new usr/src/ cmd/ zdb/ Makefil e. com

R R R R

1754 Thu Jul 26 14:18:53 2012
new usr/src/cnd/ zdb/ Makefil e. com
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
* *

R R R R R R R

1#

2 # CDDL HEADER START

3 #

4 # The contents of this file are subject to the terns of the

5 # Common Devel opnent and Distribution License (the "License").

6 # You may not use this file except in conpliance with the License.
7 #

8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.

10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.

12 #

13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #

19 # CDDL HEADER END

20 #

22 #

23 # Copyright 2009 Sun M crosystens, Inc. Al rights reserved.

24 # Use is subject to license terns.

25 #

26 # Copyright (c) 2012 by Del phix. Al rights reserved.

27 #

29 PROG sh= cd ..; basenane ‘pwd‘
30 SRCS= ../$(PROG.c ../zdb_il.c
31 OBJS= $(PROG .0 zdb_il.o

33 include ../../Mkefile.cmd
34 include ../../Makefile.ctf

36 INCS += -I1../../../1ib/libzpool/conmmon
37 INCS += -I../../../luts/comon/fs/zfs
-],

38 INCS += /..l..lcommon/zfs

40 LDLIBS += -1zpool -lunem-Invpair -lzfs -lavl
42 C99MODE= -xc99=%al |

43 C99LMODE= - Xc99=%al |

45 CFLAGS += $(CCVERBOSE)

46 CFLAGSB4 += $(CCVERBOSE)

47 CPPFLAGS += - D LARGEF| LE64_SOURCE=1 - D REENTRANT $(|NCS) - DDEBUG
45 CPPFLAGS += - D_LARGEFI LE64_SOURCE=1 - D_REENTRANT $(| NCS)

49 # lint conplains about unused _unmem* functions
50 LI NTFLAGS += -xerrof f =E_NAVE_DEF_NOT_USED2
51 LI NTFLAGS64 += - xerrof f =E_NAVE_DEF_NOT_USED2

53 . KEEP_STATE:

55 al | : $(PROG

57 $(PROG): $(OBIS)

58 $(LINK. ¢) -0 $(PROG) $(OBJS) $(LDLIBS)
59 $(POST_PROCESS)

new usr/src/cnd/ zdb/ Makefil e. com
61 cl ean:
63 lint: l'int_SRCS
65 include ../../Makefile.targ
67 %o: ../%c

68 $(COVPI LE. ¢) $<
69 $(POST_PROCESS_O)

new usr/src/cnd/ zdb/ zdb. ¢

R R R R

83672 Thu Jul 26 14:18:54 2012
new usr/src/cnd/ zdb/ zdb. ¢
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

515 static void
516 dunp_spacenmap(objset_t *os, space_map_obj_t *snp, space_map_t *sm

517 {

518
519
520
521
522

524
525

527
528
529
530
531
532
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

562 }
__unchanged_portion_onitted_

uint64_t alloc, offset, entry;
uint8_t mapshift = sm>smshift;
uint64_t nmapstart = sm>smstart;

char *ddata[] = { "ALLOC', "FREE"', "CONDENSE"', "I NVALI D',
"INVALI D', "INVALID', "INVALID', "I NVALI D' };
if (snmo->sno_object == 0)
return;
/*

* Print out the freelist entries in both encoded and decoded form
*/

alloc = 0;
for (offset = 0; offset < snp->snp_objsize; offset += sizeof (entry)) {
VERI FYO(dmu_r ead(0s, snp->snp_obj ect, offset
VERI FY3U(0, ==, dnu_read(os, snp->snp_obj ect of f set,
si zeof (entry), &entry, DMJ_READ PREFETCH))
i f (SM DEBUG DECCDE(entr

y)) |
(void) printf("\t [%6l1u] %: txg %lu, pass %Ilu\n",

(u_longlong_t)(offset / sizeof (entry)),
ddat a[SM_DEBUG_ACTI ON_DECODE(entry)],
(u_l ongl ong_t) SM DEBUG TXG DECODE(ent ry),
) el ((u_l ongl ong_t) SM_DEBUG_SYNCPASS_DECCDE(entry));
el se
(v0|d) printf("\t [9%6] | u] % range:"
990101 | x- %0101 | x size: %06l x\n",
(u_longlong_t)(offset / S|zeof (entry)),
SM TYPE_DECCDE(entry) == SMALLOC ? "A : 'F,
(u_l onglong_t) ((SM OFFSET_DECODE(entry) <<
mapshift) + mapstart),
(u_l onglong_t) ((SM_CFFSET_DEOGDE(ent ry) <<
mapshift) + mapstart + (SM_RUN_DECODE(entry) <<
mapshift)),
(u_l ongl ong_t) (SM RUN_DECCDE(entry) << napshift));
if (SM_TYPE_DECODE(entry) == SM ALLOC)
al l oc += SM RUN_DECCDE(entry) << mapshift;
el se
alloc -= SM RUN _DECCDE(entry) << mapshift;
}

if (alloc !'= snp->snmp aIIoc) {
(voi d) printf("space_map_obj ect alloc (9% 1 u) 1 NCONSI STENT "
"with space map summary (% lu)\n
(u_l onglong_t)sno->sno_al | oc, (u_l Iongl ong_t)alloc);

}

1181 static void
1182 dunp_bptree(objset_t *os, uint64_t obj, char *nane)

1183 {

1184
1185
1186

1188

char bytes[32];
bptree_phys_t *bt;
drmu_buf _t *db;

if (dump_opt[’d] < 3)

new usr/src/cnd/ zdb/ zdb. ¢

1189 return;

1191 VERI FYO(dnmu_bonus_hol d(os, obj, FTAG &db));

1191 VERI FY3U(0, ==, dnmu_bonus_hol d(os, obj, FTAG. &db)) ;

1192 bt = db->db_dat a;

1193 zdb ni cenun(bt—>bt _bytes, bytes);

1194 (void) printf("\n %: %lu datasets, %\n",

1195 nane, (unsigned |ong |ong)(bt->bt end - bt->bt_begin), bytes);
1196 dmu_buf reI e(db, FTAG;

1198 if (dump_opt[’d] < 5)

1199 return;

1201 (void) printf("\n");

1203 (void) bptree_iterate(os, obj, B_FALSE, dunp_bptree_cb, NULL, NULL);
1204 }

__unchanged_portion_onitted_

2241 static int
2242 dunp_bl ock_stats(spa_t *spa)
{

2243

2244 zdb_cb_t zcb = { 0 };

2245 zdb_bl kstats_t *zb, *tzb;

2246 uint64_t normalloc, normspace, total_alloc, total _found;

2247 int flags = TRAVERSE PRE | TRAVERSE_PREFETCH METADATA | TRAVERSE_HARD;
2248 int |eaks = 0;

2250 (voi d) pri ntf("\ nTr aversing all blocks %%%%%...\n",

2251 (dunp_opt['c’] || 'dunp opt['L']) ? "to verify " : ""

2252 (dunp_ opt[c'] 1) "met adata ooty

2253 dunp_opt['c'] ? checksums "o

2254 (dunp_opt[’'c’] && !dunp_opt[’ L]) ’7"and verify " : "",

2255 'dump_opt['L'] ? "nothl ng | eaked " : "");

2257 I*

2258 * Load all space maps as SM ALLOC maps, then traverse the pool
2259 * claimng each block we discover. |f the pool is perfectly
2260 * consistent, the space maps will be enpty when we're done.

2261 * Anything left over is a |leak; any block we can’t claim (because
2262 * it’s not part of any space map) is a double allocation,

2263 * reference to a freed block, or an unclainmed | og bl ock.

2264 */

2265 zdb_l eak_i nit(spa, &zcbh);

2267 /*

2268 * If there’s a deferred-free bplist, process that first.

2269 */

2270 (voi d) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,

2271 count _bl ock_cb, &zcb, NULL);

2272 (void) bpobj_iterate_nofr ee(&spa >spa_dsl _pool - >dp_f r ee_bpobj ,
2273 count _bl ock_cb, &zcb, NULL);

2274 if (spa_feature_is actlve(s a,

2275 &spa_f eat ure_t abl e[SPA_FEATURE_ASYNC_DESTROY])) {

2276 VERI FYO(bpt ree_i t er at e(spa- >spa_net a_obj set,

2276 VERI FY3U(0, ==, bptree_iterate(spa->spa_| net a _obj set,

2277 spa- >spa_dsl _pool - >dp_bptree_obj, B_FALSE, count _bl ock_cb,
2278 &ch, NULL));

2279 }

2281 if (dump_opt[’c’] > 1)

2282 flags | = TRAVERSE_PREFETCH_DATA;

2284 zcb. zcb_haderrors | = traverse_pool (spa, 0, flags, zdb_blkptr_ch, &zch);
2286 if (zcb.zcb_haderrors) {

new usr/src/cnd/ zdb/ zdb. ¢

2287
2288
2289
2290
2291
2292
2293
2294
2295

2297
2298
2299
2300

2302

2304
2305

2307
2308

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322

2324
2325

2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349

2351
2352

(void) printf("\nError counts: \n\n)
(void) printf("\t%s %\n", "errno", "count");
for (int e = 0; e < 256; e++) {
if (zch.zcb errors[e] = 0) {
(void) printf("\t%d %Iu\n",
e, (u_longlong_t)zcb.zcb_errorsf[e]);
}
}
}
/*

* Report any | eaked segnents.
*
zdb_| eak_fi ni (spa);
tzb = &zch. zcb_type[ZB_TOTAL] [ZDB_OT_TOTAL] ;

normalloc = netasl ab_cl ass_get _al | oc(spa_nornal _cl ass(spa));
norm space = netasl ab_cl ass_get _space(spa_normal _cl ass(spa));

total _alloc
total _found

tzb->zb_asi ze - zcb.zcb_dedup_asi ze;

if (total _found == total alloc) {
if (!dunmp_opt[’

(voi d) pr| ntf("\n\tNo | eaks (bl ock sum natches space"

maps exactly)\n");

} else {
(void) printf("block traversal size %lu !=alloc %lu "
"(% %1d)\n",
(u_l ongl ong_t)total _found,
(u_l onglong_t)total _all oc,
(dunp_opt["L’]) ? "unreachable" : "|eaked",
(Iongl ong_t)(total _alloc - total _found));
| eaks = 1;
}
if (tzb->zb_count == 0)
return (2);

(void) printf("\
(void) printf("\
(u_l ongl on

DK
p count: %0l u\n",
tzb->zb_count);

n
th
gt)
\th

(u_l onglong_t)tzb->zb_Isi ze,
gt)
\th
co

(void) printf(" p logical: %0l | u avg: 9%l u\n",
(u_l ongl on (tzb->zb_l size /| tzb->zb count))
(void) printf(" p physi cal : %0l | u avg:

" 9%l u npression: 9. 2f\n"
(u_longl ong_t)tzb->zb_psi ze,
(u_l ongl ong_t) (t zb->zb_psi ze / tzb->zb_count),
(doubl e)tzb >zb | size T tzb->zb_psize);
(voi d) prl ntf("\tbp allocated: 9d0llu avg: "
lu conpression: 9%.2f\n"
(u_I ongl ong_t)tzb->zb_asi ze,
(u_l ongl ong_t) (t zb->zb_asize / tzb->zb_count),
(doubl e)t zb->zb_| si ze / tzb->zb_asize);
(void) printf("\tbp deduped: %0l 1 u ref>1:"
"l lu dedupl i cation: 9. 2f\n",
(u_l ongl ong_t)zch. zchb_dedup_asi ze,
(u_l ongl ong_t) zch. zcb_dedup_bl ocks,
(doubl e) zcb. zcb_dedup_asi ze / tzb->zb_asize + 1.0);
(void) printf("\tSPA allocated: %0Illu used: 9%.2f%®AN",
(u_longlong_t)normalloc, 100.0 * normalloc / norm space);

if (dunp_ opt[b'] >=2) {
int I, t, level;

normal l oc + netaslab_cl ass_get_al | oc(spa_| og_cl ass(spa));

new usr/src/cnd/ zdb/ zdb. ¢

2353
2354

2356
2357
2358
2359

2361
2362
2363
2364

2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378

2380
2381
2382

2384
2385

2387
2388

2390
2391
2392

2394
2395
2396
2397
2398

2400
2401
2402
2403
2404

2406
2407
2408
2409
2410
2411
2412
2413

2415

2417
2418

(voi d) printf("\nBl ocks\tLSI ZE\'t PSI ZE\ t ASI ZE"
avg\t conmp\t%4dotal \t Type\n");

for (t = 0; t <= ZDB_OT_TOTAL; t++) {
char csize[32], |size[32], psize[32], asize[32];
char avg[32];
char *typenane;

if (t < DMJ_OT_NUMIYPES)
typenane = dnu_ot[t].ot_namne;
el se
typenane = zdb_ot_extname[t - DMJ_OT_NUMIYPES] ;

if (zcb.zcb_type[ZB_ TOTAL][t] zb_asize == 0) {
(void) printf("u6s\tyms\tobs\tobs"
"\t %Bs\t %bs\t %Bs\t %s\ n",

typénanre);
conti nue;

}

for (I =2ZB TOTAL - 1; | >= -1; 1--) {
level = (I ==-17? ZB_ ToTAL : 1);
zb = &zch. zcb_type[level][t];

if (zb->zb_asize == 0)
conti nue;

if (dump_opt['b’] < 3 && level !'= ZB TOTAL)
cont i nue;

if (level == 0 && zb->zb_asize ==
zcb. zcb_type[ZB_TOTAL] [t] . zb_asi ze)
conti nue;

zdb_ni cenun(zb- >zb_count, csize);
zdb_ni cenun(zb->zb_I si ze, Isize);
zdb_ni cenun(zb->zb_psi ze, psize);
zdb_ni cenun(zb->zb_asi ze, asize);
zdb_ni cenun{ zb- >zb_asi ze / zb->zb_count, avg);

(voi d) printf("%s\t%bs\t¥bs\tIbs\tIbs"”
to%. 2f\t 96. 2f \ t "
c5| ze, |size, psi ze asi ze, avg,
(doubl e) zb- >zb_| size | zb- >zb_psi ze,
100.0 * zb->zb_asize / tzb->zb_asize);

if (level == ZB_TOTAL)
(void) printf("%\n", typenane);
el se
(void) printf(" Lvd %\ n",
| evel, typenane);

(void) printf("\n");
if (1eaks)

return (2);

new usr/src/cnd/ zdb/ zdb. ¢

2420 if (zch.zcb_haderrors)
2421 return (3);
2423 return (0);

2424 }

____unchanged_portion_onitted_

new usr/ src/ cmd/ zhack/ Makefil e. com

R R R R

1573 Thu Jul 26 14:18:55 2012
new usr/src/cnd/ zhack/ Makefile. com
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
* *

R R R R R R R

1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
22 #
23 # Copyright 2009 Sun M crosystens, Inc. Al rights reserved.
24 # Use is subject to license terns.
25 #

#

#

#

Copyright (c) 2012 by Del phix. Al rights reserved.

31 PROG= zhack
32 SRCS= ../ $(PROG).c
33 OBJS= $(PROG) . 0

35 include ../../Makefile.cnmd
36 include ../../Mkefile.ctf

38 INCS += -1../../../1ib/libzpool/conmmon
39 INCS += -1../../../uts/comon/fs/zfs
BN I

40 INCS += /..l..lcommon/zfs

42 LDLIBS += -lzpool -lunem-Invpair -1zfs
44 C99MODE= -xc99=%al |

45 C99LMODE= - Xc99=%al |

47 CFLAGS += $(CCVERBOSE)

48 CFLAGS64 += $(CCVERBOSE)

49 CPPFLAGS += - D LARGEFI LE64 SOURCE=1 - D REENTRANT - DDEBUG $(| NCS)
49 CPPFLAGS += - D_LARGEFI LE64_SOURCE=1 - D_REENTRANT $(| NCS)

51 . KEEP_STATE:

53 all: $(PROG

55 $(PROG): $(0BIS)

56 $(LINK. c) -0 $(PROG $(0BIS) $(LDLIBS)
57 $(POST_PROCESS)

59 cl ean:

new usr/ src/cnd/ zhack/ Makefil e. com
61 lint: i nt _SRCS
63 include ../../Makefile.targ
65 %o: ../%c
66

$(COMPI LE. ¢) $<
67 $(POST_PROCESS O

new usr/ src/ cnd/ zhack/ zhack. ¢ 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
12718 Thu Jul 26 14:18:56 2012
new usr/ src/ cnd/ zhack/ zhack. ¢
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
* *

R R R R R R R

__unchanged_portion_onitted_

287 static void
288 zhack_do_feature_enabl e(int argc, char **argv)
289 {

290 char c;

291 char *desc, *target;

292 spa_t *spa;

293 obj set _t *nps;

294 zfeature_info_t feature;

295 zfeature_info_t *nodeps[] = { NULL };

297 /*

298 * Features are not added to the pool’s label until their refcounts
299 */are incremented, so fi_nos can just be left as false for now
300 *

301 desc = NULL;

302 feature.fi_unane = "zhack";

303 feature.fi_nps = B _FALSE;

304 feature.fi_can_readonly = B_FALSE;

305 feature.fi_depends = nodeps;

307 optind = 1;

308 while ((c = getopt(argc, argv, "rnd:")) !=-1) {

309 switch (c) {

310 case 'r’:

311 feature.fi_can_readonly = B TRUE;

312 br eak;

313 case 'd:

314 desc = strdup(optarg);

315 break;

316 defaul t:

317 usage();

318 break;

319 }

320 }

322 if (desc == NULL)

323 desc = strdup("zhack injected");

324 feature.fi_desc = desc;

326 argc -= optind;

327 argv += optind;

329 if (argc < 2) {

330 (void) fprintf(stderr, "error: mssing feature or pool name\n");
331 usage();

332 }

333 target = argv[O];

334 feature.fi_guid = argv[1];

336 if (!zfeature_is_valid_guid(feature.fi_guid))

337 fatal ("invalid feature guid: %", feature.fi_guid);
339 zhack_spa_open(target, B_FALSE, FTAG &spa);

340 nos = spa- >spa_net a_obj set;

342 if (0 == zfeature_| ookup_gui d(feature.fi_guid, NULL))

343 fatal ("' %’ is areal feature, will not enable");
344 if (0 == zap_contai ns(nos, spa->spa_feat_desc_obj, feature.fi_guid))

345 fatal ("feature already enabled: ¥%", feature.fi_guid);

new usr/ src/ cnd/ zhack/ zhack. ¢

347 VERI FYO(dsl _sync_t ask_do(spa->spa_dsl _pool, NULL,

347 VERI FY3U(0, ==, dsl_sync_task_do(spa->spa_dsl _pool, NULL,
348 feature_enabl e_sync, spa, & eature, 5));

350 spa_cl ose(spa, FTAQ;

352 free(desc);

353 }

__unchanged_portion_onitted_

377 static void
378 zhack_do_feature_ref(int argc, char **argv)

379 {

380 char c;

381 char *target;

382 bool ean_t decr = B_FALSE;

383 spa_t *spa;

384 obj set _t *nps;

385 zfeature_info_t feature;

386 zfeature_info_t *nodeps[] = { NULL };

388 I*

389 * fi_desc does not matter here because it was witten to disk
390 * when the feature was enabl ed, but we need to properly set the
391 * feature for read or wite based on the information we read off
392 * disk later.

393 *

394 feature.fi_unane = "zhack";

395 feature.fi_nps = B_FALSE;

396 feature.fi_desc = NULL;

397 feature.fi_depends = nodeps;

399 optind = 1;

400 while ((c = getopt(argc, argv, "md")) !'=-1) {

401 switch (c) {

402 case 'm:

403 feature.fi_nps = B_TRUE;

404 break;

405 case 'd':

406 decr = B_TRUE;

407 br eak;

408 defaul t:

409 usage();

410 br eak;

411 }

412 }

413 argc -= optind;

414 argv += optind;

416 if (argc < 2) {

417 (void) fprintf(stderr, "error: missing feature or pool nanme\n");
418 usage();

419 }

420 target = argv[O0];

421 feature.fi_guid = argv[1];

423 if (!zfeature_is_valid_guid(feature.fi_guid))

424 fatal ("invalid feature guid: %", feature.fi_guid);
426 zhack_spa_open(target, B_FALSE, FTAG &spa);

427 nos = spa- >spa_net a_obj set;

429 if (0 == zfeature_| ookup_gui d(feature.fi_guid, NULL))

430 fatal ("%’ is a real feature, will not change refcount");

new

usr/src/ cnmd/ zhack/ zhack. ¢

432 if (0 == zap_contai ns(nos, spa->spa_feat_for_read_obj,

433 feature.fi_guid)) {

434 feature.fi_can_readonly = B_FALSE;

435 } else if (0 == zap_contai ns(nos, spa->spa_feat_for_wite_obj,
436 feature.fi_guid))

437 feature.fi_can_readonly = B_TRUE;

438 } else {

439 fatal ("feature is not enabled: %", feature.fi_guid);

440 }

442 if (decr &% !spa_feature_is_active(spa, & eature))

443 fatal ("feature refcount already 0: %", feature.fi_guid);
445 VERI FYO(dsl _sync_t ask_do(spa->spa_dsl _pool, NULL,

445 VERI FY3U(0, ==, dsl_sync_task_do(spa->spa_dsl _pool, NULL,

446 decr ? feature_decr_sync : feature_incr_sync, spa, & eature, 5));
448 spa_cl ose(spa, FTAQ;

449 }

____unchanged_portion_onmtted_

new usr/src/cnd/ zt est/ Makefil e. com 1 new usr/src/cnd/ zt est/ Makefil e. com

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 61 | nCI ude L. / - / 'vakefl | etarg
1706 Thu Jul 26 14:18:57 2012
new usr/src/cnd/ zt est/ Makefil e. com 63 %o ../%c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero 64 $(COWPI LE. c) $<
LEEE R R R R EEE R EEEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREEEEEEEEEEESES] 65 $(P%T_Pmss_o)
1#
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terns of the
5 # Common Devel opnent and Distribution License (the "License").
6 # You may not use this file except in conpliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 # or http://ww. opensol aris.org/os/licensing.
10 # See the License for the specific |anguage governing perni ssions
11 # and limtations under the License.
12 #
13 # Wen distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/ OPENSCLARI S. LI CENSE.
15 # |f applicable, add the follow ng below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy]l [nane of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 # Copyright (c) 2012 by Del phix. Al rights reserved.
#

26 PROG= ztest
27 OBJS= $(PROG .0
28 SRCS= $(OBIS: % o0=../%cC)

30 include ../../Makefile.cmd
31 include ../../Makefile.ctf

33 INCS += -I../../../1ib/libzpool/conmmon
34 INCS += -1../../..luts/comon/fs/zfs
35 INCS += -1../../../comon/zfs

37 LDLIBS += -lunem -1 zpool -lcndutils -Im-Invpair

39 C99MODE= - xc99=%al |

40 C99LMIDE= - Xc99=%al |

41 CFLAGS += -g $(CCVERBOSE)

42 CFLAGSB4 += -g $(CCVERBOSE)

43 CPPFLAGS += - D LARGEFI LE64_ SOURCE=1 - D REENTRANT $(|NCS) - DDEBUG
43 CPPFLAGS += - D_LARGEFI LE64_SOURCE=1 - D_REENTRANT $(| NCS)

45 # lint conpl ains about unused _unmem* functions
46 LI NTFLAGS += - xerrof f =E_NAVE_DEF_NOT_USED2
47 LI NTFLAGS64 += -xerrof f =E_NAVE_DEF_NOT_USED2

49 . KEEP_STATE:

51 all: $(PROO

53 $(PROG): $(0BIS)

54 $(LINK. c) -0 $(PROG $(OBIS) $(LDLIBS)
55 $(POST_PROCESS)

57 cl ean:

59 lint: i nt_SRCS

new usr/src/cnd/ ztest/ ztest.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
152861 Thu Jul 26 14:18:58 2012
new usr/src/cnd/ ztest/ ztest.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

957 static int
958 ztest_dsl _prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t val ue,

959 bool ean_t inherit)

960 {

961 const char *propnane = zfs_prop_to_nane(prop);
962 const char *val nang;

963 char set poi nt [MAXPATHLEN] ;

964 uint64_t curval;

965 int error;

967 error = dsl _prop_set(osnane, propnane,

968 (inherit ? ZPROP_SRC NONE : ZPROP_SRC LOCAL),
969 sizeof (value), 1, &value);

971 if (error == ENOSPC) {

972 ztest _record_enospc(FTAQ ;

973 return (error);

974 }

975 ASSERTO(error);

975 ASSERT3U(error, ==, 0);

977 VERI FY3U(dsl _prop_get (osnane, propnama si zeof (curval),
978 1, &curval, setpoint), ==, 0);

980 if (ztest_opts.zo_verbose >= 6)

981 VERI FY(zfs_prop_i ndex_to_stri ng(prop, curval, &val name) == 0);
982 (void) printf("% % = 9% at '%’ \n

983 osnane, propnane, val nane, set p0| nt);
984 1

986 return (error);

987 }

989 static int
990 ztest_spa_prop_set_uint64(zpool _prop_t prop, uint64_t value)

991 {

992 spa_t *spa = ztest_spa;

993 nvlist_t *props = NULL;

994 int error;

996 VERI FY(nvlist_alloc(&rops, NV_UNI QUE NAME, 0) == 0);
997 VERI FY(nvlist_add_ui nt 64(props, zpool _prop_to name(prop), value) == 0);
999 error = spa_prop_set(spa, props);

1001 nvlist_free(props);

1003 if (error == ENOSPC) {

1004 ztest _record_enospc(FTAQ ;

1005 return (error);

1006 }

1007 ASSERTO(error);

1007 ASSERT3U(error, ==, 0);

1009 return (error);

1010 }

__unchanged_portion_onitted_

1347 /*

new usr/src/cnd/ ztest/ ztest.c

1348 * ZIL replay ops

1349 */

1350 static int

1351 ztest_replay_create(ztest_ds_t *zd, Ir_create_t *Ir, boolean_t byteswap)

1352 {

1353 char *nane = (void *)(Ir + 1); /* nane follows Ir */
1354 obj set _t *os = zd->zd_os;

1355 ztest _block_tag_t *bbt;

1356 dnu_buf _t *db;

1357 dmu_tx_t *tx;

1358 uint64_t txg;

1359 int error = 0;

1361 if (byteswap)

1362 byt eswap_ui nt64_array(lr, sizeof (*Ir));

1364 ASSERT(| r->Ir_doi d == ZTEST_DI ROBJ);

1365 ASSERT(nane[0] !="\0");

1367 tx = dmu_tx_create(os);

1369 drmu_t x_hol d_zap(tx, Ir->Ir_doid, B_TRUE, nane);

1371 if (Ir->rz_type == DMJ_OT_ZAP_OTHER)

1372 dmu_t x_hol d_zap(tx, DMJ_NEW OBJECT, B TRUE, NULL);
1373 } else {

1374 dmu_t x_hol d_bonus(tx, DMJ_NEW OBJECT);

1375 }

1377 txg = ztest_tx_assign(tx, TXGWAIT, FTAGQ;

1378 if (txg == 0)

1379 return (ENOSPC);

1381 ASSERT(drmu_obj set _zil (0s)->zl _replay == !llr->lr_foid);
1383 if (Ir->rz _type == DMJ OT_ZAP_OTHER) {

1384 if (Ir->r_foid == 0) {

1385 Ir->| r_f0| d = zap_create(os,

1386 Ir->lrz_type, Ir->lrz_bonustype,
1387 Ir->lrz_bonuslen, tx);

1388 } else {

1389 error = zap_create_clain(os, Ir->lr_foid,
1390 lr->lrz_type, Ir->lrz_bonustype,
1391 Ir->lrz_bonuslen, tx);

1392 }

1393 } else {

1394 if (Ir->r_foid == 0) {

1395 Ir->r_foid = dnmu_obj ect _al | oc(os,

1396 Ir->lrz_type, 0, Ir->lrz_bonustype,
1397 Ir->lrz_bonuslen, tx);

1398 } else {

1399 error = dmu_object_clain(os, Ir->lr_foid,
1400 Ir->rz_type, 0, Ir->lrz_bonustype,
1401 Ir->lrz_bonuslen, tx);

1402 }

1403 }

1405 if (error) {

1406 ASSERT3U(error, ==, EEXIST);

1407 ASSERT(zd->zd_zi | og- >zl _repl ay);

1408 drmu_t x_commi t (tx);

1409 return (error);

1410 }

1412 ASSERT(Ir->Ir foid 1= 0);

new usr/src/cnd/ ztest/ztest.c 3 new usr/src/cnd/ ztest/ztest.c
1414 if (Ir->rz_type != DMJ_OT_ZAP_OTHER)
1415 VERI FYO(dnu_obj ect _set _bl ocksi ze(os, Ir->lr_foid, 1474 VERI FYO(zap_renove(os, |r->lr_doid, name, tx));
1415 VERI FY3U(0, ==, dnu_obj ect_set_bl ocksi ze(os, Ir->Ir_foid, 1474 VERI FY3U(0, ==, zap_renove(os, lr->lr_doid, nanme, tx));
1416 Ir->lrz_blocksize, Ir->lrz_ibshift, tx));
1476 (void) ztest_log_rempve(zd, tx, |r, object);
1418 VERI FYO(dnmu_bonus_hol d(os, Ir->lr_foid, FTAG &db));
1418 VERI FY3U(0, ==, dnmu_bonus_hold(os, Ir->lr_foid, FTAG &db)); 1478 dmu_t x_commi t (tx);
1419 bbt = ztest_bt_bonus(db);
1420 dmu_buf _will_dirty(db, tx); 1480 zt est _obj ect _unl ock(zd, object);
1421 ztest _bt _generate(bbt, os, Ir->r_foid, -1ULL, Ir->lr_gen, txg, txg);
1422 drmu_buf _rel e(db, FTAQ; 1482 return (0);
1483 }
1424 VERI FYO(zap_add(os, |r->lr_doid, nane, sizeof (uint64_t), 1,
1424 VERI FY3U(0, ==, zap_add(os, Ir->lr_doid, name, sizeof (uint64_t), 1, 1485 static int
1425 &r->lr_foid, tx)); 1486 ztest_replay_wite(ztest_ds_t *zd, Ir_wite_t *Ir, bool ean_t byteswap)
1487 {
1427 (void) ztest_log_create(zd, tx, Ir); 1488 obj set _t *os = zd->zd_os;
1489 void *data = Ir + 1; /* data follows Ir */
1429 drmu_t x_commi t (tx); 1490 uint64_t offset, |ength;
1491 ztest _block_tag_t *bt = data;
1431 return (0); 1492 ztest _block_tag_t *bbt;
1432 } 1493 uint64_t gen, txg, lrtxg, crtxg;
1494 drmu_obj ect _info_t doi;
1434 static int 1495 dmu_tx_t *tx;
1435 ztest _replay_renove(ztest_ds_t *zd, Ir_renpve_t *Ir, bool ean_t byteswap) 1496 drmu_buf _t *db;
1436 { 1497 arc_buf _t *abuf = NULL;
1437 char *nane = (void *)(Ir + 1); /* nane follows Ir */ 1498 rl_t *rl;
1438 obj set _t *os = zd->zd_os;
1439 dmu_obj ect _info_t doi; 1500 if (byteswap)
1440 dmu_tx_t *tx; 1501 byt eswap_uint64_array(lr, sizeof (*Ir));
1441 uint64_t object, txg;
1503 of fset = Ir->lr_offset;
1443 if (byteswap) 1504 length = Ir->Ir_|length;
1444 byt eswap_uint64_array(lr, sizeof (*Ir));
1506 /* 1f it’s a dmu_sync() block, wite the whole block */
1446 ASSERT(Ir->lr_doid == ZTEST_DI ROBJ) ; 1507 if (Ir->r_common.lrc_reclen == sizeof (Ir_wite_t)) {
1447 ASSERT(nanme[0] !="\0"); 1508 uint64_t bl ocksize = BP_GET_LSI ZE(& r->Ir_bl kptr);
1509 if (length < blocksize) {
1449 VERI FYO(1510 of fset -= offset % bl ocksi ze;
1449 VERI FY3UY(0, ==, 1511 I ength = bl ocksi ze;
1450 zap_| ookup(os, Ir->Ir_doid, nane, sizeof (object), 1, &object)); 1512 }
1451 ASSERT(obj ect = 0); 1513 }
1453 zt est _obj ect _| ock(zd, object, RL_WRI TER); 1515 if (bt->bt_magic == BSWAP_64(BT_MAG Q))
1516 byt eswap_ui nt 64_array(bt, sizeof (*bt));
1455 VERI FYO(dnu_obj ect _i nfo(os, object, &doi));
1455 VERI FY3U(0, ==, dmu_obj ect _i nfo(os, object, &doi)); 1518 if (bt->bt_magic != BT_MAG Q)
1519 bt = NULL;
1457 tx = dmu_tx_create(os);
1521 ztest _object _l ock(zd, Ir->lr_foid, RL_READER);
1459 dmu_t x_hol d_zap(tx, lr->lr_doid, B _FALSE, nane); 1522 rl = ztest_range_l ock(zd, Ir->lr_foid, offset, length, RL_WRITER);
1460 drmu_t x_hol d_free(tx, object, 0, DMJ OBJECT_END);
1524 VERI FYO(drmu_bonus_hol d(os, Ir->Ir_foid, FTAG &db));
1462 t;(g(= ztest_tx_assign(tx, TXGWAIT, FTAQ; 1524 VERI FY3U(0, ==, dnmu_bonus_hold(os, Ir->lr_foid, FTAG &db));
1463 i txg == 0
1464 zt est _obj ect _unl ock(zd, object); 1526 drmu_obj ect _i nfo_from db(db, &doi);
1465 return (ENGSPC);
1466 } 1528 bbt = ztest_bt_bonus(db);
1529 ASSERT3U(bbt - >bt _magi ¢, ==, BT_MAG O);
1468 if (doi.doi_type == DMJ_OT_ZAP_OTHER) { 1530 gen = bbt->bt_gen;
1469 VERI FYO(zap_destroy(os, object, tx)); 1531 crtxg = bbt->bt_crtxg;
1469 VERI FY3U(0, ==, zap_destroy(os, object, tx)); 1532 Irtxg = Ir->r_common.lrc_txg;
1470 } else {
1471 VERI FYO(dnu_obj ect _free(os, object, tx)); 1534 tx = dnu_tx_create(o0s);
1471 VERI FY3U(0, ==, dnu_object_free(os, object, tx));
1472 } 1536 dmu_tx_hold_wite(tx, Ir->r_foid, offset, length);

new usr/src/cnd/ ztest/ ztest.c

1538
1539
1540

1542
1543
1544
1545
1546
1547
1548
1549
1550

1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562

1564
1565
1566
1567
1568
1569
1570

1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582

1584
1585
1586
1587
1588
1589

1591
1592
1593
1594
1595
1596

1598
1600
1602

if (ztest_random(8) == 0 && | ength == doi . doi _data_bl ock_size &&
P2 PHASE(offset I ength) == 0)
abuf dr'ru_r equest _ar cbuf (db, length);

txg = zt est tx assign(tx, TXG WAIT, FTAQ;

if (txg =) {
|f (abuf 1= NULL)
dmu_r et ur n_ar cbuf (abuf);
dmu_buf _rel e(db, FTAG;
ztest _range_unl ock(rl);
zt est _obj ect _unl ock(zd, lr->lr_foid);
return (ENOSPC);
}
if (bt !'= NULL) {
*
* Usual ly, verify the old data before witing new data --
* but not always, because we also want to verify correct
* behavi or when the data was not recently read into cache.
*
/
ASSERT(of f set % doi . doi _dat a_bl ock_si ze == 0);
if (ztest_random(4) != 0)
int prefetch = ztest randon‘(2) ?
DMJU_READ_PREFETCH : DMJ_READ_NO_PREFETCH,
ztest_block_tag_t rbt;
VERI FY(dmu_read(os, Ir->Ir_foid, offset,
sizeof (rbt), &rbt, prefetch) == 0);
if (rbt.bt_magic == MAG C) {
ztest_bt_verify(&hbt, os, Ir->r_foid,
of fset, gen, txg, crtxg);
}
}
/*
* Wites can appear to be newer than the bonus buffer because
* the ztest_get_data() callback does a dmu_read() of the
* open-context data, which may be different than the data
* as it was when the wite was generated.
*
f (zd->zd_zil og->zl _replay) {
ztest _bt_verify(bt, os, Ir->r_foid, offset,
MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
bt - >bt _crtxg);
}
/*
* Set the bt’'s gen/txg to the bonus buffer’s gen/txg
* so that all of the usual ASSERTs will work.
*
/
ztest_bt_generate(bt, os, Ir->lr_foid, offset, gen, txg, crtxg);
}

if (abuf == NULL) {

dmu_wite(os, Ir->lr_foid, offset, length, data, tx);
} else {

bcopy(data, abuf->b_data, |ength);

dnu_assi gn_ar cbuf (db, of fset, abuf, tx);

}
(void) ztest_log wite(zd, tx, Ir);
drmu_buf _rel e(db, FTAQ;

dmu_t x_commi t (tx);

new usr/src/cnd/ ztest/ ztest.c

1604
1605

1607
1608 }

ztest _range_unl ock(rl);
zt est _obj ect _unl ock(zd, Ir->Ir_foid);

return (0);

__unchanged_portion_omtted_

1649 static int

1650 ztest

1651 {
1652
1653
1654
1655
1656

1658
1659

1661

1663
1663

1665
1666

1668
1669
1670
1671
1672
1673

1675
1676
1677
1678

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

1694
1695
1696
1697
1698

1700

1702
1703
1704
1704

obj set _t *os = zd->zd_os;
dmu_tx_t *tx;

dmu_buf _t *db;
ztest_block_tag_t *bbt;
uint64_t txg, Irtxg, crtxg

if (byteswap)
byt eswap_ui nt64_array(lr, sizeof (*Ir));

ztest _object_lock(zd, Ir->r_foid, RL_WRI TER);

VERI FYO(dnmu_bonus_hol d(os, Ir->lIr_foid, FTAG &db));
VERI FY3U(0, ==, dmu_bonus_hold(os, Ir->lr_foid, FTAG &db));

tx = dnu_tx_create(os);
drm t x_hol d_bonus(t x, |r->|r_foi d);

xg = zt est tx_assign(tx, TXGWAIT, FTAG;
|f (txg == 0)
dnu_buf_rel e(db, FTAQ;
zt est _obj ect _unl ock(zd, Ir->lr_foid);
return (ENOSPC);

}

bbt = ztest_bt_bonus(db);

ASSERT3U(bbt - >bt _magi ¢, ==, BT_MAG O);
crtxg = bbt->bt_crtxg;

lrtxg = lr->r_common.|rc_txg;

if (zd->zd_zilog->zl _replay) {
ASSERT(lr->lr_size !
ASSERT(I r->Ir_node !
ASSERT(I rtxg T= 0)

} else {/
*

:());
=0);

* Randomy change the size and increnment the generation.
*

Ir->lr_size = (zt est _randon{ db- >db_si ze / sizeof (*bbt)) + 1)

si zeof (*bb
Ir->lr_npde = bbt - >bt _gen + 1;
ASSERT(I rtxg == 0);
}

/*

* Verify that the current bonus buffer is not newer than our txg.
*/

ztest _bt_verify(bbt, os, Ir->r_foid, -1ULL, |r->Ir_node,
MAX(txg, lrtxg), crtxg);

dmu_buf will dirty(db, tx)

ASSERT3U(| r->lr_size, >=, sizeof (*bbt));

ASSERT3U(I r->Ir_size, <=, db->db_size);

VERI FYO(dnu_set bonus(db Ir->lr_size, tx));

VERI FY3U(dmu_set _bonus(db, Ir->Ir_size, tx), ==, 0);

_replay_setattr(ztest_ds_t *zd, Ir_setattr_t *Ir, bool ean_t byteswap)

*

new

usr/src/cnd/ ztest/ ztest. c

1705 bbt = ztest_bt_bonus(db);
1707 ztest _bt_generate(bbt, os, Ir->lr_foid, -1ULL, Ir->Ir_npde, txg, crtxg);
1709 dmu_buf _rel e(db, FTAG;
1711 (void) ztest_log_setattr(zd, tx, Ir);
1713 dmu_t x_commi t (tx);
1715 ztest _obj ect _unl ock(zd, Ir->Ir_foid);
1717 return (0);
1718 }
__unchanged_portion_onitted_

1868 /*
1869 * Lookup a bunch of objects. Returns the nunber of objects not found.
1870 */
1871 static int
1872 ztest_| ookup(ztest_ds_t *zd, ztest_od_t *od, int count)
1873 {
1874 int mssing = 0;
1875 int error;
1877 ASSERT(_mut ex_hel d(&d- >zd_di robj _I ock));
1879 for (int i =0; i < count; i++ od++) {
1880 od- >od_obj ect = 0;
1881 error = zap_| ookup(zd->zd_os, od->od_dir, od->od_nane,
1882 sizeof (uint64_t), 1, &od->od_object);
1883 if (error) {
1884 ASSERT(error == ENCENT);
1885 ASSERT(od- >od_obj ect == 0);
1886 m ssi ng++;
1887 } else {
1888 drmu_buf _t *db;
1889 ztest _block_tag_t *bbt;
1890 drmu_obj ect _info_t doi;
1892 ASSERT(od- >od_obj ect != 0);
1893 ASSERT(m ssing == 0); /* there should be no gaps */
1895 zt est _obj ect _| ock(zd, od->od_object, RL_READER);
1896 VERI FYO(dnmu_bonus_hol d(zd- >zd_os,
1896 VERI FY3U(0, ==, dnu_bonus_hol d(zd- >zd_os,
1897 od- >od_obj ect, FTAG &db));
1898 drmu_obj ect _i nfo_from db(db, &doi);
1899 bbt = ztest_bt_bonus(db);
1900 ASSERT3U(bbt - >bt _magi ¢, ==, BT_MAG O);
1901 od- >od_type = doi.doi _type;
1902 od- >od_bl ocksi ze = doi . doi _dat a_bl ock_si ze;
1903 od- >od_gen = bbt->bt_gen;
1904 dmu_buf _rel e(db, FTAG;
1905 zt est _obj ect _unl ock(zd, od->od_object);
1906 }
1907 1
1909 return (mssing);
1910 }

____unchanged_portion_onitted_
2238 [*
2239 * Verify that we can’'t destroy an active pool, create an existing pool,
2240 * or create a pool with a bad vdev spec.
2241 */

new usr/src/cnd/ ztest/ ztest.c

3023 static int
3024 ztest_objset_destroy_cb(const char *nane, void *arg)

3025 {
3026
3027
3028

3030
3031
3032
3033
3033
3034
3035
3036
3037
3037
3038
3039
3040
3041

3043
3044

obj set _t *os;
drmu_obj ect _info_t doi;
int error;

/*
* Verify that the dataset contains a directory object.
*/

VERI FYO(dnu_obj set _hol d(nanme, FTAG &os));

VERI FY3U(0, ==, dnu_obj set _hol d(narme, FTAG &o0s));

error = dnu_obj ect _i nfo(os, ZTEST_DI ROBJ, &doi);

if (error !'= ENCENT) {
/* We could have crashed in the mddle of destroying it
ASSERTO(error);
ASSERT3U(error, ==, 0);
ASSERT3U(doi . doi _type, ==, DMJ_OT_ZAP_OTHER);
ASSERT3S(doi . doi _physi cal _bl ocks_512, >=, 0);

}
dmu_obj set _rel e(os, FTAQ;

/*
* Destroy the dataset.

