock);
1697 if (bytes >= 0 && bytes_evicted >= bytes)
1698 break;
1699 } else {
1700 missed += 1;
1701 }
1702 }

1704 mutex_exit(&evicted_state->arcs_mtx);
1705 mutex_exit(&state->arcs_mtx);

1707 if (bytes_evicted < bytes)
1708 dprintf("only evicted %lld bytes from %x",
1709 (longlong_t)bytes_evicted, state);

1711 if (skipped)
1712 ARCSTAT_INCR(arcstat_evict_skip, skipped);

1714 if (missed)
1715 ARCSTAT_INCR(arcstat_mutex_miss, missed);

1717 /*
1718 * We have just evicted some date into the ghost state, make
1719 * sure we also adjust the ghost state size if necessary.
1720 */
1721 if (arc_no_grow &&
1722 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
1723 int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
1724 arc_mru_ghost->arcs_size - arc_c;

1726 if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
1727 int64_t todelete =
1728 MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
1729 arc_evict_ghost(arc_mru_ghost, NULL, todelete);
1730 } else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
1731 int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
1732 arc_mru_ghost->arcs_size +
1733 arc_mfu_ghost->arcs_size - arc_c);
1734 arc_evict_ghost(arc_mfu_ghost, NULL, todelete);
1735 }
1736 }

1738 return (stolen);
1739 }
______unchanged_portion_omitted_

2356 /*
2357 * This routine is called whenever a buffer is accessed.
2358 * NOTE: the hash lock is dropped in this function.
2359 */
2360 static void
2361 arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)

new/usr/src/uts/common/fs/zfs/arc.c 4

2362 {
2363 clock_t now;

2365 ASSERT(MUTEX_HELD(hash_lock));

2367 if (buf->b_state == arc_anon) {
2368 /*
2369 * This buffer is not in the cache, and does not
2370 * appear in our "ghost" list. Add the new buffer
2371 * to the MRU state.
2372 */

2374 ASSERT(buf->b_arc_access == 0);
2375 buf->b_arc_access = ddi_get_lbolt();
2376 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2377 arc_change_state(arc_mru, buf, hash_lock);

2379 } else if (buf->b_state == arc_mru) {
2380 now = ddi_get_lbolt();

2382 /*
2383 * If this buffer is here because of a prefetch, then either:
2384 * - clear the flag if this is a "referencing" read
2385 * (any subsequent access will bump this into the MFU state).
2386 * or
2387 * - move the buffer to the head of the list if this is
2388 * another prefetch (to make it less likely to be evicted).
2389 */
2390 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2391 if (refcount_count(&buf->b_refcnt) == 0) {
2392 ASSERT(list_link_active(&buf->b_arc_node));
2393 } else {
2394 buf->b_flags &= ~ARC_PREFETCH;
2395 ARCSTAT_BUMP(arcstat_mru_hits);
2396 }
2397 buf->b_arc_access = now;
2398 return;
2399 }

2401 /*
2402 * This buffer has been "accessed" only once so far,
2403 * but it is still in the cache. Move it to the MFU
2404 * state.
2405 */
2406 if (now > buf->b_arc_access + ARC_MINTIME) {
2407 /*
2408 * More than 125ms have passed since we
2409 * instantiated this buffer. Move it to the
2410 * most frequently used state.
2411 */
2412 buf->b_arc_access = now;
2413 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2414 arc_change_state(arc_mfu, buf, hash_lock);
2415 }
2416 ARCSTAT_BUMP(arcstat_mru_hits);
2417 } else if (buf->b_state == arc_mru_ghost) {
2418 arc_state_t *new_state;
2419 /*
2420 * This buffer has been "accessed" recently, but
2421 * was evicted from the cache. Move it to the
2422 * MFU state.
2423 */

2425 if (buf->b_flags & ARC_PREFETCH) {
2426 new_state = arc_mru;
2427 if (refcount_count(&buf->b_refcnt) > 0)

new/usr/src/uts/common/fs/zfs/arc.c 5

2428 buf->b_flags &= ~ARC_PREFETCH;
2429 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2430 } else {
2431 new_state = arc_mfu;
2432 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2433 }

2435 buf->b_arc_access = ddi_get_lbolt();
2436 arc_change_state(new_state, buf, hash_lock);

2438 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2439 } else if (buf->b_state == arc_mfu) {
2440 /*
2441 * This buffer has been accessed more than once and is
2442 * still in the cache. Keep it in the MFU state.
2443 *
2444 * NOTE: an add_reference() that occurred when we did
2445 * the arc_read() will have kicked this off the list.
2446 * If it was a prefetch, we will explicitly move it to
2447 * the head of the list now.
2448 */
2449 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2450 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2451 ASSERT(list_link_active(&buf->b_arc_node));
2452 }
2453 ARCSTAT_BUMP(arcstat_mfu_hits);
2454 buf->b_arc_access = ddi_get_lbolt();
2455 } else if (buf->b_state == arc_mfu_ghost) {
2456 arc_state_t *new_state = arc_mfu;
2457 /*
2458 * This buffer has been accessed more than once but has
2459 * been evicted from the cache. Move it back to the
2460 * MFU state.
2461 */

2463 if (buf->b_flags & ARC_PREFETCH) {
2464 /*
2465 * This is a prefetch access...
2466 * move this block back to the MRU state.
2467 */
2468 ASSERT0(refcount_count(&buf->b_refcnt));
2468 ASSERT3U(refcount_count(&buf->b_refcnt), ==, 0);
2469 new_state = arc_mru;
2470 }

2472 buf->b_arc_access = ddi_get_lbolt();
2473 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2474 arc_change_state(new_state, buf, hash_lock);

2476 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2477 } else if (buf->b_state == arc_l2c_only) {
2478 /*
2479 * This buffer is on the 2nd Level ARC.
2480 */

2482 buf->b_arc_access = ddi_get_lbolt();
2483 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2484 arc_change_state(arc_mfu, buf, hash_lock);
2485 } else {
2486 ASSERT(!"invalid arc state");
2487 }
2488 }
______unchanged_portion_omitted_

2687 int
2688 arc_read_nolock(zio_t *pio, spa_t *spa, const blkptr_t *bp,

new/usr/src/uts/common/fs/zfs/arc.c 6

2689 arc_done_func_t *done, void *private, int priority, int zio_flags,
2690 uint32_t *arc_flags, const zbookmark_t *zb)
2691 {
2692 arc_buf_hdr_t *hdr;
2693 arc_buf_t *buf;
2694 kmutex_t *hash_lock;
2695 zio_t *rzio;
2696 uint64_t guid = spa_load_guid(spa);

2698 top:
2699 hdr = buf_hash_find(guid, BP_IDENTITY(bp), BP_PHYSICAL_BIRTH(bp),
2700 &hash_lock);
2701 if (hdr && hdr->b_datacnt > 0) {

2703 *arc_flags |= ARC_CACHED;

2705 if (HDR_IO_IN_PROGRESS(hdr)) {

2707 if (*arc_flags & ARC_WAIT) {
2708 cv_wait(&hdr->b_cv, hash_lock);
2709 mutex_exit(hash_lock);
2710 goto top;
2711 }
2712 ASSERT(*arc_flags & ARC_NOWAIT);

2714 if (done) {
2715 arc_callback_t *acb = NULL;

2717 acb = kmem_zalloc(sizeof (arc_callback_t),
2718 KM_SLEEP);
2719 acb->acb_done = done;
2720 acb->acb_private = private;
2721 if (pio != NULL)
2722 acb->acb_zio_dummy = zio_null(pio,
2723 spa, NULL, NULL, NULL, zio_flags);

2725 ASSERT(acb->acb_done != NULL);
2726 acb->acb_next = hdr->b_acb;
2727 hdr->b_acb = acb;
2728 add_reference(hdr, hash_lock, private);
2729 mutex_exit(hash_lock);
2730 return (0);
2731 }
2732 mutex_exit(hash_lock);
2733 return (0);
2734 }

2736 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);

2738 if (done) {
2739 add_reference(hdr, hash_lock, private);
2740 /*
2741 * If this block is already in use, create a new
2742 * copy of the data so that we will be guaranteed
2743 * that arc_release() will always succeed.
2744 */
2745 buf = hdr->b_buf;
2746 ASSERT(buf);
2747 ASSERT(buf->b_data);
2748 if (HDR_BUF_AVAILABLE(hdr)) {
2749 ASSERT(buf->b_efunc == NULL);
2750 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
2751 } else {
2752 buf = arc_buf_clone(buf);
2753 }

new/usr/src/uts/common/fs/zfs/arc.c 7

2755 } else if (*arc_flags & ARC_PREFETCH &&
2756 refcount_count(&hdr->b_refcnt) == 0) {
2757 hdr->b_flags |= ARC_PREFETCH;
2758 }
2759 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
2760 arc_access(hdr, hash_lock);
2761 if (*arc_flags & ARC_L2CACHE)
2762 hdr->b_flags |= ARC_L2CACHE;
2763 mutex_exit(hash_lock);
2764 ARCSTAT_BUMP(arcstat_hits);
2765 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2766 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2767 data, metadata, hits);

2769 if (done)
2770 done(NULL, buf, private);
2771 } else {
2772 uint64_t size = BP_GET_LSIZE(bp);
2773 arc_callback_t *acb;
2774 vdev_t *vd = NULL;
2775 uint64_t addr;
2776 boolean_t devw = B_FALSE;

2778 if (hdr == NULL) {
2779 /* this block is not in the cache */
2780 arc_buf_hdr_t *exists;
2781 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
2782 buf = arc_buf_alloc(spa, size, private, type);
2783 hdr = buf->b_hdr;
2784 hdr->b_dva = *BP_IDENTITY(bp);
2785 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
2786 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
2787 exists = buf_hash_insert(hdr, &hash_lock);
2788 if (exists) {
2789 /* somebody beat us to the hash insert */
2790 mutex_exit(hash_lock);
2791 buf_discard_identity(hdr);
2792 (void) arc_buf_remove_ref(buf, private);
2793 goto top; /* restart the IO request */
2794 }
2795 /* if this is a prefetch, we don’t have a reference */
2796 if (*arc_flags & ARC_PREFETCH) {
2797 (void) remove_reference(hdr, hash_lock,
2798 private);
2799 hdr->b_flags |= ARC_PREFETCH;
2800 }
2801 if (*arc_flags & ARC_L2CACHE)
2802 hdr->b_flags |= ARC_L2CACHE;
2803 if (BP_GET_LEVEL(bp) > 0)
2804 hdr->b_flags |= ARC_INDIRECT;
2805 } else {
2806 /* this block is in the ghost cache */
2807 ASSERT(GHOST_STATE(hdr->b_state));
2808 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2809 ASSERT0(refcount_count(&hdr->b_refcnt));
2809 ASSERT3U(refcount_count(&hdr->b_refcnt), ==, 0);
2810 ASSERT(hdr->b_buf == NULL);

2812 /* if this is a prefetch, we don’t have a reference */
2813 if (*arc_flags & ARC_PREFETCH)
2814 hdr->b_flags |= ARC_PREFETCH;
2815 else
2816 add_reference(hdr, hash_lock, private);
2817 if (*arc_flags & ARC_L2CACHE)
2818 hdr->b_flags |= ARC_L2CACHE;
2819 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);

new/usr/src/uts/common/fs/zfs/arc.c 8

2820 buf->b_hdr = hdr;
2821 buf->b_data = NULL;
2822 buf->b_efunc = NULL;
2823 buf->b_private = NULL;
2824 buf->b_next = NULL;
2825 hdr->b_buf = buf;
2826 ASSERT(hdr->b_datacnt == 0);
2827 hdr->b_datacnt = 1;
2828 arc_get_data_buf(buf);
2829 arc_access(hdr, hash_lock);
2830 }

2832 ASSERT(!GHOST_STATE(hdr->b_state));

2834 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
2835 acb->acb_done = done;
2836 acb->acb_private = private;

2838 ASSERT(hdr->b_acb == NULL);
2839 hdr->b_acb = acb;
2840 hdr->b_flags |= ARC_IO_IN_PROGRESS;

2842 if (HDR_L2CACHE(hdr) && hdr->b_l2hdr != NULL &&
2843 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
2844 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
2845 addr = hdr->b_l2hdr->b_daddr;
2846 /*
2847 * Lock out device removal.
2848 */
2849 if (vdev_is_dead(vd) ||
2850 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
2851 vd = NULL;
2852 }

2854 mutex_exit(hash_lock);

2856 ASSERT3U(hdr->b_size, ==, size);
2857 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
2858 uint64_t, size, zbookmark_t *, zb);
2859 ARCSTAT_BUMP(arcstat_misses);
2860 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
2861 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
2862 data, metadata, misses);

2864 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
2865 /*
2866 * Read from the L2ARC if the following are true:
2867 * 1. The L2ARC vdev was previously cached.
2868 * 2. This buffer still has L2ARC metadata.
2869 * 3. This buffer isn’t currently writing to the L2ARC.
2870 * 4. The L2ARC entry wasn’t evicted, which may
2871 * also have invalidated the vdev.
2872 * 5. This isn’t prefetch and l2arc_noprefetch is set.
2873 */
2874 if (hdr->b_l2hdr != NULL &&
2875 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
2876 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
2877 l2arc_read_callback_t *cb;

2879 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
2880 ARCSTAT_BUMP(arcstat_l2_hits);

2882 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
2883 KM_SLEEP);
2884 cb->l2rcb_buf = buf;
2885 cb->l2rcb_spa = spa;

new/usr/src/uts/common/fs/zfs/arc.c 9

2886 cb->l2rcb_bp = *bp;
2887 cb->l2rcb_zb = *zb;
2888 cb->l2rcb_flags = zio_flags;

2890 /*
2891 * l2arc read. The SCL_L2ARC lock will be
2892 * released by l2arc_read_done().
2893 */
2894 rzio = zio_read_phys(pio, vd, addr, size,
2895 buf->b_data, ZIO_CHECKSUM_OFF,
2896 l2arc_read_done, cb, priority, zio_flags |
2897 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
2898 ZIO_FLAG_DONT_PROPAGATE |
2899 ZIO_FLAG_DONT_RETRY, B_FALSE);
2900 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
2901 zio_t *, rzio);
2902 ARCSTAT_INCR(arcstat_l2_read_bytes, size);

2904 if (*arc_flags & ARC_NOWAIT) {
2905 zio_nowait(rzio);
2906 return (0);
2907 }

2909 ASSERT(*arc_flags & ARC_WAIT);
2910 if (zio_wait(rzio) == 0)
2911 return (0);

2913 /* l2arc read error; goto zio_read() */
2914 } else {
2915 DTRACE_PROBE1(l2arc__miss,
2916 arc_buf_hdr_t *, hdr);
2917 ARCSTAT_BUMP(arcstat_l2_misses);
2918 if (HDR_L2_WRITING(hdr))
2919 ARCSTAT_BUMP(arcstat_l2_rw_clash);
2920 spa_config_exit(spa, SCL_L2ARC, vd);
2921 }
2922 } else {
2923 if (vd != NULL)
2924 spa_config_exit(spa, SCL_L2ARC, vd);
2925 if (l2arc_ndev != 0) {
2926 DTRACE_PROBE1(l2arc__miss,
2927 arc_buf_hdr_t *, hdr);
2928 ARCSTAT_BUMP(arcstat_l2_misses);
2929 }
2930 }

2932 rzio = zio_read(pio, spa, bp, buf->b_data, size,
2933 arc_read_done, buf, priority, zio_flags, zb);

2935 if (*arc_flags & ARC_WAIT)
2936 return (zio_wait(rzio));

2938 ASSERT(*arc_flags & ARC_NOWAIT);
2939 zio_nowait(rzio);
2940 }
2941 return (0);
2942 }
______unchanged_portion_omitted_

4236 /*
4237 * Find and write ARC buffers to the L2ARC device.
4238 *
4239 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4240 * for reading until they have completed writing.
4241 */
4242 static uint64_t

new/usr/src/uts/common/fs/zfs/arc.c 10

4243 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
4244 {
4245 arc_buf_hdr_t *ab, *ab_prev, *head;
4246 l2arc_buf_hdr_t *hdrl2;
4247 list_t *list;
4248 uint64_t passed_sz, write_sz, buf_sz, headroom;
4249 void *buf_data;
4250 kmutex_t *hash_lock, *list_lock;
4251 boolean_t have_lock, full;
4252 l2arc_write_callback_t *cb;
4253 zio_t *pio, *wzio;
4254 uint64_t guid = spa_load_guid(spa);

4256 ASSERT(dev->l2ad_vdev != NULL);

4258 pio = NULL;
4259 write_sz = 0;
4260 full = B_FALSE;
4261 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4262 head->b_flags |= ARC_L2_WRITE_HEAD;

4264 /*
4265 * Copy buffers for L2ARC writing.
4266 */
4267 mutex_enter(&l2arc_buflist_mtx);
4268 for (int try = 0; try <= 3; try++) {
4269 list = l2arc_list_locked(try, &list_lock);
4270 passed_sz = 0;

4272 /*
4273 * L2ARC fast warmup.
4274 *
4275 * Until the ARC is warm and starts to evict, read from the
4276 * head of the ARC lists rather than the tail.
4277 */
4278 headroom = target_sz * l2arc_headroom;
4279 if (arc_warm == B_FALSE)
4280 ab = list_head(list);
4281 else
4282 ab = list_tail(list);

4284 for (; ab; ab = ab_prev) {
4285 if (arc_warm == B_FALSE)
4286 ab_prev = list_next(list, ab);
4287 else
4288 ab_prev = list_prev(list, ab);

4290 hash_lock = HDR_LOCK(ab);
4291 have_lock = MUTEX_HELD(hash_lock);
4292 if (!have_lock && !mutex_tryenter(hash_lock)) {
4293 /*
4294 * Skip this buffer rather than waiting.
4295 */
4296 continue;
4297 }

4299 passed_sz += ab->b_size;
4300 if (passed_sz > headroom) {
4301 /*
4302 * Searched too far.
4303 */
4304 mutex_exit(hash_lock);
4305 break;
4306 }

4308 if (!l2arc_write_eligible(guid, ab)) {

new/usr/src/uts/common/fs/zfs/arc.c 11

4309 mutex_exit(hash_lock);
4310 continue;
4311 }

4313 if ((write_sz + ab->b_size) > target_sz) {
4314 full = B_TRUE;
4315 mutex_exit(hash_lock);
4316 break;
4317 }

4319 if (pio == NULL) {
4320 /*
4321 * Insert a dummy header on the buflist so
4322 * l2arc_write_done() can find where the
4323 * write buffers begin without searching.
4324 */
4325 list_insert_head(dev->l2ad_buflist, head);

4327 cb = kmem_alloc(
4328 sizeof (l2arc_write_callback_t), KM_SLEEP);
4329 cb->l2wcb_dev = dev;
4330 cb->l2wcb_head = head;
4331 pio = zio_root(spa, l2arc_write_done, cb,
4332 ZIO_FLAG_CANFAIL);
4333 }

4335 /*
4336 * Create and add a new L2ARC header.
4337 */
4338 hdrl2 = kmem_zalloc(sizeof (l2arc_buf_hdr_t), KM_SLEEP);
4339 hdrl2->b_dev = dev;
4340 hdrl2->b_daddr = dev->l2ad_hand;

4342 ab->b_flags |= ARC_L2_WRITING;
4343 ab->b_l2hdr = hdrl2;
4344 list_insert_head(dev->l2ad_buflist, ab);
4345 buf_data = ab->b_buf->b_data;
4346 buf_sz = ab->b_size;

4348 /*
4349 * Compute and store the buffer cksum before
4350 * writing. On debug the cksum is verified first.
4351 */
4352 arc_cksum_verify(ab->b_buf);
4353 arc_cksum_compute(ab->b_buf, B_TRUE);

4355 mutex_exit(hash_lock);

4357 wzio = zio_write_phys(pio, dev->l2ad_vdev,
4358 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
4359 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
4360 ZIO_FLAG_CANFAIL, B_FALSE);

4362 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
4363 zio_t *, wzio);
4364 (void) zio_nowait(wzio);

4366 /*
4367 * Keep the clock hand suitably device-aligned.
4368 */
4369 buf_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);

4371 write_sz += buf_sz;
4372 dev->l2ad_hand += buf_sz;
4373 }

new/usr/src/uts/common/fs/zfs/arc.c 12

4375 mutex_exit(list_lock);

4377 if (full == B_TRUE)
4378 break;
4379 }
4380 mutex_exit(&l2arc_buflist_mtx);

4382 if (pio == NULL) {
4383 ASSERT0(write_sz);
4383 ASSERT3U(write_sz, ==, 0);
4384 kmem_cache_free(hdr_cache, head);
4385 return (0);
4386 }

4388 ASSERT3U(write_sz, <=, target_sz);
4389 ARCSTAT_BUMP(arcstat_l2_writes_sent);
4390 ARCSTAT_INCR(arcstat_l2_write_bytes, write_sz);
4391 ARCSTAT_INCR(arcstat_l2_size, write_sz);
4392 vdev_space_update(dev->l2ad_vdev, write_sz, 0, 0);

4394 /*
4395 * Bump device hand to the device start if it is approaching the end.
4396 * l2arc_evict() will already have evicted ahead for this case.
4397 */
4398 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4399 vdev_space_update(dev->l2ad_vdev,
4400 dev->l2ad_end - dev->l2ad_hand, 0, 0);
4401 dev->l2ad_hand = dev->l2ad_start;
4402 dev->l2ad_evict = dev->l2ad_start;
4403 dev->l2ad_first = B_FALSE;
4404 }

4406 dev->l2ad_writing = B_TRUE;
4407 (void) zio_wait(pio);
4408 dev->l2ad_writing = B_FALSE;

4410 return (write_sz);
4411 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/bpobj.c 1

**
 13003 Thu Jul 26 14:19:04 2012
new/usr/src/uts/common/fs/zfs/bpobj.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 */

26 #include <sys/bpobj.h>
27 #include <sys/zfs_context.h>
28 #include <sys/refcount.h>
29 #include <sys/dsl_pool.h>

31 uint64_t
32 bpobj_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
33 {
34 int size;

36 if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_BPOBJ_ACCOUNT)
37 size = BPOBJ_SIZE_V0;
38 else if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
39 size = BPOBJ_SIZE_V1;
40 else
41 size = sizeof (bpobj_phys_t);

43 return (dmu_object_alloc(os, DMU_OT_BPOBJ, blocksize,
44 DMU_OT_BPOBJ_HDR, size, tx));
45 }

47 void
48 bpobj_free(objset_t *os, uint64_t obj, dmu_tx_t *tx)
49 {
50 int64_t i;
51 bpobj_t bpo;
52 dmu_object_info_t doi;
53 int epb;
54 dmu_buf_t *dbuf = NULL;

56 VERIFY0(bpobj_open(&bpo, os, obj));
56 VERIFY3U(0, ==, bpobj_open(&bpo, os, obj));

58 mutex_enter(&bpo.bpo_lock);

new/usr/src/uts/common/fs/zfs/bpobj.c 2

60 if (!bpo.bpo_havesubobj || bpo.bpo_phys->bpo_subobjs == 0)
61 goto out;

63 VERIFY0(dmu_object_info(os, bpo.bpo_phys->bpo_subobjs, &doi));
63 VERIFY3U(0, ==, dmu_object_info(os, bpo.bpo_phys->bpo_subobjs, &doi));
64 epb = doi.doi_data_block_size / sizeof (uint64_t);

66 for (i = bpo.bpo_phys->bpo_num_subobjs - 1; i >= 0; i--) {
67 uint64_t *objarray;
68 uint64_t offset, blkoff;

70 offset = i * sizeof (uint64_t);
71 blkoff = P2PHASE(i, epb);

73 if (dbuf == NULL || dbuf->db_offset > offset) {
74 if (dbuf)
75 dmu_buf_rele(dbuf, FTAG);
76 VERIFY0(dmu_buf_hold(os,
76 VERIFY3U(0, ==, dmu_buf_hold(os,
77 bpo.bpo_phys->bpo_subobjs, offset, FTAG, &dbuf, 0));
78 }

80 ASSERT3U(offset, >=, dbuf->db_offset);
81 ASSERT3U(offset, <, dbuf->db_offset + dbuf->db_size);

83 objarray = dbuf->db_data;
84 bpobj_free(os, objarray[blkoff], tx);
85 }
86 if (dbuf) {
87 dmu_buf_rele(dbuf, FTAG);
88 dbuf = NULL;
89 }
90 VERIFY0(dmu_object_free(os, bpo.bpo_phys->bpo_subobjs, tx));
90 VERIFY3U(0, ==, dmu_object_free(os, bpo.bpo_phys->bpo_subobjs, tx));

92 out:
93 mutex_exit(&bpo.bpo_lock);
94 bpobj_close(&bpo);

96 VERIFY0(dmu_object_free(os, obj, tx));
96 VERIFY3U(0, ==, dmu_object_free(os, obj, tx));
97 }

______unchanged_portion_omitted_

149 static int
150 bpobj_iterate_impl(bpobj_t *bpo, bpobj_itor_t func, void *arg, dmu_tx_t *tx,
151 boolean_t free)
152 {
153 dmu_object_info_t doi;
154 int epb;
155 int64_t i;
156 int err = 0;
157 dmu_buf_t *dbuf = NULL;

159 mutex_enter(&bpo->bpo_lock);

161 if (free)
162 dmu_buf_will_dirty(bpo->bpo_dbuf, tx);

164 for (i = bpo->bpo_phys->bpo_num_blkptrs - 1; i >= 0; i--) {
165 blkptr_t *bparray;
166 blkptr_t *bp;
167 uint64_t offset, blkoff;

169 offset = i * sizeof (blkptr_t);
170 blkoff = P2PHASE(i, bpo->bpo_epb);

new/usr/src/uts/common/fs/zfs/bpobj.c 3

172 if (dbuf == NULL || dbuf->db_offset > offset) {
173 if (dbuf)
174 dmu_buf_rele(dbuf, FTAG);
175 err = dmu_buf_hold(bpo->bpo_os, bpo->bpo_object, offset,
176 FTAG, &dbuf, 0);
177 if (err)
178 break;
179 }

181 ASSERT3U(offset, >=, dbuf->db_offset);
182 ASSERT3U(offset, <, dbuf->db_offset + dbuf->db_size);

184 bparray = dbuf->db_data;
185 bp = &bparray[blkoff];
186 err = func(arg, bp, tx);
187 if (err)
188 break;
189 if (free) {
190 bpo->bpo_phys->bpo_bytes -=
191 bp_get_dsize_sync(dmu_objset_spa(bpo->bpo_os), bp);
192 ASSERT3S(bpo->bpo_phys->bpo_bytes, >=, 0);
193 if (bpo->bpo_havecomp) {
194 bpo->bpo_phys->bpo_comp -= BP_GET_PSIZE(bp);
195 bpo->bpo_phys->bpo_uncomp -= BP_GET_UCSIZE(bp);
196 }
197 bpo->bpo_phys->bpo_num_blkptrs--;
198 ASSERT3S(bpo->bpo_phys->bpo_num_blkptrs, >=, 0);
199 }
200 }
201 if (dbuf) {
202 dmu_buf_rele(dbuf, FTAG);
203 dbuf = NULL;
204 }
205 if (free) {
206 i++;
207 VERIFY0(dmu_free_range(bpo->bpo_os, bpo->bpo_object,
207 VERIFY3U(0, ==, dmu_free_range(bpo->bpo_os, bpo->bpo_object,
208 i * sizeof (blkptr_t), -1ULL, tx));
209 }
210 if (err || !bpo->bpo_havesubobj || bpo->bpo_phys->bpo_subobjs == 0)
211 goto out;

213 ASSERT(bpo->bpo_havecomp);
214 err = dmu_object_info(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs, &doi);
215 if (err) {
216 mutex_exit(&bpo->bpo_lock);
217 return (err);
218 }
219 epb = doi.doi_data_block_size / sizeof (uint64_t);

221 for (i = bpo->bpo_phys->bpo_num_subobjs - 1; i >= 0; i--) {
222 uint64_t *objarray;
223 uint64_t offset, blkoff;
224 bpobj_t sublist;
225 uint64_t used_before, comp_before, uncomp_before;
226 uint64_t used_after, comp_after, uncomp_after;

228 offset = i * sizeof (uint64_t);
229 blkoff = P2PHASE(i, epb);

231 if (dbuf == NULL || dbuf->db_offset > offset) {
232 if (dbuf)
233 dmu_buf_rele(dbuf, FTAG);
234 err = dmu_buf_hold(bpo->bpo_os,
235 bpo->bpo_phys->bpo_subobjs, offset, FTAG, &dbuf, 0);

new/usr/src/uts/common/fs/zfs/bpobj.c 4

236 if (err)
237 break;
238 }

240 ASSERT3U(offset, >=, dbuf->db_offset);
241 ASSERT3U(offset, <, dbuf->db_offset + dbuf->db_size);

243 objarray = dbuf->db_data;
244 err = bpobj_open(&sublist, bpo->bpo_os, objarray[blkoff]);
245 if (err)
246 break;
247 if (free) {
248 err = bpobj_space(&sublist,
249 &used_before, &comp_before, &uncomp_before);
250 if (err)
251 break;
252 }
253 err = bpobj_iterate_impl(&sublist, func, arg, tx, free);
254 if (free) {
255 VERIFY0(bpobj_space(&sublist,
255 VERIFY3U(0, ==, bpobj_space(&sublist,
256 &used_after, &comp_after, &uncomp_after));
257 bpo->bpo_phys->bpo_bytes -= used_before - used_after;
258 ASSERT3S(bpo->bpo_phys->bpo_bytes, >=, 0);
259 bpo->bpo_phys->bpo_comp -= comp_before - comp_after;
260 bpo->bpo_phys->bpo_uncomp -=
261 uncomp_before - uncomp_after;
262 }

264 bpobj_close(&sublist);
265 if (err)
266 break;
267 if (free) {
268 err = dmu_object_free(bpo->bpo_os,
269 objarray[blkoff], tx);
270 if (err)
271 break;
272 bpo->bpo_phys->bpo_num_subobjs--;
273 ASSERT3S(bpo->bpo_phys->bpo_num_subobjs, >=, 0);
274 }
275 }
276 if (dbuf) {
277 dmu_buf_rele(dbuf, FTAG);
278 dbuf = NULL;
279 }
280 if (free) {
281 VERIFY0(dmu_free_range(bpo->bpo_os,
281 VERIFY3U(0, ==, dmu_free_range(bpo->bpo_os,
282 bpo->bpo_phys->bpo_subobjs,
283 (i + 1) * sizeof (uint64_t), -1ULL, tx));
284 }

286 out:
287 /* If there are no entries, there should be no bytes. */
288 ASSERT(bpo->bpo_phys->bpo_num_blkptrs > 0 ||
289 (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_num_subobjs > 0) ||
290 bpo->bpo_phys->bpo_bytes == 0);

292 mutex_exit(&bpo->bpo_lock);
293 return (err);
294 }

______unchanged_portion_omitted_

315 void
316 bpobj_enqueue_subobj(bpobj_t *bpo, uint64_t subobj, dmu_tx_t *tx)
317 {

new/usr/src/uts/common/fs/zfs/bpobj.c 5

318 bpobj_t subbpo;
319 uint64_t used, comp, uncomp, subsubobjs;

321 ASSERT(bpo->bpo_havesubobj);
322 ASSERT(bpo->bpo_havecomp);

324 VERIFY0(bpobj_open(&subbpo, bpo->bpo_os, subobj));
325 VERIFY0(bpobj_space(&subbpo, &used, &comp, &uncomp));
324 VERIFY3U(0, ==, bpobj_open(&subbpo, bpo->bpo_os, subobj));
325 VERIFY3U(0, ==, bpobj_space(&subbpo, &used, &comp, &uncomp));

327 if (used == 0) {
328 /* No point in having an empty subobj. */
329 bpobj_close(&subbpo);
330 bpobj_free(bpo->bpo_os, subobj, tx);
331 return;
332 }

334 dmu_buf_will_dirty(bpo->bpo_dbuf, tx);
335 if (bpo->bpo_phys->bpo_subobjs == 0) {
336 bpo->bpo_phys->bpo_subobjs = dmu_object_alloc(bpo->bpo_os,
337 DMU_OT_BPOBJ_SUBOBJ, SPA_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
338 }

340 mutex_enter(&bpo->bpo_lock);
341 dmu_write(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs,
342 bpo->bpo_phys->bpo_num_subobjs * sizeof (subobj),
343 sizeof (subobj), &subobj, tx);
344 bpo->bpo_phys->bpo_num_subobjs++;

346 /*
347 * If subobj has only one block of subobjs, then move subobj’s
348 * subobjs to bpo’s subobj list directly. This reduces
349 * recursion in bpobj_iterate due to nested subobjs.
350 */
351 subsubobjs = subbpo.bpo_phys->bpo_subobjs;
352 if (subsubobjs != 0) {
353 dmu_object_info_t doi;

355 VERIFY0(dmu_object_info(bpo->bpo_os, subsubobjs, &doi));
355 VERIFY3U(0, ==, dmu_object_info(bpo->bpo_os, subsubobjs, &doi));
356 if (doi.doi_max_offset == doi.doi_data_block_size) {
357 dmu_buf_t *subdb;
358 uint64_t numsubsub = subbpo.bpo_phys->bpo_num_subobjs;

360 VERIFY0(dmu_buf_hold(bpo->bpo_os, subsubobjs,
360 VERIFY3U(0, ==, dmu_buf_hold(bpo->bpo_os, subsubobjs,
361 0, FTAG, &subdb, 0));
362 dmu_write(bpo->bpo_os, bpo->bpo_phys->bpo_subobjs,
363 bpo->bpo_phys->bpo_num_subobjs * sizeof (subobj),
364 numsubsub * sizeof (subobj), subdb->db_data, tx);
365 dmu_buf_rele(subdb, FTAG);
366 bpo->bpo_phys->bpo_num_subobjs += numsubsub;

368 dmu_buf_will_dirty(subbpo.bpo_dbuf, tx);
369 subbpo.bpo_phys->bpo_subobjs = 0;
370 VERIFY0(dmu_object_free(bpo->bpo_os,
370 VERIFY3U(0, ==, dmu_object_free(bpo->bpo_os,
371 subsubobjs, tx));
372 }
373 }
374 bpo->bpo_phys->bpo_bytes += used;
375 bpo->bpo_phys->bpo_comp += comp;
376 bpo->bpo_phys->bpo_uncomp += uncomp;
377 mutex_exit(&bpo->bpo_lock);

new/usr/src/uts/common/fs/zfs/bpobj.c 6

379 bpobj_close(&subbpo);
380 }

382 void
383 bpobj_enqueue(bpobj_t *bpo, const blkptr_t *bp, dmu_tx_t *tx)
384 {
385 blkptr_t stored_bp = *bp;
386 uint64_t offset;
387 int blkoff;
388 blkptr_t *bparray;

390 ASSERT(!BP_IS_HOLE(bp));

392 /* We never need the fill count. */
393 stored_bp.blk_fill = 0;

395 /* The bpobj will compress better if we can leave off the checksum */
396 if (!BP_GET_DEDUP(bp))
397 bzero(&stored_bp.blk_cksum, sizeof (stored_bp.blk_cksum));

399 mutex_enter(&bpo->bpo_lock);

401 offset = bpo->bpo_phys->bpo_num_blkptrs * sizeof (stored_bp);
402 blkoff = P2PHASE(bpo->bpo_phys->bpo_num_blkptrs, bpo->bpo_epb);

404 if (bpo->bpo_cached_dbuf == NULL ||
405 offset < bpo->bpo_cached_dbuf->db_offset ||
406 offset >= bpo->bpo_cached_dbuf->db_offset +
407 bpo->bpo_cached_dbuf->db_size) {
408 if (bpo->bpo_cached_dbuf)
409 dmu_buf_rele(bpo->bpo_cached_dbuf, bpo);
410 VERIFY0(dmu_buf_hold(bpo->bpo_os, bpo->bpo_object,
410 VERIFY3U(0, ==, dmu_buf_hold(bpo->bpo_os, bpo->bpo_object,
411 offset, bpo, &bpo->bpo_cached_dbuf, 0));
412 }

414 dmu_buf_will_dirty(bpo->bpo_cached_dbuf, tx);
415 bparray = bpo->bpo_cached_dbuf->db_data;
416 bparray[blkoff] = stored_bp;

418 dmu_buf_will_dirty(bpo->bpo_dbuf, tx);
419 bpo->bpo_phys->bpo_num_blkptrs++;
420 bpo->bpo_phys->bpo_bytes +=
421 bp_get_dsize_sync(dmu_objset_spa(bpo->bpo_os), bp);
422 if (bpo->bpo_havecomp) {
423 bpo->bpo_phys->bpo_comp += BP_GET_PSIZE(bp);
424 bpo->bpo_phys->bpo_uncomp += BP_GET_UCSIZE(bp);
425 }
426 mutex_exit(&bpo->bpo_lock);
427 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/bptree.c 1

**
 5944 Thu Jul 26 14:19:05 2012
new/usr/src/uts/common/fs/zfs/bptree.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

60 uint64_t
61 bptree_alloc(objset_t *os, dmu_tx_t *tx)
62 {
63 uint64_t obj;
64 dmu_buf_t *db;
65 bptree_phys_t *bt;

67 obj = dmu_object_alloc(os, DMU_OTN_UINT64_METADATA,
68 SPA_MAXBLOCKSIZE, DMU_OTN_UINT64_METADATA,
69 sizeof (bptree_phys_t), tx);

71 /*
72 * Bonus buffer contents are already initialized to 0, but for
73 * readability we make it explicit.
74 */
75 VERIFY0(dmu_bonus_hold(os, obj, FTAG, &db));
75 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
76 dmu_buf_will_dirty(db, tx);
77 bt = db->db_data;
78 bt->bt_begin = 0;
79 bt->bt_end = 0;
80 bt->bt_bytes = 0;
81 bt->bt_comp = 0;
82 bt->bt_uncomp = 0;
83 dmu_buf_rele(db, FTAG);

85 return (obj);
86 }

88 int
89 bptree_free(objset_t *os, uint64_t obj, dmu_tx_t *tx)
90 {
91 dmu_buf_t *db;
92 bptree_phys_t *bt;

94 VERIFY0(dmu_bonus_hold(os, obj, FTAG, &db));
94 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
95 bt = db->db_data;
96 ASSERT3U(bt->bt_begin, ==, bt->bt_end);
97 ASSERT0(bt->bt_bytes);
98 ASSERT0(bt->bt_comp);
99 ASSERT0(bt->bt_uncomp);
97 ASSERT3U(bt->bt_bytes, ==, 0);
98 ASSERT3U(bt->bt_comp, ==, 0);
99 ASSERT3U(bt->bt_uncomp, ==, 0);
100 dmu_buf_rele(db, FTAG);

102 return (dmu_object_free(os, obj, tx));
103 }

105 void
106 bptree_add(objset_t *os, uint64_t obj, blkptr_t *bp, uint64_t birth_txg,
107 uint64_t bytes, uint64_t comp, uint64_t uncomp, dmu_tx_t *tx)
108 {
109 dmu_buf_t *db;
110 bptree_phys_t *bt;
111 bptree_entry_phys_t bte;

113 /*

new/usr/src/uts/common/fs/zfs/bptree.c 2

114 * bptree objects are in the pool mos, therefore they can only be
115 * modified in syncing context. Furthermore, this is only modified
116 * by the sync thread, so no locking is necessary.
117 */
118 ASSERT(dmu_tx_is_syncing(tx));

120 VERIFY0(dmu_bonus_hold(os, obj, FTAG, &db));
120 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
121 bt = db->db_data;

123 bte.be_birth_txg = birth_txg;
124 bte.be_bp = *bp;
125 bzero(&bte.be_zb, sizeof (bte.be_zb));
126 dmu_write(os, obj, bt->bt_end * sizeof (bte), sizeof (bte), &bte, tx);

128 dmu_buf_will_dirty(db, tx);
129 bt->bt_end++;
130 bt->bt_bytes += bytes;
131 bt->bt_comp += comp;
132 bt->bt_uncomp += uncomp;
133 dmu_buf_rele(db, FTAG);
134 }

______unchanged_portion_omitted_

156 int
157 bptree_iterate(objset_t *os, uint64_t obj, boolean_t free, bptree_itor_t func,
158 void *arg, dmu_tx_t *tx)
159 {
160 int err;
161 uint64_t i;
162 dmu_buf_t *db;
163 struct bptree_args ba;

165 ASSERT(!free || dmu_tx_is_syncing(tx));

167 err = dmu_bonus_hold(os, obj, FTAG, &db);
168 if (err != 0)
169 return (err);

171 if (free)
172 dmu_buf_will_dirty(db, tx);

174 ba.ba_phys = db->db_data;
175 ba.ba_free = free;
176 ba.ba_func = func;
177 ba.ba_arg = arg;
178 ba.ba_tx = tx;

180 err = 0;
181 for (i = ba.ba_phys->bt_begin; i < ba.ba_phys->bt_end; i++) {
182 bptree_entry_phys_t bte;

184 ASSERT(!free || i == ba.ba_phys->bt_begin);

186 err = dmu_read(os, obj, i * sizeof (bte), sizeof (bte),
187 &bte, DMU_READ_NO_PREFETCH);
188 if (err != 0)
189 break;