2242 |* ARGSUSED */
2243 void
2244 {ztest_spa_creat e_destroy(ztest_ds_t *zd, uint64_t id)
2245
2246 ztest _shared_opts_t *zo = &ztest_opts;
2247 spa_t *spa;
2248 nvlist_t *nvroot;
2250 /*
2251 * Attenpt to create using a bad file.
2252 */
2253 nvroot = nmake_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 0, 1);
2254 VERI FY3U(ENCENT, ==,
2255 spa_create("ztest_bad_file", nvroot, NULL, NULL));
2256 nvlist_free(nvroot);
2258 /*
2259 * Attenpt to create using a bad mrror.
2260 */
2261 nvroot = make_vdev_root("/dev/bogus", NULL, 0, 0, 0, 0, 2, 1);
2262 VERI FY3U(ENCENT, ==,
2263 spa_create("ztest_bad_mrror", nvroot, NULL, NULL));
2264 nvlist_free(nvroot);
2266 /*
2267 * Attenpt to create an existing pool. It shouldn't matter
2268 * what's in the nvroot; we should fail wth EEXI ST.
2269 */
2270 (void) rw_rdl ock(&ztest_nane_| ock);
2271 nvroot = meke_vdev_root ("/dev/bogus", NULL, O, O, O, 0, O, 1);
2272 VERI FY3U(EEXI ST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL));
2273 nvlist_free(nvroot);
2274 VERI FYO(spa_open(zo->zo_pool , &spa, FTAQ);
2274 VERI FY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAQ);
2275 VERI FY3U(EBUSY, ==, spa_destroy(zo->zo_pool));
2276 spa_cl ose(spa, FTAQ;
2278 (void) rw_unl ock(&ztest_nane_| ock);
2279 }
__unchanged_portion_onitted_
3022 /* ARGSUSED */

*/

new usr/src/cnd/ ztest/ ztest.c

3045
3046
3046
3047
3048 }

*

/

VERI FYO(dnu_obj set _destroy(name, B FALSE));

VERI FY3U(0, ==, dnmu_obj set _destroy(nane, B _FALSE));
return (0);

__unchanged_portion_onitted_

3084 /*

ARGSUSED */
3085 void

3086 ztest_dnu_obj set _create_destroy(ztest_ds_t *zd, uint64_t id)

3087 {
3088
3089
3090
3091
3092
3093

3095

3097
3098

3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111

3113
3114
3115
3116
3117
3118
3119

3121
3122
3123
3124

3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137

3139
3139
3140

ztest _ds_t zdtnp;

int iters;

int error;

obj set _t *os, *o0s2;
char name[MAXNAMVELEN] ;
zilog_t *zilog;

(void) rw_rdl ock(&ztest_name_| ock);

(voi d) snprintf(name, MAXNAMELEN, "%s/tenp_%I|u",
ztest _opts.zo_pool, (u_longlong_t)id);

*
* |f this dataset exists froma previous run, process its replay |og
* half of the time. If we don't replay it, then dnu _obj set _destroy()
* (invoked from ztest_objset_destroy_cb()) should just throw it away.
*

if (ztest_randon(2) = &&
dmu_obj set own(nane DMJ_OST_OTHER, B_FALSE, FTAG &os) == 0) {
ztest_zd_init(&dtnp, NULL, os);
zil _repl ay(os &zdt np, ztest_repl ay_vector);
ztest _zd_fini (&dtnp);
dnu_obj set _di sown(os, FTAG;

}

/*
* There may be an old instance of the dataset we’'re about to
* create lying around froma previous run. |If so, destroy it

* and all of its snapshots.
*/

(voi d) dnu_objset_find(name, ztest_objset_destroy_cb, NULL,
DS_FI ND_CHI LDREN | DS_FI ND_SNAPSHOTS)

*

* Verify that the destroyed dataset is no longer in the nanespace.
*/
VERI FY3U(ENCENT, ==, dmu_obj set _hol d(nanme, FTAG &os));

/*
* Verify that we can create a new dataset.
*/

error = ztest_dataset_create(nane);
if (error) {
if (error == ENOSPC)
zt est _record_enospc(FTAG ;
(void) rw_unl ock(&ztest_nane_| ock);
return;

fatal (O, "dnu_objset_create(%) = %", nanme, error);

}

VERI FYO(dnu_obj set _own(narme, DMJ_OST_OTHER, B_FALSE, FTAG &o0s));
VERI FY3U(0, ==,
drmu_obj set _own(nane, DMJ OST_OTHER, B _FALSE, FTAG &0S));

new usr/src/cnd/ ztest/ztest.c 10
3141 ztest _zd_init(&dtnp, NULL, os);
3143 /*
3144 * Open the intent log for it.
3145 */
3146 zilog = zil _open(os, ztest_get_data);
3148 /*
3149 * Put sonme objects in there, do alittle |I/Oto them
3150 * and randomy take a couple of snapshots al ong the way.
3151 */
3152 iters = zt est_randon{ 5);
3153 for (int i 0; i <iters; i++) {
3154 zt est_dml_obj ect_al loc_free(&dtnp, id);
3155 if (ztest_randon(iters) ==
3156 (voi d) ztest_snapshot_create(nane, i);
3157 }
3159 I*
3160 * Verify that we cannot create an existing dataset.
3161 */
3162 VERI FY3U(EEXI ST, ==,
3163 drmu_obj set _creat e(nane, DMJ _OST_OTHER, 0, NULL, NULL));
3165 /*
3166 * Verify that we can hold an objset that is al so owned.
3167 */
3168 VERI FYO(dnu_obj set _hol d(name, FTAG &0s2));
3169 VERI FY3U(0, ==, dnu_obj set _hol d(nane, FTAG &0s2));
3169 dmu_obj set _rel e(0s2, FTAQ;
3171 /*
3172 */Verify that we cannot own an objset that is already owned.
3173 *
3174 VERI FY3U(EBUSY, ==,
3175 drmu_obj set _own(nane, DMJ OST_OTHER, B_FALSE, FTAG &0s2));
3177 zil _close(zilog);
3178 drmu_obj set _di sown(os, FTAG;
3179 ztest _zd_fi ni (&zdt np);
3181 (void) rw_unl ock(&ztest_nane_| ock);
3182 }
__unchanged_portion_onitted_
3352 /*
3353 * Verify that dnu_{read,wite} work as expected.
3354 */
3355 void
3356 ztest_dmu_read_wite(ztest_ds_t *zd, uint64_t id)
3357 {
3358 obj set _t *os = zd->zd_os;
3359 ztest_od_t od[2];
3360 dmu_tx_t *tx;
3361 int i, freeit error
3362 ui nt 64 _t n, Xg;
3363 buf wad_t packbuf *bi gbuf, *pack, *bigH, *bigT;
3364 ui nt 64_t packobj , packoff, packsi ze, bigobj, bigoff, bigsize;
3365 uint64_t chunksize = (1000 + ztest_randon(1000)) * sizeof (uint64_t);
3366 uint64_t regions = 997
3367 uint64_t stride = 123456789ULL
3368 uint64_t width = 40;
3369 int free_percent = 5;
3371 I*

3372 * This test uses two objects, packobj and bigobj, that are always

new usr/src/cnd/ ztest/ ztest.c 11

3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393

3395
3396
3397
3398
3399

3401
3402

3404
3405
3406
3407

3409
3410
3411
3412
3413
3414
3415
3416
3417

3419
3420
3421
3422
3423

3425
3426

3428
3429

3431
3432

3434
3435
3436
3437
3438

* ok ok ok ok R ok ok kb ok % bk ok k ok ok ok

updated together (i.e. in the same tx) so that their contents are
in sync and can be conpared Their contents relate to each other
in a sinple way: packobj is a dense array of ’'bufwad structures,
whil e bigobj is a sparse array of the same bufwads. Specifically,
for any index n, there are three bufwads that should be identical:

packobj, at offset n * sizeof (bufwad_t)
bi gobj, at the head of the nth chunk
bi gobj, at the tail of the nth chunk

The chunk size is arbitrary. It doesn’t have to be a power of two,
and it doesn’t have any relation to the object blocksize.
The only requirenment is that it can hold at |east two bufwads.

Normal Iy, we wite the bufwad to each of these |ocations.
However, free_percent of the time we instead wite zeroes to
packobj and performa dmu_free_range() on bigobj. By conparing
bi gobj to packobj, we can verify that the DMJ is correctly
tracking which parts of an object are allocated and free,

/and that the contents of the allocated bl ocks are correct.

/*
* Read the directory info. |If it's the first time, set things up.
*
/
ztest _od_init(&d[0], id, FTAG 0, DMJ OT_U NT64_OTHER, 0, chunksize);

zt

if

bi

est_od_init(&d[1], id, FTAG 1, DMJ_OT_U NT64_OTHER, 0, chunksize);

(ztest_object_init(zd, od, sizeof (od), B FALSE) != 0)
return;

gobj = od[0].od_object;

packobj = od[1].od_object;
chunksi ze = od[0] . od_gen;
ASSERT(chunksi ze == od[1]. od_gen);

/

* ok kb k%

n
s
d
/*

*

n
S

Prefetch a random chunk of the big object.
Qur aimhere is to get sone async reads in flight
for blocks that we may free bel ow, the DWMJ shoul d
/handl e this race correctly.
ztest _randon{regions) * stride + ztest_random(w dth);
1 + ztest_random(2 * width - 1);

mu_prefetch(os, bigobj, n * chunksize, s * chunksize);

Pick a randomindex and conpute the offsets into packobj and bi gobj.

ztest _randon(regions) * stride + ztest_random(w dth);
1 + ztest_random(wi dth - 1);

packoff = n * sizeof (bufwad_t);
packsize = s * sizeof (bufwad_t);

bi
bi

goff = n * chunksi ze;
gsize = s * chunksi ze;

packbuf = umem al | oc(packsi ze, UVEM NOFAI L) ;

bi
| *
*
*

fr

gbuf = unem al | oc(bi gsize, UVEM NOFAIL);

free_percent of the time, free a range of bigobj rather than

overwiting it.
*/

eeit = (ztest_randon(100) < free_percent);

new usr/src/cnd/ ztest/ztest.c 12
3440 I*

3441 * Read the current contents of our objects.

3442 */

3443 error = dnu_read(os, packobj, packoff, packsize, packbuf,

3444 DNU READ_PREFETCH) ;

3445 ASSERTO(error);

3446 ASSERTSU(error, ==, 0);

3446 error = dnu read(os bi gobj, bigoff, bigsize, bigbuf,

3447 DMJ_READ PREFETCH) ;

3448 ASSERTO(error);

3449 ASSERT3U(error, ==, 0);

3450 /*

3451 * CGet a tx for the npds to both packobj and bigobj.

3452 */

3453 tx = dnu_tx_create(os);

3455 dmu_t x_hold_wite(tx, packobj, packoff, packsize);

3457 if (freelt)

3458 drmu_t x_hol d_free(tx, bigobj, bigoff, bigsize);

3459 el se

3460 dmu_t x_hol d_write(tx, bigobj, bigoff, bigsize);

3462 txg = ztest_tx_assign(tx, TXG MGHTWAI T, FTAG;

3463 if (txg == 0) {

3464 urrem f r ee(packbuf, packsize);

3465 unem f ree(bi gbuf, bigsize);

3466 return;

3467 }

3469 dmu_obj ect _set _checksun{ os, bi gobj,

3470 (enum zi o_checksumn) zt est random dsl _prop(ZFS_PROP_CHECKSUM, tX);
3472 drmu_obj ect _set _conpress(os, bigob

3473 (enum zi o_conpress) zt est random dsl _prop(ZFS_PROP_COWPRESSI ON), tx);
3475 I*

3476 * For each index fromn to n + s, verify that the existing bufwad
3477 * in packobj matches the bufwads at the head and tail of the

3478 * correspondi ng chunk in bigobj. Then update all three bufwads
3479 * with the new values we want to wite out.

3480 */

3481 for (i =0; i <s; i++) {

3482 /* LINTED */

3483 pack = (bufwad t *)((char *)packbuf + i * sizeof (bufwad_t));
3484 /* LINTED */

3485 bigH = (bufwad t *)((char *)bigbuf + i * chunksize);

3486 [* LINTED */

3487 bi gT = (bufwad_t *)((char *)bigH + chunksize) - 1;

3489 ASSERT((ui ntptr_t)bigH - (uintptr_t)bigbuf < bigsize);

3490 ASSERT((ui ntptr_t)bigT - (uintptr_t)bigbuf < bigsize);

3492 if (pack- >bw / t xg > t xg)

3493 fatal (0, "future leak: got %1x, open txg is %1x",
3494 pack- >bw_t xg, txg);

3496 if (pack->bw data != 0 && pack->bw index !'=n + i)

3497 fatal (0, "wong index: got %1x, wanted %1 x+%1 x",
3498 pack->bw_i ndex, n, 1);

3500 if (bcnp(pack blgH sizeof (bufwad_t)) !=0)

3501 al (0, "pack/bigH msmatch in %/ %", pack, bigH);

new usr/src/cnd/ ztest/ ztest.c 13

3503
3504

3506
3507
3508
3509
3510
3511
3512
3513
3514
3515

3517
3518
3519
3520
3521

3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541

3543

3545
3546
3547
3548
3549
3550

3552
3553
3554
3555

3557
3558

3560
3561
3562

3564
3565

3566 }
__unchanged_portion_onitted_

if (bcnp(pack blgT sizeof (bufwad_t)) !=0)
al (0, "pack/bigT msmatch in %/ %", pack, bigT);

if (freeit) {
bzer o(pack, sizeof (bufwad_t));
} else {
pack->bw_index = n + i;
pack->bw_txg = txg;
pack->bw data = 1 + ztest_randon(-2ULL);

b
*bi gH
*bi gT

*pack;
*pack;

}

/*
* We've verified all the old bufwads, and nade new ones.
* Now wite them out.

*/
dmu_write(os, packobj, packoff, packsize, packbuf, tx);
if (freeit) {
if (ztest_opts.zo_verbose >= 7) {
(void) printf("freeing offset %Ix size %I x"
" txg %Ix\n",
(u_l ongl ong_t) bi gof f,
(u_l ongl ong_t) bi gsi ze,
(u_longlong_t)txg);
}
VERI FY(0 == dru_free_range(os, bigobj, bigoff, bigsize, tx));
} else {
if (ztest_opts.zo_verbose >= 7) {
(void) printf("witing offset %Ilx size %Ix"
" txg %I1x\n",
(u_l ongl ong_t) bi gof f,
(u_l ongl ong_t) bi gsi ze,
(u_longlong_t)txg);
}
dnu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
}
dnu_tx_conmmi t (tx);
/*
* Sanity check the stuff we just wote.
*/
{
voi d *packcheck = unem al | oc(packsi ze, UVEM NOFAI L) ;
voi d *bigcheck = unem al | oc(bi gsi ze, UVEM NOFAIL);
VERI FY(0 == dnu_read(os, packobj, packoff,
packsi ze, packcheck, DWJ READ, PREFEl'CH))
VERI FY(0 == = dnu _read(os, bigobj, bigoff,
bi gsi ze, bigcheck, DMJ_ READ PREFEl’OH));
ASSERT(bcnp(packbuf, packcheck, packsize) == 0);
ASSERT(bcnp(bi gbuf, bi gcheck, bigsize) == 0);
unem f ree(packcheck, packsize);
unem f ree(bi gcheck, bigsize);
}

umem f ree(packbuf, packsize);
unmem f ree(bi gbuf, bigsize);

new usr/src/cnd/ ztest/ ztest.c

3617 void

3618 ztest_dnu_read_wite_zcopy(ztest_ds_t *zd, uint64_t id)

3619 {
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635

3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651

3653
3654
3655
3656
3657

3659
3660

3662
3663
3664
3665
3666

3668
3669
3670
3671

3673
3674
3675
3676
3677

3679
3680

3682

obj set _t *os = zd->zd_os;

ztest _od_t od[2];

drmu_tx_t~ *tx;

uinte4_t i

int error;

uint64_t n, s, txg;

buf wad_t *packbuf, *bi gbuf;

ui nt64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
uint64_t bl ocksi ze = ztest_random bl ocksi ze();
ui nt 64_t chunksi ze = bI ocksi ze;

uint64_t regions = 997

uint64_t stride = 123456789ULL

uint64_t width = 9;

drmu_buf _t *bonus_db;

arc_buf _t **bi gbuf _arcbufs;

drmu_obj ect _info_t doi;

/

This test uses two objects, packobj and bigobj, that are always

updated together (i.e. in the same tx) so that their contents are
in sync and can be conpared. Their contents relate to each other
in a sinple way: packobj is a dense array of 'bufwad structures,
whil e bigobj is a sparse array of the same bufwads. Specifically,
for any index n, there are three bufwads that should be identical:

packobj, at offset n * sizeof (bufwad_t)
bi gobj, at the head of the nth chunk
bigobj, at the tail of the nth chunk

The chunk size is set equal to bigobj block size so that
dmu_assi gn_archuf () can be tested for object updates.

* ok k ok % ok ok % ok ok ok ok
-~

*

* Read the directory info. |If it's the first time, set things up.
*
/
ztest_od_init(&d[0], id, FTAG 0, DMJ OT_U NT64_OTHER, bl ocksize, 0);
ztest_od_init(&d[1], id, FTAG 1, DMJ_OT_U NT64_OTHER 0, chunksi ze)

if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0)
return;

[0] . od_obj ect;
packobj = od[1].od_object;
bl ocksi ze od[0] . od_bl ocksi ze;
chunksi ze = bl ocksi ze;
ASSERT(chunksi ze == od[1] . od_gen);

bi gobj = od
o

VERI FY(dmu_obj ect _i nf o(os, bigobj, &doi) == 0);
VERI FY(| SP2(doi .dm _data bl ock_si ze));

VERI FY(chunksi ze == doi . doi _data_bl ock_si ze);
VERI FY(chunksi ze >= 2 * sizeof (bufwad_t));

/*

14

* Pick a randomindex and conpute the offsets into packobj and bigobj.

*

ztest _randon{regions) * stride + ztest_random(w dth);
1 + ztest_random(width - 1);

n
s
packoff = n * sizeof (bufwad_t);
packsi ze = s * sizeof (bufwad_ t)

bi goff = n * chunksi ze

new usr/src/cnd/ ztest/ztest.c 15 new usr/src/cnd/ ztest/ztest.c
3683 bi gsi ze = s * chunksi ze; 3748 }
3685 packbuf = umem zal | oc(packsi ze, UMEM NOFAIL); 3750 /*
3686 bi gbuf = umem zal | oc(bi gsi ze, UVEM NOFAI L) ; 3751 * 50% of the time don’t read objects in the 1st iteration to
3752 * test dmu_assign_archbuf() for the case when there're no
3688 VERI FYO(dnu_bonus_hol d(os, bigobj, FTAG &bonus_db)); 3753 * existing dbufs for the specified offsets.
3689 VERI FY3U(0, ==, dmu_bonus_hol d(os, bigobj, FTAG &bonus_db)); 3754 */
3755 if (i '=0]| ztest_random(2) != 0) {
3690 bi gbuf _arcbufs = umem zalloc(2 * s * sizeof (arc_buf_t *), UMEM NOFAIL); 3756 error = dnu_read(os, packobj, packoff,
3757 packsi ze, packbuf, DMJ_READ PREFETCH);
3692 /* 3758 ASSERTO(error);
3693 * |teration O test zcopy for DB_UNCACHED dbufs. 3759 ASSERT3U(error, ==, 0);
3694 * |teration 1 test zcopy to already referenced dbufs. 3759 error = dnu read(os bi gobJ, bi gof f, bi gsi ze,
3695 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3760 bi gbuf, DMJ_READ_PREFET ;
3696 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3761 ASSERTO(error)
3697 * Iteration 4 test zcopy when dbuf is no longer dirty. 3762 ASSERT3U(error, ==, 0);
3698 * |teration 5 test zcopy when it can't be done. 3762
3699 * |teration 6 one nore zcopy wite. 3763 conpar e_and_updat e_pbbuf s(s, packbuf, bigbuf, bigsize,
3700 */ 3764 n, chunksize, txg);
3701 for (i =0; i <7; i++) {
3702 uinté4_t j; 3766 /*
3703 uint64 t off; 3767 * W've verified all the old bufwads, and nade new ones.
3768 * Now wite themout.
3705 /* 3769 */
3706 * Initeration 5 (i == 5) use archufs 3770 dnmu_write(os, packobj, packoff, packsize, packbuf, tx);
3707 * that don’t match bigob] blksz to test 3771 if (ztest_opts.zo_verbose >= 7)
3708 * dmu_assign_arcbuf () when it can't directly 3772 (void) printf("witing offset %I1x size %Ix"
3709 * assign an arcbuf to a dbuf. 3773 " txg %Ix\n",
3710 */ 3774 (u_l ongl ong_t) bi gof f,
3711 for (j =0; j <s; j++) { 3775 (u_l ongl ong_t) bi gsi ze,
3712 if (1 != 3776 (u_longlong_t)txg);
3713 bi gbuf _arcbufs[j] = 3777 }
3714 dnu_r equest _ar cbuf (bonus_db, chunksi ze); 3778 for (off = bigoff, j =0; j <s; j++, off += chunksize) {
3715 } else { 3779 dmu_buf _t *dbt;
3716 bi gbuf _arcbufs[2 * j] = 3780 if (i '1=5)
3717 dmu_r equest arcbuf(bonus db, chunksize / 2); 3781 bcopy((caddr _t)bigbuf + (off - bigoff),
3718 bi gbuf _arcbufs[2 * j + 1] = 3782 bi gbuf _arcbufs[j]->b_data, chunksize);
3719 dmu_r equest _ar cbuf (bonus_db, chunksize / 2); 3783 } else {
3720 } 3784 bcopy((caddr_t)bi gbuf + (off - bigoff),
3721 } 3785 bi gbuf _arcbufs[2 * j]->b_data,
3786 chunksi ze / 2);
3723 /* 3787 bcopy((caddr_t) bi gbuf + (off - bigoff) +
3724 * Get a tx for the nods to both packobj and bi gobj. 3788 chunksi ze / 2,
3725 */ 3789 bi gbuf_arcbufs[Z * j + 1]->b_data,
3726 tx = dnu_tx_create(os); 3790 chunksize / 2);
3791 }
3728 drmu_t x_hol d_write(tx, packobj, packoff, packsize);
3729 drmu_t x_hol d_write(tx, bigobj, bigoff, bigsize); 3793 if (i ==1) {
3794 VERI FY(drmu_buf _hol d(os, bigobj, off,
3731 txg = ztest_tx_assign(tx, TXG M GHTWAIT, FTAG; 3795 FTAG &dbt, DMJ_READ_NO PREFETCH) = 0);
3732 if (txg == 0) { 3796 }
3733 urmem f ree(packbuf, packsize); 3797 if (i '=5) {
3734 unmem fr ee(bi gbuf, bigsize); 3798 dmu_assi gn_ar cbuf (bonus_db, off,
3735 for (j =0;] <s; j++) { 3799 bi gbuf _arcbufs[j], tx);
3736 if (i !=5) { 3800 } else {
3737 dmu_r et ur n_ar cbuf (bi gbuf _arcbufs[j]); 3801 dmu_assi gn_ar cbuf (bonus_db, off,
3738 } else { 3802 bi gbuf _arcbufs[2 * j], tx);
3739 dmu_r et urn_ar cbuf (3803 dmu_assi gn_ar cbuf (bonus_db,
3740 bi gbuf _arcbufs[2 * j]); 3804 of f + chunksize / 2,
3741 drmu_r et ur n_ar cbuf (3805 bi gbuf _arcbufs[2 * j + 1], tx);
3742 bi gbuf _arcbufs[2 * j + 1]); 3806 }
3743 } 3807 if (i ==1) {
3744 } 3808 dnu_buf _rel e(dbt, FTAQ;
3745 urmem free(bi gbuf _arcbufs, 2 * s * sizeof (arc_buf_t *)); 3809 }
3746 dmu_buf _rel e(bonus_db, FTAQ; 3810
3747 return; 3811 dmu_t x_commi t (tx);

new usr/src/cnd/ ztest/ztest.c 17 new usr/src/cnd/ ztest/ztest.c 18
3933 tx = dnu_tx_create(os);
3813 /* 3934 drm t x_hol d_zap(tx, Obj ect, B_TRUE, NULL);
3814 * Sanity check the stuff we just wote. 3935 txg = zt est tx_assign(tx, TXG_M GHTWAI T, FTAG;
3815 */ 3936 if (txg == 0)
3816 { 3937 ret urn;
3817 voi d *packcheck = umem al | oc(packsi ze, UVEM NOFAIL); 3938 for (i =0; i <2; i++) {
3818 voi d *bi gcheck = unem al | oc(bi gsize, UMEM NOFAIL); 3939 value[i] =1i;
3940 VERI FYO(zap_add(os, object, hc[i], sizeof (uint64_t),
3820 VERI FY(0 == dnu_read(os, packobj, packoff, 3941 VERI FY3U(0, ==, zap_add(os, object, hc[i], sizeof (UI nté4_t),
3821 packsi ze, packcheck, DMJ_READ PREFETCH)) 3941 1, &valuel[i], tx));
3822 VERI FY(0 == dnu_read(os, bigobj, bigoff, 3942 }
3823 bi gsi ze, bi gcheck, DMJ | READ PREFETCH)); 3943 for (i =0; i <2; i++4)
3944 VERI FY3U(EEXI ST, ==, zap_add(os, object, hc[i],
3825 ASSERT(bcnp(packbuf, packcheck, packsize) == 0); 3945 sizeof (uint64_t), 1, &aluel[i], tx));
3826 ASSERT(bcnp(bi gbuf, bi gcheck, bigsize) == 0); 3946 VERI FYO(zap_| engt h(os, object, hc[i], &I _intsize, &I _ints));
3947 VERI FY3U(0, ==
3828 umem f ree(packcheck, packsize); 3948 zap_| engt h(os object, hc[i], &zl _intsize, &zl _ints));
3829 urmem f ree(bi gcheck, bigsize); 3947 ASSERT3U(z| _i ntsi ze, ==, sizeof (uint64_t));
3830 } 3948 ASSERT3U(zl “ints, ==, 1);
3831 if (i ==2) { 3949 }
3832 t xg_wai t _open(dmu_obj set _pool (os), 0); 3950 for (i =0; i <2; i++) {
3833 } elseif (i ==3) { 3951 VERI FYO(zap_r enove(os, object, hc[i], tx));
3834 tXxg_wai t _synced(dnu_obj set _pool (0s), 0); 3953 VERI FY3U(0, ==, zap_renpve(os, object, hc[i], tx));
3835 } 3952 }
3836 } 3953 dmu_t x_commi t (tx);
3838 drmu_buf _rel e(bonus_db, FTAG; 3955 /*
3839 urmem f ree(packbuf, packsize); 3956 * Cenerate a buch of randomentries.
3840 unem f ree(bi gbuf, bigsize); 3957 *
3841 unmem f ree(bi gbuf _arcbufs, 2 * s * sizeof (arc_buf_t *)); 3958 ints = MAX(ZTEST_ZAP_M N_I NTS, object % ZTEST_ZAP_MAX_| NTS);
3842 }
__unchanged_portion_onitted_ 3960 prop = ztest randon(ZTEST ZAP_NAX_PROPS)
3961 (void) sprintf(propnanme, "prop_%Tlu", (u I ongl ong_t) prop);
3900 /* 3962 (void) sprintf(txgnane, "txg_%Iu", (u_longlong_t)prop);
3901 * Verify that zap_{create, destroy, add, renove, update} work as expected. 3963 bzero(val ue, sizeof (value));
3902 */ 3964 last_txg = 0;
3903 #define ZTEST_ZAP_M N_I NTS 1
3904 #define ZTEST_ZAP_MAX_| NTS 4 3966 /*
3905 #define ZTEST_ZAP_MAX_PROPS 1000 3967 * |f these zap entries already exist, validate their contents.
3968 */
3907 void 3969 error = zap_|l ength(os, object, txgnane, &zl _intsize, &I _ints);
3908 ztest_zap(ztest_ds_t *zd, uint64_t id) 3970 if (error == 0) {
3909 { 3971 ASSERT3U(zl _i ntsize, ==, sizeof (uint64_t));
3910 obj set _t *os = zd->zd_os; 3972 ASSERT3U(zI _ints, ==, 1);
3911 ztest_od_t od[1];
3912 ui nt64_t object; 3974 VERI FY(zap_| ookup(os, object, txgname, zl_intsize,
3913 uint64_t txg, |ast_txg; 3975 zIl _ints, & ast_txg) == 0);
3914 uint64_t val ue[ZTEST_ZAP_MAX_I NTS] ;
3915 uint64_t zI _ints, zl_intsize, prop; 3977 VERI FY(zap_| engt h(os, object, propnane, &I _intsize,
3916 int i, ints; 3978 &Il _ints) == 0);
3917 dnu_tx_t *tx;
3918 char pr opname[100], txgnane[100]; 3980 ASSERT3U(zl _i ntsize, ==, sizeof (uint64_t));
3919 int error; 3981 ASSERT3U(zl _ints, ==, ints);
3920 char *hc| 2] ={ "s.acl.h", ".s.open.h.hyLZI g" };
3983 VER!I FY(zap_| ookup(os obj ect, propnane, zl_intsize,
3922 ztest_od_init(&d[0], id, FTAG 0, DMJ OT_ZAP_OTHER, 0, 0); 3984 zl _ints, value) == 0);
3924 if (ztest_object_init(zd, od, sizeof (od), !ztest_randon(2)) != 0) 3986 for (i =0; i <ints; i++)
3925 return; 3987 ASSERT3U(val ue[i], ==, last_txg + object + i);
3988 }
3927 obj ect = od[0].od_object; 3989 } else {
3990 ASSERT3U(error, ==, ENCENT);
3929 /* 3991 }
3930 * Cenerate a known hash collision, and verify that
3931 * we can | ookup and renpve both entries. 3993 /*
3932 */ 3994 * Atomically update two entries in our zap object.

new usr/src/cnd/ ztest/ztest.c 19 new usr/src/cnd/ ztest/ztest.c 20
3995 * The first is naned txg_%I|u, and contains the txg 4219 if (data->zcd_txg > synced_txg)
3996 * in which the property was |ast updated. The second 4220 fatal (O, "commit callback of txg % PRIu64 " called prematurely”
3997 * is named prop_%Ilu, and the nth elenent of its value 4221 ", last synced txg = % PRIu64 "\n", data->zcd_txg,
3998 * shoul d be txg + object + n. 4222 synced_t xg) ;
3999 */
4000 tx = dnu_tx_create(os); 4224 dat a->zcd_cal l ed = B_TRUE;
4001 dmu_t x_hol d_zap(tx, object, B TRUE, NULL);
4002 txg = ztest_tx_assign(tx, TXGM GHTWAIT, FTAG; 4226 if (error == ECANCELED) {
4003 if (txg == 0) 4227 ASSERTO(dat a- >zcd_t xg) ;
4004 return; 4229 ASSERT3U(dat a- >zcd_t xg, ==, 0);
4228 ASSERT(! dat a- >zcd_added) ;
4006 if (last_txg > txg)
4007 fatal (0, "zap future leak: old %lu new % lu", last_txg, txg); 4230 /*
4231 * The private call back data should be destroyed here, but
4009 for (i =0; i <ints; i++) 4232 * since we are going to check the zcd_called field after
4010 value[i] = txg + object + i; 4233 */drm_t x_abort(), we will destroy it there.
4234 *
4012 VERI FYO(zap_updat e(os, object, txgname, sizeof (uint64_t), 4235 return;
4014 VERI FY3U(0, ==, zap_update(os, object, txgnanme, sizeof (uint64_t), 4236 }
4013 1, & xg, tx));
4014 VERI FYO(zap_updat e(os, object, propnane, sizeof (uint64_t), 4238 /* Was this callback added to the gl obal callback list? */
4016 VERI FY3U(0, ==, zap_update(os, object, propnanme, sizeof (uint64_t), 4239 if (!data->zcd_added)
4015 ints, value, tx)); 4240 goto out;
4017 dmu_t x_commi t (tx); 4242 ASSERT3U(dat a- >zcd_txg, !=, 0);
4019 /* 4244 /* Renpve our callback fromthe list */
4020 * Renpve a random pair of entries. 4245 (void) nutex_| ock(&zcl.zcl _call backs_| ock);
4021 */ 4246 |'i st_renmove(&zcl . zcl _cal | backs, data);
4022 prop = ztest_randon(ZTEST_ZAP_MAX_PROPS); 4247 (void) mutex_unl ock(&zcl . zcl cal I backs _lock);
4023 (void) sprintf(propname, "prop_%Ilu", (u_longlong_t)prop);
4024 (void) sprintf(txgname, "txg_%Ilu", (u_longlong_t)prop); 4249 out:
4250 unem free(data, sizeof (ztest_cb_data_t));
4026 error = zap_|l ength(os, object, txgnane, &I _intsize, &I _ints); 4251 }
__unchanged_portion_onitted_
4028 if (error == ENCENT)
4029 return; 4421 /* ARGSUSED */
4422 void
4031 ASSERTO(error); 4423 ztest_spa_prop_get _set(ztest_ds_t *zd, uint64_t id)
4033 ASSERT3U(error, ==, 0); 4424 {
4425 nvlist_t *props = NULL;
4033 tx = dnu_tx_create(os);
4034 drmu_t x_hol d_zap(tx, object, B TRUE, NULL); 4427 (void) rw_rdl ock(&ztest_name_| ock);
4035 txg = ztest_tx_assign(tx, TXG M GHTWAIT, FTAG;
4036 if (txg == 0) 4429 (void) ztest_spa_prop_set_ui nt 64(ZPOOL_PROP_DEDUPDI TTOQ,
4037 return; 4430 Zl O_DEDUPDI TTO M N + Zzt est_randon(ZI O DEDUPDI TTO M N)) ;
4038 VERI FYO(zap_r enove(os, object, txgname, tx));
4039 VERI FYO(zap_r enove(0s, object, propnanme, tx)); 4432 VERI FYO(spa_prop_get (ztest_spa, &props));
4040 VERI FY3U(0, ==, zap_renove(os, object, txgnanme, tx)); 4434 VERI FY3U(spa_prop_get (ztest_spa, &props), ==, 0);
4041 VERI FY3U(0, ==, zap_renove(os, object, propnane, tx));
4040 dmu_t x_commi t (tx); 4434 if (ztest_opts.zo_verbose >= 6)
4041 } 4435 dunmp_nvlist(props, 4);
__unchanged_portion_onitted_
4437 nvlist_free(props);
4207 /* This is the actual commit callback function */
4208 static void 4439 (void) rw_unl ock(&ztest_name_| ock);
4209 ztest_commit_cal | back(void *arg, int error) 4440 }
4210 { __unchanged_portion_omtted_
4211 ztest_cb_data_t *data = arg;
4212 ui nt 64_t synced_t xg; 4868 [*
4869 * Renane the pool to a different name and then renane it back.
4214 VERI FY(data != NULL); 4870 */
4215 VERI FY3S(dat a- >zcd_expected_err, ==, error); 4871 /* ARGSUSED */
4216 VERI FY(! dat a- >zcd_cal | ed) ; 4872 void
4873 ztest_spa_renane(ztest_ds_t *zd, uint64_t id)
4218 synced_t xg = spa_l ast _synced_t xg(dat a- >zcd_spa) ; 4874 {

new usr/src/cnd/ ztest/ ztest.c

4875
4876

4878

4880
4881
4882
4883

4885
4886
4887
4888
4890

4890
4891
4892
4893

4895
4896
4897
4898
4900

4900
4901

4903
4904
4905
4906
4908

4908
4909
4910
4911
4913

4913
4914

4916

4918
4919 }

char *ol dnane, *newnane;
spa_t *spa;

(void) rw wlock(&ztest_nane_| ock);
ol dname = ztest_opts. zo_pool ;

newnane = urmem al | oc(strlen(ol dnane) + 5, UVEM NOFAIL);
(voi d) strcpy(newnane, ol dnane);

(void) strcat(newnane, "_tnp"
/*
* Do the renane
*/
VERI FYO(spa_r enane(ol dname, newnane));
VERI FY3U(0, ==, spa_renane(ol dname, newnane));
/*
* Try to open it under the old name, which shouldn’t exist
*
/
VERI FY3U(ENCENT, ==, spa_open(ol dnanme, &spa, FTAG);
/*
* Qpen it under the new nane and make sure it’s still the same spa_t.
*
/
VERI FYO(spa_open(newnane, &spa, FTAQ));
VERI FY3U(0, ==, spa_open(newnane, &spa, FTAG);

ASSERT(spa == ztest_spa);
spa_cl ose(spa, FTAQ;

/*
* Renane it back to the original
*
/
VERI FYO(spa_r enane(newnane, ol dnane));
VERI FY3U(0, ==, spa_renanme(newnane, ol dnane));
/*
* Make sure it can still be opened
*
/
VERI FYO(spa_open(ol dnanme, &spa, FTAG));
VERI FY3U(0, ==, spa_ open(ol dname, &spa, FTAG);

ASSERT(spa == ztest_spa);
spa_cl ose(spa, FTAQ;

unem f ree(newnane, strlen(newnane) + 1);

(void) rw_unl ock(&ztest_nane_| ock);

__unchanged_portion_omtted_

4991 static void
4992 ztest_spa_i nport _export (char *ol dnane, char *newnane)

4993 {
4994
4995
4996

4998
4999
5000
5001

5003
5004
5005

nvlist_t *config, *newconfig;
uint64_t pool _guid;
spa_t *spa;

if (ztest_opts.zo_verbose >= 4)
(vol d) printf("inmport/export: old = %, new = %\n",
ol dnarme, newnane);

}

/*

* Clean up from previous runs.
*/

21

new usr/src/cnd/ zt est/ ztest.c

5006

5008
5009
5010
5011
5013

5013
5014
5015
5016
5017

5019
5020

5022

5024
5025
5026
5027
5029

5029

5031
5032
5033
5034
5035
5036

5038
5039
5040
5041
5043

5043

5045
5046
5047
5048

5050
5051
5052
5053

5055
5056
5057
5058

5060
5061
5062
5063
5065
5064
5065

5067

(voi d) spa_destroy(newnane);

/*
* Get the pool’s configuration and guid.
*/

VERI FYO(spa_open(ol dnanme, &spa, FTAGQ));
VERI FY3U(0, ==, spa_ open(ol dnare, &spa, FTAG);
/*

* Kick off a scrub to tickle scrub/export races.
*/

if (ztest_randon(2) ==
(void) spa_ scan(spa POCL_SCAN_SCRUB) ;

pool _guid = spa_gui d(spa);
spa_cl ose(spa, FTAQ;

zt est _wal k_pool _directory("pools before export");

/*

* Export it.
*

/

VERI FYO(spa_export (ol dname, &config, B _FALSE, B_FALSE));
VERI FY3U(0, ==, spa_export (ol dnanme, &config, B_FALSE, B _FALSE));

ztest _wal k_pool _directory("pools after export");
/*

* Try to inport it.

*/
newconfig = spa_tryi nport(confl 9);
ASSERT(newconfig != NULL
nvlist_free(newconfig);
/*

* Inport it under the new nane.
*

/

VERI FYO(spa_i nport (newnane, config, NULL, 0));
VERI FY3U(0, ==, spa_inmport(newnane, config, NULL, 0));

zt est _wal k_pool _directory("pools after inport");

/*
* Try to inport it again -- should fail w th EEXI ST.
*
VERI FY3U(EEXI ST, ==, spa_i nport(newnane, config, NULL, 0));
/*
* Try to inport it under a different name -- should fail with EEXI ST.
*
/
VERI FY3U(EEXI ST, ==, spa_inport (ol dname, config, NULL, 0));
/*
* Verify that the pool is no l|onger visible under the old nane.
*/
VERI FY3U(ENCENT, ==, spa_open(ol dnanme, &spa, FTAQ);
/'k

* Verify that we can open and close the pool using the new nane.
*/

VERI FYO(spa_open(newnane, &spa, FTAG));

VERI FY3U(0, ==, spa_ open(newname, &spa, FTAQ));
ASSERT(pool _gui d == spa_gui d(spa));

spa_cl ose(spa, FTAQ;

nvlist_free(config)

new usr/src/cnd/ ztest/ ztest.c

5068 }

__unchanged_portion_onitted_

5205 static void
5206 ztest_dataset_dirobj_verify(ztest_ds_t *zd)

5207 {

5208 uint64_t usedobjs, dirobjs, scratch;

5210 /*

5211 * ZTEST_DIROBJ is the object directory for the entire dataset.
5212 * Therefore, the nunber of objects in use should equal the
5213 * nunber of ZTEST_DIROBJ entries, +1 for ZTEST_DI ROBJ itself.
5214 * |f not, we have an object |eak.

5215 *

5216 * Note that we can only check this in ztest_dataset_open(),
5217 * when the open-context and synci ng-context val ues agree.
5218 * That's because zap_count() returns the open-context val ue,
5219 * whil e dnu_obj set _space() returns the rootbp fill count.
5220 */

5221 VERI FYO(zap_count (zd- >zd_os, ZTEST_DI ROBJ, &dirobjs));

5223 VERI FY3U(0, ==, zap_ count(zd >zd_os, ZTEST DI ROBJ, &di robjs));
5222 dnu_obj set _space(zd->zd_os, &scrat ch &scrat ch, &usedobj s, &scrat ch);
5223 ASSERT3U(di robjs + 1, ==, usedobj s);

5224 }

5226 static int

5227 ztest_dataset _open(int d)

5228 {

5229 ztest _ds_t *zd = &ztest_ds[d];

5230 uint64_t commtted_seq = ZTEST GET_SHARED _DS(d) - >zd_seq;

5231 obj set _t *os;

5232 zilog_t *zil og;

5233 char nanme[MAXNAMVELEN] ;

5234 int error;

5236 zt est _dat aset _nane(nane, ztest_opts.zo_pool, d);

5238 (void) rw_rdl ock(&ztest_nane_| ock);

5240 error = ztest_dataset_create(nane);

5241 if (error == ENOSPC)

5242 (void) rw_unl ock(&ztest_nanme_| ock);

5243 ztest _record_enospc(FTAQ ;

5244 return (error);

5245 }

5246 ASSERT(error == 0 || error == EEXI ST);

5248 VERI FYO(dnu_obj set _hol d(nanme, zd, &o0s));

5250 VERI FY3U(dnu_obj set _hol d(nane, zd &os), ==, 0);

5249 (void) rw_unl ock(&zt est_nama_l ock)

5251 ztest_zd_init(zd, ZTEST_GET_SHARED DS(d), o0s);

5253 zilog = zd->zd_zil og;

5255 if (zilog->zl _header->zh_claimlr_seq != 0 &&

5256 zi | og- >zl _header->zh_claimlr_seq < committed_seq)

5257 fatal (O, "missing log records: claimed %lu < commtted %Ilu",
5258 zi | og- >z| _header->zh_claim|r_seq, conmtted_seq);
5260 zt est _dat aset _dirobj _verify(zd);

5262 zil _replay(os, zd, ztest_replay_vector);

5264 zt est _dat aset _dirobj _verify(zd);

new usr/src/cnd/ ztest/ztest.c 24
5266 if (ztest_opts.zo_verbose >= 6)
5267 (void) printf("% replay %I|u blocks, %Ilu records, seq %Ilu\n",
5268 zd- >zd_nare,
5269 (u_l ongl ong_t) zi | og- >zl _parse_bl k_count,
5270 (u_l onglong_t) zi |l og- >zl _parse_| r_count,
5271 (u_l ongl ong_t) zi | og- >zl _repl ayi ng_seq) ;
5273 zilog = zil _open(os, ztest_get_data);
5275 if (zilog->zl _replaying_seq != 0 &&
5276 zi |l og->zl _repl ayi ng_seq < conm tted_seq)
5277 fatal (0O, "m ssing log records: replayed %lu < commtted %1u",
5278 zi | og->z| _repl ayi ng_seq, commtted_seq);
5280 return (0);
5281 }
__unchanged_portion_omtted_
5294 | *
5295 * Kick off threads to run tests on all datasets in parallel.
5296 */
5297 static void
5298 ztest_run(ztest_shared_t *zs)
5299 {
5300 thread_t *tid;
5301 spa_t *spa;
5302 obj set _t *os;
5303 thread_t resune_tid;
5304 int error;
5306 ztest _exiting = B_FALSE;
5308 *
5309 * Initialize parent/child shared state.
5310 */
5311 VERI FY(_nut ex_i nit (&test_vdev_| ock, USYNC THREAD, NULL) == 0)
5312 VERI FY(rW ock_i ni t (&t est _name_| ock, USYNC_THREAD, NULL) == 0);
5314 zs->zs_thread_start = gethrtine();
5315 zs->zs_thread_stop =
5316 zs->zs_thread_start + ztest_opts.zo_passti me * NANCSEC,
5317 zs->zs_thread_stop = M N(zs->zs_thread_stop, zs->zs_proc_stop);
5318 zs->zs_thread kill = zs->zs_thread_stop;
5319 if (ztest_random(100) < ztest_opts.zo killrate) {
5320 zs->zs_thread_kill -=
5321 ztest _random(zt est _opts. zo_passtime * NANCSEC);
5322 }
5324 (void) _nutex_init(&zcl.zcl_callbacks_l ock, USYNC THREAD, NULL);
5326 l'ist_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
5327 of fsetof (ztest _cb_data_t, zcd_node));
5329 /*
5330 * Open our pool .
5331 */
5332 kernel _init(FREAD | FWRI TE);
5333 VERI FY(spa_ open(zt est opt s.zo_pool, &spa, FTAG == 0);
5334 spa- >spa_debug = B_TRUE;
5335 ztest_spa = spa;
5337 VERI FYO(dnu_obj set _hol d(zt est _opts. zo_pool, FTAG &os));
5339 VERI FY3U(0, ==, dnu_obj set_hol d(ztest_opts.zo_pool, FTAG &os));
5338 zs->zs_guid = dnu_obj set _fsid_guid(os);
5339 drmu_obj set _rel e(os, FTAG;

new usr/src/cnd/ ztest/ ztest.c

5341

5343
5344
5345
5346
5347
5348
5349
5350
5351

5353
5354
5355
5356
5357

5359
5360
5361
5362
5363

5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378

5380
5381
5382
5383
5384
5385
5386
5387

5389
5390

5392
5393

5395
5396
5397
5398
5399
5400
5401
5402
5403
5404

5406

spa- >spa_dedup_ditto = 2 * ZI O DEDUPDI TTO M N;

/

* ok ok ok

if (MAXFAULTS()

Ve don’'t expect the pool to suspend unless maxfaults ==
| n which case ztest_fault_inject() tenporarily takes away
the only valid replica.

)
spa- >spa_fail rode = ZI O FAI LURE_MODE_\WAI T;

el se

spa- >spa_fai |l nrode = ZI O_FAI LURE_MODE_PANI C;

/*

* Create a thread to periodically resume suspended |/QO

*/
VERI FY(t hr_creat
& esune_tid)

/*

e(0, O,
)

ztest _resune_t hread, spa, THR_BOUND,

* Create a deadman thread to abort() if we hang.
*
/

VERI FY(t hr _cr eat
NULL) == 0);

This hits all

EE

for (int t = 0;
for (int

}
/*

* |f we got any ENOSPC errors on the previous run, destroy sonething.
*/

e(0, 0,

edge

t < 64;

d=-
error
(1

ASSERT(error == 0

er

zt est _deadnman_t hread, zs, THR_BOUND,

Verify that we can safely inquire about about any object,
whether it’s allocated or not.
we probe a 5-w de wi ndow around each power of two.

To meke it interesting,

cases, including zero and the nax.
t++) {
5; d <= 5; d++)
= dnu_obj ect _i nf o(spa- >spa_net a_obj set,
ULL << t) + d, NULL);

|| error == ENCENT ||
ror == EINVAL);

if (zs->zs_enospc_count != 0)

int d-=

zZt est

_randon(ztest _opts. zo_dat asets);

zt est _dat aset _destroy(d);

zs->zs_enospc_count =

0;

tid = unem zal l oc(ztest_opts.zo_threads * sizeof (thread_t),
UMEM _NOFAI L) ;

if (ztest_opts.zo_verbose >= 4)
(void) printf("starting main threads...\n");

/*
* Kick off all
*/

the te

sts that run in parallel.

(int t =0; t < ztest_opts.zo_threads; t++) {
if (t < ztest_opts.zo_datasets &&
zt est _dat aset _open(t) != 0)
return;

VERI FY(thr _create(0, 0, ztest_thread, (void *)(uintptr_t)t,
THR_BOUND, &tid[t]) == 0);

new usr/src/cnd/ ztest/ ztest.c

5407 * Wait for all of the tests to conplete. W go in reverse order
5408 * so we don’'t close datasets while threads are still using them
5409 */

5410 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) {

5411 VER FY(thr_join(tid[t], NULL, NULL) == 0);

5412 if (t < ztest_opts.zo_| dat asets)

5413 ztest _dataset _cl ose(t);

5414 }

5416 txg_wai t _synced(spa_get _dsl (spa), 0);

5418 zs->zs_al loc = netaslab_cl ass_get _al |l oc(spa_normal _cl ass(spa));
5419 zs->zs_space = netasl ab_cl ass_get _space(spa_normal _cl ass(spa));
5421 umem free(tid, ztest_opts.zo_threads * sizeof (thread_t));

5423 /* Kill the resune thread */

5424 ztest_exiting = B_TRUE;

5425 VERI FY(thr_join(resume_tid, NULL, NULL) == 0);

5426 zt est _resune(spa);

5428 /*

5429 * Right before closing the pool, kick off a bunch of async I/Q
5430 * spa_close() should wait for it to conplete.

5431 *

5432 (uint64_t object = 1; object < 50; object++)

5433 dmu_pr ef et ch(spa- >spa_net a_obj set, object, 0, 1ULL << 20);
5435 spa_cl ose(spa, FTAQ;

5437 I*

5438 * Verify that we can | oop over all pools.

5439 */

5440 mut ex_ent er (&spa_nanespace_| ock) ;

5441 for (spa = spa_next (NULL); spa != NULL; spa = spa_next(spa))
5442 if (ztest_opts.zo_ver bose > 3)

5443 (void) printf("spa_next: found %\n", spa_nane(spa));
5444 mut ex_exi t (&spa_nanmespace_| ock) ;

5446 /*

5447 * Verify that we can export the pool and reinport it under a
5448 * different nane.