191 err = traverse_dataset_destroyed(os->os_spa, &bte.be_bp,
192 bte.be_birth_txg, &bte.be_zb, TRAVERSE_POST,
193 bptree_visit_cb, &ba);
194 if (free) {
195 ASSERT(err == 0 || err == ERESTART);
196 if (err != 0) {
197 /* save bookmark for future resume */

new/usr/src/uts/common/fs/zfs/bptree.c 3

198 ASSERT3U(bte.be_zb.zb_objset, ==,
199 ZB_DESTROYED_OBJSET);
200 ASSERT0(bte.be_zb.zb_level);
200 ASSERT3U(bte.be_zb.zb_level, ==, 0);
201 dmu_write(os, obj, i * sizeof (bte),
202 sizeof (bte), &bte, tx);
203 break;
204 } else {
205 ba.ba_phys->bt_begin++;
206 (void) dmu_free_range(os, obj,
207 i * sizeof (bte), sizeof (bte), tx);
208 }
209 }
210 }

212 ASSERT(!free || err != 0 || ba.ba_phys->bt_begin == ba.ba_phys->bt_end);

214 /* if all blocks are free there should be no used space */
215 if (ba.ba_phys->bt_begin == ba.ba_phys->bt_end) {
216 ASSERT0(ba.ba_phys->bt_bytes);
217 ASSERT0(ba.ba_phys->bt_comp);
218 ASSERT0(ba.ba_phys->bt_uncomp);
216 ASSERT3U(ba.ba_phys->bt_bytes, ==, 0);
217 ASSERT3U(ba.ba_phys->bt_comp, ==, 0);
218 ASSERT3U(ba.ba_phys->bt_uncomp, ==, 0);
219 }

221 dmu_buf_rele(db, FTAG);

223 return (err);
224 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dbuf.c 1

**
 73444 Thu Jul 26 14:19:06 2012
new/usr/src/uts/common/fs/zfs/dbuf.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

294 /*
295 * Other stuff.
296 */

298 #ifdef ZFS_DEBUG
299 static void
300 dbuf_verify(dmu_buf_impl_t *db)
301 {
302 dnode_t *dn;
303 dbuf_dirty_record_t *dr;

305 ASSERT(MUTEX_HELD(&db->db_mtx));

307 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
308 return;

310 ASSERT(db->db_objset != NULL);
311 DB_DNODE_ENTER(db);
312 dn = DB_DNODE(db);
313 if (dn == NULL) {
314 ASSERT(db->db_parent == NULL);
315 ASSERT(db->db_blkptr == NULL);
316 } else {
317 ASSERT3U(db->db.db_object, ==, dn->dn_object);
318 ASSERT3P(db->db_objset, ==, dn->dn_objset);
319 ASSERT3U(db->db_level, <, dn->dn_nlevels);
320 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
321 db->db_blkid == DMU_SPILL_BLKID ||
322 !list_is_empty(&dn->dn_dbufs));
323 }
324 if (db->db_blkid == DMU_BONUS_BLKID) {
325 ASSERT(dn != NULL);
326 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
327 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
328 } else if (db->db_blkid == DMU_SPILL_BLKID) {
329 ASSERT(dn != NULL);
330 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
331 ASSERT0(db->db.db_offset);
331 ASSERT3U(db->db.db_offset, ==, 0);
332 } else {
333 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
334 }

336 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
337 ASSERT(dr->dr_dbuf == db);

339 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
340 ASSERT(dr->dr_dbuf == db);

342 /*
343 * We can’t assert that db_size matches dn_datablksz because it
344 * can be momentarily different when another thread is doing
345 * dnode_set_blksz().
346 */
347 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
348 dr = db->db_data_pending;
349 /*
350 * It should only be modified in syncing context, so
351 * make sure we only have one copy of the data.

new/usr/src/uts/common/fs/zfs/dbuf.c 2

352 */
353 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
354 }

356 /* verify db->db_blkptr */
357 if (db->db_blkptr) {
358 if (db->db_parent == dn->dn_dbuf) {
359 /* db is pointed to by the dnode */
360 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
361 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
362 ASSERT(db->db_parent == NULL);
363 else
364 ASSERT(db->db_parent != NULL);
365 if (db->db_blkid != DMU_SPILL_BLKID)
366 ASSERT3P(db->db_blkptr, ==,
367 &dn->dn_phys->dn_blkptr[db->db_blkid]);
368 } else {
369 /* db is pointed to by an indirect block */
370 int epb = db->db_parent->db.db_size >> SPA_BLKPTRSHIFT;
371 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
372 ASSERT3U(db->db_parent->db.db_object, ==,
373 db->db.db_object);
374 /*
375 * dnode_grow_indblksz() can make this fail if we don’t
376 * have the struct_rwlock. XXX indblksz no longer
377 * grows. safe to do this now?
378 */
379 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
380 ASSERT3P(db->db_blkptr, ==,
381 ((blkptr_t *)db->db_parent->db.db_data +
382 db->db_blkid % epb));
383 }
384 }
385 }
386 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
387 (db->db_buf == NULL || db->db_buf->b_data) &&
388 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
389 db->db_state != DB_FILL && !dn->dn_free_txg) {
390 /*
391 * If the blkptr isn’t set but they have nonzero data,
392 * it had better be dirty, otherwise we’ll lose that
393 * data when we evict this buffer.
394 */
395 if (db->db_dirtycnt == 0) {
396 uint64_t *buf = db->db.db_data;
397 int i;

399 for (i = 0; i < db->db.db_size >> 3; i++) {
400 ASSERT(buf[i] == 0);
401 }
402 }
403 }
404 DB_DNODE_EXIT(db);
405 }

______unchanged_portion_omitted_

2263 static void
2264 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2265 {
2266 arc_buf_t **datap = &dr->dt.dl.dr_data;
2267 dmu_buf_impl_t *db = dr->dr_dbuf;
2268 dnode_t *dn;
2269 objset_t *os;
2270 uint64_t txg = tx->tx_txg;

2272 ASSERT(dmu_tx_is_syncing(tx));

new/usr/src/uts/common/fs/zfs/dbuf.c 3

2274 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);

2276 mutex_enter(&db->db_mtx);
2277 /*
2278 * To be synced, we must be dirtied. But we
2279 * might have been freed after the dirty.
2280 */
2281 if (db->db_state == DB_UNCACHED) {
2282 /* This buffer has been freed since it was dirtied */
2283 ASSERT(db->db.db_data == NULL);
2284 } else if (db->db_state == DB_FILL) {
2285 /* This buffer was freed and is now being re-filled */
2286 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2287 } else {
2288 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2289 }
2290 DBUF_VERIFY(db);

2292 DB_DNODE_ENTER(db);
2293 dn = DB_DNODE(db);

2295 if (db->db_blkid == DMU_SPILL_BLKID) {
2296 mutex_enter(&dn->dn_mtx);
2297 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2298 mutex_exit(&dn->dn_mtx);
2299 }

2301 /*
2302 * If this is a bonus buffer, simply copy the bonus data into the
2303 * dnode. It will be written out when the dnode is synced (and it
2304 * will be synced, since it must have been dirty for dbuf_sync to
2305 * be called).
2306 */
2307 if (db->db_blkid == DMU_BONUS_BLKID) {
2308 dbuf_dirty_record_t **drp;

2310 ASSERT(*datap != NULL);
2311 ASSERT0(db->db_level);
2311 ASSERT3U(db->db_level, ==, 0);
2312 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2313 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2314 DB_DNODE_EXIT(db);

2316 if (*datap != db->db.db_data) {
2317 zio_buf_free(*datap, DN_MAX_BONUSLEN);
2318 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2319 }
2320 db->db_data_pending = NULL;
2321 drp = &db->db_last_dirty;
2322 while (*drp != dr)
2323 drp = &(*drp)->dr_next;
2324 ASSERT(dr->dr_next == NULL);
2325 ASSERT(dr->dr_dbuf == db);
2326 *drp = dr->dr_next;
2327 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2328 ASSERT(db->db_dirtycnt > 0);
2329 db->db_dirtycnt -= 1;
2330 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2331 return;
2332 }

2334 os = dn->dn_objset;

2336 /*
2337 * This function may have dropped the db_mtx lock allowing a dmu_sync

new/usr/src/uts/common/fs/zfs/dbuf.c 4

2338 * operation to sneak in. As a result, we need to ensure that we
2339 * don’t check the dr_override_state until we have returned from
2340 * dbuf_check_blkptr.
2341 */
2342 dbuf_check_blkptr(dn, db);

2344 /*
2345 * If this buffer is in the middle of an immediate write,
2346 * wait for the synchronous IO to complete.
2347 */
2348 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2349 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2350 cv_wait(&db->db_changed, &db->db_mtx);
2351 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2352 }

2354 if (db->db_state != DB_NOFILL &&
2355 dn->dn_object != DMU_META_DNODE_OBJECT &&
2356 refcount_count(&db->db_holds) > 1 &&
2357 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2358 *datap == db->db_buf) {
2359 /*
2360 * If this buffer is currently "in use" (i.e., there
2361 * are active holds and db_data still references it),
2362 * then make a copy before we start the write so that
2363 * any modifications from the open txg will not leak
2364 * into this write.
2365 *
2366 * NOTE: this copy does not need to be made for
2367 * objects only modified in the syncing context (e.g.
2368 * DNONE_DNODE blocks).
2369 */
2370 int blksz = arc_buf_size(*datap);
2371 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2372 *datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2373 bcopy(db->db.db_data, (*datap)->b_data, blksz);
2374 }
2375 db->db_data_pending = dr;

2377 mutex_exit(&db->db_mtx);

2379 dbuf_write(dr, *datap, tx);

2381 ASSERT(!list_link_active(&dr->dr_dirty_node));
2382 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2383 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2384 DB_DNODE_EXIT(db);
2385 } else {
2386 /*
2387 * Although zio_nowait() does not "wait for an IO", it does
2388 * initiate the IO. If this is an empty write it seems plausible
2389 * that the IO could actually be completed before the nowait
2390 * returns. We need to DB_DNODE_EXIT() first in case
2391 * zio_nowait() invalidates the dbuf.
2392 */
2393 DB_DNODE_EXIT(db);
2394 zio_nowait(dr->dr_zio);
2395 }
2396 }
______unchanged_portion_omitted_

2500 /* ARGSUSED */
2501 static void
2502 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2503 {
2504 dmu_buf_impl_t *db = vdb;

new/usr/src/uts/common/fs/zfs/dbuf.c 5

2505 blkptr_t *bp = zio->io_bp;
2506 blkptr_t *bp_orig = &zio->io_bp_orig;
2507 uint64_t txg = zio->io_txg;
2508 dbuf_dirty_record_t **drp, *dr;

2510 ASSERT0(zio->io_error);
2510 ASSERT3U(zio->io_error, ==, 0);
2511 ASSERT(db->db_blkptr == bp);

2513 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
2514 ASSERT(BP_EQUAL(bp, bp_orig));
2515 } else {
2516 objset_t *os;
2517 dsl_dataset_t *ds;
2518 dmu_tx_t *tx;

2520 DB_GET_OBJSET(&os, db);
2521 ds = os->os_dsl_dataset;
2522 tx = os->os_synctx;

2524 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
2525 dsl_dataset_block_born(ds, bp, tx);
2526 }

2528 mutex_enter(&db->db_mtx);

2530 DBUF_VERIFY(db);

2532 drp = &db->db_last_dirty;
2533 while ((dr = *drp) != db->db_data_pending)
2534 drp = &dr->dr_next;
2535 ASSERT(!list_link_active(&dr->dr_dirty_node));
2536 ASSERT(dr->dr_txg == txg);
2537 ASSERT(dr->dr_dbuf == db);
2538 ASSERT(dr->dr_next == NULL);
2539 *drp = dr->dr_next;

2541 #ifdef ZFS_DEBUG
2542 if (db->db_blkid == DMU_SPILL_BLKID) {
2543 dnode_t *dn;

2545 DB_DNODE_ENTER(db);
2546 dn = DB_DNODE(db);
2547 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
2548 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
2549 db->db_blkptr == &dn->dn_phys->dn_spill);
2550 DB_DNODE_EXIT(db);
2551 }
2552 #endif

2554 if (db->db_level == 0) {
2555 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2556 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2557 if (db->db_state != DB_NOFILL) {
2558 if (dr->dt.dl.dr_data != db->db_buf)
2559 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
2560 db) == 1);
2561 else if (!arc_released(db->db_buf))
2562 arc_set_callback(db->db_buf, dbuf_do_evict, db);
2563 }
2564 } else {
2565 dnode_t *dn;

2567 DB_DNODE_ENTER(db);
2568 dn = DB_DNODE(db);
2569 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);

new/usr/src/uts/common/fs/zfs/dbuf.c 6

2570 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2571 if (!BP_IS_HOLE(db->db_blkptr)) {
2572 int epbs =
2573 dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2574 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
2575 db->db.db_size);
2576 ASSERT3U(dn->dn_phys->dn_maxblkid
2577 >> (db->db_level * epbs), >=, db->db_blkid);
2578 arc_set_callback(db->db_buf, dbuf_do_evict, db);
2579 }
2580 DB_DNODE_EXIT(db);
2581 mutex_destroy(&dr->dt.di.dr_mtx);
2582 list_destroy(&dr->dt.di.dr_children);
2583 }
2584 kmem_free(dr, sizeof (dbuf_dirty_record_t));

2586 cv_broadcast(&db->db_changed);
2587 ASSERT(db->db_dirtycnt > 0);
2588 db->db_dirtycnt -= 1;
2589 db->db_data_pending = NULL;
2590 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2591 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dmu_objset.c 1

**
 45183 Thu Jul 26 14:19:07 2012
new/usr/src/uts/common/fs/zfs/dmu_objset.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

696 static void
697 dmu_objset_create_sync(void *arg1, void *arg2, dmu_tx_t *tx)
698 {
699 dsl_dir_t *dd = arg1;
700 spa_t *spa = dd->dd_pool->dp_spa;
701 struct oscarg *oa = arg2;
702 uint64_t obj;
703 dsl_dataset_t *ds;
704 blkptr_t *bp;

706 ASSERT(dmu_tx_is_syncing(tx));

708 obj = dsl_dataset_create_sync(dd, oa->lastname,
709 oa->clone_origin, oa->flags, oa->cr, tx);

711 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds));
711 VERIFY3U(0, ==, dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds));
712 bp = dsl_dataset_get_blkptr(ds);
713 if (BP_IS_HOLE(bp)) {
714 objset_t *os =
715 dmu_objset_create_impl(spa, ds, bp, oa->type, tx);

717 if (oa->userfunc)
718 oa->userfunc(os, oa->userarg, oa->cr, tx);
719 }

721 if (oa->clone_origin == NULL) {
722 spa_history_log_internal_ds(ds, "create", tx, "");
723 } else {
724 char namebuf[MAXNAMELEN];
725 dsl_dataset_name(oa->clone_origin, namebuf);
726 spa_history_log_internal_ds(ds, "clone", tx,
727 "origin=%s (%llu)", namebuf, oa->clone_origin->ds_object);
728 }
729 dsl_dataset_rele(ds, FTAG);
730 }

______unchanged_portion_omitted_

1143 /* called from dsl */
1144 void
1145 dmu_objset_sync(objset_t *os, zio_t *pio, dmu_tx_t *tx)
1146 {
1147 int txgoff;
1148 zbookmark_t zb;
1149 zio_prop_t zp;
1150 zio_t *zio;
1151 list_t *list;
1152 list_t *newlist = NULL;
1153 dbuf_dirty_record_t *dr;

1155 dprintf_ds(os->os_dsl_dataset, "txg=%llu\n", tx->tx_txg);

1157 ASSERT(dmu_tx_is_syncing(tx));
1158 /* XXX the write_done callback should really give us the tx... */
1159 os->os_synctx = tx;

1161 if (os->os_dsl_dataset == NULL) {
1162 /*
1163 * This is the MOS. If we have upgraded,

new/usr/src/uts/common/fs/zfs/dmu_objset.c 2

1164 * spa_max_replication() could change, so reset
1165 * os_copies here.
1166 */
1167 os->os_copies = spa_max_replication(os->os_spa);
1168 }

1170 /*
1171 * Create the root block IO
1172 */
1173 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
1174 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1175 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
1176 VERIFY0(arc_release_bp(os->os_phys_buf, &os->os_phys_buf,
1176 VERIFY3U(0, ==, arc_release_bp(os->os_phys_buf, &os->os_phys_buf,
1177 os->os_rootbp, os->os_spa, &zb));

1179 dmu_write_policy(os, NULL, 0, 0, &zp);

1181 zio = arc_write(pio, os->os_spa, tx->tx_txg,
1182 os->os_rootbp, os->os_phys_buf, DMU_OS_IS_L2CACHEABLE(os), &zp,
1183 dmu_objset_write_ready, dmu_objset_write_done, os,
1184 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);

1186 /*
1187 * Sync special dnodes - the parent IO for the sync is the root block
1188 */
1189 DMU_META_DNODE(os)->dn_zio = zio;
1190 dnode_sync(DMU_META_DNODE(os), tx);

1192 os->os_phys->os_flags = os->os_flags;

1194 if (DMU_USERUSED_DNODE(os) &&
1195 DMU_USERUSED_DNODE(os)->dn_type != DMU_OT_NONE) {
1196 DMU_USERUSED_DNODE(os)->dn_zio = zio;
1197 dnode_sync(DMU_USERUSED_DNODE(os), tx);
1198 DMU_GROUPUSED_DNODE(os)->dn_zio = zio;
1199 dnode_sync(DMU_GROUPUSED_DNODE(os), tx);
1200 }

1202 txgoff = tx->tx_txg & TXG_MASK;

1204 if (dmu_objset_userused_enabled(os)) {
1205 newlist = &os->os_synced_dnodes;
1206 /*
1207 * We must create the list here because it uses the
1208 * dn_dirty_link[] of this txg.
1209 */
1210 list_create(newlist, sizeof (dnode_t),
1211 offsetof(dnode_t, dn_dirty_link[txgoff]));
1212 }

1214 dmu_objset_sync_dnodes(&os->os_free_dnodes[txgoff], newlist, tx);
1215 dmu_objset_sync_dnodes(&os->os_dirty_dnodes[txgoff], newlist, tx);

1217 list = &DMU_META_DNODE(os)->dn_dirty_records[txgoff];
1218 while (dr = list_head(list)) {
1219 ASSERT(dr->dr_dbuf->db_level == 0);
1220 list_remove(list, dr);
1221 if (dr->dr_zio)
1222 zio_nowait(dr->dr_zio);
1223 }
1224 /*
1225 * Free intent log blocks up to this tx.
1226 */
1227 zil_sync(os->os_zil, tx);
1228 os->os_phys->os_zil_header = os->os_zil_header;

new/usr/src/uts/common/fs/zfs/dmu_objset.c 3

1229 zio_nowait(zio);
1230 }
______unchanged_portion_omitted_

1264 static void
1265 do_userquota_update(objset_t *os, uint64_t used, uint64_t flags,
1266 uint64_t user, uint64_t group, boolean_t subtract, dmu_tx_t *tx)
1267 {
1268 if ((flags & DNODE_FLAG_USERUSED_ACCOUNTED)) {
1269 int64_t delta = DNODE_SIZE + used;
1270 if (subtract)
1271 delta = -delta;
1272 VERIFY0(zap_increment_int(os, DMU_USERUSED_OBJECT,
1272 VERIFY3U(0, ==, zap_increment_int(os, DMU_USERUSED_OBJECT,
1273 user, delta, tx));
1274 VERIFY0(zap_increment_int(os, DMU_GROUPUSED_OBJECT,
1274 VERIFY3U(0, ==, zap_increment_int(os, DMU_GROUPUSED_OBJECT,
1275 group, delta, tx));
1276 }
1277 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dmu_send.c 1

**
 45439 Thu Jul 26 14:19:08 2012
new/usr/src/uts/common/fs/zfs/dmu_send.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 */

28 #include <sys/dmu.h>
29 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dbuf.h>
32 #include <sys/dnode.h>
33 #include <sys/zfs_context.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/dmu_traverse.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dsl_prop.h>
39 #include <sys/dsl_pool.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/zfs_ioctl.h>
42 #include <sys/zap.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/zfs_znode.h>
45 #include <zfs_fletcher.h>
46 #include <sys/avl.h>
47 #include <sys/ddt.h>
48 #include <sys/zfs_onexit.h>

50 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
51 int zfs_send_corrupt_data = B_FALSE;

53 static char *dmu_recv_tag = "dmu_recv_tag";

55 static int
56 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
57 {
58 dsl_dataset_t *ds = dsp->dsa_os->os_dsl_dataset;
59 ssize_t resid; /* have to get resid to get detailed errno */
60 ASSERT0(len % 8);
60 ASSERT3U(len % 8, ==, 0);

new/usr/src/uts/common/fs/zfs/dmu_send.c 2

62 fletcher_4_incremental_native(buf, len, &dsp->dsa_zc);
63 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
64 (caddr_t)buf, len,
65 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);

67 mutex_enter(&ds->ds_sendstream_lock);
68 *dsp->dsa_off += len;
69 mutex_exit(&ds->ds_sendstream_lock);

71 return (dsp->dsa_err);
72 }

______unchanged_portion_omitted_

957 static void *
958 restore_read(struct restorearg *ra, int len)
959 {
960 void *rv;
961 int done = 0;

963 /* some things will require 8-byte alignment, so everything must */
964 ASSERT0(len % 8);
964 ASSERT3U(len % 8, ==, 0);

966 while (done < len) {
967 ssize_t resid;

969 ra->err = vn_rdwr(UIO_READ, ra->vp,
970 (caddr_t)ra->buf + done, len - done,
971 ra->voff, UIO_SYSSPACE, FAPPEND,
972 RLIM64_INFINITY, CRED(), &resid);

974 if (resid == len - done)
975 ra->err = EINVAL;
976 ra->voff += len - done - resid;
977 done = len - resid;
978 if (ra->err)
979 return (NULL);
980 }

982 ASSERT3U(done, ==, len);
983 rv = ra->buf;
984 if (ra->byteswap)
985 fletcher_4_incremental_byteswap(rv, len, &ra->cksum);
986 else
987 fletcher_4_incremental_native(rv, len, &ra->cksum);
988 return (rv);
989 }

______unchanged_portion_omitted_

1604 static int
1605 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
1606 {
1607 struct recvendsyncarg resa;
1608 dsl_dataset_t *ds = drc->drc_logical_ds;
1609 int err, myerr;

1611 /*
1612 * XXX hack; seems the ds is still dirty and dsl_pool_zil_clean()
1613 * expects it to have a ds_user_ptr (and zil), but clone_swap()
1614 * can close it.
1615 */
1616 txg_wait_synced(ds->ds_dir->dd_pool, 0);

1618 if (dsl_dataset_tryown(ds, FALSE, dmu_recv_tag)) {
1619 err = dsl_dataset_clone_swap(drc->drc_real_ds, ds,

new/usr/src/uts/common/fs/zfs/dmu_send.c 3

1620 drc->drc_force);
1621 if (err)
1622 goto out;
1623 } else {
1624 mutex_exit(&ds->ds_recvlock);
1625 dsl_dataset_rele(ds, dmu_recv_tag);
1626 (void) dsl_dataset_destroy(drc->drc_real_ds, dmu_recv_tag,
1627 B_FALSE);
1628 return (EBUSY);
1629 }

1631 resa.creation_time = drc->drc_drrb->drr_creation_time;
1632 resa.toguid = drc->drc_drrb->drr_toguid;
1633 resa.tosnap = drc->drc_tosnap;

1635 err = dsl_sync_task_do(ds->ds_dir->dd_pool,
1636 recv_end_check, recv_end_sync, ds, &resa, 3);
1637 if (err) {
1638 /* swap back */
1639 (void) dsl_dataset_clone_swap(drc->drc_real_ds, ds, B_TRUE);
1640 }

1642 out:
1643 mutex_exit(&ds->ds_recvlock);
1644 if (err == 0 && drc->drc_guid_to_ds_map != NULL)
1645 (void) add_ds_to_guidmap(drc->drc_guid_to_ds_map, ds);
1646 dsl_dataset_disown(ds, dmu_recv_tag);
1647 myerr = dsl_dataset_destroy(drc->drc_real_ds, dmu_recv_tag, B_FALSE);
1648 ASSERT0(myerr);
1648 ASSERT3U(myerr, ==, 0);
1649 return (err);
1650 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dmu_traverse.c 1

**
 14478 Thu Jul 26 14:19:09 2012
new/usr/src/uts/common/fs/zfs/dmu_traverse.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

173 static void
174 traverse_pause(traverse_data_t *td, const zbookmark_t *zb)
175 {
176 ASSERT(td->td_resume != NULL);
177 ASSERT0(zb->zb_level);
177 ASSERT3U(zb->zb_level, ==, 0);
178 bcopy(zb, td->td_resume, sizeof (*td->td_resume));
179 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dmu_tx.c 1

**
 35009 Thu Jul 26 14:19:10 2012
new/usr/src/uts/common/fs/zfs/dmu_tx.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_
892 #endif

894 static int
895 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
896 {
897 dmu_tx_hold_t *txh;
898 spa_t *spa = tx->tx_pool->dp_spa;
899 uint64_t memory, asize, fsize, usize;
900 uint64_t towrite, tofree, tooverwrite, tounref, tohold, fudge;

902 ASSERT0(tx->tx_txg);
902 ASSERT3U(tx->tx_txg, ==, 0);

904 if (tx->tx_err)
905 return (tx->tx_err);

907 if (spa_suspended(spa)) {
908 /*
909 * If the user has indicated a blocking failure mode
910 * then return ERESTART which will block in dmu_tx_wait().
911 * Otherwise, return EIO so that an error can get
912 * propagated back to the VOP calls.
913 *
914 * Note that we always honor the txg_how flag regardless
915 * of the failuremode setting.
916 */
917 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
918 txg_how != TXG_WAIT)
919 return (EIO);

921 return (ERESTART);
922 }

924 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
925 tx->tx_needassign_txh = NULL;

927 /*
928 * NB: No error returns are allowed after txg_hold_open, but
929 * before processing the dnode holds, due to the
930 * dmu_tx_unassign() logic.
931 */

933 towrite = tofree = tooverwrite = tounref = tohold = fudge = 0;
934 for (txh = list_head(&tx->tx_holds); txh;
935 txh = list_next(&tx->tx_holds, txh)) {
936 dnode_t *dn = txh->txh_dnode;
937 if (dn != NULL) {
938 mutex_enter(&dn->dn_mtx);
939 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
940 mutex_exit(&dn->dn_mtx);
941 tx->tx_needassign_txh = txh;
942 return (ERESTART);
943 }
944 if (dn->dn_assigned_txg == 0)
945 dn->dn_assigned_txg = tx->tx_txg;
946 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
947 (void) refcount_add(&dn->dn_tx_holds, tx);
948 mutex_exit(&dn->dn_mtx);
949 }
950 towrite += txh->txh_space_towrite;

new/usr/src/uts/common/fs/zfs/dmu_tx.c 2

951 tofree += txh->txh_space_tofree;
952 tooverwrite += txh->txh_space_tooverwrite;
953 tounref += txh->txh_space_tounref;
954 tohold += txh->txh_memory_tohold;
955 fudge += txh->txh_fudge;
956 }

958 /*
959 * NB: This check must be after we’ve held the dnodes, so that
960 * the dmu_tx_unassign() logic will work properly
961 */
962 if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg)
963 return (ERESTART);

965 /*
966 * If a snapshot has been taken since we made our estimates,
967 * assume that we won’t be able to free or overwrite anything.
968 */
969 if (tx->tx_objset &&
970 dsl_dataset_prev_snap_txg(tx->tx_objset->os_dsl_dataset) >
971 tx->tx_lastsnap_txg) {
972 towrite += tooverwrite;
973 tooverwrite = tofree = 0;
974 }

976 /* needed allocation: worst-case estimate of write space */
977 asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite);
978 /* freed space estimate: worst-case overwrite + free estimate */
979 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree;
980 /* convert unrefd space to worst-case estimate */
981 usize = spa_get_asize(tx->tx_pool->dp_spa, tounref);
982 /* calculate memory footprint estimate */
983 memory = towrite + tooverwrite + tohold;

985 #ifdef ZFS_DEBUG
986 /*
987 * Add in ’tohold’ to account for our dirty holds on this memory
988 * XXX - the "fudge" factor is to account for skipped blocks that
989 * we missed because dnode_next_offset() misses in-core-only blocks.
990 */
991 tx->tx_space_towrite = asize +
992 spa_get_asize(tx->tx_pool->dp_spa, tohold + fudge);
993 tx->tx_space_tofree = tofree;
994 tx->tx_space_tooverwrite = tooverwrite;
995 tx->tx_space_tounref = tounref;
996 #endif

998 if (tx->tx_dir && asize != 0) {
999 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,

1000 asize, fsize, usize, &tx->tx_tempreserve_cookie, tx);
1001 if (err)
1002 return (err);
1003 }

1005 return (0);
1006 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dnode.c 1

**
 56217 Thu Jul 26 14:19:11 2012
new/usr/src/uts/common/fs/zfs/dnode.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

121 /* ARGSUSED */
122 static void
123 dnode_dest(void *arg, void *unused)
124 {
125 int i;
126 dnode_t *dn = arg;

128 rw_destroy(&dn->dn_struct_rwlock);
129 mutex_destroy(&dn->dn_mtx);
130 mutex_destroy(&dn->dn_dbufs_mtx);
131 cv_destroy(&dn->dn_notxholds);
132 refcount_destroy(&dn->dn_holds);
133 refcount_destroy(&dn->dn_tx_holds);
134 ASSERT(!list_link_active(&dn->dn_link));

136 for (i = 0; i < TXG_SIZE; i++) {
137 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
138 avl_destroy(&dn->dn_ranges[i]);
139 list_destroy(&dn->dn_dirty_records[i]);
140 ASSERT0(dn->dn_next_nblkptr[i]);
141 ASSERT0(dn->dn_next_nlevels[i]);
142 ASSERT0(dn->dn_next_indblkshift[i]);
143 ASSERT0(dn->dn_next_bonustype[i]);
144 ASSERT0(dn->dn_rm_spillblk[i]);
145 ASSERT0(dn->dn_next_bonuslen[i]);
146 ASSERT0(dn->dn_next_blksz[i]);
140 ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
141 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
142 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
143 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
144 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
145 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
146 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
147 }

149 ASSERT0(dn->dn_allocated_txg);
150 ASSERT0(dn->dn_free_txg);
151 ASSERT0(dn->dn_assigned_txg);
152 ASSERT0(dn->dn_dirtyctx);
149 ASSERT3U(dn->dn_allocated_txg, ==, 0);
150 ASSERT3U(dn->dn_free_txg, ==, 0);
151 ASSERT3U(dn->dn_assigned_txg, ==, 0);
152 ASSERT3U(dn->dn_dirtyctx, ==, 0);
153 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
154 ASSERT3P(dn->dn_bonus, ==, NULL);
155 ASSERT(!dn->dn_have_spill);
156 ASSERT3P(dn->dn_zio, ==, NULL);
157 ASSERT0(dn->dn_oldused);
158 ASSERT0(dn->dn_oldflags);
159 ASSERT0(dn->dn_olduid);
160 ASSERT0(dn->dn_oldgid);
161 ASSERT0(dn->dn_newuid);
162 ASSERT0(dn->dn_newgid);
163 ASSERT0(dn->dn_id_flags);
157 ASSERT3U(dn->dn_oldused, ==, 0);
158 ASSERT3U(dn->dn_oldflags, ==, 0);
159 ASSERT3U(dn->dn_olduid, ==, 0);
160 ASSERT3U(dn->dn_oldgid, ==, 0);
161 ASSERT3U(dn->dn_newuid, ==, 0);

new/usr/src/uts/common/fs/zfs/dnode.c 2

162 ASSERT3U(dn->dn_newgid, ==, 0);
163 ASSERT3U(dn->dn_id_flags, ==, 0);

165 ASSERT0(dn->dn_dbufs_count);
165 ASSERT3U(dn->dn_dbufs_count, ==, 0);
166 list_destroy(&dn->dn_dbufs);
167 }

______unchanged_portion_omitted_

361 static void
362 dnode_setdblksz(dnode_t *dn, int size)
363 {
364 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
364 ASSERT3U(P2PHASE(size, SPA_MINBLOCKSIZE), ==, 0);
365 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
366 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
367 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
368 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
369 dn->dn_datablksz = size;
370 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
371 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0;
372 }

______unchanged_portion_omitted_

477 void
478 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
479 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
480 {
481 int i;

483 if (blocksize == 0)
484 blocksize = 1 << zfs_default_bs;
485 else if (blocksize > SPA_MAXBLOCKSIZE)
486 blocksize = SPA_MAXBLOCKSIZE;
487 else
488 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);

490 if (ibs == 0)
491 ibs = zfs_default_ibs;

493 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);

495 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
496 dn->dn_object, tx->tx_txg, blocksize, ibs);

498 ASSERT(dn->dn_type == DMU_OT_NONE);
499 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
500 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
501 ASSERT(ot != DMU_OT_NONE);
502 ASSERT(DMU_OT_IS_VALID(ot));
503 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
504 (bonustype == DMU_OT_SA && bonuslen == 0) ||
505 (bonustype != DMU_OT_NONE && bonuslen != 0));
506 ASSERT(DMU_OT_IS_VALID(bonustype));
507 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
508 ASSERT(dn->dn_type == DMU_OT_NONE);
509 ASSERT0(dn->dn_maxblkid);
510 ASSERT0(dn->dn_allocated_txg);
511 ASSERT0(dn->dn_assigned_txg);
509 ASSERT3U(dn->dn_maxblkid, ==, 0);
510 ASSERT3U(dn->dn_allocated_txg, ==, 0);
511 ASSERT3U(dn->dn_assigned_txg, ==, 0);
512 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
513 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
514 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);

new/usr/src/uts/common/fs/zfs/dnode.c 3

516 for (i = 0; i < TXG_SIZE; i++) {
517 ASSERT0(dn->dn_next_nblkptr[i]);
518 ASSERT0(dn->dn_next_nlevels[i]);
519 ASSERT0(dn->dn_next_indblkshift[i]);
520 ASSERT0(dn->dn_next_bonuslen[i]);
521 ASSERT0(dn->dn_next_bonustype[i]);
522 ASSERT0(dn->dn_rm_spillblk[i]);
523 ASSERT0(dn->dn_next_blksz[i]);
517 ASSERT3U(dn->dn_next_nblkptr[i], ==, 0);
518 ASSERT3U(dn->dn_next_nlevels[i], ==, 0);
519 ASSERT3U(dn->dn_next_indblkshift[i], ==, 0);
520 ASSERT3U(dn->dn_next_bonuslen[i], ==, 0);
521 ASSERT3U(dn->dn_next_bonustype[i], ==, 0);
522 ASSERT3U(dn->dn_rm_spillblk[i], ==, 0);
523 ASSERT3U(dn->dn_next_blksz[i], ==, 0);
524 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
525 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
526 ASSERT0(avl_numnodes(&dn->dn_ranges[i]));
526 ASSERT3U(avl_numnodes(&dn->dn_ranges[i]), ==, 0);
527 }

529 dn->dn_type = ot;
530 dnode_setdblksz(dn, blocksize);
531 dn->dn_indblkshift = ibs;
532 dn->dn_nlevels = 1;
533 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
534 dn->dn_nblkptr = 1;
535 else
536 dn->dn_nblkptr = 1 +
537 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
538 dn->dn_bonustype = bonustype;
539 dn->dn_bonuslen = bonuslen;
540 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
541 dn->dn_compress = ZIO_COMPRESS_INHERIT;
542 dn->dn_dirtyctx = 0;

544 dn->dn_free_txg = 0;
545 if (dn->dn_dirtyctx_firstset) {
546 kmem_free(dn->dn_dirtyctx_firstset, 1);
547 dn->dn_dirtyctx_firstset = NULL;
548 }

550 dn->dn_allocated_txg = tx->tx_txg;
551 dn->dn_id_flags = 0;

553 dnode_setdirty(dn, tx);
554 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
555 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
556 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
557 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
558 }

560 void
561 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
562 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
563 {
564 int nblkptr;

566 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
567 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
568 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
568 ASSERT3U(blocksize % SPA_MINBLOCKSIZE, ==, 0);
569 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
570 ASSERT(tx->tx_txg != 0);
571 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
572 (bonustype != DMU_OT_NONE && bonuslen != 0) ||

new/usr/src/uts/common/fs/zfs/dnode.c 4

573 (bonustype == DMU_OT_SA && bonuslen == 0));
574 ASSERT(DMU_OT_IS_VALID(bonustype));
575 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);

577 /* clean up any unreferenced dbufs */
578 dnode_evict_dbufs(dn);

580 dn->dn_id_flags = 0;

582 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
583 dnode_setdirty(dn, tx);
584 if (dn->dn_datablksz != blocksize) {
585 /* change blocksize */
586 ASSERT(dn->dn_maxblkid == 0 &&
587 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
588 dnode_block_freed(dn, 0)));
589 dnode_setdblksz(dn, blocksize);
590 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
591 }
592 if (dn->dn_bonuslen != bonuslen)
593 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;

595 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
596 nblkptr = 1;
597 else
598 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
599 if (dn->dn_bonustype != bonustype)
600 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
601 if (dn->dn_nblkptr != nblkptr)
602 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
603 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
604 dbuf_rm_spill(dn, tx);
605 dnode_rm_spill(dn, tx);
606 }
607 rw_exit(&dn->dn_struct_rwlock);

609 /* change type */
610 dn->dn_type = ot;

612 /* change bonus size and type */
613 mutex_enter(&dn->dn_mtx);
614 dn->dn_bonustype = bonustype;
615 dn->dn_bonuslen = bonuslen;
616 dn->dn_nblkptr = nblkptr;
617 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
618 dn->dn_compress = ZIO_COMPRESS_INHERIT;
619 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);

621 /* fix up the bonus db_size */
622 if (dn->dn_bonus) {
623 dn->dn_bonus->db.db_size =
624 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
625 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
626 }

628 dn->dn_allocated_txg = tx->tx_txg;
629 mutex_exit(&dn->dn_mtx);
630 }

______unchanged_portion_omitted_

1201 void
1202 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1203 {
1204 objset_t *os = dn->dn_objset;
1205 uint64_t txg = tx->tx_txg;

new/usr/src/uts/common/fs/zfs/dnode.c 5

1207 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1208 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1209 return;
1210 }

1212 DNODE_VERIFY(dn);

1214 #ifdef ZFS_DEBUG
1215 mutex_enter(&dn->dn_mtx);
1216 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1217 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1218 mutex_exit(&dn->dn_mtx);
1219 #endif

1221 /*
1222 * Determine old uid/gid when necessary
1223 */
1224 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);

1226 mutex_enter(&os->os_lock);

1228 /*
1229 * If we are already marked dirty, we’re done.
1230 */
1231 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1232 mutex_exit(&os->os_lock);
1233 return;
1234 }

1236 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
1237 ASSERT(dn->dn_datablksz != 0);
1238 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1239 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1240 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1238 ASSERT3U(dn->dn_next_bonuslen[txg&TXG_MASK], ==, 0);
1239 ASSERT3U(dn->dn_next_blksz[txg&TXG_MASK], ==, 0);
1240 ASSERT3U(dn->dn_next_bonustype[txg&TXG_MASK], ==, 0);

1242 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1243 dn->dn_object, txg);

1245 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1246 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1247 } else {
1248 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1249 }

1251 mutex_exit(&os->os_lock);

1253 /*
1254 * The dnode maintains a hold on its containing dbuf as
1255 * long as there are holds on it. Each instantiated child
1256 * dbuf maintains a hold on the dnode. When the last child
1257 * drops its hold, the dnode will drop its hold on the
1258 * containing dbuf. We add a "dirty hold" here so that the
1259 * dnode will hang around after we finish processing its
1260 * children.
1261 */
1262 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));

1264 (void) dbuf_dirty(dn->dn_dbuf, tx);

1266 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1267 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dnode.c 6

1508 void
1509 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1510 {
1511 dmu_buf_impl_t *db;
1512 uint64_t blkoff, blkid, nblks;
1513 int blksz, blkshift, head, tail;
1514 int trunc = FALSE;
1515 int epbs;

1517 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1518 blksz = dn->dn_datablksz;
1519 blkshift = dn->dn_datablkshift;
1520 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;

1522 if (len == -1ULL) {
1523 len = UINT64_MAX - off;
1524 trunc = TRUE;
1525 }

1527 /*
1528 * First, block align the region to free:
1529 */
1530 if (ISP2(blksz)) {
1531 head = P2NPHASE(off, blksz);
1532 blkoff = P2PHASE(off, blksz);
1533 if ((off >> blkshift) > dn->dn_maxblkid)
1534 goto out;
1535 } else {
1536 ASSERT(dn->dn_maxblkid == 0);
1537 if (off == 0 && len >= blksz) {
1538 /* Freeing the whole block; fast-track this request */
1539 blkid = 0;
1540 nblks = 1;
1541 goto done;
1542 } else if (off >= blksz) {
1543 /* Freeing past end-of-data */
1544 goto out;
1545 } else {
1546 /* Freeing part of the block. */
1547 head = blksz - off;
1548 ASSERT3U(head, >, 0);
1549 }
1550 blkoff = off;
1551 }
1552 /* zero out any partial block data at the start of the range */
1553 if (head) {
1554 ASSERT3U(blkoff + head, ==, blksz);
1555 if (len < head)
1556 head = len;
1557 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1558 FTAG, &db) == 0) {
1559 caddr_t data;