5449 */

5450 if (ztest_random(2) == 0) {

5451 char name[MAXNAMELEN] ;

5452 (void) snprintf(name, MAXNAMELEN, "%s_inport"

5453 ztest _opts. zo_pool);

5454 zt est _spa_i nport _export(ztest_opts.zo_pool, nane);

5455 ztest _spa_i nport _export(name, ztest_opts.zo_pool);

5456 }

5458 kernel _fini();

5460 i st_destroy(&zcl.zcl _call backs);

5462 (void) _mutex_destroy(&zcl.zcl_call backs_I ock);

5464 (void) rw ock_destroy(&ztest_name_| ock);

5465 (void) _nutex_destroy(&ztest_vdev_| ock);

5466 }

5468 static void

5469 ztest_freeze(void)

5470 {

5471 ztest_ds_t *zd = &ztest_ds[0];

5472 spa_t *spa;

new usr/src/cnd/ ztest/ ztest.c 27

5473

5475
5476

5478
5479
5480
5481
5482

5482
5483
5484
5485
5486
5487
5488
5489
5490

5492

5494
5495
5496
5497
5498

5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512

5514
5515
5516
5517
5518

5520
5521
5522
5523
5524
5525

5527
5528
5529
5530
5531
5532
5533
5534
5533
5534

int num oops = O;

if (ztest_opts.zo_verbose >= 3)
(void) printf("testing spa_freeze()...\n");

kernel _init(FREAD | FWRI TE);
VERI FYO(spa_open(zt est_opts. zo_pool, &spa, FTAG);
VERI FYO(zt est _dat aset _open(0));

VERI FY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAQ);
VERI FY3U(0, ==, ztest_dataset_open(0));
/*

* Force the first log block to be transactionally allocated.
* W have to do this before we freeze the pool -- otherw se
* the log chain won't be anchored.

*

/

whil e (BP | S_HOLE(&d- >zd_zi | og- >zl _header->zh_l og)) {
ztest_dmu_obj ect _all oc_free(zd, 0);
zi | _commi t(zd->zd_zilog, 0);

}
tXxg_wai t _synced(spa_get _dsl (spa), 0);
/*
* Freeze the pool. This stops spa_sync() from doing anything,

* so that the only way to record changes fromnow on is the ZIL.
*/
spa_freeze(spa);

/
Run tests that generate |log records but don't alter the pool config
or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
We do a txg_wait_synced() after each iteration to force the txg

to increase well beyond the |ast synced value in the uberbl ock.

The ZIL should be K with that.

* Ok ok ok % kK

/

while (ztest_randon(10) != 0 &&

nuni oops++ < ztest_opts.zo_naxl oops) {
ztest_dmu_wite parallel (zd, 0);
ztest_dmu_obj ect _al | oc_free(zd, 0);

) txg_wai t_synced(spa_get _dsl (spa), 0) ;

/*
* Commit all of the changes we just generated.
*/

zi | _commi t (zd->zd_zil og, 0);
txg_wai t _synced(spa_get _dsl (spa), 0);

/*
* Close our dataset and close the pool.
*/

zt est _dat aset _cl ose(0);

spa_cl ose(spa, FTAQ;

kernel _fini();

/*
:/Qaen and cl ose the pool and dataset to induce |og replay.

kernel _init(FREAD | FWRI TE);

VERI FYO(spa_open(ztest_opts. zo_pool, &spa, FTAQ);

VERI FYO(zt est _dat aset _open(0));

VERI FY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG);
VERI FY3U(0, ==, ztest_dataset_open(0));

zt est _dat aset _cl ose(0);

spa_cl ose(spa, FTAQ;

new usr/src/cnd/ ztest/ ztest.c

5535
5536 }

kernel _fini();

__unchanged_portion_onitted_

5576 /
5577
5578
5579

*

* Create a storage pool with the given name and initial vdev size.
* Then test spa_freeze() functionality.

*/

5580 static void
5581 ztest_init(ztest_shared_t *zs)

5582 {
5583
5584

5586
5587

5589

5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5607
5606
5607
5609
5608

5610
5612
5611
5612
5614
5616
5618
5620
5622
5624

5625
5626 }

spa_t *spa;
nvlist_t *nvroot,

*props;

VERI FY(_nmutex_i ni t (&t est_vdev_| ock, USYNC THREAD, NULL) ==
VERI FY(rw ock_i ni t (&t est_name_| ock, USYNC_THREAD, NULL) ==

kernel _i ni t (FREAD |
/*

FWRI TE) ;

* Create the storage pool.
*/

(void) spa_destroy(ztest_opts.zo_pool);
zt est _shared->zs_vdev_next _| eaf = 0;

zs->zs_splits = 0;
zs->zs_mirrors = zt

est

_opts. zo mrrors;

nvroot = nmake_vdev_root (NULL, NULL, zt est
0, ztest_opts.zo_raidz, zs- >zs_m’rror

props = neke_random pro

s();

P
for (int i = 0; i < SPA FEATURES; i++) {
char buf[1024];
(void) snprintf(buf, sizeof (buf),
spa_feature t abi e[i].fi unama)

_opts.zo_vdev_si ze,

s, 1);

"feature@s",

0)
0)

0

NULL))

VERI FYO(nvl i st _add_ui nt 64(pr ops, buf 0));

VERI FY3U(0, ==, nvlist_add_ui nt 64(props, buf, 0));
}
VERI FYO(spa_creat e(ztest_opts. zo_pool, nvroot, props, NULL));
VERI FY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props,
nvlist_free(nvroot);
VERI FYO(spa_open(ztest_opts. zo_pool, &spa, FTAG);
VERI FY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG);

zs->zs_met asl ab_sz

1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ns_shift;

spa_cl ose(spa, FTAQ;

kernel _fini();

ztest _run_zdb(ztest_opts.zo_pool);

ztest _freeze();

ztest _run_zdb(ztest _opts.zo_pool);

(void) rw ock_destroy(&ztest_nane_| ock);
(voi d) _nutex_destroy(&ztest_vdev_l ock);

__unchanged_portion_omtted_

5657 static void
5658 setup_hdr (void)

5659 {
5660
5661

int size;
ztest _shared_hdr _t

*hdr;

new usr/src/cnd/ ztest/ztest.c

5663 = (void *)mmap(0, P2ROUNDUP(si zeof (*hdr), getpagesize()),

5664 PROT_READ | PROT_WRI TE, MAP_SHARED, ZTEST_FD_DATA, 0);

5665 ASSERT(hdr != MAP_FAILED);

5667 VERI FYO(ftruncat e(ZTEST_FD_DATA, sizeof (ztest_shared_hdr_t)));

5669 VERI FY3U(0, ==, ftruncate(ZTEST_FD DATA, sizeof (ztest_shared_| hdr _t))):
5669 hdr->zh_hdr_si ze = S|zeof (ztest_shared_hdr_t);

5670 hdr->zh_ opts size = sizeof (ztest_shared_opts_ t)

5671 hdr->zh_si ze = sizeof (ztest_shared_t);

5672 hdr->zh_stats_size = S|zeof (ztest_shared_cal I state_t);

5673 hdr->zh_stats count = ZTEST_FUNCS;

5674 hdr->zh_ds_size = SIZEOf (ztest_shared_ds_t);

5675 hdr->zh_ds_count = ztest_opts.zo_dat asets;

5677 size = shared_data_si ze(hdr);

5678 VERI FYO(ftruncat e(ZTEST_FD | DATA si ze));

5680 VERI FY3U(0, ==, ftruncate(ZTEST_FD DATA, size));

5680 (void) munmap((caddr_t)hdr, P2ROUNDUP(si zeof (*hdr), getpagesize()));
5681 }

__unchanged_portion_onitted_

29

new usr/src/ common/ nvpair/fnvpair.c 1 new usr/src/ common/ nvpair/fnvpair.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 66 SIZe t SlzeY
9708 Thu Jul 26 14:18:59 2012 67 VERI FYO(nvlist_size(nvl, &size, NV_ENCODE NATI VE));
new usr/src/ common/ nvpair/fnvpair.c 67 VERI FY3U(nvl i st _size(nvl, &size, NV_ENCODE_NATIVE), ==, 0);
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero 68 return (size);
LEEE R R R R EEE R EEEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREEEEEEEEEEESES] 69
1/* __unchanged_portion_onitted_
2 * CDDL HEADER START
3 * 95 nvlist_t *
4 * The contents of this file are subject to the terms of the 96 fnvlist_unpack(char *buf, size_t buflen)
5 * Common Devel opnent and Distribution License (the "License"). 97 {
6 * You may not use this file except in conpliance with the License. 98 nvliist_t *rv;
7 * 99 VERI FYO(nvl i st _unpack(buf, buflen, & v, KM SLEEP));
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 99 VERI FY3U(nvl i st _unpack(buf, buflen, &v, KMSLEEP), ==, 0);
9 * or http://ww. opensol aris.org/os/licensing. 100 return (rv);
10 * See the License for the specific |anguage governi ng perm ssions 101 }
11 * and limtations under the License.
12~ 103 nvlist_t *
13 * When distributing Covered Code, include this CDDL HEADER in each 104 fnvlist_dup(nvlist_t *nvl)
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 105 {
15 * |If applicable, add the followi ng below this CDDL HEADER, wth the 106 nvliist_t *rv;
16 * fields enclosed by brackets "[]" replaced with your own identifying 107 VERI FYO(nvl i st _dup(nvl, &rv, KM SLEEP));
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 107 VERI FY3U(nvl i st_dup(nvl, &v, KMSLEEP), == 0);
18 * 108 return (rv);
19 * CDDL HEADER END 109 }
20 */
111 void
22 | * 112 fnvlist_merge(nvlist_t *dst, nvlist_t *src)
23 * Copyright (c) 2012 by Del phix. Al rights reserved. 113 {
24 =/ 114 VERI FYO(nvl i st _merge(dst, src, KM SLEEP));
114 VERI FY3U(nvl i st _nmerge(dst, src, KM SLEEP), ==, 0);
26 #include <sys/nvpair.h> 115 }
27 #include <sys/kmem h>
28 #include <sys/debug. h> 117 void
29 #ifndef _KERNEL 118 fnvlist_add_bool ean(nvlist_t *nvl, const char *nane)
30 #include <stdlib. h> 119 {
31 #endif 120 VERI FYO(nvl i st _add_bool ean(nvl, nane));
120 VERI FY3U(nvl i st _add_bool ean(nvl, nane), ==, 0);
33 /* 121 }
34 * "Force" nvlist wapper.
35 * 123 void
36 * These functions wap the nvlist_* functions with assertions that assune 124 fnvlist_add_bool ean_val ue(nvlist_t *nvl, const char *nane, boolean_t val)
37 * the operation is successful. This allows the caller’s code to be nmuch 125 {
38 * nore readable, especially for the fnvlist_|ookup_* and fnvpair_val ue_* 126 VERI FYO(nvl i st _add_bool ean_val ue(nvl, nane, val));
39 * functions, which can return the requested value (rather than filling in 126 VERI FY3U(nvl i st _add_bool ean_val ue(nvl, nane, val), == 0);
40 * a pointer). 127 }
41 *
42 * These functions use NV_UN QUE_NAME, encodi ng NV_ENCODE_NATI VE, and all ocate 129 void
43 * with KM SLEEP. 130 fnvlist_add_byte(nvlist_t *nvl, const char *nane, uchar_t val)
44 = 131 {
45 * More w appers shoul d be added as needed -- for exanple 132 VERI FYO(nvl i st _add_byte(nvl, nane, val));
46 * nvlist_|l ookup_*_array and nvpair_val ue_*_array. 132 VERI FY3U(nvl i st _add_byte(nvl, nane, val), ==, 0);
47 */ 133 }
49 nvlist_t * 135 voi d
50 fnvlist_alloc(void) 136 fnvlist_add_int8(nvlist_t *nvl, const char *nane, int8_t val)
51 { 137 {
52 nvlist_t *nvl; 138 VERI FYO(nvlist_add_i nt8(nvl, nanme, val));
53 VERI FYO(nvlist_all oc(&wvl, NV_UNI QUE_NAME, KM SLEEP)); 138 VERI FY3U(nvl i st _add_i nt8(nvl, nane, val), ==, 0);
53] VERI FY3U(nvlist_alloc(&wvl, NV_UNI QUE_NAME, KM SLEEP), ==, 0); 139 }
54 return (nvl);
55 } 141 voi d
__unchanged_portion_omtted_ 142 {nvl ist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
143
63 size_t 144 VERI FYO(nvl i st_add_ui nt8(nvl, nane, val));
64 fnvlist_size(nvlist_t *nvl) 144 VERI FY3U(nvl i st_add_uint8(nvl, nane, val), == 0);

65 { 145 }

new usr/src/ common/ nvpair/fnvpair.c

147 voi d

148 fnvlist_add_int16(nvlist_t *nvl, const char *nane,

149 {

150 VERI FYO(nvl i st _add_i nt16(nvl, nane, val));

150 VERI FY3U(nvl i st_add_i nt16(nvl, nane, val),

151 }

153 voi d

154 fnvlist_add_uint16(nvlist_t *nvl, const char *nane,
155 {

156 VERI FYO(nvl i st _add_ui nt 16(nvl, nane, val));
156 VERI FY3U(nvl i st _add_ui nt 16(nvl, nane, val),
157 }

159 void

160 fnvlist_add_int32(nvlist_t *nvl, const char *nane,

161 {

162 VERI FYO(nvl i st_add_i nt32(nvl, nane, val));

162 VERI FY3U(nvl i st _add_i nt 32(nvl, nane, val),

163 }

165 voi d

166 fnvlist_add_uint32(nvlist_t *nvl, const char *nane,
167 {

168 VERI FYO(nvl i st _add_ui nt 32(nvl, nanme, val));
168 VERI FY3U(nvl i st _add_ui nt 32(nvl, nane, val),
169 }

171 void

172 fnvlist_add_int64(nvlist_t *nvl, const char *nane,
173 {

174 VERI FYO(nvlist_add_i nt64(nvl, name, val));
174 VERI FY3U(nvl i st _add_i nt 64(nvl, nane, val),
175 }

177 void

178 fnvlist_add_uint64(nvlist_t *nvl, const char *nane,
179 {

180 VERI FYO(nvl i st_add_ui nt64(nvl, nanme, val));
180 VERI FY3U(nvl i st _add_ui nt 64(nvl, nare, val),
181 }

183 void

184 fnvlist_add_string(nvlist_t *nvl, const char *nane,
185 {

186 VERI FYO(nvl i st _add_string(nvl, nanme, val));
186 VERI FY3U(nvl i st_add_string(nvl, nanme, val),
187 }

189 voi d

190 fnvlist_add_nvlist(nvlist_t *nvl, const char *nane,
191 {

192 VERI FYO(nvlist_add_nvlist(nvl, name, val));
192 VERI FY3U(nvl i st _add_nvlist(nvl, narme, val),
193 }

195 voi d

196 fnvlist_add_nvpair(nvlist_t *nvl, nvpair_t *pair)
197 {

198 VERI FYO(nvl i st_add_nvpair(nvl, pair));

198 VERI FY3U(nvl i st_add_nvpair(nvl, pair), ==
199 }

201 void

202 fnvlist_add_bool ean_array(nvlist_t *nvl, const char

intl6_t val)

==A 0) ;

uint16_t val)

==N O);

int32_t val)

=, 0) ;

uint32_t val)

==1 0);

int64_t val)

==X 0) ;

uint64_t val)

=, 0)’

const char *val)

= 0);

nvlist_t *val)

=, 0);

0);

*narme,

new usr/src/ common/ nvpair/fnvpair.c

203 bool ean_t *val, uint_t n)

204 {

205 VERI FYO(nvl i st _add_bool ean_array(nvl, nane, val, n));

205 VERI FY3U(nvl i st _add_bool ean_array(nvl, name, val, n), ==, 0);

206 }

208 void

209 fnvlist_add_byte_ array(nvlist_t *nvl, const char *nane, uchar_t *val, uint_t n)
210 {

211 VERI FYO(nvl i st_add_byte_array(nvl, nanme, val, n));

211 VERI FY3U(nvl i st_add_byte_array(nvl, nanme, val, n), == 0);

212 }

214 void

215 fnvlist_add_int8_array(nvlist_t *nvl, const char *nanme, int8_t *val, uint_t n)
216 {

217 VERI FYO(nvlist_add_int8_array(nvl, nane, val, n));

217 VERI FY3U(nvlist_add_int8_ array(nvl, nanme, val, n), == 0);

218 }

220 void

221 fnvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *val, uint_t n)
222 {

223 VERI FYO(nvl i st _add_uint8_array(nvl, nane, val, n));

223 VERI FY3U(nvl i st _add_ui nt8_array(nvl, nane, val, n), == 0);

224 }

226 void

227 fnvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *val, uint_t n)
228 {

229 VERI FYO(nvlist_add_i nt16_array(nvl, nane, val, n));

229 VERI FY3U(nvlist_add_int16_array(nvl, name, val, n), == 0);

230 }

232 void

233 fnvlist_add_uint16_array(nvlist_t *nvl, const char *nane,

234 uint16_t *val, uint_t n)

235 {

236 VERI FYO(nvl i st_add_uint16_array(nvl, name, val, n));

236 VERI FY3U(nvl i st_add_uint16_array(nvl, nanme, val, n), == 0);

237 }

239 void

240 fnvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *val, uint_t n)
241 {

242 VERI FYO(nvl i st _add_i nt32_array(nvl, nane, val, n));

242 VERI FY3U(nvl i st _add_int32_array(nvl, nanme, val, n), == 0);

243 }

245 void

246 fnvlist_add_uint32_array(nvlist_t *nvl, const char *nane,

247 uint32_t *val, uint_t n)

248 {

249 VERI FYO(nvlist_add_ui nt32_array(nvl, name, val, n));

249 VERI FY3U(nvl i st _add_ui nt 32_array(nvl, nanme, val, n), == 0);

250 }

252 void

253 fnvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *val, uint_t n)
254 {

255 VERI FYO(nvlist_add_i nt64_array(nvl, nanme, val, n));

255 VERI FY3U(nvlist_add_i nt64_array(nvl, nanme, val, n), == 0);

256 }

258 void

259 fnvlist_add_uint64_array(nvlist_t *nvl, const char *nane,

new usr/src/ common/ nvpair/fnvpair.c

260 uint64_t *val, uint_t n)
261 {
262 VERI FYO(nvl i st _add_ui nt64_array(nvl, nane, val, n));
262 VERI FY3U(nvl i st _add_ui nt 64_array(nvl, nanme, val, n), == 0);
263 }
265 void
266 fnvlist_add_string_array(nvlist_t *nvl, const char *nane,
267 char * const *val, uint_t n)
268 {
269 VERI FYO(nvlist_add_string_array(nvl, name, val, n));
269 VERI FY3U(nvl i st _add_string_array(nvl, nanme, val, n), == 0);
270 }
272 void
273 fnvlist_add_nvlist_array(nvlist_t *nvl, const char *nane,
274 nvlist_t **val, uint_t n)
275 {
276 VERI FYO(nvlist_add_nvlist_array(nvl, name, val, n));
276 VERI FY3U(nvlist_add_nvlist_array(nvl, name, val, n), == 0);
277 }
279 void
280 fnvlist_remve(nvlist_t *nvl, const char *nane)
281 {
282 VERI FYO(nvl i st _renmpve_al | (nvl, nane));
282 VERI FY3U(nvlist_renove_all (nvl, nanme), ==, 0);
283 }
285 void
286 fnvlist_renmove_nvpair(nvlist_t *nvl, nvpair_t *pair)
287 {
288 VERI FYO(nvli st _remove_nvpair(nvl, pair));
288 VERI FY3U(nvl i st _renove_nvpair(nvl, pair), == 0);
289 }
291 nvpair_t *
292 fnvlist_lookup_nvpair(nvlist_t *nvl, const char *nane)
293 {
294 nvpair_t *rv;
295 VERI FYO(nvl i st _| ookup_nvpair(nvl, name, &v));
295 VERI FY3U(nvl i st _| ookup_nvpair (nvl, nane, &v), ==, 0);
296 return (rv);
297 }
__unchanged_portion_onitted_
306 bool ean_t
307 fnvlist_| ookup_bool ean_val ue(nvlist_t *nvl, const char *nane)
308 {
309 bool ean_t rv;
310 VERI FYO(nvl i st _| ookup_bool ean_val ue(nvl, nanme, &v));
310 VERI FY3U(nvl i st _| ookup_bool ean_val ue(nvl, nane, &v), == 0);
311 return (rv);
312 }
314 uchar _t
315 fnvlist_|l ookup_byte(nvlist_t *nvl, const char *nane)
316 {
317 uchar _t rv;
318 VERI FYO(nvl i st_| ookup_byte(nvl, nanme, &v));
318 VERI FY3U(nvl i st _| ookup_byte(nvl, nanme, &v), == 0);
319 return (rv);
320 }
322 int8 t
323 fnvlist_lookup_int8(nvlist_t *nvl, const char *nane)

new usr/src/ common/ nvpair/fnvpair.c

324 {

325 int8_t rv;

326 VERI FYO(nvl i st _| ookup_i nt8(nvl, name, &v));
326 VERI FY3U(nvli st _| ookup_i nt8(nvl, nane, &v), ==
327 return (rv);

328 }

330 int16_t

331 fnvlist_lookup_intl6(nvlist_t *nvl, const char *nane)
332 {

333 intl6_t rv;

334 VERI FYO(nvl i st_| ookup_i nt16(nvl, nanme, &v));
334 VERI FY3U(nvl i st_| ookup_i nt16(nvl, nane, &v),
335 return (rv);

336 }

338 int32_t

339 fnvlist_lookup_int32(nvlist_t *nvl, const char *nane)
340 {

341 int32_t rv;

342 VERI FYO(nvl i st _| ookup_i nt 32(nvl, name, &rv));
342 VERI FY3U(nvl i st_| ookup_i nt32(nvl, nane, &v),
343 return (rv);

344 }

346 int64_t

347 fnvlist_|lookup_int64(nvlist_t *nvl, const char *nane)
348 {

349 int64_t rv;

350 VERI FYO(nvl i st _| ookup_i nt 64(nvl, name, &rv));
350 VERI FY3U(nvl i st _| ookup_i nt 64(nvl, nane, &v),
351 return (rv);

352 }

354 uint8_t

355 fnvlist_|lookup_uint8_t(nvlist_t *nvl, const char *nane)
356 {

357 uint8_ t rv;

358 VERI FYO(nvl i st_| ookup_ui nt8(nvl, name, &vVv));
358 VERI FY3U(nvl i st _| ookup_ui nt8(nvl, nanme, &v),
359 return (rv);

360 }

362 uint16 t

363 fnvlist_|lookup_uintl6(nvlist_t *nvl, const char *nane)
364 {

365 uintl6_t rv;

366 VERI FYO(nvl i st_l ookup_ui nt16(nvl, nanme, &v));
366 VERI FY3U(nvl i st _l ookup_ui nt 16(nvl, nanme, &v),
367 return (rv);

368 }

370 uint32_t

371 fnvlist_lookup_uint32(nvlist_t *nvl, const char *nane)
372 {

373 uint32_t rv;

374 VERI FYO(nvl i st_l ookup_ui nt32(nvl, nanme, &v));
374 VERI FY3U(nvl i st _| ookup_ui nt 32(nvl, nane, &v),
375 return (rv);

376 }

378 uint64_t

379 fnvlist_lookup_uinté4(nvlist_t *nvl, const char *nane)
380 {

381 uint6d_t rv;

382 VERI FYO(nvl i st _| ookup_ui nt 64(nvl, name, &v));

new usr/src/ common/ nvpair/fnvpair.c 7 new usr/src/ common/ nvpair/fnvpair.c
382 VERI FY3U(nvl i st _| ookup_ui nt 64(nvl, nanme, &v), == 0);
383 return (rv); 442 int64_t
384 } 443 fnvpair_val ue_i nt 64(nvpair_t *nvp)
444 {
386 char * 445 inté4_t rv;
387 fnvlist_lookup_string(nvlist_t *nvl, const char *nane) 446 VERI FYO(nvpai r _val ue_i nt 64(nvp, &vVv));
388 { 446 VERI FY3U(nvpai r _val ue_i nt 64(nvp, &v), == 0);
389 char *rv; 447 return (rv);
390 VERI FYO(nvl i st_l ookup_string(nvl, nane, &v)); 448 }
390 VERI FY3U(nvl i st_| ookup_string(nvl, name, &v), == 0);
391 return (rv); 450 uint8_t
392 } 451 fnvpair_val ue_uint8_t(nvpair_t *nvp)
452 {
394 nvlist_t * 453 uint8_t rv;
395 fnvlist_lookup_nvlist(nvlist_t *nvl, const char *nane) 454 VERI FYO(nvpai r _val ue_ui nt8(nvp, &v));
396 { 454 VERI FY3U(nvpai r _val ue_ui nt 8(nvp, &v), == 0);
397 nvlist_t *rv; 455 return (rv);
398 VERI FYO(nvl i st_|l ookup_nvlist(nvl, name, &v)); 456 }
398 VERI FY3U(nvl i st_| ookup_nvlist(nvl, name, &v), == 0);
399 return (rv); 458 uint 16_t
400 } 459 fnvpair_val ue_uint16(nvpair_t *nvp)
460 {
402 bool ean_t 461 uintl6_t rv;
403 fnvpair_val ue_bool ean_val ue(nvpair_t *nvp) 462 VERI FYO(nvpai r _val ue_ui nt 16(nvp, &v));
404 { 462 VERI FY3U(nvpai r _val ue_ui nt 16(nvp, &v), == 0);
405 bool ean_t rv; 463 return (rv);
406 VERI FYO(nvpai r _val ue_bool ean_val ue(nvp, &v)); 464 }
406 VERI FY3U(nvpai r _val ue_bool ean_val ue(nvp, &v), == 0);
407 return (rv); 466 uint32_t
408 } 467 fnvpair_val ue_uint32(nvpair_t *nvp)
468 {
410 uchar _t 469 uint32_t rv;
411 fnvpair_val ue_byte(nvpair_t *nvp) 470 VERI FYO(nvpai r _val ue_ui nt 32(nvp, &v));
412 { 470 VERI FY3U(nvpai r _val ue_ui nt32(nvp, &rv), ==, 0);
413 uchar_t rv; 471 return (rv);
414 VERI FYO(nvpai r _val ue_byte(nvp, &vVv)); 472 }
414 VERI FY3U(nvpai r _val ue_byte(nvp, &v), == 0);
415 return (rv); 474 uint64_t
416 } 475 fnvpair_val ue_ui nt 64(nvpair_t *nvp)
476 {
418 int8_t 477 uint64_t rv;
419 fnvpair_val ue_int8(nvpair_t *nvp) 478 VERI FYO(nvpai r_val ue_ui nt 64(nvp, &v));
420 { 478 VERI FY3U(nvpai r _val ue_ui nt 64(nvp, &v), == 0);
421 int8_t rv; 479 return (rv);
422 VERI FYO(nvpai r_val ue_i nt 8(nvp, &rv)); 480 }
422 VERI FY3U(nvpai r _val ue_i nt 8(nvp, &v), == 0);
423 return (rv); 482 char *
424 } 483 fnvpair_val ue_string(nvpair_t *nvp)
484 {
426 int16_t 485 char *rv;
427 fnvpair_val ue_i nt16(nvpair_t *nvp) 486 VERI FYO(nvpai r_val ue_string(nvp, &v));
428 { 486 VERI FY3U(nvpai r _val ue_string(nvp, &v), == 0);
429 intl6_t rv; 487 return (rv);
430 VERI FYO(nvpai r_val ue_i nt 16(nvp, & v)); 488 }
430 VERI FY3U(nvpai r _val ue_i nt 16(nvp, &v), == 0);
431 return (rv); 490 nvlist_t *
432 } 491 fnvpair_value_nvlist(nvpair_t *nvp)
492 {
434 int32_t 493 nvlist_t *rv;
435 fnvpair_val ue_i nt 32(nvpai r_t *nvp) 494 VERI FYO(nvpai r _val ue_nvlist(nvp, &vV));
436 { 494 VERI FY3U(nvpai r _val ue_nvlist(nvp, &v), == 0);
437 int32_t rv; 495 return (rv);
438 VERI FYO(nvpai r_val ue_i nt 32(nvp, &v)); 496 }
438 VERI FY3U(nvpai r _val ue_i nt 32(nvp, &v), ==, 0); _____unchanged_portion_onitted_
439 return (rv);
440 }

new usr/src/lib/libc/port/threads/assfail.c

R R R R

12567 Thu Jul 26 14:19: 00 2012
new usr/src/lib/libc/port/threads/assfail.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

449 void

450 assfail 3(const char *assertion, uintmax_t |v, const char *op, uintmax_t rv,
451 const char *filenanme, int line_num

452 {

453 char buf[1000];

454 (void) strcpy(buf, assertion);

455 (void) strcat(buf, " (");

455 (void) strcat(buf, " (0x");

456 ultos((uint64_t)lv, 16, buf + strlen(buf));
457 (void) strcat(buf, " ");

458 (void) strcat(buf, op);

459 (void) strcat(buf, " ");

459 (void) strcat(buf, " O0x");

460 ultos((uint64_t)rv, 16, buf + strlen(buf));
461 (void) strcat(buf, ")");

462 __assfail (buf, filenanme, |ine_num;

463 }

__unchanged_portion_omtted_

new usr/src/lib/libzpool/Mkefile.com

R R R R

2139 Thu Jul 26 14:19:01 2012

new usr/src/lib/libzpool/Mkefile.com

3006

VERI FY[S, U, P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2012 by Del phix. Al rights reserved.

HEHHFHHHHHFH T TR

LI BRARY= | i bzpool . a
VERS= .1

include the |list of ZFS sources

include ../../../uts/comon/ Makefile.files

KERNEL_OBJS = kernel .o taskqg.o util.o
OBJECTS=$(ZFS_COVMON_0OBJS) $(ZFS_SHARED_OBJS) $(KERNEL_OBJS)

include library definitions
include ../../Makefile.lib

ZFS_COWON_SRCS= $(ZFS_COWON_OBJS: % 0=../../../uts/common/ fs/zfs/%c)
ZFS_SHARED_SRCS= $(ZFS_SHARED_OBJS: % 0=../../ ../ common/ zf s/ % c)
KERNEL_ SRCS= $(KERNEL_OBJS: % o=. ./ cormon/ % c)

SRCS=$(ZFS_COMMON_SRCS) $(ZFS_SHARED SRCS) $(KERNEL_SRCS)

SRCDI R= ../ common

There should be a mapfile here

MAPFI LES =

LI BS += $(LI NTLI B)

INCS += -1I../conmmon

INCS += -1../../../uts/comon/fs/zfs

INCS += -1../../../common/ zfs

INCS += -I../../../conmmon

$(LINTLI B) := SRCS= $(SRCDI R) / $(LI NTSRC)

C99MODE= -xc99=%al |

C99LMODE= - Xc99=%al |

CFLAGS += -g $(CCVERBOSE) $(CNOGLOBAL)

CFLAGSB4 += -g $(CCVERBOSE) $(CNOGLOBAL)

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

new usr/src/lib/libzpool/Mkefile.com

62
63
62
65
67
69
71
73
74
75
77

78
79

LDLI BS += -lcndutils -1unmem -1 avl
CPPFLAGS += $(1 NCS) - DDEBUG
CPPFLAGS += $(1 NCS)
. KEEP_STATE:
all: $(LIBS)
lint: $(LINTLIB)
include ../../Makefile.targ
pics/%o: ../../../luts/comon/fs/zfs/%c
$(COWPILE.c) -0 $@ $<
$(POST_PROCESS_0O)
pics/%o: ../../../comon/zfs/%c

$(COWPI LE. ¢) -0 $@ $<
$(POST_PROCESS_0O)

-lnvpair -1z -lc -lsysevent -I|nd

new usr/src/lib/libzpool/comon/sys/zfs_context.h

R R R R

15333 Thu Jul 26 14:19:02 2012
new usr/src/lib/libzpool/comon/sys/zfs_context.h
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
*

/

28 #ifndef _SYS ZFS_CONTEXT_H
29 #define _SYS_ZFS_CONTEXT_H

31 #ifdef __cplusplus
32 extern "C' {
33 #endi f

35 #define _SYS MJUTEX _H
36 #define _SYS RW.OCK H
37 #define _SYS CONDVAR H
38 #define _SYS SYSTM H
39 #define _SYS DEBUG H
39 #define _SYS T _LOCK H
40 #define _SYS_VNODE_H
41 #define _SYS VFS H

42 #define _SYS_SUNDDI _H
43 #define _SYS CALLB H

45 #incl ude <stdio. h>
46 #include <stdlib. h>
47 #incl ude <stddef.h>
48 #include <stdarg. h>
49 #include <fcntl. h>
50 #include <unistd. h>
51 #include <errno. h>
52 #include <string. h>
53 #include <strings. h>
54 #include <synch. h>
55 #include <thread. h>
56 #include <assert.h>
57 #include <alloca. h>
58 #i nclude <unem h>
59 #include <limts.h>
60 #i nclude <atom c. h>

new usr/src/lib/libzpool/comon/sys/zfs_context.h

61 #include <dirent.h>

62 #include <tine.h>

63 #i nclude <libsysevent.h>

64 #include <sys/note. h>

65 #include <sys/types. h>

66 #include <sys/cred. h>

67 #incl ude <sys/sysmacros. h>

68 #i ncl ude <sys/bitnap. h>

69 #include <sys/resource. h>

70 #include <sys/byteorder. h>

71 #include <sys/list.h>

72 #include <sys/uio.h>

73 #include <sys/zfs_debug. h>

74 #include <sys/sdt.h>

75 #include <sys/kstat.h>

76 #include <sys/u8_textprep. h>
77 #include <sys/sysevent/eventdefs. h>
78 #include <sys/sysevent/dev. h>
79 #include <sys/sunddi.h>

80 #i ncl ude <sys/debug. h>

82 /*
83 * Debuggi ng
*/

86 /*

87 * Note that we are not using the debugging |evels.

88 */

90 #define CE_CONT
91 #define CE_NOTE
92 #define CE_WARN
93 #define CE_PANIC
94 #define CE_| GNORE

continuation
notice

war ni ng

pani c

print nothing

AWNRO
~———
EE

96 /*
97 * ZFS debuggi ng
*/

100 #i fdef ZFS_DEBUG
101 extern void dprintf_setup(int *argc, char **argv);
102 #endi f /* ZFS_DEBUG */

104 extern void crm_err(int, const char *, ...);

105 extern void vecrm_err(int, const char *, __va_list);
106 extern void panic(const char *,.

107 extern void vpani c(const char *, __va_l ist);

109 #define fmpanic pani ¢

111 extern int aok;

113 /* This definition is copied fromassert.h. */
114 #if defined(__STDC_ _

115 #if STDC VERSION__ - 0 >= 199901L

116 #define zverify(EX) (voi d)((EX) |] (aok) || \

117 (__assert_c99(#EX, __FILE__, __LINE_, _ func
118 #el se

119 #define zverify(EX) (v0|d)((EX) |l (aok) |1\

120 (__assert (#EX, _ | =), 0))

121 #endif /* __STDC VERSION__ - O >= 199901L */

122 #el se

123 #define zverlfy(EX) (v0|d)((EX) || (aok) || \

124 (_assert ("EX", __| =, __LINE_), 0))

125 #endif /% _STDC__ */

_)

0))

new usr/src/lib/libzpool/comon/sys/zfs_context.h

128 #define VERIFY zverify
129 #define ASSERT zverify
130 #undef assert

131 #define assert zverify

133 extern void __assert(const char *, const char *, int);

135 #ifdef |int

136 #define VERI FY3_I MPL(Xx, vy, z, t) if (x ==2z) ((void)0)
137 #el se

138 /* BEG N CSTYLED */

139 #define VERI FY3_| MPL(LEFT, OP, RIGHT, TYPE) do { \

140 const TYPE __left = (TYPE)(LEFT); \

141 const TYPE _ right = (TYPE) (R GHT); \

142 if (I(__left OP __right) &k ('aok)) { \

143 char *__buf = alloca(256); \

144 (void) snprintf(__buf, 256, "% % % (Ox%I|x % Ox%Ix)",
145 #LEFT, #OP, #RI GHT, \

146 (u_ Ionglongt) left, #OP, (u longlong_t)__right);
147 __assert(__buf, _ FILE LI NE_);

148 }\

149 NOTE(CONSTCOND) } while (0)
150 /* END CSTYLED */
151 #endif /* lint */

153 #define VER FY3S(x, Yy, z) VERI FY3_| MPL(X, Yy, z, int64_t)
154 #define VER FY3U(x, Yy, z) VERI FY3_IMPL(X, Yy, z, uint64_t)
155 #define VERI FY3P(x, y, z) VERI FY3_| MPL(Xx, y, z, uintptr_t)

157 #i fdef NDEBUG

158 #define ASSERT3S(x, y, 2z) ((voi d)0)
159 #define ASSERT3U(X, y, z) ((voi d)0)
160 #define ASSERT3P(Xx, y, z) ((voi d)0)

161 #el se
162 #define ASSERT3S(x, y, 2z)
163 #define ASSERT3U(X, Yy, 2z)
164 #define ASSERT3P(Xx, y, z)
165 #endi f

VERI FY3S(Xx, VY, 2z)
VERI FY3U(x, vy, z)
VERI FY3P(x, Yy, z)

113 /*

114 * Dlrace SDT probes have different signatures in userland than they do in
115 * kernel. |f they' re being used in kernel code, re-define themout of
116 * existence for their counterparts in libzpool.

117 */

119 #ifdef DTRACE_PROBE

120 #undef DTRACE PROBE

121 #defi ne DTRACE_PROBE(a) ((v0| d) 0)
122 #endif /* DTRACE_PROBE

124 #ifdef DTRACE_PROBE1l

125 #undef DTRACE_PROBE1

126 #define DTRACE PROBE1(a, b, c) ((void)0)
127 #endif /* DTRACE_PROBE1l *]

129 #i fdef DTRACE_PROBE2

130 #undef DTRACE PROBE2

131 #define DTRACE_PROBE2(a, b c, d, e)
132 #endif /* DTRACE_PROBE2 *

((voi d) 0)

134 #ifdef DTRACE_PROBE3

135 #undef DTRACE_PROBE3

136 #define DTRACE_ - PROBE3(a, b, c, d, e, f, Q)
137 #endif /* DTRACE_PROBE3 *]

((voi d) 0)

\
\

new usr/src/lib/libzpool/comon/sys/zfs_context.h

139 #i fdef DTRACE_PROBE4

140 #undef DTRACE PROBE4

141 #define DTRACE PROBE4(a, b, ¢, d, e, f, g, h, i)
142 #endif /* DTRACE_PROBE4 */

((voi d)0)

144 | *

145 * Threads

146 *

147 #define curthread ((void *)(uintptr_t)thr_self())
149 typedef struct kthread kthread_t;

151 #define thread_create(stk, stksize, func, arg, len, pp, state, pri)
152 zk_thread_create(func, arg)

153 #define thread _exit() thr exM(NULL)

154 #define thread_join(t) panic("libzpool cannot join threads")

156 #define newproc(f, a, cid, pri, ctp, pid) (ENOSYS)

158 /* in libzpool, pO exists only to have its address taken */
159 struct proc {

160 uintptr_t
161 };
__unchanged_portion_onitted_

this_is_never_used_dont_dereference_it;

new usr/ src/ uts/comon/ di sp/ sysdc. c

R R R R

37877 Thu Jul 26 14:19:03 2012
new usr/src/ uts/comron/ di sp/ sysdc. c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
* *

P R R]

1/*

I T T T T

I A
- -

kAR KK IR AR AR KKKk Kk Kk

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2009, 2010, Oracle and/or its affiliates. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.

The System Duty Cycle (SDC) scheduling class

Backgr ound

Kernel threads in Solaris have traditionally not been | arge consuners

of CPU tine. They typically wake up, performa snall anount of

work, then go back to sleep waiting for either a timeout or another
signal. On the assunption that the small anmount of work that they do

is inmportant for the behavior of the whole system these threads are
treated kindly by the dispatcher and the SYS scheduling class: they run
wi t hout preenption from anything other than real-time and interrupt
threads; when preenpted, they are put at the front of the queue, so they
generally do not migrate between CPUs; and they are allowed to stay
running until they voluntarily give up the CPU.

As Sol aris has evol ved, new workl oads have energed which require the
kernel to performsignificant amounts of CPU-intensive work. One

exanpl e of such a workload is ZFS s transacti on group sync processing.
Each sync operation generates a |large batch of 1/Cs, and each I/0O

may need to be conpressed and/or checksummed before it is witten to
storage. The taskq threads which performthe conpression and checksuns
will run nonstop as long as they have work to do; a |arge sync operation
on a conpression-heavy dataset can keep them busy for seconds on end.
This causes hunman-tine-scal e di spatch | atency bubbles for any other

t hreads which have the misfortune to share a CPU with the taskq threads.

The SDC scheduling class is a solution to this problem

Overvi ew
SDC is centered around the concept of a thread’ s duty cycle (DC):

ONPRCC ti me

new usr/ src/ uts/comon/ di sp/ sysdc. c

B T T T T I T T T I i T A

ONPROC + Runnable tine

Duty Cycle =

This is the ratio of the time that the thread spent running on a CPU
divided by the time it spent running or trying to run. It is unaffected
by any time the thread spent sl eeping, stopped, etc.

A thread joining the SDC class specifies a "target" DC that it wants
torun at. To inplenment this policy, the routine sysdc_update() scans
the list of active SDC threads every few ticks and uses each thread's
mcrostate data to conpute the actual duty cycle that that thread

has experienced recently. If the thread is under its target DC, it
priority is increased to the nmaxi mum avail abl e (sysdc_maxpri, which i
99 by default). |If the thread is over its target DC, its priority is
reduced to the mninmum avail able (sysdc_minpri, 0 by default). This
is afairly primtive approach, in that it doesn’'t use any of the
intermediate priorities, but it’s not conpletely inappropriate. Even
though threads in the SDC class might take a while to do their job, they
are by some definition inportant if they' re running inside the kernel,
so it is reasonable that they should get to run at priority 99.

S
S

If a thread is running when sysdc_update() calculates its actual duty
cycle, and there are other threads of equal or greater priority on its
CPU s di spatch queue, sysdc_update() preenpts that thread. The thread
acknow edges the preenption by calling sysdc_preenpt(), which calls
set backdg(), which gives other threads wth the sane priority a chance
torun. This creates a de facto time quantumfor threads in the SDC
schedul i ng cl ass.

An SDC thread which is assigned priority 0O can continue to run if
nothing el se needs to use the CPU that it’s running on. Simlarly, an
SDC thread at priority 99 might not get to run as nmuch as it wants to
if there are other priority-99 or higher threads on its CPU These
situations woul d cause the thread to get ahead of or behind its target
DC, the |onger the situations |asted, the further ahead or behind the
thread would get. Rather than condemming a thread to a lifetine of
paying for its youthful indiscretions, SDC keeps "base" val ues for
ONPRCC and Runnable tines in each thread’ s sysdc data, and updates these
val ues periodically. The duty cycle is then conputed using the el apsed
anpbunt of ONPROC and Runnabl e times since those base tines.

Si nce sysdc_update() scans SDC threads fairly frequently, it tries to
keep the list of "active" threads snall by pruning out threads which
have been asleep for a brief tine. They are not pruned i nmedi ately upon
going to sleep, since some threads nay bounce back and forth between

sl eepi ng and bei ng runnabl e.

Interfaces

voi d sysdc_thread_enter(t, dc, flags)
Mves a kernel thread fromthe SYS scheduling class to the
SDC class. t nust have an associated LWP (created by calling
Iwp_kernel _create()). The thread will have a target DC of dc.
Fl ags should be either 0 or SYSDC THREAD BATCH. |If
SYSDC_THREAD BATCH is specified, the thread is expected to be
doing | arge amobunts of processing.

Conpl i cati ons

- Run queue bal anci ng

The Sol aris dispatcher is biased towards letting a thread run
on the sane CPU which it last ran on, if no nore than 3 ticks

new usr/ src/ uts/comon/ di sp/ sysdc. c

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

B I T T S

(i.e. rechoose_interval) have passed since the thread |ast ran.
This helps to preserve cache warnth. On the other hand, it also
tries to keep the per-CPU run queues fairly balanced; if the CPU
chosen for a runnable thread has a run queue which is three or
nore threads |onger than a neighboring CPU s queue, the runnable
thread is dispatched onto the nei ghboring CPU instead.

These policies work well for sonme workloads, but not for many SDC
threads. The taskq client of SDC, for exanple, has many discrete
units of work to do. The work units are largely independent, so
cache warnth is not an inportant consideration. It is inportant
that the threads fan out quickly to different CPUs, since the
ambunt of work these threads have to do (a few seconds worth at a
tine) doesn't |eave much time to correct thread placenment errors
(i.e. two SDC threads being dispatched to the sane CPU).

To fix this, SDC uses the TS RUNQVATCH flag introduced for FSS.
This tells the dispatcher to keep nei ghboring run queues’ |engths
nore evenly matched, which allows SDC threads to migrate nore
easily.

LWPs and system processes

SDC can only be used for kernel threads. Since SDC uses mcrostate
accounting data to conpute each thread’ s actual duty cycle, all
threads entering the SDC class nust have associated LWPs (which
store the nmicrostate data). This neans that the threads have to
be associated with an SSYS process, i.e. one created by newproc().
If the microstate accounting information is ever noved into the
kthread_t, this restriction could be lifted.

Deal ing with oversubscription

Since SDC duty cycles are per-thread, it is possible that the
aggregate requested duty cycle of all SDC threads in a processor
set could be greater than the total CPU tine available in that set.
The FSS scheduling class has an anal ogous situation, which it deals
with by reducing each thread’s allotted CPU tine proportionally.
Since SDC doesn’t need to be as precise as FSS, it uses a sinpler
solution to the oversubscription problem

sysdc_updat e() accurul ates the amount of tine that max-priority SDC
threads have spent on-CPU in each processor set, and uses that sum
to create an inplied duty cycle for that processor set:

accunul ated CPU tine

(# CPUs) * time since |last update

pset DC =

If this inplied duty cycle is above a maxi mum pset duty cycle (90%
by default), sysdc_update() sets the priority of all SDC threads
in that processor set to sysdc_minpri for a "break" period. After
the break period, it waits for a "nobreak" period before trying to
enforce the pset duty cycle limt again.

Processor sets

As the above inplies, SDCis processor set aware, but it does not
currently allow threads to change processor sets while in the SDC
class. Instead, those threads nust join the desired processor set
before entering SDC. [1]

Bat ch t hreads

A thread joining the SDC class can specify the SDC_THREAD BATCH
flag. This flag currently has no effect, but narks threads which

new usr/src/ uts/comon/ di sp/ sysdc. c

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

B T T I T T I T T R

do bul k processing.

- t_kpri_req

The TS and FSS scheduling cl asses pay attention to t_kpri_req,

whi ch provides a sinple formof priority inheritance for

synchroni zation primtives (such as rw ocks hel d as READER) which
cannot be traced to a unique thread. The SDC cl ass does not honor
t_kpri_req, for a few reasons:

1. t_kpri_req is notoriously inaccurate. A neasure of its
inaccuracy is that it needs to be cleared every tinme a thread
returns to user node, because it is frequently non-zero at that
point. This can happen because "ownership" of synchronization
primtives that use t_kpri_req can be silently handed off,
| eaving no opportunity to will the t_kpri_req inheritance.

2. Unlike in TS and FSS, threads in SDC *wil|* eventually run at
kernel priority. This nmeans that even if an SDC t hread
is holding a synchronization primtive and running at |ow
priority, its priority will eventually be rai sed above 60,
allowing it to drive on and rel ease the resource.

3. The first consuner of SDC uses the taskq subsystem which holds
a reader lock for the duration of the task’s execution. This
woul d nmean that SDC threads woul d never drop bel ow ker nel
priority in practice, which defeats one of the purposes of SDC.

- Wiy not FSS?

It might seemthat the existing FSS scheduling class could solve
the problens that SDC is attenpting to solve. FSS' s nore precise
solution to the oversubscription probl emwould hardly cause
trouble, as long as it performed well. SDCis inplenented as

a separate scheduling class for two main reasons: the initial
consunmer of SDC does not nmap well onto the "project" abstraction
that is central to FSS, and FSS does not expect to run at kernel
priorities.

Tunabl es

sysdc_updat e_i nt erval _nsec:

sysdc_reset _interval _nmsec:

sysdc_prune_interval _nsec:

sysdc_break_nsec:

Nunber of milliseconds between
consecutive thread priority updates.

Nurmber of mlliseconds between
consecutive resets of a thread’ s base ONPROC and Runnabl e
tines.

Nurmber of mlliseconds of sleeping
before a thread is pruned fromthe active list.

sysdc_max_pset _DC: Al l owabl e percentage of a processor set’s

CPU tinme which SDC can give to its high-priority threads.

Nunmber of mlliseconds of "break" taken when
sysdc_max_pset _DC i s exceeded.

Future work (in SDC and rel ated subsystens)

Per-thread rechoose interval (0 for SDO)

Al l ow each thread to specify its own rechoose interval. SDC
threads woul d specify an interval of zero, which would rechoose
the CPUwith the |owest priority once per update.

new usr/ src/ uts/comon/ di sp/ sysdc. c

new usr/ src/ uts/comon/ di sp/ sysdc. c

260 *

261 * - Allow threads to change processor sets after joining the SDC cl ass
262 *

263 * - Thread groups and per-group DC

264 *

265 * It might be nice to be able to specify a duty cycle which applies
266 * to a group of threads in aggregate.

267 *

268 * - Per-group DC callback to allow dynam ¢ DC tuning

269 *

270 * Currently, DCs are assigned when the thread joins SDC. Sone
271 * wor kl oads coul d benefit frombeing able to tune their DC using
272 * subsyst em speci fic know edge about the workl oad.

273 *

274 * - Finer-grained priority updates

275 *

276 * - More nuanced nmanagenent of oversubscription

277 *

278 * - Moving other CPU-intensive threads into SDC

279 *

280 * - Move nsacct data into kthread_t

281 *

282 * This would all ow kernel threads without LWPs to join SDC
283 *

284 *

285 * Footnotes

286 *

287 * [1] The details of doing so are left as an exercise for the reader.
288 */

290 #include <sys/types. h>

291 #include <sys/sysdc. h>

292 #include <sys/sysdc_i npl . h>

294 #incl ude <sys/cl ass. h>

295 #include <sys/cm_err. h>

296 #include <sys/cpuvar.h>

297 #include <sys/cpupart.h>

298 #incl ude <sys/ debug. h>

299 #include <sys/disp. h>

300 #include <sys/errno. h>

301 #include <sys/inline.h>

302 #include <sys/knmem h>

303 #i ncl ude <sys/nodctl.h>

304 #include <sys/schedctl.h>

305 #include <sys/sdt.h>

306 #include <sys/sunddi.h>

307 #include <sys/sysmacros. h>

308 #include <sys/systm h>

309 #include <sys/var.h>

311 /*

312 * Tunables - loaded into the internal state at nodule load tine
313 *

314 uint_t sysdc_update_i nterval _nsec = 20;

315 uint_t sysdc_reset _interval _nsec = 400;

316 uint_t sysdc_prune_interval _nsec = 100;

317 uint_t sysdc_max_pset _DC = 90;

318 uint_t sysdc_break_nsec = 80;

320 /*

321 * Internal state - constants set up by sysdc_initparan()

322

323 static clock_t sysdc_update_ticks; /* ticks between updates */
324 static uint_t sysdc_prune_updat es; /* updates asl eep before pruning */
325 static uint_t sysdc_reset _updat es; /* # of updates before reset */

326 static uint_t sysdc_br eak_updat es; /* updates to break */

327 static uint_t sysdc_nobreak_updates; /* updates to not check */

328 static uint_t sysdc_m nDC; /* mnimm all owed DC */

329 static uint_t sysdc_maxDC; /* maxi mum al | owed DC */

330 static pri_t sysdc_mi npri ; /* mnimumall owed priority */
331 static pri_t sysdc_maxpri ; /* maxi mum al | owed priority */
333 /*

334 * Internal state

335 */

336 static knmutex_t sysdc_pset _| ock; /* lock protecting pset data */
337 static list_t sysdc_psets; /* list of psets with SDC threads
338 static uint_t sysdc_param.init; /* sysdc_initparan() has been call
339 static uint_t sysdc_updat e_ti neout _started; /* update tinmeout is active
340 static hrtime_t sysdc_| ast _update; /* tinme of last sysdc_update() */
341 static sysdc_t sysdc_dummy; /* used to term nate active lists
343 [*

344 * |Internal state - active hash table

345 */

346 #define SYSDC_NLI STS 8

347 #define SYSDC HASH(sdc) (((uintptr_t)(sdc) >> 6) & (SYSDC_NLISTS - 1))
348 static sysdc_list_t sysdc_acti ve[SYSDC_NLI STS] ;

349 #define SYSDC_LI ST(sdc) (&sysdc_acti ve[SYSDC_HASH(sdc)])

351 #ifdef DEBUG
352 static struct {

353 ui nt 64_t sysdc_updat e_ti nes_asl eep;

354 ui nt64_t sysdc_updat e_t i nes_base_r an_backwar ds;
355 ui nt 64_t sysdc_updat e_ti nes_al ready_done;

356 ui nt 64_t sysdc_updat e_ti mes_cur _ran_backwar ds;
357 ui nt 64_t sysdc_conput e_pri _breaki ng;

358 ui nt64_t sysdc_activate_enter;

359 ui nt 64_t sysdc_updat e_enter;

360 ui nt 64_t sysdc_updat e_exi t ed;

361 ui nt 64_t sysdc_updat e_not _sdc;

362 ui nt64_t sysdc_update_idl e;

363 ui nt64_t sysdc_updat e_t ake_br eak;

364 ui nt 64_t sysdc_updat e_no_psets;

365 ui nt 64_t sysdc_t i ck_not _sdc;

366 ui nt 64_t sysdc_ti ck_quant um expired;

367 uint64_t
368 } sysdc_stats;

sysdc_t hread_enter_enter;

__unchanged_portion_onitted_

1291 /* --- consolidation-private interfaces --- */

1292 void

1293 sysdc_thread_enter(kthread_t *t, uint_t dc, uint_t flags)
1294 {

1295 voi d *buf = NULL;

1296 sysdc_parans_t sdp;

1298 SYSDC_| NC_STAT(sysdc_t hread_enter_enter);

1300 ASSERT(sysdc_param.init);

1301 ASSERT(sysdccid >= 0);

1303 ASSERT((fl ags & ~SYSDC_THREAD BATCH) == 0);

1305 sdp. sdp_minpri = sysdc_m npri;

1306 sdp. sdp_nexpri = sysdc_nmaxpri ;

1307 sdp. sdp_DC = MAX(M N(dc, sysdc_nmaxDC), sysdc_nmni nDC);
1309 VERI FYO(CL_ALLOC(&uf, sysdccid, KM SLEEP));

1308 VERI FY3U(CL_ALLOC(&uf, sysdccid, KM SLEEP), ==, 0);

*

ed */

*

*

/
/

-~

new usr/ src/ uts/comon/ di sp/ sysdc. c

1311 ASSERT(t->t _lwp !'= NULL);

1312 ASSERT(t->t_cid == syscid);

1313 ASSERT(t->t _cldata == NULL);

1314 VERI FYO(CL_CANEXI T(t, NULL));

1315 VERI FYO(CL_ENTERCLASS(t, sysdccid, &sdp, kcred, buf));

1313 VERI FY3U(CL_CANEXI T(t, NULL), ==, 0);

1314 VERI FY3U(CL_ENTERCLASS(t, sysdccid, &sdp, kcred, buf), == 0);
1316) CL_EXI TCLASS(sysci d, NULL);

1317

____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/arc.c

R R R R

131604 Thu Jul 26 14:19: 03 2012
new usr/src/uts/comon/fs/zfs/arc.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
*

R R R R R R R

__unchanged_portion_onitted_

997 static void
998 add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_l ock, void *tag)
999

1000 ASSERT(MUTEX_HELD(hash_| ock));

1002 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&

1003 (ab->b_state !'= ar c_anon)) {

1004 ui nt 64_t delta = ab->b_size * ab->b_datacnt;

1005 list_t *list &ab >b_state->arcs_list[ab- >btype]
1006 uint64_t *size = &b->b_state->arcs_| si ze[ab->b type]
1008 ASSERT(! MUTEX_HELD(&b- >b_st at e- >arcs_nt x)) ;

1009 nmut ex enter(&ab >b_state->arcs_ntx);

1010 ASSERT(list_link_active(&b->b_arc node))

1011 list_remove(list, ab);

1012 i f (GHOST_STATE(ab->b state)) {

1013 ASSERTO(ab->b_dat acnt) ;

1013 ASSERT3U(ab- >b_dat acnt, ==, 0);

1014 ASSERT3P(ab- >b_buf, ==, NULL);

1015 delta = ab->b_si ze;

1016 }

1017 ASSERT(delta > 0);

1018 ASSERT3U(*si ze, >=, delta);

1019 atom c_add_64(size, -delta);

1020 mut ex_exi t (&ab->b_state->arcs_ntx);

1021 /* renpve the prefetch flag if we get a reference */
1022 if (ab->b_flags & ARC_PREFETCH)

1023 ab->b_flags & ~ARC_PREFETCH,

1024 1

1025 }

__unchanged_portion_omtted_

1598

1599 This function makes a "best effort”. 1t skips over any buffers
1600 it can’t get a hash_lock on, and so may not catch all candi dates.
1601 * It may also return without evicting as nuch space as requested.
1602 */

1603 static void *

1590 /*
1591 * Evict buffers fromlist until we’'ve renoved the specified nunber of
1592 * bytes. Move the renpved buffers to the appropriate evict state.
1593 * |If the recycle flag is set, then attenpt to "recycle" a buffer:
1594 * - look for a buffer to evict that is ‘bytes’ |ong.
1595 * - return the data block fromthis buffer rather than freeing it.
1596 * This flag is used by callers that are trying to make space for a
1597 * new buffer in a full arc cache.

*

*

*

1604 arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,

1605 arc_buf _contents_t type)

1606 {

1607 arc_state_t *evicted_state;

1608 uint64_t bytes_evicted = 0, skipped = 0, missed = O;
1609 arc_buf _hdr_t *ab, *ab_prev = NULL;

1610 list_t *list = &tate->arcs_|list[type];

1611 kmut ex_t *hash_| ock;

1612 bool ean_t have_I ock;

1613 voi d *stolen = NULL;

1615 ASSERT(state == arc_nru || state == arc_nfu);

new usr/src/uts/comon/fs/zfs/arc.c

1617

1619
1620

1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672

1674
1675
1676
1677
1678
1679
1680
1681

evicted_state = (state == arc_nru) ? arc_nru_ghost : arc_nfu_ghost;

mut ex_enter (&state->arcs_ntx);
mut ex_ent er (&evi ct ed_state->arcs_ntx);

for (ab = list_tail(list); ab; ab = ab_prev) {
ab_prev = list_prev(list, ab);
/* prefetch buffers have a mninumlifespan */
if (HDR_I O I N PROGRESS(ab) ||

(spa && ab->b_spa != spa) ||
(ab->b_flags & (ARC _PREFETCH| ARC | NDI RECT) &&
ddi _get _Ibolt() - ab->b_arc_access <
arc_m n_prefetch_lifespan)) {
ski pped++;
cont i nue;

}
/* "l ookahead" for better eviction candidate */
if (recycle & ab->b_size != bytes &&
ab_prev && ab_prev->b_size == bytes)
conti nue;
hash_| ock = HDR LOCK(ab);
have_| ock = MJUTEX_HELD(hash _l ock);
if (have_lock || mutex tryenter(hash lock)) {
ASSERTO(r ef count _count (&ab->b_refcnt));
ASSERT3U(r ef count _count (&b->b_refcnt), ==, 0);
ASSERT(ab- >b_dat acnt > 0);
whil e (ab->b_buf) {
arc_buf _t *buf = ab->b_buf;
if (!'mutex_tryenter(&buf->b_evict_|lock)) {
mssed += 1;
br eak;

}
if (buf->b_data) {
bytes_evicted += ab->b_si ze;
if (recycle & ab->b_type == type &&
ab->b_size == bytes &&
mmumnwmu
stol en = buf->b_data;
recycl e = FALSE;
}

}
if (buf->b_efunc) {
mut ex_ent er (&arc_evi ction_ntx);
ar c_buf _destroy(buf,
buf->b_data == stol en, FALSE);
ab->b_buf = buf->b_next;
buf->b_hdr = &arc_eviction_hdr;
buf->b_next = arc_eviction_ Ilst
arc_eviction_list = buf,
mut ex_exi t (&ar c_evi ction_ntx);
mut ex_exi t (&uf->b_evict _| ock);
} else {
mut ex_exi t (&uf->b_evi ct _| ock);
ar c_buf _dest roy(buf,
buf - >b_data == stolen, TRUE);

}

i f (ab->b_| 2hdr)

ARCSTAT_| NCR(ar cstat _evi ct_| 2_cached,

ab->b_si ze);

} else {

if (l2arc_wite_eligible(ab->b_spa, ab)) {

ARCSTAT_|I NCR(arcstat _evict _| 2_eligible,
ab->b_si ze);
} else {

new usr/src/uts/comon/fs/zfs/arc.c

1682 ARCSTAT_| NCR(

1683 arcstat _evict_| 2_ineligible,
1684 ab->b_si ze);

1685 }

1686 }

1688 if (ab->b_datacnt == 0)

1689 arc_change_state(evicted_state, ab, hash_lock);
1690 ASSERT(HDR_I N_HASH_TABLE(ab)) ;

1691 ab->b _flags | = ARC_I N HASH TABLE

1692 ab->b_flags & ~ARC BUF_AVAI LABLE;

1693 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1694 }

1695 if (!have_l ock)

1696 mut ex_exi t (hash_l ock);

1697 if (bytes >= 0 & bytes_evicted >= bytes)

1698 br eak;

1699 } else {

1700 m ssed += 1;

1701 }

1702 }

1704 mut ex_exi t (&evi cted_state->arcs_ntx);

1705 mut ex_exi t (&state->arcs_ntx);

1707 if (bytes_evicted < bytes)

1708 dprintf("only evicted %1d bytes from %",

1709 (longl ong_t)bytes_evicted, state);

1711 if (skipped)

1712 ARCSTAT_I NCR(ar cst at _evi ct_ski p, skipped);

1714 if (mssed)

1715 ARCSTAT_I NCR(ar cstat _nmutex_m ss, mi ssed);

1717 /*

1718 * W have just evicted sonme date into the ghost state, nake

1719 * sure we also adjust the ghost state size if necessary.

1720 */

1721 if (arc_no_grow &&

1722 arc_nru_ghost->arcs_size + arc_nfu_ghost->arcs_size > arc_c) {
1723 int64_t nru_over = arc_anon->arcs_size + arc_nru->arcs_size +
1724 arc_nru_ghost->arcs_size - arc_c;

1726 if (nmu_over > 0 && arc_nru_ghost->arcs_| size[type] > 0) {
1727 int64_t todelete =

1728 M N(arc_nru_ghost - >arcs_| si ze[type], nru_over);
1729 arc_evi ct _ghost (arc_nru_ghost, NULL, todelete);
1730 } else if (arc_nfu_ghost->arcs_Isize[type] > 0) {

1731 int64_t todelete = M N(arc_nfu_ghost->arcs_|size[type],
1732 arc_nru_ghost - >arcs_si ze +

1733 arc_nfu_ghost->arcs_size - arc_c);

1734 arc_evi ct _ghost (arc_nfu_ghost, NULL, todelete);
1735 }

1736 }

1738 return (stolen);

1739 }

__unchanged_portion_omtted_

2356 /*

2357 * This routine is called whenever a buffer is accessed.
2358 * NOTE: the hash lock is dropped in this function.
2359 */

2360 static void

2361 arc_access(arc_buf _hdr_t *buf, kmutex_t *hash_l ock)

new usr/src/uts/comon/fs/zfs/arc.c

2362 {
2363

2365

2367
2368
2369
2370
2371
2372

2374
2375
2376
2377

2379
2380

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423

2425
2426
2427

cl ock_t

now,

ASSERT(MUTEX_HELD(hash_| ock)) ;

if (buf-

} else i

} else i

>pb_state == arc_anon) {

/*

* This buffer is not in the cache, and does not

* appear in our "ghost" list. Add the new buffer
* to the MRU state.

*/

ASSERT(buf ->b_arc_access == 0);

buf->b_arc_access = ddi _get _| bolt();
DTRACE_PROBE1(new state__nru, arc_buf_hdr_t *, buf);
arc_change_state(arc_nru, buf, hash_I ock);

f (buf->b_state == arc_nru) {
now = ddi _get _l bolt();

/*

* |f this buffer is here because of a prefetch, then either:
* - clear the flag if this is a "referencing" read

* (any subsequent access will bunp this into the MFU state).
* or

* - nove the buffer to the head of the list if this is

* another prefetch (to nake it less likely to be evicted).

*
if

/
((buf->b_flags & ARC_PREFETCH) != 0)
if (refcount_count(&buf->b_refcnt) == 0)
ASSERT(1ist_link_active(&uf->b_arc_node));
} else {
buf->b_flags & ~ARC_PREFETCH;
ARCSTAT_BUMP(arcstat _nru_hits);

buf ->b_arc_access = now,

return;
}
/*
* This buffer has been "accessed" only once so far,
* but it is still in the cache. Mouve it to the MFU
* state.
*/

if (now > buf->b_arc_access + ARC_M NTI ME) {
/*

* More than 125nms have passed since we

* instantiated this buffer. Mve it to the
* nost frequently used state.

*/

buf - >b_arc_access = now,
DTRACE_PROBE1(new state__nfu, arc_buf_hdr_t *, buf);
arc_change_state(arc_nfu, buf, hash_|I ock);

}

ARCSTAT_BUMP(ar cstat _nru_hits);

f (buf->b_state == arc_nru_ghost) {
arc_state_t *new_ st ate;

/
This buffer has been "accessed" recently, but
was evicted fromthe cache. Myve it to the
MFU st ate.

/

if (buf->b_flags & ARC PREFETCH) {
new state = arc_nru;
if (refcount_count (&buf->b_refcnt) > 0)

* ok ok ok %

new usr/src/uts/comon/fs/zfs/arc.c 5

2428 buf->b_fl ags & ~ARC_PREFETCH;
2429 DTRACE_PROBE1(new state__nru, arc_buf_hdr_t *, buf);
2430 } else {
2431 new_state = arc_nfu;
2432 DTRACE PROBEl(new state__nfu, arc_buf_hdr_t *, buf);
2433 }
2435 buf->b_arc_access = ddi _get_| bolt();
2436 arc_change_state(new_state, buf, hash_| ock);
2438 ARCSTAT_BUMP(ar cst at _nru_ghost _hits);
2439 } else if (buf->b_state == arc_nfu) {
2440 /*
2441 * This buffer has been accessed nobre than once and is
2442 * still in the cache. Keep it in the MFU state.
2443 *
2444 * NOTE: an add_reference() that occurred when we did
2445 * the arc_read() will have kicked this off the list.
2446 *If it was a prefetch, we will explicitly nmove it to
2447 * the head of the list now.
2448 *
2449 f ((buf->b_flags & ARC PREFETCH) != 0)
2450 ASSERT(r ef count _count (&buf->b_refcnt) == 0);
2451 ASSERT(| i st _I i nk_acti ve(&buf - >b_arc_n0de))
2452 }
2453 ARCSTAT_BUMP(ar cstat _nfu_hits);
2454 buf->b_arc_access = ddi _get _| bolt();
2455 } else if (buf->b_state == arc_nfu_ghost) {
2456 arc_state_t *new_state = arc_nfu;
2457 I*
2458 * This buffer has been accessed nore than once but has
2459 * been evicted fromthe cache. Myve it back to the
2460 * MFU state.
2461 */
2463 if (buf->b_flags & ARC PREFETCH) {
2464 /*
2465 * This is a prefetch access...
2466 * nmove this block back to the MRU state.
2467 */
2468 ASSERTO(r ef count _count (&buf->b_refcnt));
2468 ASSERT3U(r ef count _count (&buf->b_refcnt), ==, 0);
2469 new state = arc_nru;
2470 }
2472 buf->b_arc_access = ddi _get_| bolt();
2473 DTRACE_PRCBE1(new state __nfu, arc_buf_hdr_t *, buf);
2474 arc_change_st at e(new state, buf, hash_l ock);
2476 ARCSTAT_BUMP(ar cst at _nfu_ghost _hits);
2477 } else if (buf->b_state == arc_|l2c_only) {
2478 /*
2479 * This buffer is on the 2nd Level ARC
2480 */
2482 buf->b_arc_access = ddi _get _| bolt();
2483 DTRACE_PROBE1(new state _nfu, arc buf hdr_t *, buf);
2484 arc_change_state(arc_nfu, buf, hash_| ock);
2485 } else {
2486 ASSERT(!"invalid arc state");
2487
2488 }
__unchanged_portion_omtted_
2687 int

2688 arc_read_nol ock(zio_t *pio, spa_t *spa, const blkptr_t *bp,

new usr/src/uts/comon/fs/zfs/arc.c

ags) ;

2689 arc_done_func_t *done, void *private, int priority, int zio_flags,
2690 uint32_t *arc_flags, const zbookmark_t *zb)

2691 {

2692 arc_buf _hdr _t *hdr;

2693 arc_buf _t *buf;

2694 kmut ex_t *hash_| ock;

2695 zio_t *rzio;

2696 uint64_t guid = spa_| oad_gui d(spa);

2698 top:

2699 hdr = buf_hash_find(guid, BP_I DENTI TY(bp), BP_PHYSI CAL_BI RTH(bp)
2700 &hash_I ock) ;

2701 if (hdr & hdr->b_datacnt > 0) {

2703 *arc_flags | = ARC_CACHED;

2705 if (HDR_I O_I N PROGRESS(hdr)) {

2707 if (*arc_flags & ARC WAIT)

2708 cv_wai t (&hdr->b_cv, hash_Il ock);

2709 mut ex_exi t (hash_| ock);

2710 goto top;

2711 }

2712 ASSERT(*arc_flags & ARC_NOMAIT);

2714 if (done) {

2715 arc_cal | back_t *acb = NULL;

2717 acb = kmem zal | oc(si zeof (arc_callback_t),
2718 KM _SLEEP) ;

2719 acbh->acb_done = done;

2720 acb->acb_private = private;

2721 if (pio T= NULL)

2722 acb->acb_zio_dummy = zio_null (pio
2723 spa, NULL, NULL, NULL, zio_fl
2725 ASSERT(ach->acb_done != NULL);

2726 acb->acb_next = hdr->b_ach;

2727 hdr->b_acb = acb;

2728 add_reference(hdr, hash_lock, private);
2729 mut ex_exi t (hash_I ock);

2730 return (0);

2731

2732 mut ex_exi t (hash_l ock) ;

2733 return (0);

2734 }

2736 ASSERT(hdr->b_state == arc_nru || hdr->b_state == arc_nfu);
2738 if (done) {

2739 add_r ef erence(hdr, hash_l ock, private);

2740 /*

2741 * If this block is already in use, create a new
2742 * copy of the data so that we will be guaranteed
2743 * that arc_release() will always succeed.

2744 */

2745 buf = hdr->b_buf;

2746 ASSERT(buf) ;

2747 ASSERT(buf - >b_dat a);

2748 if (HDR BUF_AVAI LABLE(hdr))

2749 ASSERT(buf - >b_efunc == NULL);

2750 hdr->b_flags & ~ARC BUF_ AVA LABLE;

2751 } else {

2752 buf = arc_buf_cl one(buf);

2753 }

new usr/src/uts/comon/fs/zfs/arc.c

2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767

2769
2770
2771
2772
2773
2774
2775
2776

2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810

2812
2813
2814
2815
2816
2817
2818
2819

} else if (*arc_flags & ARC PREFETCH &&
ref count _count (&dr->b_refcnt) == 0) {
hdr->b_flags | = ARC_PREFETCH,

}
DTRACE_PROBEl(arc__hit, arc_buf_hdr_t *, hdr);
arc access(hdr hash Iock)
if (*rarc_flags & ARC L2CACHI3
hdr->b_flags | = ARC_L2CACHE;
mut ex_exi t (hash_l ock) ;
ARCSTAT_BUMP(ar cst at hi ts);
ARCSTAT_CONDSTAT(! (hdr->b_flags & ARC_PREFETCH),
demand, prefetch, hdr->b_type != ARC BUFC_ NETADATA,
data, netadata, hits);

if (done)
done(NULL, buf, private);

uint64_t size = BP_CET_LSI ZE(bp);
arc_cal | back_t *ach;

vdev_t *vd = NULL;

uint64_t addr;

bool ean_t devw = B_FALSE;

if (hdr == NULL) {
/* this block is not in the cache */
ar c_buf _hdr _t *exi sts;
arc_buf _contents_t type = BP_GET_BUFC TYPE(bp);
buf "= arc_buf alloc(spa size, private, type);
hdr = buf->b_hdr
hdr->b_dva = *BP | DENTI TY(bp) ;
hdr->b_birth = BP PHYSI CAL_BI RTH(bp) ;
hdr - >b_ cksunO = bp->bl k_cksum zc word[O]
exists = buf hash _insert(hdr, &hash Iock)
if (exists) {
/* sonebody beat us to the hash insert */
mut ex_exi t (hash_| ock) ;
buf _discard_identi ty(hdr)
(void) arc_buf_renove ref(buf, private);
goto top; 7* restart the IO request */

}
/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC PREFETCH)
(void) renove_reference(hdr, hash_| ock,
private);
hdr->b_flags | = ARC_PREFETCH,

}
if (*arc_flags & ARC_L2CACHE)

hdr->b_fl ags | = ARC_L2CACHE;
if (BP_GET_LEVEL(bp) > 0)

hdr->b_flags | = ARC_| NDI RECT;

} else {

/* this block is in the ghost cache */
ASSERT(GHOST_STATE(hdr - >b_st ate))
ASSERT(! HDR_TO_| N_PROGRESS(hdr));
ASSERTO(r ef count _count (&hdr->b_refcnt));
ASSERT3U(r ef count _count (&hdr->b_refcnt), ==, 0);
ASSERT(hdr - >b_buf “== NULL) ;

/* if this is a prefetch, we don't have a reference */
if (*arc_flags & ARC_PREFETCH)
hdr->b_flags | = ARC_PREFETCH;
el se
add_r ef erence(hdr, hash_lock, private);
if (*arc_flags & ARC L2CACHE)
hdr->b_flags | = ARC_L2CACHE;
buf = kmem cache_al | oc(buf_cache, KM PUSHPAGE);

new usr/src/uts/comon/fs/zfs/arc.c

2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830

2832

2834
2835
2836

2838
2839
2840

2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852

2854

2856
2857
2858
2859
2860
2861
2862

2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877

2879
2880

2882
2883
2884
2885

buf - >b_hdr = hdr;
buf->b_data = NULL;
buf->b_efunc = NULL;
buf->b_private = NULL;

buf - >b_next = NULL;

hdr - >b_buf = buf;

ASSERT(hdr->b_dat acnt == 0);
hdr->b_datacnt = 1;

arc_get _data buf(buf)
arc_access(hdr, hash Iock)

}
ASSERT(| GHOST_STATE(hdr - >b_state));

acb = kmem zal | oc(sizeof (arc_callback_t), KM SLEEP);
ach- >acb_done = done;
acb->acb_private = private;

ASSERT(hdr->b_acb == NULL);
hdr->b_acb = ach;
hdr->b_flags | = ARC_| O_ | N_PROGRESS;

if (HDR L2CACHE(hdr) && hdr->b_|2hdr 1= NULL &&

(vd = hdr->b_l 2hdr->b_dev->| 2ad_vdev) != NULL) {
devw = hdr->b_| 2hdr->b_dev- >l 2ad_wri ti ng;
addr hdr - >b_| 2hdr - >b_daddr;

/*
* Lock out device renoval.
if (vdev_is_dead(vd) ||

Ispa_config_tryenter(spa, SCL_L2ARC, vd, RW READER))
vd = NULL;

}
mut ex_exi t (hash_l ock);

ASSERT3U(hdr - >b_si ze, ==, size);

DTRACE_PROBE4(arc__mi ss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
uint64_t, size, zbookmark_t *, zb);

ARCSTAT BUNP(arcstat _m sses);

ARCSTAT_CONDSTAT(! (hdr ->b flags & ARC_PREFETCH),
denmand, prefetch, hdr->b_type != ARC BUFC_ NETADATA
data, netadata, msses)

if (vd !'= NULL && | 2arc_ndev != 0 && ! (l2arc_norw && devw)) {
/*

* Read fromthe L2ARC if the followi ng are true:
* 1. The L2ARC vdev was previously cached.
* 2. This buffer still has L2ARC net adat a.
* 3. This buffer isn't currently witing to the L2ARC.
* 4. The L2ARC entry wasn't evicted, which nay
* al so have invalidated the vdev.
* 5. This isn't prefetch and | 2arc_noprefetch is set.
*

/
f (hdr->b_| 2hdr !'= NULL &&
HDR L2_WARI TI NG(hdr) && ! HDR L2 EVI CTED(hdr) &&
(1 2arc_noprefetch & HDR _PREFETCH(hdr))) {

| 2arc_read_cal | back_t *cb;

h
I
!

DTRACE_PROBE1(| 2arc__hit, arc_buf_hdr_t *, hdr);
ARCSTAT_BUWP(arcstat _| 2_ hi ts);

cb = kmem zal | oc(sizeof (I|Z2arc_read_callback_t),

KM SLEEP) ;
cb- >l 2rcb_buf
cb->l 2rcb_spa

buf ;
spa;

new usr/src/uts/comon/fs/zfs/arc.c

2886
2887
2888

2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902

2904
2905
2906
2907

2909
2910
2911

2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930

2932
2933

2935
2936

2938
2939
2940
2941
2942 }

ch->l 2rcbh_bp = *bp;
cb->l 2rcb_zb *zb;
cb->l 2rcb_flags = zio_flags;

/*

* | 2arc read. The SCL_L2ARC lock will be

* rel eased by | 2arc_read_done().

*

/

rzio = zio_read_phys(pio, vd, addr, size,
buf - >b_data, ZI O CHECKSUM OFF,
| 2arc_read done “cb, pr|or|ty zio_flags |
ZI O_FLAG DONT_ CACHE | ZI O FLAG CANFAI L
ZI O_FLAG_DONT_PROPAGATE |
ZI O_FLAG DONT_RETRY, B FALSE);

DTRACE PRCBEZ(I 2arc read vdev_t *, vd,
zio_t *, 0);

ARCSTAT_| NCR(arcst at_| 2_read_bytes, size);

if (*arc_flags & ARC_NOMIT) {
zi o_nowai t (rzio);

return (0);
}
ASSERT(*arc_flags & ARC WAIT);
if (zio_wait(rzio) == 0)
return (0);

/* 12arc read error; goto zio_read() */
} else {

DTRACE_PROBE1(| 2arc__mi ss,

arc_buf _hdr_t *, hdr);
ARCSTAT_BUMP(ar cstat _| 2_m sses);
if (HDR_L2_WRI TING(hdr))

ARCSTAT_BUMP(ar cstat _| 2_rw_cl ash);

spa_config_exit(spa, SCL_L2ARC, vd);

} else {
if (vd !'= NULL)
spa_config_ eX|t(spa SCL_L2ARC, vd);
if (I2arc ndev ! =
DTRACE PRCBEl(I 2arc__m ss,
arc_buf _hdr_t *, hdr);
ARCSTAT_BUMP(arcst at _| 2_m sses) ;

}

rzio = zio_read(pio, spa, bp, buf->b_data, size,
arc_read_done, buf, priority, zio_flags, zb);

if (*rarc_flags & ARC WAIT)
return (zio_wait(rzio));

ASSERT(*arc_fl a gs & ARC_NOWAIT) ;
zi o_nowai t (rzio

}
return (0);

__unchanged_portion_omtted_

4236 /*

4237
4238
4239
4240
4241

Find and wite ARC buffers to the L2ARC devi ce.

* An ARC L2_ WRITING flag is set so that the L2ARC buffers are not valid
* for reading until they have conpleted witing.

4242 static uint64_t

new usr/src/uts/comon/fs/zfs/arc.c

4243 | 2arc_write_buffers(spa_t *spa, |2arc_dev_t *dev, uint64_t target_sz)

4244 {
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254

4256

4258
4259
4260
4261
4262

4264
4265
4266
4267
4268
4269
4270

4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282

4284
4285
4286
4287
4288

4290
4291
4292
4293
4294
4295
4296
4297

4299
4300
4301
4302
4303
4304
4305
4306

4308

arc_buf _hdr_t *ab, *ab_prev, *head;

| 2arc_buf _hdr_t *hdrl 2;

list_t *list;

uint64_t passed_sz, wite_sz, buf_sz, headroom
voi d *buf _dat a;

kmut ex_t *hash_l ock, *list_I ock;

bool ean_t have_| ock, full;

| 2arc_write_cal |l back_t *cb;

zio_t *pio, *wzio;

uint64_t guid = spa_|l oad_gui d(spa);

ASSERT(dev->| 2ad_vdev != NULL);

pio = NULL

wite sz = 0;

full = B_FALSE;

head = knmem cache_al | oc(hdr_cache, KM PUSHPAGE);

head- >b_flags | = ARC_L2_WRI TE_HEAD,

/*

* Copy buffers for L2ARC writing.
*

/

mut ex_enter (& 2arc_bufli st_r'rt X);

for (Int try =0; try <= 3; try++) {
list = 12arc_list_locked(try, &ist_Iock);
passed_sz = 0;
/*

* L2ARC fast warnup.
*

* Until the ARCis warmand starts to evict, read fromthe
* head of the ARC lists rather than the tail.
*
/
headroom = target_sz * |2arc_headroom
if (arc_warm == B_FALSE)
ab = list_head(list);
el se
ab = list_tail(list);

for (; ab; ab = ab_prev) {
if (arc_warm == B_FALSE)
ab_prev = list_next(list, ab);
el se
ab_prev = list_prev(list, ab);

hash_l ock = HDR _LOCK(ab) ;
have_| ock = MUTEX HELD(hash I ock) ;
if (Thave_l ock &% ! mutex tryenter(hash lock)) {
/*
* Skip this buffer rather than waiting.
*
/

conti nue;

}

passed_sz += ab->b_si ze;
i f (passed sz > headroonj {
/*

* Searched too far.
*/

mut ex_exi t (hash_l ock);
br eak;

}
if ('l12arc_wite_eligible(guid, ab)) {

new usr/src/uts/comon/fs/zfs/arc.c 11 new usr/src/uts/comon/fs/zfs/arc.c
4309 mut ex_exi t (hash_I ock); 4375 mut ex_exit(list_Iock);
4310 conti nue;
4311 } 4377 if (full == B_TRUE)
4378 br eak;
4313 if ((wite_sz + ab->b_size) > target_sz) { 4379 }
4314 full = B_TRUE; 4380 mut ex_exi t (& 2arc_buflist_mntx);
4315 mut ex_exi t (hash_I ock);
4316 br eak; 4382 if (pio == NULL)
4317 } 4383 ASSERTO(write_sz);
4383 ASSERT3U(wite_sz, ==, 0);
4319 if (pio == NULL) { 4384 kmem cache_free(hdr _cache, head);
4320 /* 4385 return (0);
4321 * |Insert a dunmmy header on the buflist so 4386 }
4322 * |2arc_wite_done() can find where the
4323 * wite buffers begin without searching. 4388 ASSERT3U(write_sz, <=, target_sz);
4324 */ 4389 ARCSTAT_BUWMP(arcstat _|2_wites sent)
4325 i st_insert_head(dev->l 2ad_buflist, head); 4390 ARCSTAT_I NCR(arcstat |12 wite _bytes, wite_sz);
4391 ARCSTAT_I NCR(arcstat _| 2 size, wit e_sz);
4327 cb = knmem al | oc(4392 vdev_space_updat e(dev- >l 2ad_vdev, wite_sz, 0, 0);
4328 sizeof (l2arc_write_callback_t), KM SLEEP);
4329 ch->l 2wcb_dev = dev; 4394 /*
4330 ch- >I 2wcb_head head; 4395 * Bunp device hand to the device start if it is approaching the end.
4331 pio = zio root(spa I 2arc _write_done, cbh, 4396 * | 2arc_evict() will already have evicted ahead for this case.
4332 ZI O_FLAG CANFAI L) ; 4397 *
4333 } 4398 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
4399 vdev_space_updat e(dev- >l 2ad_vdev
4335 /* 4400 dev- >l 2ad_end - dev- >l 2ad hand 0, 0);
4336 * Create and add a new L2ARC header. 4401 dev- >l 2ad_hand = dev->| 2ad_start;
4337 */ 4402 dev->| 2ad_evi ct = dev->| 2ad_st art ;
4338 hdrl2 = kmem zal | oc(si zeof (I2arc_buf_hdr_t), KM SLEEP); 4403 dev->| 2ad_first = B_FALSE;
4339 hdr| 2->b_dev = dev; 4404 }
4340 hdrl 2->b_daddr = dev->| 2ad_hand;
4406 dev->|l 2ad_writing = B_TRUE;
4342 ab->b_flags | = ARC_L2_WRI TI NG 4407 (void) zio_wait(pio);
4343 ab->b_| 2hdr = hdrl 2; 4408 dev->| 2ad_witing = B_FALSE;
4344 list 7| nsert_head(dev- >| 2ad_buflist, ab);
4345 buf _data = ab->b_buf->b_dat a; 4410 return (wite_sz);
4346 buf _sz = ab->b_si ze; 4411 }
__unchanged_portion_onitted_
4348 /*
4349 * Conpute and store the buffer cksum before
4350 * writing. On debug the cksumis verified first.
4351 */
4352 arc_cksum verify(ab->b_buf);
4353 arc_cksum conput e(ab->b_buf, B_TRUE);
4355 mut ex_exi t (hash_l ock) ;
4357 wzio = zio_wite_phys(pio, dev->l2ad_vdev,
4358 dev->| 2ad_hand, buf_sz, buf_data, ZI O CHECKSUM OFF,
4359 NULL, NULL, ZI O PRI ORI TY_ASYNC _WRI TE,
4360 ZI O FLAG CANFAIL, B FALSE);
4362 DTRACE_PROBE2(| 2arc__write, vdev_t *, dev->|2ad_vdev,
4363 zio_t *, wzio);
4364 (void) zio_nowait(wzio);
4366 /*
4367 * Keep the clock hand suitably device-aligned.
4368 */
4369 buf _sz = vdev_psize_to_asi ze(dev->| 2ad_vdev, buf_sz);
4371 wite_sz += buf_sz;
4372 dev->| 2ad_hand += buf _sz;
4373 }

new usr/src/uts/comon/fs/zfs/bpobj.c

R R R R

13003 Thu Jul 26 14:19: 04 2012
new usr/src/uts/comon/fs/zfs/bpobj.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1

/*

/

*
*
*

NN
~

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

Copyright (c) 2012 by Del phix. Al rights reserved.