1561 /* don’t dirty if it isn’t on disk and isn’t dirty */
1562 if (db->db_last_dirty ||
1563 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1564 rw_exit(&dn->dn_struct_rwlock);
1565 dbuf_will_dirty(db, tx);
1566 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1567 data = db->db.db_data;
1568 bzero(data + blkoff, head);
1569 }
1570 dbuf_rele(db, FTAG);
1571 }
1572 off += head;
1573 len -= head;

new/usr/src/uts/common/fs/zfs/dnode.c 7

1574 }

1576 /* If the range was less than one block, we’re done */
1577 if (len == 0)
1578 goto out;

1580 /* If the remaining range is past end of file, we’re done */
1581 if ((off >> blkshift) > dn->dn_maxblkid)
1582 goto out;

1584 ASSERT(ISP2(blksz));
1585 if (trunc)
1586 tail = 0;
1587 else
1588 tail = P2PHASE(len, blksz);

1590 ASSERT0(P2PHASE(off, blksz));
1590 ASSERT3U(P2PHASE(off, blksz), ==, 0);
1591 /* zero out any partial block data at the end of the range */
1592 if (tail) {
1593 if (len < tail)
1594 tail = len;
1595 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1596 TRUE, FTAG, &db) == 0) {
1597 /* don’t dirty if not on disk and not dirty */
1598 if (db->db_last_dirty ||
1599 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1600 rw_exit(&dn->dn_struct_rwlock);
1601 dbuf_will_dirty(db, tx);
1602 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1603 bzero(db->db.db_data, tail);
1604 }
1605 dbuf_rele(db, FTAG);
1606 }
1607 len -= tail;
1608 }

1610 /* If the range did not include a full block, we are done */
1611 if (len == 0)
1612 goto out;

1614 ASSERT(IS_P2ALIGNED(off, blksz));
1615 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1616 blkid = off >> blkshift;
1617 nblks = len >> blkshift;
1618 if (trunc)
1619 nblks += 1;

1621 /*
1622 * Read in and mark all the level-1 indirects dirty,
1623 * so that they will stay in memory until syncing phase.
1624 * Always dirty the first and last indirect to make sure
1625 * we dirty all the partial indirects.
1626 */
1627 if (dn->dn_nlevels > 1) {
1628 uint64_t i, first, last;
1629 int shift = epbs + dn->dn_datablkshift;

1631 first = blkid >> epbs;
1632 if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1633 dbuf_will_dirty(db, tx);
1634 dbuf_rele(db, FTAG);
1635 }
1636 if (trunc)
1637 last = dn->dn_maxblkid >> epbs;
1638 else

new/usr/src/uts/common/fs/zfs/dnode.c 8

1639 last = (blkid + nblks - 1) >> epbs;
1640 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1641 dbuf_will_dirty(db, tx);
1642 dbuf_rele(db, FTAG);
1643 }
1644 for (i = first + 1; i < last; i++) {
1645 uint64_t ibyte = i << shift;
1646 int err;

1648 err = dnode_next_offset(dn,
1649 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0);
1650 i = ibyte >> shift;
1651 if (err == ESRCH || i >= last)
1652 break;
1653 ASSERT(err == 0);
1654 db = dbuf_hold_level(dn, 1, i, FTAG);
1655 if (db) {
1656 dbuf_will_dirty(db, tx);
1657 dbuf_rele(db, FTAG);
1658 }
1659 }
1660 }
1661 done:
1662 /*
1663 * Add this range to the dnode range list.
1664 * We will finish up this free operation in the syncing phase.
1665 */
1666 mutex_enter(&dn->dn_mtx);
1667 dnode_clear_range(dn, blkid, nblks, tx);
1668 {
1669 free_range_t *rp, *found;
1670 avl_index_t where;
1671 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK];

1673 /* Add new range to dn_ranges */
1674 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP);
1675 rp->fr_blkid = blkid;
1676 rp->fr_nblks = nblks;
1677 found = avl_find(tree, rp, &where);
1678 ASSERT(found == NULL);
1679 avl_insert(tree, rp, where);
1680 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1681 blkid, nblks, tx->tx_txg);
1682 }
1683 mutex_exit(&dn->dn_mtx);

1685 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1686 dnode_setdirty(dn, tx);
1687 out:
1688 if (trunc && dn->dn_maxblkid >= (off >> blkshift))
1689 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0);

1691 rw_exit(&dn->dn_struct_rwlock);
1692 }
______unchanged_portion_omitted_

1752 /* call from syncing context when we actually write/free space for this dnode */
1753 void
1754 dnode_diduse_space(dnode_t *dn, int64_t delta)
1755 {
1756 uint64_t space;
1757 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1758 dn, dn->dn_phys,
1759 (u_longlong_t)dn->dn_phys->dn_used,
1760 (longlong_t)delta);

new/usr/src/uts/common/fs/zfs/dnode.c 9

1762 mutex_enter(&dn->dn_mtx);
1763 space = DN_USED_BYTES(dn->dn_phys);
1764 if (delta > 0) {
1765 ASSERT3U(space + delta, >=, space); /* no overflow */
1766 } else {
1767 ASSERT3U(space, >=, -delta); /* no underflow */
1768 }
1769 space += delta;
1770 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1771 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1772 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1772 ASSERT3U(P2PHASE(space, 1<<DEV_BSHIFT), ==, 0);
1773 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1774 } else {
1775 dn->dn_phys->dn_used = space;
1776 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1777 }
1778 mutex_exit(&dn->dn_mtx);
1779 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dnode_sync.c 1

**
 19294 Thu Jul 26 14:19:12 2012
new/usr/src/uts/common/fs/zfs/dnode_sync.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_
214 #endif

216 #define ALL -1

218 static int
219 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, int trunc,
220 dmu_tx_t *tx)
221 {
222 dnode_t *dn;
223 blkptr_t *bp;
224 dmu_buf_impl_t *subdb;
225 uint64_t start, end, dbstart, dbend, i;
226 int epbs, shift, err;
227 int all = TRUE;
228 int blocks_freed = 0;

230 /*
231 * There is a small possibility that this block will not be cached:
232 * 1 - if level > 1 and there are no children with level <= 1
233 * 2 - if we didn’t get a dirty hold (because this block had just
234 * finished being written -- and so had no holds), and then this
235 * block got evicted before we got here.
236 */
237 if (db->db_state != DB_CACHED)
238 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);

240 dbuf_release_bp(db);
241 bp = (blkptr_t *)db->db.db_data;

243 DB_DNODE_ENTER(db);
244 dn = DB_DNODE(db);
245 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
246 shift = (db->db_level - 1) * epbs;
247 dbstart = db->db_blkid << epbs;
248 start = blkid >> shift;
249 if (dbstart < start) {
250 bp += start - dbstart;
251 all = FALSE;
252 } else {
253 start = dbstart;
254 }
255 dbend = ((db->db_blkid + 1) << epbs) - 1;
256 end = (blkid + nblks - 1) >> shift;
257 if (dbend <= end)
258 end = dbend;
259 else if (all)
260 all = trunc;
261 ASSERT3U(start, <=, end);

263 if (db->db_level == 1) {
264 FREE_VERIFY(db, start, end, tx);
265 blocks_freed = free_blocks(dn, bp, end-start+1, tx);
266 arc_buf_freeze(db->db_buf);
267 ASSERT(all || blocks_freed == 0 || db->db_last_dirty);
268 DB_DNODE_EXIT(db);
269 return (all ? ALL : blocks_freed);
270 }

272 for (i = start; i <= end; i++, bp++) {
273 if (BP_IS_HOLE(bp))

new/usr/src/uts/common/fs/zfs/dnode_sync.c 2

274 continue;
275 rw_enter(&dn->dn_struct_rwlock, RW_READER);
276 err = dbuf_hold_impl(dn, db->db_level-1, i, TRUE, FTAG, &subdb);
277 ASSERT0(err);
277 ASSERT3U(err, ==, 0);
278 rw_exit(&dn->dn_struct_rwlock);

280 if (free_children(subdb, blkid, nblks, trunc, tx) == ALL) {
281 ASSERT3P(subdb->db_blkptr, ==, bp);
282 blocks_freed += free_blocks(dn, bp, 1, tx);
283 } else {
284 all = FALSE;
285 }
286 dbuf_rele(subdb, FTAG);
287 }
288 DB_DNODE_EXIT(db);
289 arc_buf_freeze(db->db_buf);
290 #ifdef ZFS_DEBUG
291 bp -= (end-start)+1;
292 for (i = start; i <= end; i++, bp++) {
293 if (i == start && blkid != 0)
294 continue;
295 else if (i == end && !trunc)
296 continue;
297 ASSERT0(bp->blk_birth);
297 ASSERT3U(bp->blk_birth, ==, 0);
298 }
299 #endif
300 ASSERT(all || blocks_freed == 0 || db->db_last_dirty);
301 return (all ? ALL : blocks_freed);
302 }

304 /*
305 * free_range: Traverse the indicated range of the provided file
306 * and "free" all the blocks contained there.
307 */
308 static void
309 dnode_sync_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx)
310 {
311 blkptr_t *bp = dn->dn_phys->dn_blkptr;
312 dmu_buf_impl_t *db;
313 int trunc, start, end, shift, i, err;
314 int dnlevel = dn->dn_phys->dn_nlevels;

316 if (blkid > dn->dn_phys->dn_maxblkid)
317 return;

319 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
320 trunc = blkid + nblks > dn->dn_phys->dn_maxblkid;
321 if (trunc)
322 nblks = dn->dn_phys->dn_maxblkid - blkid + 1;

324 /* There are no indirect blocks in the object */
325 if (dnlevel == 1) {
326 if (blkid >= dn->dn_phys->dn_nblkptr) {
327 /* this range was never made persistent */
328 return;
329 }
330 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
331 (void) free_blocks(dn, bp + blkid, nblks, tx);
332 if (trunc) {
333 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
334 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
335 dn->dn_phys->dn_maxblkid = (blkid ? blkid - 1 : 0);
336 ASSERT(off < dn->dn_phys->dn_maxblkid ||
337 dn->dn_phys->dn_maxblkid == 0 ||

new/usr/src/uts/common/fs/zfs/dnode_sync.c 3

338 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
339 }
340 return;
341 }

343 shift = (dnlevel - 1) * (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
344 start = blkid >> shift;
345 ASSERT(start < dn->dn_phys->dn_nblkptr);
346 end = (blkid + nblks - 1) >> shift;
347 bp += start;
348 for (i = start; i <= end; i++, bp++) {
349 if (BP_IS_HOLE(bp))
350 continue;
351 rw_enter(&dn->dn_struct_rwlock, RW_READER);
352 err = dbuf_hold_impl(dn, dnlevel-1, i, TRUE, FTAG, &db);
353 ASSERT0(err);
353 ASSERT3U(err, ==, 0);
354 rw_exit(&dn->dn_struct_rwlock);

356 if (free_children(db, blkid, nblks, trunc, tx) == ALL) {
357 ASSERT3P(db->db_blkptr, ==, bp);
358 (void) free_blocks(dn, bp, 1, tx);
359 }
360 dbuf_rele(db, FTAG);
361 }
362 if (trunc) {
363 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) *
364 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
365 dn->dn_phys->dn_maxblkid = (blkid ? blkid - 1 : 0);
366 ASSERT(off < dn->dn_phys->dn_maxblkid ||
367 dn->dn_phys->dn_maxblkid == 0 ||
368 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
369 }
370 }

______unchanged_portion_omitted_

463 static void
464 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
465 {
466 int txgoff = tx->tx_txg & TXG_MASK;

468 ASSERT(dmu_tx_is_syncing(tx));

470 /*
471 * Our contents should have been freed in dnode_sync() by the
472 * free range record inserted by the caller of dnode_free().
473 */
474 ASSERT0(DN_USED_BYTES(dn->dn_phys));
474 ASSERT3U(DN_USED_BYTES(dn->dn_phys), ==, 0);
475 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));

477 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
478 dnode_evict_dbufs(dn);
479 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);

481 /*
482 * XXX - It would be nice to assert this, but we may still
483 * have residual holds from async evictions from the arc...
484 *
485 * zfs_obj_to_path() also depends on this being
486 * commented out.
487 *
488 * ASSERT3U(refcount_count(&dn->dn_holds), ==, 1);
489 */

491 /* Undirty next bits */

new/usr/src/uts/common/fs/zfs/dnode_sync.c 4

492 dn->dn_next_nlevels[txgoff] = 0;
493 dn->dn_next_indblkshift[txgoff] = 0;
494 dn->dn_next_blksz[txgoff] = 0;

496 /* ASSERT(blkptrs are zero); */
497 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
498 ASSERT(dn->dn_type != DMU_OT_NONE);

500 ASSERT(dn->dn_free_txg > 0);
501 if (dn->dn_allocated_txg != dn->dn_free_txg)
502 dbuf_will_dirty(dn->dn_dbuf, tx);
503 bzero(dn->dn_phys, sizeof (dnode_phys_t));

505 mutex_enter(&dn->dn_mtx);
506 dn->dn_type = DMU_OT_NONE;
507 dn->dn_maxblkid = 0;
508 dn->dn_allocated_txg = 0;
509 dn->dn_free_txg = 0;
510 dn->dn_have_spill = B_FALSE;
511 mutex_exit(&dn->dn_mtx);

513 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);

515 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
516 /*
517 * Now that we’ve released our hold, the dnode may
518 * be evicted, so we musn’t access it.
519 */
520 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 1

**
 117870 Thu Jul 26 14:19:13 2012
new/usr/src/uts/common/fs/zfs/dsl_dataset.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

779 uint64_t
780 dsl_dataset_create_sync_dd(dsl_dir_t *dd, dsl_dataset_t *origin,
781 uint64_t flags, dmu_tx_t *tx)
782 {
783 dsl_pool_t *dp = dd->dd_pool;
784 dmu_buf_t *dbuf;
785 dsl_dataset_phys_t *dsphys;
786 uint64_t dsobj;
787 objset_t *mos = dp->dp_meta_objset;

789 if (origin == NULL)
790 origin = dp->dp_origin_snap;

792 ASSERT(origin == NULL || origin->ds_dir->dd_pool == dp);
793 ASSERT(origin == NULL || origin->ds_phys->ds_num_children > 0);
794 ASSERT(dmu_tx_is_syncing(tx));
795 ASSERT(dd->dd_phys->dd_head_dataset_obj == 0);

797 dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0,
798 DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx);
799 VERIFY(0 == dmu_bonus_hold(mos, dsobj, FTAG, &dbuf));
800 dmu_buf_will_dirty(dbuf, tx);
801 dsphys = dbuf->db_data;
802 bzero(dsphys, sizeof (dsl_dataset_phys_t));
803 dsphys->ds_dir_obj = dd->dd_object;
804 dsphys->ds_flags = flags;
805 dsphys->ds_fsid_guid = unique_create();
806 (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid,
807 sizeof (dsphys->ds_guid));
808 dsphys->ds_snapnames_zapobj =
809 zap_create_norm(mos, U8_TEXTPREP_TOUPPER, DMU_OT_DSL_DS_SNAP_MAP,
810 DMU_OT_NONE, 0, tx);
811 dsphys->ds_creation_time = gethrestime_sec();
812 dsphys->ds_creation_txg = tx->tx_txg == TXG_INITIAL ? 1 : tx->tx_txg;

814 if (origin == NULL) {
815 dsphys->ds_deadlist_obj = dsl_deadlist_alloc(mos, tx);
816 } else {
817 dsl_dataset_t *ohds;

819 dsphys->ds_prev_snap_obj = origin->ds_object;
820 dsphys->ds_prev_snap_txg =
821 origin->ds_phys->ds_creation_txg;
822 dsphys->ds_referenced_bytes =
823 origin->ds_phys->ds_referenced_bytes;
824 dsphys->ds_compressed_bytes =
825 origin->ds_phys->ds_compressed_bytes;
826 dsphys->ds_uncompressed_bytes =
827 origin->ds_phys->ds_uncompressed_bytes;
828 dsphys->ds_bp = origin->ds_phys->ds_bp;
829 dsphys->ds_flags |= origin->ds_phys->ds_flags;

831 dmu_buf_will_dirty(origin->ds_dbuf, tx);
832 origin->ds_phys->ds_num_children++;

834 VERIFY0(dsl_dataset_hold_obj(dp,
834 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp,
835 origin->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &ohds));
836 dsphys->ds_deadlist_obj = dsl_deadlist_clone(&ohds->ds_deadlist,

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 2

837 dsphys->ds_prev_snap_txg, dsphys->ds_prev_snap_obj, tx);
838 dsl_dataset_rele(ohds, FTAG);

840 if (spa_version(dp->dp_spa) >= SPA_VERSION_NEXT_CLONES) {
841 if (origin->ds_phys->ds_next_clones_obj == 0) {
842 origin->ds_phys->ds_next_clones_obj =
843 zap_create(mos,
844 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
845 }
846 VERIFY(0 == zap_add_int(mos,
847 origin->ds_phys->ds_next_clones_obj,
848 dsobj, tx));
849 }

851 dmu_buf_will_dirty(dd->dd_dbuf, tx);
852 dd->dd_phys->dd_origin_obj = origin->ds_object;
853 if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
854 if (origin->ds_dir->dd_phys->dd_clones == 0) {
855 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
856 origin->ds_dir->dd_phys->dd_clones =
857 zap_create(mos,
858 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
859 }
860 VERIFY0(zap_add_int(mos,
860 VERIFY3U(0, ==, zap_add_int(mos,
861 origin->ds_dir->dd_phys->dd_clones, dsobj, tx));
862 }
863 }

865 if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE)
866 dsphys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE;

868 dmu_buf_rele(dbuf, FTAG);

870 dmu_buf_will_dirty(dd->dd_dbuf, tx);
871 dd->dd_phys->dd_head_dataset_obj = dsobj;

873 return (dsobj);
874 }

876 uint64_t
877 dsl_dataset_create_sync(dsl_dir_t *pdd, const char *lastname,
878 dsl_dataset_t *origin, uint64_t flags, cred_t *cr, dmu_tx_t *tx)
879 {
880 dsl_pool_t *dp = pdd->dd_pool;
881 uint64_t dsobj, ddobj;
882 dsl_dir_t *dd;

884 ASSERT(lastname[0] != ’@’);

886 ddobj = dsl_dir_create_sync(dp, pdd, lastname, tx);
887 VERIFY(0 == dsl_dir_open_obj(dp, ddobj, lastname, FTAG, &dd));

889 dsobj = dsl_dataset_create_sync_dd(dd, origin, flags, tx);

891 dsl_deleg_set_create_perms(dd, tx, cr);

893 dsl_dir_close(dd, FTAG);

895 /*
896 * If we are creating a clone, make sure we zero out any stale
897 * data from the origin snapshots zil header.
898 */
899 if (origin != NULL) {
900 dsl_dataset_t *ds;
901 objset_t *os;

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 3

903 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
904 VERIFY0(dmu_objset_from_ds(ds, &os));
903 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
904 VERIFY3U(0, ==, dmu_objset_from_ds(ds, &os));
905 bzero(&os->os_zil_header, sizeof (os->os_zil_header));
906 dsl_dataset_dirty(ds, tx);
907 dsl_dataset_rele(ds, FTAG);
908 }

910 return (dsobj);
911 }

______unchanged_portion_omitted_

1487 static void
1488 remove_from_next_clones(dsl_dataset_t *ds, uint64_t obj, dmu_tx_t *tx)
1489 {
1490 objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
1491 uint64_t count;
1492 int err;

1494 ASSERT(ds->ds_phys->ds_num_children >= 2);
1495 err = zap_remove_int(mos, ds->ds_phys->ds_next_clones_obj, obj, tx);
1496 /*
1497 * The err should not be ENOENT, but a bug in a previous version
1498 * of the code could cause upgrade_clones_cb() to not set
1499 * ds_next_snap_obj when it should, leading to a missing entry.
1500 * If we knew that the pool was created after
1501 * SPA_VERSION_NEXT_CLONES, we could assert that it isn’t
1502 * ENOENT. However, at least we can check that we don’t have
1503 * too many entries in the next_clones_obj even after failing to
1504 * remove this one.
1505 */
1506 if (err != ENOENT) {
1507 VERIFY0(err);
1507 VERIFY3U(err, ==, 0);
1508 }
1509 ASSERT0(zap_count(mos, ds->ds_phys->ds_next_clones_obj, &count));
1509 ASSERT3U(0, ==, zap_count(mos, ds->ds_phys->ds_next_clones_obj,
1510 &count));
1510 ASSERT3U(count, <=, ds->ds_phys->ds_num_children - 2);
1511 }

1513 static void
1514 dsl_dataset_remove_clones_key(dsl_dataset_t *ds, uint64_t mintxg, dmu_tx_t *tx)
1515 {
1516 objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
1517 zap_cursor_t zc;
1518 zap_attribute_t za;

1520 /*
1521 * If it is the old version, dd_clones doesn’t exist so we can’t
1522 * find the clones, but deadlist_remove_key() is a no-op so it
1523 * doesn’t matter.
1524 */
1525 if (ds->ds_dir->dd_phys->dd_clones == 0)
1526 return;

1528 for (zap_cursor_init(&zc, mos, ds->ds_dir->dd_phys->dd_clones);
1529 zap_cursor_retrieve(&zc, &za) == 0;
1530 zap_cursor_advance(&zc)) {
1531 dsl_dataset_t *clone;

1533 VERIFY0(dsl_dataset_hold_obj(ds->ds_dir->dd_pool,
1534 VERIFY3U(0, ==, dsl_dataset_hold_obj(ds->ds_dir->dd_pool,
1534 za.za_first_integer, FTAG, &clone));

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 4

1535 if (clone->ds_dir->dd_origin_txg > mintxg) {
1536 dsl_deadlist_remove_key(&clone->ds_deadlist,
1537 mintxg, tx);
1538 dsl_dataset_remove_clones_key(clone, mintxg, tx);
1539 }
1540 dsl_dataset_rele(clone, FTAG);
1541 }
1542 zap_cursor_fini(&zc);
1543 }
______unchanged_portion_omitted_

1576 static void
1577 process_old_deadlist(dsl_dataset_t *ds, dsl_dataset_t *ds_prev,
1578 dsl_dataset_t *ds_next, boolean_t after_branch_point, dmu_tx_t *tx)
1579 {
1580 struct process_old_arg poa = { 0 };
1581 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1582 objset_t *mos = dp->dp_meta_objset;

1584 ASSERT(ds->ds_deadlist.dl_oldfmt);
1585 ASSERT(ds_next->ds_deadlist.dl_oldfmt);

1587 poa.ds = ds;
1588 poa.ds_prev = ds_prev;
1589 poa.after_branch_point = after_branch_point;
1590 poa.pio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
1591 VERIFY0(bpobj_iterate(&ds_next->ds_deadlist.dl_bpobj,
1592 VERIFY3U(0, ==, bpobj_iterate(&ds_next->ds_deadlist.dl_bpobj,
1592 process_old_cb, &poa, tx));
1593 VERIFY0(zio_wait(poa.pio));
1594 VERIFY3U(zio_wait(poa.pio), ==, 0);
1594 ASSERT3U(poa.used, ==, ds->ds_phys->ds_unique_bytes);

1596 /* change snapused */
1597 dsl_dir_diduse_space(ds->ds_dir, DD_USED_SNAP,
1598 -poa.used, -poa.comp, -poa.uncomp, tx);

1600 /* swap next’s deadlist to our deadlist */
1601 dsl_deadlist_close(&ds->ds_deadlist);
1602 dsl_deadlist_close(&ds_next->ds_deadlist);
1603 SWITCH64(ds_next->ds_phys->ds_deadlist_obj,
1604 ds->ds_phys->ds_deadlist_obj);
1605 dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj);
1606 dsl_deadlist_open(&ds_next->ds_deadlist, mos,
1607 ds_next->ds_phys->ds_deadlist_obj);
1608 }

1610 static int
1611 old_synchronous_dataset_destroy(dsl_dataset_t *ds, dmu_tx_t *tx)
1612 {
1613 int err;
1614 struct killarg ka;

1616 /*
1617 * Free everything that we point to (that’s born after
1618 * the previous snapshot, if we are a clone)
1619 *
1620 * NB: this should be very quick, because we already
1621 * freed all the objects in open context.
1622 */
1623 ka.ds = ds;
1624 ka.tx = tx;
1625 err = traverse_dataset(ds,
1626 ds->ds_phys->ds_prev_snap_txg, TRAVERSE_POST,
1627 kill_blkptr, &ka);
1628 ASSERT0(err);

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 5

1629 ASSERT3U(err, ==, 0);
1629 ASSERT(!DS_UNIQUE_IS_ACCURATE(ds) || ds->ds_phys->ds_unique_bytes == 0);

1631 return (err);
1632 }

1634 void
1635 dsl_dataset_destroy_sync(void *arg1, void *tag, dmu_tx_t *tx)
1636 {
1637 struct dsl_ds_destroyarg *dsda = arg1;
1638 dsl_dataset_t *ds = dsda->ds;
1639 int err;
1640 int after_branch_point = FALSE;
1641 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1642 objset_t *mos = dp->dp_meta_objset;
1643 dsl_dataset_t *ds_prev = NULL;
1644 boolean_t wont_destroy;
1645 uint64_t obj;

1647 wont_destroy = (dsda->defer &&
1648 (ds->ds_userrefs > 0 || ds->ds_phys->ds_num_children > 1));

1650 ASSERT(ds->ds_owner || wont_destroy);
1651 ASSERT(dsda->defer || ds->ds_phys->ds_num_children <= 1);
1652 ASSERT(ds->ds_prev == NULL ||
1653 ds->ds_prev->ds_phys->ds_next_snap_obj != ds->ds_object);
1654 ASSERT3U(ds->ds_phys->ds_bp.blk_birth, <=, tx->tx_txg);

1656 if (wont_destroy) {
1657 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1658 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1659 ds->ds_phys->ds_flags |= DS_FLAG_DEFER_DESTROY;
1660 spa_history_log_internal_ds(ds, "defer_destroy", tx, "");
1661 return;
1662 }

1664 /* We need to log before removing it from the namespace. */
1665 spa_history_log_internal_ds(ds, "destroy", tx, "");

1667 /* signal any waiters that this dataset is going away */
1668 mutex_enter(&ds->ds_lock);
1669 ds->ds_owner = dsl_reaper;
1670 cv_broadcast(&ds->ds_exclusive_cv);
1671 mutex_exit(&ds->ds_lock);

1673 /* Remove our reservation */
1674 if (ds->ds_reserved != 0) {
1675 dsl_prop_setarg_t psa;
1676 uint64_t value = 0;

1678 dsl_prop_setarg_init_uint64(&psa, "refreservation",
1679 (ZPROP_SRC_NONE | ZPROP_SRC_LOCAL | ZPROP_SRC_RECEIVED),
1680 &value);
1681 psa.psa_effective_value = 0; /* predict default value */

1683 dsl_dataset_set_reservation_sync(ds, &psa, tx);
1684 ASSERT0(ds->ds_reserved);
1685 ASSERT3U(ds->ds_reserved, ==, 0);
1685 }

1687 ASSERT(RW_WRITE_HELD(&dp->dp_config_rwlock));

1689 dsl_scan_ds_destroyed(ds, tx);

1691 obj = ds->ds_object;

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 6

1693 if (ds->ds_phys->ds_prev_snap_obj != 0) {
1694 if (ds->ds_prev) {
1695 ds_prev = ds->ds_prev;
1696 } else {
1697 VERIFY(0 == dsl_dataset_hold_obj(dp,
1698 ds->ds_phys->ds_prev_snap_obj, FTAG, &ds_prev));
1699 }
1700 after_branch_point =
1701 (ds_prev->ds_phys->ds_next_snap_obj != obj);

1703 dmu_buf_will_dirty(ds_prev->ds_dbuf, tx);
1704 if (after_branch_point &&
1705 ds_prev->ds_phys->ds_next_clones_obj != 0) {
1706 remove_from_next_clones(ds_prev, obj, tx);
1707 if (ds->ds_phys->ds_next_snap_obj != 0) {
1708 VERIFY(0 == zap_add_int(mos,
1709 ds_prev->ds_phys->ds_next_clones_obj,
1710 ds->ds_phys->ds_next_snap_obj, tx));
1711 }
1712 }
1713 if (after_branch_point &&
1714 ds->ds_phys->ds_next_snap_obj == 0) {
1715 /* This clone is toast. */
1716 ASSERT(ds_prev->ds_phys->ds_num_children > 1);
1717 ds_prev->ds_phys->ds_num_children--;

1719 /*
1720 * If the clone’s origin has no other clones, no
1721 * user holds, and has been marked for deferred
1722 * deletion, then we should have done the necessary
1723 * destroy setup for it.
1724 */
1725 if (ds_prev->ds_phys->ds_num_children == 1 &&
1726 ds_prev->ds_userrefs == 0 &&
1727 DS_IS_DEFER_DESTROY(ds_prev)) {
1728 ASSERT3P(dsda->rm_origin, !=, NULL);
1729 } else {
1730 ASSERT3P(dsda->rm_origin, ==, NULL);
1731 }
1732 } else if (!after_branch_point) {
1733 ds_prev->ds_phys->ds_next_snap_obj =
1734 ds->ds_phys->ds_next_snap_obj;
1735 }
1736 }

1738 if (dsl_dataset_is_snapshot(ds)) {
1739 dsl_dataset_t *ds_next;
1740 uint64_t old_unique;
1741 uint64_t used = 0, comp = 0, uncomp = 0;

1743 VERIFY(0 == dsl_dataset_hold_obj(dp,
1744 ds->ds_phys->ds_next_snap_obj, FTAG, &ds_next));
1745 ASSERT3U(ds_next->ds_phys->ds_prev_snap_obj, ==, obj);

1747 old_unique = ds_next->ds_phys->ds_unique_bytes;

1749 dmu_buf_will_dirty(ds_next->ds_dbuf, tx);
1750 ds_next->ds_phys->ds_prev_snap_obj =
1751 ds->ds_phys->ds_prev_snap_obj;
1752 ds_next->ds_phys->ds_prev_snap_txg =
1753 ds->ds_phys->ds_prev_snap_txg;
1754 ASSERT3U(ds->ds_phys->ds_prev_snap_txg, ==,
1755 ds_prev ? ds_prev->ds_phys->ds_creation_txg : 0);

1758 if (ds_next->ds_deadlist.dl_oldfmt) {

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 7

1759 process_old_deadlist(ds, ds_prev, ds_next,
1760 after_branch_point, tx);
1761 } else {
1762 /* Adjust prev’s unique space. */
1763 if (ds_prev && !after_branch_point) {
1764 dsl_deadlist_space_range(&ds_next->ds_deadlist,
1765 ds_prev->ds_phys->ds_prev_snap_txg,
1766 ds->ds_phys->ds_prev_snap_txg,
1767 &used, &comp, &uncomp);
1768 ds_prev->ds_phys->ds_unique_bytes += used;
1769 }

1771 /* Adjust snapused. */
1772 dsl_deadlist_space_range(&ds_next->ds_deadlist,
1773 ds->ds_phys->ds_prev_snap_txg, UINT64_MAX,
1774 &used, &comp, &uncomp);
1775 dsl_dir_diduse_space(ds->ds_dir, DD_USED_SNAP,
1776 -used, -comp, -uncomp, tx);

1778 /* Move blocks to be freed to pool’s free list. */
1779 dsl_deadlist_move_bpobj(&ds_next->ds_deadlist,
1780 &dp->dp_free_bpobj, ds->ds_phys->ds_prev_snap_txg,
1781 tx);
1782 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir,
1783 DD_USED_HEAD, used, comp, uncomp, tx);

1785 /* Merge our deadlist into next’s and free it. */
1786 dsl_deadlist_merge(&ds_next->ds_deadlist,
1787 ds->ds_phys->ds_deadlist_obj, tx);
1788 }
1789 dsl_deadlist_close(&ds->ds_deadlist);
1790 dsl_deadlist_free(mos, ds->ds_phys->ds_deadlist_obj, tx);

1792 /* Collapse range in clone heads */
1793 dsl_dataset_remove_clones_key(ds,
1794 ds->ds_phys->ds_creation_txg, tx);

1796 if (dsl_dataset_is_snapshot(ds_next)) {
1797 dsl_dataset_t *ds_nextnext;

1799 /*
1800 * Update next’s unique to include blocks which
1801 * were previously shared by only this snapshot
1802 * and it. Those blocks will be born after the
1803 * prev snap and before this snap, and will have
1804 * died after the next snap and before the one
1805 * after that (ie. be on the snap after next’s
1806 * deadlist).
1807 */
1808 VERIFY(0 == dsl_dataset_hold_obj(dp,
1809 ds_next->ds_phys->ds_next_snap_obj,
1810 FTAG, &ds_nextnext));
1811 dsl_deadlist_space_range(&ds_nextnext->ds_deadlist,
1812 ds->ds_phys->ds_prev_snap_txg,
1813 ds->ds_phys->ds_creation_txg,
1814 &used, &comp, &uncomp);
1815 ds_next->ds_phys->ds_unique_bytes += used;
1816 dsl_dataset_rele(ds_nextnext, FTAG);
1817 ASSERT3P(ds_next->ds_prev, ==, NULL);

1819 /* Collapse range in this head. */
1820 dsl_dataset_t *hds;
1821 VERIFY0(dsl_dataset_hold_obj(dp,
1822 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp,
1822 ds->ds_dir->dd_phys->dd_head_dataset_obj,
1823 FTAG, &hds));

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 8

1824 dsl_deadlist_remove_key(&hds->ds_deadlist,
1825 ds->ds_phys->ds_creation_txg, tx);
1826 dsl_dataset_rele(hds, FTAG);

1828 } else {
1829 ASSERT3P(ds_next->ds_prev, ==, ds);
1830 dsl_dataset_drop_ref(ds_next->ds_prev, ds_next);
1831 ds_next->ds_prev = NULL;
1832 if (ds_prev) {
1833 VERIFY(0 == dsl_dataset_get_ref(dp,
1834 ds->ds_phys->ds_prev_snap_obj,
1835 ds_next, &ds_next->ds_prev));
1836 }

1838 dsl_dataset_recalc_head_uniq(ds_next);

1840 /*
1841 * Reduce the amount of our unconsmed refreservation
1842 * being charged to our parent by the amount of
1843 * new unique data we have gained.
1844 */
1845 if (old_unique < ds_next->ds_reserved) {
1846 int64_t mrsdelta;
1847 uint64_t new_unique =
1848 ds_next->ds_phys->ds_unique_bytes;

1850 ASSERT(old_unique <= new_unique);
1851 mrsdelta = MIN(new_unique - old_unique,
1852 ds_next->ds_reserved - old_unique);
1853 dsl_dir_diduse_space(ds->ds_dir,
1854 DD_USED_REFRSRV, -mrsdelta, 0, 0, tx);
1855 }
1856 }
1857 dsl_dataset_rele(ds_next, FTAG);
1858 } else {
1859 zfeature_info_t *async_destroy =
1860 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY];

1862 /*
1863 * There’s no next snapshot, so this is a head dataset.
1864 * Destroy the deadlist. Unless it’s a clone, the
1865 * deadlist should be empty. (If it’s a clone, it’s
1866 * safe to ignore the deadlist contents.)
1867 */
1868 dsl_deadlist_close(&ds->ds_deadlist);
1869 dsl_deadlist_free(mos, ds->ds_phys->ds_deadlist_obj, tx);
1870 ds->ds_phys->ds_deadlist_obj = 0;

1872 if (!spa_feature_is_enabled(dp->dp_spa, async_destroy)) {
1873 err = old_synchronous_dataset_destroy(ds, tx);
1874 } else {
1875 /*
1876 * Move the bptree into the pool’s list of trees to
1877 * clean up and update space accounting information.
1878 */
1879 uint64_t used, comp, uncomp;

1881 ASSERT(err == 0 || err == EBUSY);
1882 if (!spa_feature_is_active(dp->dp_spa, async_destroy)) {
1883 spa_feature_incr(dp->dp_spa, async_destroy, tx);
1884 dp->dp_bptree_obj = bptree_alloc(
1885 dp->dp_meta_objset, tx);
1886 VERIFY(zap_add(dp->dp_meta_objset,
1887 DMU_POOL_DIRECTORY_OBJECT,
1888 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
1889 &dp->dp_bptree_obj, tx) == 0);

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 9

1890 }

1892 used = ds->ds_dir->dd_phys->dd_used_bytes;
1893 comp = ds->ds_dir->dd_phys->dd_compressed_bytes;
1894 uncomp = ds->ds_dir->dd_phys->dd_uncompressed_bytes;

1896 ASSERT(!DS_UNIQUE_IS_ACCURATE(ds) ||
1897 ds->ds_phys->ds_unique_bytes == used);

1899 bptree_add(dp->dp_meta_objset, dp->dp_bptree_obj,
1900 &ds->ds_phys->ds_bp, ds->ds_phys->ds_prev_snap_txg,
1901 used, comp, uncomp, tx);
1902 dsl_dir_diduse_space(ds->ds_dir, DD_USED_HEAD,
1903 -used, -comp, -uncomp, tx);
1904 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
1905 used, comp, uncomp, tx);
1906 }

1908 if (ds->ds_prev != NULL) {
1909 if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
1910 VERIFY0(zap_remove_int(mos,
1911 VERIFY3U(0, ==, zap_remove_int(mos,
1911 ds->ds_prev->ds_dir->dd_phys->dd_clones,
1912 ds->ds_object, tx));
1913 }
1914 dsl_dataset_rele(ds->ds_prev, ds);
1915 ds->ds_prev = ds_prev = NULL;
1916 }
1917 }

1919 /*
1920 * This must be done after the dsl_traverse(), because it will
1921 * re-open the objset.
1922 */
1923 if (ds->ds_objset) {
1924 dmu_objset_evict(ds->ds_objset);
1925 ds->ds_objset = NULL;
1926 }

1928 if (ds->ds_dir->dd_phys->dd_head_dataset_obj == ds->ds_object) {
1929 /* Erase the link in the dir */
1930 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1931 ds->ds_dir->dd_phys->dd_head_dataset_obj = 0;
1932 ASSERT(ds->ds_phys->ds_snapnames_zapobj != 0);
1933 err = zap_destroy(mos, ds->ds_phys->ds_snapnames_zapobj, tx);
1934 ASSERT(err == 0);
1935 } else {
1936 /* remove from snapshot namespace */
1937 dsl_dataset_t *ds_head;
1938 ASSERT(ds->ds_phys->ds_snapnames_zapobj == 0);
1939 VERIFY(0 == dsl_dataset_hold_obj(dp,
1940 ds->ds_dir->dd_phys->dd_head_dataset_obj, FTAG, &ds_head));
1941 VERIFY(0 == dsl_dataset_get_snapname(ds));
1942 #ifdef ZFS_DEBUG
1943 {
1944 uint64_t val;

1946 err = dsl_dataset_snap_lookup(ds_head,
1947 ds->ds_snapname, &val);
1948 ASSERT0(err);
1949 ASSERT3U(err, ==, 0);
1949 ASSERT3U(val, ==, obj);
1950 }
1951 #endif
1952 err = dsl_dataset_snap_remove(ds_head, ds->ds_snapname, tx);
1953 ASSERT(err == 0);

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 10

1954 dsl_dataset_rele(ds_head, FTAG);
1955 }

1957 if (ds_prev && ds->ds_prev != ds_prev)
1958 dsl_dataset_rele(ds_prev, FTAG);

1960 spa_prop_clear_bootfs(dp->dp_spa, ds->ds_object, tx);

1962 if (ds->ds_phys->ds_next_clones_obj != 0) {
1963 uint64_t count;
1964 ASSERT(0 == zap_count(mos,
1965 ds->ds_phys->ds_next_clones_obj, &count) && count == 0);
1966 VERIFY(0 == dmu_object_free(mos,
1967 ds->ds_phys->ds_next_clones_obj, tx));
1968 }
1969 if (ds->ds_phys->ds_props_obj != 0)
1970 VERIFY(0 == zap_destroy(mos, ds->ds_phys->ds_props_obj, tx));
1971 if (ds->ds_phys->ds_userrefs_obj != 0)
1972 VERIFY(0 == zap_destroy(mos, ds->ds_phys->ds_userrefs_obj, tx));
1973 dsl_dir_close(ds->ds_dir, ds);
1974 ds->ds_dir = NULL;
1975 dsl_dataset_drain_refs(ds, tag);
1976 VERIFY(0 == dmu_object_free(mos, obj, tx));

1978 if (dsda->rm_origin) {
1979 /*
1980 * Remove the origin of the clone we just destroyed.
1981 */
1982 struct dsl_ds_destroyarg ndsda = {0};

1984 ndsda.ds = dsda->rm_origin;
1985 dsl_dataset_destroy_sync(&ndsda, tag, tx);
1986 }
1987 }
______unchanged_portion_omitted_

2055 void
2056 dsl_dataset_snapshot_sync(dsl_dataset_t *ds, const char *snapname,
2057 dmu_tx_t *tx)
2058 {
2059 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2060 dmu_buf_t *dbuf;
2061 dsl_dataset_phys_t *dsphys;
2062 uint64_t dsobj, crtxg;
2063 objset_t *mos = dp->dp_meta_objset;
2064 int err;