/Copyright (c) 2011 by Del phix. Al rights reserved.
*

#i ncl ude <sys/ bpobj . h>

#i ncl ude <sys/zfs_context. h>
#i ncl ude <sys/refcount.h>

#i ncl ude <sys/dsl _pool . h>

ui nt 64_t
bpobj _al I oc(obj set_t *os, int blocksize, dmu_tx_t *tx)
{

int size;

if (spa_versi on(drru obj set _spa(os)) < SPA_VERSI ON_BPOBJ_ACCOUNT)
si ze = BPOBJ_SI ZE_\O;

else if (spa_versi on(dmu_ Obj set _spa(o0s)) < SPA_VERSI ON_DEADLI STS)
size = BPOBJ_SI ZE_V:

el se
size = sizeof (bpobj_phys_t);

return (dnu_object_alloc(os, DMJ_OT_BPOBJ, bl ocksize,
DMJ_OT_BPOBJ_HDR, size, tx));

}
voi d
bpobj _free(objset_t *os, uint64_t obj, dnu_tx_t *tx)
{
int64_t i;
bpobj _t bpo;
dmu_obj ect _info_t doi;
int epb;

drmu_buf _t *dbuf = NULL;

VERI FYO(bpobj _open(&bpo, os, obj));
VERI FY3U(0, ==, bpobj_open(&bpo, os, obj));

mut ex_ent er (&bpo. bpo_I ock) ;

new usr/src/uts/comon/fs/zfs/bpobj.c
60 if (!bpo.bpo_havesubobj || bpo.bpo_phys->bpo_subobjs == 0)
61 goto out;
63 VERI FYO(drmu_obj ect _i nf o(os, bpo. bpo_phys->bpo_subobj s, &doi));
63 VERI FY3U(0, ==, dnmu_obj ect _i nfo(os, bpo.bpo_phys->bpo_subobjs, &doi));
64 epb = doi.doi _data_bl ock_size / sizeof (uint64_t);
66 for (i = bpo.bpo_phys->bpo_numsubobjs - 1; i >= 0; i--) {
67 uint64_t *objarray;
68 uint64_t offset, blkoff;
70 offset =i * sizeof (uint64_t);
71 bl kof f = P2PHASE(i, epb);
73 if (dbuf == NULL || dbuf->db_offset > offset) {
74 if (dbuf)
75 dmu_buf _rel e(dbuf, FTAG;
76 VERI FYO(drmu_buf _hol d(os,
76 VERI FY3U(0, ==, “dnu_buf _hol d(os,
77 bpo. bpo_phys->bpo_subobj s, offset, FTAG &dbuf, 0));
78 }
80 ASSERT3U(of f set, >=, dbuf->db_offset);
81 ASSERT3U(of f set, <, dbuf->db_offset + dbuf->db_size);
83 obj array = dbuf->db_dat a;
84 bpobj _free(os, objarray[blkoff], tx);
85 }
86 if (dbuf) {
87 dnmu_buf _rel e(dbuf, FTAGQ;
88 dbuf = NULL;
89 1
90 VERI FYO(drmu_obj ect _free(os, bpo. bpo_phys->bpo_subobjs, tx));
90 VERI FY3U(0, ==, dnu_obj ect _free(os, bpo.bpo_phys->bpo_: subobjs tx));
92 out
93 mut ex_exi t (&bpo. bpo_| ock) ;
94 bpobj _cl ose(&bpo) ;
96 VERI FYO(dnu_obj ect _free(os, obj, tx));
96 VERI FY3U(0, ==, dmu_obj ect free(os obj, tx));
97

__unchanged_portion_onitted_

149 static int

150 bpobj _iterate_i npl (bpobj _t *bpo, bpobj_itor_t func, void *arg,
151 bool ean_t free)

152 {

153 dmu_obj ect _info_t doi;

154 int epb;

155 int64_t i;

156 int err = 0;

157 drmu_buf _t *dbuf = NULL;

159 nmut ex_ent er (&po- >bpo_I ock);

161 if (free)

162 dnmu_buf _wi Il _di rty(bpo->bpo_dbuf, tx);

164 for (i = bpo->bpo_phys->bpo_numbl kptrs - 1; i >= 0;
165 bl kptr_t *bparray;

166 bl kptr_t *bp;

167 uint64_t offset, blkoff;

169 offset =i * sizeof (blkptr_t);

170 bl kof f = P2PHASE(i, bpo->bpo_epb);

i--)

{

dmu_tx_t *tx,

new usr/src/uts/comon/fs/zfs/bpobj.c

172
173
174
175
176
177
178
179

181
182

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
207
208
209
210
211

213
214
215
216
217
218
219

221
222
223
224
225
226

228
229

231
232
233
234
235

if (dbuf == NULL || dbuf->db_offset > offset) {
if (dbuf)
dmu_buf _rel e(dbuf, FTAG;
err = dmu_buf _hol d(bpo- >bp0 os, bpo->bpo_object, offset,
FTAG “&dbuf, 0);
if (err)
br eak;

}

ASSERT3U(of f set, >=, dbuf->db_offset);
ASSERT3U(of f set, <, dbuf->db_offset + dbuf->db_size);

bparray dbuf - >db_dat a;
bp = &bparray[bl koff];
err func(arg, bp, tx);
if (err)
break;
if (free) {
bpo- >bpo_phys- >bpo_bytes -=
bp_get _dsi ze_sync(dmu_obj set _spa(bpo- >bpo_os), bp);
ASSERT3S(bpo- >bpo_phys- >bpo_bytes, >=, 0);
i f (bpo->bpo_haveconp) {
bpo- >bpo_phys- >bpo_conp -= BP_GET_PSI ZE(bp) ;
bpo- >bpo_phys- >bpo_unconp -= BP_GET_UCSI ZE(bp) ;

}
bpo- >bpo_phys- >bpo_num bl kptrs--;
ASSERT3S(bpo- >bpo_phys- >bpo_num bl kptrs, >=, 0);

}
}
if (dbuf) {
dmu_buf _rel e(dbuf, FTAG;
dbuf = NULL;
}
i1f (free) {
I ++;

VERI FYO(dmu_free_r ange(bpo->bpo_os, bpo->bpo_obj ect,

VERI FY3U(0, ==, dnu_free_range(bpo->bpo_os, bpo->bpo_object,
i * sizeof (blkptr_t), -1ULL, tx));
}
if (err || !bpo->bpo_havesubobj || bpo->bpo_phys->bpo_subobjs == 0)
goto out;

ASSERT(bpo- >bpo_haveconp) ;
err = dnu_obj ect _i nf o(bpo- >bpo_os, bpo->bpo_phys->bpo_subobj s, &doi);
if (err) {

mut ex_exi t (&po->bpo_| ock) ;

return (err);

}
epb = doi.doi _data_bl ock_size / sizeof (uint64_t);

for (i = bpo->bpo_phys->bpo_numsubobjs - 1; i >=0; i--) {
uint64_t *objarray;
uint64_t offset, blkoff;
bpobj _t sublist;
ui nt 64_t used_before, conp_before, unconp_before;
uint64_t used_after, conp_after, unconp_after;

offset =i * sizeof (uint64_t);
bl kof f = P2PHASE(i, epb);

if (dbuf == NULL || dbuf->db_offset > offset) {
if (dbuf)
drmu_buf _rel e(dbuf, FTAQ;
err = dmu_buf _hol d(bpo- >bp0 os,
bpo >bpo_phys- >bpo_subobj s, offset, FTAG &dbuf, 0);

new usr/src/uts/comon/fs/zfs/bpobj.c

236
237
238

240
241

243
244
245
246
247
248
249
250
251
252
253
254
255
255
256
257
258
259
260
261
262

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
281
282
283
284

286
287
288
289
290

292
293

out :

294 }

315 void
316 bpobj

317 {

if (err)
br eak;

}

ASSERT3U(of f set, >=, dbuf->db_offset);
ASSERT3U(of f set, <, dbuf->db_offset + dbuf->db_size);

obj array = = dbuf - >db_dat a;
err = bpobj open(&subllst bpo- >bpo_os, objarray|[bl koff]);
if (err)
break;
if (free) {
err = bpobj _space(&subli st,
&used_before, &conp_before, &unconp_before);

if (err)
) br eak;
err = bpobj _iterate_inpl (&ublist, func, arg, tx, free);
if (free) {

VERI FYO(bpobj _space(&sublis

VERI FY3U(0, ==, bpobj space(&subl ist,

&used_after, &conp_after, &uncorrp after));
bpo- >bpo_phys- >bpo_bytes -= used before - used_after;
ASSERT3S(bpo- >bpo_phys- >bpo_bytes, >=, 0);
bpo- >bpo_phys- >bpo_conp -= conp_ before - conp_after;
bpo- >bpo_phys- >bpo_unconmp -=

unconp_before - unconp_after;

}
bpobj _cl ose(&sublist);
if (err)
break;
if (free) {
err = dmu_obj ect _free(bpo->bpo_os,
obj array[bl koff], tx);
if (err)
br eak;
bpo- >bpo_phys- >bpo_num subobj s- -;
ASSERT3S(bpo- >bpo_phys- >bpo_num subobj s, >=, 0);
}
}
if (dbuf) {
drmu_buf _rel e(dbuf, FTAQ;
dbuf = NULL;
}
if (free) {

VERI FYO(dmu_f r ee_r ange(bpo- >bpo_os,

VERI FY3U(0, ==, dnu_free_range(bpo->bpo_os,
bpo- >bpo_phys- >bpo_subobj s,
(1 + 1) * sizeof (uint64_t), -1ULL, tx));

/* |If there are no entries, there should be no bytes. */

ASSERT(bpo- >bpo_phys->bpo_num bl kptrs > 0 ||
(bpo- >bpo_havesubob] && bpo >bpo_phys->bpo_num subobjs > 0) ||
bpo- >bpo_phys- >bpo_bytes == 0);

nmut ex_exi t (&bpo->bpo_| ock);
return (err);

__unchanged_portion_onitted_

_enqueue_subobj (bpobj _t *bpo, uint64_t subobj, dmu_tx_t *tx)

new usr/src/uts/comon/fs/zfs/bpobj.c

318
319

321
322

324
325
324
325

327
328
329
330
331
332

334
335
336
337
338

340
341
342
343
344

346
347
348
349
350
351
352
353

355
355
356
357
358

360
360
361
362
363
364
365
366

368
369
370
370
371
372
373
374
375
376
377

bpobj _t subbpo;
uint64_t used, conp, unconp, subsubobjs;

ASSERT(bpo- >bpo_havesubobj) ;
ASSERT(bpo- >bpo_haveconp) ;

VERI FYO(bpobj _open(&subbpo, bpo->bpo_os, subobj));
VERI FYO(bpobj _space(&ubbpo, &used, &corrp &uncorrp))

VERI FY3U(0, ==, bpobj _open(&subbpo, bpo->bpo_os, subob]));
VERI FY3U(0, ==, bpobj_space(&subbpo, &used, &conp, &unconp))
if (used ==

) {
/* No point in having an enpty subobj. */
bpobj _cl ose(&subbpo) ;
bpobj _free(bpo->bpo_os, subobj, tx);
return;

}

drmu_buf _wi Il _dirty(bpo- >bp0_dbuf, tx);
if (bpo->bpo_phys->bpo_subobjs == 0) {
bpo- >bpo phys >bpo_subobj s = dnu_obj ect _al | oc(bpo- >bpo_os,
Or_BPOBJ_SUBOBJ, SPA_MAXBLOCKSI ZE, DMU_OT_NONE, 0, tx);
}

nmut ex_ent er (&bpo- >bpo_I ock) ;

dmu_wr i t e(bpo- >bpo_os, bpo- >bpo_phys- >bpo_subobj s,
bpo- >bpo_phys->bpo_num subobj s * sizeof (subobj),
si zeof (subobj), &subobj, tx);

bpo- >bpo_phys- >bpo_num subobj s++;

/*
* | f subobj has only one bl ock of subobjs, then nove subobj’s
* subobjs to bpo’s subobj list directly. This reduces
* recursion in bpobj_iterate due to nested subobjs.
*
/

subsubobj s = subbpo. bpo_phys- >bpo_subobj s;
if (subsubobjs !=0) {
dnu_obj ect _info_t doi;

VERI FYO(dnmu_obj ect _i nf o(bpo- >bpo_os, subsubobjs, &doi))

VERI FY3U(0, ==, dnu_obj ect i nf o(bpo- >bpo_os, subsubobj s: &doi));

if (doi.doi_nmax_offset == doi.doi_data_bl ock _si ze)
dmu_buf t *subdb;
ui nt64_t numsubsub = subbpo. bpo_phys->bpo_num subobj s;

VERI FYO(dnmu_buf _hol d(bpo- >bpo_os, subsubobj s,

VERI FY3U(0, ==, dnu_buf _hol d(bpo->bpo_os, subsubobjs,
0, FTAG &subdb, 0));

dmu_wri t e(bpo- >bpo_os, bpo->bpo_phys->bpo_subobj s,
bpo- >bpo_phys- >bpo_num subobj s * sizeof (subobj),
nunsubsub * sizeof (subobj), subdb->db_data, tx);

dmu_buf _rel e(subdb, FTAG;

bpo- >bpo_phys- >bpo_num subobj s += nunsubsub;

dmu_buf _wi I'l _di rty(subbpo. bpo_dbuf, tx);
subbpo. bpo_phys- >bpo_subobj s = 0;
VERI FYO(dnu_obj ect _f ree(bpo- >bpo_os,
VERI FY3U(0, ==, dnu_obj ect_free(bpo->bpo_os,
subsubobj s, tx));
}

}

bpo- >bpo_phys- >bpo_byt es += used;
bpo- >bpo_phys- >bpo_conp += conp;
bpo- >bpo_phys- >bpo_unconp += unconp;
mut ex_exi t (&po- >bpo_I ock) ;

new usr/src/uts/comon/fs/zfs/bpobj.c

379 bpobj _cl ose(&subbpo);

380 }

382 void

383 bpobj _enqueue(bpobj _t *bpo, const bl kptr_t *bp, dmu_tx_t *tx)

384 {

385 bl kptr_t stored_bp = *bp;

386 uint64_t offset;

387 int bl koff;

388 bl kptr_t *bparray;

390 ASSERT(! BP_I S_HOLE(bp));

392 /* We never need the fill count. */

393 stored_bp.blk_fill = 0;

395 /* The bpobj will conpress better if we can | eave off the checksum */
396 if (!BP_GET_DEDUP(bp))

397 bzero(&stored_bp. bl k_cksum sizeof (stored_bp.blk_cksun));
399 mut ex_ent er (&bpo- >bpo_I ock) ;

401 of f set bpo- >bpo_phys->bpo_num bl kptrs * sizeof (stored_bp);

402 bl kof f P2PHASE(bpo- >bpo_phys- >bpo_num bl kptrs, bpo->bpo_epb);
404 if (bpo->bpo_cached_dbuf == NULL ||

405 of fset < bpo->bpo_cached_dbuf->db_offset ||

406 of fset >= bpo->bpo_cached_dbuf->db_of fset +

407 bpo- >bpo_cached_dbuf - >db_si ze) {

408 if (bpo->bpo_cached_dbuf)

409 drmu_buf _r el e(bpo- >bpo_cached_dbuf, bpo);
410 VERI FYO(dmu_buf _hol d(bpo- >bpo_os, bpo- >bpo obj ect,
410 VERI FY3U(0, ==, dmu_buf _hol d(bpo- >bpo_os, bpo->bpo_obj ect,
411 of fset, bpo, &bpo->bpo_cached_dbuf, 0));

412 }

414 drmu_buf _wi | | _dirty(bpo->bpo_cached_dbuf, tx);

415 bparray = bpo->bpo_cached_dbuf - >db_dat a;

416 bparray[bl kof f] = stored_bp;

418 drmu_buf _wi | | _dirty(bpo->bpo_dbuf, tx);

419 bpo- >bpo_phys- >bpo_num bl kpt rs++;

420 bpo- >bpo_phys- >bpo_bytes +=

421 bp_get _dsi ze_sync(dnmu_obj set _spa(bpo->bpo_os), bp);
422 if (bpo->bpo_haveconp) {

423 bpo- >bpo_phys- >bpo_conp += BP_CGET_PSI ZE(bp) ;

424 bpo- >bpo_phys- >bpo_unconp += BP_CGET_UCSI ZE(bp) ;
425 }

426 mut ex_exi t (&po- >bpo_I ock) ;

427 }

__unchanged_portion_omtted_

new usr/src/uts/ comon/fs/zfs/bptree.c

R R R R

5944 Thu Jul 26 14:19: 05 2012
new usr/src/uts/comon/fs/zfs/bptree.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

60 uint64_t

61 bptree_all oc(objset_t *os, dmu_tx_t *tx)

62 {

63 uint64_t obj;

64 drmu_buf _t *db;

65 bptree_phys_t *bt;

67 obj = dnu_obj ect_all oc(os, DMJ_OTN_Ul NT64_METADATA,
68 SPA_MAXBLOCKSI ZE, DMU_OTN_Ul NT64_NMETADATA,
69 si zeof (bptree._| phys t), tx);

71 I*

72 * Bonus buffer contents are already initialized to O, but for
73 * readability we nake it explicit.

74 */

75 VERI FYO(dnmu_bonus_hol d(os, obj, FTAG &db));
75 VERI FY3U(0, ==, dmu_bonus_hol d(os, obj, FTAG &db)) ;
76 drmu_buf _will _dirty(db, tx);

77 bt = db->db_dat a;

78 bt - >bt _begin = 0;

79 bt ->bt _end = 0;

80 bt - >bt _bytes = 0;

81 bt - >bt _conp = 0;

82 bt - >bt _unconp = 0;

83 drmu_buf _rel e(db, FTAG)

85 return (obj);

86 }

88 int

89 bptree_free(objset_t *os, uint64_t obj, dnu_tx_t *tx)
90 {

91 dnu_buf _t *db;

92 bptree_phys_t *bt;

94 VERI FYO(dnu_bonus_hol d(os, obj, FTAG &db));
94 VERI FY3U(0, ==, dmu_bonus_hol d(os, obj, FTAG &db)) ;
95 bt = db->db_dat a;

96 ASSERT3U(bt - >bt _begi n, ==, bt->bt_end);

97 ASSERTO(bt - >bt _byt es);

98 ASSERTO(bt - >bt _conp) ;

99 ASSERTO(bt - >bt _unconp) ;

97 ASSERT3U(bt - >bt _bytes, ==, 0);

98 ASSERT3U(bt - >bt _conp, , 0);

99 ASSERT3U(bt - >bt _unconp, ==, 0);

100 dmu_buf _rel e(db, FTAQ;

102 return (dnu_object_free(os, obj, tx));

103 }

105 void

106 bptree_add(objset_t *os, uint64_t obj, blkptr_t *bp, uint64_t birth_txg,
107 uint64_t bytes, uint64_t conp, uint64_t unconp, dnu_tx_t *tx)
{

109 drmu_buf _t *db;
110 bptree_phys_t *bt;
111 bptree_entry_phys_t bte;

113 /*

new usr/src/uts/ comon/fs/zfs/bptree.c

114
115
116
117
118

120
120
121

123
124
125
126

128
129
130
131
132
133
134 }

* bptree objects are in the pool nos, therefore they can only be
* nodified in syncing context. Furtherrmre this is only nodified
* by the sync thread, so no | ocking is necessary.

*/

ASSERT(dmu_t x_i s_synci ng(tx));

VERI FYO(dnu_bonus_hol d(os, obj, FTAG &db));
VERI FY3U(0, ==, dnu_bonus_hol d(os, obj, FTAG. &db)) ;
bt = db->db_dat a;

bte. be_birth txg = birth_txg;

bte.be_bp = *bp

bzero(&bt e. be_. zb si zeof (bte.be_zb));

dmu_write(os, obj, bt->bt_end * sizeof (bte), sizeof (bte), &bte, tx);

drmu_buf _will _dirty(db, tx);
bt - >bt _end++;

bt - >bt _bytes += bytes;

bt - >bt _conp += conp;

bt - >bt _unconp += unconp;
dmu_buf_rel e(db, FTAG;

__unchanged_portion_onitted_

156 i

nt

157 bptree_iterate(objset_t *os, uint64_t obj, boolean_t free, bptree_itor_t func,

158
159 {
160
161
162
163

165

167
168
169

171
172

174
175
176
177
178

180
181
182

184

186
187
188
189

191
192
193
194
195
196
197

void *arg, dmu_tx_t *tx)

int err;

uint6d_t i;

drmu_buf _t *db;

struct bptree_args ba;

ASSERT(!free || dmu_tx_is_syncing(tx));
err = dnu_bonus_hol d(os, obj, FTAG &db);

if (err 1=0)
return (err);

if (free)

dmu_buf _will _dirty(db, tx);
ba. ba_phys = db->db_dat a;
ba.ba_free = free;
ba. ba_func = func;

ba.ba_arg = arg;
ba. ba_tx = tx;

err = 0;
for (i = ba.ba_phys->bt_begin; i < ba.ba_phys->bt_end; i++) {
bptree_entry_phys_t bte;

ASSERT(!free || i == ba.ba_phys->bt_begin);
err = dmu_read(os, obj, i * sizeof (bte), sizeof (bte),
&bt e, "DMU_READ NO PREFETCH) ;
if (err 1=0)
br eak;

err = traverse_dataset _destroyed(os->0s_spa, &bte.be_bp,
bte.be_birth_txg, &bte.be_zb, TRAVERSE_POCST,
bptree_visit_cb, &ba);
if (free) {
ASSERT(err == 0 || err == ERESTART);
if (err 1=0)
/* save bookmark for future resune */

new usr/src/uts/ comon/fs/zfs/bptree.c 3

198 ASSERT3U(bt e. be_zb. zb_obj set, ==,
199 ZB_DESTROYED OBJSET)

200 ASSERTO(bt e. be_zb. zb_| evel);

200 ASSERT3U(bt e. be_zb. zb_l| evel, ==, 0);
201 dmu_write(os, obj, i * sizeof (bte),
202 sizeof (bte), &bte, tx);

203 br eak;

204 } else {

205 ba. ba_phys- >bt _begi n++;

206 (void) dmu_free_range(os, obj,

207 i * sizeof (bte), sizeof (bte), tx);
208 }

209 }

210 }

212 ASSERT(!free || err !'= 0 || ba.ba_phys->bt_begin == ba.ba_phys->bt_end);
214 /* if all blocks are free there should be no used space */
215 if (ba.ba_phys->bt_begi n == ba. ba_phys->bt _end) {

216 ASSERTO(ba. ba_phys->bt _bytes);

217 ASSERTO(ba. ba_phys->bt _conp) ;

218 ASSERTO(ba. ba_phys->bt _unconp) ;

216 ASSERT3U(ba. ba_phys->bt _bytes, ==, 0);

217 ASSERT3U(ba. ba_phys- >bt _conp, 0);
218 ASSERT3U(ba. ba_phys- >bt _unconp, ==, 0);
219 }

221 dnu_buf _rel e(db, FTAG;

223 return (err);

224 }

____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dbuf.c

R R R R

73444 Thu Jul 26 14:19:06 2012
new usr/src/uts/comon/fs/zfs/dbuf.c

3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

LEEE R R R R EEE R EEEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREEEEEEEEEEESES]
__unchanged_portion_onitted_

294 | *

295 * Other stuff.

296 */

298 #ifdef ZFS DEBUG

299 static void

300 dbuf _verify(dmu_buf _inpl _t *db)

301 {

302 dnode_t *dn;

303 dbuf _dirty_record_t *dr;

305 ASSERT(MUTEX_HELD(&db- >db_mt x)) ;

307 if (!(zfs_flags & ZFS_DEBUG DBUF_VERI FY))

308 return;

310 ASSERT(db- >db_obj set != NULL);

311 DB_DNGCDE ENTER(d)

312 dn" = DB_DNODE(db

313 if (dn == NULL) {

314 ASSERT(db- >db_parent == NULL);

315 ASSERT(db- >db_bl kptr == NULL);

316 } else {

317 ASSERT3U(db- >db. db_obj ect, ==, dn->dn_object);

318 ASSERT3P(db- >db_obj set, ==, dn->dn_obj set);

319 ASSERT3U(db->db_| evel , <, dn->dn_nlevels);

320 ASSERT(db- >db_bl ki d == DMJ_BONUS_BLKI D ||

321 db->db_blkid == DNU SPILL_BLKID ||

322 Ilist is errpty(&dn >dn_dbufs));

323 }

324 if (db->db_bl kid == DMJ_BONUS_BLKI D) {

325 ASSERT(dn !'= NULL)

326 ASSERT3U(db- >db. db_si ze, >:, dn—>dn bonusl en) ;

327 ASSERT3U(db- >db. db offset ==, DMJ_BONUS_BLKI D)

328 } else if (db->db_blkid == DMJ_ SPi LL_ BLKI D {

329 ASSERT(dn !'= NULL);

330 ASSERT3U(db- >db. db_si ze, >=, dn->dn_bonusl en);

331 ASSERTO(db- >db. db offset)

331 ASSERT3U(db- >db. db_of f set, ==, 0);

332 } else {

333 ASSERT3U(db- >db. db_of f set, ==, db->db_bl kid * db->db. db_si ze);

334 }

336 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)

337 ASSERT(dr - >dr _dbuf == db);

339 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)

340 ASSERT(dr - >dr _dbuf == db);

342 /*

343 * W can’'t assert that db_size matches dn_dat abl ksz because it

344 * can be nonentarily different when another thread is doing

345 * dnode_set _bl ksz().

346 */

347 if (db->db_|l evel == 0 && db->db. db_obj ect == DMJ_META_DNODE_OBJECT) {

348 dr = db->db_dat a_pendi ng;

349 /*

350 * It should only be nodified in syncing context, so

351 * make sure we only have one copy of the data.

new usr/src/uts/comon/fs/zfs/dbuf.c

352
353
354

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

399
400
401
402
403
404
405 }

*
/

ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
}

/* verify db->db_bl kptr */
if (db->db_bl kptr) {
if (db->db_parent == dn->dn_dbuf) {
/* db is p0| nted to by the dnode */
/* ASSERT3U(db->db_bl ki d, <, dn->dn_nbl kptr); */
if (DMJ_OBJECT_| S_SPECI AL(db >db. db_obj ect))
ASSERT(db->db_parent == NULL);
el se
ASSERT(db- >db_parent != NULL);
if (db->db_blkid != DMJ_SPI LL_BLKI D)
ASSERT3P(db->db_bl kptr, ==,
&dn- >dn_phys- >dn_ bl kptr[db >db_bl ki d]);
} else {
/* db is pointed to by an indirect block */
int epb = db->db_parent->db. db_si ze >> SPA BLKPTRSHI FT;
ASSERT3U(db- >db_par ent - >db_| evel , ==, db->db_| evel +1);
ASSERT3U(db- >db_par ent - >db. db_obj ect, ==,
db- >db. db_obj ect) ;
/*
* dnode_grow_i ndbl ksz() can nake this fail if we don't
* have the struct_rw ock. XXX indblksz no |onger
* grows. safe to do this now?
*/
if (RWWR TE_HELD(&n->dn_struct rV\A ock)) {
ASSERT3P(db->db_bl kptr, ==
((bl kptr_t *)db- >db parent >db. db_data +
db->db_bl'ki d % epb));

}

if ((db->db_bl kptr == NULL || BP_I S _HOLE(db->db_bl kptr)) &&
(db->db_buf == NULL || db->db_buf->b_data) &&
db->db. db_data && db->db_bl kid ! = DMJ BONUS_BLKI D &&
db->db_state != DB _FILL & !dn->dn_free_txg) {
/*
* If the blkptr isn't set but they have nonzero data,
* it had better be dirty, otherwise we'll |ose that
* data when we evict this buffer.
*
/
if (db->db_dirtycnt == 0) {
uint64_t *buf = db->db. db_dat a;
int i;

for (i ;1 < db->db. db size >> 3; i++) {
ASSERT(buf[l] == 0);
}

}
%B_DNCDE_EXIT(db)

__unchanged_portion_omtted_

2263 static void

2264 dbuf_sync_| eaf (dbuf _dirty_record_t *dr,

2265 {
2266
2267
2268
2269
2270

2272

dmu_tx_t *tx)

arc_buf _t **datap
dnu_buf _i npl _t *db
dnode_t *dn;
obj set _t *os
uint64_t txg = tx->tx_txg;

= &dr->dt.dl.dr_data;
= dr->dr_dbuf;

ASSERT(dnmu_t x_i s_synci ng(tx));

new usr/src/uts/comon/fs/zfs/dbuf.c 3 new usr/src/uts/comon/fs/zfs/dbuf.c 4
2338 * operation to sneak in. As a result, we need to ensure that we
2274 dprintf_dbuf _bp(db, db->db_bl kptr, "blkptr=%", db->db_bl kptr); 2339 * don't check the dr_override_state until we have returned from
2340 * dbuf _check_bl kptr.
2276 mut ex_ent er (&db->db_nt x) ; 2341 */
2277 /* 2342 dbuf _check_bl kptr(dn, db);
2278 * To be synced, we nust be dirtied. But we
2279 * mght have been freed after the dirty. 2344 /*
2280 */ 2345 * |f this buffer is in the mddle of an imediate wite,
2281 if (db->db_state == DB_UNCACHED) { 2346 * wait for the synchronous IO to conplete.
2282 /* This buffer has been freed since it was dirtied */ 2347 */
2283 ASSERT(db- >db. db_data == NULL); 2348 while (dr->dt.dl.dr_override_state == DR _IN_DMJ SYNC) {
2284 } else if (db->db_state == DB_FILL) { 2349 ASSERT(dn- >dn_obj ect ! = DMJ_META_ DNODE - OBJECT) ;
2285 /* This buffer was freed and is now being re-filled */ 2350 cv_wai t (&db- >db changed &db- >db_nt
2286 ASSERT(db->db. db_data != dr->dt.dl.dr_data); 2351 ASSERT(dr->dt.dl.dr_override_st ate l- DR_NOT_OVERRI DDEN) ;
2287 } else { 2352 1
2288 ASSERT(db- >db_state == DB_CACHED || db->db_state == DB_NOFILL);
2289 } 2354 if (db->db_state != DB_NOFILL &&
2290 DBUF_VERI FY(db) ; 2355 dn->dn_obj ect ! = DMJ META_DNODE_OBJECT &&
2356 ref count _count (&b->db_hol ds) > 1 &&
2292 DB_DNODE_ENTER(db) ; 2357 dr->dt.dl.dr_override_state != DR _OVERRI DDEN &&
2293 dn = DB_DNODE(db); 2358 *dat/ap == db->db_buf)
2359 *
2295 if (db->db_blkid == DMJ_SPILL_BLKID) { 2360 * |f this buffer is currently "in use" (i.e., there
2296 mut ex_ent er (&dn->dn_nt x) ; 2361 * are active holds and db_data still references it),
2297 dn->dn_phys->dn_f | ags | = DNODE_FLAG SPI LL_BLKPTR, 2362 * then make a copy before we start the wite so that
2298 mut ex_exi t (&dn->dn_nt x) ; 2363 * any nodifications fromthe open txg will not |eak
2299 } 2364 * into this wite.
2365 *
2301 /* 2366 * NOTE: this copy does not need to be made for
2302 * |f this is a bonus buffer, sinply copy the bonus data into the 2367 * objects only nodified in the syncing context (e.g.
2303 * dnode. It will be witten out when the dnode is synced (and it 2368 * DNONE_DNCDE bl ocks) .
2304 * will be synced, since it must have been dirty for dbuf_sync to 2369 */
2305 * be called). 2370 int blksz = arc_buf_si Ze(dat ap) ;
2306 */ 2371 arc_buf _contents_t type = DBUF_ GET BUFC_TYPE(db) ;
2307 if (db->db_blkid == DMJ_BONUS_BLKI D) { 2372 *datap = arc_buf_al | oc(os->o0s_spa, bl ksz, db, type);
2308 dbuf _dirty record_t **drp; 2373 bcopy(db->db. db_data, (*datap)->b_data, bl ksz);
2374 }
2310 ASSERT(*datap != NULL); 2375 db- >db_dat a_pendi ng = dr;
2311 ASSERTO(db- >db_| evel);
2311 ASSERT3U(db->db_I evel , ==, 0); 2377 mut ex_exi t (&db->db_nt x) ;
2312 ASSERTSU(dn >dn_phys- >dn_bonus! en, <=, DN_MAX_BONUSLEN);
2313 bcopy(dat ap, DN_BONUS(dn- >dn phys) dn->dn_phys->dn bonuslen) 2379 dbuf _write(dr, *datap, tx);
2314 DB_DNODE_EXI T(db) ;
2381 ASSERT(!1ist_link act ive(&dr->dr_dirty_node));
2316 if (*datap != db->db.db_data) { 2382 if (dn->dn Obj ect == DMJ_META DNODE_CBJE
2317 zi o_buf _free(*datap, DN_MAX_BONUSLEN); 2383 list_insert_tail (&n->dn_dirty_records[txg&TXG MASK], dr);
2318 arc_space_ret ur n(DN_MAX_BONUSLEN, ARC SPACE_OTHER) ; 2384 DB_DNCDE_EXI T(db) ;
2319 } 2385 } else {
2320 db- >db_dat a_pendi ng = NULL; 2386 /*
2321 drp = &b->db_l ast_dirty; 2387 * Al though zio_nowait() does not "wait for an |0, it does
2322 v\hile(*drp!zdr) 2388 * initiate the 10 If this is an enpty wite it seens plausible
2323 drp &(*drp) - >dr _next; 2389 * that the 10 could actually be conpleted before the nowait
2324 ASSERT(dr - >dr next == NULL); 2390 * returns. W need to DB_DNODE_EXIT() first in case
2325 ASSERT(dr - >dr _dbuf == db); 2391 * zio_nowait() invalidates the dbuf.
2326 *drp = dr->dr_next; 2392 */
2327 kmem free(dr, si zeof (dbuf _dirty_record_t)); 2393 DB_DNODE_EXI T(db) ;
2328 ASSERT(db- >db_di rtycnt > 0); 2394 zi o_nowai t (dr->dr_zio);
2329 db->db_dirtycnt -= 1; 2395 }
2330 dbuf _rel e_and_unl ock(db, (void *)(uintptr_t)txg); 2396 }
2331 return; __unchanged_portion_onitted_
2332 1
2500 /* ARGSUSED */
2334 os = dn->dn_obj set; 2501 static void
2502 dbuf _write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
2336 /* 2503 {
2337 * This function may have dropped the db_ntx |lock allow ng a dmu_sync 2504 drmu_buf _inpl _t *db = vdb;

new usr/src/uts/comon/fs/zfs/dbuf.c

2505 bl kptr_t *bp = zio->io_bp;

2506 bl kptr_t *bp_orig = &io->io_bp_orig;

2507 uint64_t txg = zio->io0_txg;

2508 dbuf _dirty_record_t **drp, *dr;

2510 ASSERTO(zi 0->i 0_error);

2510 ASSERT3U(zi 0->i o_error, ==, 0);

2511 ASSERT(db- >db_bl kptr == bp);

2513 if (zio->io_flags & ZI O FLAG | O REVRI TE) {

2514 ASSERT(BP_EQUAL(bp, bp_orig));

2515 } else {

2516 obj set _t *os;

2517 dsl _dataset _t *ds;

2518 dmu_t x_t *tx;

2520 DB_CET_OBJSET(&os, db);

2521 ds = os->o0s_dsl _dat aset;

2522 tX = 0s->0s_synctx;

2524 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B TRUE);
2525 dsl _dat aset _bl ock_born(ds, bp, tx);

2526 1

2528 mut ex_ent er (&db->db_nt x) ;

2530 DBUF_VERI FY(db) ;

2532 drp = &b->db_last_dirty;

2533 while ((dr = *drp) ! = db->db_dat a_pendi ng)

2534 drp = &dr->dr_next;

2535 ASSERT(!list_link_acti ve(&dr->dr_di rty_node));

2536 ASSERT(dr->dr _txg == txg);

2537 ASSERT(dr - >dr _dbuf == db);

2538 ASSERT(dr - >dr _next == NULL);

2539 *drp = dr->dr_next;

2541 #ifdef ZFS_DEBUG

2542 if (db->db_blkid == DMJ_SPI LL_BLKI D) {

2543 dnode_t *dn;

2545 DB_DNODE_ENTER(db) ;

2546 dn = DB_DNODE(db);

2547 ASSERT(dn- >dn_phys->dn_f| ags & DNODE_FLAG SPI LL_BLKPTR) ;
2548 ASSERT(! (BP_I' S HOLE(db >db_bl kptr)) &&

2549 db->db_bl kptr == &dn->dn_phys->dn_spill);
2550 DB_DNODE_EXI T(db) ;

2551

2552 #endi f

2554 if (db->db_| evel == {

2555 ASSERT(db->db_bl ki d ! = DMJ BONUS_BLKI D) ;

2556 ASSERT(dr->dt. dl . dr_override_state == DR_NOT_OVERRI DDEN) ;
2557 if (db->db_state != DB_NOFILL) {

2558 if (dr->dt.dl.dr_data != db->db_buf)
2559 VERI FY(arc buf _renove_ref (dr->dt.dl.dr_data,
2560 db) == 1);

2561 else if (larc_rel eased(db >db_buf))
2562 arc_set _cal | back(db->db_buf, dbuf_do_evict,
2563 }

2564 } else {

2565 dnode_t *dn;

2567 DB_DNODE_ENTER(db) ;

2568 dn = DB_DNCDE(db);

2569 ASSERT(Ti st head(&dr >dt. di.dr_children) == NULL);

new usr/src/uts/comon/fs/zfs/dbuf.c

2570 ASSERT3U(db- >db. db_si ze, ==, 1<<dn->dn_phys->dn_i ndbl kshift);
2571 if (!BP_I'S_HOLE(db->db bl kptr)) {

2572 int epbs =

2573 dn- >dn_phys->dn_i ndbl kshi ft - SPA_BLKPTRSHI FT;
2574 ASSERT3U(BP_GET_LSI ZE(db- >db_bl kptr), ==,

2575 db->db. db_si ze) ;

2576 ASSERT3U(dn- >dn_phys- >dn_naxbl ki d

2577 >> (db->db_l evel * epbs), >=db->db_blkid);
2578 arc_set_cal | back(db->db_buf, dbuf _do_evict, db);
2579 }

2580 DB_DNCODE_EXI T(db) ;

2581 mut ex destroy(&dr->dt di.dr_ntx);

2582 list_destroy(&dr->dt.di.dr chlldren)

2583 }

2584 kmem free(dr, sizeof (dbuf_dirty_record_t));

2586 cv_broadcast (&b- >db_changed) ;

2587 ASSERT(db->db_dirtycnt > 0);

2588 db->db_dirtycnt -= 1;

2589 db- >db_dat a_pendi ng = NULL;

2590 dbuf _rel e_and_unl ock(db, (void *)(uintptr_t)txg);

2591 }

__unchanged_portion_onitted_

new usr/src/uts/ common/fs/zfs/dm_objset.c

R R R R

45183 Thu Jul 26 14:19:07 2012
new usr/src/uts/comon/fs/zfs/dmu_objset.c

3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
LEEE R R R R EEE R EEEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREEEEEEEEEEESES]
__unchanged_portion_onitted_
696 static void
697 dmu_obj set _create_sync(void *argl, void *arg2, dnu_tx_t *tx)
{
699 dsl _dir_t *dd = argi;
700 spa_t *spa = dd->dd_pool - >dp_spa;
701 struct oscarg *oa = argz;
702 uint64_t obj;
703 dsl _dat aset _t *ds;
704 bl kptr_t *bp;
706 ASSERT(dnu_t x_i s_synci ng(tx));
708 obj = dsl_dataset_create_sync(dd, oa->| astnane,
709 oa->clone_origin, oa->flags, oa->cr, tx);
711 VERI FYO(ds| _dat aset _hol d_obj (dd- >dd_pool , obj, FTAG &ds));
711 VERI FY3U(0, ==, dsl_dataset_hol d_obj (dd->dd_pool, obj, FTAG &ds));
712 bp = dsl _dataset _get_bl kptr(ds);
713 if (BP_IS_HOLE(bp)) {
714 objset_t *os =
715 dmu_obj set _create_i npl (spa, ds, bp, oa->type, tx);
717 if (oa->userfunc)
718 oa->userfunc(os, oa->userarg, oa->cr, tx);
719 1
721 if (oa->clone_origin == NULL)
722 spa_history_log_internal _ds(ds, "create", tx, "");
723 } else {
724 char nanebuf [MAXNAMVELEN] ;
725 dsl _dat aset _nane(oa- >cl one_ori gi n, namebuf);
726 spa_history_log_internal _ds(ds, "clone", tx,
727 "origin=% (%Ilu)", nanebuf, oa->clone_origin->ds_object);
728 }
729 dsl _dataset _rel e(ds, FTAQ;
730 }
__unchanged_portion_ontted_
1143 /* called fromdsl */
1144 void
1145 dmu_obj set _sync(objset _t *os, zio_t *pio, dnu_tx_t *tx)
1146 {
1147 int txgoff;
1148 zbookmark_t zb;
1149 zio prop t zp;
1150 zio *zi o;
1151 Ilst_t *Ilst
1152 list_t *new ist = NULL;
1153 dbuf _dirty_record_t *dr;
1155 dprintf_ds(os->o0s_dsl _dataset, "txg=%lu\n", tx->tx_txg);
1157 ASSERT(dmu_t x_i s_syncing(tx));
1158 /* XXX the write_done cal | back shoul d really give us the tx. */
1159 0s->0S_synctx = tx;
1161 if (os->o0s_dsl_dataset == NULL) {
1162 /*

1163 * This is the MOS. |If we have upgraded,

new usr/src/uts/ comon/fs/zfs/dm_objset.c

1164 * spa_max_replication() could change, so reset
1165 * os_copies here.

1166 */

1167 0s->0s_copi es = spa_max_replication(os->0s_spa);
1168 }

1170 /*

1171 * Create the root block 10

1172 */

1173 SET_BOOKMARK(&b, o0s->o0s_dsl| _dat aset ?

1174 0s->0s_ds| _dat aset - >ds_obj ect : DMJ_META OBJSET,

1175 ZB_ROOT_OBJECT, ZB ROOT_LEVEL, ZB_ROOT_BLKID);

1176 VERI FYO(ar c_r el ease_bp(0s- >0s phys buf, &os- >os_phys_buf,
1176 VERI FY3U(0, ==, arc_rel ease_bp(os- >os_phys_buf, &0s- >0s_phys_buf,
1177 0s->0s_root bp, os->o0s_spa, &zb));

1179 dmu_write_policy(os, NULL, 0, O, &zp);

1181 zio = arc_wite(pio, os->0s_spa, tx->tx_txg,

1182 0s->0s_root bp, os->os_phys_buf, DMJ OS | S L2CACHEABLE(0s), &zp,
1183 dnu_obj set _write_ready, dmu Ob] set_wite_done, os,

1184 ZI O_PRI ORI TY_ASYNC WRI TE, ZI O FLAG MJSTSUCCEED, &zb)
1186 /*

1187 * Sync speci al dnodes - the parent 10 for the sync is the root block
1188

1189 DNU MVETA_DNODE(0s) - >dn_zi 0 = zi0;

1190 dnode_sync(DMJ_META_DNODE(0s), tx);

1192 os- >0s_phys->o0s_fl ags = os->o0s_f| ags;

1194 i f (DMJ_USERUSED DNODE(0s) &&

1195 DMJ_USERUSED_DNODE(0s) - >dn_t ype ! = DNU OT_NONE) {

1196 DMJ_USERUSED DNODE(0s)->dn_zi 0 = zi 0;

1197 dnode_sync(DMJ_USERUSED DNO)E(0s), tx);

1198 DMJ_GROUPUSED_DNODE(0s) - >dn_zi 0 = zi 0;

1199 dnode_sync(DMJ_GROUPUSED_DNODE(0s), tx);

1200 }

1202 txgoff = tx->tx_txg & TXG MASK;

1204 if (dmu_obj set_userused_enabl ed(os)) {

1205 new i st = &os->0s_synced_dnodes;

1206 /*

1207 * W nust create the |list here because it uses the
1208 * dn_dirty_link[] of this txg.

1209 */

1210 list_create(newist, sizeof (dnode_t),

1211 of fset of (dnode_t, dn_dirty_li nk[txgoff]))

1212 }

1214 drmu_obj set _sync_dnodes(&s->o0s_free_dnodes[txgoff], newist, tx);
1215 dmu_obj set _sync_dnodes(&s->o0s_di rty_dnodes[txgoff], newist, tx);
1217 list = &MJ_META_DNODE(0s)->dn_dirty_records[txgoff];

1218 V\,hlle(dr ="list_head(list)) {

1219 ASSERT(dr - >dr _dbuf->db_| evel == 0);

1220 list_remove(list, dr);

1221 if (dr->dr_zio)

1222 zi o_nowai t (dr->dr_zio0);

1223 1

1224 /*

1225 * Free intent |og blocks up to this tx.

1226 */

1227 zil _sync(os->o0s_zil, tx);

1228 0s->0s_phys->o0s_zi | _header = os->o0s_zil _header;

new usr/src/uts/ common/fs/zfs/dm_objset.c

1229
1230

zi o_nowait(zio);

}

__unchanged_portion_onitted_

1264 static void

1265 do_user quot a_updat e(obj set _t *os, uint64_t used, uint64_t flags,
uint64_t user, uint64_t group, boolean_t subtract, dmu_tx_t *tx)

1266
1267

{
1268

1269
1270
1271
1272
1272
1273
1274
1274
1275
1276

}

1277 }
__unchanged_portion_omtted_

if ((flags & DNODE_FLAG USERUSED_ACCOUNTED)) {

int64_t delta = DNODE_SIZE + used;
if (subtract)

delta = -delta;
VERI FYO(zap_i ncrenent _i nt (os, DMJ_USERUSED OBJECT,
VERI FY3U(0, ==, zap_increnent_int(os, DMJ USERUSED OBJECT,

user, delta, tx));

VERI FYO(zap_i ncrenent _i nt (os, DMJ_GROUPUSED OBJECT,

VERI FY3U(0, ==, zap_increnent_int(os, DMJ_GROUPUSED OBJECT,
group, delta, tx));

new usr/src/uts/ comon/fs/zfs/dmu_send. c 1

R R R R

45439 Thu Jul 26 14:19:08 2012
new usr/src/uts/ comon/fs/zfs/dm_send. c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. Al rights reserved.
24 * Copyright (c) 2012 by Del phix. Al rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. Al rights reserved.
*

/

28 #include <sys/dnu. h>

29 #include <sys/dmu_inpl.h>

30 #include <sys/dnu_tx. h>

31 #include <sys/dbuf.h>

32 #include <sys/dnode. h>

33 #include <sys/zfs_context.h>
34 #include <sys/dnu_obj set. h>
35 #include <sys/dnu_traverse. h>
36 #include <sys/dsl _dataset. h>
37 #include <sys/dsl _dir.h>

38 #include <sys/dsl _prop. h>

39 #include <sys/dsl _pool . h>

40 #include <sys/dsl _synctask. h>
41 #include <sys/zfs_ioctl.h>

42 #include <sys/zap. h>

43 #incl ude <sys/zio_checksum h>
44 #incl ude <sys/zfs_znode. h>

45 #include <zfs_fletcher. h>

46 #include <sys/avl.h>

47 #include <sys/ddt. h>

48 #include <sys/zfs_onexit.h>

50 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddbl0c */
51 int zfs_send_corrupt_data = B_FALSE;

53 static char *dnu_recv_tag = "dmu_recv_tag";

55 static int
56 dunp_bytes(dnu_sendarg_t *dsp, void *buf, int |en)
{

57

58 dsl _dataset _t *ds = dsp->dsa_os->o0s_dsl| _dat aset;

59 ssize_t resid; /* have to get resid to get detailed errno */
60 ASSERTO(| en % 8) ;

60 ASSERT3U(l en % 8, ==, 0);

new usr/src/uts/ comon/fs/zfs/dm_send. c

62 fletcher_4_increnmental _native(buf, |len, &dIsp->dsa_zc);

63 dsp->dsa_err = vn_rdw (U O WRI TE, dsp->dsa_vp,

64 (caddr_t) buf, len,

65 0, Ul O_SYSSPACE, FAPPEND, RLIMs4_I NFINITY, CRED(), &resid);
67 mut ex_ent er (&ds- >ds_sendstream | ock) ;

68 *dsp->dsa_of f += len;

69 mut ex_exi t (&ds->ds_sendst ream | ock);

71 return (dsp->dsa_err);

72

}
__unchanged_portion_omtted_

957 static void *
958 restore_read(struct restorearg *ra, int |len)

959 {

960 void *rv;

961 int done = O;

963 /* sone things will require 8-byte alignnent, so everything nust */
964 ASSERTO(1 en % 8) ;

964 ASSERT3U(l en %8, == 0);

966 while (done < len) {

967 ssize_t resid;

969 ra->err = vn_rdw (U O READ, ra->vp,

970 (caddr_t)ra->buf + done, |en - done,

971 ra->voff, U O SYSSPACE, FAPPEND,

972 RLI MB4_| NFINITY, CRED(), &resid);

974 if (resid == len - done)

975 ra->err = ElI NVAL;

976 ra->voff += len - done - resid,;

977 done = len - resid;

978 if (ra->err)

979 return (NULL);

980 }

982 ASSERT3U(done, ==, len);

983 rv = ra->buf;

984 if (ra->byteswap)

985 fletcher_4_increnental _byteswap(rv, |en, &ra->cksum;
986 el se

987 fletcher_4_increnental _native(rv, len, & a->cksun);
988 return (rv);

989 }

__unchanged_portion_onitted_

1604 static int
1605 dmu_recv_exi sting_end(dmu_recv_cookie_t *drc)

1606 {

1607 struct recvendsyncarg resa;

1608 dsl _dataset _t *ds = drc->drc_| ogi cal _ds;

1609 int err, nyerr;

1611 /*

1612 * XXX hack; seens the ds is still dirty and dsl_pool _zil _cl ean()
1613 * expects it to have a ds_user_ptr (and zil), but clone_swap()
1614 * can close it.

1615 */

1616 txg_wai t _synced(ds->ds_di r->dd_pool, 0);

1618 if (dsl_dataset_tryown(ds, FALSE, dnu_recv_tag)) {

1619 err = dsl _dataset_cl one_swap(drc->drc_real _ds, ds,

new usr/src/uts/ comon/fs/zfs/dmu_send. c

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

1631
1632
1633

1635
1636
1637
1638
1639
1640

1642
1643
1644
1645
1646
1647
1648
1648
1649

out:

1650 }
__unchanged_portion_omtted_

drc->drc_force);
if (err)
goto out;
} else {
nmut ex_exi t (&ds- >ds_r ecvl ock);
dsl _dataset_rel e(ds, dmu_recv_tag);
(void) dsl_dataset_destroy(drc->drc_real _ds, dnmu_recv_tag,
B_FALSE) ;
return (EBUSY);
}

resa.creation_time = drc->drc_drrb->drr_creation_tine;
resa.toguid = drc->drc_drrb->drr_toguid;
resa.tosnap = drc->drc_tosnap;

err = dsl_sync_task_do(ds->ds_dir->dd_pool,
recv_end_check, recv_end_sync, ds, &resa, 3);
if (err) {
/* swap back */
(voi d) dsl_dataset_cl one_swap(drc->drc_real _ds, ds, B TRUE);

mut ex_exi t (&ds- >ds_recvl ock);
if (err == 0 & drc->drc_guid_to_ds_map != NULL)
(voi d) add_ds_to_gui dnap(drc->drc_gui d_to_ds_map, ds);
dsl _dat aset _di sown(ds, dnu_recv_tag);
nyerr = dsl_dataset_destroy(drc->drc_real _ds, dnu_recv_tag, B _FALSE);
ASSERTO(myerr) ;
ASSERT3U(nyerr, ==, 0);
return (err);

new usr/src/uts/comon/fs/zfs/dmu_traverse.c

R R R R
14478 Thu Jul 26 14:19:09 2012

new usr/src/uts/comon/fs/zfs/dmu_traverse. c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

173 static void
174 traverse_pause(traverse_data_t *td, const zbookmark_t *zb)

175 {

176 ASSERT(td->td_resume != NULL);

177 ASSERTO(zb- >zb_| evel);

177 ASSERT3U(zb- >zb_l evel , ==, 0);

178 bcopy(zb, td->td_resume, sizeof (*td->td_resune));
179 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dm_tx.c

R R R R

35009 Thu Jul 26 14:19:10 2012
new usr/src/uts/comon/fs/zfs/dm_tx.

c
3006 VERIFY[S, U, P] and ASSERT[S, U, P] frequently check if first argument is zero
*

P R]

__unchanged_portion_onitted_
7892 #endi f

kAR KK IR AR AR KKKk Kk Kk

894 static int
895 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)

896 {

897 dmu_t x_hol d_t *t xh;

898 spa_t *spa = tx->tx_pool - >dp_spa;

899 uint64_t menory, asize, fsize, usize;

900 uint64_t towite, tofree, tooverwite, tounref, tohold, fudge;
902 ASSERTO(t x- >t X_t xg) ;

902 ASSERT3U(t x- >t x_txg, ==, 0);

904 if (tx->tx_err)

905 return (tx->tx_err);

907 if (spa_suspended(spa)) {

908 /*

909 * |f the user has indicated a blocking failure node
910 * then return ERESTART which will block in dnu_tx_wait().
911 * Otherwise, return EIO so that an error can get

912 * propagated back to the VOP calls.

913 *

914 * Note that we always honor the txg_how flag regardl ess
915 * of the failurenode setting.