2066 ASSERT(RW_WRITE_HELD(&dp->dp_config_rwlock));

2068 /*
2069 * The origin’s ds_creation_txg has to be < TXG_INITIAL
2070 */
2071 if (strcmp(snapname, ORIGIN_DIR_NAME) == 0)
2072 crtxg = 1;
2073 else
2074 crtxg = tx->tx_txg;

2076 dsobj = dmu_object_alloc(mos, DMU_OT_DSL_DATASET, 0,
2077 DMU_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx);
2078 VERIFY(0 == dmu_bonus_hold(mos, dsobj, FTAG, &dbuf));
2079 dmu_buf_will_dirty(dbuf, tx);
2080 dsphys = dbuf->db_data;
2081 bzero(dsphys, sizeof (dsl_dataset_phys_t));
2082 dsphys->ds_dir_obj = ds->ds_dir->dd_object;
2083 dsphys->ds_fsid_guid = unique_create();
2084 (void) random_get_pseudo_bytes((void*)&dsphys->ds_guid,

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 11

2085 sizeof (dsphys->ds_guid));
2086 dsphys->ds_prev_snap_obj = ds->ds_phys->ds_prev_snap_obj;
2087 dsphys->ds_prev_snap_txg = ds->ds_phys->ds_prev_snap_txg;
2088 dsphys->ds_next_snap_obj = ds->ds_object;
2089 dsphys->ds_num_children = 1;
2090 dsphys->ds_creation_time = gethrestime_sec();
2091 dsphys->ds_creation_txg = crtxg;
2092 dsphys->ds_deadlist_obj = ds->ds_phys->ds_deadlist_obj;
2093 dsphys->ds_referenced_bytes = ds->ds_phys->ds_referenced_bytes;
2094 dsphys->ds_compressed_bytes = ds->ds_phys->ds_compressed_bytes;
2095 dsphys->ds_uncompressed_bytes = ds->ds_phys->ds_uncompressed_bytes;
2096 dsphys->ds_flags = ds->ds_phys->ds_flags;
2097 dsphys->ds_bp = ds->ds_phys->ds_bp;
2098 dmu_buf_rele(dbuf, FTAG);

2100 ASSERT3U(ds->ds_prev != 0, ==, ds->ds_phys->ds_prev_snap_obj != 0);
2101 if (ds->ds_prev) {
2102 uint64_t next_clones_obj =
2103 ds->ds_prev->ds_phys->ds_next_clones_obj;
2104 ASSERT(ds->ds_prev->ds_phys->ds_next_snap_obj ==
2105 ds->ds_object ||
2106 ds->ds_prev->ds_phys->ds_num_children > 1);
2107 if (ds->ds_prev->ds_phys->ds_next_snap_obj == ds->ds_object) {
2108 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
2109 ASSERT3U(ds->ds_phys->ds_prev_snap_txg, ==,
2110 ds->ds_prev->ds_phys->ds_creation_txg);
2111 ds->ds_prev->ds_phys->ds_next_snap_obj = dsobj;
2112 } else if (next_clones_obj != 0) {
2113 remove_from_next_clones(ds->ds_prev,
2114 dsphys->ds_next_snap_obj, tx);
2115 VERIFY0(zap_add_int(mos,
2116 VERIFY3U(0, ==, zap_add_int(mos,
2116 next_clones_obj, dsobj, tx));
2117 }
2118 }

2120 /*
2121 * If we have a reference-reservation on this dataset, we will
2122 * need to increase the amount of refreservation being charged
2123 * since our unique space is going to zero.
2124 */
2125 if (ds->ds_reserved) {
2126 int64_t delta;
2127 ASSERT(DS_UNIQUE_IS_ACCURATE(ds));
2128 delta = MIN(ds->ds_phys->ds_unique_bytes, ds->ds_reserved);
2129 dsl_dir_diduse_space(ds->ds_dir, DD_USED_REFRSRV,
2130 delta, 0, 0, tx);
2131 }

2133 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2134 zfs_dbgmsg("taking snapshot %s@%s/%llu; newkey=%llu",
2135 ds->ds_dir->dd_myname, snapname, dsobj,
2136 ds->ds_phys->ds_prev_snap_txg);
2137 ds->ds_phys->ds_deadlist_obj = dsl_deadlist_clone(&ds->ds_deadlist,
2138 UINT64_MAX, ds->ds_phys->ds_prev_snap_obj, tx);
2139 dsl_deadlist_close(&ds->ds_deadlist);
2140 dsl_deadlist_open(&ds->ds_deadlist, mos, ds->ds_phys->ds_deadlist_obj);
2141 dsl_deadlist_add_key(&ds->ds_deadlist,
2142 ds->ds_phys->ds_prev_snap_txg, tx);

2144 ASSERT3U(ds->ds_phys->ds_prev_snap_txg, <, tx->tx_txg);
2145 ds->ds_phys->ds_prev_snap_obj = dsobj;
2146 ds->ds_phys->ds_prev_snap_txg = crtxg;
2147 ds->ds_phys->ds_unique_bytes = 0;
2148 if (spa_version(dp->dp_spa) >= SPA_VERSION_UNIQUE_ACCURATE)
2149 ds->ds_phys->ds_flags |= DS_FLAG_UNIQUE_ACCURATE;

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 12

2151 err = zap_add(mos, ds->ds_phys->ds_snapnames_zapobj,
2152 snapname, 8, 1, &dsobj, tx);
2153 ASSERT(err == 0);

2155 if (ds->ds_prev)
2156 dsl_dataset_drop_ref(ds->ds_prev, ds);
2157 VERIFY(0 == dsl_dataset_get_ref(dp,
2158 ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));

2160 dsl_scan_ds_snapshotted(ds, tx);

2162 dsl_dir_snap_cmtime_update(ds->ds_dir);

2164 spa_history_log_internal_ds(ds->ds_prev, "snapshot", tx, "");
2165 }
______unchanged_portion_omitted_

2185 static void
2186 get_clones_stat(dsl_dataset_t *ds, nvlist_t *nv)
2187 {
2188 uint64_t count = 0;
2189 objset_t *mos = ds->ds_dir->dd_pool->dp_meta_objset;
2190 zap_cursor_t zc;
2191 zap_attribute_t za;
2192 nvlist_t *propval;
2193 nvlist_t *val;

2195 rw_enter(&ds->ds_dir->dd_pool->dp_config_rwlock, RW_READER);
2196 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2197 VERIFY(nvlist_alloc(&val, NV_UNIQUE_NAME, KM_SLEEP) == 0);

2199 /*
2200 * There may me missing entries in ds_next_clones_obj
2201 * due to a bug in a previous version of the code.
2202 * Only trust it if it has the right number of entries.
2203 */
2204 if (ds->ds_phys->ds_next_clones_obj != 0) {
2205 ASSERT0(zap_count(mos, ds->ds_phys->ds_next_clones_obj,
2206 ASSERT3U(0, ==, zap_count(mos, ds->ds_phys->ds_next_clones_obj,
2206 &count));
2207 }
2208 if (count != ds->ds_phys->ds_num_children - 1) {
2209 goto fail;
2210 }
2211 for (zap_cursor_init(&zc, mos, ds->ds_phys->ds_next_clones_obj);
2212 zap_cursor_retrieve(&zc, &za) == 0;
2213 zap_cursor_advance(&zc)) {
2214 dsl_dataset_t *clone;
2215 char buf[ZFS_MAXNAMELEN];
2216 /*
2217 * Even though we hold the dp_config_rwlock, the dataset
2218 * may fail to open, returning ENOENT. If there is a
2219 * thread concurrently attempting to destroy this
2220 * dataset, it will have the ds_rwlock held for
2221 * RW_WRITER. Our call to dsl_dataset_hold_obj() ->
2222 * dsl_dataset_hold_ref() will fail its
2223 * rw_tryenter(&ds->ds_rwlock, RW_READER), drop the
2224 * dp_config_rwlock, and wait for the destroy progress
2225 * and signal ds_exclusive_cv. If the destroy was
2226 * successful, we will see that
2227 * DSL_DATASET_IS_DESTROYED(), and return ENOENT.
2228 */
2229 if (dsl_dataset_hold_obj(ds->ds_dir->dd_pool,
2230 za.za_first_integer, FTAG, &clone) != 0)
2231 continue;

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 13

2232 dsl_dir_name(clone->ds_dir, buf);
2233 VERIFY(nvlist_add_boolean(val, buf) == 0);
2234 dsl_dataset_rele(clone, FTAG);
2235 }
2236 zap_cursor_fini(&zc);
2237 VERIFY(nvlist_add_nvlist(propval, ZPROP_VALUE, val) == 0);
2238 VERIFY(nvlist_add_nvlist(nv, zfs_prop_to_name(ZFS_PROP_CLONES),
2239 propval) == 0);
2240 fail:
2241 nvlist_free(val);
2242 nvlist_free(propval);
2243 rw_exit(&ds->ds_dir->dd_pool->dp_config_rwlock);
2244 }
______unchanged_portion_omitted_

2427 static void
2428 dsl_dataset_snapshot_rename_sync(void *arg1, void *arg2, dmu_tx_t *tx)
2429 {
2430 dsl_dataset_t *ds = arg1;
2431 const char *newsnapname = arg2;
2432 dsl_dir_t *dd = ds->ds_dir;
2433 objset_t *mos = dd->dd_pool->dp_meta_objset;
2434 dsl_dataset_t *hds;
2435 int err;

2437 ASSERT(ds->ds_phys->ds_next_snap_obj != 0);

2439 VERIFY(0 == dsl_dataset_hold_obj(dd->dd_pool,
2440 dd->dd_phys->dd_head_dataset_obj, FTAG, &hds));

2442 VERIFY(0 == dsl_dataset_get_snapname(ds));
2443 err = dsl_dataset_snap_remove(hds, ds->ds_snapname, tx);
2444 ASSERT0(err);
2445 ASSERT3U(err, ==, 0);
2445 mutex_enter(&ds->ds_lock);
2446 (void) strcpy(ds->ds_snapname, newsnapname);
2447 mutex_exit(&ds->ds_lock);
2448 err = zap_add(mos, hds->ds_phys->ds_snapnames_zapobj,
2449 ds->ds_snapname, 8, 1, &ds->ds_object, tx);
2450 ASSERT0(err);
2451 ASSERT3U(err, ==, 0);

2452 spa_history_log_internal_ds(ds, "rename", tx,
2453 "-> @%s", newsnapname);
2454 dsl_dataset_rele(hds, FTAG);
2455 }
______unchanged_portion_omitted_

2772 static void
2773 dsl_dataset_promote_sync(void *arg1, void *arg2, dmu_tx_t *tx)
2774 {
2775 dsl_dataset_t *hds = arg1;
2776 struct promotearg *pa = arg2;
2777 struct promotenode *snap = list_head(&pa->shared_snaps);
2778 dsl_dataset_t *origin_ds = snap->ds;
2779 dsl_dataset_t *origin_head;
2780 dsl_dir_t *dd = hds->ds_dir;
2781 dsl_pool_t *dp = hds->ds_dir->dd_pool;
2782 dsl_dir_t *odd = NULL;
2783 uint64_t oldnext_obj;
2784 int64_t delta;

2786 ASSERT(0 == (hds->ds_phys->ds_flags & DS_FLAG_NOPROMOTE));

2788 snap = list_head(&pa->origin_snaps);
2789 origin_head = snap->ds;

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 14

2791 /*
2792 * We need to explicitly open odd, since origin_ds’s dd will be
2793 * changing.
2794 */
2795 VERIFY(0 == dsl_dir_open_obj(dp, origin_ds->ds_dir->dd_object,
2796 NULL, FTAG, &odd));

2798 /* change origin’s next snap */
2799 dmu_buf_will_dirty(origin_ds->ds_dbuf, tx);
2800 oldnext_obj = origin_ds->ds_phys->ds_next_snap_obj;
2801 snap = list_tail(&pa->clone_snaps);
2802 ASSERT3U(snap->ds->ds_phys->ds_prev_snap_obj, ==, origin_ds->ds_object);
2803 origin_ds->ds_phys->ds_next_snap_obj = snap->ds->ds_object;

2805 /* change the origin’s next clone */
2806 if (origin_ds->ds_phys->ds_next_clones_obj) {
2807 remove_from_next_clones(origin_ds, snap->ds->ds_object, tx);
2808 VERIFY0(zap_add_int(dp->dp_meta_objset,
2809 VERIFY3U(0, ==, zap_add_int(dp->dp_meta_objset,
2809 origin_ds->ds_phys->ds_next_clones_obj,
2810 oldnext_obj, tx));
2811 }

2813 /* change origin */
2814 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2815 ASSERT3U(dd->dd_phys->dd_origin_obj, ==, origin_ds->ds_object);
2816 dd->dd_phys->dd_origin_obj = odd->dd_phys->dd_origin_obj;
2817 dd->dd_origin_txg = origin_head->ds_dir->dd_origin_txg;
2818 dmu_buf_will_dirty(odd->dd_dbuf, tx);
2819 odd->dd_phys->dd_origin_obj = origin_ds->ds_object;
2820 origin_head->ds_dir->dd_origin_txg =
2821 origin_ds->ds_phys->ds_creation_txg;

2823 /* change dd_clone entries */
2824 if (spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
2825 VERIFY0(zap_remove_int(dp->dp_meta_objset,
2826 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2826 odd->dd_phys->dd_clones, hds->ds_object, tx));
2827 VERIFY0(zap_add_int(dp->dp_meta_objset,
2828 VERIFY3U(0, ==, zap_add_int(dp->dp_meta_objset,
2828 pa->origin_origin->ds_dir->dd_phys->dd_clones,
2829 hds->ds_object, tx));

2831 VERIFY0(zap_remove_int(dp->dp_meta_objset,
2832 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2832 pa->origin_origin->ds_dir->dd_phys->dd_clones,
2833 origin_head->ds_object, tx));
2834 if (dd->dd_phys->dd_clones == 0) {
2835 dd->dd_phys->dd_clones = zap_create(dp->dp_meta_objset,
2836 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
2837 }
2838 VERIFY0(zap_add_int(dp->dp_meta_objset,
2839 VERIFY3U(0, ==, zap_add_int(dp->dp_meta_objset,
2839 dd->dd_phys->dd_clones, origin_head->ds_object, tx));

2841 }

2843 /* move snapshots to this dir */
2844 for (snap = list_head(&pa->shared_snaps); snap;
2845 snap = list_next(&pa->shared_snaps, snap)) {
2846 dsl_dataset_t *ds = snap->ds;

2848 /* unregister props as dsl_dir is changing */
2849 if (ds->ds_objset) {
2850 dmu_objset_evict(ds->ds_objset);

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 15

2851 ds->ds_objset = NULL;
2852 }
2853 /* move snap name entry */
2854 VERIFY(0 == dsl_dataset_get_snapname(ds));
2855 VERIFY(0 == dsl_dataset_snap_remove(origin_head,
2856 ds->ds_snapname, tx));
2857 VERIFY(0 == zap_add(dp->dp_meta_objset,
2858 hds->ds_phys->ds_snapnames_zapobj, ds->ds_snapname,
2859 8, 1, &ds->ds_object, tx));

2861 /* change containing dsl_dir */
2862 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2863 ASSERT3U(ds->ds_phys->ds_dir_obj, ==, odd->dd_object);
2864 ds->ds_phys->ds_dir_obj = dd->dd_object;
2865 ASSERT3P(ds->ds_dir, ==, odd);
2866 dsl_dir_close(ds->ds_dir, ds);
2867 VERIFY(0 == dsl_dir_open_obj(dp, dd->dd_object,
2868 NULL, ds, &ds->ds_dir));

2870 /* move any clone references */
2871 if (ds->ds_phys->ds_next_clones_obj &&
2872 spa_version(dp->dp_spa) >= SPA_VERSION_DIR_CLONES) {
2873 zap_cursor_t zc;
2874 zap_attribute_t za;

2876 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2877 ds->ds_phys->ds_next_clones_obj);
2878 zap_cursor_retrieve(&zc, &za) == 0;
2879 zap_cursor_advance(&zc)) {
2880 dsl_dataset_t *cnds;
2881 uint64_t o;

2883 if (za.za_first_integer == oldnext_obj) {
2884 /*
2885 * We’ve already moved the
2886 * origin’s reference.
2887 */
2888 continue;
2889 }

2891 VERIFY0(dsl_dataset_hold_obj(dp,
2892 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp,
2892 za.za_first_integer, FTAG, &cnds));
2893 o = cnds->ds_dir->dd_phys->dd_head_dataset_obj;

2895 VERIFY3U(zap_remove_int(dp->dp_meta_objset,
2896 odd->dd_phys->dd_clones, o, tx), ==, 0);
2897 VERIFY3U(zap_add_int(dp->dp_meta_objset,
2898 dd->dd_phys->dd_clones, o, tx), ==, 0);
2899 dsl_dataset_rele(cnds, FTAG);
2900 }
2901 zap_cursor_fini(&zc);
2902 }

2904 ASSERT0(dsl_prop_numcb(ds));
2905 ASSERT3U(dsl_prop_numcb(ds), ==, 0);
2905 }

2907 /*
2908 * Change space accounting.
2909 * Note, pa->*usedsnap and dd_used_breakdown[SNAP] will either
2910 * both be valid, or both be 0 (resulting in delta == 0). This
2911 * is true for each of {clone,origin} independently.
2912 */

2914 delta = pa->cloneusedsnap -

new/usr/src/uts/common/fs/zfs/dsl_dataset.c 16

2915 dd->dd_phys->dd_used_breakdown[DD_USED_SNAP];
2916 ASSERT3S(delta, >=, 0);
2917 ASSERT3U(pa->used, >=, delta);
2918 dsl_dir_diduse_space(dd, DD_USED_SNAP, delta, 0, 0, tx);
2919 dsl_dir_diduse_space(dd, DD_USED_HEAD,
2920 pa->used - delta, pa->comp, pa->uncomp, tx);

2922 delta = pa->originusedsnap -
2923 odd->dd_phys->dd_used_breakdown[DD_USED_SNAP];
2924 ASSERT3S(delta, <=, 0);
2925 ASSERT3U(pa->used, >=, -delta);
2926 dsl_dir_diduse_space(odd, DD_USED_SNAP, delta, 0, 0, tx);
2927 dsl_dir_diduse_space(odd, DD_USED_HEAD,
2928 -pa->used - delta, -pa->comp, -pa->uncomp, tx);

2930 origin_ds->ds_phys->ds_unique_bytes = pa->unique;

2932 /* log history record */
2933 spa_history_log_internal_ds(hds, "promote", tx, "");

2935 dsl_dir_close(odd, FTAG);
2936 }
______unchanged_portion_omitted_

3599 void
3600 dsl_register_onexit_hold_cleanup(dsl_dataset_t *ds, const char *htag,
3601 minor_t minor)
3602 {
3603 zfs_hold_cleanup_arg_t *ca;

3605 ca = kmem_alloc(sizeof (zfs_hold_cleanup_arg_t), KM_SLEEP);
3606 ca->dp = ds->ds_dir->dd_pool;
3607 ca->dsobj = ds->ds_object;
3608 (void) strlcpy(ca->htag, htag, sizeof (ca->htag));
3609 VERIFY0(zfs_onexit_add_cb(minor,
3610 VERIFY3U(0, ==, zfs_onexit_add_cb(minor,
3610 dsl_dataset_user_release_onexit, ca, NULL));
3611 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_deadlist.c 1

**
 12683 Thu Jul 26 14:19:14 2012
new/usr/src/uts/common/fs/zfs/dsl_deadlist.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 */

26 #include <sys/dsl_dataset.h>
27 #include <sys/dmu.h>
28 #include <sys/refcount.h>
29 #include <sys/zap.h>
30 #include <sys/zfs_context.h>
31 #include <sys/dsl_pool.h>

33 /*
34 * Deadlist concurrency:
35 *
36 * Deadlists can only be modified from the syncing thread.
37 *
38 * Except for dsl_deadlist_insert(), it can only be modified with the
39 * dp_config_rwlock held with RW_WRITER.
40 *
41 * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42 * be called concurrently, from open context, with the dl_config_rwlock held
43 * with RW_READER.
44 *
45 * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46 * the accessors, protecting:
47 * dl_phys->dl_used,comp,uncomp
48 * and protecting the dl_tree from being loaded.
49 * The locking is provided by dl_lock. Note that locking on the bpobj_t
50 * provides its own locking, and dl_oldfmt is immutable.
51 */

53 static int
54 dsl_deadlist_compare(const void *arg1, const void *arg2)
55 {
56 const dsl_deadlist_entry_t *dle1 = arg1;
57 const dsl_deadlist_entry_t *dle2 = arg2;

59 if (dle1->dle_mintxg < dle2->dle_mintxg)
60 return (-1);

new/usr/src/uts/common/fs/zfs/dsl_deadlist.c 2

61 else if (dle1->dle_mintxg > dle2->dle_mintxg)
62 return (+1);
63 else
64 return (0);
65 }

67 static void
68 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
69 {
70 zap_cursor_t zc;
71 zap_attribute_t za;

73 ASSERT(!dl->dl_oldfmt);
74 if (dl->dl_havetree)
75 return;

77 avl_create(&dl->dl_tree, dsl_deadlist_compare,
78 sizeof (dsl_deadlist_entry_t),
79 offsetof(dsl_deadlist_entry_t, dle_node));
80 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
81 zap_cursor_retrieve(&zc, &za) == 0;
82 zap_cursor_advance(&zc)) {
83 dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
84 dle->dle_mintxg = strtonum(za.za_name, NULL);
85 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
85 VERIFY3U(0, ==, bpobj_open(&dle->dle_bpobj, dl->dl_os,
86 za.za_first_integer));
87 avl_add(&dl->dl_tree, dle);
88 }
89 zap_cursor_fini(&zc);
90 dl->dl_havetree = B_TRUE;
91 }

93 void
94 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
95 {
96 dmu_object_info_t doi;

98 mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
99 dl->dl_os = os;
100 dl->dl_object = object;
101 VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
101 VERIFY3U(0, ==, dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
102 dmu_object_info_from_db(dl->dl_dbuf, &doi);
103 if (doi.doi_type == DMU_OT_BPOBJ) {
104 dmu_buf_rele(dl->dl_dbuf, dl);
105 dl->dl_dbuf = NULL;
106 dl->dl_oldfmt = B_TRUE;
107 VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
107 VERIFY3U(0, ==, bpobj_open(&dl->dl_bpobj, os, object));
108 return;
109 }

111 dl->dl_oldfmt = B_FALSE;
112 dl->dl_phys = dl->dl_dbuf->db_data;
113 dl->dl_havetree = B_FALSE;
114 }

______unchanged_portion_omitted_

151 void
152 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
153 {
154 dmu_object_info_t doi;
155 zap_cursor_t zc;
156 zap_attribute_t za;

new/usr/src/uts/common/fs/zfs/dsl_deadlist.c 3

158 VERIFY0(dmu_object_info(os, dlobj, &doi));
158 VERIFY3U(0, ==, dmu_object_info(os, dlobj, &doi));
159 if (doi.doi_type == DMU_OT_BPOBJ) {
160 bpobj_free(os, dlobj, tx);
161 return;
162 }

164 for (zap_cursor_init(&zc, os, dlobj);
165 zap_cursor_retrieve(&zc, &za) == 0;
166 zap_cursor_advance(&zc))
167 bpobj_free(os, za.za_first_integer, tx);
168 zap_cursor_fini(&zc);
169 VERIFY0(dmu_object_free(os, dlobj, tx));
169 VERIFY3U(0, ==, dmu_object_free(os, dlobj, tx));
170 }

______unchanged_portion_omitted_

203 /*
204 * Insert new key in deadlist, which must be > all current entries.
205 * mintxg is not inclusive.
206 */
207 void
208 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
209 {
210 uint64_t obj;
211 dsl_deadlist_entry_t *dle;

213 if (dl->dl_oldfmt)
214 return;

216 dsl_deadlist_load_tree(dl);

218 dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
219 dle->dle_mintxg = mintxg;
220 obj = bpobj_alloc(dl->dl_os, SPA_MAXBLOCKSIZE, tx);
221 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
221 VERIFY3U(0, ==, bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
222 avl_add(&dl->dl_tree, dle);

224 VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
224 VERIFY3U(0, ==, zap_add_int_key(dl->dl_os, dl->dl_object,
225 mintxg, obj, tx));
226 }

228 /*
229 * Remove this key, merging its entries into the previous key.
230 */
231 void
232 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
233 {
234 dsl_deadlist_entry_t dle_tofind;
235 dsl_deadlist_entry_t *dle, *dle_prev;

237 if (dl->dl_oldfmt)
238 return;

240 dsl_deadlist_load_tree(dl);

242 dle_tofind.dle_mintxg = mintxg;
243 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
244 dle_prev = AVL_PREV(&dl->dl_tree, dle);

246 bpobj_enqueue_subobj(&dle_prev->dle_bpobj,
247 dle->dle_bpobj.bpo_object, tx);

249 avl_remove(&dl->dl_tree, dle);

new/usr/src/uts/common/fs/zfs/dsl_deadlist.c 4

250 bpobj_close(&dle->dle_bpobj);
251 kmem_free(dle, sizeof (*dle));

253 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
253 VERIFY3U(0, ==, zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
254 }

256 /*
257 * Walk ds’s snapshots to regenerate generate ZAP & AVL.
258 */
259 static void
260 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
261 uint64_t mrs_obj, dmu_tx_t *tx)
262 {
263 dsl_deadlist_t dl;
264 dsl_pool_t *dp = dmu_objset_pool(os);

266 dsl_deadlist_open(&dl, os, dlobj);
267 if (dl.dl_oldfmt) {
268 dsl_deadlist_close(&dl);
269 return;
270 }

272 while (mrs_obj != 0) {
273 dsl_dataset_t *ds;
274 VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
274 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
275 dsl_deadlist_add_key(&dl, ds->ds_phys->ds_prev_snap_txg, tx);
276 mrs_obj = ds->ds_phys->ds_prev_snap_obj;
277 dsl_dataset_rele(ds, FTAG);
278 }
279 dsl_deadlist_close(&dl);
280 }

282 uint64_t
283 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
284 uint64_t mrs_obj, dmu_tx_t *tx)
285 {
286 dsl_deadlist_entry_t *dle;
287 uint64_t newobj;

289 newobj = dsl_deadlist_alloc(dl->dl_os, tx);

291 if (dl->dl_oldfmt) {
292 dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
293 return (newobj);
294 }

296 dsl_deadlist_load_tree(dl);

298 for (dle = avl_first(&dl->dl_tree); dle;
299 dle = AVL_NEXT(&dl->dl_tree, dle)) {
300 uint64_t obj;

302 if (dle->dle_mintxg >= maxtxg)
303 break;

305 obj = bpobj_alloc(dl->dl_os, SPA_MAXBLOCKSIZE, tx);
306 VERIFY0(zap_add_int_key(dl->dl_os, newobj,
306 VERIFY3U(0, ==, zap_add_int_key(dl->dl_os, newobj,
307 dle->dle_mintxg, obj, tx));
308 }
309 return (newobj);
310 }

312 void

new/usr/src/uts/common/fs/zfs/dsl_deadlist.c 5

313 dsl_deadlist_space(dsl_deadlist_t *dl,
314 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
315 {
316 if (dl->dl_oldfmt) {
317 VERIFY0(bpobj_space(&dl->dl_bpobj,
317 VERIFY3U(0, ==, bpobj_space(&dl->dl_bpobj,
318 usedp, compp, uncompp));
319 return;
320 }

322 mutex_enter(&dl->dl_lock);
323 *usedp = dl->dl_phys->dl_used;
324 *compp = dl->dl_phys->dl_comp;
325 *uncompp = dl->dl_phys->dl_uncomp;
326 mutex_exit(&dl->dl_lock);
327 }

329 /*
330 * return space used in the range (mintxg, maxtxg].
331 * Includes maxtxg, does not include mintxg.
332 * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
333 * larger than any bp in the deadlist (eg. UINT64_MAX)).
334 */
335 void
336 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
337 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
338 {
339 dsl_deadlist_entry_t *dle;
340 dsl_deadlist_entry_t dle_tofind;
341 avl_index_t where;

343 if (dl->dl_oldfmt) {
344 VERIFY0(bpobj_space_range(&dl->dl_bpobj,
344 VERIFY3U(0, ==, bpobj_space_range(&dl->dl_bpobj,
345 mintxg, maxtxg, usedp, compp, uncompp));
346 return;
347 }

349 *usedp = *compp = *uncompp = 0;

351 mutex_enter(&dl->dl_lock);
352 dsl_deadlist_load_tree(dl);
353 dle_tofind.dle_mintxg = mintxg;
354 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
355 /*
356 * If we don’t find this mintxg, there shouldn’t be anything
357 * after it either.
358 */
359 ASSERT(dle != NULL ||
360 avl_nearest(&dl->dl_tree, where, AVL_AFTER) == NULL);

362 for (; dle && dle->dle_mintxg < maxtxg;
363 dle = AVL_NEXT(&dl->dl_tree, dle)) {
364 uint64_t used, comp, uncomp;

366 VERIFY0(bpobj_space(&dle->dle_bpobj,
366 VERIFY3U(0, ==, bpobj_space(&dle->dle_bpobj,
367 &used, &comp, &uncomp));

369 *usedp += used;
370 *compp += comp;
371 *uncompp += uncomp;
372 }
373 mutex_exit(&dl->dl_lock);
374 }

new/usr/src/uts/common/fs/zfs/dsl_deadlist.c 6

376 static void
377 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
378 dmu_tx_t *tx)
379 {
380 dsl_deadlist_entry_t dle_tofind;
381 dsl_deadlist_entry_t *dle;
382 avl_index_t where;
383 uint64_t used, comp, uncomp;
384 bpobj_t bpo;

386 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
387 VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
386 VERIFY3U(0, ==, bpobj_open(&bpo, dl->dl_os, obj));
387 VERIFY3U(0, ==, bpobj_space(&bpo, &used, &comp, &uncomp));
388 bpobj_close(&bpo);

390 dsl_deadlist_load_tree(dl);

392 dmu_buf_will_dirty(dl->dl_dbuf, tx);
393 mutex_enter(&dl->dl_lock);
394 dl->dl_phys->dl_used += used;
395 dl->dl_phys->dl_comp += comp;
396 dl->dl_phys->dl_uncomp += uncomp;
397 mutex_exit(&dl->dl_lock);

399 dle_tofind.dle_mintxg = birth;
400 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
401 if (dle == NULL)
402 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
403 bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
404 }

______unchanged_portion_omitted_

414 /*
415 * Merge the deadlist pointed to by ’obj’ into dl. obj will be left as
416 * an empty deadlist.
417 */
418 void
419 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
420 {
421 zap_cursor_t zc;
422 zap_attribute_t za;
423 dmu_buf_t *bonus;
424 dsl_deadlist_phys_t *dlp;
425 dmu_object_info_t doi;

427 VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
427 VERIFY3U(0, ==, dmu_object_info(dl->dl_os, obj, &doi));
428 if (doi.doi_type == DMU_OT_BPOBJ) {
429 bpobj_t bpo;
430 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
431 VERIFY0(bpobj_iterate(&bpo,
430 VERIFY3U(0, ==, bpobj_open(&bpo, dl->dl_os, obj));
431 VERIFY3U(0, ==, bpobj_iterate(&bpo,
432 dsl_deadlist_insert_cb, dl, tx));
433 bpobj_close(&bpo);
434 return;
435 }

437 for (zap_cursor_init(&zc, dl->dl_os, obj);
438 zap_cursor_retrieve(&zc, &za) == 0;
439 zap_cursor_advance(&zc)) {
440 uint64_t mintxg = strtonum(za.za_name, NULL);
441 dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
442 VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
442 VERIFY3U(0, ==, zap_remove_int(dl->dl_os, obj, mintxg, tx));

new/usr/src/uts/common/fs/zfs/dsl_deadlist.c 7

443 }
444 zap_cursor_fini(&zc);

446 VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
446 VERIFY3U(0, ==, dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
447 dlp = bonus->db_data;
448 dmu_buf_will_dirty(bonus, tx);
449 bzero(dlp, sizeof (*dlp));
450 dmu_buf_rele(bonus, FTAG);
451 }

453 /*
454 * Remove entries on dl that are >= mintxg, and put them on the bpobj.
455 */
456 void
457 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
458 dmu_tx_t *tx)
459 {
460 dsl_deadlist_entry_t dle_tofind;
461 dsl_deadlist_entry_t *dle;
462 avl_index_t where;

464 ASSERT(!dl->dl_oldfmt);
465 dmu_buf_will_dirty(dl->dl_dbuf, tx);
466 dsl_deadlist_load_tree(dl);

468 dle_tofind.dle_mintxg = mintxg;
469 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
470 if (dle == NULL)
471 dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
472 while (dle) {
473 uint64_t used, comp, uncomp;
474 dsl_deadlist_entry_t *dle_next;

476 bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);

478 VERIFY0(bpobj_space(&dle->dle_bpobj,
478 VERIFY3U(0, ==, bpobj_space(&dle->dle_bpobj,
479 &used, &comp, &uncomp));
480 mutex_enter(&dl->dl_lock);
481 ASSERT3U(dl->dl_phys->dl_used, >=, used);
482 ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
483 ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
484 dl->dl_phys->dl_used -= used;
485 dl->dl_phys->dl_comp -= comp;
486 dl->dl_phys->dl_uncomp -= uncomp;
487 mutex_exit(&dl->dl_lock);

489 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
489 VERIFY3U(0, ==, zap_remove_int(dl->dl_os, dl->dl_object,
490 dle->dle_mintxg, tx));

492 dle_next = AVL_NEXT(&dl->dl_tree, dle);
493 avl_remove(&dl->dl_tree, dle);
494 bpobj_close(&dle->dle_bpobj);
495 kmem_free(dle, sizeof (*dle));
496 dle = dle_next;
497 }
498 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_dir.c 1

**
 36542 Thu Jul 26 14:19:15 2012
new/usr/src/uts/common/fs/zfs/dsl_dir.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

477 void
478 dsl_dir_destroy_sync(void *arg1, void *tag, dmu_tx_t *tx)
479 {
480 dsl_dir_t *dd = arg1;
481 objset_t *mos = dd->dd_pool->dp_meta_objset;
482 uint64_t obj;
483 dd_used_t t;

485 ASSERT(RW_WRITE_HELD(&dd->dd_pool->dp_config_rwlock));
486 ASSERT(dd->dd_phys->dd_head_dataset_obj == 0);

488 /*
489 * Remove our reservation. The impl() routine avoids setting the
490 * actual property, which would require the (already destroyed) ds.
491 */
492 dsl_dir_set_reservation_sync_impl(dd, 0, tx);

494 ASSERT0(dd->dd_phys->dd_used_bytes);
495 ASSERT0(dd->dd_phys->dd_reserved);
494 ASSERT3U(dd->dd_phys->dd_used_bytes, ==, 0);
495 ASSERT3U(dd->dd_phys->dd_reserved, ==, 0);
496 for (t = 0; t < DD_USED_NUM; t++)
497 ASSERT0(dd->dd_phys->dd_used_breakdown[t]);
497 ASSERT3U(dd->dd_phys->dd_used_breakdown[t], ==, 0);

499 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_child_dir_zapobj, tx));
500 VERIFY(0 == zap_destroy(mos, dd->dd_phys->dd_props_zapobj, tx));
501 VERIFY(0 == dsl_deleg_destroy(mos, dd->dd_phys->dd_deleg_zapobj, tx));
502 VERIFY(0 == zap_remove(mos,
503 dd->dd_parent->dd_phys->dd_child_dir_zapobj, dd->dd_myname, tx));

505 obj = dd->dd_object;
506 dsl_dir_close(dd, tag);
507 VERIFY(0 == dmu_object_free(mos, obj, tx));
508 }

______unchanged_portion_omitted_

580 void
581 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
582 {
583 ASSERT(dmu_tx_is_syncing(tx));

585 dmu_buf_will_dirty(dd->dd_dbuf, tx);

587 mutex_enter(&dd->dd_lock);
588 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
588 ASSERT3U(dd->dd_tempreserved[tx->tx_txg&TXG_MASK], ==, 0);
589 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
590 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
591 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
592 mutex_exit(&dd->dd_lock);

594 /* release the hold from dsl_dir_dirty */
595 dmu_buf_rele(dd->dd_dbuf, dd);
596 }

______unchanged_portion_omitted_

1294 static void
1295 dsl_dir_rename_sync(void *arg1, void *arg2, dmu_tx_t *tx)

new/usr/src/uts/common/fs/zfs/dsl_dir.c 2

1296 {
1297 dsl_dir_t *dd = arg1;
1298 struct renamearg *ra = arg2;
1299 dsl_pool_t *dp = dd->dd_pool;
1300 objset_t *mos = dp->dp_meta_objset;
1301 int err;
1302 char namebuf[MAXNAMELEN];

1304 ASSERT(dmu_buf_refcount(dd->dd_dbuf) <= 2);

1306 /* Log this before we change the name. */
1307 dsl_dir_name(ra->newparent, namebuf);
1308 spa_history_log_internal_dd(dd, "rename", tx,
1309 "-> %s/%s", namebuf, ra->mynewname);

1311 if (ra->newparent != dd->dd_parent) {
1312 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1313 -dd->dd_phys->dd_used_bytes,
1314 -dd->dd_phys->dd_compressed_bytes,
1315 -dd->dd_phys->dd_uncompressed_bytes, tx);
1316 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD,
1317 dd->dd_phys->dd_used_bytes,
1318 dd->dd_phys->dd_compressed_bytes,
1319 dd->dd_phys->dd_uncompressed_bytes, tx);

1321 if (dd->dd_phys->dd_reserved > dd->dd_phys->dd_used_bytes) {
1322 uint64_t unused_rsrv = dd->dd_phys->dd_reserved -
1323 dd->dd_phys->dd_used_bytes;

1325 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1326 -unused_rsrv, 0, 0, tx);
1327 dsl_dir_diduse_space(ra->newparent, DD_USED_CHILD_RSRV,
1328 unused_rsrv, 0, 0, tx);
1329 }
1330 }

1332 dmu_buf_will_dirty(dd->dd_dbuf, tx);

1334 /* remove from old parent zapobj */
1335 err = zap_remove(mos, dd->dd_parent->dd_phys->dd_child_dir_zapobj,
1336 dd->dd_myname, tx);
1337 ASSERT0(err);
1337 ASSERT3U(err, ==, 0);

1339 (void) strcpy(dd->dd_myname, ra->mynewname);
1340 dsl_dir_close(dd->dd_parent, dd);
1341 dd->dd_phys->dd_parent_obj = ra->newparent->dd_object;
1342 VERIFY(0 == dsl_dir_open_obj(dd->dd_pool,
1343 ra->newparent->dd_object, NULL, dd, &dd->dd_parent));

1345 /* add to new parent zapobj */
1346 err = zap_add(mos, ra->newparent->dd_phys->dd_child_dir_zapobj,
1347 dd->dd_myname, 8, 1, &dd->dd_object, tx);
1348 ASSERT0(err);
1348 ASSERT3U(err, ==, 0);

1350 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_pool.c 1

**
 23854 Thu Jul 26 14:19:16 2012
new/usr/src/uts/common/fs/zfs/dsl_pool.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

120 int
121 dsl_pool_open(dsl_pool_t *dp)
122 {
123 int err;
124 dsl_dir_t *dd;
125 dsl_dataset_t *ds;
126 uint64_t obj;

128 ASSERT(!dmu_objset_is_dirty_anywhere(dp->dp_meta_objset));

130 rw_enter(&dp->dp_config_rwlock, RW_WRITER);
131 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
132 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
133 &dp->dp_root_dir_obj);
134 if (err)
135 goto out;

137 err = dsl_dir_open_obj(dp, dp->dp_root_dir_obj,
138 NULL, dp, &dp->dp_root_dir);
139 if (err)
140 goto out;

142 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
143 if (err)
144 goto out;

146 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
147 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
148 if (err)
149 goto out;
150 err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
151 FTAG, &ds);
152 if (err == 0) {
153 err = dsl_dataset_hold_obj(dp,
154 ds->ds_phys->ds_prev_snap_obj, dp,
155 &dp->dp_origin_snap);
156 dsl_dataset_rele(ds, FTAG);
157 }
158 dsl_dir_close(dd, dp);
159 if (err)
160 goto out;
161 }

163 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
164 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
165 &dp->dp_free_dir);
166 if (err)
167 goto out;

169 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
170 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
171 if (err)
172 goto out;
173 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
173 VERIFY3U(0, ==, bpobj_open(&dp->dp_free_bpobj,
174 dp->dp_meta_objset, obj));
175 }

177 if (spa_feature_is_active(dp->dp_spa,

new/usr/src/uts/common/fs/zfs/dsl_pool.c 2

178 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
179 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
180 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
181 &dp->dp_bptree_obj);
182 if (err != 0)
183 goto out;
184 }

186 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
187 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
188 &dp->dp_tmp_userrefs_obj);
189 if (err == ENOENT)
190 err = 0;
191 if (err)
192 goto out;

194 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);

196 out:
197 rw_exit(&dp->dp_config_rwlock);
198 return (err);
199 }

______unchanged_portion_omitted_

242 dsl_pool_t *
243 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
244 {
245 int err;
246 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
247 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
248 objset_t *os;
249 dsl_dataset_t *ds;
250 uint64_t obj;

252 /* create and open the MOS (meta-objset) */
253 dp->dp_meta_objset = dmu_objset_create_impl(spa,
254 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);

256 /* create the pool directory */
257 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
259 ASSERT0(err);
259 ASSERT3U(err, ==, 0);

261 /* Initialize scan structures */
262 VERIFY0(dsl_scan_init(dp, txg));
262 VERIFY3U(0, ==, dsl_scan_init(dp, txg));

264 /* create and open the root dir */
265 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
266 VERIFY(0 == dsl_dir_open_obj(dp, dp->dp_root_dir_obj,
267 NULL, dp, &dp->dp_root_dir));

269 /* create and open the meta-objset dir */
270 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
271 VERIFY(0 == dsl_pool_open_special_dir(dp,
272 MOS_DIR_NAME, &dp->dp_mos_dir));

274 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
275 /* create and open the free dir */
276 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
277 FREE_DIR_NAME, tx);
278 VERIFY(0 == dsl_pool_open_special_dir(dp,
279 FREE_DIR_NAME, &dp->dp_free_dir));

281 /* create and open the free_bplist */

new/usr/src/uts/common/fs/zfs/dsl_pool.c 3

282 obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
283 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
284 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
285 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
285 VERIFY3U(0, ==, bpobj_open(&dp->dp_free_bpobj,
286 dp->dp_meta_objset, obj));
287 }

289 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
290 dsl_pool_create_origin(dp, tx);

292 /* create the root dataset */
293 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);

295 /* create the root objset */
296 VERIFY(0 == dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
297 os = dmu_objset_create_impl(dp->dp_spa, ds,
298 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
299 #ifdef _KERNEL
300 zfs_create_fs(os, kcred, zplprops, tx);
301 #endif
302 dsl_dataset_rele(ds, FTAG);

304 dmu_tx_commit(tx);

306 return (dp);
307 }

______unchanged_portion_omitted_

671 void
672 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
673 {
674 ASSERT(dmu_tx_is_syncing(tx));
675 ASSERT(dp->dp_origin_snap != NULL);

677 VERIFY0(dmu_objset_find_spa(dp->dp_spa, NULL, upgrade_clones_cb,
677 VERIFY3U(0, ==, dmu_objset_find_spa(dp->dp_spa, NULL, upgrade_clones_cb,
678 tx, DS_FIND_CHILDREN));
679 }

681 /* ARGSUSED */
682 static int
683 upgrade_dir_clones_cb(spa_t *spa, uint64_t dsobj, const char *dsname, void *arg)
684 {
685 dmu_tx_t *tx = arg;
686 dsl_dataset_t *ds;
687 dsl_pool_t *dp = spa_get_dsl(spa);
688 objset_t *mos = dp->dp_meta_objset;

690 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
690 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));

692 if (ds->ds_dir->dd_phys->dd_origin_obj) {
693 dsl_dataset_t *origin;

695 VERIFY0(dsl_dataset_hold_obj(dp,
695 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp,
696 ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));

698 if (origin->ds_dir->dd_phys->dd_clones == 0) {
699 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
700 origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
701 DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
702 }

704 VERIFY0(zap_add_int(dp->dp_meta_objset,

new/usr/src/uts/common/fs/zfs/dsl_pool.c 4

704 VERIFY3U(0, ==, zap_add_int(dp->dp_meta_objset,
705 origin->ds_dir->dd_phys->dd_clones, dsobj, tx));

707 dsl_dataset_rele(origin, FTAG);
708 }

710 dsl_dataset_rele(ds, FTAG);
711 return (0);
712 }

714 void
715 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
716 {
717 ASSERT(dmu_tx_is_syncing(tx));
718 uint64_t obj;

720 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
721 VERIFY(0 == dsl_pool_open_special_dir(dp,
722 FREE_DIR_NAME, &dp->dp_free_dir));

724 /*
725 * We can’t use bpobj_alloc(), because spa_version() still
726 * returns the old version, and we need a new-version bpobj with
727 * subobj support. So call dmu_object_alloc() directly.
728 */
729 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
730 SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
731 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
731 VERIFY3U(0, ==, zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
732 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
733 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
733 VERIFY3U(0, ==, bpobj_open(&dp->dp_free_bpobj,
734 dp->dp_meta_objset, obj));

736 VERIFY0(dmu_objset_find_spa(dp->dp_spa, NULL,
736 VERIFY3U(0, ==, dmu_objset_find_spa(dp->dp_spa, NULL,
737 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
738 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_scan.c 1

**
 50559 Thu Jul 26 14:19:16 2012
new/usr/src/uts/common/fs/zfs/dsl_scan.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

815 void
816 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
817 {
818 dsl_pool_t *dp = ds->ds_dir->dd_pool;
819 dsl_scan_t *scn = dp->dp_scan;
820 uint64_t mintxg;

822 if (scn->scn_phys.scn_state != DSS_SCANNING)
823 return;

825 if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) {
826 if (dsl_dataset_is_snapshot(ds)) {
827 /* Note, scn_cur_{min,max}_txg stays the same. */
828 scn->scn_phys.scn_bookmark.zb_objset =
829 ds->ds_phys->ds_next_snap_obj;
830 zfs_dbgmsg("destroying ds %llu; currently traversing; "
831 "reset zb_objset to %llu",
832 (u_longlong_t)ds->ds_object,
833 (u_longlong_t)ds->ds_phys->ds_next_snap_obj);
834 scn->scn_phys.scn_flags |= DSF_VISIT_DS_AGAIN;
835 } else {
836 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
837 ZB_DESTROYED_OBJSET, 0, 0, 0);
838 zfs_dbgmsg("destroying ds %llu; currently traversing; "
839 "reset bookmark to -1,0,0,0",
840 (u_longlong_t)ds->ds_object);
841 }
842 } else if (zap_lookup_int_key(dp->dp_meta_objset,
843 scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) {
844 ASSERT3U(ds->ds_phys->ds_num_children, <=, 1);
845 VERIFY0(zap_remove_int(dp->dp_meta_objset,
845 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
846 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
847 if (dsl_dataset_is_snapshot(ds)) {
848 /*
849 * We keep the same mintxg; it could be >
850 * ds_creation_txg if the previous snapshot was
851 * deleted too.
852 */
853 VERIFY(zap_add_int_key(dp->dp_meta_objset,
854 scn->scn_phys.scn_queue_obj,
855 ds->ds_phys->ds_next_snap_obj, mintxg, tx) == 0);
856 zfs_dbgmsg("destroying ds %llu; in queue; "
857 "replacing with %llu",
858 (u_longlong_t)ds->ds_object,
859 (u_longlong_t)ds->ds_phys->ds_next_snap_obj);
860 } else {
861 zfs_dbgmsg("destroying ds %llu; in queue; removing",
862 (u_longlong_t)ds->ds_object);
863 }
864 } else {
865 zfs_dbgmsg("destroying ds %llu; ignoring",
866 (u_longlong_t)ds->ds_object);
867 }

869 /*
870 * dsl_scan_sync() should be called after this, and should sync
871 * out our changed state, but just to be safe, do it here.
872 */

new/usr/src/uts/common/fs/zfs/dsl_scan.c 2

873 dsl_scan_sync_state(scn, tx);
874 }

876 void
877 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
878 {
879 dsl_pool_t *dp = ds->ds_dir->dd_pool;
880 dsl_scan_t *scn = dp->dp_scan;
881 uint64_t mintxg;

883 if (scn->scn_phys.scn_state != DSS_SCANNING)
884 return;

886 ASSERT(ds->ds_phys->ds_prev_snap_obj != 0);

888 if (scn->scn_phys.scn_bookmark.zb_objset == ds->ds_object) {
889 scn->scn_phys.scn_bookmark.zb_objset =
890 ds->ds_phys->ds_prev_snap_obj;
891 zfs_dbgmsg("snapshotting ds %llu; currently traversing; "
892 "reset zb_objset to %llu",
893 (u_longlong_t)ds->ds_object,
894 (u_longlong_t)ds->ds_phys->ds_prev_snap_obj);
895 } else if (zap_lookup_int_key(dp->dp_meta_objset,
896 scn->scn_phys.scn_queue_obj, ds->ds_object, &mintxg) == 0) {
897 VERIFY0(zap_remove_int(dp->dp_meta_objset,
897 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
898 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
899 VERIFY(zap_add_int_key(dp->dp_meta_objset,
900 scn->scn_phys.scn_queue_obj,
901 ds->ds_phys->ds_prev_snap_obj, mintxg, tx) == 0);
902 zfs_dbgmsg("snapshotting ds %llu; in queue; "
903 "replacing with %llu",
904 (u_longlong_t)ds->ds_object,
905 (u_longlong_t)ds->ds_phys->ds_prev_snap_obj);
906 }
907 dsl_scan_sync_state(scn, tx);
908 }

910 void
911 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
912 {
913 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
914 dsl_scan_t *scn = dp->dp_scan;
915 uint64_t mintxg;

917 if (scn->scn_phys.scn_state != DSS_SCANNING)
918 return;

920 if (scn->scn_phys.scn_bookmark.zb_objset == ds1->ds_object) {
921 scn->scn_phys.scn_bookmark.zb_objset = ds2->ds_object;
922 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
923 "reset zb_objset to %llu",
924 (u_longlong_t)ds1->ds_object,
925 (u_longlong_t)ds2->ds_object);
926 } else if (scn->scn_phys.scn_bookmark.zb_objset == ds2->ds_object) {
927 scn->scn_phys.scn_bookmark.zb_objset = ds1->ds_object;
928 zfs_dbgmsg("clone_swap ds %llu; currently traversing; "
929 "reset zb_objset to %llu",
930 (u_longlong_t)ds2->ds_object,
931 (u_longlong_t)ds1->ds_object);
932 }

934 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
935 ds1->ds_object, &mintxg) == 0) {
936 int err;

new/usr/src/uts/common/fs/zfs/dsl_scan.c 3

938 ASSERT3U(mintxg, ==, ds1->ds_phys->ds_prev_snap_txg);
939 ASSERT3U(mintxg, ==, ds2->ds_phys->ds_prev_snap_txg);
940 VERIFY0(zap_remove_int(dp->dp_meta_objset,
940 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
941 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
942 err = zap_add_int_key(dp->dp_meta_objset,
943 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg, tx);
944 VERIFY(err == 0 || err == EEXIST);
945 if (err == EEXIST) {
946 /* Both were there to begin with */
947 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
948 scn->scn_phys.scn_queue_obj,
949 ds1->ds_object, mintxg, tx));
950 }
951 zfs_dbgmsg("clone_swap ds %llu; in queue; "
952 "replacing with %llu",
953 (u_longlong_t)ds1->ds_object,
954 (u_longlong_t)ds2->ds_object);
955 } else if (zap_lookup_int_key(dp->dp_meta_objset,
956 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg) == 0) {
957 ASSERT3U(mintxg, ==, ds1->ds_phys->ds_prev_snap_txg);
958 ASSERT3U(mintxg, ==, ds2->ds_phys->ds_prev_snap_txg);
959 VERIFY0(zap_remove_int(dp->dp_meta_objset,
959 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
960 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
961 VERIFY(0 == zap_add_int_key(dp->dp_meta_objset,
962 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg, tx));
963 zfs_dbgmsg("clone_swap ds %llu; in queue; "
964 "replacing with %llu",
965 (u_longlong_t)ds2->ds_object,
966 (u_longlong_t)ds1->ds_object);
967 }

969 dsl_scan_sync_state(scn, tx);
970 }

______unchanged_portion_omitted_

1010 static void
1011 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
1012 {
1013 dsl_pool_t *dp = scn->scn_dp;
1014 dsl_dataset_t *ds;
1015 objset_t *os;

1017 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1017 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));

1019 if (dmu_objset_from_ds(ds, &os))
1020 goto out;

1022 /*
1023 * Only the ZIL in the head (non-snapshot) is valid. Even though
1024 * snapshots can have ZIL block pointers (which may be the same
1025 * BP as in the head), they must be ignored. So we traverse the
1026 * ZIL here, rather than in scan_recurse(), because the regular
1027 * snapshot block-sharing rules don’t apply to it.
1028 */
1029 if (DSL_SCAN_IS_SCRUB_RESILVER(scn) && !dsl_dataset_is_snapshot(ds))
1030 dsl_scan_zil(dp, &os->os_zil_header);

1032 /*
1033 * Iterate over the bps in this ds.
1034 */
1035 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1036 dsl_scan_visit_rootbp(scn, ds, &ds->ds_phys->ds_bp, tx);

new/usr/src/uts/common/fs/zfs/dsl_scan.c 4

1038 char *dsname = kmem_alloc(ZFS_MAXNAMELEN, KM_SLEEP);
1039 dsl_dataset_name(ds, dsname);
1040 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
1041 "pausing=%u",
1042 (longlong_t)dsobj, dsname,
1043 (longlong_t)scn->scn_phys.scn_cur_min_txg,
1044 (longlong_t)scn->scn_phys.scn_cur_max_txg,
1045 (int)scn->scn_pausing);
1046 kmem_free(dsname, ZFS_MAXNAMELEN);

1048 if (scn->scn_pausing)
1049 goto out;

1051 /*
1052 * We’ve finished this pass over this dataset.
1053 */

1055 /*
1056 * If we did not completely visit this dataset, do another pass.
1057 */
1058 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
1059 zfs_dbgmsg("incomplete pass; visiting again");
1060 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
1061 VERIFY(zap_add_int_key(dp->dp_meta_objset,
1062 scn->scn_phys.scn_queue_obj, ds->ds_object,
1063 scn->scn_phys.scn_cur_max_txg, tx) == 0);
1064 goto out;
1065 }

1067 /*
1068 * Add descendent datasets to work queue.
1069 */
1070 if (ds->ds_phys->ds_next_snap_obj != 0) {
1071 VERIFY(zap_add_int_key(dp->dp_meta_objset,
1072 scn->scn_phys.scn_queue_obj, ds->ds_phys->ds_next_snap_obj,
1073 ds->ds_phys->ds_creation_txg, tx) == 0);
1074 }
1075 if (ds->ds_phys->ds_num_children > 1) {
1076 boolean_t usenext = B_FALSE;
1077 if (ds->ds_phys->ds_next_clones_obj != 0) {
1078 uint64_t count;
1079 /*
1080 * A bug in a previous version of the code could
1081 * cause upgrade_clones_cb() to not set
1082 * ds_next_snap_obj when it should, leading to a
1083 * missing entry. Therefore we can only use the
1084 * next_clones_obj when its count is correct.
1085 */
1086 int err = zap_count(dp->dp_meta_objset,
1087 ds->ds_phys->ds_next_clones_obj, &count);
1088 if (err == 0 &&
1089 count == ds->ds_phys->ds_num_children - 1)
1090 usenext = B_TRUE;
1091 }

1093 if (usenext) {
1094 VERIFY(zap_join_key(dp->dp_meta_objset,
1095 ds->ds_phys->ds_next_clones_obj,
1096 scn->scn_phys.scn_queue_obj,
1097 ds->ds_phys->ds_creation_txg, tx) == 0);
1098 } else {
1099 struct enqueue_clones_arg eca;
1100 eca.tx = tx;
1101 eca.originobj = ds->ds_object;

1103 (void) dmu_objset_find_spa(ds->ds_dir->dd_pool->dp_spa,

new/usr/src/uts/common/fs/zfs/dsl_scan.c 5

1104 NULL, enqueue_clones_cb, &eca, DS_FIND_CHILDREN);
1105 }
1106 }

1108 out:
1109 dsl_dataset_rele(ds, FTAG);
1110 }
______unchanged_portion_omitted_

1249 static void
1250 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
1251 {
1252 dsl_pool_t *dp = scn->scn_dp;
1253 zap_cursor_t zc;
1254 zap_attribute_t za;

1256 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
1257 scn->scn_phys.scn_ddt_class_max) {
1258 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
1259 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
1260 dsl_scan_ddt(scn, tx);
1261 if (scn->scn_pausing)
1262 return;
1263 }

1265 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
1266 /* First do the MOS & ORIGIN */

1268 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
1269 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
1270 dsl_scan_visit_rootbp(scn, NULL,
1271 &dp->dp_meta_rootbp, tx);
1272 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
1273 if (scn->scn_pausing)
1274 return;

1276 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
1277 VERIFY(0 == dmu_objset_find_spa(dp->dp_spa,
1278 NULL, enqueue_cb, tx, DS_FIND_CHILDREN));
1279 } else {
1280 dsl_scan_visitds(scn,
1281 dp->dp_origin_snap->ds_object, tx);
1282 }
1283 ASSERT(!scn->scn_pausing);
1284 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
1285 ZB_DESTROYED_OBJSET) {
1286 /*
1287 * If we were paused, continue from here. Note if the
1288 * ds we were paused on was deleted, the zb_objset may
1289 * be -1, so we will skip this and find a new objset
1290 * below.
1291 */
1292 dsl_scan_visitds(scn, scn->scn_phys.scn_bookmark.zb_objset, tx);
1293 if (scn->scn_pausing)
1294 return;
1295 }

1297 /*
1298 * In case we were paused right at the end of the ds, zero the
1299 * bookmark so we don’t think that we’re still trying to resume.
1300 */
1301 bzero(&scn->scn_phys.scn_bookmark, sizeof (zbookmark_t));

1303 /* keep pulling things out of the zap-object-as-queue */
1304 while (zap_cursor_init(&zc, dp->dp_meta_objset,
1305 scn->scn_phys.scn_queue_obj),

new/usr/src/uts/common/fs/zfs/dsl_scan.c 6

1306 zap_cursor_retrieve(&zc, &za) == 0) {
1307 dsl_dataset_t *ds;
1308 uint64_t dsobj;

1310 dsobj = strtonum(za.za_name, NULL);
1311 VERIFY0(zap_remove_int(dp->dp_meta_objset,
1311 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
1312 scn->scn_phys.scn_queue_obj, dsobj, tx));

1314 /* Set up min/max txg */
1315 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1315 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1316 if (za.za_first_integer != 0) {
1317 scn->scn_phys.scn_cur_min_txg =
1318 MAX(scn->scn_phys.scn_min_txg,
1319 za.za_first_integer);
1320 } else {
1321 scn->scn_phys.scn_cur_min_txg =
1322 MAX(scn->scn_phys.scn_min_txg,
1323 ds->ds_phys->ds_prev_snap_txg);
1324 }
1325 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
1326 dsl_dataset_rele(ds, FTAG);

1328 dsl_scan_visitds(scn, dsobj, tx);
1329 zap_cursor_fini(&zc);
1330 if (scn->scn_pausing)
1331 return;
1332 }
1333 zap_cursor_fini(&zc);
1334 }
______unchanged_portion_omitted_

1393 void
1394 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
1395 {
1396 dsl_scan_t *scn = dp->dp_scan;
1397 spa_t *spa = dp->dp_spa;
1398 int err;

1400 /*
1401 * Check for scn_restart_txg before checking spa_load_state, so
1402 * that we can restart an old-style scan while the pool is being
1403 * imported (see dsl_scan_init).
1404 */
1405 if (scn->scn_restart_txg != 0 &&
1406 scn->scn_restart_txg <= tx->tx_txg) {
1407 pool_scan_func_t func = POOL_SCAN_SCRUB;
1408 dsl_scan_done(scn, B_FALSE, tx);
1409 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
1410 func = POOL_SCAN_RESILVER;
1411 zfs_dbgmsg("restarting scan func=%u txg=%llu",
1412 func, tx->tx_txg);
1413 dsl_scan_setup_sync(scn, &func, tx);
1414 }

1416 if (!dsl_scan_active(scn) ||
1417 spa_sync_pass(dp->dp_spa) > 1)
1418 return;

1420 scn->scn_visited_this_txg = 0;
1421 scn->scn_pausing = B_FALSE;
1422 scn->scn_sync_start_time = gethrtime();
1423 spa->spa_scrub_active = B_TRUE;

1425 /*

new/usr/src/uts/common/fs/zfs/dsl_scan.c 7

1426 * First process the free list. If we pause the free, don’t do
1427 * any scanning. This ensures that there is no free list when
1428 * we are scanning, so the scan code doesn’t have to worry about
1429 * traversing it.
1430 */
1431 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
1432 scn->scn_is_bptree = B_FALSE;
1433 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
1434 NULL, ZIO_FLAG_MUSTSUCCEED);
1435 err = bpobj_iterate(&dp->dp_free_bpobj,
1436 dsl_scan_free_block_cb, scn, tx);
1437 VERIFY0(zio_wait(scn->scn_zio_root));
1437 VERIFY3U(0, ==, zio_wait(scn->scn_zio_root));

1439 if (err == 0 && spa_feature_is_active(spa,
1440 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
1441 scn->scn_is_bptree = B_TRUE;
1442 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
1443 NULL, ZIO_FLAG_MUSTSUCCEED);
1444 err = bptree_iterate(dp->dp_meta_objset,
1445 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb,
1446 scn, tx);
1447 VERIFY0(zio_wait(scn->scn_zio_root));
1447 VERIFY3U(0, ==, zio_wait(scn->scn_zio_root));
1448 if (err != 0)
1449 return;

1451 /* disable async destroy feature */
1452 spa_feature_decr(spa,
1453 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY], tx);
1454 ASSERT(!spa_feature_is_active(spa,
1455 &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY]));
1456 VERIFY0(zap_remove(dp->dp_meta_objset,
1456 VERIFY3U(0, ==, zap_remove(dp->dp_meta_objset,
1457 DMU_POOL_DIRECTORY_OBJECT,
1458 DMU_POOL_BPTREE_OBJ, tx));
1459 VERIFY0(bptree_free(dp->dp_meta_objset,
1459 VERIFY3U(0, ==, bptree_free(dp->dp_meta_objset,
1460 dp->dp_bptree_obj, tx));
1461 dp->dp_bptree_obj = 0;
1462 }
1463 if (scn->scn_visited_this_txg) {
1464 zfs_dbgmsg("freed %llu blocks in %llums from "
1465 "free_bpobj/bptree txg %llu",
1466 (longlong_t)scn->scn_visited_this_txg,
1467 (longlong_t)
1468 (gethrtime() - scn->scn_sync_start_time) / MICROSEC,
1469 (longlong_t)tx->tx_txg);
1470 scn->scn_visited_this_txg = 0;
1471 /*
1472 * Re-sync the ddt so that we can further modify
1473 * it when doing bprewrite.
1474 */
1475 ddt_sync(spa, tx->tx_txg);
1476 }
1477 if (err == ERESTART)
1478 return;
1479 }

1481 if (scn->scn_phys.scn_state != DSS_SCANNING)
1482 return;

1484 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
1485 scn->scn_phys.scn_ddt_class_max) {
1486 zfs_dbgmsg("doing scan sync txg %llu; "
1487 "ddt bm=%llu/%llu/%llu/%llx",

new/usr/src/uts/common/fs/zfs/dsl_scan.c 8

1488 (longlong_t)tx->tx_txg,
1489 (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_class,
1490 (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_type,
1491 (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_checksum,
1492 (longlong_t)scn->scn_phys.scn_ddt_bookmark.ddb_cursor);
1493 ASSERT(scn->scn_phys.scn_bookmark.zb_objset == 0);
1494 ASSERT(scn->scn_phys.scn_bookmark.zb_object == 0);
1495 ASSERT(scn->scn_phys.scn_bookmark.zb_level == 0);
1496 ASSERT(scn->scn_phys.scn_bookmark.zb_blkid == 0);
1497 } else {
1498 zfs_dbgmsg("doing scan sync txg %llu; bm=%llu/%llu/%llu/%llu",
1499 (longlong_t)tx->tx_txg,
1500 (longlong_t)scn->scn_phys.scn_bookmark.zb_objset,
1501 (longlong_t)scn->scn_phys.scn_bookmark.zb_object,
1502 (longlong_t)scn->scn_phys.scn_bookmark.zb_level,
1503 (longlong_t)scn->scn_phys.scn_bookmark.zb_blkid);
1504 }

1506 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
1507 NULL, ZIO_FLAG_CANFAIL);
1508 dsl_scan_visit(scn, tx);
1509 (void) zio_wait(scn->scn_zio_root);
1510 scn->scn_zio_root = NULL;

1512 zfs_dbgmsg("visited %llu blocks in %llums",
1513 (longlong_t)scn->scn_visited_this_txg,
1514 (longlong_t)(gethrtime() - scn->scn_sync_start_time) / MICROSEC);

1516 if (!scn->scn_pausing) {
1517 /* finished with scan. */
1518 zfs_dbgmsg("finished scan txg %llu", (longlong_t)tx->tx_txg);
1519 dsl_scan_done(scn, B_TRUE, tx);
1520 }

1522 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1523 mutex_enter(&spa->spa_scrub_lock);
1524 while (spa->spa_scrub_inflight > 0) {
1525 cv_wait(&spa->spa_scrub_io_cv,
1526 &spa->spa_scrub_lock);
1527 }
1528 mutex_exit(&spa->spa_scrub_lock);
1529 }

1531 dsl_scan_sync_state(scn, tx);
1532 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/dsl_synctask.c 1

**
 6280 Thu Jul 26 14:19:17 2012
new/usr/src/uts/common/fs/zfs/dsl_synctask.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

159 void
160 dsl_sync_task_group_sync(dsl_sync_task_group_t *dstg, dmu_tx_t *tx)
161 {
162 dsl_sync_task_t *dst;
163 dsl_pool_t *dp = dstg->dstg_pool;
164 uint64_t quota, used;

166 ASSERT0(dstg->dstg_err);
166 ASSERT3U(dstg->dstg_err, ==, 0);

168 /*
169 * Check for sufficient space. We just check against what’s
170 * on-disk; we don’t want any in-flight accounting to get in our
171 * way, because open context may have already used up various
172 * in-core limits (arc_tempreserve, dsl_pool_tempreserve).
173 */
174 quota = dsl_pool_adjustedsize(dp, B_FALSE) -
175 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
176 used = dp->dp_root_dir->dd_phys->dd_used_bytes;
177 /* MOS space is triple-dittoed, so we multiply by 3. */
178 if (dstg->dstg_space > 0 && used + dstg->dstg_space * 3 > quota) {
179 dstg->dstg_err = ENOSPC;
180 return;
181 }

183 /*
184 * Check for errors by calling checkfuncs.
185 */
186 rw_enter(&dp->dp_config_rwlock, RW_WRITER);
187 for (dst = list_head(&dstg->dstg_tasks); dst;
188 dst = list_next(&dstg->dstg_tasks, dst)) {
189 dst->dst_err =
190 dst->dst_checkfunc(dst->dst_arg1, dst->dst_arg2, tx);
191 if (dst->dst_err)
192 dstg->dstg_err = dst->dst_err;
193 }

195 if (dstg->dstg_err == 0) {
196 /*
197 * Execute sync tasks.
198 */
199 for (dst = list_head(&dstg->dstg_tasks); dst;
200 dst = list_next(&dstg->dstg_tasks, dst)) {
201 dst->dst_syncfunc(dst->dst_arg1, dst->dst_arg2, tx);
202 }
203 }
204 rw_exit(&dp->dp_config_rwlock);

206 if (dstg->dstg_nowaiter)
207 dsl_sync_task_group_destroy(dstg);
208 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/metaslab.c 1

**
 43720 Thu Jul 26 14:19:18 2012
new/usr/src/uts/common/fs/zfs/metaslab.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

749 void
750 metaslab_fini(metaslab_t *msp)
751 {
752 metaslab_group_t *mg = msp->ms_group;

754 vdev_space_update(mg->mg_vd,
755 -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);

757 metaslab_group_remove(mg, msp);

759 mutex_enter(&msp->ms_lock);

761 space_map_unload(&msp->ms_map);
762 space_map_destroy(&msp->ms_map);

764 for (int t = 0; t < TXG_SIZE; t++) {
765 space_map_destroy(&msp->ms_allocmap[t]);
766 space_map_destroy(&msp->ms_freemap[t]);
767 }

769 for (int t = 0; t < TXG_DEFER_SIZE; t++)
770 space_map_destroy(&msp->ms_defermap[t]);

772 ASSERT0(msp->ms_deferspace);
772 ASSERT3S(msp->ms_deferspace, ==, 0);

774 mutex_exit(&msp->ms_lock);
775 mutex_destroy(&msp->ms_lock);

777 kmem_free(msp, sizeof (metaslab_t));
778 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/spa.c 1

**
 169821 Thu Jul 26 14:19:19 2012
new/usr/src/uts/common/fs/zfs/spa.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

2942 static void
2943 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
2944 {
2945 nvlist_t *features;
2946 zap_cursor_t zc;
2947 zap_attribute_t za;

2949 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2950 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);

2952 if (spa->spa_feat_for_read_obj != 0) {
2953 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2954 spa->spa_feat_for_read_obj);
2955 zap_cursor_retrieve(&zc, &za) == 0;
2956 zap_cursor_advance(&zc)) {
2957 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
2958 za.za_num_integers == 1);
2959 VERIFY0(nvlist_add_uint64(features, za.za_name,
2959 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
2960 za.za_first_integer));
2961 }
2962 zap_cursor_fini(&zc);
2963 }

2965 if (spa->spa_feat_for_write_obj != 0) {
2966 for (zap_cursor_init(&zc, spa->spa_meta_objset,
2967 spa->spa_feat_for_write_obj);
2968 zap_cursor_retrieve(&zc, &za) == 0;
2969 zap_cursor_advance(&zc)) {
2970 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
2971 za.za_num_integers == 1);
2972 VERIFY0(nvlist_add_uint64(features, za.za_name,
2972 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
2973 za.za_first_integer));
2974 }
2975 zap_cursor_fini(&zc);
2976 }

2978 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
2979 features) == 0);
2980 nvlist_free(features);
2981 }
______unchanged_portion_omitted_

3224 /*
3225 * Pool Creation
3226 */
3227 int
3228 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3229 nvlist_t *zplprops)
3230 {
3231 spa_t *spa;
3232 char *altroot = NULL;
3233 vdev_t *rvd;
3234 dsl_pool_t *dp;
3235 dmu_tx_t *tx;
3236 int error = 0;
3237 uint64_t txg = TXG_INITIAL;
3238 nvlist_t **spares, **l2cache;

new/usr/src/uts/common/fs/zfs/spa.c 2

3239 uint_t nspares, nl2cache;
3240 uint64_t version, obj;
3241 boolean_t has_features;

3243 /*
3244 * If this pool already exists, return failure.
3245 */
3246 mutex_enter(&spa_namespace_lock);
3247 if (spa_lookup(pool) != NULL) {
3248 mutex_exit(&spa_namespace_lock);
3249 return (EEXIST);
3250 }

3252 /*
3253 * Allocate a new spa_t structure.
3254 */
3255 (void) nvlist_lookup_string(props,
3256 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3257 spa = spa_add(pool, NULL, altroot);
3258 spa_activate(spa, spa_mode_global);

3260 if (props && (error = spa_prop_validate(spa, props))) {
3261 spa_deactivate(spa);
3262 spa_remove(spa);
3263 mutex_exit(&spa_namespace_lock);
3264 return (error);
3265 }

3267 has_features = B_FALSE;
3268 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3269 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3270 if (zpool_prop_feature(nvpair_name(elem)))
3271 has_features = B_TRUE;
3272 }

3274 if (has_features || nvlist_lookup_uint64(props,
3275 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3276 version = SPA_VERSION;
3277 }
3278 ASSERT(SPA_VERSION_IS_SUPPORTED(version));

3280 spa->spa_first_txg = txg;
3281 spa->spa_uberblock.ub_txg = txg - 1;
3282 spa->spa_uberblock.ub_version = version;
3283 spa->spa_ubsync = spa->spa_uberblock;

3285 /*
3286 * Create "The Godfather" zio to hold all async IOs
3287 */
3288 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3289 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);

3291 /*
3292 * Create the root vdev.
3293 */
3294 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);

3296 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);

3298 ASSERT(error != 0 || rvd != NULL);
3299 ASSERT(error != 0 || spa->spa_root_vdev == rvd);

3301 if (error == 0 && !zfs_allocatable_devs(nvroot))
3302 error = EINVAL;

3304 if (error == 0 &&

new/usr/src/uts/common/fs/zfs/spa.c 3

3305 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3306 (error = spa_validate_aux(spa, nvroot, txg,
3307 VDEV_ALLOC_ADD)) == 0) {
3308 for (int c = 0; c < rvd->vdev_children; c++) {
3309 vdev_metaslab_set_size(rvd->vdev_child[c]);
3310 vdev_expand(rvd->vdev_child[c], txg);
3311 }
3312 }

3314 spa_config_exit(spa, SCL_ALL, FTAG);

3316 if (error != 0) {
3317 spa_unload(spa);
3318 spa_deactivate(spa);
3319 spa_remove(spa);
3320 mutex_exit(&spa_namespace_lock);
3321 return (error);
3322 }

3324 /*
3325 * Get the list of spares, if specified.
3326 */
3327 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3328 &spares, &nspares) == 0) {
3329 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3330 KM_SLEEP) == 0);
3331 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3332 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3333 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3334 spa_load_spares(spa);
3335 spa_config_exit(spa, SCL_ALL, FTAG);
3336 spa->spa_spares.sav_sync = B_TRUE;
3337 }

3339 /*
3340 * Get the list of level 2 cache devices, if specified.
3341 */
3342 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3343 &l2cache, &nl2cache) == 0) {
3344 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3345 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3346 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3347 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3348 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3349 spa_load_l2cache(spa);
3350 spa_config_exit(spa, SCL_ALL, FTAG);
3351 spa->spa_l2cache.sav_sync = B_TRUE;
3352 }

3354 spa->spa_is_initializing = B_TRUE;
3355 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3356 spa->spa_meta_objset = dp->dp_meta_objset;
3357 spa->spa_is_initializing = B_FALSE;

3359 /*
3360 * Create DDTs (dedup tables).
3361 */
3362 ddt_create(spa);

3364 spa_update_dspace(spa);

3366 tx = dmu_tx_create_assigned(dp, txg);

3368 /*
3369 * Create the pool config object.
3370 */

new/usr/src/uts/common/fs/zfs/spa.c 4

3371 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3372 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3373 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);

3375 if (zap_add(spa->spa_meta_objset,
3376 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3377 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3378 cmn_err(CE_PANIC, "failed to add pool config");
3379 }

3381 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3382 spa_feature_create_zap_objects(spa, tx);

3384 if (zap_add(spa->spa_meta_objset,
3385 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3386 sizeof (uint64_t), 1, &version, tx) != 0) {
3387 cmn_err(CE_PANIC, "failed to add pool version");
3388 }

3390 /* Newly created pools with the right version are always deflated. */
3391 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3392 spa->spa_deflate = TRUE;
3393 if (zap_add(spa->spa_meta_objset,
3394 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3395 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3396 cmn_err(CE_PANIC, "failed to add deflate");
3397 }
3398 }

3400 /*
3401 * Create the deferred-free bpobj. Turn off compression
3402 * because sync-to-convergence takes longer if the blocksize
3403 * keeps changing.
3404 */
3405 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3406 dmu_object_set_compress(spa->spa_meta_objset, obj,
3407 ZIO_COMPRESS_OFF, tx);
3408 if (zap_add(spa->spa_meta_objset,
3409 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3410 sizeof (uint64_t), 1, &obj, tx) != 0) {
3411 cmn_err(CE_PANIC, "failed to add bpobj");
3412 }
3413 VERIFY0(bpobj_open(&spa->spa_deferred_bpobj,
3413 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3414 spa->spa_meta_objset, obj));

3416 /*
3417 * Create the pool’s history object.
3418 */
3419 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3420 spa_history_create_obj(spa, tx);

3422 /*
3423 * Set pool properties.
3424 */
3425 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3426 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3427 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3428 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);

3430 if (props != NULL) {
3431 spa_configfile_set(spa, props, B_FALSE);
3432 spa_sync_props(spa, props, tx);
3433 }

3435 dmu_tx_commit(tx);

new/usr/src/uts/common/fs/zfs/spa.c 5

3437 spa->spa_sync_on = B_TRUE;
3438 txg_sync_start(spa->spa_dsl_pool);

3440 /*
3441 * We explicitly wait for the first transaction to complete so that our
3442 * bean counters are appropriately updated.
3443 */
3444 txg_wait_synced(spa->spa_dsl_pool, txg);

3446 spa_config_sync(spa, B_FALSE, B_TRUE);

3448 spa_history_log_version(spa, "create");

3450 spa->spa_minref = refcount_count(&spa->spa_refcount);

3452 mutex_exit(&spa_namespace_lock);

3454 return (0);
3455 }
______unchanged_portion_omitted_

4955 /*
4956 * Evacuate the device.
4957 */
4958 static int
4959 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4960 {
4961 uint64_t txg;
4962 int error = 0;

4964 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4965 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4966 ASSERT(vd == vd->vdev_top);

4968 /*
4969 * Evacuate the device. We don’t hold the config lock as writer
4970 * since we need to do I/O but we do keep the
4971 * spa_namespace_lock held. Once this completes the device
4972 * should no longer have any blocks allocated on it.
4973 */
4974 if (vd->vdev_islog) {
4975 if (vd->vdev_stat.vs_alloc != 0)
4976 error = spa_offline_log(spa);
4977 } else {
4978 error = ENOTSUP;
4979 }

4981 if (error)
4982 return (error);

4984 /*
4985 * The evacuation succeeded. Remove any remaining MOS metadata
4986 * associated with this vdev, and wait for these changes to sync.
4987 */
4988 ASSERT0(vd->vdev_stat.vs_alloc);
4988 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4989 txg = spa_vdev_config_enter(spa);
4990 vd->vdev_removing = B_TRUE;
4991 vdev_dirty(vd, 0, NULL, txg);
4992 vdev_config_dirty(vd);
4993 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);

4995 return (0);
4996 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/spa.c 6

5706 /*
5707 * Set zpool properties.
5708 */
5709 static void
5710 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5711 {
5712 spa_t *spa = arg1;
5713 objset_t *mos = spa->spa_meta_objset;
5714 nvlist_t *nvp = arg2;
5715 nvpair_t *elem = NULL;

5717 mutex_enter(&spa->spa_props_lock);

5719 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5720 uint64_t intval;
5721 char *strval, *fname;
5722 zpool_prop_t prop;
5723 const char *propname;
5724 zprop_type_t proptype;
5725 zfeature_info_t *feature;

5727 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5728 case ZPROP_INVAL:
5729 /*
5730 * We checked this earlier in spa_prop_validate().
5731 */
5732 ASSERT(zpool_prop_feature(nvpair_name(elem)));

5734 fname = strchr(nvpair_name(elem), ’@’) + 1;
5735 VERIFY0(zfeature_lookup_name(fname, &feature));
5735 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));

5737 spa_feature_enable(spa, feature, tx);
5738 spa_history_log_internal(spa, "set", tx,
5739 "%s=enabled", nvpair_name(elem));
5740 break;

5742 case ZPOOL_PROP_VERSION:
5743 VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5744 /*
5745 * The version is synced seperatly before other
5746 * properties and should be correct by now.
5747 */
5748 ASSERT3U(spa_version(spa), >=, intval);
5749 break;

5751 case ZPOOL_PROP_ALTROOT:
5752 /*
5753 * ’altroot’ is a non-persistent property. It should
5754 * have been set temporarily at creation or import time.
5755 */
5756 ASSERT(spa->spa_root != NULL);
5757 break;

5759 case ZPOOL_PROP_READONLY:
5760 case ZPOOL_PROP_CACHEFILE:
5761 /*
5762 * ’readonly’ and ’cachefile’ are also non-persisitent
5763 * properties.
5764 */
5765 break;
5766 case ZPOOL_PROP_COMMENT:
5767 VERIFY(nvpair_value_string(elem, &strval) == 0);
5768 if (spa->spa_comment != NULL)
5769 spa_strfree(spa->spa_comment);

new/usr/src/uts/common/fs/zfs/spa.c 7

5770 spa->spa_comment = spa_strdup(strval);
5771 /*
5772 * We need to dirty the configuration on all the vdevs
5773 * so that their labels get updated. It’s unnecessary
5774 * to do this for pool creation since the vdev’s
5775 * configuratoin has already been dirtied.
5776 */
5777 if (tx->tx_txg != TXG_INITIAL)
5778 vdev_config_dirty(spa->spa_root_vdev);
5779 spa_history_log_internal(spa, "set", tx,
5780 "%s=%s", nvpair_name(elem), strval);
5781 break;
5782 default:
5783 /*
5784 * Set pool property values in the poolprops mos object.
5785 */
5786 if (spa->spa_pool_props_object == 0) {
5787 spa->spa_pool_props_object =
5788 zap_create_link(mos, DMU_OT_POOL_PROPS,
5789 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5790 tx);
5791 }

5793 /* normalize the property name */
5794 propname = zpool_prop_to_name(prop);
5795 proptype = zpool_prop_get_type(prop);

5797 if (nvpair_type(elem) == DATA_TYPE_STRING) {
5798 ASSERT(proptype == PROP_TYPE_STRING);
5799 VERIFY(nvpair_value_string(elem, &strval) == 0);
5800 VERIFY(zap_update(mos,
5801 spa->spa_pool_props_object, propname,
5802 1, strlen(strval) + 1, strval, tx) == 0);
5803 spa_history_log_internal(spa, "set", tx,
5804 "%s=%s", nvpair_name(elem), strval);
5805 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5806 VERIFY(nvpair_value_uint64(elem, &intval) == 0);