916 */

917 if (spa_get_fail m)de(spa) == ZI O_FAI LURE_MODE_CONTI NUE &&
918 txg_how ! = TXG WAI T)

919 return (EIO;

921 return (ERESTART);

922 }

924 tx->tx_txg = txg_hol d_open(tx->tx_pool, & x->tx_txgh);

925 t x- >t x_needassi gn_t xh = NULL;

927 /*

928 * NB: No error returns are allowed after txg_hol d_open, but
929 * before processing the dnode holds, due to the

930 * dmu_t x_unassi gn() |ogic.

931 */

933 towite = tofree = tooverwite = tounref = tohold = fudge = O;
934 for (txh = list_head(& x->tx_holds); txh;

935 txh = list next(&tx >t x_hol ds, txh)) {

936 dnode_t *dn = txh->txh dnode

937 if (dn != NULL) {

938 nut ex_ent er (&dn- >dn_nt x) ;

939 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
940 mut ex_exi t (&dn->dn mx)

941 t x- >t x_needassi gn_t xh = t xh;

942 return (ERESTART);

943 }

944 i f (dn->dn_assigned_txg == 0)

945 dn->dn_assi gned_txg = tx->tx_txg;

946 ASSERT3U(dn->dn_assi gned_t xg, ==, tx->tx_txg);
947 (voi d) refcount_add(&In->dn_tx_holds, tx);

948 nmut ex_exi t (&dn->dn_nt x) ;

949

950 towite += txh->txh_space_towite;

new usr/src/uts/comon/fs/zfs/dm_tx.c

951 tofree += txh->txh_space_tofree;

952 tooverwite += txh->txh_space_tooverwite;

953 tounref += txh->txh_space_tounref;

954 tohol d += txh->txh_nenory_t ohol d;

955 fudge += txh->txh_fudge;

956 }

958 /*

959 * NB: This check nust be after we’ve held the dnodes, so that

960 * the dnmu_tx_unassign() logic will work properly

961 */

962 if (txg_how >= TXG INTIAL & txg_how ! = tx->tx_txg)

963 return (ERESTART);

965 /*

966 * |f a snapshot has been taken since we nmade our estimates,

967 * assune that we won't be able to free or overwite anything.

968 */

969 if (tx->tx_objset &%

970 dsl _dat aset _prev_snap_t xg(t x->t x_obj set->o0s_dsl _dataset) >

971 t x->t x_| ast snap_t xg)

972 towite += tooverwite;

973 tooverwite = tofree = 0O;

974 }

976 /* needed allocation: worst-case estimate of wite space */

977 asi ze = spa_get _asi ze(tx->tx_pool ->dp_spa, towite + tooverwite);

978 /* freed space estinate: worst-case overwite + free estimte */

979 fsize = spa_get_asi ze(tx->tx_pool ->dp_spa, tooverwite) + tofree;

980 /* convert unrefd space to worst-case estimte */

981 usi ze = spa_get_asi ze(tx->tx_pool ->dp_spa, tounref);

982 /* calculate menory footprint estimte */

983 nmenory = towite + tooverwite + tohold;

985 #ifdef ZFS_DEBUG

986 /*

987 * Add in 'tohold to account for our dirty holds on this nenory

988 * XXX - the "fudge" factor is to account for skipped bl ocks that

989 * we m ssed because dnode_next_offset() m sses in-core-only bl ocks.

990 */

991 tx->tx_space_towite = asize +

992 spa_get _asi ze(t x->t x_pool - >dp_spa, tohold + fudge);

993 tx->t x_space_tofree = tofree;

994 tXx->t x_space_tooverwite = tooverwite;

995 tx->t x_space_tounref = tounref;

996 #endi f

998 if (tx->tx dlr&&as:lze':O)

999 int err dsl _dir_tenpreserve_space(tx->tx_dir, nemory,
1000 asi ze, fsize, usize, & x->tx_t errpreserve_cooki e, tx);
1001 if (err)

1002 return (err);
1003 }

1005 return (0);

1006 }

__unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/dnode. c 1

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
56217 Thu Jul 26 14:19:11 2012
new usr/src/uts/comon/ fs/zfs/dnode. c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

121 /* ARGSUSED */
122 static void
123 dnode_dest (void *arg, void *unused)

124 {

125 int i;

126 dnode t *dn = arg;

128 rw_destroy(&dn->dn_struct_rw ock);

129 mut ex_dest r oy(&dn->dn_nt x);

130 mut ex_dest r oy(&n- >dn dbuf s _ntx);

131 cv_dest r oy(&n- >dn_not xhol ds) ;

132 ref count _dest r oy(&ln->dn_hol ds)

133 ref count _dest roy(&dn- >dn_t x_hol ds)

134 ASSERT(!Tist_|ink_active(&n->dn_link));

136 for (i =0; i < TXGSIZE, i++) {

137 ASSERT(!list_li nk _active(&dn->dn_dirty_link[i]));
138 avl _destroy(&dn->dn_ranges[i]);

139 l'ist_destroy(&n->dn_dirty_ records[l])
140 ASSERTO(dn- >dn_next _nbl kptr[i]);

141 ASSERTO(dn- >dn_next _nl evel s[i]);

142 ASSERTO(dn- >dn_next _i ndbl kshift[i]);

143 ASSERTO(dn- >dn_next _bonustype[i]);

144 ASSERTO(dn->dn_rm spi | I bl k[1]);

145 ASSERTO(dn- >dn_next _bonusl en[1]);

146 ASSERTO(dn- >dn_next _bl ksz[i]);

140 ASSERT3U(dn->dn_next _nbl kptr[i], ==, 0);
141 ASSERT3U(dn->dn_next _nl evel s[i], ==, 0);
142 ASSERT3U(dn->dn_next _i ndbl kshift[i], ==, 0);
143 ASSERT3U(dn- >dn_next _bonustype[i], ==, 0);
144 ASSERT3U(dn->dn_rmspil I bl k[1], == 0);
145 ASSERT3U(dn- >dn_next _bonusl en[i], ==, 0);
146 ASSERT3U(dn- >dn_next _bl ksz[i], ==, 0);
147 1

149 ASSERTO(dn->dn_al | ocat ed_t xg) ;

150 ASSERTO(dn->dn_free_txg);

151 ASSERTO(dn->dn_assi gned_t xg) ;

152 ASSERTO(dn->dn_di rtyctx);

149 ASSERT3U(dn- >dn_al | ocated_t xg, ==, 0);

150 ASSERT3U(dn->dn_free_txg, ==, 0);

151 ASSERT3U(dn- >dn_assi gned_| txg, ==, 0);

152 ASSERT3U(dn->dn_di rtyctx, ==, ;

153 ASSERT3P(dn->dn_dirtyctx_fi rstset ==, NULL);
154 ASSERT3P(dn->dn_bonus, ==, NULL);

155 ASSERT(! dn- >dn_have_spi 1),

156 ASSERT3P(dn->dn_zi o, ==, NULL);

157 ASSERTO(dn- >dn_ol dused) ;

158 ASSERTO(dn- >dn_ol df | ags) ;

159 ASSERTO(dn- >dn_ol dui d);

160 ASSERTO(dn- >dn_ol dgi d) ;

161 ASSERTO(dn- >dn_newui d) ;

162 ASSERTO(dn- >dn_newgi d) ;

163 ASSERTO(dn->dn_i d_f| ags)

157 ASSERT3U(dn- >dn_ol dused,

158 ASSERT3U(dn- >dn_ol df | ags,

159 ASSERT3U(dn- >dn_ol dui d,

160 ASSERT3U(dn- >dn_ol dgi d,

161 ASSERT3U(dn- >dn_newui d,

new usr/src/uts/comon/ fs/zfs/dnode. c

162 ASSERT3U(dn- >dn_newgi d, ==, 0);

163 ASSERT3U(dn->dn_i d_fl ags, ==, 0);
165 ASSERTO(dn- >dn_dbuf s_count);

165 ASSERT3U(dn- >dn_dbuf s_count, ==, 0);
166 I'ist_destroy(&dn->dn_dbufs);

167 }

__unchanged_portion_omtted_

361 static void
362 dnode_set dbl ksz(dnode_t *dn, int size)

363 {
364 ASSERTO(P2PHASE(si ze, SPA_M NBLOCKSI ZE)) ;
364 ASSERT3U(P2PHASE(si ze, SPA_M NBLOCKSI ZE), ==, 0);
365 ASSERT3U(si ze, <=, SPA MAXBLOCKSI ZE) ;
366 ASSERT3Y(si ze, >=, SPA_M NBLOCKSI ZE) ;
367 ASSERT3U(si ze >> SPA M NBLOCKSHI FT, " <,
368 1<<(si zeof (dn->dn_phys->dn_dat abl kszsec) * 8));
369 dn->dn_dat abl ksz = si ze;
370 dn->dn_dat abl kszsec = size >> SPA M NBLOCKSHI FT;
371) dn- >dn_dat abl kshi ft = | SP2(size) ? highbit(size - 1)
372
__unchanged_portion_onitted_
477 void
478 dnode_al | ocat e(dnode_t *dn, drmu_object_type_t ot, int blocksize, int ibs,
479 drmu_obj ect _type_t bonustype, int bonuslen, drru_tx_t *tx)
480 {
481 int i;
483 if (blocksize == 0)
484 bl ocksi ze = 1 << zfs_defaul t _bs;
485 else if (blocksi ze > SPA_NMAXBLOCKS| ZE)
486 bl ocksi ze = SPA_MAXBLOCKSI ZE;
487 el se
488 bl ocksi ze = P2ROUNDUP(bl ocksi ze, SPA_M NBLOCKSI ZE) ;
490 if (ibs == 0)
491 ibs = zfs_defaul t_ibs;
493 ibs = M N(MAX(ibs, DN_M N_I NDBLKSHI FT), DN_MAX_| NDBLKSHI FT) ;
495 dprintf("os=% obj=%Ilu txg=%I|u bl ocksi ze=% i bs=%\n", dn->dn_obj set,
496 dn->dn_obj ect, tx->tx_txg, blocksize, ibs);
498 ASSERT(dn->dn_t ype == DMJ_OT_NONE) ;
499 ASSERT(bcnp(dn- >dn_phys, &dnode phys zero, sizeof (dnode_phys_t)) == 0);
500 ASSERT(dn- >dn_phys- >dn_t ype == DMJ_OT_NONE) ;
501 ASSERT(ot != DMJ_OT_NONE);
502 ASSERT(DMJ_OT_| S_VALI D(ot))
503 ASSERT((bonustype == DMJ_OT_NONE && bonuslen == 0) ||
504 (bonustype == DMJ_OT_SA && bonuslen == 0) ||
505 (bonustype !'= DMJ_OT_NONE && bonuslen !'= 0));
506 ASSERT(DMJ_OT_| S_VALI D(bonust ype)) ;
507 ASSERT3U(bonusl en, <=, DN_MAX BCNUSLEN);
508 ASSERT(dn->dn_t ype == DMJ_OT_NONE) ;
509 ASSERTO(dn- >dn_naxbl k| d);
510 ASSERTO(dn- >dn_al | ocat ed_t xg) ;
511 ASSERTO(dn- >dn_assi gned_t xg) ;
509 ASSERT3U(dn- >dn_maxbl ki d, ==, 0);
510 ASSERT3U(dn- >dn_al | ocat ed_t xg, ==, 0)'
511 ASSERT3U(dn- >dn_assi gned_t xg, ==, 0
512 ASSERT(r ef count _i s_zer o(&dn->dn_t x hol ds));
513 ASSERT3U(r ef count _count (&n->dn_hol ds), <=, 1);
514 ASSERT3P(| i st _head(&dn->dn_dbufs), ==, NULL) ;

new usr/ src/uts/ comon/ fs/zfs/dnode. c 3 new usr/ src/ uts/ comon/ fs/zfs/dnode. c 4
516 for (i =0; i < TXGSIZE, i++) { 573 (bonustype == DMJ_OT_SA && bonuslen == 0));
517 ASSERTO(dn- >dn_next _nbl kptr[i]); 574 ASSERT(DMUJ_OT_| S_VALI D(bonustype))
518 ASSERTO(dn->dn_next _nl evel s[i]); 575 ASSERT3U(bonusl en, <=, DN_MAX_Bl USLEN) ;
519 ASSERTO(dn- >dn_next _i ndbl kshift[i]);
520 ASSERTO(dn- >dn_next _bonusl en[i]); 577 /* clean up any unreferenced dbufs */
521 ASSERTO(dn- >dn_next _bonust ype[i]) ; 578 dnode_evi ct _dbufs(dn);
522 ASSERTO(dn->dn_rm spi | I bl k[1]);
523 ASSERTO(dn- >dn_next _bl ksz[i]); 580 dn->dn_id_flags = 0;
517 ASSERT3U(dn->dn_next _nbl kptr[i], ==, 0);
518 ASSERT3U(dn- >dn_next _nl evel s[i], == 0); 582 rw_enter (&dn->dn_struct_rw ock, RWWRI TER);
519 ASSERT3U(dn->dn_next _i ndbl kshift[i], ==, 0); 583 dnode_setdirty(dn, tx);
520 ASSERT3U(dn- >dn_next _bonuslen[i], ==, 0); 584 if (dn->dn_databl ksz != bl ocksize) {
521 ASSERT3U(dn- >dn_next _bonustype[i], ==, 0); 585 /* change bl ocksi ze */
522 ASSERT3U(dn->dn_rm spil I bl k[i], ==, 0); 586 ASSERT(dn->dn_naxbl kid == 0 &&
523 ASSERT3U(dn- >dn_next _bl ksz[i], ==, 0); 587 (BP_I S_HOLE(&dn- >dn_phys->dn_bl kptr[0]) ||
524 ASSERT(! i st_I|ink_active(&dn- >dn dirty link[i])); 588 dnode_bl ock_freed(dn, 0)));
525 ASSERT3P(| i st _head(&dn->dn_dirty records[i]), ==, NULL); 589 dnode_set dbl ksz(dn, bl ocksi ze);
526 ASSERTO(avl _numnodes(&n- >dn_r anges[i 1)) 590 dn- >dn_next _bl ksz[t x- >t x_t xg&TXG_MASK] = bl ocksi ze;
526 ASSERT3U(avl _nummodes(&ln->dn_ranges[i]), ==, 0); 591 }
527 } 592 if (dn->dn_bonusl en != bonusl en)
593 dn- >dn_next _bonusl en[t x- >t x_t xg&TXG_MASK] = bonusl en;
529 dn->dn_type =
530 dnode_set dbl ksz(dn bl ocksi ze) ; 595 if (bonustype == DMJ _OT_SA) /* Maxim ze bonus space for SA */
531 dn->dn_i ndbl kShI ft =ibs; 596 nbl kptr = 1;
532 dn->dn_nl evel s = 1; 597 el se
533 if (bonustype == DMJ_OT _SA) /* Maxim ze bonus space for SA */ 598 nbl kptr = 1 + ((DN_MAX_BONUSLEN - bonusl en) >> SPA BLKPTRSHI FT);
534 dn->dn_nbl kptr = 1; 599 if (dn->dn_bonustype != bonustype)
535 el se 600 dn- >dn_next _bonust ype[t x- >t x_t xg&TXG_MASK] = bonust ype;
536 dn->dn_nbl kptr = 1 + 601 if (dn->dn_nbl kptr != nbl kptr)
537 ((DN_MAX_BONUSLEN - bonusl en) >> SPA_BLKPTRSHI FT) ; 602 dn->dn_next _nbl kptr[tx->t x_t xg&TXG_MASK] = nbl kptr;
538 dn->dn_bonust ype = bonust ype; 603 if (dn->dn_phys->dn_flags & DNODE_FLAG SPILL_BLKPTR) {
539 dn->dn_bonusl en = bonusl en; 604 dbuf _rmspill(dn, tx);
540 dn->dn_checksum = ZI O | (_‘HECKSUM | NHERI T; 605 dnode_rm spi | | (dn, tx);
541 dn->dn_conpress = ZI O COVPRESS_| NHERI T; 606 }
542 dn->dn_dirtyctx = O; 607 rw_exit(&dn->dn_struct_rw ock);
544 dn->dn_free_txg = O; 609 /* change type */
545 if (dn->dn_dirtyctx_firstset) { 610 dn->dn_type = ot;
546 kmem free(dn->dn_dirtyctx_firstset, 1);
547 dn->dn_dirtyctx_firstset = NULL; 612 /* change bonus size and type */
548 } 613 mut ex_ent er (&dn- >dn_nt x) ;
614 dn- >dn_bonust ype = bonustype;
550 dn->dn_al | ocated_txg = tx->tx_txg; 615 dn->dn_bonusl en = bonusl en;
551 dn->dn_id_flags = O; 616 dn->dn_nbl kptr = nbl kptr;
617 dn->dn_checksum = ZI O CHECKSUM | NHERI T;
553 dnode_setdirty(dn, tx); 618 dn->dn_conpress = ZI O COVPRESS_| NHERI T;
554 dn->dn_next _i ndbl kshi ft[tx->tx_txg & TXG IVASK] = ibs; 619 ASSERT3U(dn->dn_nbl kptr, <=, DN_MAX_NBLKPTR);
555 dn->dn_next _bonusl en[tx->tx_txg & TXG_MASK] dn->dn_bonusl en;
556 dn->dn_next _bonustype[tx->tx_txg & TXG MASK] = dn->dn_bonustype; 621 /* fix up the bonus db_size */
557 dn->dn_next _bl ksz[tx->t x_txg & TXG MASK] = dn->dn_dat abl ksz; 622 if (dn->dn_bonus) {
558 } 623 dn->dn_bonus- >db. db_si ze =
624 DN_MAX_BONUSLEN - (dn->dn_nbl kptr-1) * sizeof (blkptr_t);
560 void 625 ASSERT(dn->dn_bonusl en <= dn->dn_bonus- >db. db_si ze) ;
561 dnode_real | ocate(dnode_t *dn, dnu_object_type_t ot, int blocksize, 626 }
562 dmu_obj ect _type_t bonustype, int bonuslen, dmu_tx_t *tx)
563 { 628 dn->dn_al | ocated_txg = tx->tx_txg;
564 int nblkptr; 629 mut ex_exi t (&dn->dn_nt x) ;
630 }
566 ASSERT3U(bl ocksi ze, >=, SPA_M NBLOCKSI ZE) ; ______unchanged_portion_omtted_
567 ASSERT3U(bl ocksi ze, <=, SPA_MAXBLOCKSI ZE);
568 ASSERTO(bl ocksi ze % SPA M NBLOCKSI ZE) ; 1201 void
568 ASSERT3U(bl ocksi ze % SPA_M NBLOCKSI ZE, ==, 0); 1202 dnode_setdirty(dnode_t *dn, dnu_tx_t *tx)
569 ASSERT(dn- >dn_obj ect != DMJ_META DNODE_OBJECT || dmu_tx_private_ok(tx)); 1203 {
570 ASSERT(tx->tx_txg != 0); 1204 objset _t *os = dn->dn_obj set;
571 ASSERT((bonust ype == DNU OT_NONE && bonuslen == 0) || 1205 uint64_t txg = tx->tx_txg;
572 (bonustype I= DMJ OT_NONE && bonuslen != O) |

new usr/src/uts/comon/ fs/zfs/dnode. c

1207
1208
1209
1210

1212

1214
1215
1216
1217
1218
1219

1221
1222
1223
1224

1226

1228
1229
1230
1231
1232
1233
1234

1236
1237
1238
1239
1240
1238
1239
1240

1242
1243

1245
1246
1247
1248
1249

1251

1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

1264
1266

if (DMJU_OBJECT_I S_SPECI AL(dn->dn_object)) {
dsl _dat aset _dirty(os->o0s_dsl _dataset, tx);
return;

}
DNODE_VERI FY(dn) ;

#i f def ZFS_DEBUG

#endi f

1267 }

nmut ex_ent er (&dn->dn_nt x) ;

ASSERT(dn- >dn_phys->dn type || dn->dn_allocated_txg);
ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg)
mut ex_exi t (&n->dn_nt x) ;

/*
* Determne old uid/gid when necessary
*

drmu_obj set _userquot a_get _i ds(dn, B_TRUE, tx);

mut ex_ent er (&os- >0s_| ock) ;

/*

* |If we are already narked dirty, we' re done.

*

if (list_link_active(&n->dn_dirty_link[txg & TXG MASK])) {
mut ex_exi t (&os- >o0s_| ock) ;
return;

}

ASSERT(! ref count _i s_zero(&n->dn_hol ds) || |ist_head(&dn->dn_dbufs));

ASSERT(dn->dn_dat abl ksz != 0);

ASSERTO(dn- >dn_next _bonusl en[txg&TXG MASK]) ;
ASSERTO(dn- >dn_next _bl ksz[t xg&TXG_MASK]) ;
ASSERTO(dn- >dn_next _bonust ype[t xg&TXG | Mﬁ\SK])

ASSERT3U(dn- >dn_next _bonusi en[t xg&TXG_ MASK] ==, 0);
ASSERT3U(dn- >dn_next _bl ksz[t xg&TXG MASK], ==, 0);
ASSERT3U(dn- >dn_next _bonust ype[t xg&TXG_ M(-\SK] ==, 0);

dprintf_ds(os->0s_dsl| _dat aset,
dn->dn_obj ect, txg);

"obj =% lu txg=%Iu\n",

if (dn->dn_free_txg > 0 & dn->dn_free_txg <= txg) {
list_insert_tail (&os->o0s_free_dnodes[txg&TXG MASK], dn);
} else {
list_insert_tail (&s->0s_dirty_dnodes[txg&TXG MASK], dn);
}

mut ex_exi t (&os->0s_| ock) ;

/
The dnode maintains a hold on its containing dbuf as
long as there are holds on it. Each instantiated child
dbuf maintains a hold on the dnode. Wen the last child
drops its hold, the dnode will drop its hold on the
containing dbuf. W add a "dirty hold" here so that the
dnode will hang around after we finish processing its

* children.

*/

VERI FY(dnode_add_r ef (dn,

(void) dbuf_dirty(dn->dn_dbuf, tx);

EE T S

(void *)(uintptr_t)tx->tx_txg));

dsl _dataset _dirty(os->o0s_dsl _dataset, tx);

__unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/dnode. c

1508 void

1509 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1510 {

1511 dmu_buf _i npl _t *db;

1512 uint64_t blkoff, blkid, nblks;

1513 int blksz, bl kShI ft, head, tail;

1514 int trunc = FALSE;

1515 int epbs;

1517 rw enter(&dn >dn_struct_rw ock, RWWRI TER);

1518 bl ksz = dn >dn_dat abl ksZz;

1519 bl kshi ft dn->dn_dat abl kshi ft;

1520 epbs = dn— >dn_i ndbl kshi ft - SPA BLKPTRSHI FT;

1522 if (len == -1ULL) {

1523 len = U NT64_MAX - off;

1524 trunc = TRUE;

1525 }

1527 /*

1528 * First, block align the region to free:

1529 */

1530 if (1SP2(blksz)) {

1531 head = P2NPHASE(of f, bl ksz);

1532 bl kof f = P2PHASE(of f, bl ksz)

1533 if ((off >> blkshift) > dn- >dn maxbl ki d)

1534 goto out;

1535 } else {

1536 ASSERT(dn- >dn_maxbl ki d == 0);

1537 if (off == 0 & len >= bl ksz) {

1538 /* Freel ng the whol e bl ock; fast-track this request */
1539 bl kid = 0;

1540 nbl ks = 1,

1541 goto done;

1542 } else if (off >= blksz) {

1543 /* Freeing past end-of-data */

1544 goto out;

1545 } else {

1546 /* Freeing part of the block. */

1547 head = bl ksz - off;

1548 ASSERT3U(head, >, 0);

1549 }

1550 bl koff = of f;

1551 1

1552 /* zero out any partial block data at the start of the range */
1553 if (head)

1554 ASSERT3U(bl kof f + head, ==, bl ksz);

1555 if (len < head)

1556 head = len;

1557 if (dbuf_hol d_inmpl (dn, 0, dbuf_whichbl ock(dn, off), TRUE
1558 FTAG &db) == 0) {

1559 caddr_t data;

1561 /* don't dirty if it isn't on disk and isn't dirty */
1562 if (db->db_last_dirty ||

1563 (db->db_bl kptr &% !BP_I S _HOLE(db->db_bl kptr))) {
1564 rw_exit(&dIn->dn_struct _rw ock);

1565 dbuf _wi Il _dirty(db, tx);

1566 rw_ent er (&n->dn structfrvw ock, RWWRI TER);
1567 data = db->db. db_dat a;

1568 bzero(data + bl koff, head);

1569 }

1570 dbuf _rel e(db, FTAG;

1571 }

1572 of f += head;

1573 len -= head;

new usr/src/uts/comon/ fs/zfs/dnode. c

1574 }

1576 /* |f the range was |ess than one bl ock, we’re done */

1577 if (len == 0)

1578 goto out;

1580 /* If the remaining range is past end of file, we're done */
1581 if ((o f >> bl kshift) > dn->dn_naxbl ki d)

1582 goto out;

1584 ASSERT(| SP2(bl ksz))

1585 if (trunc)

1586 tail =0

1587 el se

1588 tail = P2PHASE(I| en, bl ksz);

1590 ASSERTO(P2PHASE(of f, bl ksz));

1590 ASSERT3U(P2PHASE(of f, bl ksz), ==, 0

1591 /* zero out any partial bl ock data at the end of the range */
1592 if (tail) {

1593 if (len < tail)

1594 tail = len;

1595 if (dbuf_hol d_| npl (dn, 0, dbuf _whichbl ock(dn, off+len),
1596 TRUE, FTAG, &db) == {

1597 /* don't dirty if not on disk and not dirty */
1598 if (db->db_last_dirty ||

1599 (db->db_bl kptr && !BP_I S_HOLE(db- >db_bl kptr)))
1600 rw_exit (&n->dn_struct _rw ock);

1601 dbuf _wi Il _dirty(db, tx);

1602 rw_ent er (&n->dn_str uct_rvw ock, RWWRI TER);
1603 bzero(db->db. db_data, tail);

1604 }

1605 dbuf _rel e(db, FTAG;

1606 }

1607 len -= tail;

1608 1

1610 /* |f the range did not include a full block, we are done */
1611 if (len == 0)

1612 goto out;

1614 ASSERT(| S_P2ALI GNED(of f, bl ksz));

1615 ASSERT(trunc || | S_P2ALI GNED(| en, bl ksz));

1616 bl kid = off >> bl kshift;

1617 nbl ks = I en >> blkshift;

1618 if (trunc)

1619 nbl ks += 1;

1621 /*

1622 * Read in and mark all the level-1 indirects dirty,

1623 * so that they will stay in nmenory until syncing phase.
1624 * Always dirty the first and last indirect to make sure
1625 * we dirty all the partial indirects.

1626 *

1627 if (dn->dn_nlevels > 1)

1628 ui nt 64_t i, first, l|ast

1629 int shift = epbs % dn- >dn _dat abl kshi ft;

1631 first = blkid >> epbs;

1632 if (db = dbuf_hold_level (dn, 1, first, FTAG) {
1633 dbuf _will _dirty(db, tx);

1634 dbuf _rel e(db, FTAG;

1635 }

1636 1 f (trunc)

1637 | ast = dn->dn_maxbl ki d >> epbs;

1638 el se

new usr/src/uts/comon/ fs/zfs/dnode. c

1639 last = (blkid + nblks - 1) >> epbs

1640 if (last > flrst && (db = dbuf_hol d Ievel(dn 1, last,
1641 dbuf _will_dirty(db, tx);

1642 dbuf _rel e(db, FTAQ;

1643 }

1644 for (i =first +1; i < last; i++) {

1645 uint64_t ibyte =i << shift;

1646 int err;

1648 err = dnode_next _of fset (dn,

1649 DI\KDE FIND_HAVELOCK, & byte, 1, 1, 0);
1650 i = ibyte >> shift;

1651 if (err == ESRCH|| i >= last)

1652 br eak;

1653 ASSERT(err == 0);

1654 db = dbuf_hol d Ievel(dn 1, i, FTAG;

1655 if (db)

1656 dbuf _wi Il _dirty(db, tx);

1657 dbuf _rel e(db, FTAG);

1658 }

1659 }

1660 }

1661 done:

1662 /*

1663 * Add this range to the dnode range I|ist.

1664 * We will finish up this free operation in the syncing phase.
1665 */

1666 mut ex_ent er (&dn- >dn_nt x) ;

1667 dnode_cl ear _range(dn, bl k|d nbl ks, tx);

1668 {

1669 free_range_t *rp, *found,

1670 avl _index_t where;

1671 avl _tree_t *tree = &dn->dn_ranges[tx- >t x_t xg&TXG_MASK] ;
1673 /* Add new range to dn_ranges */

1674 rp = kmem al | oc(si zeof (free_range_t), KM SLEEP);
1675 rp->fr_blkid = blkid;

1676 rp->fr_nbl ks = nbl ks;

1677 found = avl _find(tree, rp, &where);

1678 ASSERT(f ound == NULL);

1679 avl _insert(tree, rp, wher e);

1680 dprintf_dnode(dn, "blkid=% i u nbl ks=% I u txg=%Ilu\n",
1681 bl ki d, nblks, tx->tx_txg);

1682 1

1683 mut ex_exi t (&dn->dn_nt x) ;

1685 dbuf _free_range(dn, blkid, blkid + nblks - 1, tx);

1686 dnode_setdirty(dn, tx);

1687 out:

1688 if (trunc & dn->dn_neaxbl kid >= (off >> bl kshift))

1689 dn->dn_nmaxbl kid = (off >> blkshift ? (off >> bl kshift)
1691 rw_exit(&n->dn_struct _rw ock);

1692 }

__unchanged_portion_omtted_

FTAQ)) {

1:

0)

1752 /* call from syncing context when we actually wite/free space for this dnode */

1753 voi d

1754 dnode_di duse_space(dnode_t *dn, int64_t delta)

1755 {

1756 uint64_t space;

1757 dprintf_dnode(dn, "dn=% dnp=% used=%1lu delta=%1d\n",
1758 dn, dn->dn_phys,

1759 (u_l ongl ong_t) dn- >dn_phys- >dn_used,

1760 (longlong_t)delta);

new usr/src/uts/comon/ fs/zfs/dnode. c

1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1772
1773
1774
1775
1776
1777
1778

1779 }

mut ex_ent er (&dn->dn_nt x) ;
space = DN_USED BYTES(dn->dn_phys);
if (delta > 0)
ASSERT3U(space + delta, >=, space); /* no overflow */
} else {
ASSERT3U(space, >=, -delta); /* no underflow */

space += delta;

if (spa_version(dn->dn_objset->0s_spa) < SPA_VERSI ON_DNCDE_BYTES) {
ASSERT((dn->dn_phys->dn_fl ags & DNODE_FLAG USED BYTES) == 0);
ASSERTO(P2PHASE(space, 1<<DEV_BSHI FT));
ASSERT3U(P2PHASE(space, 1<<DEV_BSH FT), ==, 0);
dn->dn_phys- >dn_used = space >> DEV_BSHI FT;

} else {
dn- >dn_phys->dn_used = space;
dn->dn_phys->dn_fl ags | = DNODE_FLAG USED BYTES;

mut ex_exi t (&dn->dn_nt x) ;

unchanged_portion_omtted_

new usr/src/uts/ comon/fs/zfs/dnode_sync.c

R R R R

19294 Thu Jul 26 14:19:12 2012
new usr/src/uts/comon/fs/zfs/dnode_sync.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
IR RS SR RS RS E SRR R R RS R R R SRR E R SRR RS EEEEEEEEEEEEEEEEERSE]
__unchanged_portion_onitted_
214 #endi f

216 #define ALL -1

218 static int
219 free_children(dmu_buf _inpl _t *db, uint64_t blkid, uint64_t nblks, int trunc,

220 dmu_tx_t *tx)

221 {

222 dnode_t *dn;

223 bl kptr_t *bp;

224 dmu_buf’ |an t *subdb;

225 uint64 t start, end, dbstart, dbend, i;

226 int epbs, shift, err;

227 int all = TRUE

228 int blocks_freed =

230 I*

231 * There is a small possibility that this block will not be cached:
232 * 1 - if level > 1 and there are no children with level <=1
233 * 2 - if we didn't get a dirty hold (because this block had just
234 * finished being witten -- and so had no holds), and then this
235 * bl ock got evicted before we got here.

236 *

237 f (db->db_state != DB_CACHED)

238 (voi d) dbuf_read(db, NULL, DB _RF_MJST_SUCCEED);

240 dbuf _rel ease_bp(db);

241 bp = (bl kptr_t *)db->db. db_dat a;

243 DB_DNODE_ENTER(db) ;

244 dn = DB_DNODE(db);

245 epbs = dn->dn_phys->dn_i ndbl kshi ft - SPA_BLKPTRSHI FT;

246 shift = (db->db_level - 1) * epbs;

247 dbstart = db->db_bl kid << epbs;

248 start = blkid >> shift;

249 if (dbstart < start) {

250 bp += start - dbstart;

251 all = FALSE;

252 } else {

253 start = dbstart;

254 }

255 dbend = ((db->db_blkid + 1) << epbs) - 1,

256 end = (blkid + nblks - 1) >> shift;

257 if (dbend <= end)

258 end = dbend;

259 else if (all)

260 all = trunc;

261 ASSERT3U(start, <=, end);

263 if (db->db_l evel ==

264 FREE_VERI FY(db, start, end, tx);

265 bl ocks_freed = free_bl ocks(dn, bp, end-start+1, tx);
266 arc_buf_freeze(db->db_buf);

267 ASSERT(all || blocks_freed == 0 || db->db_last _dirty);
268 DB_DNCDE_EXI T(db) ;

269 return (all ? ALL : bl ocks_freed);

270 }

272 for (i = start; i <= end; i++, bp++) {

273 if (BP_I'S_HOLE(bp))

new usr/src/ uts/ comon/fs/zfs/dnode_sync.c

274
275
276
277
277
278

280
281
282
283
284
285
286
287
288
289

2
conti nue;
rw_ent er (&n->dn_struct _rw ock, RW READER) ;
err = dbuf _hol d_i npl (dn, db- >db | evel - i, TRUE, FTAG &subdb);
ASSERTO(err);
ASSERT3U(err, ==,

0
rw_exit(&dn- >dn struct _rw ock);

if (free_children(subdb, blkid, nbl ks trunc, tx) == ALL) {
ASSERT3P(subdb- >db_bl kptr ==, bp);
bl ocks_freed += free_bl ocks(dn bp, 1, tx);

} else {
all = FALSE;

}
dbuf _rel e(subdb, FTAQ;

}
DB_DNODE_EXI T(d

ar c_buf

freeze(db >db_buf);

290 #ifdef ZFS_DEBUG

291
292
293
294
295
296
297
297
298

bp = (
for (i

299 #endi f

300
301
302 }

304 /
305
306
307

ASSERT(
return

*

* free _range:

end-start) +1;
= start; | <= end; i++, bp++) {
if (i == start & blkid = 0)
conti nue;
else if (i == end & !trunc)
conti nue;
ASSERTO(bp- >bl k_bi rth);
ASSERT3U(bp->bl k_birth, == 0);
all || blocks_freed == 0 || db->db_last_dirty);
(all 2 ALL : bl ocks_freed);

Traverse the indicated range of the provided file

* and "free" all the blocks contained there.

*/

308 static void
309 dnode_sync_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dm_tx_t *tx)

310 {
311
312
313
314

316
317

319
320
321
322

324
325
326
327
328
329
330
331
332
333
334
335
336
337

bl kptr_t *bp = dn->dn_phys->dn_bl kptr;
drmu_buf _i npl _t *db;

int trunc, start, end, shift, i, err;
int dnlevel = dn->dn_phys->dn_nlevels;

if (blkid > dn->dn_phys->dn_maxbl ki d)

ASSERT(

return;

dn- >dn_phys->dn_maxbl kid < Ul NT64_MAX) ;

trunc = bl kid + nblks > dn->dn_phys->dn_nmaxbl k|d
if (trunc)

/* Ther
if (dnl

nbl ks = dn->dn_phys->dn_maxbl kid - blkid + 1;

e are no indirect blocks in the object */

evel == 1)

if (blkid >= dn->dn_phys->dn_nbl kptr)
/* this range was never made persistent */
return;

}
ASSERT3U(bl ki d + nbl ks, <=, dn->dn_phys->dn_nbl kptr);
(void) free_blocks(dn, bp + blkid, nblks, tx);
if (trunc) {
uint64_t off = (dn->dn_phys->dn_maxblkid + 1
(dn->dn_phys- >dn_dat abl kszsec << SPA_M NBLOCKSHI FT) ;
dn- >dn_phys->dn_maxbl kid = (bl kid ? blkid - 1 : 0);
ASSERT(of f < dn->dn_phys->dn_maxbl kid ||
dn- >dn_phys->dn_naxbl kid == 0 ||

*

new usr/src/uts/ comon/fs/zfs/dnode_sync.c

338 dnode_next _of fset(dn, 0, &ff, 1, 1, 0) != 0);
339 }

340 return;

341 }

343 shift = (dnlevel - 1) * (dn->dn_phys->dn_indbl kshift - SPA BLKPTRSHI FT);
344 start = blkid >> shift;

345 ASSERT(start < dn->dn_phys->dn_nbl kptr);

346 end = (blkid + nblks - 1) >> shift;

347 bp += start;

348 for (i = start; i <= end; i++ bp++) {

349 if (BP_IS_HOLE(bp))

350 conti nue;

351 rw_ent er (&n->dn_struct _rw ock, RWREADER)

352 err = dbuf_hol d_i npl (dn, dnl evel - i, TRUE FTAG, &db);
353 ASSERTO(err);

353 ASSERT3U(err, ==, 0);

354 rw_exit (&dn- >dn _struct_rw ock);

356 if (free_children(db, blkid, nblks, trunc, tx) == ALL) {
357 ASSERT3P(db->db_bl kptr, ==, bp);

358 (void) free_blocks(dn, bp, 1, tx);

359 }

360 dbuf _rel e(db, FTAG;

361 }

362 if (trunc) {

363 uint64_t off = (dn->dn_phys->dn_naxbl kid + 1) *

364 (dn->dn_phys->dn_dat abl kszsec << SPA M NBLOCKSHI FT) ;
365 dn->dn_phys->dn_nmaxbl kid = (blkid ? blkid - 1 : 0);

366 ASSERT(of f < dn->dn_phys->dn_maxbl kid ||

367 dn- >dn_phys->dn_nmaxbl kid == 0 ||

368 dnode_next _of fset(dn, 0, &off, 1, 1, 0) != 0);

369 }

370 }

__unchanged_portion_onitted_

463 static void
464 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)

465 {

466 int txgoff = tx->tx_txg & TXG MASK;

468 ASSERT(drmu_t x_i s_synci ng(tx));

470 /*

471 * Qur contents should have been freed in dnode_sync() by the
472 * free range record inserted by the caller of dnode_free().
473 */

474 ASSERTO(DN_USED_BYTES(dn- >dn_phys)) ;

474 ASSERT3U(DN_USED_BYTES(dn- >dn_phys), ==,

475 ASSERT(BP_I S_HOLE(dn- >dn_phys->dn bI kptr))

477 dnode_undirty_ dbufs(&dn—>dn dirty_records[txgoff]);

478 dnode_evi ct _dbufs(dn);

479 ASSERT3P(| i st head(&dn >dn_dbufs), ==, NULL);

481 /*

482 * XXX - It would be nice to assert this, but we may still
483 * have residual holds fromasync evictions fromthe arc...
484 *

485 * zfs_obj _to_path() also depends on this being

486 * commented out.

487 *

488 * ASSERT3U(r ef count _count (&n->dn_hol ds), ==, 1);

489 */

491 /* Undirty next bits */

new usr/src/ uts/ comon/fs/zfs/dnode_sync.c

492 dn- >dn_next _nl evel s[txgoff] = 0;

493 dn->dn_next _i ndbl kshi ft[txgoff] = 0;

494 dn- >dn_next _bl ksz[txgoff] = 0;

496 /* ASSERT(bl kptrs are zero); */

497 ASSERT(dn- >dn_phys->dn_type ! = DMJ_OT_NONE) ;
498 ASSERT(dn->dn_type ! = DMJ_OT_NONE) ;

500 ASSERT(dn->dn_free_txg > 0);

501 if (dn->dn aIIocatedtxg 1= dn- >dn_free_txg)
502 dbuf _wi Il _dirty(dn->dn_dbuf, tx);

503 bzer o(dn->dn_phys, sizeof (dnode_phys_t));
505 mut ex_ent er(&dn >dn_nt x) ;

506 dn->dn_type = DMJ_OT_| NO\JE

507 dn->dn_maxbl kid = 0;

508 dn->dn_al | ocated_txg =

509 dn->dn_free _txg = 0

510 dn->dn_have_spil|l = B_FALSE;

511 mut ex_exi t (&dn->dn_nt x) ;

513 ASSERT(dn- >dn_obj ect != DMJ_META DNODE_OBJECT) ;
515 dnode_rel e(dn, (void *)(uintptr_t)tx->tx_txg);
516 /*

517 * Now that we’ve released our hold, the dnode may
518 * be evicted, so we nmusn't access it.

519 */

520 }

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

R R R R

117870 Thu Jul 26 14:19:13 2012
new usr/src/uts/comon/fs/zfs/dsl_dataset.c
3006 VERIFY[S, U Pl and ASSERT[S, U, P] frequently check if first argunment

R R R R R R R

is zero
__unchanged_portion_onitted_

779 uint64_t

780 dsl _dataset _create_sync_dd(dsl _dir_t *dd, dsl_dataset_t *origin,

781 uint64_t flags, dmu_tx_t *tx)

782 {

783 dsl _pool _t *dp = dd->dd_pool ;

784 drmu_buf _t *dbuf;

785 dsl _dat aset _phys_t *dsphys;

786 uint64_t dsobj;

787 obj set _t *nobs = dp->dp_net a_obj set;

789 if (origin == NULL)

790 origin = dp->dp_origi n_snap;

792 ASSERT(origin == NULL || origin->ds_dir->dd_pool == dp);

793 ASSERT(origin == NULL || origin->ds_phys->ds_num ch| Idren > 0);
794 ASSERT(dnmu_t x_i s_synci ng(tx));

795 ASSERT(dd- >dd_phys- >dd_head_dat aset _obj == 0);

797 dsobj = dnu_obj ect _al | oc(nps, DMJ_OT_DSL_DATASET, O,

798 DNU OT DSL_DATASET, sizeof (dsl_dataset_phys_t), tx);

799 VERI FY(0 == dnu_bonus hol d(nos, dsobj, FTAG &dbuf))

800 dmu_buf wll_dirty(dbuf, tx);

801 dsphys = dbuf->db_dat a;

802 bzero(dsphys, sizeof (dsl_dataset_phys_t));

803 dsphys->ds_dir_obj = dd->dd_obj ect;

804 dsphys->ds_flags = fl ags;

805 dsphys->ds_fsid_guid = unique_create();

806 (void) random get_pseudo_bytes((voi d*) &sphys->ds_gui d,

807 si zeof (dsphys->ds_guid));

808 dsphys->ds_snapnanes_zapobj =

809 zap_creat e_norm(nos, US_TEXTPREP_TOUPPER, DMJ OT_DSL_DS SNAP_NAP,
810 DMJ_OT_NONE, 0, tx);

811 dsphys->ds_ creat|on _time = gethrestime_sec();

812 dsphys->ds_creation_txg = tx->tx_txg == TXG_ INTIAL 2 1 : tx->tx_t xg;
814 if (origin == NULL) {

815 dsphys->ds_deadl i st _obj = dsl _deadlist_alloc(nos, tx);
816 } else {

817 dsl _dat aset _t *ohds;

819 dsphys->ds_prev_snap_obj = origin->ds_object;

820 dsphys->ds_prev_snap_txg =

821 ori gi n->ds_phys->ds_creati on_t xg;

822 dsphys->ds_referenced_bytes =

823 ori gi n->ds_phys->ds referenced_byt es;

824 dsphys->ds_conpressed_bytes =

825 ori gi n- >ds_phys->ds_conpr essed_byt es;

826 dsphys- >ds_unconpr essed_bytes =

827 ori gi n->ds_phys->ds_unconpressed_| bytes;

828 dsphys->ds_bp = ori gi n->ds_phys->ds_bp;

829 dsphys->ds_flags | = origin->ds_phys->ds_f| ags;

831 drmu_buf _wi Il _dirty(origin->ds_dbuf, tx);

832 ori gi n->ds_phys->ds_num chi | dr en++;

834 VERI FYO(ds| _dat aset _hol d_obj (dp,

834 VERI FY3U(0, ==, dsl_dataset_hol d_obj (dp,

835 ori gi n->ds_di r->dd phys —>dd head dat aset _obj, FTAG &ohds));

836 dsphys->ds_deadl i st _obj dsl _deadl! i st _cl one(&ohds- >ds_deadl i st

new usr/src/uts/comon/ fs/zfs/dsl

837
838

840
841
842
843
844
845
846
847
848
849

851
852
853
854
855
856
857
858
859
860
860
861
862
863

865
866

868

870
871

873
874

876
877
878
879
880
881
882

884

886
887

889
891
893

895
896
897
898
899
900
901

_dataset.c

dsphys- >ds_prev_snap_t xg,
dsl _dat aset _rel e(ohds, FTAQ;

dsphys- >ds_prev_snap_obj, tx);

if (spa_version(dp->dp_spa) >= SPA VERSI ON_NEXT_CLONES) {
if (origin->ds_phys->ds_next_clones_obj == 0) {
ori gi n->ds_phys->ds_next _cl ones_obj =
zap_creat e(nos,
DNU_OT_NEXT_CLCNES, DMJ_OT_NONE, 0, tx);

}
VERI FY(0 == zap_add_i nt (nos,

ori gi n->ds_phys->ds_next _cl ones_obj ,
dsobj, tx));

}

dmu_buf _wi Il _dirty(dd->dd_dbuf, tx);

dd- >dd_phys->dd_ori gi n_obj = origi n->ds_obj ect;
if (spa_version(dp->dp_spa) >= SPA VERSI ON DI R . CLONES) {
if (origin->ds_dir->dd_phys->dd_cl ones == 0)
drmu_buf_wi I | _dirty(origin->ds_dir->dd_dbuf,
origi n->ds_dir->dd_phys->dd_clones =
zap_cr eat e(nos,
J) OT_DSL_CLONES, DMJ OT_NONE, 0, tXx);
}
VERI FYO(zap_add_i nt (nos,
VERI FY3U(0, ==, zap_add_i nt(nos,
ori gi n->ds_di r->dd_phys->dd_cl ones,

dsobj, tx));

}

if (spa_version(dp->dp_spa) >= SPA_VERSI ON_UNI QUE_ACCURATE)
dsphys->ds_flags | = DS_FLAG_UNI QUE_ACCURATE;
dmu_buf _rel e(dbuf, FTAG;

drmu_buf _wi | | _dirty(dd->dd_dbuf, tx);
dd- >dd_phys->dd_head_dat aset _obj = dsobj ;

return (dsobj);

}
ui nt 64_t
dsl _dataset _create_sync(dsl _dir_t *pdd, const char *|astnane,
dsl _dataset _t *origin, uint64_t flags, cred_t *cr, dmu_tx_t *tx)
{
dsl _pool _t *dp = pdd->dd_pool ;
uint64_t dsobj, ddobj;

dsl _dir_t *dd;

ASSERT(| astname[0] '="'@);

ddobj = dsl _dir_create_sync(dp, pdd, |astnane, tx);
VERI FY(0 == dsl| _di r_open_obj (dp, ddobj, I|astnane, FTAG &dd)) ;
dsobj = dsl _dataset_create_sync_dd(dd, origin, flags, tx);

dsl _del eg_set _create_perns(dd, tx, cr);
dsl _dir_close(dd, FTAG;

/*
* |If we are creating a clone, nmake sure we zero out any stale
* data fromthe origin snapshots zil header.
*/
if (orlgln I'= NULL) {
dsl dataset t *ds;
obj set _t *os;

tx);

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

903
904
903
904
905
906
907
908

910
911 }

VERI FYO(dsl _dat aset _hol d_obj (dp, dsobj, FTAG &ds));

VERI FYO(dnu_obj set _from ds(ds, &os));

VERI FY3U(0, ==, dsl_dataset_hol d_obj (dp, dsobj, FTAG &ds));
VERI FY3U(0, ==, dmu_objset_fromds(ds, &os));
bzero(&os->o0s_zi| _header, sizeof (os->os_zil_header));

dsl _dat aset _dirty(ds, tx)

ds| _dat aset _rel e(ds, FTAG);

}

return (dsobj);

__unchanged_portion_omtted_

1487 static void
1488 renove_from next_cl ones(dsl _dataset _t *ds, uint64_t obj, dmu_tx_t *tx)

1489 {
1490
1491
1492

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1507
1508
1509
1509
1510
1510
1511 }

objset _t *nobs = ds->ds_dir->dd_pool - >dp_net a_obj set ;
uint64_t count;
int err;

ASSERT(ds- >ds_phys->ds_num chi |l dren >= 2);
err = zap_renove_int(nos, ds->ds_phys->ds_next_cl ones_obj, obj, tx);
/*

* The err shoul d not be ENCENT, but a bug in a previous version
of the code could cause upgrade_cl ones_ch() to not set
ds_next _snap_obj when it should, leading to a missing entry.
I1f we knew that the pool was created after
SPA_VERSI ON_NEXT_CLONES, we could assert that it isn't
ENCENT. However, at |east we can check that we don't have
too nmany entries in the next_clones_obj even after failing to
remove this one.