5808 if (proptype == PROP_TYPE_INDEX) {
5809 const char *unused;
5810 VERIFY(zpool_prop_index_to_string(
5811 prop, intval, &unused) == 0);
5812 }
5813 VERIFY(zap_update(mos,
5814 spa->spa_pool_props_object, propname,
5815 8, 1, &intval, tx) == 0);
5816 spa_history_log_internal(spa, "set", tx,
5817 "%s=%lld", nvpair_name(elem), intval);
5818 } else {
5819 ASSERT(0); /* not allowed */
5820 }

5822 switch (prop) {
5823 case ZPOOL_PROP_DELEGATION:
5824 spa->spa_delegation = intval;
5825 break;
5826 case ZPOOL_PROP_BOOTFS:
5827 spa->spa_bootfs = intval;
5828 break;
5829 case ZPOOL_PROP_FAILUREMODE:
5830 spa->spa_failmode = intval;
5831 break;
5832 case ZPOOL_PROP_AUTOEXPAND:
5833 spa->spa_autoexpand = intval;
5834 if (tx->tx_txg != TXG_INITIAL)
5835 spa_async_request(spa,

new/usr/src/uts/common/fs/zfs/spa.c 8

5836 SPA_ASYNC_AUTOEXPAND);
5837 break;
5838 case ZPOOL_PROP_DEDUPDITTO:
5839 spa->spa_dedup_ditto = intval;
5840 break;
5841 default:
5842 break;
5843 }
5844 }

5846 }

5848 mutex_exit(&spa->spa_props_lock);
5849 }
______unchanged_portion_omitted_

5892 /*
5893 * Sync the specified transaction group. New blocks may be dirtied as
5894 * part of the process, so we iterate until it converges.
5895 */
5896 void
5897 spa_sync(spa_t *spa, uint64_t txg)
5898 {
5899 dsl_pool_t *dp = spa->spa_dsl_pool;
5900 objset_t *mos = spa->spa_meta_objset;
5901 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5902 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5903 vdev_t *rvd = spa->spa_root_vdev;
5904 vdev_t *vd;
5905 dmu_tx_t *tx;
5906 int error;

5908 VERIFY(spa_writeable(spa));

5910 /*
5911 * Lock out configuration changes.
5912 */
5913 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);

5915 spa->spa_syncing_txg = txg;
5916 spa->spa_sync_pass = 0;

5918 /*
5919 * If there are any pending vdev state changes, convert them
5920 * into config changes that go out with this transaction group.
5921 */
5922 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5923 while (list_head(&spa->spa_state_dirty_list) != NULL) {
5924 /*
5925 * We need the write lock here because, for aux vdevs,
5926 * calling vdev_config_dirty() modifies sav_config.
5927 * This is ugly and will become unnecessary when we
5928 * eliminate the aux vdev wart by integrating all vdevs
5929 * into the root vdev tree.
5930 */
5931 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5932 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5933 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5934 vdev_state_clean(vd);
5935 vdev_config_dirty(vd);
5936 }
5937 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5938 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5939 }
5940 spa_config_exit(spa, SCL_STATE, FTAG);

new/usr/src/uts/common/fs/zfs/spa.c 9

5942 tx = dmu_tx_create_assigned(dp, txg);

5944 /*
5945 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5946 * set spa_deflate if we have no raid-z vdevs.
5947 */
5948 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5949 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5950 int i;

5952 for (i = 0; i < rvd->vdev_children; i++) {
5953 vd = rvd->vdev_child[i];
5954 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5955 break;
5956 }
5957 if (i == rvd->vdev_children) {
5958 spa->spa_deflate = TRUE;
5959 VERIFY(0 == zap_add(spa->spa_meta_objset,
5960 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5961 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5962 }
5963 }

5965 /*
5966 * If anything has changed in this txg, or if someone is waiting
5967 * for this txg to sync (eg, spa_vdev_remove()), push the
5968 * deferred frees from the previous txg. If not, leave them
5969 * alone so that we don’t generate work on an otherwise idle
5970 * system.
5971 */
5972 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5973 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5974 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5975 ((dsl_scan_active(dp->dp_scan) ||
5976 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5977 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5978 VERIFY3U(bpobj_iterate(defer_bpo,
5979 spa_free_sync_cb, zio, tx), ==, 0);
5980 VERIFY0(zio_wait(zio));
5980 VERIFY3U(zio_wait(zio), ==, 0);
5981 }

5983 /*
5984 * Iterate to convergence.
5985 */
5986 do {
5987 int pass = ++spa->spa_sync_pass;

5989 spa_sync_config_object(spa, tx);
5990 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5991 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5992 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5993 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5994 spa_errlog_sync(spa, txg);
5995 dsl_pool_sync(dp, txg);

5997 if (pass <= SYNC_PASS_DEFERRED_FREE) {
5998 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5999 bplist_iterate(free_bpl, spa_free_sync_cb,
6000 zio, tx);
6001 VERIFY(zio_wait(zio) == 0);
6002 } else {
6003 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6004 defer_bpo, tx);
6005 }

new/usr/src/uts/common/fs/zfs/spa.c 10

6007 ddt_sync(spa, txg);
6008 dsl_scan_sync(dp, tx);

6010 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6011 vdev_sync(vd, txg);

6013 if (pass == 1)
6014 spa_sync_upgrades(spa, tx);

6016 } while (dmu_objset_is_dirty(mos, txg));

6018 /*
6019 * Rewrite the vdev configuration (which includes the uberblock)
6020 * to commit the transaction group.
6021 *
6022 * If there are no dirty vdevs, we sync the uberblock to a few
6023 * random top-level vdevs that are known to be visible in the
6024 * config cache (see spa_vdev_add() for a complete description).
6025 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6026 */
6027 for (;;) {
6028 /*
6029 * We hold SCL_STATE to prevent vdev open/close/etc.
6030 * while we’re attempting to write the vdev labels.
6031 */
6032 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);

6034 if (list_is_empty(&spa->spa_config_dirty_list)) {
6035 vdev_t *svd[SPA_DVAS_PER_BP];
6036 int svdcount = 0;
6037 int children = rvd->vdev_children;
6038 int c0 = spa_get_random(children);

6040 for (int c = 0; c < children; c++) {
6041 vd = rvd->vdev_child[(c0 + c) % children];
6042 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6043 continue;
6044 svd[svdcount++] = vd;
6045 if (svdcount == SPA_DVAS_PER_BP)
6046 break;
6047 }
6048 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6049 if (error != 0)
6050 error = vdev_config_sync(svd, svdcount, txg,
6051 B_TRUE);
6052 } else {
6053 error = vdev_config_sync(rvd->vdev_child,
6054 rvd->vdev_children, txg, B_FALSE);
6055 if (error != 0)
6056 error = vdev_config_sync(rvd->vdev_child,
6057 rvd->vdev_children, txg, B_TRUE);
6058 }

6060 spa_config_exit(spa, SCL_STATE, FTAG);

6062 if (error == 0)
6063 break;
6064 zio_suspend(spa, NULL);
6065 zio_resume_wait(spa);
6066 }
6067 dmu_tx_commit(tx);

6069 /*
6070 * Clear the dirty config list.
6071 */
6072 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)

new/usr/src/uts/common/fs/zfs/spa.c 11

6073 vdev_config_clean(vd);

6075 /*
6076 * Now that the new config has synced transactionally,
6077 * let it become visible to the config cache.
6078 */
6079 if (spa->spa_config_syncing != NULL) {
6080 spa_config_set(spa, spa->spa_config_syncing);
6081 spa->spa_config_txg = txg;
6082 spa->spa_config_syncing = NULL;
6083 }

6085 spa->spa_ubsync = spa->spa_uberblock;

6087 dsl_pool_sync_done(dp, txg);

6089 /*
6090 * Update usable space statistics.
6091 */
6092 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6093 vdev_sync_done(vd, txg);

6095 spa_update_dspace(spa);

6097 /*
6098 * It had better be the case that we didn’t dirty anything
6099 * since vdev_config_sync().
6100 */
6101 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6102 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6103 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));

6105 spa->spa_sync_pass = 0;

6107 spa_config_exit(spa, SCL_CONFIG, FTAG);

6109 spa_handle_ignored_writes(spa);

6111 /*
6112 * If any async tasks have been requested, kick them off.
6113 */
6114 spa_async_dispatch(spa);
6115 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/space_map.c 1

**
 15272 Thu Jul 26 14:19:21 2012
new/usr/src/uts/common/fs/zfs/space_map.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 */

27 /*
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */

31 #include <sys/zfs_context.h>
32 #include <sys/spa.h>
33 #include <sys/dmu.h>
34 #include <sys/zio.h>
35 #include <sys/space_map.h>

37 /*
38 * Space map routines.
39 * NOTE: caller is responsible for all locking.
40 */
41 static int
42 space_map_seg_compare(const void *x1, const void *x2)
43 {
44 const space_seg_t *s1 = x1;
45 const space_seg_t *s2 = x2;

47 if (s1->ss_start < s2->ss_start) {
48 if (s1->ss_end > s2->ss_start)
49 return (0);
50 return (-1);
51 }
52 if (s1->ss_start > s2->ss_start) {
53 if (s1->ss_start < s2->ss_end)
54 return (0);
55 return (1);
56 }
57 return (0);
58 }

______unchanged_portion_omitted_

77 void

new/usr/src/uts/common/fs/zfs/space_map.c 2

78 space_map_destroy(space_map_t *sm)
79 {
80 ASSERT(!sm->sm_loaded && !sm->sm_loading);
81 VERIFY0(sm->sm_space);
76 VERIFY3U(sm->sm_space, ==, 0);
82 avl_destroy(&sm->sm_root);
83 cv_destroy(&sm->sm_load_cv);
84 }

______unchanged_portion_omitted_

272 /*
273 * Note: space_map_load() will drop sm_lock across dmu_read() calls.
274 * The caller must be OK with this.
275 */
276 int
277 space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype,
278 space_map_obj_t *smo, objset_t *os)
279 {
280 uint64_t *entry, *entry_map, *entry_map_end;
281 uint64_t bufsize, size, offset, end, space;
282 uint64_t mapstart = sm->sm_start;
283 int error = 0;

285 ASSERT(MUTEX_HELD(sm->sm_lock));
286 ASSERT(!sm->sm_loaded);
287 ASSERT(!sm->sm_loading);

289 sm->sm_loading = B_TRUE;
290 end = smo->smo_objsize;
291 space = smo->smo_alloc;

293 ASSERT(sm->sm_ops == NULL);
294 VERIFY0(sm->sm_space);
289 VERIFY3U(sm->sm_space, ==, 0);

296 if (maptype == SM_FREE) {
297 space_map_add(sm, sm->sm_start, sm->sm_size);
298 space = sm->sm_size - space;
299 }

301 bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT;
302 entry_map = zio_buf_alloc(bufsize);

304 mutex_exit(sm->sm_lock);
305 if (end > bufsize)
306 dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize);
307 mutex_enter(sm->sm_lock);

309 for (offset = 0; offset < end; offset += bufsize) {
310 size = MIN(end - offset, bufsize);
311 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
312 VERIFY(size != 0);

314 dprintf("object=%llu offset=%llx size=%llx\n",
315 smo->smo_object, offset, size);

317 mutex_exit(sm->sm_lock);
318 error = dmu_read(os, smo->smo_object, offset, size, entry_map,
319 DMU_READ_PREFETCH);
320 mutex_enter(sm->sm_lock);
321 if (error != 0)
322 break;

324 entry_map_end = entry_map + (size / sizeof (uint64_t));
325 for (entry = entry_map; entry < entry_map_end; entry++) {
326 uint64_t e = *entry;

new/usr/src/uts/common/fs/zfs/space_map.c 3

328 if (SM_DEBUG_DECODE(e)) /* Skip debug entries */
329 continue;

331 (SM_TYPE_DECODE(e) == maptype ?
332 space_map_add : space_map_remove)(sm,
333 (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart,
334 SM_RUN_DECODE(e) << sm->sm_shift);
335 }
336 }

338 if (error == 0) {
339 VERIFY3U(sm->sm_space, ==, space);

341 sm->sm_loaded = B_TRUE;
342 sm->sm_ops = ops;
343 if (ops != NULL)
344 ops->smop_load(sm);
345 } else {
346 space_map_vacate(sm, NULL, NULL);
347 }

349 zio_buf_free(entry_map, bufsize);

351 sm->sm_loading = B_FALSE;

353 cv_broadcast(&sm->sm_load_cv);

355 return (error);
356 }

______unchanged_portion_omitted_

404 /*
405 * Note: space_map_sync() will drop sm_lock across dmu_write() calls.
406 */
407 void
408 space_map_sync(space_map_t *sm, uint8_t maptype,
409 space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx)
410 {
411 spa_t *spa = dmu_objset_spa(os);
412 void *cookie = NULL;
413 space_seg_t *ss;
414 uint64_t bufsize, start, size, run_len;
415 uint64_t *entry, *entry_map, *entry_map_end;

417 ASSERT(MUTEX_HELD(sm->sm_lock));

419 if (sm->sm_space == 0)
420 return;

422 dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n",
423 smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa),
424 maptype == SM_ALLOC ? ’A’ : ’F’, avl_numnodes(&sm->sm_root),
425 sm->sm_space);

427 if (maptype == SM_ALLOC)
428 smo->smo_alloc += sm->sm_space;
429 else
430 smo->smo_alloc -= sm->sm_space;

432 bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t);
433 bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT);
434 entry_map = zio_buf_alloc(bufsize);
435 entry_map_end = entry_map + (bufsize / sizeof (uint64_t));
436 entry = entry_map;

new/usr/src/uts/common/fs/zfs/space_map.c 4

438 *entry++ = SM_DEBUG_ENCODE(1) |
439 SM_DEBUG_ACTION_ENCODE(maptype) |
440 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
441 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));

443 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) {
444 size = ss->ss_end - ss->ss_start;
445 start = (ss->ss_start - sm->sm_start) >> sm->sm_shift;

447 sm->sm_space -= size;
448 size >>= sm->sm_shift;

450 while (size) {
451 run_len = MIN(size, SM_RUN_MAX);

453 if (entry == entry_map_end) {
454 mutex_exit(sm->sm_lock);
455 dmu_write(os, smo->smo_object, smo->smo_objsize,
456 bufsize, entry_map, tx);
457 mutex_enter(sm->sm_lock);
458 smo->smo_objsize += bufsize;
459 entry = entry_map;
460 }

462 *entry++ = SM_OFFSET_ENCODE(start) |
463 SM_TYPE_ENCODE(maptype) |
464 SM_RUN_ENCODE(run_len);

466 start += run_len;
467 size -= run_len;
468 }
469 kmem_free(ss, sizeof (*ss));
470 }

472 if (entry != entry_map) {
473 size = (entry - entry_map) * sizeof (uint64_t);
474 mutex_exit(sm->sm_lock);
475 dmu_write(os, smo->smo_object, smo->smo_objsize,
476 size, entry_map, tx);
477 mutex_enter(sm->sm_lock);
478 smo->smo_objsize += size;
479 }

481 zio_buf_free(entry_map, bufsize);

483 VERIFY0(sm->sm_space);
478 VERIFY3U(sm->sm_space, ==, 0);
484 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev.c 1

**
 85047 Thu Jul 26 14:19:22 2012
new/usr/src/uts/common/fs/zfs/vdev.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

564 void
565 vdev_free(vdev_t *vd)
566 {
567 spa_t *spa = vd->vdev_spa;

569 /*
570 * vdev_free() implies closing the vdev first. This is simpler than
571 * trying to ensure complicated semantics for all callers.
572 */
573 vdev_close(vd);

575 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));

578 /*
579 * Free all children.
580 */
581 for (int c = 0; c < vd->vdev_children; c++)
582 vdev_free(vd->vdev_child[c]);

584 ASSERT(vd->vdev_child == NULL);
585 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);

587 /*
588 * Discard allocation state.
589 */
590 if (vd->vdev_mg != NULL) {
591 vdev_metaslab_fini(vd);
592 metaslab_group_destroy(vd->vdev_mg);
593 }

595 ASSERT0(vd->vdev_stat.vs_space);
596 ASSERT0(vd->vdev_stat.vs_dspace);
597 ASSERT0(vd->vdev_stat.vs_alloc);
595 ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);

599 /*
600 * Remove this vdev from its parent’s child list.
601 */
602 vdev_remove_child(vd->vdev_parent, vd);

604 ASSERT(vd->vdev_parent == NULL);

606 /*
607 * Clean up vdev structure.
608 */
609 vdev_queue_fini(vd);
610 vdev_cache_fini(vd);

612 if (vd->vdev_path)
613 spa_strfree(vd->vdev_path);
614 if (vd->vdev_devid)
615 spa_strfree(vd->vdev_devid);
616 if (vd->vdev_physpath)
617 spa_strfree(vd->vdev_physpath);
618 if (vd->vdev_fru)
619 spa_strfree(vd->vdev_fru);

new/usr/src/uts/common/fs/zfs/vdev.c 2

621 if (vd->vdev_isspare)
622 spa_spare_remove(vd);
623 if (vd->vdev_isl2cache)
624 spa_l2cache_remove(vd);

626 txg_list_destroy(&vd->vdev_ms_list);
627 txg_list_destroy(&vd->vdev_dtl_list);

629 mutex_enter(&vd->vdev_dtl_lock);
630 for (int t = 0; t < DTL_TYPES; t++) {
631 space_map_unload(&vd->vdev_dtl[t]);
632 space_map_destroy(&vd->vdev_dtl[t]);
633 }
634 mutex_exit(&vd->vdev_dtl_lock);

636 mutex_destroy(&vd->vdev_dtl_lock);
637 mutex_destroy(&vd->vdev_stat_lock);
638 mutex_destroy(&vd->vdev_probe_lock);

640 if (vd == spa->spa_root_vdev)
641 spa->spa_root_vdev = NULL;

643 kmem_free(vd, sizeof (vdev_t));
644 }

______unchanged_portion_omitted_

1789 void
1790 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1791 {
1792 spa_t *spa = vd->vdev_spa;
1793 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1794 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1795 objset_t *mos = spa->spa_meta_objset;
1796 space_map_t smsync;
1797 kmutex_t smlock;
1798 dmu_buf_t *db;
1799 dmu_tx_t *tx;

1801 ASSERT(!vd->vdev_ishole);

1803 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);

1805 if (vd->vdev_detached) {
1806 if (smo->smo_object != 0) {
1807 int err = dmu_object_free(mos, smo->smo_object, tx);
1808 ASSERT0(err);
1808 ASSERT3U(err, ==, 0);
1809 smo->smo_object = 0;
1810 }
1811 dmu_tx_commit(tx);
1812 return;
1813 }

1815 if (smo->smo_object == 0) {
1816 ASSERT(smo->smo_objsize == 0);
1817 ASSERT(smo->smo_alloc == 0);
1818 smo->smo_object = dmu_object_alloc(mos,
1819 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1820 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1821 ASSERT(smo->smo_object != 0);
1822 vdev_config_dirty(vd->vdev_top);
1823 }

1825 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);

new/usr/src/uts/common/fs/zfs/vdev.c 3

1827 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1828 &smlock);

1830 mutex_enter(&smlock);

1832 mutex_enter(&vd->vdev_dtl_lock);
1833 space_map_walk(sm, space_map_add, &smsync);
1834 mutex_exit(&vd->vdev_dtl_lock);

1836 space_map_truncate(smo, mos, tx);
1837 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);

1839 space_map_destroy(&smsync);

1841 mutex_exit(&smlock);
1842 mutex_destroy(&smlock);

1844 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1845 dmu_buf_will_dirty(db, tx);
1846 ASSERT3U(db->db_size, >=, sizeof (*smo));
1847 bcopy(smo, db->db_data, sizeof (*smo));
1848 dmu_buf_rele(db, FTAG);

1850 dmu_tx_commit(tx);
1851 }
______unchanged_portion_omitted_

1998 void
1999 vdev_remove(vdev_t *vd, uint64_t txg)
2000 {
2001 spa_t *spa = vd->vdev_spa;
2002 objset_t *mos = spa->spa_meta_objset;
2003 dmu_tx_t *tx;

2005 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);

2007 if (vd->vdev_dtl_smo.smo_object) {
2008 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2008 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2009 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2010 vd->vdev_dtl_smo.smo_object = 0;
2011 }

2013 if (vd->vdev_ms != NULL) {
2014 for (int m = 0; m < vd->vdev_ms_count; m++) {
2015 metaslab_t *msp = vd->vdev_ms[m];

2017 if (msp == NULL || msp->ms_smo.smo_object == 0)
2018 continue;

2020 ASSERT0(msp->ms_smo.smo_alloc);
2020 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2021 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2022 msp->ms_smo.smo_object = 0;
2023 }
2024 }

2026 if (vd->vdev_ms_array) {
2027 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2028 vd->vdev_ms_array = 0;
2029 vd->vdev_ms_shift = 0;
2030 }
2031 dmu_tx_commit(tx);
2032 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev.c 4

2236 static int
2237 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2238 {
2239 vdev_t *vd, *tvd;
2240 int error = 0;
2241 uint64_t generation;
2242 metaslab_group_t *mg;

2244 top:
2245 spa_vdev_state_enter(spa, SCL_ALLOC);

2247 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2248 return (spa_vdev_state_exit(spa, NULL, ENODEV));

2250 if (!vd->vdev_ops->vdev_op_leaf)
2251 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

2253 tvd = vd->vdev_top;
2254 mg = tvd->vdev_mg;
2255 generation = spa->spa_config_generation + 1;

2257 /*
2258 * If the device isn’t already offline, try to offline it.
2259 */
2260 if (!vd->vdev_offline) {
2261 /*
2262 * If this device has the only valid copy of some data,
2263 * don’t allow it to be offlined. Log devices are always
2264 * expendable.
2265 */
2266 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2267 vdev_dtl_required(vd))
2268 return (spa_vdev_state_exit(spa, NULL, EBUSY));

2270 /*
2271 * If the top-level is a slog and it has had allocations
2272 * then proceed. We check that the vdev’s metaslab group
2273 * is not NULL since it’s possible that we may have just
2274 * added this vdev but not yet initialized its metaslabs.
2275 */
2276 if (tvd->vdev_islog && mg != NULL) {
2277 /*
2278 * Prevent any future allocations.
2279 */
2280 metaslab_group_passivate(mg);
2281 (void) spa_vdev_state_exit(spa, vd, 0);

2283 error = spa_offline_log(spa);

2285 spa_vdev_state_enter(spa, SCL_ALLOC);

2287 /*
2288 * Check to see if the config has changed.
2289 */
2290 if (error || generation != spa->spa_config_generation) {
2291 metaslab_group_activate(mg);
2292 if (error)
2293 return (spa_vdev_state_exit(spa,
2294 vd, error));
2295 (void) spa_vdev_state_exit(spa, vd, 0);
2296 goto top;
2297 }
2298 ASSERT0(tvd->vdev_stat.vs_alloc);
2298 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2299 }

new/usr/src/uts/common/fs/zfs/vdev.c 5

2301 /*
2302 * Offline this device and reopen its top-level vdev.
2303 * If the top-level vdev is a log device then just offline
2304 * it. Otherwise, if this action results in the top-level
2305 * vdev becoming unusable, undo it and fail the request.
2306 */
2307 vd->vdev_offline = B_TRUE;
2308 vdev_reopen(tvd);

2310 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2311 vdev_is_dead(tvd)) {
2312 vd->vdev_offline = B_FALSE;
2313 vdev_reopen(tvd);
2314 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2315 }

2317 /*
2318 * Add the device back into the metaslab rotor so that
2319 * once we online the device it’s open for business.
2320 */
2321 if (tvd->vdev_islog && mg != NULL)
2322 metaslab_group_activate(mg);
2323 }

2325 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);

2327 return (spa_vdev_state_exit(spa, vd, 0));
2328 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 1

**
 61791 Thu Jul 26 14:19:23 2012
new/usr/src/uts/common/fs/zfs/vdev_raidz.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

279 static void
280 vdev_raidz_map_free_vsd(zio_t *zio)
281 {
282 raidz_map_t *rm = zio->io_vsd;

284 ASSERT0(rm->rm_freed);
284 ASSERT3U(rm->rm_freed, ==, 0);
285 rm->rm_freed = 1;

287 if (rm->rm_reports == 0)
288 vdev_raidz_map_free(rm);
289 }

______unchanged_portion_omitted_

1090 static void
1091 vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
1092 uint8_t **rows, uint8_t **invrows, const uint8_t *used)
1093 {
1094 int i, j, ii, jj;
1095 uint8_t log;

1097 /*
1098 * Assert that the first nmissing entries from the array of used
1099 * columns correspond to parity columns and that subsequent entries
1100 * correspond to data columns.
1101 */
1102 for (i = 0; i < nmissing; i++) {
1103 ASSERT3S(used[i], <, rm->rm_firstdatacol);
1104 }
1105 for (; i < n; i++) {
1106 ASSERT3S(used[i], >=, rm->rm_firstdatacol);
1107 }

1109 /*
1110 * First initialize the storage where we’ll compute the inverse rows.
1111 */
1112 for (i = 0; i < nmissing; i++) {
1113 for (j = 0; j < n; j++) {
1114 invrows[i][j] = (i == j) ? 1 : 0;
1115 }
1116 }

1118 /*
1119 * Subtract all trivial rows from the rows of consequence.
1120 */
1121 for (i = 0; i < nmissing; i++) {
1122 for (j = nmissing; j < n; j++) {
1123 ASSERT3U(used[j], >=, rm->rm_firstdatacol);
1124 jj = used[j] - rm->rm_firstdatacol;
1125 ASSERT3S(jj, <, n);
1126 invrows[i][j] = rows[i][jj];
1127 rows[i][jj] = 0;
1128 }
1129 }

1131 /*
1132 * For each of the rows of interest, we must normalize it and subtract
1133 * a multiple of it from the other rows.
1134 */

new/usr/src/uts/common/fs/zfs/vdev_raidz.c 2

1135 for (i = 0; i < nmissing; i++) {
1136 for (j = 0; j < missing[i]; j++) {
1137 ASSERT0(rows[i][j]);
1137 ASSERT3U(rows[i][j], ==, 0);
1138 }
1139 ASSERT3U(rows[i][missing[i]], !=, 0);

1141 /*
1142 * Compute the inverse of the first element and multiply each
1143 * element in the row by that value.
1144 */
1145 log = 255 - vdev_raidz_log2[rows[i][missing[i]]];

1147 for (j = 0; j < n; j++) {
1148 rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
1149 invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
1150 }

1152 for (ii = 0; ii < nmissing; ii++) {
1153 if (i == ii)
1154 continue;

1156 ASSERT3U(rows[ii][missing[i]], !=, 0);

1158 log = vdev_raidz_log2[rows[ii][missing[i]]];

1160 for (j = 0; j < n; j++) {
1161 rows[ii][j] ^=
1162 vdev_raidz_exp2(rows[i][j], log);
1163 invrows[ii][j] ^=
1164 vdev_raidz_exp2(invrows[i][j], log);
1165 }
1166 }
1167 }

1169 /*
1170 * Verify that the data that is left in the rows are properly part of
1171 * an identity matrix.
1172 */
1173 for (i = 0; i < nmissing; i++) {
1174 for (j = 0; j < n; j++) {
1175 if (j == missing[i]) {
1176 ASSERT3U(rows[i][j], ==, 1);
1177 } else {
1178 ASSERT0(rows[i][j]);
1178 ASSERT3U(rows[i][j], ==, 0);
1179 }
1180 }
1181 }
1182 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zap.c 1

**
 33603 Thu Jul 26 14:19:24 2012
new/usr/src/uts/common/fs/zfs/zap.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

140 /*
141 * Generic routines for dealing with the pointer & cookie tables.
142 */

144 static int
145 zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
146 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
147 dmu_tx_t *tx)
148 {
149 uint64_t b, newblk;
150 dmu_buf_t *db_old, *db_new;
151 int err;
152 int bs = FZAP_BLOCK_SHIFT(zap);
153 int hepb = 1<<(bs-4);
154 /* hepb = half the number of entries in a block */

156 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
157 ASSERT(tbl->zt_blk != 0);
158 ASSERT(tbl->zt_numblks > 0);

160 if (tbl->zt_nextblk != 0) {
161 newblk = tbl->zt_nextblk;
162 } else {
163 newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
164 tbl->zt_nextblk = newblk;
165 ASSERT0(tbl->zt_blks_copied);
165 ASSERT3U(tbl->zt_blks_copied, ==, 0);
166 dmu_prefetch(zap->zap_objset, zap->zap_object,
167 tbl->zt_blk << bs, tbl->zt_numblks << bs);
168 }

170 /*
171 * Copy the ptrtbl from the old to new location.
172 */

174 b = tbl->zt_blks_copied;
175 err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
176 (tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
177 if (err)
178 return (err);

180 /* first half of entries in old[b] go to new[2*b+0] */
181 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
182 (newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
183 dmu_buf_will_dirty(db_new, tx);
184 transfer_func(db_old->db_data, db_new->db_data, hepb);
185 dmu_buf_rele(db_new, FTAG);

187 /* second half of entries in old[b] go to new[2*b+1] */
188 VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
189 (newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
190 dmu_buf_will_dirty(db_new, tx);
191 transfer_func((uint64_t *)db_old->db_data + hepb,
192 db_new->db_data, hepb);
193 dmu_buf_rele(db_new, FTAG);

195 dmu_buf_rele(db_old, FTAG);

197 tbl->zt_blks_copied++;

new/usr/src/uts/common/fs/zfs/zap.c 2

199 dprintf("copied block %llu of %llu\n",
200 tbl->zt_blks_copied, tbl->zt_numblks);

202 if (tbl->zt_blks_copied == tbl->zt_numblks) {
203 (void) dmu_free_range(zap->zap_objset, zap->zap_object,
204 tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);

206 tbl->zt_blk = newblk;
207 tbl->zt_numblks *= 2;
208 tbl->zt_shift++;
209 tbl->zt_nextblk = 0;
210 tbl->zt_blks_copied = 0;

212 dprintf("finished; numblocks now %llu (%lluk entries)\n",
213 tbl->zt_numblks, 1<<(tbl->zt_shift-10));
214 }

216 return (0);
217 }

______unchanged_portion_omitted_

318 static int
319 zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
320 {
321 /*
322 * The pointer table should never use more hash bits than we
323 * have (otherwise we’d be using useless zero bits to index it).
324 * If we are within 2 bits of running out, stop growing, since
325 * this is already an aberrant condition.
326 */
327 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
328 return (ENOSPC);

330 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) {
331 /*
332 * We are outgrowing the "embedded" ptrtbl (the one
333 * stored in the header block). Give it its own entire
334 * block, which will double the size of the ptrtbl.
335 */
336 uint64_t newblk;
337 dmu_buf_t *db_new;
338 int err;

340 ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==,
341 ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
342 ASSERT0(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk);
342 ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk, ==, 0);

344 newblk = zap_allocate_blocks(zap, 1);
345 err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
346 newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
347 DMU_READ_NO_PREFETCH);
348 if (err)
349 return (err);
350 dmu_buf_will_dirty(db_new, tx);
351 zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
352 db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
353 dmu_buf_rele(db_new, FTAG);

355 zap->zap_f.zap_phys->zap_ptrtbl.zt_blk = newblk;
356 zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks = 1;
357 zap->zap_f.zap_phys->zap_ptrtbl.zt_shift++;

359 ASSERT3U(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==,
360 zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks <<

new/usr/src/uts/common/fs/zfs/zap.c 3

361 (FZAP_BLOCK_SHIFT(zap)-3));

363 return (0);
364 } else {
365 return (zap_table_grow(zap, &zap->zap_f.zap_phys->zap_ptrtbl,
366 zap_ptrtbl_transfer, tx));
367 }
368 }

______unchanged_portion_omitted_

449 static zap_leaf_t *
450 zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
451 {
452 zap_leaf_t *l, *winner;

454 ASSERT(blkid != 0);

456 l = kmem_alloc(sizeof (zap_leaf_t), KM_SLEEP);
457 rw_init(&l->l_rwlock, 0, 0, 0);
458 rw_enter(&l->l_rwlock, RW_WRITER);
459 l->l_blkid = blkid;
460 l->l_bs = highbit(db->db_size)-1;
461 l->l_dbuf = db;
462 l->l_phys = NULL;

464 winner = dmu_buf_set_user(db, l, &l->l_phys, zap_leaf_pageout);

466 rw_exit(&l->l_rwlock);
467 if (winner != NULL) {
468 /* someone else set it first */
469 zap_leaf_pageout(NULL, l);
470 l = winner;
471 }

473 /*
474 * lhr_pad was previously used for the next leaf in the leaf
475 * chain. There should be no chained leafs (as we have removed
476 * support for them).
477 */
478 ASSERT0(l->l_phys->l_hdr.lh_pad1);
478 ASSERT3U(l->l_phys->l_hdr.lh_pad1, ==, 0);

480 /*
481 * There should be more hash entries than there can be
482 * chunks to put in the hash table
483 */
484 ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);

486 /* The chunks should begin at the end of the hash table */
487 ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==,
488 &l->l_phys->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);

490 /* The chunks should end at the end of the block */
491 ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
492 (uintptr_t)l->l_phys, ==, l->l_dbuf->db_size);

494 return (l);
495 }

______unchanged_portion_omitted_

591 static int
592 zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx, zap_leaf_t **lp)
593 {
594 zap_t *zap = zn->zn_zap;
595 uint64_t hash = zn->zn_hash;
596 zap_leaf_t *nl;

new/usr/src/uts/common/fs/zfs/zap.c 4

597 int prefix_diff, i, err;
598 uint64_t sibling;
599 int old_prefix_len = l->l_phys->l_hdr.lh_prefix_len;

601 ASSERT3U(old_prefix_len, <=, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
602 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));

604 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
605 l->l_phys->l_hdr.lh_prefix);

607 if (zap_tryupgradedir(zap, tx) == 0 ||
608 old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) {
609 /* We failed to upgrade, or need to grow the pointer table */
610 objset_t *os = zap->zap_objset;
611 uint64_t object = zap->zap_object;

613 zap_put_leaf(l);
614 zap_unlockdir(zap);
615 err = zap_lockdir(os, object, tx, RW_WRITER,
616 FALSE, FALSE, &zn->zn_zap);
617 zap = zn->zn_zap;
618 if (err)
619 return (err);
620 ASSERT(!zap->zap_ismicro);

622 while (old_prefix_len ==
623 zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) {
624 err = zap_grow_ptrtbl(zap, tx);
625 if (err)
626 return (err);
627 }

629 err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
630 if (err)
631 return (err);

633 if (l->l_phys->l_hdr.lh_prefix_len != old_prefix_len) {
634 /* it split while our locks were down */
635 *lp = l;
636 return (0);
637 }
638 }
639 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
640 ASSERT3U(old_prefix_len, <, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
641 ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
642 l->l_phys->l_hdr.lh_prefix);

644 prefix_diff = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift -
645 (old_prefix_len + 1);
646 sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;

648 /* check for i/o errors before doing zap_leaf_split */
649 for (i = 0; i < (1ULL<<prefix_diff); i++) {
650 uint64_t blk;
651 err = zap_idx_to_blk(zap, sibling+i, &blk);
652 if (err)
653 return (err);
654 ASSERT3U(blk, ==, l->l_blkid);
655 }

657 nl = zap_create_leaf(zap, tx);
658 zap_leaf_split(l, nl, zap->zap_normflags != 0);

660 /* set sibling pointers */
661 for (i = 0; i < (1ULL << prefix_diff); i++) {
661 for (i = 0; i < (1ULL<<prefix_diff); i++) {

new/usr/src/uts/common/fs/zfs/zap.c 5

662 err = zap_set_idx_to_blk(zap, sibling+i, nl->l_blkid, tx);
663 ASSERT0(err); /* we checked for i/o errors above */
663 ASSERT3U(err, ==, 0); /* we checked for i/o errors above */
664 }

666 if (hash & (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len))) {
667 /* we want the sibling */
668 zap_put_leaf(l);
669 *lp = nl;
670 } else {
671 zap_put_leaf(nl);
672 *lp = l;
673 }

675 return (0);
676 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zap_micro.c 1

**
 34759 Thu Jul 26 14:19:25 2012
new/usr/src/uts/common/fs/zfs/zap_micro.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

445 int
446 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
447 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
448 {
449 zap_t *zap;
450 dmu_buf_t *db;
451 krw_t lt;
452 int err;

454 *zapp = NULL;

456 err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
457 if (err)
458 return (err);

460 #ifdef ZFS_DEBUG
461 {
462 dmu_object_info_t doi;
463 dmu_object_info_from_db(db, &doi);
464 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
465 }
466 #endif

468 zap = dmu_buf_get_user(db);
469 if (zap == NULL)
470 zap = mzap_open(os, obj, db);

472 /*
473 * We’re checking zap_ismicro without the lock held, in order to
474 * tell what type of lock we want. Once we have some sort of
475 * lock, see if it really is the right type. In practice this
476 * can only be different if it was upgraded from micro to fat,
477 * and micro wanted WRITER but fat only needs READER.
478 */
479 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
480 rw_enter(&zap->zap_rwlock, lt);
481 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
482 /* it was upgraded, now we only need reader */
483 ASSERT(lt == RW_WRITER);
484 ASSERT(RW_READER ==
485 (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
486 rw_downgrade(&zap->zap_rwlock);
487 lt = RW_READER;
488 }

490 zap->zap_objset = os;

492 if (lt == RW_WRITER)
493 dmu_buf_will_dirty(db, tx);

495 ASSERT3P(zap->zap_dbuf, ==, db);

497 ASSERT(!zap->zap_ismicro ||
498 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
499 if (zap->zap_ismicro && tx && adding &&
500 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
501 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
502 if (newsz > MZAP_MAX_BLKSZ) {
503 dprintf("upgrading obj %llu: num_entries=%u\n",

new/usr/src/uts/common/fs/zfs/zap_micro.c 2

504 obj, zap->zap_m.zap_num_entries);
505 *zapp = zap;
506 return (mzap_upgrade(zapp, tx, 0));
507 }
508 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
509 ASSERT0(err);
509 ASSERT3U(err, ==, 0);
510 zap->zap_m.zap_num_chunks =
511 db->db_size / MZAP_ENT_LEN - 1;
512 }

514 *zapp = zap;
515 return (0);
516 }

______unchanged_portion_omitted_

575 static void
576 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
577 dmu_tx_t *tx)
578 {
579 dmu_buf_t *db;
580 mzap_phys_t *zp;

582 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));

584 #ifdef ZFS_DEBUG
585 {
586 dmu_object_info_t doi;
587 dmu_object_info_from_db(db, &doi);
588 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
589 }
590 #endif

592 dmu_buf_will_dirty(db, tx);
593 zp = db->db_data;
594 zp->mz_block_type = ZBT_MICRO;
595 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
596 zp->mz_normflags = normflags;
597 dmu_buf_rele(db, FTAG);

599 if (flags != 0) {
600 zap_t *zap;
601 /* Only fat zap supports flags; upgrade immediately. */
602 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
603 B_FALSE, B_FALSE, &zap));
604 VERIFY0(mzap_upgrade(&zap, tx, flags));
604 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
605 zap_unlockdir(zap);
606 }
607 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfeature.c 1

**
 14191 Thu Jul 26 14:19:26 2012
new/usr/src/uts/common/fs/zfs/zfeature.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

342 /*
343 * Enable any required dependencies, then enable the requested feature.
344 */
345 void
346 spa_feature_enable(spa_t *spa, zfeature_info_t *feature, dmu_tx_t *tx)
347 {
348 ASSERT3U(spa_version(spa), >=, SPA_VERSION_FEATURES);
349 VERIFY0(feature_do_action(spa->spa_meta_objset,
349 VERIFY3U(0, ==, feature_do_action(spa->spa_meta_objset,
350 spa->spa_feat_for_read_obj, spa->spa_feat_for_write_obj,
351 spa->spa_feat_desc_obj, feature, FEATURE_ACTION_ENABLE, tx));
352 }

354 /*
355 * If the specified feature has not yet been enabled, this function returns
356 * ENOTSUP; otherwise, this function increments the feature’s refcount (or
357 * returns EOVERFLOW if the refcount cannot be incremented). This function must
358 * be called from syncing context.
359 */
360 void
361 spa_feature_incr(spa_t *spa, zfeature_info_t *feature, dmu_tx_t *tx)
362 {
363 ASSERT3U(spa_version(spa), >=, SPA_VERSION_FEATURES);
364 VERIFY0(feature_do_action(spa->spa_meta_objset,
364 VERIFY3U(0, ==, feature_do_action(spa->spa_meta_objset,
365 spa->spa_feat_for_read_obj, spa->spa_feat_for_write_obj,
366 spa->spa_feat_desc_obj, feature, FEATURE_ACTION_INCR, tx));
367 }

369 /*
370 * If the specified feature has not yet been enabled, this function returns
371 * ENOTSUP; otherwise, this function decrements the feature’s refcount (or
372 * returns EOVERFLOW if the refcount is already 0). This function must
373 * be called from syncing context.
374 */
375 void
376 spa_feature_decr(spa_t *spa, zfeature_info_t *feature, dmu_tx_t *tx)
377 {
378 ASSERT3U(spa_version(spa), >=, SPA_VERSION_FEATURES);
379 VERIFY0(feature_do_action(spa->spa_meta_objset,
379 VERIFY3U(0, ==, feature_do_action(spa->spa_meta_objset,
380 spa->spa_feat_for_read_obj, spa->spa_feat_for_write_obj,
381 spa->spa_feat_desc_obj, feature, FEATURE_ACTION_DECR, tx));
382 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_debug.c 1

**
 2598 Thu Jul 26 14:19:26 2012
new/usr/src/uts/common/fs/zfs/zfs_debug.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

27 #include <sys/zfs_context.h>

29 list_t zfs_dbgmsgs;
30 int zfs_dbgmsg_size;
31 kmutex_t zfs_dbgmsgs_lock;
32 int zfs_dbgmsg_maxsize = 1<<20; /* 1MB */

34 void
35 zfs_dbgmsg_init(void)
36 {
37 list_create(&zfs_dbgmsgs, sizeof (zfs_dbgmsg_t),
38 offsetof(zfs_dbgmsg_t, zdm_node));
39 mutex_init(&zfs_dbgmsgs_lock, NULL, MUTEX_DEFAULT, NULL);
40 }

42 void
43 zfs_dbgmsg_fini(void)
44 {
45 zfs_dbgmsg_t *zdm;

47 while ((zdm = list_remove_head(&zfs_dbgmsgs)) != NULL) {
48 int size = sizeof (zfs_dbgmsg_t) + strlen(zdm->zdm_msg);
49 kmem_free(zdm, size);
50 zfs_dbgmsg_size -= size;
51 }
52 mutex_destroy(&zfs_dbgmsgs_lock);
53 ASSERT0(zfs_dbgmsg_size);
51 ASSERT3U(zfs_dbgmsg_size, ==, 0);
54 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_dir.c 1

**
 29716 Thu Jul 26 14:19:27 2012
new/usr/src/uts/common/fs/zfs/zfs_dir.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/time.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/vnode.h>
34 #include <sys/file.h>
35 #include <sys/mode.h>
36 #include <sys/kmem.h>
37 #include <sys/uio.h>
38 #include <sys/pathname.h>
39 #include <sys/cmn_err.h>
40 #include <sys/errno.h>
41 #include <sys/stat.h>
42 #include <sys/unistd.h>
43 #include <sys/sunddi.h>
44 #include <sys/random.h>
45 #include <sys/policy.h>
46 #include <sys/zfs_dir.h>
47 #include <sys/zfs_acl.h>
48 #include <sys/fs/zfs.h>
49 #include "fs/fs_subr.h"
50 #include <sys/zap.h>
51 #include <sys/dmu.h>
52 #include <sys/atomic.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/sa.h>
56 #include <sys/zfs_sa.h>
57 #include <sys/dnlc.h>
58 #include <sys/extdirent.h>

60 /*
61 * zfs_match_find() is used by zfs_dirent_lock() to peform zap lookups

new/usr/src/uts/common/fs/zfs/zfs_dir.c 2

62 * of names after deciding which is the appropriate lookup interface.
63 */
64 static int
65 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, boolean_t exact,
66 boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid)
67 {
68 int error;

70 if (zfsvfs->z_norm) {
71 matchtype_t mt = MT_FIRST;
72 boolean_t conflict = B_FALSE;
73 size_t bufsz = 0;
74 char *buf = NULL;

76 if (rpnp) {
77 buf = rpnp->pn_buf;
78 bufsz = rpnp->pn_bufsize;
79 }
80 if (exact)
81 mt = MT_EXACT;
82 /*
83 * In the non-mixed case we only expect there would ever
84 * be one match, but we need to use the normalizing lookup.
85 */
86 error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
87 zoid, mt, buf, bufsz, &conflict);
88 if (!error && deflags)
89 *deflags = conflict ? ED_CASE_CONFLICT : 0;
90 } else {
91 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
92 }
93 *zoid = ZFS_DIRENT_OBJ(*zoid);

95 if (error == ENOENT && update)
96 dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE);

98 return (error);
99 }

______unchanged_portion_omitted_

436 /*
437 * unlinked Set (formerly known as the "delete queue") Error Handling
438 *
439 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
440 * don’t specify the name of the entry that we will be manipulating. We
441 * also fib and say that we won’t be adding any new entries to the
442 * unlinked set, even though we might (this is to lower the minimum file
443 * size that can be deleted in a full filesystem). So on the small
444 * chance that the nlink list is using a fat zap (ie. has more than
445 * 2000 entries), we *may* not pre-read a block that’s needed.
446 * Therefore it is remotely possible for some of the assertions
447 * regarding the unlinked set below to fail due to i/o error. On a
448 * nondebug system, this will result in the space being leaked.
449 */
450 void
451 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
452 {
453 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

455 ASSERT(zp->z_unlinked);
456 ASSERT(zp->z_links == 0);

458 VERIFY0(zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
459 zp->z_id, tx));
457 VERIFY3U(0, ==,
458 zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));

new/usr/src/uts/common/fs/zfs/zfs_dir.c 3

460 }
______unchanged_portion_omitted_

581 void
582 zfs_rmnode(znode_t *zp)
583 {
584 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
585 objset_t *os = zfsvfs->z_os;
586 znode_t *xzp = NULL;
587 dmu_tx_t *tx;
588 uint64_t acl_obj;
589 uint64_t xattr_obj;
590 int error;

592 ASSERT(zp->z_links == 0);
593 ASSERT(ZTOV(zp)->v_count == 0);

595 /*
596 * If this is an attribute directory, purge its contents.
597 */
598 if (ZTOV(zp)->v_type == VDIR && (zp->z_pflags & ZFS_XATTR)) {
599 if (zfs_purgedir(zp) != 0) {
600 /*
601 * Not enough space to delete some xattrs.
602 * Leave it in the unlinked set.
603 */
604 zfs_znode_dmu_fini(zp);
605 zfs_znode_free(zp);
606 return;
607 }
608 }

610 /*
611 * Free up all the data in the file.
612 */
613 error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END);
614 if (error) {
615 /*
616 * Not enough space. Leave the file in the unlinked set.
617 */
618 zfs_znode_dmu_fini(zp);
619 zfs_znode_free(zp);
620 return;
621 }

623 /*
624 * If the file has extended attributes, we’re going to unlink
625 * the xattr dir.
626 */
627 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
628 &xattr_obj, sizeof (xattr_obj));
629 if (error == 0 && xattr_obj) {
630 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
631 ASSERT(error == 0);
632 }

634 acl_obj = zfs_external_acl(zp);

636 /*
637 * Set up the final transaction.
638 */
639 tx = dmu_tx_create(os);
640 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
641 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
642 if (xzp) {
643 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);

new/usr/src/uts/common/fs/zfs/zfs_dir.c 4

644 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
645 }
646 if (acl_obj)
647 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);

649 zfs_sa_upgrade_txholds(tx, zp);
650 error = dmu_tx_assign(tx, TXG_WAIT);
651 if (error) {
652 /*
653 * Not enough space to delete the file. Leave it in the
654 * unlinked set, leaking it until the fs is remounted (at
655 * which point we’ll call zfs_unlinked_drain() to process it).
656 */
657 dmu_tx_abort(tx);
658 zfs_znode_dmu_fini(zp);
659 zfs_znode_free(zp);
660 goto out;
661 }

663 if (xzp) {
664 ASSERT(error == 0);
665 mutex_enter(&xzp->z_lock);
666 xzp->z_unlinked = B_TRUE; /* mark xzp for deletion */
667 xzp->z_links = 0; /* no more links to it */
668 VERIFY(0 == sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
669 &xzp->z_links, sizeof (xzp->z_links), tx));
670 mutex_exit(&xzp->z_lock);
671 zfs_unlinked_add(xzp, tx);
672 }

674 /* Remove this znode from the unlinked set */
675 VERIFY0(zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
676 xzp->z_id, tx));
674 VERIFY3U(0, ==,
675 zap_remove_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));

678 zfs_znode_delete(zp, tx);

680 dmu_tx_commit(tx);
681 out:
682 if (xzp)
683 VN_RELE(ZTOV(xzp));
684 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_ioctl.c 1

**
 142364 Thu Jul 26 14:19:28 2012
new/usr/src/uts/common/fs/zfs/zfs_ioctl.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

1938 static int
1939 zfs_ioc_objset_stats_impl(zfs_cmd_t *zc, objset_t *os)
1940 {
1941 int error = 0;
1942 nvlist_t *nv;

1944 dmu_objset_fast_stat(os, &zc->zc_objset_stats);

1946 if (zc->zc_nvlist_dst != 0 &&
1947 (error = dsl_prop_get_all(os, &nv)) == 0) {
1948 dmu_objset_stats(os, nv);
1949 /*
1950 * NB: zvol_get_stats() will read the objset contents,
1951 * which we aren’t supposed to do with a
1952 * DS_MODE_USER hold, because it could be
1953 * inconsistent. So this is a bit of a workaround...
1954 * XXX reading with out owning
1955 */
1956 if (!zc->zc_objset_stats.dds_inconsistent &&
1957 dmu_objset_type(os) == DMU_OST_ZVOL) {
1958 error = zvol_get_stats(os, nv);
1959 if (error == EIO)
1960 return (error);
1961 VERIFY0(error);
1961 VERIFY3S(error, ==, 0);
1962 }
1963 error = put_nvlist(zc, nv);
1964 nvlist_free(nv);
1965 }

1967 return (error);
1968 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_rlock.c 1

**
 17055 Thu Jul 26 14:19:29 2012
new/usr/src/uts/common/fs/zfs/zfs_rlock.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */

32 /*
33 * This file contains the code to implement file range locking in
34 * ZFS, although there isn’t much specific to ZFS (all that comes to mind
35 * support for growing the blocksize).
36 *
37 * Interface
38 * ---------
39 * Defined in zfs_rlock.h but essentially:
40 * rl = zfs_range_lock(zp, off, len, lock_type);
41 * zfs_range_unlock(rl);
42 * zfs_range_reduce(rl, off, len);
43 *
44 * AVL tree
45 * --------
46 * An AVL tree is used to maintain the state of the existing ranges
47 * that are locked for exclusive (writer) or shared (reader) use.
48 * The starting range offset is used for searching and sorting the tree.
49 *
50 * Common case
51 * -----------
52 * The (hopefully) usual case is of no overlaps or contention for
53 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
54 * searched that finds no overlap, and *this* rl_t is placed in the tree.
55 *
56 * Overlaps/Reference counting/Proxy locks
57 * ---------------------------------------
58 * The avl code only allows one node at a particular offset. Also it’s very
59 * inefficient to search through all previous entries looking for overlaps
60 * (because the very 1st in the ordered list might be at offset 0 but
61 * cover the whole file).

new/usr/src/uts/common/fs/zfs/zfs_rlock.c 2

62 * So this implementation uses reference counts and proxy range locks.
63 * Firstly, only reader locks use reference counts and proxy locks,
64 * because writer locks are exclusive.
65 * When a reader lock overlaps with another then a proxy lock is created
66 * for that range and replaces the original lock. If the overlap
67 * is exact then the reference count of the proxy is simply incremented.
68 * Otherwise, the proxy lock is split into smaller lock ranges and
69 * new proxy locks created for non overlapping ranges.
70 * The reference counts are adjusted accordingly.
71 * Meanwhile, the orginal lock is kept around (this is the callers handle)
72 * and its offset and length are used when releasing the lock.
73 *
74 * Thread coordination
75 * -------------------
76 * In order to make wakeups efficient and to ensure multiple continuous
77 * readers on a range don’t starve a writer for the same range lock,
78 * two condition variables are allocated in each rl_t.
79 * If a writer (or reader) can’t get a range it initialises the writer
80 * (or reader) cv; sets a flag saying there’s a writer (or reader) waiting;
81 * and waits on that cv. When a thread unlocks that range it wakes up all
82 * writers then all readers before destroying the lock.
83 *
84 * Append mode writes
85 * ------------------
86 * Append mode writes need to lock a range at the end of a file.
87 * The offset of the end of the file is determined under the
88 * range locking mutex, and the lock type converted from RL_APPEND to
89 * RL_WRITER and the range locked.
90 *
91 * Grow block handling
92 * -------------------
93 * ZFS supports multiple block sizes currently upto 128K. The smallest
94 * block size is used for the file which is grown as needed. During this
95 * growth all other writers and readers must be excluded.
96 * So if the block size needs to be grown then the whole file is
97 * exclusively locked, then later the caller will reduce the lock
98 * range to just the range to be written using zfs_reduce_range.
99 */

101 #include <sys/zfs_rlock.h>

103 /*
104 * Check if a write lock can be grabbed, or wait and recheck until available.
105 */
106 static void
107 zfs_range_lock_writer(znode_t *zp, rl_t *new)
108 {
109 avl_tree_t *tree = &zp->z_range_avl;
110 rl_t *rl;
111 avl_index_t where;
112 uint64_t end_size;
113 uint64_t off = new->r_off;
114 uint64_t len = new->r_len;

116 for (;;) {
117 /*
118 * Range locking is also used by zvol and uses a
119 * dummied up znode. However, for zvol, we don’t need to
120 * append or grow blocksize, and besides we don’t have
121 * a "sa" data or z_zfsvfs - so skip that processing.
122 *
123 * Yes, this is ugly, and would be solved by not handling
124 * grow or append in range lock code. If that was done then
125 * we could make the range locking code generically available
126 * to other non-zfs consumers.
127 */

new/usr/src/uts/common/fs/zfs/zfs_rlock.c 3

128 if (zp->z_vnode) { /* caller is ZPL */
129 /*
130 * If in append mode pick up the current end of file.
131 * This is done under z_range_lock to avoid races.
132 */
133 if (new->r_type == RL_APPEND)
134 new->r_off = zp->z_size;

136 /*
137 * If we need to grow the block size then grab the whole
138 * file range. This is also done under z_range_lock to
139 * avoid races.
140 */
141 end_size = MAX(zp->z_size, new->r_off + len);
142 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
143 zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
144 new->r_off = 0;
145 new->r_len = UINT64_MAX;
146 }
147 }

149 /*
150 * First check for the usual case of no locks
151 */
152 if (avl_numnodes(tree) == 0) {
153 new->r_type = RL_WRITER; /* convert to writer */
154 avl_add(tree, new);
155 return;
156 }

158 /*
159 * Look for any locks in the range.
160 */
161 rl = avl_find(tree, new, &where);
162 if (rl)
163 goto wait; /* already locked at same offset */

165 rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
166 if (rl && (rl->r_off < new->r_off + new->r_len))
167 goto wait;

169 rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
170 if (rl && rl->r_off + rl->r_len > new->r_off)
171 goto wait;

173 new->r_type = RL_WRITER; /* convert possible RL_APPEND */
174 avl_insert(tree, new, where);
175 return;
176 wait:
177 if (!rl->r_write_wanted) {
178 cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
179 rl->r_write_wanted = B_TRUE;
180 }
181 cv_wait(&rl->r_wr_cv, &zp->z_range_lock);

183 /* reset to original */
184 new->r_off = off;
185 new->r_len = len;
186 }
187 }

______unchanged_portion_omitted_

462 /*
463 * Unlock a reader lock
464 */
465 static void

new/usr/src/uts/common/fs/zfs/zfs_rlock.c 4

466 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
467 {
468 avl_tree_t *tree = &zp->z_range_avl;
469 rl_t *rl, *next;
470 uint64_t len;

472 /*
473 * The common case is when the remove entry is in the tree
474 * (cnt == 1) meaning there’s been no other reader locks overlapping
475 * with this one. Otherwise the remove entry will have been
476 * removed from the tree and replaced by proxies (one or
477 * more ranges mapping to the entire range).
478 */
479 if (remove->r_cnt == 1) {
480 avl_remove(tree, remove);
481 if (remove->r_write_wanted) {
482 cv_broadcast(&remove->r_wr_cv);
483 cv_destroy(&remove->r_wr_cv);
484 }
485 if (remove->r_read_wanted) {
486 cv_broadcast(&remove->r_rd_cv);
487 cv_destroy(&remove->r_rd_cv);
488 }
489 } else {
490 ASSERT0(remove->r_cnt);
491 ASSERT0(remove->r_write_wanted);
492 ASSERT0(remove->r_read_wanted);
484 ASSERT3U(remove->r_cnt, ==, 0);
485 ASSERT3U(remove->r_write_wanted, ==, 0);
486 ASSERT3U(remove->r_read_wanted, ==, 0);
493 /*
494 * Find start proxy representing this reader lock,
495 * then decrement ref count on all proxies
496 * that make up this range, freeing them as needed.
497 */
498 rl = avl_find(tree, remove, NULL);
499 ASSERT(rl);
500 ASSERT(rl->r_cnt);
501 ASSERT(rl->r_type == RL_READER);
502 for (len = remove->r_len; len != 0; rl = next) {
503 len -= rl->r_len;
504 if (len) {
505 next = AVL_NEXT(tree, rl);
506 ASSERT(next);
507 ASSERT(rl->r_off + rl->r_len == next->r_off);
508 ASSERT(next->r_cnt);
509 ASSERT(next->r_type == RL_READER);
510 }
511 rl->r_cnt--;
512 if (rl->r_cnt == 0) {
513 avl_remove(tree, rl);
514 if (rl->r_write_wanted) {
515 cv_broadcast(&rl->r_wr_cv);
516 cv_destroy(&rl->r_wr_cv);
517 }
518 if (rl->r_read_wanted) {
519 cv_broadcast(&rl->r_rd_cv);
520 cv_destroy(&rl->r_rd_cv);
521 }
522 kmem_free(rl, sizeof (rl_t));
523 }
524 }
525 }
526 kmem_free(remove, sizeof (rl_t));
527 }

______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_vfsops.c 1

**
 58641 Thu Jul 26 14:19:30 2012
new/usr/src/uts/common/fs/zfs/zfs_vfsops.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

2198 int
2199 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2200 {
2201 int error;
2202 objset_t *os = zfsvfs->z_os;
2203 dmu_tx_t *tx;

2205 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2206 return (EINVAL);

2208 if (newvers < zfsvfs->z_version)
2209 return (EINVAL);

2211 if (zfs_spa_version_map(newvers) >
2212 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2213 return (ENOTSUP);

2215 tx = dmu_tx_create(os);
2216 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2217 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2218 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2219 ZFS_SA_ATTRS);
2220 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2221 }
2222 error = dmu_tx_assign(tx, TXG_WAIT);
2223 if (error) {
2224 dmu_tx_abort(tx);
2225 return (error);
2226 }

2228 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2229 8, 1, &newvers, tx);

2231 if (error) {
2232 dmu_tx_commit(tx);
2233 return (error);
2234 }

2236 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2237 uint64_t sa_obj;

2239 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2240 SPA_VERSION_SA);
2241 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2242 DMU_OT_NONE, 0, tx);

2244 error = zap_add(os, MASTER_NODE_OBJ,
2245 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2246 ASSERT0(error);
2246 ASSERT3U(error, ==, 0);

2248 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2249 sa_register_update_callback(os, zfs_sa_upgrade);
2250 }

2252 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2253 "from %llu to %llu", zfsvfs->z_version, newvers);

2255 dmu_tx_commit(tx);

new/usr/src/uts/common/fs/zfs/zfs_vfsops.c 2

2257 zfsvfs->z_version = newvers;

2259 zfs_set_fuid_feature(zfsvfs);

2261 return (0);
2262 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 1

**
 129321 Thu Jul 26 14:19:31 2012
new/usr/src/uts/common/fs/zfs/zfs_vnops.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */

32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/systm.h>
36 #include <sys/sysmacros.h>
37 #include <sys/resource.h>
38 #include <sys/vfs.h>
39 #include <sys/vfs_opreg.h>
40 #include <sys/vnode.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <sys/vm.h>
49 #include <vm/seg_vn.h>
50 #include <vm/pvn.h>
51 #include <vm/as.h>
52 #include <vm/kpm.h>
53 #include <vm/seg_kpm.h>
54 #include <sys/mman.h>
55 #include <sys/pathname.h>
56 #include <sys/cmn_err.h>
57 #include <sys/errno.h>
58 #include <sys/unistd.h>
59 #include <sys/zfs_dir.h>
60 #include <sys/zfs_acl.h>
61 #include <sys/zfs_ioctl.h>

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 2

62 #include <sys/fs/zfs.h>
63 #include <sys/dmu.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/spa.h>
66 #include <sys/txg.h>
67 #include <sys/dbuf.h>
68 #include <sys/zap.h>
69 #include <sys/sa.h>
70 #include <sys/dirent.h>
71 #include <sys/policy.h>
72 #include <sys/sunddi.h>
73 #include <sys/filio.h>
74 #include <sys/sid.h>
75 #include "fs/fs_subr.h"
76 #include <sys/zfs_ctldir.h>
77 #include <sys/zfs_fuid.h>
78 #include <sys/zfs_sa.h>
79 #include <sys/dnlc.h>
80 #include <sys/zfs_rlock.h>
81 #include <sys/extdirent.h>
82 #include <sys/kidmap.h>
83 #include <sys/cred.h>
84 #include <sys/attr.h>

86 /*
87 * Programming rules.
88 *
89 * Each vnode op performs some logical unit of work. To do this, the ZPL must
90 * properly lock its in-core state, create a DMU transaction, do the work,
91 * record this work in the intent log (ZIL), commit the DMU transaction,
92 * and wait for the intent log to commit if it is a synchronous operation.
93 * Moreover, the vnode ops must work in both normal and log replay context.
94 * The ordering of events is important to avoid deadlocks and references
95 * to freed memory. The example below illustrates the following Big Rules:
96 *
97 * (1) A check must be made in each zfs thread for a mounted file system.
98 * This is done avoiding races using ZFS_ENTER(zfsvfs).
99 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
100 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
101 * can return EIO from the calling function.
102 *
103 * (2) VN_RELE() should always be the last thing except for zil_commit()
104 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
105 * First, if it’s the last reference, the vnode/znode
106 * can be freed, so the zp may point to freed memory. Second, the last
107 * reference will call zfs_zinactive(), which may induce a lot of work --
108 * pushing cached pages (which acquires range locks) and syncing out
109 * cached atime changes. Third, zfs_zinactive() may require a new tx,
110 * which could deadlock the system if you were already holding one.
111 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
112 *
113 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
114 * as they can span dmu_tx_assign() calls.
115 *
116 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
117 * This is critical because we don’t want to block while holding locks.
118 * Note, in particular, that if a lock is sometimes acquired before
119 * the tx assigns, and sometimes after (e.g. z_lock), then failing to
120 * use a non-blocking assign can deadlock the system. The scenario:
121 *
122 * Thread A has grabbed a lock before calling dmu_tx_assign().
123 * Thread B is in an already-assigned tx, and blocks for this lock.
124 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
125 * forever, because the previous txg can’t quiesce until B’s tx commits.
126 *
127 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 3

128 * then drop all locks, call dmu_tx_wait(), and try again.
129 *
130 * (5) If the operation succeeded, generate the intent log entry for it
131 * before dropping locks. This ensures that the ordering of events
132 * in the intent log matches the order in which they actually occurred.
133 * During ZIL replay the zfs_log_* functions will update the sequence
134 * number to indicate the zil transaction has replayed.
135 *
136 * (6) At the end of each vnode op, the DMU tx must always commit,
137 * regardless of whether there were any errors.
138 *
139 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
140 * to ensure that synchronous semantics are provided when necessary.
141 *
142 * In general, this is how things should be ordered in each vnode op:
143 *
144 * ZFS_ENTER(zfsvfs); // exit if unmounted
145 * top:
146 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
147 * rw_enter(...); // grab any other locks you need
148 * tx = dmu_tx_create(...); // get DMU tx
149 * dmu_tx_hold_*(); // hold each object you might modify
150 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
151 * if (error) {
152 * rw_exit(...); // drop locks
153 * zfs_dirent_unlock(dl); // unlock directory entry
154 * VN_RELE(...); // release held vnodes
155 * if (error == ERESTART) {
156 * dmu_tx_wait(tx);
157 * dmu_tx_abort(tx);
158 * goto top;
159 * }
160 * dmu_tx_abort(tx); // abort DMU tx
161 * ZFS_EXIT(zfsvfs); // finished in zfs
162 * return (error); // really out of space
163 * }
164 * error = do_real_work(); // do whatever this VOP does
165 * if (error == 0)
166 * zfs_log_*(...); // on success, make ZIL entry
167 * dmu_tx_commit(tx); // commit DMU tx -- error or not
168 * rw_exit(...); // drop locks
169 * zfs_dirent_unlock(dl); // unlock directory entry
170 * VN_RELE(...); // release held vnodes
171 * zil_commit(zilog, foid); // synchronous when necessary
172 * ZFS_EXIT(zfsvfs); // finished in zfs
173 * return (error); // done, report error
174 */

176 /* ARGSUSED */
177 static int
178 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
179 {
180 znode_t *zp = VTOZ(*vpp);
181 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

183 ZFS_ENTER(zfsvfs);
184 ZFS_VERIFY_ZP(zp);

186 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
187 ((flag & FAPPEND) == 0)) {
188 ZFS_EXIT(zfsvfs);
189 return (EPERM);
190 }

192 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
193 ZTOV(zp)->v_type == VREG &&

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 4

194 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
195 if (fs_vscan(*vpp, cr, 0) != 0) {
196 ZFS_EXIT(zfsvfs);
197 return (EACCES);
198 }
199 }

201 /* Keep a count of the synchronous opens in the znode */
202 if (flag & (FSYNC | FDSYNC))
203 atomic_inc_32(&zp->z_sync_cnt);

205 ZFS_EXIT(zfsvfs);
206 return (0);
207 }

______unchanged_portion_omitted_

1532 /*
1533 * Remove an entry from a directory.
1534 *
1535 * IN: dvp - vnode of directory to remove entry from.
1536 * name - name of entry to remove.
1537 * cr - credentials of caller.
1538 * ct - caller context
1539 * flags - case flags
1540 *
1541 * RETURN: 0 if success
1542 * error code if failure
1543 *
1544 * Timestamps:
1545 * dvp - ctime|mtime
1546 * vp - ctime (if nlink > 0)
1547 */

1549 uint64_t null_xattr = 0;

1551 /*ARGSUSED*/
1552 static int
1553 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1554 int flags)
1555 {
1556 znode_t *zp, *dzp = VTOZ(dvp);
1557 znode_t *xzp;
1558 vnode_t *vp;
1559 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1560 zilog_t *zilog;
1561 uint64_t acl_obj, xattr_obj;
1562 uint64_t xattr_obj_unlinked = 0;
1563 uint64_t obj = 0;
1564 zfs_dirlock_t *dl;
1565 dmu_tx_t *tx;
1566 boolean_t may_delete_now, delete_now = FALSE;
1567 boolean_t unlinked, toobig = FALSE;
1568 uint64_t txtype;
1569 pathname_t *realnmp = NULL;
1570 pathname_t realnm;
1571 int error;
1572 int zflg = ZEXISTS;

1574 ZFS_ENTER(zfsvfs);
1575 ZFS_VERIFY_ZP(dzp);
1576 zilog = zfsvfs->z_log;

1578 if (flags & FIGNORECASE) {
1579 zflg |= ZCILOOK;
1580 pn_alloc(&realnm);
1581 realnmp = &realnm;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 5

1582 }

1584 top:
1585 xattr_obj = 0;
1586 xzp = NULL;
1587 /*
1588 * Attempt to lock directory; fail if entry doesn’t exist.
1589 */
1590 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1591 NULL, realnmp)) {
1592 if (realnmp)
1593 pn_free(realnmp);
1594 ZFS_EXIT(zfsvfs);
1595 return (error);
1596 }

1598 vp = ZTOV(zp);

1600 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1601 goto out;
1602 }

1604 /*
1605 * Need to use rmdir for removing directories.
1606 */
1607 if (vp->v_type == VDIR) {
1608 error = EPERM;
1609 goto out;
1610 }

1612 vnevent_remove(vp, dvp, name, ct);

1614 if (realnmp)
1615 dnlc_remove(dvp, realnmp->pn_buf);
1616 else
1617 dnlc_remove(dvp, name);

1619 mutex_enter(&vp->v_lock);
1620 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1621 mutex_exit(&vp->v_lock);

1623 /*
1624 * We may delete the znode now, or we may put it in the unlinked set;
1625 * it depends on whether we’re the last link, and on whether there are
1626 * other holds on the vnode. So we dmu_tx_hold() the right things to
1627 * allow for either case.
1628 */
1629 obj = zp->z_id;
1630 tx = dmu_tx_create(zfsvfs->z_os);
1631 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1632 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1633 zfs_sa_upgrade_txholds(tx, zp);
1634 zfs_sa_upgrade_txholds(tx, dzp);
1635 if (may_delete_now) {
1636 toobig =
1637 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1638 /* if the file is too big, only hold_free a token amount */
1639 dmu_tx_hold_free(tx, zp->z_id, 0,
1640 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1641 }

1643 /* are there any extended attributes? */
1644 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1645 &xattr_obj, sizeof (xattr_obj));
1646 if (error == 0 && xattr_obj) {
1647 error = zfs_zget(zfsvfs, xattr_obj, &xzp);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 6

1648 ASSERT0(error);
1644 ASSERT3U(error, ==, 0);
1649 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1650 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1651 }

1653 mutex_enter(&zp->z_lock);
1654 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1655 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1656 mutex_exit(&zp->z_lock);

1658 /* charge as an update -- would be nice not to charge at all */
1659 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);

1661 error = dmu_tx_assign(tx, TXG_NOWAIT);
1662 if (error) {
1663 zfs_dirent_unlock(dl);
1664 VN_RELE(vp);
1665 if (xzp)
1666 VN_RELE(ZTOV(xzp));
1667 if (error == ERESTART) {
1668 dmu_tx_wait(tx);
1669 dmu_tx_abort(tx);
1670 goto top;
1671 }
1672 if (realnmp)
1673 pn_free(realnmp);
1674 dmu_tx_abort(tx);
1675 ZFS_EXIT(zfsvfs);
1676 return (error);
1677 }

1679 /*
1680 * Remove the directory entry.
1681 */
1682 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);

1684 if (error) {
1685 dmu_tx_commit(tx);
1686 goto out;
1687 }

1689 if (unlinked) {

1691 /*
1692 * Hold z_lock so that we can make sure that the ACL obj
1693 * hasn’t changed. Could have been deleted due to
1694 * zfs_sa_upgrade().
1695 */
1696 mutex_enter(&zp->z_lock);
1697 mutex_enter(&vp->v_lock);
1698 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1699 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1700 delete_now = may_delete_now && !toobig &&
1701 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1702 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1703 acl_obj;
1704 mutex_exit(&vp->v_lock);
1705 }

1707 if (delete_now) {
1708 if (xattr_obj_unlinked) {
1709 ASSERT3U(xzp->z_links, ==, 2);
1710 mutex_enter(&xzp->z_lock);
1711 xzp->z_unlinked = 1;
1712 xzp->z_links = 0;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 7

1713 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1714 &xzp->z_links, sizeof (xzp->z_links), tx);
1715 ASSERT3U(error, ==, 0);
1716 mutex_exit(&xzp->z_lock);
1717 zfs_unlinked_add(xzp, tx);

1719 if (zp->z_is_sa)
1720 error = sa_remove(zp->z_sa_hdl,
1721 SA_ZPL_XATTR(zfsvfs), tx);
1722 else
1723 error = sa_update(zp->z_sa_hdl,
1724 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1725 sizeof (uint64_t), tx);
1726 ASSERT0(error);
1722 ASSERT3U(error, ==, 0);
1727 }
1728 mutex_enter(&vp->v_lock);
1729 vp->v_count--;
1730 ASSERT0(vp->v_count);
1726 ASSERT3U(vp->v_count, ==, 0);
1731 mutex_exit(&vp->v_lock);
1732 mutex_exit(&zp->z_lock);
1733 zfs_znode_delete(zp, tx);
1734 } else if (unlinked) {
1735 mutex_exit(&zp->z_lock);
1736 zfs_unlinked_add(zp, tx);
1737 }

1739 txtype = TX_REMOVE;
1740 if (flags & FIGNORECASE)
1741 txtype |= TX_CI;
1742 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);

1744 dmu_tx_commit(tx);
1745 out:
1746 if (realnmp)
1747 pn_free(realnmp);

1749 zfs_dirent_unlock(dl);

1751 if (!delete_now)
1752 VN_RELE(vp);
1753 if (xzp)
1754 VN_RELE(ZTOV(xzp));

1756 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1757 zil_commit(zilog, 0);

1759 ZFS_EXIT(zfsvfs);
1760 return (error);
1761 }
______unchanged_portion_omitted_

2597 /*
2598 * Set the file attributes to the values contained in the
2599 * vattr structure.
2600 *
2601 * IN: vp - vnode of file to be modified.
2602 * vap - new attribute values.
2603 * If AT_XVATTR set, then optional attrs are being set
2604 * flags - ATTR_UTIME set if non-default time values provided.
2605 * - ATTR_NOACLCHECK (CIFS context only).
2606 * cr - credentials of caller.
2607 * ct - caller context
2608 *
2609 * RETURN: 0 if success

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 8

2610 * error code if failure
2611 *
2612 * Timestamps:
2613 * vp - ctime updated, mtime updated if size changed.
2614 */
2615 /* ARGSUSED */
2616 static int
2617 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2618 caller_context_t *ct)
2619 {
2620 znode_t *zp = VTOZ(vp);
2621 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2622 zilog_t *zilog;
2623 dmu_tx_t *tx;
2624 vattr_t oldva;
2625 xvattr_t tmpxvattr;
2626 uint_t mask = vap->va_mask;
2627 uint_t saved_mask;
2628 int trim_mask = 0;
2629 uint64_t new_mode;
2630 uint64_t new_uid, new_gid;
2631 uint64_t xattr_obj;
2632 uint64_t mtime[2], ctime[2];
2633 znode_t *attrzp;
2634 int need_policy = FALSE;
2635 int err, err2;
2636 zfs_fuid_info_t *fuidp = NULL;
2637 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2638 xoptattr_t *xoap;
2639 zfs_acl_t *aclp;
2640 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2641 boolean_t fuid_dirtied = B_FALSE;
2642 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2643 int count = 0, xattr_count = 0;

2645 if (mask == 0)
2646 return (0);

2648 if (mask & AT_NOSET)
2649 return (EINVAL);

2651 ZFS_ENTER(zfsvfs);
2652 ZFS_VERIFY_ZP(zp);

2654 zilog = zfsvfs->z_log;

2656 /*
2657 * Make sure that if we have ephemeral uid/gid or xvattr specified
2658 * that file system is at proper version level
2659 */

2661 if (zfsvfs->z_use_fuids == B_FALSE &&
2662 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2663 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2664 (mask & AT_XVATTR))) {
2665 ZFS_EXIT(zfsvfs);
2666 return (EINVAL);
2667 }

2669 if (mask & AT_SIZE && vp->v_type == VDIR) {
2670 ZFS_EXIT(zfsvfs);
2671 return (EISDIR);
2672 }

2674 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2675 ZFS_EXIT(zfsvfs);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 9

2676 return (EINVAL);
2677 }

2679 /*
2680 * If this is an xvattr_t, then get a pointer to the structure of
2681 * optional attributes. If this is NULL, then we have a vattr_t.
2682 */
2683 xoap = xva_getxoptattr(xvap);

2685 xva_init(&tmpxvattr);

2687 /*
2688 * Immutable files can only alter immutable bit and atime
2689 */
2690 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2691 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2692 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2693 ZFS_EXIT(zfsvfs);
2694 return (EPERM);
2695 }

2697 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2698 ZFS_EXIT(zfsvfs);
2699 return (EPERM);
2700 }

2702 /*
2703 * Verify timestamps doesn’t overflow 32 bits.
2704 * ZFS can handle large timestamps, but 32bit syscalls can’t
2705 * handle times greater than 2039. This check should be removed
2706 * once large timestamps are fully supported.
2707 */
2708 if (mask & (AT_ATIME | AT_MTIME)) {
2709 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2710 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2711 ZFS_EXIT(zfsvfs);
2712 return (EOVERFLOW);
2713 }
2714 }

2716 top:
2717 attrzp = NULL;
2718 aclp = NULL;

2720 /* Can this be moved to before the top label? */
2721 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2722 ZFS_EXIT(zfsvfs);
2723 return (EROFS);
2724 }

2726 /*
2727 * First validate permissions
2728 */

2730 if (mask & AT_SIZE) {
2731 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2732 if (err) {
2733 ZFS_EXIT(zfsvfs);
2734 return (err);
2735 }
2736 /*
2737 * XXX - Note, we are not providing any open
2738 * mode flags here (like FNDELAY), so we may
2739 * block if there are locks present... this
2740 * should be addressed in openat().
2741 */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 10

2742 /* XXX - would it be OK to generate a log record here? */
2743 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2744 if (err) {
2745 ZFS_EXIT(zfsvfs);
2746 return (err);
2747 }
2748 }

2750 if (mask & (AT_ATIME|AT_MTIME) ||
2751 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2752 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2753 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2754 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2755 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2756 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2757 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2758 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2759 skipaclchk, cr);
2760 }

2762 if (mask & (AT_UID|AT_GID)) {
2763 int idmask = (mask & (AT_UID|AT_GID));
2764 int take_owner;
2765 int take_group;

2767 /*
2768 * NOTE: even if a new mode is being set,
2769 * we may clear S_ISUID/S_ISGID bits.
2770 */

2772 if (!(mask & AT_MODE))
2773 vap->va_mode = zp->z_mode;

2775 /*
2776 * Take ownership or chgrp to group we are a member of
2777 */

2779 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2780 take_group = (mask & AT_GID) &&
2781 zfs_groupmember(zfsvfs, vap->va_gid, cr);

2783 /*
2784 * If both AT_UID and AT_GID are set then take_owner and
2785 * take_group must both be set in order to allow taking
2786 * ownership.
2787 *
2788 * Otherwise, send the check through secpolicy_vnode_setattr()
2789 *
2790 */

2792 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2793 ((idmask == AT_UID) && take_owner) ||
2794 ((idmask == AT_GID) && take_group)) {
2795 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2796 skipaclchk, cr) == 0) {
2797 /*
2798 * Remove setuid/setgid for non-privileged users
2799 */
2800 secpolicy_setid_clear(vap, cr);
2801 trim_mask = (mask & (AT_UID|AT_GID));
2802 } else {
2803 need_policy = TRUE;
2804 }
2805 } else {
2806 need_policy = TRUE;
2807 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 11

2808 }

2810 mutex_enter(&zp->z_lock);
2811 oldva.va_mode = zp->z_mode;
2812 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2813 if (mask & AT_XVATTR) {
2814 /*
2815 * Update xvattr mask to include only those attributes
2816 * that are actually changing.
2817 *
2818 * the bits will be restored prior to actually setting
2819 * the attributes so the caller thinks they were set.
2820 */
2821 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2822 if (xoap->xoa_appendonly !=
2823 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2824 need_policy = TRUE;
2825 } else {
2826 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2827 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2828 }
2829 }

2831 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2832 if (xoap->xoa_nounlink !=
2833 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2834 need_policy = TRUE;
2835 } else {
2836 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2837 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2838 }
2839 }

2841 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2842 if (xoap->xoa_immutable !=
2843 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2844 need_policy = TRUE;
2845 } else {
2846 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2847 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2848 }
2849 }

2851 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2852 if (xoap->xoa_nodump !=
2853 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2854 need_policy = TRUE;
2855 } else {
2856 XVA_CLR_REQ(xvap, XAT_NODUMP);
2857 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2858 }
2859 }

2861 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2862 if (xoap->xoa_av_modified !=
2863 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2864 need_policy = TRUE;
2865 } else {
2866 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2867 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2868 }
2869 }

2871 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2872 if ((vp->v_type != VREG &&
2873 xoap->xoa_av_quarantined) ||

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 12

2874 xoap->xoa_av_quarantined !=
2875 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2876 need_policy = TRUE;
2877 } else {
2878 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2879 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2880 }
2881 }

2883 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2884 mutex_exit(&zp->z_lock);
2885 ZFS_EXIT(zfsvfs);
2886 return (EPERM);
2887 }

2889 if (need_policy == FALSE &&
2890 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2891 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2892 need_policy = TRUE;
2893 }
2894 }

2896 mutex_exit(&zp->z_lock);

2898 if (mask & AT_MODE) {
2899 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2900 err = secpolicy_setid_setsticky_clear(vp, vap,
2901 &oldva, cr);
2902 if (err) {
2903 ZFS_EXIT(zfsvfs);
2904 return (err);
2905 }
2906 trim_mask |= AT_MODE;
2907 } else {
2908 need_policy = TRUE;
2909 }
2910 }

2912 if (need_policy) {
2913 /*
2914 * If trim_mask is set then take ownership
2915 * has been granted or write_acl is present and user
2916 * has the ability to modify mode. In that case remove
2917 * UID|GID and or MODE from mask so that
2918 * secpolicy_vnode_setattr() doesn’t revoke it.
2919 */

2921 if (trim_mask) {
2922 saved_mask = vap->va_mask;
2923 vap->va_mask &= ~trim_mask;
2924 }
2925 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2926 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2927 if (err) {
2928 ZFS_EXIT(zfsvfs);
2929 return (err);
2930 }

2932 if (trim_mask)
2933 vap->va_mask |= saved_mask;
2934 }

2936 /*
2937 * secpolicy_vnode_setattr, or take ownership may have
2938 * changed va_mask
2939 */