* k% ok ok ok ¥

*

if (err != ENCENT)
VERI FYO(err);

VERI FY3U(err, ==, 0);
}
ASSERTO(zap_count (nps, ds->ds_phys->ds_next_cl ones_obj, &count));
ASSERT3U(0, ==, zap_count(nos, ds->ds_phys->ds_next_cl ones_obj,
&count));

ASSERT3U(count, <=, ds->ds_phys->ds_numchildren - 2);

1513 static void

1514 ds
1515 {
1516
1517
1518

1520
1521
1522
1523
1524
1525
1526

1528
1529
1530
1531

1533
1534
1534

_dataset _renpve_cl ones_key(dsl _dataset _t *ds, uint64_t mntxg, dmu_tx_t *tx)

obj set _t *npbs = ds->ds_dir->dd_pool - >dp_net a_obj set ;
zap_cursor_t zc;
zap_attribute_t za;

/*
* If it is the old version, dd_clones doesn’t exist so we can't
* find the clones, but deadlist_renove_key() is a no-op so it
* doesn’t matter.

*/

if (ds->ds_dir->dd_phys->dd_cl ones == 0)

return;

(zap_cursor_init(&c, nos, ds- >ds di r->dd_phys- >dd_cl ones);
zap_cursor_retrieve(&zc, &za) == 0,
zap_cursor _advance(&zc)) {

dsl _dataset _t *cl one;

VERI FYO(dsl _dat aset _hol d_obj (ds->ds_di r->dd_pool ,
VERI FY3U(0, ==, dsl _dataset_hol d_obj (ds->ds_dir- >dd _pool ,
za.za_first_integer, FTAG &clone));

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

1535 if (clone->ds_dir->dd_origin_txg > mntxg) {

1536 dsl _deadl i st _renove_key(&cl one- >ds_deadl i st,

1537 m ntxg, tx);

1538) dsl _dat aset _renpve_cl ones_key(cl one, mntxg, tx);
1539

1540 dsl _dat aset _rel e(cl one, FTAQ;

1541 1

1542 zap_cursor _fini (&zc);

1543 }

__unchanged_portion_onitted_

1576 static void
1577 process_ol d_deadl i st (dsl _dataset _t *ds, dsl_dataset_t *ds_prev,

1578 dsl _dataset _t *ds_next, bool ean_t after_branch_point, dmu_tx_t *tx)
1579 {

1580 struct process_old_arg poa = { 0 };

1581 dsl _pool _t *dp = ds->ds_dir->dd pool

1582 objset _t *mps = dp->dp_neta_obj set;

1584 ASSERT(ds->ds_deadl i st.dl _ol dfnt);

1585 ASSERT(ds_next - >ds_deadl i st. dl _ol dfnt);

1587 poa.ds = ds;

1588 poa.ds_prev = ds_prev;

1589 poa. af ter _br anch _point = after_branch_point;

1590 poa. pi o = zio_root (dp->dp_spa, NULL, NULL, bd O_FLAG_MUSTSUCCEED) ;
1591 VERI FYO(bpobj _i t er at e(&ds_next - >ds deadl i st. dl prbJ

1592 VERI FY3U(0, ==, bpobj _iterate(&Is_next->ds_deadl i st. dl _bpobj ,
1592 process_ol d_cb, &poa, tx));

1593 VERI FYO(zi o_wai t (poa. pi 0)) ;

1594 VERI FY3U(zi o_wai t (poa. pi 0), ==, 0);

1594 ASSERT3Y(poa. used, ==, ds- >ds phys >ds_uni que_byt es);

1596 /* change snapused */

1597 dsl _dir_di duse_space(ds->ds_dir, DD USED SNAP,

1598 - poa. used, -poa.conp, -poa.unconp, tx);

1600 /* swap next’'s deadlist to our deadlist */

1601 dsl _deadl i st _cl ose(&ds->ds_deadl i st);

1602 dsl _deadl i st _cl ose(&s_next - >ds_deadl i st);

1603 SW TCH64(ds_next - >ds_phys- >ds_deadl| i st _obj,

1604 ds- >ds_phys->ds_deadl i st _obj);

1605 dsl _deadl i st _open(&ds->ds_deadl i st, nps, ds->ds_phys->ds_deadlist_obj);
1606 dsl _deadl i st _open(&Js_next - >ds deadl i st, nos,

1607 “ds_next - >ds_phys->ds_deadl i st _obj);

1608 }

1610 static int
1611 ol d_synchronous_dat aset _destroy(dsl _dataset _t *ds, dmu_tx_t *tx)

1612 {

1613 int err;

1614 struct killarg ka;

1616 /*

1617 * Free everything that we point to (that’s born after
1618 * the previous snapshot, if we are a clone)

1619 *

1620 * NB: this should be very quick, because we already
1621 * freed all the objects in open context.

1622 */

1623 ka.ds = ds;

1624 ka.tx = tx;

1625 err = traverse_dat aset (ds,

1626 ds->ds_phys->ds_prev_snap_t xg, TRAVERSE_POCST,
1627 kill_blkptr, &ka);

1628 ASSERTO(err);

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

1629
1629

1631
1632

1634
1635

1637
1638
1639
1640
1641
1642
1643
1644
1645

1647
1648

1650
1651
1652
1653
1654

1656
1657
1658
1659
1660
1661
1662

1664
1665

1667
1668
1669
1670
1671

1673
1674
1675
1676

1678
1679
1680
1681

1683
1684
1685
1685
1687
1689

1691

ASSERT3U(err, ==, 0);
ASSERT(! DS_ UNI QJE I'S ACCURATE(ds) || ds->ds_phys->ds_uni que_bytes ==

return (err);

}

voi d

dsl _dat aset _destroy_sync(void *argl, void *tag, dnu_tx_t *tx)
1636 {

struct dsl_ds_destroyarg *dsda = argl;

dsl

_dataset _t *ds = dsda->ds;

int err;
int after_branch_point = FALSE;

dsl

pool _t *dp = ds->ds_di r->dd_pool ;

objset _t *npbs = dp->dp_neta_obj set;

dsl

_dataset _t *ds_prev = NULL;

bool ean_t wont _destroy;
uint64_t obj;

wont _dest r oy

= (dsda- >defer &&
(ds->ds_userrefs > 0 || ds->ds_phys->ds_numchildren > 1));

ASSERT(ds->ds_owner || wont_destroy);
ASSERT(dsda- >def er || ds- >ds_phys->ds_num children <= 1);
ASSERT(ds->ds_prev == NULL ||

ds- >ds_prev->ds_phys- >ds_next_snap_obj != ds->ds_object);

ASSERT3U(ds- >ds_phys->ds_bp. bl k_birth, <=, tx->tx_txg);

if (wont_destroy) {
AS

}

SERT(spa_ver si on(dp->dp_spa) >= SPA_VERSI ON_USERREFS) ;
drmu_buf _wi Il _dirty(ds->ds_dbuf, tx);
ds->ds_phys->ds_flags | = DS FLAG DEFER DESTROY;
spa_hi story_l og_| |nterna| _ds(ds, "defer_destroy", tx, "");
return;

/* We need to | og before renoving it fromthe namaspace */

spa_hi story_l og_i nternal _ds(ds,

"destroy", tx,

/* signal any waiters that this dataset is going away */
mut ex_ent er (&ds- >ds_| ock) ;

ds- >ds_owner = dsl| _reaper;

cv_broadcast (&ds- >ds_excl usi ve_cv);

mut ex_exi t (&ds->ds_I ock) ;

| *

Renove our reservation */

if (ds->ds_reserved != 0)

}

dsl _prop_setarg_t psa;
uint64_t value = 0;

dsl _prop_setarg_i nit_uint64(&psa, "refreservation",
(ZPROP_SRC_NONE | ZPROP_SRC LOCAL | ZPROP_SRC RECEI VED),
&val ue);

psa. psa_effective_value = 0; /* predict default value */

dsl _dat aset _set_reservati on_sync(ds, &psa, tx);

ASSERTO(ds- >ds_r eser ved) ;

ASSERT3U(ds->ds_reserved, ==, 0);

ASSERT(RW WRI TE_HELD(&p- >dp_confi g_rw ock));

dsl
obj

_scan_ds_destroyed(ds, tx);

= ds->ds_obj ect;

0);

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

1693
1694
1695
1696
1697
1698
1699
1700
1701

1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717

1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736

1738
1739
1740
1741

1743
1744
1745

1747

1749
1750
1751
1752
1753
1754
1755

1758

if (ds- >ds _phys->ds_prev_snap_obj != 0) {

if (dsl

(ds->ds_prev) {
ds_prev = ds->ds_prev;
} else {
VERI FY(0 == dsl _dat aset_hol d_obj (dp,
ds- >ds_phys->ds_prev_snap_obj, FTAG &ds_prev));

}
after_branch_point =
(ds_prev->ds_phys->ds_next_snap_obj != obj);

dmu_buf _wi Il _dirty(ds_prev->ds_dbuf, tx);
if (after_branch_point &&
ds_prev->ds_phys->ds_next _cl ones_obj != 0) {
renove_from next _clones(ds_prev, obj, tx);
if (ds->ds_phys- >ds _next _snap_ Obj 1=0) {
VERI FY(0 == zap_add_i nt (nos,
ds_prev->ds_phys->ds_next _cl ones_obj,
ds->ds_phys->ds_next _snap_obj, tx));

}
}
if (after_branch_point &&
ds- >ds_phys- >ds_next _snap_obj == 0) {

/* This clone is toast. */
ASSERT(ds_prev->ds_phys->ds_num children > 1);
ds_prev->ds_phys->ds_num chil dren--;

/*

* |f the clone’s origin has no other clones, no

* user holds, and has been narked for deferred

* del etion, then we should have done the necessary
* destroy setup for it.

*

if (ds_prev->ds_phys->ds_ num_ children == 1 &&
&&

ds_prev->ds_userrefs == 0
DS_| S_DEFER_DESTROY(ds _prev)) {
ASSERT3P(dsda->rmorigin, =, NULL);
} else {
ASSERT3P(dsda->rmorigin, == NULL);

}
} else if (lafter_branch_point) {
ds_prev->ds_phys->ds_next _snap_obj =
ds- >ds_phys->ds_next _snap_obj ;

_dataset _i s_snapshot (ds)) {

dsl _dataset _t *ds_next;
uint 64_t ol d_uni que;
uint64_t used = 0, conp = 0, unconp =
VERI FY(0 == dsl _dat aset _hol d_obj (dp,
ds- >ds_phys->ds_next_snap_obj, FTAG &ds_next));
ASSERT3U(ds_next - >ds_phys- >ds_prev_snap_obj, ==, Obj),
ol d_uni que = ds_next->ds_phys->ds_uni que_byt es;
dmu_buf _wi I'l _dirty(ds_next->ds_dbuf, tx);
ds_next - >ds_phys->ds_prev_snap_obj =
ds- >ds_phys- >ds_prev_snap_obj ;
ds_next - >ds_phys->ds_prev_snap_txg =
ds->ds_phys->ds_prev_snap_txg;
ASSERT3U(ds- >ds_phys->ds_prev_snap_t xg, ==,
ds_prev ? ds_prev->ds_phys->ds_creation_txg : 0);

if (ds_next->ds_deadlist.dl_oldfnt) {

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

1771
1772
1773
1774
1775
1776

1778
1779
1780
1781
1782
1783

1785
1786
1787
1788
1789
1790

1792
1793
1794

1796
1797

1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817

1819
1820
1821
1822
1822
1823

process_ol d_deadl i st (ds, ds_prev, ds_next,
after_branch_point, tx);
} else {
/* Adjust prev’'s unique space. */
if (ds_prev && !after_branch_point)

dsl _deadl i st _space_r ange(&s_next - >ds_deadl i st ,

ds_prev->ds_phys->ds_prev_snap_t xg,

ds- >ds_phys->ds_prev_snap_t xg,

&used, &conp, &unconp);
ds_prev->ds_phys->ds_uni que_bytes += used;

}

/* Adjust snapused. */

dsl _deadl i st _space_range(&ds_next - >ds_deadl i st
ds- >ds_phys->ds_prev_snap_t xg, U NT64_MAX,
&used, &conp, &unconp);

dsl _di r_di duse_space(ds->ds_dir, DD USED SNAP,
-used, -conp, -unconp, tx);

/* Move blocks to be freed to pool’s free list. */
dsl _deadl i st _nove_bpobj (&ds_next - >ds_deadl i st,

&dp- >dp_free_bpobj, ds->ds_phys->ds_prev_snap_txg,

tx);
dsl _dir_di duse_space(tx->tx_pool ->dp_free_dir,
DD _USED HEAD, used, conp, unconp, tXx);

/* Merge our deadlist into next’s and free it. */
dsl _deadl i st _nmer ge(&ds_next - >ds_deadl i st
ds- >ds_phys->ds_deadl i st _obj, tx);

}
dsl _deadl i st _cl ose(&ds->ds_deadl i st);
dsl _deadl i st_free(nos, ds->ds_phys->ds_deadlist_obj, tx);

/* Col | apse range in clone heads */
dsl| _dat aset _renove_cl ones_key(ds,
ds- >ds_phys->ds_creation_txg, tx);

if (dsl_dataset_is_snapshot (ds_next)) {
dsl _dat aset _t *ds_next next;

/*
* Update next’s unique to include blocks which
* were previously shared by only this snapshot
* and it. Those blocks will be born after the
* prev snap and before this snap, and will have
* died after the next snap and before the one
* after that (ie. be on the snap after next’'s
* deadlist).
*
VERI FY(0 == dsl _dat aset _hol d_obj (dp,
ds_next - >ds_phys- >ds_next _snap_obj ,
FTAG &ds_nextnext));

dsl _deadl i st _space_r ange(&ds_next next - >ds_deadl i st,

ds- >ds_phys->ds_prev_snap_t xg,

ds- >ds_phys->ds_creation_txg,

&used, &conp, &unconp);
ds_next - >ds_phys->ds_uni que_byt es += used;
dsl _dat aset _rel e(ds_next next, FTAG;
ASSERT3P(ds_next - >ds_prev, ==, NULL);

/* Col | apse range in this head. */

dsl _dat aset _t *hds;

VERI FYO(ds| _dat aset _hol d_obj (dp,

VERI FY3U(0, ==, dsl_dataset_hol d_obj (dp,
ds->ds_di r->dd_phys->dd_head_dat aset _obj,
FTAG, &hds));

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

1824
1825
1826

1828
1829
1830
1831
1832
1833
1834
1835
1836

1838

1840
1841
1842
1843
1844
1845
1846
1847
1848

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860

1862
1863
1864
1865
1866
1867
1868
1869
1870

1872
1873
1874
1875
1876
1877
1878
1879

1881
1882
1883
1884
1885
1886
1887
1888
1889

} else {

dsl _deadl i st _renpve_key(&hds->ds_deadl i st,
ds- >ds_phys->ds_creation_txg, tx);
dsl _dat aset _rel e(hds, FTAG;

} else {
ASSERT3P(ds_next ->ds_prev, ==, ds);
dsl _dat aset _drop_ref (ds_next->ds_prev, ds_next);
ds_next->ds_prev = NULL;
if (ds_prev) {

VERI FY(0 == ds| _dat aset_get _ref (dp,
ds->ds_phys->ds_prev_snap_obj,
ds_next, &ds_next->ds_prev));

}

dsl _dat aset _recal c_head_uni q(ds_next);

/*

* Reduce the amount of our unconsmed refreservation
* being charged to our parent by the anount of

* new uni que data we have gai ned.

*

if (old_unique < ds_next->ds_reserved) {

inté4_t nrsdelta;

ui nt 64_t new_uni que =
ds_next - >ds_phys- >ds_uni que_byt es;

ASSERT(ol d_uni que <= new_uni que) ;

nrsdelta = M N(new_uni que - ol d_uni que,
ds_next->ds_reserved - ol d_uni que);

dsl _dir_di duse_space(ds->ds_dir,
"DD _USED REFRSRV, -nrsdelta, 0, 0, tx);
) }
dsl _dataset _rel e(ds_next, FTAQ;

zfeature_info_t *async_destroy =

* ok ok ok

*

*/
dsl
dsl
ds-

if

&spa_f eat ure_t abl e[SPA_FEATURE_ASYNC_DESTROY] ;

There’s no next snapshot, so this is a head dataset.
Destroy the deadlist. Unless it's a clone, the
deadl i st should be enmpty. (If it’ saclone it's
safe to ignore the deadlist contents.)

_deadl i st _cl ose(&ds->ds_deadlist);
deadl i st_free(nos, ds->ds_phys- >ds _deadl i st_obj, tx);
>ds_phys->ds_deadl i st_obj = 0;

(!spa_feature_is_enabl ed(dp->dp_spa, async_destroy)) {
err = ol d_synchronous_dat aset _destroy(ds, tx);

} else {
/*

* Move the bptree into the pool’s list of trees to
* clean up and update space accounting infornation.
*/

uint64_t used, conp, unconp;

ASSERT(err == 0 || err == EBUSY);
if (!spa_feature_is_active(dp->dp_spa, async_destroy
spa_f eature_incr(dp->dp_spa, async_destroy,
dp->dp_bptree_obj = bptree_all oc(
dp- >dp_net a_obj set, tx);

VERI FY(zap_add(dp->dp_net a_obj set,
DMJ_POOL_DI RECTORY_OBJECT,
DMJ_POOL_BPTREE_OBJ, si zeof (uint64_t),
&dp->dp_bptree_obj, tx) == 0);

))

tx);

1,

{

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

1890

1892
1893
1894

1896
1897

1899
1900
1901
1902
1903
1904
1905
1906

1908
1909
1910
1911
1911
1912
1913
1914
1915
1916
1917

1919
1920
1921
1922
1923
1924
1925
1926

1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944

1946
1947
1948
1949
1949
1950
1951
1952
1953

}

used = ds->ds_dir->dd_phys->dd_used_bytes;
conp = ds->ds_dir->dd_phys->dd_conpressed_bytes;
unconp = ds->ds_di r->dd_phys->dd_unconpressed_bytes;

ASSERT(! DS_UNI QUE_I S_ACCURATE(ds) ||
ds- >ds_phys->ds_uni que_bytes == used);

bpt ree_add(dp- >dp_net a_obj set, dp->dp_bptree_obj,
&ds- >ds_phys->ds_bp, ds->ds_phys->ds_prev_snap_t xg,
used, conp, unconp, tx);

dsl _dir_di duse_space(ds->ds_dir, DD USED HEAD,
-used, -conp, -unconp, tx);

dsl _dir_di duse_space(dp->dp_free_dir, DD USED HEAD,
used, conp, unconp, tx);

}

if (ds->ds_prev !'= NULL) {
if (spa_version(dp->dp_spa) >= SPA _VERSI ON DI R_ CLONES) {
VERI FYO(zap_r enove_i nt (nos,
VERI FY3U(0, ==, zap_renove_i nt(nos,
ds->ds_prev->ds_dir->dd_phys->dd_cl ones,
ds->ds_obj ect, tx));

dsl _dat aset _rel e(ds->ds_prev, ds);
ds->ds_prev = ds_prev = NULL;

}

/*

* This nust be done after the dsl_traverse(), because it wll
* re-open the objset.

*/

if (ds->ds_objset) {
dmu_obj set _evi ct (ds->ds_obj set);
ds- >ds_obj set = NULL;

}
if (ds->ds_dir->dd_phys->dd_head_dat aset _obj == ds->ds_object) {
/* Erase the link in the dir */
dmu_buf _wi Il _dirty(ds->ds_dir->dd_dbuf, tx);
ds- >ds_di r - >dd_phys- >dd_head_dat aset _obj = O;
ASSERT(ds->ds_phys->ds_snapnanes_zapobj != 0);
err = zap_destroy(nos, ds->ds_phys->ds_snapnanes_zapobj, tx);
ASSERT(err == 0);
} else {

/* renove from snapshot nanespace */
dsl _dataset _t *ds_head;
ASSERT(ds- >ds_phys- >ds_snapnanes_zapobj == 0);
VERI FY(0 == dsl _dat aset _hol d_obj (dp,
ds- >ds_di r- >dd_phys- >dd_head_dat aset _obj, FTAG &ds_head));
VERI FY(0 == dsl| _dat aset _get _snapnane(ds));

#i f def ZFS_DEBUG

#endi f

uint64_t val;

err = dsl _dataset_snap_| ookup(ds_head,
ds- >ds_snapnane, &val);

ASSERTO(err);
ASSERT3U(err, ==, 0);
ASSERT3U(val , ==, obj);

}

err = dsl _dataset_snap_renove(ds_head, ds->ds_snapnane, tx);
ASSERT(err == 0);

new usr/src/uts/comon/fs/zfs/dsl _dataset.c 10
1954 dsl _dataset _rel e(ds_head, FTAQ;
1955 1
1957 if (ds_prev && ds->ds_prev != ds_prev)
1958 dsl _dataset _rel e(ds_prev, FTAQ;
1960 spa_prop_cl ear _boot f s(dp->dp_spa, ds->ds_object, tx);
1962 if (ds->ds_phys->ds_next_clones_obj != 0) {
1963 uint64_t count;
1964 ASSERT(0 == zap_count (nDs,
1965 ds- >ds_phys->ds_next _cl ones_obj, &count) && count == 0);
1966 VERI FY(0 == dnu_obj ect _free(nos,
1967 ds- >ds_phys- >ds_next _cl ones_obj, tx));
1968 1
1969 if (ds->ds_phys->ds_props_obj != 0)
1970 VERI FY(0 == zap_destroy(nos, ds->ds_phys->ds_props_obj, tx));
1971 if (ds->ds_phys->ds_userrefs_obj != 0)
1972 VERI FY(0 == zap_destroy(nps, ds->ds_phys->ds_userrefs_obj, tx));
1973 dsl _dir_cl ose(ds->ds_dir, ds);
1974 ds->ds_dir = NULL;
1975 dsl _dataset _drain_refs(ds, tag);
1976 VERI FY(0 == dnu_obj ect _free(nmos, obj, tx));
1978 if (dsda->rmorigin) {
1979 I*
1980 * Renove the origin of the clone we just destroyed.
1981 */
1982 struct dsl_ds_destroyarg ndsda = {0};
1984 ndsda. ds = dsda->rm.origin;
1985 dsl _dat aset _destroy_sync(&ndsda, tag, tx);
1986 }
1987 }
__unchanged_portion_onitted_
2055 void
2056 dsl _dataset_snapshot _sync(dsl _dataset_t *ds, const char *snapnane,
2057 dmu_t x_t *tx)
2058 {
2059 dsl _pool _t *dp = ds->ds_dir->dd_pool ;
2060 drmu_buf _t *dbuf;
2061 dsl _dat aset _phys_t *dsphys;
2062 uint64_t dsobj, crtxg;
2063 obj set _t *nobs = dp->dp_net a_obj set;
2064 int err;
2066 ASSERT(RW WRI TE_HELD(&p- >dp_confi g_rw ock));
2068 /*
2069 * The origin's ds_creation_txg has to be < TXG IN TI AL
2070 */
2071 if (strcnp(snapname, ORI G N_DI R NAME) == 0)
2072 crtxg = 1;
2073 el se
2074 crtxg = tx->tx_txg;
2076 dsobj = dnu_obj ect _al | oc(nmps, DMJ_OT_DSL_DATASET, O,
2077 DMJ_OT_DSL_DATASET, sizeof (dsl_dataset_phys_t), tx);
2078 VERI FY(0 == dmu_bonus_hol d(nmos, dsobj, FTAG &dbuf));
2079 dnu_buf _wi Il _dirty(dbuf, tx);
2080 dsphys = dbuf->db_dat a;
2081 bzer o(dsphys, sizeof (dsl_dataset_phys_t));
2082 dsphys->ds_dir_obj = ds->ds_dir->dd_object;
2083 dsphys->ds_fsid_guid = unique_create();
2084 (void) random get_pseudo_byt es((voi d*) &sphys->ds_gui d,

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098

2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2116
2117
2118

2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131

2133
2134
2135
2136
2137
2138
2139
2140
2141
2142

2144
2145
2146
2147
2148
2149

si zeof (dsphys->ds_guid));
dsphys->ds_prev_snap_ob] = ds->ds_phys->ds_prev_snap_obj ;
dsphys->ds_prev_snap_t xg = ds->ds_phys->ds_prev_snap_t xg;
dsphys- >ds_next_snap_obj = ds->ds_obj ect;
dsphys->ds_num children = 1;
dsphys->ds_creation_tine = gethrestine_sec();
dsphys->ds_creation_txg = crtxg;
dsphys->ds_deadl i st _ob] = ds->ds_phys->ds_deadl i st_obj;
dsphys- >ds_ref erenced_bytes = ds->ds_phys->ds_r ef erenced_byt es;
dsphys->ds_conpressed_bytes = ds->ds_phys->ds_conpressed_bytes;
dsphys->ds_unconpressed_bytes = ds->ds_phys->ds_unconpressed_byt es;
dsphys->ds_flags = ds->ds_phys->ds_fl ags;
dsphys->ds_bp = ds->ds_phys->ds_bp;
drmu_buf _rel e(dbuf, FTAQ;

ASSERT3U(ds->ds_prev != 0, ==, ds->ds_phys->ds_prev_snap_obj != 0);
if (ds->ds_prev)
uint64_t next_cl ones_obj =
ds- >ds_prev->ds_phys->ds_next _cl ones_obj ;
ASSERT(ds->ds_prev->ds_phys->ds_next _snap_obj ==
ds->ds_obj ect ||
ds- >ds_prev->ds_phys->ds_num children > 1);
if (ds->ds_prev->ds_phys->ds_next _snap_obj == ds->ds_object) {
drmu_buf _wi Il _dirty(ds->ds_prev->ds_dbuf, tx);
ASSERT3U(ds- >ds_phys- >ds_prev_snap_t xg, ==,
ds- >ds_prev->ds_phys->ds_creation_txg);
ds- >ds_prev->ds_phys->ds_next _snap_obj = dsobj;
} else if (next_clones_obj !'= 0)
renove_from next _cl ones(ds->ds_prev,
dsphys- >ds_next _snap_obj, tx);
VERI FYO(zap_add_i nt (nos,
VERI FY3U(0, ==, zap_add_i nt (nos,
next _clones_obj, dsobj, tx));

*

* If we have a reference-reservation on this dataset, we will
* need to increase the amount of refreservation being charged
* since our unique space is going to zero.

*

if (ds->ds_reserved) {
int64_t delta;
ASSERT(DS_UNI QUE_| S _ACCURATE(ds))
delta = M N(ds->ds_phys->ds_uni que_bytes, ds->ds_reserved);
dsl _di r_di duse_space(ds->ds_dir, DD USED REFRSRV,
delta, 0, 0, tx);
}

drmu_buf _wi I | _dirty(ds->ds_dbuf, tx);
zfs_dbgnmsg("taki ng snapshot %@s/ % | u; newkey=%Iu",
ds->ds_dir->dd_nynane, snapnane, dsobj,
ds- >ds_phys->ds_prev_snap_t xg);
ds- >ds_phys->ds_deadl i st _obj = dsl_deadlist_cl one(&ds->ds_deadl i st,
Ul NT64_MAX, ds->ds_phys->ds_prev_snap_obj, tx);
dsl _deadl i st _cl ose(&ds->ds_deadl i st);
dsl _deadl i st _open(&ds->ds_deadl i st, nps, ds->ds_phys->ds_deadlist_obj);
dsl _deadl i st _add_key(&ds->ds_deadl i st,
ds- >ds_phys->ds_prev_snap_t xg, tx);

ASSERT3U(ds- >ds_phys->ds_prev_snap_txg, <, tx->tx_txg);

ds- >ds_phys->ds_prev_snap_obj dsobj ;

ds- >ds_phys->ds_prev_snap_t xg crtxg;

ds->ds_phys->ds_uni que_bytes = 0;

if (spa_version(dp->dp_spa) >= SPA VERSI ON_UNI QUE_ACCURATE)
ds->ds_phys->ds_flags | = DS_FLAG_UN QUE_ACCURATE;

11

2151
2152
2153

2155
2156
2157
2158
2160
2162

2164

2165 }

2185 static void

2187 {

2188
2189
2190
2191
2192
2193

2195
2196
2197

2199
2200
2201
2202
2203
2204
2205
2206
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

new usr/src/uts/comon/fs/zfs/dsl _dataset.c
err = zap_add(nos, ds->ds_phys->ds_snapnanes_zapobj,
snapnane, 8, 1, &dsobj, tx);
ASSERT(err == 0);
if (ds->ds_prev)
dsl _dat aset _drop_ref (ds->ds_prev, ds);
VERI FY(0 == dsl| _dat aset_get _ref (dp,
ds- >ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
dsl _scan_ds_snapshotted(ds, tx);
dsl _dir_snap_cntinme_update(ds->ds_dir);
spa_history_l og_internal _ds(ds->ds_prev, "snapshot", tx, "");
__unchanged_portion_omtted_
2186 get_cl ones_stat (dsl _dataset _t *ds, nvlist_t *nv)
uint64_t count = O;
obj set _t *npbs = ds->ds_dir->dd_pool - >dp_net a_obj set ;
zap_cursor_t zc;
zap_attribute_t za;
nvlist_t *propval;
nvlist_t *val;
rw_ent er (&ls->ds_di r->dd_pool - >dp_confi g_rw ock, RW READER);
VERI FY(nvlist_alloc(&ropval, NV_UNI QUE_NAME, KM SLEEP) == 0);
VERI FY(nvlist_alloc(&val, NV_UNI QUE_NAME, KM SLEEP) == 0);
/*
* There may nme nissing entries in ds_next_clones_obj
* due to a bug in a previous version of the code.
* Only trust it if it has the right nunber of entries.
*
if (ds->ds_phys->ds_next_clones_obj != 0) {
ASSERTO(zap_count (nps, ds->ds_phys->ds_next _cl ones_obj,
ASSERT3U(0, ==, zap_count (nps, ds->ds_phys->ds_next_cl ones_obj,
&count));
}
i1f (count !'= ds->ds_phys->ds_numchildren - 1) {
goto fail;

for (zap_cursor_init(&c, nos, ds->ds_phys->ds_next_cl ones_obj);
zap_cursor_retrieve(&c, &za) == 0;
zap_cursor _advance(&zc)) {
dsl _dataset _t *cl one;
char buf [ZFS_MAXNAMELEN] ;

* Even though we hold the dp_config_rw ock, the dataset
* may fail to open, returning ENCENT. |If there is a
* thread concurrently attenpting to destroy this

* dataset, it will have the ds_rw ock held for

* RWWRITER Qur call to dsl_dataset_hold_obj() ->
* dsl _dataset_hold_ref() will fail its

* rw_tryenter(&s->ds_rw ock, RWREADER), drop the

* dp_config_rw ock, and wait for the destroy progress
* and signal ds_exclusive_cv. |f the destroy was

* successful, we will see that

* DSL_DATASET_I S DESTROYED(), and return ENCENT.

if (dsl_dataset_hol d_obj (ds->ds_dir->dd_pool ,
za.za_first_integer, FTAG &clone) !'= 0)
conti nue;

12

new usr/src/uts/comon/fs/zfs/dsl _dataset.c 13

2232
2233
2234
2235
2236
2237
2238
2239

dsl _di r_nane(cl one->ds_dir, buf);
VERI FY(nvl i st _add_bool ean(val , buf) == 0);
dsl _dat aset _rel e(cl one, FTAG;

zap_cursor _fini (&zc);

VERIFY(nvl i st _add nvi i st (propval, ZPROP_VALUE, val) == 0);

VERI FY(nvl i st add nvlist(nv, zfs_prop_to narre(ZFS PROP. CL(]\JES)
propval) == 0);

2240 fail:

2241
2242
2243
2244 }

nvlist_free(val);
nvlist_free(propval);
rw_exit(&ds->ds_dir->dd_pool ->dp_config_rw ock);

__unchanged_portion_onitted_

2427 static void

2428 dsl
2429 {
2430
2431
2432
2433
2434
2435

2437

2439
2440

2442
2443
2444
2445
2445
2446
2447
2448
2449
2450
2451

2452
2453
2454
2455 }

_dat aset _snapshot _renanme_sync(void *argl, void *arg2, dmu_tx_t *tx)

dsl _dataset _t *ds = argl;

const char *newsnapnanme = arg2;

dsl _dir_t *dd = ds->ds_dir;

obj set _t *nps = dd->dd_pool - >dp_net a_obj set ;
dsl _dataset _t *hds;

int err;

ASSERT(ds- >ds_phys- >ds_next _snap_obj != 0);

VERI FY(0 == dsl| _dat aset _hol d_obj (dd- >dd_pool ,
dd- >dd phys ->dd_head_dat aset _obj, FTAG &hds));

VERI FY(0 == dsl _dat aset_get_snapnane(ds));

err = dsl_dataset_snap_renove(hds, ds->ds_snapnane, tx);

ASSERTO(err);

ASSERT3U(err, ==, 0);

mut ex_ent er(&ds >ds_ | ock) ;

(voi d) strcpy(ds->ds_snapname, newsnapnane);

mut ex_exi t (&ds- >ds_| ock) ;

err = zap_add(nos, hds->ds_phys->ds_snapnanes_zapobj ,
ds->ds_snapnane, 8, 1, &ds->ds_object, tx);

ASSERTO(err);

ASSERT3U(err, ==, 0);

spa_| h| story_l og_internal _ds(ds, "renane", tx,
"-> @s", newsnapnane);
dsl _dat aset _rel e(hds, FTAG)

__unchanged_portion_onitted_

2772 static void

2773 dsl
2774 {
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784

2786

2788
2789

_dataset _pronpote_sync(void *argl, void *arg2, dnu_tx_t *tx)

dsl _dataset _t *hds = argl,;

struct pronotearg *pa = arg2;

struct pronotenode *snap = |ist_head(&pa->shared_snaps);
dsl _dataset _t *origin_ds = snap->ds;

dsl _dataset _t *origi n_head;

dsl _dir_t *dd = hds->ds_dir;

dsl _pool _t *dp = hds->ds_dir->dd_pool ;

dsl _dir_t *odd = NULL;

uint64_t ol dnext _obj ;

int64_t delta;

ASSERT(0 == (hds->ds_phys->ds_fl ags & DS_FLAG NOPROMOTE)) ;
snap = |ist_head(&pa->origi n_snaps);

origin_head = snap->ds;

new usr/src/uts/comon/fs/zfs/dsl _dataset.c 14
2791 I*

2792 * W need to explicitly open odd, since origin_ds’s dd will be
2793 * changi ng.

2794 */

2795 VERI FY(0 == dsl _dir_open_obj (dp, origin_ds->ds_dir->dd_object,
2796 NULL, FTAG ~&odd));

2798 /* change origin’ s next snap */

2799 drmu_buf _wi || di rty(origin_ds->ds_dbuf, tx);

2800 ol dnext _obj = origin_ds->ds_phys->ds_next_snap_obj ;

2801 snap = [ist_tail (&pa->cl one_snaps);

2802 ASSERT3U(snap- >ds- >ds_phys->ds_prev_snap_obj, ==, origin_ds->ds_object);
2803 ori gi n_ds->ds_phys->ds_next _snap_obj = snap->ds->ds_obj ect;
2805 /* change the origin s next clone */

2806 if (origin_ds->ds_phys->ds_next_clones_obj) {

2807 renove_from next_cl ones(origin_ds, snap->ds->ds_object, tx);
2808 VERI FYO(zap_add_i nt (dp->dp_n®et a_obj set,

2809 VERI FY3U(0, ==, zap_add_i nt (dp->dp_net a_obj set,

2809 ori gi n_ds->ds_phys- >ds_next _cl ones_obj,

2810 ol dnext _obj, tx));

2811 1

2813 /* change origin */

2814 drmu_buf _wi I _di rty(dd >dd_dbuf, tx);

2815 ASSERT3U(dd- >dd _phys->dd ori g| n_obj, ==, origin_ds->ds_object);
2816 dd- >dd_phys->dd_ori gi n ObJ = odd- >dd_phys->dd_ori gi n_obj ;

2817 dd->dd_origin_txg = origin_head->ds_dir->dd_ori gi n_txg;

2818 drmu_buf_wi 'l _di rty(odd->dd “dbuf, tx);

2819 odd->dd_phys->dd_origin Obj = origin_ds->ds_obj ect;

2820 origin_head->ds_dir->dd_origin_txg =

2821 origi n_ds->ds_phys->ds_creation_txg;

2823 /* change dd_cl one entries */

2824 if (spa_version(dp->dp_spa) >= SPA VERSI ON DI R_CLONES) {

2825 VERI FYO(zap_renove_i nt (dp- >dp_net a_obj set,

2826 VERI FY3U(0, ==, zap_renpve_int (dp->dp_ et a _obj set,

2826 odd- >dd_phys->dd_cl ones, hds->ds_object, tx));

2827 VERI FYO(zap_add_i nt (dp- >dp_n®et a_obj set,

2828 VERI FY3U(0, ==, zap_add_i nt (dp->dp_net a_obj set,

2828 pa->origi n_origi n->ds_dir->dd_phys->dd_cl ones,

2829 hds->ds_obj ect, tx));

2831 VERI FYO(zap_r enove_i nt (dp- >dp_net a_obj set,

2832 VERI FY3U(0, ==, zap_renpve_int(dp->dp_neta_objset,

2832 pa->origin_origi n->ds_dir->dd_phys->dd_cl ones,

2833 ori gi n_head- >ds_obj ect, tx))

2834 if (dd->dd_phys->dd_cl ones ==

2835 dd->dd_phys->dd_cl ones = zap_cr eat e(dp->dp_net a_obj set,
2836 DMU_OT_DSL_CLONES, DMJ_OT_NONE, 0, tx);
2837 }

2838 VERI FYO(zap_add_i nt (dp->dp_n®et a_obj set,

2839 VERI FY3U(0, ==, zap_add_i nt(dp->dp_neta_obj set,

2839 dd- >dd_phys- >dd_cl ones, origi n_head->ds_object, tx));
2841 1

2843 /* move snapshots to this dir */

2844 for (snap = |ist_head(&pa->shared_snaps); snap;

2845 snap = |ist_next(&pa->shared_snaps, snap)) {

2846 dsl _dataset _t *ds = snap->ds;

2848 /* unregister props as dsl_dir is changing */

2849 if (ds->ds_objset) {

2850 dmu_obj set _evi ct (ds->ds_obj set);

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

2851
2852
2853
2854
2855
2856
2857
2858
2859

2861
2862
2863
2864
2865
2866
2867
2868

2870
2871
2872
2873
2874

2876
2877
2878
2879
2880
2881

2883
2884
2885
2886
2887
2888
2889

2891
2892
2892
2893

2895
2896
2897
2898
2899
2900
2901
2902

2904
2905
2905

2907
2908
2909
2910
2911
2912

2914

* ok kb F o

delta

ds- >ds_obj set = NULL;

/* nove snap nane entry */

VERI FY(0 == dsl _dat aset_get_snapnanme(ds));

VERI FY(0 == dsl _dat aset_snap_renove(origi n_head,
ds- >ds_snapnane, tx));

VERI FY(0 == zap_add(dp->dp_net a_obj set,
hds- >ds_phys- >ds_snapnanes_zapobj, ds->ds_snapnane,
8, 1, &ds->ds_object, tx));

/* change containing dsl _dir */
drmu_buf _wi Il _dirty(ds->ds_dbuf, tx);

ASSERT3U(ds- >ds_phys->ds_di r_obj, ==, odd->dd_object);
ds- >ds_phys->ds_dir_obj = dd->dd_obj ect;
ASSERT3P(ds->ds_dir, ==, odd)

dsl _dir close(ds >ds _dir, ds)
VERIFY(0 == dsl _di r_open_obj (dp, dd- >dd_obj ect,
NULL, ds, &ds->ds _dir));

/* nmove any clone references */
if (ds->ds_phys->ds_next_cl ones_obj &&
spa_versi on(dp->dp_spa) >= SPA VERSI ON_DI R_CLONES) {
zap_cursor_t zc;
zap_attribute_t za;

(zap_cursor_init(&c, dp->dp_neta_objset,
ds- >ds_phys->ds_next _cl ones_obj);
zap_cursor_retrieve(&c, &za) == 0;
zap_cur sor _advance(&zc)) {

dsl _dataset _t *cnds;

uint64_t o;

if (za.za_first_integer == ol dnext_obj) {
/*

* W’ ve already noved the
* origin's reference.
*/

conti nue;
}
VERI FYO(ds| _dat aset _hol d_obj (dp,
VERI FY3U(0, ==, dsl _dataset_hol d_obj (dp,

za.za_first_integer, FTAG &cnds));

0 = cnds->ds_dir->dd_phys->dd_head_dat aset _

VERI FY3U(zap_r enpve_i nt (dp- >dp_net a_obj set,

odd- >dd_phys->dd_cl ones, o, tx), ==, 0);

VERI FY3U(zap_add_i nt (dp- >dp_net a Obj set,
dd- >dd_phys->dd_cl ones, o, tx), ==, 0);
dsl _dat aset _rel e(cnds, FTAG),

zap_cursor _fini (&zc);

}
ASSERTO(ds| _prop_nunthb(ds));
ASSERT3U(dsl _prop_nuntb(ds), ==, 0);

Change space accounti ng.

Not e, pa->*usedsnap and dd_used_breakdown[SNAP] will either
both be valid, or both be 0 (resulting in delta == 0). This
is true for each of {clone,origin} independently.

= pa- >cl oneusedsnap -

new usr/src/uts/comon/fs/zfs/dsl _dataset.c

2915
2916
2917
2918
2919
2920

2922
2923
2924
2925
2926
2927
2928

2930

2932
2933

2935
2936 }

dd- >dd_phys->dd_used_br eakdown[DD_USED_SNAP] ;
ASSERT3S(del ta, >=, 0);
ASSERT3U(pa- >used, >=, delta);
dsl _dir_di duse_space(dd, DD _USED SNAP, delta, 0, 0, tx);
dsl _dir_di duse_space(dd, DD_USED_HEAD,

pa->used - delta, pa->conp, pa->unconp, tx);

del ta = pa->origi nusedsnap -

odd- >dd_phys->dd_ used _br eakdown[DD_USED_SNAP] ;
ASSERT3S(del ta, <=,
ASSERT3U(pa- >used, >=, -delta)
dsl _dir_diduse space(odd DD USED SNAP, delta, 0, 0, tx);
dsl _di r_di duse_space(odd, DD_USED HEAD,

-pa->used - delta, -pa->conp, -pa->unconp, tx);

ori gi n_ds->ds_phys->ds_uni que_byt es = pa->uni que;

/* log history record */
spa_history_log_internal _ds(hds, "promote", tx, "");

dsl _dir_cl ose(odd, FTAG;

__unchanged_portion_onitted_

3599 void
_register_onexit_hol d_cl eanup(dsl _dataset _t *ds, const char *htag,
m nor_t mnor)

3600 dsl
3601
3602 {
3603

3605
3606
3607
3608
3609
3610
3610
3611 }

zfs_hol d_cl eanup_arg_t *ca;

ca = kmem al | oc(si zeof (zfs_hold_cleanup_arg_t), KM SLEEP);
ca->dp = ds->ds_dir->dd_pool ;
ca- >dsobj = ds->ds_obj ect;
(void) strlcpy(ca->htag, htag, sizeof (ca->htag));
VERI FYO(zf s_onexi t _add_chb(m nor,
VERI FY3U(0, ==, zfs_onexit_add_cb(m nor,
dsl _dat aset _user _rel ease_onexit, ca, NULL));

__unchanged_portion_onitted_

16

new usr/src/uts/ comon/fs/zfs/dsl _deadlist.c

R R R R

12683 Thu Jul 26 14:19:14 2012
new usr/src/uts/comon/fs/zfs/dsl _deadlist.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright (c) 2012 by Del phix. Al rights reserved.

23 */Copyright (c) 2011 by Del phix. Al rights reserved.
*

26 #include <sys/dsl _dataset. h>
27 #include <sys/dnu. h>

28 #include <sys/refcount. h>

29 #include <sys/zap. h>

30 #include <sys/zfs_context.h>
31 #include <sys/dsl _pool . h>

The locking is provided by dl _lock. Note that |ocking on the bpobj t
provides its own | ocking, and dl _oldfnt is immutable.