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 13

2940 mask = vap->va_mask;

2942 if ((mask & (AT_UID | AT_GID))) {
2943 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2944 &xattr_obj, sizeof (xattr_obj));

2946 if (err == 0 && xattr_obj) {
2947 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2948 if (err)
2949 goto out2;
2950 }
2951 if (mask & AT_UID) {
2952 new_uid = zfs_fuid_create(zfsvfs,
2953 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2954 if (new_uid != zp->z_uid &&
2955 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2956 if (attrzp)
2957 VN_RELE(ZTOV(attrzp));
2958 err = EDQUOT;
2959 goto out2;
2960 }
2961 }

2963 if (mask & AT_GID) {
2964 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2965 cr, ZFS_GROUP, &fuidp);
2966 if (new_gid != zp->z_gid &&
2967 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2968 if (attrzp)
2969 VN_RELE(ZTOV(attrzp));
2970 err = EDQUOT;
2971 goto out2;
2972 }
2973 }
2974 }
2975 tx = dmu_tx_create(zfsvfs->z_os);

2977 if (mask & AT_MODE) {
2978 uint64_t pmode = zp->z_mode;
2979 uint64_t acl_obj;
2980 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);

2982 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2983 goto out;

2985 mutex_enter(&zp->z_lock);
2986 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2987 /*
2988 * Are we upgrading ACL from old V0 format
2989 * to V1 format?
2990 */
2991 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2992 zfs_znode_acl_version(zp) ==
2993 ZFS_ACL_VERSION_INITIAL) {
2994 dmu_tx_hold_free(tx, acl_obj, 0,
2995 DMU_OBJECT_END);
2996 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2997 0, aclp->z_acl_bytes);
2998 } else {
2999 dmu_tx_hold_write(tx, acl_obj, 0,
3000 aclp->z_acl_bytes);
3001 }
3002 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3003 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3004 0, aclp->z_acl_bytes);
3005 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 14

3006 mutex_exit(&zp->z_lock);
3007 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3008 } else {
3009 if ((mask & AT_XVATTR) &&
3010 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3011 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3012 else
3013 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3014 }

3016 if (attrzp) {
3017 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3018 }

3020 fuid_dirtied = zfsvfs->z_fuid_dirty;
3021 if (fuid_dirtied)
3022 zfs_fuid_txhold(zfsvfs, tx);

3024 zfs_sa_upgrade_txholds(tx, zp);

3026 err = dmu_tx_assign(tx, TXG_NOWAIT);
3027 if (err) {
3028 if (err == ERESTART)
3029 dmu_tx_wait(tx);
3030 goto out;
3031 }

3033 count = 0;
3034 /*
3035 * Set each attribute requested.
3036 * We group settings according to the locks they need to acquire.
3037 *
3038 * Note: you cannot set ctime directly, although it will be
3039 * updated as a side-effect of calling this function.
3040 */

3043 if (mask & (AT_UID|AT_GID|AT_MODE))
3044 mutex_enter(&zp->z_acl_lock);
3045 mutex_enter(&zp->z_lock);

3047 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3048 &zp->z_pflags, sizeof (zp->z_pflags));

3050 if (attrzp) {
3051 if (mask & (AT_UID|AT_GID|AT_MODE))
3052 mutex_enter(&attrzp->z_acl_lock);
3053 mutex_enter(&attrzp->z_lock);
3054 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3055 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3056 sizeof (attrzp->z_pflags));
3057 }

3059 if (mask & (AT_UID|AT_GID)) {

3061 if (mask & AT_UID) {
3062 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3063 &new_uid, sizeof (new_uid));
3064 zp->z_uid = new_uid;
3065 if (attrzp) {
3066 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3067 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3068 sizeof (new_uid));
3069 attrzp->z_uid = new_uid;
3070 }
3071 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 15

3073 if (mask & AT_GID) {
3074 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3075 NULL, &new_gid, sizeof (new_gid));
3076 zp->z_gid = new_gid;
3077 if (attrzp) {
3078 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3079 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3080 sizeof (new_gid));
3081 attrzp->z_gid = new_gid;
3082 }
3083 }
3084 if (!(mask & AT_MODE)) {
3085 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3086 NULL, &new_mode, sizeof (new_mode));
3087 new_mode = zp->z_mode;
3088 }
3089 err = zfs_acl_chown_setattr(zp);
3090 ASSERT(err == 0);
3091 if (attrzp) {
3092 err = zfs_acl_chown_setattr(attrzp);
3093 ASSERT(err == 0);
3094 }
3095 }

3097 if (mask & AT_MODE) {
3098 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3099 &new_mode, sizeof (new_mode));
3100 zp->z_mode = new_mode;
3101 ASSERT3U((uintptr_t)aclp, !=, NULL);
3102 err = zfs_aclset_common(zp, aclp, cr, tx);
3103 ASSERT0(err);
3099 ASSERT3U(err, ==, 0);
3104 if (zp->z_acl_cached)
3105 zfs_acl_free(zp->z_acl_cached);
3106 zp->z_acl_cached = aclp;
3107 aclp = NULL;
3108 }

3111 if (mask & AT_ATIME) {
3112 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3113 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3114 &zp->z_atime, sizeof (zp->z_atime));
3115 }

3117 if (mask & AT_MTIME) {
3118 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3119 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3120 mtime, sizeof (mtime));
3121 }

3123 /* XXX - shouldn’t this be done *before* the ATIME/MTIME checks? */
3124 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3125 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3126 NULL, mtime, sizeof (mtime));
3127 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3128 &ctime, sizeof (ctime));
3129 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3130 B_TRUE);
3131 } else if (mask != 0) {
3132 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3133 &ctime, sizeof (ctime));
3134 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3135 B_TRUE);
3136 if (attrzp) {

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 16

3137 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3138 SA_ZPL_CTIME(zfsvfs), NULL,
3139 &ctime, sizeof (ctime));
3140 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3141 mtime, ctime, B_TRUE);
3142 }
3143 }
3144 /*
3145 * Do this after setting timestamps to prevent timestamp
3146 * update from toggling bit
3147 */

3149 if (xoap && (mask & AT_XVATTR)) {

3151 /*
3152 * restore trimmed off masks
3153 * so that return masks can be set for caller.
3154 */

3156 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3157 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3158 }
3159 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3160 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3161 }
3162 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3163 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3164 }
3165 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3166 XVA_SET_REQ(xvap, XAT_NODUMP);
3167 }
3168 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3169 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3170 }
3171 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3172 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3173 }

3175 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3176 ASSERT(vp->v_type == VREG);

3178 zfs_xvattr_set(zp, xvap, tx);
3179 }

3181 if (fuid_dirtied)
3182 zfs_fuid_sync(zfsvfs, tx);

3184 if (mask != 0)
3185 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);

3187 mutex_exit(&zp->z_lock);
3188 if (mask & (AT_UID|AT_GID|AT_MODE))
3189 mutex_exit(&zp->z_acl_lock);

3191 if (attrzp) {
3192 if (mask & (AT_UID|AT_GID|AT_MODE))
3193 mutex_exit(&attrzp->z_acl_lock);
3194 mutex_exit(&attrzp->z_lock);
3195 }
3196 out:
3197 if (err == 0 && attrzp) {
3198 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3199 xattr_count, tx);
3200 ASSERT(err2 == 0);
3201 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 17

3203 if (attrzp)
3204 VN_RELE(ZTOV(attrzp));
3205 if (aclp)
3206 zfs_acl_free(aclp);

3208 if (fuidp) {
3209 zfs_fuid_info_free(fuidp);
3210 fuidp = NULL;
3211 }

3213 if (err) {
3214 dmu_tx_abort(tx);
3215 if (err == ERESTART)
3216 goto top;
3217 } else {
3218 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3219 dmu_tx_commit(tx);
3220 }

3222 out2:
3223 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3224 zil_commit(zilog, 0);

3226 ZFS_EXIT(zfsvfs);
3227 return (err);
3228 }
______unchanged_portion_omitted_

3327 /*
3328 * Move an entry from the provided source directory to the target
3329 * directory. Change the entry name as indicated.
3330 *
3331 * IN: sdvp - Source directory containing the "old entry".
3332 * snm - Old entry name.
3333 * tdvp - Target directory to contain the "new entry".
3334 * tnm - New entry name.
3335 * cr - credentials of caller.
3336 * ct - caller context
3337 * flags - case flags
3338 *
3339 * RETURN: 0 if success
3340 * error code if failure
3341 *
3342 * Timestamps:
3343 * sdvp,tdvp - ctime|mtime updated
3344 */
3345 /*ARGSUSED*/
3346 static int
3347 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3348 caller_context_t *ct, int flags)
3349 {
3350 znode_t *tdzp, *szp, *tzp;
3351 znode_t *sdzp = VTOZ(sdvp);
3352 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3353 zilog_t *zilog;
3354 vnode_t *realvp;
3355 zfs_dirlock_t *sdl, *tdl;
3356 dmu_tx_t *tx;
3357 zfs_zlock_t *zl;
3358 int cmp, serr, terr;
3359 int error = 0;
3360 int zflg = 0;

3362 ZFS_ENTER(zfsvfs);
3363 ZFS_VERIFY_ZP(sdzp);
3364 zilog = zfsvfs->z_log;

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 18

3366 /*
3367 * Make sure we have the real vp for the target directory.
3368 */
3369 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3370 tdvp = realvp;

3372 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3373 ZFS_EXIT(zfsvfs);
3374 return (EXDEV);
3375 }

3377 tdzp = VTOZ(tdvp);
3378 ZFS_VERIFY_ZP(tdzp);
3379 if (zfsvfs->z_utf8 && u8_validate(tnm,
3380 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3381 ZFS_EXIT(zfsvfs);
3382 return (EILSEQ);
3383 }

3385 if (flags & FIGNORECASE)
3386 zflg |= ZCILOOK;

3388 top:
3389 szp = NULL;
3390 tzp = NULL;
3391 zl = NULL;

3393 /*
3394 * This is to prevent the creation of links into attribute space
3395 * by renaming a linked file into/outof an attribute directory.
3396 * See the comment in zfs_link() for why this is considered bad.
3397 */
3398 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3399 ZFS_EXIT(zfsvfs);
3400 return (EINVAL);
3401 }

3403 /*
3404 * Lock source and target directory entries. To prevent deadlock,
3405 * a lock ordering must be defined. We lock the directory with
3406 * the smallest object id first, or if it’s a tie, the one with
3407 * the lexically first name.
3408 */
3409 if (sdzp->z_id < tdzp->z_id) {
3410 cmp = -1;
3411 } else if (sdzp->z_id > tdzp->z_id) {
3412 cmp = 1;
3413 } else {
3414 /*
3415 * First compare the two name arguments without
3416 * considering any case folding.
3417 */
3418 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);

3420 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3421 ASSERT(error == 0 || !zfsvfs->z_utf8);
3422 if (cmp == 0) {
3423 /*
3424 * POSIX: "If the old argument and the new argument
3425 * both refer to links to the same existing file,
3426 * the rename() function shall return successfully
3427 * and perform no other action."
3428 */
3429 ZFS_EXIT(zfsvfs);
3430 return (0);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 19

3431 }
3432 /*
3433 * If the file system is case-folding, then we may
3434 * have some more checking to do. A case-folding file
3435 * system is either supporting mixed case sensitivity
3436 * access or is completely case-insensitive. Note
3437 * that the file system is always case preserving.
3438 *
3439 * In mixed sensitivity mode case sensitive behavior
3440 * is the default. FIGNORECASE must be used to
3441 * explicitly request case insensitive behavior.
3442 *
3443 * If the source and target names provided differ only
3444 * by case (e.g., a request to rename ’tim’ to ’Tim’),
3445 * we will treat this as a special case in the
3446 * case-insensitive mode: as long as the source name
3447 * is an exact match, we will allow this to proceed as
3448 * a name-change request.
3449 */
3450 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3451 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3452 flags & FIGNORECASE)) &&
3453 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3454 &error) == 0) {
3455 /*
3456 * case preserving rename request, require exact
3457 * name matches
3458 */
3459 zflg |= ZCIEXACT;
3460 zflg &= ~ZCILOOK;
3461 }
3462 }

3464 /*
3465 * If the source and destination directories are the same, we should
3466 * grab the z_name_lock of that directory only once.
3467 */
3468 if (sdzp == tdzp) {
3469 zflg |= ZHAVELOCK;
3470 rw_enter(&sdzp->z_name_lock, RW_READER);
3471 }

3473 if (cmp < 0) {
3474 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3475 ZEXISTS | zflg, NULL, NULL);
3476 terr = zfs_dirent_lock(&tdl,
3477 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3478 } else {
3479 terr = zfs_dirent_lock(&tdl,
3480 tdzp, tnm, &tzp, zflg, NULL, NULL);
3481 serr = zfs_dirent_lock(&sdl,
3482 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3483 NULL, NULL);
3484 }

3486 if (serr) {
3487 /*
3488 * Source entry invalid or not there.
3489 */
3490 if (!terr) {
3491 zfs_dirent_unlock(tdl);
3492 if (tzp)
3493 VN_RELE(ZTOV(tzp));
3494 }

3496 if (sdzp == tdzp)

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 20

3497 rw_exit(&sdzp->z_name_lock);

3499 if (strcmp(snm, "..") == 0)
3500 serr = EINVAL;
3501 ZFS_EXIT(zfsvfs);
3502 return (serr);
3503 }
3504 if (terr) {
3505 zfs_dirent_unlock(sdl);
3506 VN_RELE(ZTOV(szp));

3508 if (sdzp == tdzp)
3509 rw_exit(&sdzp->z_name_lock);

3511 if (strcmp(tnm, "..") == 0)
3512 terr = EINVAL;
3513 ZFS_EXIT(zfsvfs);
3514 return (terr);
3515 }

3517 /*
3518 * Must have write access at the source to remove the old entry
3519 * and write access at the target to create the new entry.
3520 * Note that if target and source are the same, this can be
3521 * done in a single check.
3522 */

3524 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3525 goto out;

3527 if (ZTOV(szp)->v_type == VDIR) {
3528 /*
3529 * Check to make sure rename is valid.
3530 * Can’t do a move like this: /usr/a/b to /usr/a/b/c/d
3531 */
3532 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3533 goto out;
3534 }

3536 /*
3537 * Does target exist?
3538 */
3539 if (tzp) {
3540 /*
3541 * Source and target must be the same type.
3542 */
3543 if (ZTOV(szp)->v_type == VDIR) {
3544 if (ZTOV(tzp)->v_type != VDIR) {
3545 error = ENOTDIR;
3546 goto out;
3547 }
3548 } else {
3549 if (ZTOV(tzp)->v_type == VDIR) {
3550 error = EISDIR;
3551 goto out;
3552 }
3553 }
3554 /*
3555 * POSIX dictates that when the source and target
3556 * entries refer to the same file object, rename
3557 * must do nothing and exit without error.
3558 */
3559 if (szp->z_id == tzp->z_id) {
3560 error = 0;
3561 goto out;
3562 }

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 21

3563 }

3565 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3566 if (tzp)
3567 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);

3569 /*
3570 * notify the target directory if it is not the same
3571 * as source directory.
3572 */
3573 if (tdvp != sdvp) {
3574 vnevent_rename_dest_dir(tdvp, ct);
3575 }

3577 tx = dmu_tx_create(zfsvfs->z_os);
3578 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3579 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3580 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3581 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3582 if (sdzp != tdzp) {
3583 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3584 zfs_sa_upgrade_txholds(tx, tdzp);
3585 }
3586 if (tzp) {
3587 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3588 zfs_sa_upgrade_txholds(tx, tzp);
3589 }

3591 zfs_sa_upgrade_txholds(tx, szp);
3592 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3593 error = dmu_tx_assign(tx, TXG_NOWAIT);
3594 if (error) {
3595 if (zl != NULL)
3596 zfs_rename_unlock(&zl);
3597 zfs_dirent_unlock(sdl);
3598 zfs_dirent_unlock(tdl);

3600 if (sdzp == tdzp)
3601 rw_exit(&sdzp->z_name_lock);

3603 VN_RELE(ZTOV(szp));
3604 if (tzp)
3605 VN_RELE(ZTOV(tzp));
3606 if (error == ERESTART) {
3607 dmu_tx_wait(tx);
3608 dmu_tx_abort(tx);
3609 goto top;
3610 }
3611 dmu_tx_abort(tx);
3612 ZFS_EXIT(zfsvfs);
3613 return (error);
3614 }

3616 if (tzp) /* Attempt to remove the existing target */
3617 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);

3619 if (error == 0) {
3620 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3621 if (error == 0) {
3622 szp->z_pflags |= ZFS_AV_MODIFIED;

3624 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3625 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3626 ASSERT0(error);
3622 ASSERT3U(error, ==, 0);

new/usr/src/uts/common/fs/zfs/zfs_vnops.c 22

3628 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3629 if (error == 0) {
3630 zfs_log_rename(zilog, tx, TX_RENAME |
3631 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3632 sdl->dl_name, tdzp, tdl->dl_name, szp);

3634 /*
3635 * Update path information for the target vnode
3636 */
3637 vn_renamepath(tdvp, ZTOV(szp), tnm,
3638 strlen(tnm));
3639 } else {
3640 /*
3641 * At this point, we have successfully created
3642 * the target name, but have failed to remove
3643 * the source name. Since the create was done
3644 * with the ZRENAMING flag, there are
3645 * complications; for one, the link count is
3646 * wrong. The easiest way to deal with this
3647 * is to remove the newly created target, and
3648 * return the original error. This must
3649 * succeed; fortunately, it is very unlikely to
3650 * fail, since we just created it.
3651 */
3652 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3653 ZRENAMING, NULL), ==, 0);
3654 }
3655 }
3656 }

3658 dmu_tx_commit(tx);
3659 out:
3660 if (zl != NULL)
3661 zfs_rename_unlock(&zl);

3663 zfs_dirent_unlock(sdl);
3664 zfs_dirent_unlock(tdl);

3666 if (sdzp == tdzp)
3667 rw_exit(&sdzp->z_name_lock);

3670 VN_RELE(ZTOV(szp));
3671 if (tzp)
3672 VN_RELE(ZTOV(tzp));

3674 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3675 zil_commit(zilog, 0);

3677 ZFS_EXIT(zfsvfs);
3678 return (error);
3679 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zfs_znode.c 1

**
 52661 Thu Jul 26 14:19:32 2012
new/usr/src/uts/common/fs/zfs/zfs_znode.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */

27 /* Portions Copyright 2007 Jeremy Teo */

29 #ifdef _KERNEL
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/mntent.h>
37 #include <sys/mkdev.h>
38 #include <sys/u8_textprep.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vfs.h>
41 #include <sys/vfs_opreg.h>
42 #include <sys/vnode.h>
43 #include <sys/file.h>
44 #include <sys/kmem.h>
45 #include <sys/errno.h>
46 #include <sys/unistd.h>
47 #include <sys/mode.h>
48 #include <sys/atomic.h>
49 #include <vm/pvn.h>
50 #include "fs/fs_subr.h"
51 #include <sys/zfs_dir.h>
52 #include <sys/zfs_acl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_rlock.h>
55 #include <sys/zfs_fuid.h>
56 #include <sys/dnode.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/kidmap.h>
59 #endif /* _KERNEL */

61 #include <sys/dmu.h>

new/usr/src/uts/common/fs/zfs/zfs_znode.c 2

62 #include <sys/refcount.h>
63 #include <sys/stat.h>
64 #include <sys/zap.h>
65 #include <sys/zfs_znode.h>
66 #include <sys/sa.h>
67 #include <sys/zfs_sa.h>
68 #include <sys/zfs_stat.h>

70 #include "zfs_prop.h"
71 #include "zfs_comutil.h"

73 /*
74 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
75 * turned on when DEBUG is also defined.
76 */
77 #ifdef DEBUG
78 #define ZNODE_STATS
79 #endif /* DEBUG */

81 #ifdef ZNODE_STATS
82 #define ZNODE_STAT_ADD(stat) ((stat)++)
83 #else
84 #define ZNODE_STAT_ADD(stat) /* nothing */
85 #endif /* ZNODE_STATS */

87 /*
88 * Functions needed for userland (ie: libzpool) are not put under
89 * #ifdef_KERNEL; the rest of the functions have dependencies
90 * (such as VFS logic) that will not compile easily in userland.
91 */
92 #ifdef _KERNEL
93 /*
94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to
95 * be freed before it can be safely accessed.
96 */
97 krwlock_t zfsvfs_lock;

99 static kmem_cache_t *znode_cache = NULL;

101 /*ARGSUSED*/
102 static void
103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
104 {
105 /*
106 * We should never drop all dbuf refs without first clearing
107 * the eviction callback.
108 */
109 panic("evicting znode %p\n", user_ptr);
110 }

______unchanged_portion_omitted_

741 static uint64_t empty_xattr;
742 static uint64_t pad[4];
743 static zfs_acl_phys_t acl_phys;
744 /*
745 * Create a new DMU object to hold a zfs znode.
746 *
747 * IN: dzp - parent directory for new znode
748 * vap - file attributes for new znode
749 * tx - dmu transaction id for zap operations
750 * cr - credentials of caller
751 * flag - flags:
752 * IS_ROOT_NODE - new object will be root
753 * IS_XATTR - new object is an attribute
754 * bonuslen - length of bonus buffer
755 * setaclp - File/Dir initial ACL

new/usr/src/uts/common/fs/zfs/zfs_znode.c 3

756 * fuidp - Tracks fuid allocation.
757 *
758 * OUT: zpp - allocated znode
759 *
760 */
761 void
762 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
763 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)
764 {
765 uint64_t crtime[2], atime[2], mtime[2], ctime[2];
766 uint64_t mode, size, links, parent, pflags;
767 uint64_t dzp_pflags = 0;
768 uint64_t rdev = 0;
769 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
770 dmu_buf_t *db;
771 timestruc_t now;
772 uint64_t gen, obj;
773 int err;
774 int bonuslen;
775 sa_handle_t *sa_hdl;
776 dmu_object_type_t obj_type;
777 sa_bulk_attr_t sa_attrs[ZPL_END];
778 int cnt = 0;
779 zfs_acl_locator_cb_t locate = { 0 };

781 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));

783 if (zfsvfs->z_replay) {
784 obj = vap->va_nodeid;
785 now = vap->va_ctime; /* see zfs_replay_create() */
786 gen = vap->va_nblocks; /* ditto */
787 } else {
788 obj = 0;
789 gethrestime(&now);
790 gen = dmu_tx_get_txg(tx);
791 }

793 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE;
794 bonuslen = (obj_type == DMU_OT_SA) ?
795 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE;

797 /*
798 * Create a new DMU object.
799 */
800 /*
801 * There’s currently no mechanism for pre-reading the blocks that will
802 * be needed to allocate a new object, so we accept the small chance
803 * that there will be an i/o error and we will fail one of the
804 * assertions below.
805 */
806 if (vap->va_type == VDIR) {
807 if (zfsvfs->z_replay) {
808 err = zap_create_claim_norm(zfsvfs->z_os, obj,
809 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
810 obj_type, bonuslen, tx);
811 ASSERT0(err);
809 ASSERT3U(err, ==, 0);
812 } else {
813 obj = zap_create_norm(zfsvfs->z_os,
814 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
815 obj_type, bonuslen, tx);
816 }
817 } else {
818 if (zfsvfs->z_replay) {
819 err = dmu_object_claim(zfsvfs->z_os, obj,
820 DMU_OT_PLAIN_FILE_CONTENTS, 0,

new/usr/src/uts/common/fs/zfs/zfs_znode.c 4

821 obj_type, bonuslen, tx);
822 ASSERT0(err);
820 ASSERT3U(err, ==, 0);
823 } else {
824 obj = dmu_object_alloc(zfsvfs->z_os,
825 DMU_OT_PLAIN_FILE_CONTENTS, 0,
826 obj_type, bonuslen, tx);
827 }
828 }

830 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
831 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db));

833 /*
834 * If this is the root, fix up the half-initialized parent pointer
835 * to reference the just-allocated physical data area.
836 */
837 if (flag & IS_ROOT_NODE) {
838 dzp->z_id = obj;
839 } else {
840 dzp_pflags = dzp->z_pflags;
841 }

843 /*
844 * If parent is an xattr, so am I.
845 */
846 if (dzp_pflags & ZFS_XATTR) {
847 flag |= IS_XATTR;
848 }

850 if (zfsvfs->z_use_fuids)
851 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
852 else
853 pflags = 0;

855 if (vap->va_type == VDIR) {
856 size = 2; /* contents ("." and "..") */
857 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
858 } else {
859 size = links = 0;
860 }

862 if (vap->va_type == VBLK || vap->va_type == VCHR) {
863 rdev = zfs_expldev(vap->va_rdev);
864 }

866 parent = dzp->z_id;
867 mode = acl_ids->z_mode;
868 if (flag & IS_XATTR)
869 pflags |= ZFS_XATTR;

871 /*
872 * No execs denied will be deterimed when zfs_mode_compute() is called.
873 */
874 pflags |= acl_ids->z_aclp->z_hints &
875 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT|
876 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED);

878 ZFS_TIME_ENCODE(&now, crtime);
879 ZFS_TIME_ENCODE(&now, ctime);

881 if (vap->va_mask & AT_ATIME) {
882 ZFS_TIME_ENCODE(&vap->va_atime, atime);
883 } else {
884 ZFS_TIME_ENCODE(&now, atime);
885 }

new/usr/src/uts/common/fs/zfs/zfs_znode.c 5

887 if (vap->va_mask & AT_MTIME) {
888 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
889 } else {
890 ZFS_TIME_ENCODE(&now, mtime);
891 }

893 /* Now add in all of the "SA" attributes */
894 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED,
895 &sa_hdl));

897 /*
898 * Setup the array of attributes to be replaced/set on the new file
899 *
900 * order for DMU_OT_ZNODE is critical since it needs to be constructed
901 * in the old znode_phys_t format. Don’t change this ordering
902 */

904 if (obj_type == DMU_OT_ZNODE) {
905 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
906 NULL, &atime, 16);
907 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
908 NULL, &mtime, 16);
909 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
910 NULL, &ctime, 16);
911 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
912 NULL, &crtime, 16);
913 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
914 NULL, &gen, 8);
915 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
916 NULL, &mode, 8);
917 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
918 NULL, &size, 8);
919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
920 NULL, &parent, 8);
921 } else {
922 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs),
923 NULL, &mode, 8);
924 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs),
925 NULL, &size, 8);
926 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs),
927 NULL, &gen, 8);
928 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
929 &acl_ids->z_fuid, 8);
930 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
931 &acl_ids->z_fgid, 8);
932 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs),
933 NULL, &parent, 8);
934 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
935 NULL, &pflags, 8);
936 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs),
937 NULL, &atime, 16);
938 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs),
939 NULL, &mtime, 16);
940 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs),
941 NULL, &ctime, 16);
942 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs),
943 NULL, &crtime, 16);
944 }

946 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8);

948 if (obj_type == DMU_OT_ZNODE) {
949 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL,
950 &empty_xattr, 8);
951 }

new/usr/src/uts/common/fs/zfs/zfs_znode.c 6

952 if (obj_type == DMU_OT_ZNODE ||
953 (vap->va_type == VBLK || vap->va_type == VCHR)) {
954 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs),
955 NULL, &rdev, 8);

957 }
958 if (obj_type == DMU_OT_ZNODE) {
959 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs),
960 NULL, &pflags, 8);
961 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL,
962 &acl_ids->z_fuid, 8);
963 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL,
964 &acl_ids->z_fgid, 8);
965 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad,
966 sizeof (uint64_t) * 4);
967 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL,
968 &acl_phys, sizeof (zfs_acl_phys_t));
969 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) {
970 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL,
971 &acl_ids->z_aclp->z_acl_count, 8);
972 locate.cb_aclp = acl_ids->z_aclp;
973 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs),
974 zfs_acl_data_locator, &locate,
975 acl_ids->z_aclp->z_acl_bytes);
976 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags,
977 acl_ids->z_fuid, acl_ids->z_fgid);
978 }

980 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0);

982 if (!(flag & IS_ROOT_NODE)) {
983 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl);
984 ASSERT(*zpp != NULL);
985 } else {
986 /*
987 * If we are creating the root node, the "parent" we
988 * passed in is the znode for the root.
989 */
990 *zpp = dzp;

992 (*zpp)->z_sa_hdl = sa_hdl;
993 }

995 (*zpp)->z_pflags = pflags;
996 (*zpp)->z_mode = mode;

998 if (vap->va_mask & AT_XVATTR)
999 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx);

1001 if (obj_type == DMU_OT_ZNODE ||
1002 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) {
1003 err = zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx);
1004 ASSERT0(err);
1002 ASSERT3P(err, ==, 0);
1005 }
1006 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1007 }
______unchanged_portion_omitted_

1395 /*
1396 * Grow the block size for a file.
1397 *
1398 * IN: zp - znode of file to free data in.
1399 * size - requested block size
1400 * tx - open transaction.
1401 *

new/usr/src/uts/common/fs/zfs/zfs_znode.c 7

1402 * NOTE: this function assumes that the znode is write locked.
1403 */
1404 void
1405 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1406 {
1407 int error;
1408 u_longlong_t dummy;

1410 if (size <= zp->z_blksz)
1411 return;
1412 /*
1413 * If the file size is already greater than the current blocksize,
1414 * we will not grow. If there is more than one block in a file,
1415 * the blocksize cannot change.
1416 */
1417 if (zp->z_blksz && zp->z_size > zp->z_blksz)
1418 return;

1420 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1421 size, 0, tx);

1423 if (error == ENOTSUP)
1424 return;
1425 ASSERT0(error);
1423 ASSERT3U(error, ==, 0);

1427 /* What blocksize did we actually get? */
1428 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy);
1429 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zil.c 1

**
 54147 Thu Jul 26 14:19:33 2012
new/usr/src/uts/common/fs/zfs/zil.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 */

26 /* Portions Copyright 2010 Robert Milkowski */

28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>

42 /*
43 * The zfs intent log (ZIL) saves transaction records of system calls
44 * that change the file system in memory with enough information
45 * to be able to replay them. These are stored in memory until
46 * either the DMU transaction group (txg) commits them to the stable pool
47 * and they can be discarded, or they are flushed to the stable log
48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49 * requirement. In the event of a panic or power fail then those log
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system. Its on-disk (pool) format consists
53 * of 3 parts:
54 *
55 * - ZIL header
56 * - ZIL blocks
57 * - ZIL records
58 *
59 * A log record holds a system call transaction. Log blocks can
60 * hold many log records and the blocks are chained together.

new/usr/src/uts/common/fs/zfs/zil.c 2

61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed from the blocks available. Figure X shows the ZIL structure:
66 */

68 /*
69 * This global ZIL switch affects all pools
70 */
71 int zil_replay_disable = 0; /* disable intent logging replay */

73 /*
74 * Tunable parameter for debugging or performance analysis. Setting
75 * zfs_nocacheflush will cause corruption on power loss if a volatile
76 * out-of-order write cache is enabled.
77 */
78 boolean_t zfs_nocacheflush = B_FALSE;

80 static kmem_cache_t *zil_lwb_cache;

82 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);

84 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
85 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))

88 /*
89 * ziltest is by and large an ugly hack, but very useful in
90 * checking replay without tedious work.
91 * When running ziltest we want to keep all itx’s and so maintain
92 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
93 * We subtract TXG_CONCURRENT_STATES to allow for common code.
94 */
95 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)

97 static int
98 zil_bp_compare(const void *x1, const void *x2)
99 {
100 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
101 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;

103 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
104 return (-1);
105 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
106 return (1);

108 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
109 return (-1);
110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
111 return (1);

113 return (0);
114 }

______unchanged_portion_omitted_

980 static lwb_t *
981 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
982 {
983 lr_t *lrc = &itx->itx_lr; /* common log record */
984 lr_write_t *lrw = (lr_write_t *)lrc;
985 char *lr_buf;
986 uint64_t txg = lrc->lrc_txg;
987 uint64_t reclen = lrc->lrc_reclen;
988 uint64_t dlen = 0;

new/usr/src/uts/common/fs/zfs/zil.c 3

990 if (lwb == NULL)
991 return (NULL);

993 ASSERT(lwb->lwb_buf != NULL);

995 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
996 dlen = P2ROUNDUP_TYPED(
997 lrw->lr_length, sizeof (uint64_t), uint64_t);

999 zilog->zl_cur_used += (reclen + dlen);

1001 zil_lwb_write_init(zilog, lwb);

1003 /*
1004 * If this record won’t fit in the current log block, start a new one.
1005 */
1006 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1007 lwb = zil_lwb_write_start(zilog, lwb);
1008 if (lwb == NULL)
1009 return (NULL);
1010 zil_lwb_write_init(zilog, lwb);
1011 ASSERT(LWB_EMPTY(lwb));
1012 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1013 txg_wait_synced(zilog->zl_dmu_pool, txg);
1014 return (lwb);
1015 }
1016 }

1018 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1019 bcopy(lrc, lr_buf, reclen);
1020 lrc = (lr_t *)lr_buf;
1021 lrw = (lr_write_t *)lrc;

1023 /*
1024 * If it’s a write, fetch the data or get its blkptr as appropriate.
1025 */
1026 if (lrc->lrc_txtype == TX_WRITE) {
1027 if (txg > spa_freeze_txg(zilog->zl_spa))
1028 txg_wait_synced(zilog->zl_dmu_pool, txg);
1029 if (itx->itx_wr_state != WR_COPIED) {
1030 char *dbuf;
1031 int error;

1033 if (dlen) {
1034 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1035 dbuf = lr_buf + reclen;
1036 lrw->lr_common.lrc_reclen += dlen;
1037 } else {
1038 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1039 dbuf = NULL;
1040 }
1041 error = zilog->zl_get_data(
1042 itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1043 if (error == EIO) {
1044 txg_wait_synced(zilog->zl_dmu_pool, txg);
1045 return (lwb);
1046 }
1047 if (error) {
1048 ASSERT(error == ENOENT || error == EEXIST ||
1049 error == EALREADY);
1050 return (lwb);
1051 }
1052 }
1053 }

1055 /*

new/usr/src/uts/common/fs/zfs/zil.c 4

1056 * We’re actually making an entry, so update lrc_seq to be the
1057 * log record sequence number. Note that this is generally not
1058 * equal to the itx sequence number because not all transactions
1059 * are synchronous, and sometimes spa_sync() gets there first.
1060 */
1061 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1062 lwb->lwb_nused += reclen + dlen;
1063 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1064 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1065 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1065 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);

1067 return (lwb);
1068 }
______unchanged_portion_omitted_

new/usr/src/uts/common/fs/zfs/zio.c 1

**
 85223 Thu Jul 26 14:19:34 2012
new/usr/src/uts/common/fs/zfs/zio.c
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**
______unchanged_portion_omitted_

2121 /*
2122 * ==
2123 * Allocate and free blocks
2124 * ==
2125 */
2126 static int
2127 zio_dva_allocate(zio_t *zio)
2128 {
2129 spa_t *spa = zio->io_spa;
2130 metaslab_class_t *mc = spa_normal_class(spa);
2131 blkptr_t *bp = zio->io_bp;
2132 int error;
2133 int flags = 0;

2135 if (zio->io_gang_leader == NULL) {
2136 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2137 zio->io_gang_leader = zio;
2138 }

2140 ASSERT(BP_IS_HOLE(bp));
2141 ASSERT0(BP_GET_NDVAS(bp));
2141 ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2142 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2143 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2144 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));

2146 /*
2147 * The dump device does not support gang blocks so allocation on
2148 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2149 * the "fast" gang feature.
2150 */
2151 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2152 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2153 METASLAB_GANG_CHILD : 0;
2154 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2155 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);

2157 if (error) {
2158 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2159 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2160 error);
2161 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2162 return (zio_write_gang_block(zio));
2163 zio->io_error = error;
2164 }

2166 return (ZIO_PIPELINE_CONTINUE);
2167 }
______unchanged_portion_omitted_

new/usr/src/uts/common/sys/debug.h 1

**
 4431 Thu Jul 26 14:19:35 2012
new/usr/src/uts/common/sys/debug.h
3006 VERIFY[S,U,P] and ASSERT[S,U,P] frequently check if first argument is zero
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * Copyright (c) 2012 by Delphix. All rights reserved.
28 */

30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /* All Rights Reserved */

33 #ifndef _SYS_DEBUG_H
34 #define _SYS_DEBUG_H

36 #include <sys/isa_defs.h>
37 #include <sys/types.h>
38 #include <sys/note.h>

40 #ifdef __cplusplus
41 extern "C" {
42 #endif

44 /*
45 * ASSERT(ex) causes a panic or debugger entry if expression ex is not
46 * true. ASSERT() is included only for debugging, and is a no-op in
47 * production kernels. VERIFY(ex), on the other hand, behaves like
48 * ASSERT and is evaluated on both debug and non-debug kernels.
49 */

51 #if defined(__STDC__)
52 extern int assfail(const char *, const char *, int);
53 #define VERIFY(EX) ((void)((EX) || assfail(#EX, __FILE__, __LINE__)))
54 #if DEBUG
55 #define ASSERT(EX) ((void)((EX) || assfail(#EX, __FILE__, __LINE__)))
56 #else
57 #define ASSERT(x) ((void)0)
58 #endif
59 #else /* defined(__STDC__) */
60 extern int assfail();
61 #define VERIFY(EX) ((void)((EX) || assfail("EX", __FILE__, __LINE__)))

new/usr/src/uts/common/sys/debug.h 2

62 #if DEBUG
63 #define ASSERT(EX) ((void)((EX) || assfail("EX", __FILE__, __LINE__)))
64 #else
65 #define ASSERT(x) ((void)0)
66 #endif
67 #endif /* defined(__STDC__) */

69 /*
70 * Assertion variants sensitive to the compilation data model
71 */
72 #if defined(_LP64)
73 #define ASSERT64(x) ASSERT(x)
74 #define ASSERT32(x)
75 #else
76 #define ASSERT64(x)
77 #define ASSERT32(x) ASSERT(x)
78 #endif

80 /*
81 * IMPLY and EQUIV are assertions of the form:
82 *
83 * if (a) then (b)
84 * and
85 * if (a) then (b) *AND* if (b) then (a)
86 */
87 #if DEBUG
88 #define IMPLY(A, B) \
89 ((void)(((!(A)) || (B)) || \
90 assfail("(" #A ") implies (" #B ")", __FILE__, __LINE__)))
91 #define EQUIV(A, B) \
92 ((void)((!!(A) == !!(B)) || \
93 assfail("(" #A ") is equivalent to (" #B ")", __FILE__, __LINE__)))
94 #else
95 #define IMPLY(A, B) ((void)0)
96 #define EQUIV(A, B) ((void)0)
97 #endif

99 /*
100 * ASSERT3() behaves like ASSERT() except that it is an explicit conditional,
101 * and prints out the values of the left and right hand expressions as part of
102 * the panic message to ease debugging. The three variants imply the type
103 * of their arguments. ASSERT3S() is for signed data types, ASSERT3U() is
104 * for unsigned, and ASSERT3P() is for pointers. The VERIFY3*() macros
105 * have the same relationship as above.
106 */
107 extern void assfail3(const char *, uintmax_t, const char *, uintmax_t,
108 const char *, int);
109 #define VERIFY3_IMPL(LEFT, OP, RIGHT, TYPE) do { \
110 const TYPE __left = (TYPE)(LEFT); \
111 const TYPE __right = (TYPE)(RIGHT); \
112 if (!(__left OP __right)) \
113 assfail3(#LEFT " " #OP " " #RIGHT, \
114 (uintmax_t)__left, #OP, (uintmax_t)__right, \
115 __FILE__, __LINE__); \
116 _NOTE(CONSTCOND) } while (0)

118 #define VERIFY3S(x, y, z) VERIFY3_IMPL(x, y, z, int64_t)
119 #define VERIFY3U(x, y, z) VERIFY3_IMPL(x, y, z, uint64_t)
120 #define VERIFY3P(x, y, z) VERIFY3_IMPL(x, y, z, uintptr_t)
121 #define VERIFY0(x) VERIFY3_IMPL(x, ==, 0, uintmax_t)

123 #if DEBUG
124 #define ASSERT3S(x, y, z) VERIFY3_IMPL(x, y, z, int64_t)
125 #define ASSERT3U(x, y, z) VERIFY3_IMPL(x, y, z, uint64_t)
126 #define ASSERT3P(x, y, z) VERIFY3_IMPL(x, y, z, uintptr_t)
127 #define ASSERT0(x) VERIFY3_IMPL(x, ==, 0, uintmax_t)

new/usr/src/uts/common/sys/debug.h 3

128 #else
129 #define ASSERT3S(x, y, z) ((void)0)
130 #define ASSERT3U(x, y, z) ((void)0)
131 #define ASSERT3P(x, y, z) ((void)0)
132 #define ASSERT0(x) ((void)0)
133 #endif

135 #ifdef _KERNEL

137 extern void abort_sequence_enter(char *);
138 extern void debug_enter(char *);

140 #endif /* _KERNEL */

142 #if defined(DEBUG) && !defined(__sun)
143 /* CSTYLED */
144 #define STATIC
145 #else
146 /* CSTYLED */
147 #define STATIC static
148 #endif

150 #ifdef __cplusplus
151 }

______unchanged_portion_omitted_