33 /*
34 * Deadlist concurrency:
35 *
36 * Deadlists can only be nodified fromthe syncing thread.
37 *
38 * Except for dsl_deadlist_insert(), it can only be nodified with the
39 * dp_config_rwock held with R\NV\RIT
40 *
41 * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42 * be called concurrently, fromopen context, with the dl _config_rw ock held
43 * with RW READER
44 >
45 * Therefore, we only need to provide |ocking between dsl_deadlist_insert() and
46 * the accessors, protecting:
47 = dl _phys- >dl _used, conp, unconp
48 * and protecting the dl _tree from being | oaded.
*
*
*

/

53 static int
54 dsl _deadl i st _conpare(const void *argl, const void *arg2)

55

56 const dsl_deadlist_entry_t *dlel = argl;
57 const dsl_deadlist_entry_t *dle2 = arg2;
59 if (dlel->dle_mntxg < dl e2->dl e_ni ntxg)

60 return (-1);

new usr/src/uts/ comon/fs/zfs/dsl _deadlist.c

else if (dlel->dle_mntxg > dl e2->dl e_mi ntxg)
return (+1);

el se
return (0);

67 static void

68 dsl
69 {
70

71

73
74
75

93 void
94 dsl
95 {
96

98

99
100
101
101
102
103
104
105
106
107
107
108
109

111
112
113
114 }

_deadl i st_l oad_tree(dsl _deadlist_t *dl)

zap_cursor _t zc;
zap_attribute_t za;

ASSERT(!dl ->dl _ol dfnt);
if (dl->dl_havetree)
return;

avl _create(&dl ->dl _tree, dsl_deadlist_conpare,
si zeof (dsl_deadlist_entry_t),
of f set of (dsl _deadl i st_entry_t, dle_node));
for (zap_cursor_init(&c, dl->dl_os, dl->dl_object);
zap_cursor_retrieve(&c, &a) == 0;
zap_cursor_advance(&zc)) {
dsl _deadlist_entry_t *dle = knem al | oc(si zeof (*dle), KM SLEEP);
dl e->dl e_mintxg = strtonum(za.za_nane, NULL);
VERI FYO(bpobj _open(&dl e- >dl e_bpobj, dlI->dl _os,
VERI FY3U(0, ==, bpobj _open(&dl e->dl e_bpobj, dl->dl _os,
za.za_first_integer));
avl _add(&dl ->dl _tree, dI e)

zap_cursor _fini (&zc);
dl - >dl _havetree = B_TRUE;

_deadl i st _open(dsl _deadlist_t *dl, objset_t *os, uint64_t object)

drmu_obj ect _info_t doi;

mut ex_init(&dl->dl _|ock, NULL, MJUTEX_DEFAULT, NULL);
dl ->dl _os = os;
dl - >dl _obj ect = object;
VERI FYO(dnu_bonus_hol d(os, object, dlI, &dl->dl _dbuf));
VERI FY3U(0, ==, dmu_bonus_hol d(os, object, dl, &dl->dl _dbuf));
drmu_obj ect _i nfo from 1 db(dl ->dl _dbuf, &doi);
if (doi.doi _type == DMJ OT_BPOBJ) {
dmu_buf _rel e(dl ->dl_dbuf, dl);
dl - >dl _dbuf = NULL;
dl->dl Toldfnt = B_TRUE;

VERI FYO(bpobj _0pen(&d|->d| _bpobj, os, object));
VERI FY3U(0, ==, bpobj _open(&dl ->dl _bpobj, os, Obj ect));
return;

}

dl ->dl _ol df nt = B_FALSE;
dl - >dl _phys = dl ->dl _dbuf - >db_dat a;
dl - >dl _havetree = B_FALSE;

__unchanged_portion_omtted_

151 void
152 dsl
153 {
154
155
156

_deadlist_free(objset_t *os, uint64_t dlobj, dnu_tx_t *tx)

dnu_obj ect _info_t doi;
zap_cursor_t zc;
zap_attribute_t za;

new usr/src/uts/ comon/fs/zfs/dsl _deadlist.c

158 VERI FYO(dmu_obj ect _i nfo(os, dlobj, &doi));

158 VERI FY3U(0, ==, dmu_obj ect_info(os, dlobj, &doi));
159 if (doi.doi type == DMJ OT_BPOBJ) {

160 bpobj _free(os, dlobj, tx);

161 return;

162 }

164 for (zap_cursor_init(&c, os, dlobj);

165 zap_cursor_retrieve(&c, &a) == 0

166 zap_cur sor _advance(&zc))

167 bpobj _free(os, za.za_first_integer, tx);
168 zap_cursor _fini(&zc);

169 VERI FYO(dnu_obj ect _free(os, dlobj, tx));

169 VERI FY3U(0, ==, dmu_object_free(os, dlobj, tx));
170 }

__unchanged_portion_onitted_

203 /*

204 * Insert new key in deadlist, which nust be > all current entries.

205 * mintxg is not inclusive.

206 */

207 void

208 dsl _deadl i st _add_key(dsl _deadlist_t *dl, uint64_t mntxg, dmu_tx_t
209 {

210 uint64_t obj;

211 dsl _deadlist_entry_t *dle;

213 if (dl->dl_oldfnt)

214 return;

216 dsl _deadl i st_l oad_tree(dl);

218 dle = knmem al | oc(si zeof (*dle), KM SLEEP);

219 dl e->dl e_m ntxg = m ntxg;

220 obj = bpobj _al l oc(dl ->dl _os, SPA MAXBLOCKSI ZE, tx)

221 VERI FYO(bpobj _open(&dl e- >dl e_bpobj, dl->dl _os,)) ;
221 VERI FY3U(0, ==, bpobj _open(&dl e->dl e_bpobj, dl- >d| _o0s,
222 avl _add(&dl ->dl _tree, dle);

224 VERI FYO(zap_add_i nt _key(dl ->dl _os, dl->dl_object,

224 VERI FY3U(0, ==, zap_add_int_key(dl->dl _os, dl->dl _object,
225 m ntxg, obj, tx));

226 }

228 | *

229 * Renpbve this key, nmerging its entries into the previous key.
230 */

231 void

232 dsl _deadl i st _renove_key(dsl _deadlist_t *dl, uint64_t mntxg,
233 {

234 dsl _deadlist_entry_t dle_tofind;

235 dsl _deadlist_entry_t *dle, *dle_preyv;

237 if (dl->dl_oldfnt)

238 return;

240 dsl _deadlist_load_tree(dl);

242 dl e_tofind. dl e_mntxg = mntxg;

243 dle = avl _find(&dl->dl _tree, &dle_tofind, NULL);

244 dl e_prev = AVL_PREV(&I->dl _tree, dle);

246 bpobj _enqueue_subobj (&l e_prev->dl e_bpobj,

247 dl e->dl e_bpobj . bpo_obj ect, tx);

249 avl _renove(&dl ->dl _tree, dle);

*tx)

obj));

dmu_tx_t *tx)

new usr/src/uts/ comon/fs/zfs/dsl _deadlist.c

250 bpobj _cl ose(&dl e- >dl e_bpobj);

251 kmem free(dl e, sizeof (*dle));

253 VERI FYO(zap_renove_i nt(dl ->dl _os, dl->dl _object, mntxg, tx));
253 VERI FY3U(0, ==, zap_renove_int(dl->dl_os, dl->dl _object, mntxg, tx));
254 }

256 /*

257 * Walk ds's snapshots to regenerate generate ZAP & AVL.

258 */

259 static void

260 dsl _deadl i st_regenerate(objset_t *os, uint64_t dlobj,

261 uint64_t nrs_obj, dmu_tx_t *tx)

262 {

263 dsl _deadlist_t dl;

264 dsl _pool _t *dp = dnu_obj set _pool (0s);

266 dsl deadl i st_open(&dl, os, dlobj);

267 if (dl.dl _oldfnt) {

268 dsl _deadl i st_cl ose(&dl);

269 return;

270 }

272 while (nrs_obj != 0)

273 dsl _dat aset _t *ds;

274 VERI FYO(dsl _dat aset _hol d_obj (dp, nrs_obj, FTAG &ds));
274 VERI FY3U(0, ==, dsl_dataset_hol d_obj (dp, nrs_obj, FTAG &ds));
275 dsl _deadl i st_add_key(&dl, ds->ds_phys->ds_prev_snap_txg, tx);
276 nrs_obj = ds->ds_phys- >ds _prev_snap_obj ;

277 dsl _dataset _rel e(ds, FTAQ;

278 }

279 dsl _deadl i st_cl ose(&dl);

280 }

282 uint64_t

283 dsl _deadl i st_cl one(dsl _deadlist_t *dl, uint64_t nmaxtxg,

284 uint64_t nrs_obj, dmu_tx_t *tx)

285 {

286 dsl _deadlist_entry_t *dle;

287 ui nt 64_t newobj ;

289 newobj = dsl_deadlist_alloc(dl->dl_os, tx);

291 if (dl->dl_oldfnt)

292 dsl _deadl i st _regenerate(dl ->dl _os, newobj, nrs_obj, tx);
293 return (newobj);

294 }

296 dsl _deadlist_load_tree(dl);

298 for (dle = avl _first(&dl->dl _tree); dle;

299 dle = AVL_NEXT(&dl ->dl _tree, dle)) {

300 uint64_t obj;

302 if (dle->dle_mntxg >= nmaxtxg)

303 break;

305 obj = bpobj _al |l oc(dl ->dl _os, SPA MAXBLOCKSI ZE, tx);
306 VERI FYO(zap_add_i nt _key(dl ->dl _os, newobj,

306 VERI FY3U(0, ==, zap_add_i nt_key(dl->dl _os, newobj,

307 dl e->dl e_m ntxg, obj, tx));

308 }

309 return (newobj);

310 }

312 void

new usr/src/uts/ comon/fs/zfs/dsl _deadlist.c

313 dsl _deadl i st _space(dsl _deadlist_t *dl,

314 uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp)
315 {

316 if (dl->dl _oldfnt) {

317 VERI FYO(bpobj space(&dl >d| _bpobj,

317 VERI FY3U(0, ==, bpobj _space(&dl - >dl _bpobj,
318 usedp, conpp, unconpp));

319 return;

320 }

322 mut ex_ent er (&dl - >dl _| ock);

323 *usedp = dl ->dl _phys->dl _used;

324 *conpp = dl ->dl _phys->dl _conp;

325 *unconpp = dl ->dl _phys->dl _unconp;

326 mut ex_exi t (&dl - >dl _I ock);

327 }

329 /*

330 * return space used in the range (nintxg, maxtxg].
331 * Includes maxtxg, does not include m ntxg

332 * mintxg and maxtxg nmust both be keys in the deadl i st (unless maxtxg is
_MAX)).

333 * larger than any bp in the deadlist (eg. U NT64
334 */

335 void

336 dsl _deadlist_space_range(dsl _deadlist_t *dl, uint64_t mntxg, uint64_t
337 uint64_t *usedp, uint64_t *conpp, uint64_t *unconpp)

338 {

339 dsl _deadlist_entry_t *dle;

340 dsl _deadlist_entry_t dle_tofind;

341 avl _i ndex_t where;

343 if (dl->dl _oldfnt) {

344 VERI FYO(bpobj _space_range(&dl - >dl _bpobj ,

344 VERI FY3U(0, ==, bpobj _space_range(&dl - >dl _bpobj,
345 m ntxg, maxtxg, usedp, conpp, unconpp));

346 return;

347 }

349 *usedp = *conpp = *unconpp =

351 nmut ex_ent er (&l - >dl _| ock) ;

352 dsl _deadlist_| oad_tree(dl);

353 dle_tofind. dl'e_nintxg = m ntxg;

354 dle = avl _find(&dl->dl _tree, &dle_tofind, &where);

355 *

356 * |f we don't find this mintxg, there shouldn't be anything
357 * after it either.

358 */

359 ASSERT(dl e !'= NULL ||

360 avl _nearest (&dl ->dl _tree, where, AVL_AFTER) == NULL);
362 for (; dle&&dle >dl e_m ntxg < maxtxg;

363 dle = AVL_NEXT(&dl ->dl _tree, dle)) {

364 uint64_t used, conp, unconp;

366 VERI FYO(bpobj space(&dl e->dl e_bpobj,

366 VERI FY3U(0, ==, bpobj space(&dl e- >di e _bpobj,

367 &used, &conp, &unconp));

369 *usedp += used;

370 *conpp += conp;

371 *unconpp += unconp;

372 }

373 mut ex_exi t (&dl - >dl _| ock);

374 }

maxt xg,

new usr/src/uts/ comon/fs/zfs/dsl _deadlist.c

376 static void
377 dsl _deadlist_insert_bpobj (dsl _deadlist_t *dl, uint64_t obj, ui
378 Tdmu_tx_t *tx)

nt64_t birth,

tx);

379 {
380 dsl _deadlist_entry_t dle_tofind;
381 dsl _deadlist_entry_t *dle;
382 avl _i ndex_t where;
383 uint64_t used, conp, unconp;
384 bpobj _t bpo;
386 VERI FYO(bpobj _open(&bpo, dl->dl _os, obj));
387 VERI FYO(bpobj _space(&bpo, &used, &conp, &unconp));
386 VERI FY3U(0, ==, bpobj_open(&bpo, dl->dl _os, obj));
387 VERI FY3U(0, ==, bpobj_space(&bpo, &used, &conp, &unconp))
388 bpobj _cl ose(&po);
390 dsl _deadlist_| oad_tree(dl);
392 dnu_buf _wi Il _dirty(dl->dl _dbuf, tx);
393 nmut ex_ent er (&l - >dl _| ock) ;
394 dl - >dl _phys->dl _used += used;
395 dl - >dl _phys->dl _conp += conp;
396 dl - >dl _phys->dl _unconp += unconp;
397 mut ex_exi t (&l - >dl _| ock);
399 dletoflnd dle_mntxg = birth;
400 dle = avl _find(&dl->dl _tree, &dl e _tofind, &where);
401 if (dle == NULL)
402 dle = avl _nearest (&dl ->dl _tree, where, AVL_BEFORE);
403 bpobj _enqueue_subobj (&dl e- >dl e_bpobj, obj, tx);
404 }
__unchanged_portion_onitted_
414 | *
415 * Merge the deadlist pointed to by "obj’ into dl. obj will be left as
416 * an enpty deadli st.
417 */
418 void
419 dsl| _deadlist_nerge(dsl _deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
420 {
421 zap_cursor _t zc;
422 zap_attribute_t za;
423 dmu_buf _t *bonus;
424 dsl “deadl i st phys t *dlp;
425 drmu_obj ect _info_t doi;
427 VERI FYO(dmu_obj ect _i nfo(dl ->dl _os, obj, &doi));
427 VERI FY3U(0, ==, dmu_object_info(dl->dl_os, obj, &doi));
428 if (doi.doi_type == DMJ_OT_BPOBJ) {
429 bpobj _t bpo;
430 VERI FYO(bpobj _open(&bpo, dl->dl _os, obj));
431 VERI FYO(bpobj _i t er at e(&po
430 VERI FY3U(0, ==, bpobj _open(&bpo dl ->dl _os, obj));
431 VERI FY3U(0, ==, bpobj _iterate(&bpo,
432 dsl _deadlist_insert_ch, dl, tx));
433 bpobj _cl ose(&po);
434 return;
435 }
437 for (zap_cursor_init(&zc, dl->dl_os, obj);
438 zap_cursor_retrieve(&c, &za) == 0;
439 zap_cursor _advance(&zc)) {
440 uint64_t mintxg = strtonun(za.za_nane, NULL);
441 dsl _deadl i st_i nsert_bpobj (dl, za.za_first_integer, m ntxg,
442 VERI FYO(zap_renove_int (dl ->dl _os, obj, mintxg, tx));
442 VERI FY3U(0, ==, zap_renove |nt(dI >dl _os, obj, mintxg, tx));

new usr/src/uts/ comon/fs/zfs/dsl _deadlist.c

443 }

444 zap_cursor _fini(&zc);

446 VERI FYO(drmu_bonus_hol d(dl ->dl _os, obj, FTAG &bonus));

446 VERI FY3U(0, ==, dmu_bonus_hol d(dl ->dl _os, obj, FTAG &bonus));
447 dl p = bonus->db_dat a;

448 drmu_buf _wi Il _dirty(bonus, tx);

449 bzero(dl p, sizeof (*dlp));

450 dmu_buf _rel e(bonus, FTAG;

451 }

453 [*

454 * Renpve entries on dl that are >= mntxg, and put them on the bpobj.
455 */

456 void

457 dsl _deadl i st _nove_bpobj (dsl _deadlist_t *dl, bpobj_t *bpo, uint64_t m ntxg,
458 dmu_tx_t *tx)

459 {

460 dsl _deadlist_entry_t dle_tofind,

461 dsl _deadlist_entry_t *dle;

462 avl _i ndex_t where;

464 ASSERT(!dl ->dl ol dfnt);

465 dnu_buf _wi Il _dirty(dl->dl _dbuf, tx);

466 dsl _deadl i st_| oad_tree(dl);

468 dl e_tofind.dl e_mntxg = nintxg;

469 dle = avl _find(&dl->dl _tree, &dle_tofind, &where);

470 if (dle == NULL)

471 dle = avl _nearest (&dl ->dl _tree, where, AVL_AFTER);
472 while (dle) {

473 uint64_t used, conp, unconp;

474 dsl _deadlist_entry_t *dl e_next;

476 bpobj _enqueue_subobj (bpo, dl e->dl e_bpobj . bpo_obj ect, tx);
478 VERI FYO(bpobj _space(&dl e- >dl e_bpobj ,

478 VERI FY3U(0, ==, bpobj _space(&dl e->dl e_bpobj,

479 &used, &conp, &unconp));

480 mut ex_ent er (&dl - >dl _I ock) ;

481 ASSERT3U(dl - >dl _phys->dl _used, >=, used);

482 ASSERT3U(dI - >dl _phys->dl _conp, >=, conp);

483 ASSERT3U(dI - >dI _phys->dl _unconp, >=, unconp);
484 dl - >dl _phys->dl _used -= used;

485 dl - >dl _phys->dl _conp -= conp;

486 dl ->dl _phys->dl _unconp -= unconp;

487 mut ex_exi t (&dl - >dl _| ock);

489 VERI FYO(zap_renove_int (dl ->dl _os, dl->dl _object,
489 VERI FY3U(0, ==, zap_renove_int(dl->dl _os, dl->dl_object,
490 dl e->dl e_mi ntxg, tx));

492 dl e_next = AVL_NEXT(&dIl->dl _tree, dle);

493 avl _renove(&dl ->dl _tree, dle);

494 bpobj _cl ose(&dl e- >dl e_bpobj);

495 kmem free(dl e, sizeof (*dle));

496 dl e = dl e_next;

497

498 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dsl _dir.c

R R R R

36542 Thu Jul 26 14:19:15 2012
new usr/src/uts/comon/fs/zfs/dsl_dir.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is ze

R R R R R R R

__unchanged_portion_onitted_

477 void
478 dsl| _dir_destroy_sync(void *argl, void *tag, dmu_tx_t *tx)
479

480 dsl _dir_t *dd = argi;
481 obj set _t *nobs = dd->dd_pool - >dp_n®et a_obj set ;
482 uint64_t obj;
483 dd_used_t t;
485 ASSERT(RW WRI TE_HELD(&dd- >dd_pool - >dp_confi g_rw ock));
486 ASSERT(dd- >dd_phys- >dd_head_dat aset _obj == 0);
488 I*
489 * Renove our reservation. The inpl () routine avoids setting the
490 * actual property, which would require the (already destroyed)
491 */
492 dsl _dir_set_reservation_sync_inpl (dd, 0, tx);
494 ASSERTO(dd- >dd_phys->dd_used_byt es);
495 ASSERTO(dd- >dd_phys- >dd_r eser ved) ;
494 ASSERT3U(dd- >dd_phys- >dd_used_bytes, ==, 0);
495 ASSERT3U(dd >dd_phys->dd_reserved, ==, 0);
496 for (t = 0; t < DD USED NUM t++)
497 ASSERTO(dd->dd_phys->dd_used_br eakdown[t]);
497 ASSERT3U(dd- >dd_phys->dd_used_br eakdown[t], ==, 0);
499 VERI FY(0 == zap_destroy(nos, dd->dd_phys->dd_chil d_dir_zapobj, t
500 VERI FY(0 == zap_destroy(nos, dd->dd_phys->dd_props_zapobj, tx));
501 VERI FY(0 == dsl _del eg_destroy(nos, dd->dd_phys->dd_del eg_ zapobj,
502 VERI FY(0 == zap_renpove(nos,
503 dd- >dd_par ent - >dd_phys- >dd_chi | d_di r _zapobj, dd->dd_nynane,
505 obj = dd->dd_obj ect;
506 dsl d|r close(dd tag)
507 VERI FY(0 == dru_obj ect _free(nos, obj, tx));
508 }
__unchanged_portion_onitted_
580 void
581 dsl _dir_sync(dsl _dir_t *dd, dmu_tx_t *tx)
582 {
583 ASSERT(dnmu_t x_i s_syncing(tx));
585 drmu_buf _wi || _dirty(dd->dd_dbuf, tx);
587 mut ex_ent er (&dd- >dd_| ock) ;
588 ASSERTO(dd- >dd terrpreserved[tx >t X_t xg&TXG_MASK]) ;
588 ASSERT3U(dd- >dd_t enpr eser ved[t x- >t x_t xg&TXG _MASK], ==, 0);
589 dprintf_dd(dd, "txg=%1lu towite=%IuK\n", tx->tx_txg,
590 dd->dd_space_towite[tx->tXx_t Xg&TXG_ MASK] / 1024);
591 dd- >dd_space_towite[tx->tx_t xg&TXG MASK] = 0;
592 nut ex_exi t (&dd- >dd_| ock) ;
594 /* release the hold fromdsl _dir_dirty */
595 dnu_buf _rel e(dd->dd_dbuf, dd);
596 }

__unchanged_portion_omtted_

1294 static void
1295 dsl _dir_renanme_sync(void *argl, void *arg2, dmu_tx_t *tx)

ro

ds.

X))

tx))

tx));

new usr/src/uts/comon/fs/zfs/dsl_dir.c

1296 {
1297
1298
1299
1300
1301
1302

1304

1306
1307
1308
1309

1311
1312
1313
1314
1315
1316
1317
1318
1319

1321
1322
1323

1325
1326
1327
1328
1329
1330

1332

1334
1335
1336
1337
1337

1339
1340
1341
1342
1343

1345
1346
1347
1348
1348

1350 }

dsl _dir_t *dd = argi;

struct renanearg *ra = arg2;

dsl _pool _t *dp = dd->dd_pool ;

obj set _t *npbs = dp->dp_neta_obj set;
int err;

char namebuf [MAXNAMELEN ;

ASSERT(drmu_buf _r ef count (dd- >dd_dbuf) <= 2);

/* Log this before we change the nane. */

dsl _dir_nanme(ra->newpar ent, nanebuf);

spa_ h| story_| Iog i nternal _dd(dd, "renane", tx,
'-> U/ %", nanebuf, ra->nynewnane);

if (ra->newparent != dd->dd_parent) {

dsl _di r _di duse_space(dd->dd_parent,
~-dd->dd_phys->dd_used_byt es,
- dd- >dd_phys- >dd_conpressed_byt es,
- dd- >dd_phys->dd_unconpressed_bytes, tx);

dsl| _dir_di duse_space(ra- >newpar ent, DD _USED_CHI LD,
“dd->dd_phys->dd_used_bytes,
dd- >dd_phys- >dd_conpr essed_byt es,
dd- >dd_phys->dd_unconpr essed_bytes, tx);

if (dd->dd_phys->dd_reserved > dd->dd_phys->dd_used_bytes) {
uint64_t unused_rsrv = dd->dd_phys->dd_reserved -
dd- >dd_phys->dd_used_byt es;

DD_USED CHI LD,

dsl _di r_di duse_space(dd->dd_parent,
-unused_rsrv, 0, 0, tx);

dsl _di r_di duse_space(ra->newparent,
unused_rsrv, 0, 0, tx);

DD_USED_CHI LD_RSRV,
DD_USED_CHI LD_RSRV,

}
drmu_buf _wi || _dirty(dd->dd_dbuf, tx);

/* renove fromold parent zapobj */

err = zap_renove(nos, dd->dd_parent->dd_phys->dd_chil d_dir_zapobj,
dd- >dd_nynane, tx);

ASSERTO(err);

ASSERT3U(err, ==, 0);

(void) strcpy(dd->dd_mynane, ra->nynewnane);
dsl _dir_cl ose(dd->dd_parent, dd);
dd- >dd_phys->dd_parent _obj = ra->newparent->dd_obj ect;
VERI FY(0 == dsl _di r_open_obj (dd- >dd_pool ,
ra- >newpar ent - >dd_obj ect, NULL, dd, &dd->dd_parent));

/* add to new parent zapobj */

err = zap_add(nos, ra->newparent->dd_phys->dd_child_dir_zapobj,
dd- >dd_nynane, 8, 1, &dd->dd_object, tx);

ASSERTO(err);

ASSERT3U(err, ==, 0);

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/dsl_pool.c 1 new usr/src/uts/comon/fs/zfs/dsl_pool.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 178 &Spa feature tabl e[SPA FEATURE ASY,\D ESTRW])) {
23854 Thu Jul 26 14:19:16 2012 179 err = zap_| ookup(dp->dp_neta_obj set, DMJ_POOL_DI RECTORY_OBJECT,
new usr/src/uts/comon/fs/zfs/dsl_pool.c 180 DMJ_POOL_BPTREE_OBJ, si zeof (ui nt 64), 1,
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero 181 &dp->dp_bpt ree_obj) ;
LEEE R R R R EEE R EEEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREEEEEEEEEEESES] 182 |f (err |—)
__unchanged_portion_onitted_ 183 goto out;
184 1
120 int
121 dsl _pool _open(dsl _pool _t *dp) 186 err = zap_| ookup(dp->dp_neta_obj set, DMJ_POOL_DI RECTORY_OBJECT,
122 { 187 DMJ_POOL_TMP_USERREFS, si zeof (UI nt64_t), 1,
123 int err; 188 &dp- >dp tnp userrefs Obj)
124 dsl _dir_t *dd; 189 if (err == NT)
125 dsl _dat aset _t *ds; 190 err = O;
126 uint64_t obj; 191 if (err)
192 goto out;
128 ASSERT(! dnu_obj set _i s_di rty_anywher e(dp- >dp_net a_obj set));
194 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
130 rw_i ent er (&dp- >dp_confi g_rw ock, RWWR TER);
131 err = zap_| ookup(dp->dp_neta Obj set, DMJ_ P(IJ_ DI RECTORY_OBJECT, 196 out:
132 DMJ_POOL_ROOT_DATASET, si zeof (U| nt64_t), 1, 197 rw_exit (&p->dp_config_rw ock);
133 &dp->dp_root _dir_obj); 198 return (err);
134 if (err) 199 }
135 goto out; __unchanged_portion_onitted_
137 err = dsl _dir_open_obj (dp, dp->dp_root_dir_obj, 242 dsl _pool _t *
138 NULL, dp, &dp->dp_root_dir); 243 dsl _pool _create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
139 if (err) 244 {
140 goto out; 245 int err;
246 dsl _pool _t *dp = dsl _pool _open_inpl (spa, txg);
142 err = dsl _pool _open_speci al _dir(dp, MOS_DI R NAME, &dp->dp_nos_dir); 247 dmu_tx_t *tx = dnu_tx_create_assi gned(dp, txg);
143 if (err) 248 obj set _t *os;
144 goto out; 249 dsl _dat aset t *ds;
250 uint64_t obj;
146 if (spa_version(dp->dp_spa) >= SPA VERSION.ORIGA N {
147 err = dsl _pool _open_speci al _dir(dp, ORI G N_D R NAME, &dd); 252 /* create and open the MOS (et a- obj set) */
148 if (err) 253 dp- >dp_net a_obj set dmu_obj set _create_i npl (spa,
149 goto out; 254 NULL, &dp->dp_ msta root bp, DMU_OST_META, tx);
150 err = dsl _dat aset _hol d_obj (dp, dd->dd_phys->dd_head_dat aset _obj ,
151 FTAG ~&ds) ; 256 I* create the pool directory */
152 if (err == 0) { 257 err = zap_create_cl ai n{dp->dp_neta_obj set, DMJ POOL_DI RECTORY_OBJECT,
153 err = dsl _dataset _hol d_obj (dp, 258 DMJ_CT_OBJECT DI RECTORY, DMJ_OT_NONE, 0, tXx);
154 ds- >ds_phys->ds_prev_snap_obj, dp, 259 ASSERTO(err) ;
155 &dp->dp_ori gi n_snap) ; 259 ASSERT3U(err, ==, 0);
156 dsl _dat aset _rel e(ds, FTAQ;
157 } 261 /* Initialize scan structures */
158 dsl _dir_cl ose(dd, dp); 262 VERI FYO(dsl _scan_init(dp, txg));
159 if (err) 262 VERI FY3U(0, ==, dsl_scan_init(dp, txg));
160 goto out;
161 } 264 /* create and open the root dir */
265 dp->dp_root _dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
163 if (spa_version(dp->dp_spa) >= SPA VERSI ON_DEADLI STS) { 266 VERI FY(0 == dsl _dir_open_obj (dp, dp->dp_root_dir_obj,
164 err = dsl _pool _open_speci al _dir(dp, FREE_DI R_NAME, 267 NULL, dp, &dp->dp_root_dir));
165 &dp->dp_free_dir);
166 if (err) 269 /* create and open the nmeta-objset dir */
167 goto out; 270 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DI R NAME, tx);
271 VERI FY(0 == dsl _pool _open_special _dir(dp,
169 err = zap_l ookup(dp->dp_neta_obj set, DMJ POOL_DI RECTORY_OBJECT, 272 MOS_DI R_NAME, &dp->dp_nos_dir));
170 DMJ_POOL_FREE_BPOBJ, sizeof (ui nt 64 1), 1, &obj);
171 if (err) 274 if (spa_version(spa) >= SPA VERS|I ON_DEADLI STS) {
172 goto out 275 /* create and open the free dir */
173 VERI FYO(bpobj _open(&dp >dp_free_bpobj, 276 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
173 VERI FY3U(0, ==, bpobj _open(&dp->dp_free_bpobj, 277 FREE_ DI R_NAME, tx);
174 dp->dp_net a_obj set, obj)); 278 VERI FY(0 == dsl _pool _open_speci al _dir(dp,
175 } 279 FREE_DI R_NAME, &dp->dp_free_dir));
177 if (spa_feature_is_active(dp->dp_spa, 281 /* create and open the free_bplist */

new usr/src/uts/comon/fs/zfs/dsl_pool.c 3

282
283
284
285
285
286
287

289
290

292
293

295
296
297
298
299 #ifdef
300
301 #endi f
302

304

306
307 }

obj = bpobj _al | oc(dp->dp_neta_obj set, SPA MAXBLOCKSI ZE, tx);
VERI FY(zap add(dp- >dp_net a_obj set, DNU POOL_DI RECTORY (BJECT
DMJ_POOL_FREE BPCBJ, sizeof (uint64 t), 1, &bj, tx) == 0);
VERI FYO(bpobj _open(&dp- >dp free_bpobj,
VERI FY3U(0, ==, bpobj _open(&dp->dp_ free _bpobj ,
dp- >dp_net a_obj set, obj));
}

if (spa_ verS| on(spa) >= SPA_VERSI ON_DSL_SCRUB)
sl _pool _create_origin(dp, tx);

/* create the root dataset */

obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, O, tx);
/* create the root objset */
VERI FY(0 == dsl _dataset_hol d_obj (dp, obj, FTAG &ds));

os = dmu_obj set_create_i npl (dp->dp_spa, ds,
dsl _dat aset _get _bl kptr(ds), DMJ OST_ZFS, tx);

_KERNEL

zfs_create_fs(os, kcred, zplprops, tx);

dsl _dataset _rel e(ds, FTAQ;
drmu_t x_commi t (tx);

return (dp);

__unchanged_portion_onitted_

671 void

672 dsl _pool

673 {
674
675

677
677
678
679 }

_upgr ade_cl ones(dsl _pool _t *dp, dmu_tx_t *tx)
ASSERT(dmu_tx_i s_syncing(tx));

ASSERT(dp- >dp_origi n_snap ! = NULL);

VERI FYO(dnmu_obj set _fi nd_spa(dp->dp_spa, NULL, upgrade_cl ones_cb,
VERI FY3U(0, ==, dmu_objset find_spa(dp->dp_spa, NULL, upgrade_ cl ones _cb,
tx, DS_FI ND_CHI LDREN));

681 /* ARGSUSED */
682 static int

683 upgrade_dir_cl ones_cb(spa_t *spa,

684 {
685
686
687
688

690
690

692
693

695
695
696

698
699
700
701
702

704

uint64_t dsobj, const char *dsnane, void *arg)
dmu_tx_t *tx = arg;

dsl _dat aset _t *ds;

dsl _pool _t *dp = spa_get _dsl (spa);

objset _t *npbs = dp->dp_neta_obj set;

VERI FYO(ds| _dat aset _hol d_obj (dp, dsobj,
VERI FY3U(0, ==, dsl _dataset_hol d_obj (dp, dsobj,

FTAG, &ds));
FTAG &ds));

if (ds->ds_dir->dd_phys->dd_origin_obj) {
dsT_dat aset _t *origin;

VERI FYO(dsl _dat aset _hol d_obj (dp,
VERI FY3U(0, ==, dsl| _dataset_hol d_obj (dp,
ds->ds_di r->dd_phys->dd_ori gi n_obj, FTAG &origin));
if (origin->ds_dir->dd_phys->dd_clones == 0) {
dru_buf_wi Il _dirty(origin->ds d|r->dd dbuf, tx);
origin->ds_dir->dd_phys->dd_clones = zap_ creat e(nos,
DMU_OT_DSL_CLONES, DMJ OT_NONE, 0, tXx);
}

VERI FYO(zap_add_i nt (dp->dp_n®et a_obj set,

new usr/src/uts/comon/fs/zfs/dsl_pool.c

704 VERI FY3U(0, ==, zap_add_i nt(dp->dp_neta_obj set,

705 ori gi n->ds_di r->dd_phys->dd_cl ones, dsobj, tx));

707 dsl _dataset _rele(origin, FTAG;

708 }

710 dsl _dat aset _rel e(ds, FTAQ;

711 return (0);

712 }

714 void

715 dsl _pool _upgrade_dir_cl ones(dsl _pool _t *dp, dmu_tx_t *tx)

716 {

717 ASSERT(dnmu_t x_i s_synci ng(tx));

718 uint64_t obj;

720 (voi d) dsl dll’ create_sync(dp, dp->dp_ root_di r, FREE_DI R_NAME, tx);
721 VERI FY(0 == dsl_pool _open_speci al _di r(dp,

722 FREE_DI R_NANE, &dp->dp free_dir));

724 /*

725 * W can't use bpobj_alloc(), because spa_version() still

726 * returns the old version, and we need a new version bpobj with
727 * subobj support. So call dnu_object_alloc() directly.

728 */

729 obj = dmu_obj ect_al | oc(dp->dp_neta_obj set, DMJ_OT_BPOBJ,

730 SPA_MAXBLOCKSI ZE, DMJ_OT_BPOBJ_HDR, si zeof “(bpobj phys_t), tx);
731 VERI FYO(zap_add(dp- >dp_rreta obj set, DMJ_POOL_DI RECTORY_OBJECT,
731 VERI FY3U(0, ==, zap_add(dp->dp_ net a _obj set, DMJ_POOL_DI RECTORY_OBJECT,
732 DMJ_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));

733 VERI FYO(bpobj _open(&dp- >dp free_bpobj,

733 VERI FY3U(0, ==, bpobj_open(&dp->dp_ free _bpobj,

734 dp- >dp_net a_obj set, obj));

736 VERI FYO(dnu_obj set _fi nd_spa(dp->dp_spa, NULL,

736 VERI FY3U(0, ==, dmu_obj set _find_spa(dp->dp_spa, NULL,

737 upgrade_dir_cl ones_cb, tx, DS_FIND CHI LDREN));

738 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/dsl_scan.c

R R R R

50559 Thu Jul 26 14:19:16 2012
new usr/src/uts/comon/fs/zfs/dsl_scan.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

815 void

816 dsl _scan_ds_destroyed(dsl _dataset _t *ds, dmu_tx_t *tx)

817 {

818 dsl _pool _t *dp = ds->ds_dir->dd_pool ;

819 dsl _scan_t *scn = dp->dp_scan;

820 ui nt64_t mntxg;

822 if (scn->scn_phys.scn_state != DSS_SCANN NG

823 return;

825 if (scn->scn_phys. scn_booknark. zb_obj set == ds->ds_obj ect) {

826 if (dsl_dataset_is_snapshot(ds)) {

827 “/* Note, scn_cur_{mn, max}_txg stays the sane. */
828 scn->scn_phys. scn_booknar k. zb_obj set =

829 ds->ds_phys->ds_next _snap_obj ;

830 zfs_dbgmsg("destroying ds %lu; currently traversing;
831 "reset zb_objset to %Iu",

832 (u_l ongl ong_t) ds- >ds_obj ect,

833 (u_l ongl ong_t) ds->ds_phys- >ds_next _snap_obj);
834 scn->scn_phys. scn_flags [= DSF_VISI T_DS_AGAI N,
835 } else {

836 SET_BOOKMARK(&scn- >scn phys scn_bookmar k,

837 ZB_DESTROYED OBJSET, 0, 0, 0);

838 zfs dbgmsg(destroying ds %1 u; currently traversing;
839 "reset bookmark to -1,0,0, 0"

840 (u_l ongl ong_t)ds- >ds_ob] ect)

841

842 } else if (zap_l ookup_int_key(dp->dp_neta_obj set,

843 scn->scn_phys. scn_queue_obj, ds->ds_object, ani ntxg) == 0) {
844 ASSERT3U(ds->ds_phys->ds_num chi l dren, <=, 1);

845 VERI FYO(zap_r enove_i nt (dp- >dp_net a_obj set,

845 VERI FY3U(0, ==, zap_renove_int (dp->dp_net a_obj set,

846 scn- >scn_phys. scn_queue_obj, ds->ds_object, tx));

847 if (dsl_dataset_is_snapshot(ds))

848 /*

849 * W keep the sane nmintxg; it could be >

850 * ds_creation_txg if the previous snapshot was
851 * deleted too.

852 */

853 VERI FY(zap_add_i nt _key(dp->dp_net a_obj set,

854 scn->scn_phys. scn_queue_obj ,

855 ds- >ds_phys->ds_next _snap_obj, mntxg, tx) == 0);
856 zfs_dbgnmsg("destroying ds % 1u; in queue; "

857 “replacing with %u",

858 (u_l ongl ong_t) ds->ds_obj ect,

859 (u_l ongl ong_t) ds- >ds_phys- >ds_next _snap_obj);
860 } else {

861 zfs_dbgnmsg(“destroying ds %1l u; in queue; renoving",
862 (u_l ongl ong_t)ds->ds_obj ect);

863

864 } else {

865 zfs_dbgnsg("destroying ds %1 u; ignoring",

866 (u_l ongl ong_t) ds->ds_obj ect);

867 1

869 I

870 * dsl _scan_sync() should be called after this, and should sync
871 * out our changed state, but just to be safe, do it here.

872 */

new usr/src/uts/comon/fs/zfs/dsl_scan.c

873
874

876
877

}

voi d
dsl

878 {

879
880
881

883
884

886

888
889
890
891
892
893
894
895
896
897
897
898
899
900
901
902
903
904
905
906
907
908

910
911

}

voi d
dsl

912 {

913
914
915

917
918

920
921
922
923
924
925
926
927
928
929
930
931
932

934
935
936

dsl _scan_sync_state(scn, tx);

dsl _pool _t
dsl _scan_t
uint64_t m

_scan_ds_snapshot t ed(dsl

*dp = ds->ds_dir->dd_pool ;
*scn = dp->dp_scan;

nt xg;

_dataset _t *ds, dmu_tx_t *tx)

if (scn->scn_phys.scn_state != DSS_SCANN NG

ret

ASSERT(ds- >ds_phys- >ds_pr ev_snap_obj

urn;

if (scn->scn_phys. scn_bookmark. zb_obj set

scn- >scn_phys. scn_bookmar k. zb_obj set =
ds- >ds phys >ds_prev_snap_obj ;
zfs dbgmsg(snapshotting ds %1 u;

scn->scn_phys. scn_queue_obj ,

'reset

zb_objset to %Il u"

(u_l ongl ong_t) ds->ds_obj ect ,
(u_l ongl ong_t) ds->ds_phys->ds_prev_snap_obj);
} else if (zap_l ookup_int_key(dp->dp_neta_obj set,

1= 0);

== ds->ds_obj ect) {

currently traversing;

ds->ds_obj ect, &mintxg) == 0) {

VERI FYO(zap_r enove_i nt (dp- >dp_net a_obj set,
==, zap_renove_i nt (dp->dp_net a_obj set,

VERI FY3U(0,

scn- >scn_phys. scn_queue_obj ,
VERI FY(zap_add_i nt _key(dp->dp_net a_obj set,
scn->scn_phys. scn_queue_obj ,
ds->ds phys >ds_prev_snap_obj,
zfs dbgmsg(snapshotting ds % u;
"replacing with %I u"

(u_l ongl ong_t) ds- >ds_obj ect,
(u_l ongl ong_t) ds->ds_phys- >ds_prev_snap_obj);

dsl _scan_sync_state(scn, tx);

_scan_ds_cl one_swapped(dsl _dataset _t *dsl, dsl _

*dp = dsl->ds_dir->dd_pool ;
*scn = dp->dp_scan;

ds- >ds_obj ect, tx));

mntxg, tx) == 0);
in queue; "

dataset _t *ds2, dnu_tx_t *tx)

if (scn->scn_phys.scn_state != DSS_SCANNI NG

dsl _pool _t

dsl _scan_t

uint64_t m ntxg;
return;

if (scn->scn_phys. scn_bookmark. zb_obj set
scn- >scn_phys. scn_bookmar k. zb_obj set = ds2->ds_obj ect;

zfs_dbgnsg("cl one_swap ds %1 u;

zf s_dbgmsg("cl one_swap ds %I u;

}

"reset

zb_objset to %lu",

(u_l ongl ong_t)ds1->ds_obj ect,

(u_l ongl ong_t) ds2->ds_obj ect);

} else if (scn->scn_phys. scn_booknark. zb_obj set == ds2->ds_obj ect) {
scn->scn_phys. scn_booknmar k. zb_obj set = dsl >ds_obj ect;

'reset

zb_objset to %Il u"

(u_l ongl ong_t) ds2- >ds_obj ect
(u_l ongl ong_t) ds1->ds_obj ect)

if (zap_l ookup_int

ds1->ds_obj ect,

int

err;

_key(dp->dp_net a_obj set,
{

&m ntxg) == 0)

== ds1->ds_object) {

currently traversing;

currently traversing;

scn- >scn_phys. scn_queue_obj ,

new usr/src/uts/comon/fs/zfs/dsl_scan.c

938
939
940
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967

969
970 }

ASSERT3U(mi ntxg, ==, dsl->ds_phys->ds_prev_snap_txg);
ASSERT3U(mi nt xg, ==, ds2->ds_phys->ds_prev_snap_t xQ);
VERI FYO(zap_r enove_i nt (dp->dp_net a_obj set,

VERI FY3U(0, ==, zap_renpve_int (dp->dp_ net a _obj set,

scn->scn_phys. scn_queue_obj, dsl->ds_object, tx));
err = zap_add_i nt _key(dp->dp_neta_obj set,
scn->scn_phys. scn_queue_obj, ds2->ds_object, mntxg, tx);
VERI FY(err == 0 || err == EEXIST);
if (err == EEXIST) {
/* Both were there to begin with */
VERI FY(0 == zap_add_i nt _key(dp->dp_net a_obj set,
scn->scn_phys. scn_queue_obj ,
dsl1->ds_object, mintxg, tx));

}
zfs_dbgnmsg("cl one_swap ds % | u; in queue;
"replacing with %Iu",
(u_l ongl ong_t)ds1->ds_obj ect,
(u_l ongl ong_t) ds2->ds_obj ect)
} else if (zap_l ookup_int_key(dp->dp_neta_obj set,
scn->scn_phys. scn_queue_obj, ds2->ds_object, &mntxg) == 0) {
ASSERT3U(mi nt xg, ==, ds1->ds _phys->ds_prev_snap_t xg) ;
ASSERT3U(mi nt xg, ==, ds2->ds_phys->ds_prev_snap_txgQ);
VERI FYO(zap_r enove_i nt (dp->dp_net a_obj set,
VERI FY3U(0, ==, zap_renove_int (dp->dp_ et a _obj set,
scn->scn_phys. scn_queue_obj, ds2->ds_obj ect, tx));
VERI FY(0 == zap_add_i nt _key(dp->dp_net a_obj set,

scn- >scn_phys. scn_queue_obj, dsl->ds_object, mntxg, tx));

zfs_dbgnmsg("cl one_swap ds % | u; in queue;
"replacing with %Iu",
(u_l ongl ong_t) ds2->ds_obj ect,
(u_l ongl ong_t) ds1->ds_obj ect);
}

dsl _scan_sync_state(scn, tx);

__unchanged_portion_onitted_

1010 static void

1011 ds
1012 {
1013
1014
1015

1017
1017

1019
1020

1022
1023
1024
1025
1026
1027
1028
1029
1030

1032
1033
1034
1035
1036

_scan_vi sitds(dsl _scan_t *scn, uint64_t dsobj, dnu_tx_t *tx)

dsl _pool _t *dp = scn->scn_dp;
dsl _dat aset _t *ds;
obj set _t *os;

VERI FYO(ds| _dat aset _hol d_obj (dp, dsobj, FTAG &ds));
VERI FY3U(0, ==, dsl _dataset_hol d_obj (dp, dsobj, FTAG &ds));

if (dmu_objset_fromds(ds, &os))
goto out;

Only the ZIL in the head (non-snapshot) is valid. Even though
snapshots can have ZIL bl ock pointers (which may be the sane
BP as in the head), they nust be ignored. So we traverse the
ZIL here, rather than in scan_recurse(), because the regul ar
snapshot bl ock-sharing rules don't apply to it.

* ok ok ok % ok

*

/

if (DSL_SCAN | S _SCRUB_RESI LVER(scn) && !dsl _dataset_is_snapshot(ds))
dsl _scan_zil (dp, &os->o0s_zi | _header);

/*
* Iterate over the bps in this ds.
*/
drmu_buf _wi | | _dirty(ds->ds_dbuf, tx);
dsl _scan_visit_rootbp(scn, ds, &ds->ds_phys->ds_bp, tx);

new usr/src/uts/comon/fs/zfs/dsl_scan.c

1038
1039
1040
1041
1042
1043
1044
1045
1046

1048
1049

1051
1052
1053

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1093
1094
1095
1096
1097
1098
1099
1100
1101

1103

char *dsnanme = knem al | oc(ZFS_MAXNAMELEN, KM SLEEP);
dsl _dat aset _nane(ds, dsnane);
zfs dbgmsg(scanned dataset %lu (%) with mn=%1u mx=%I u;
'pausi ng=%",
(1 ongl ong_t)dsobj , dsnane,
(1 ongl ong_t) scn->scn_phys. scn_cur _ni n_t xg,
(1 ongl ong_t) scn->scn_phys. scn_cur _nax_t xg,
(i nt)scn->scn_pausi ng) ;
kmem f ree(dsnane, ZFS_MAXNAMELEN) ;

if (scn->scn_pausing)

goto out;
/*
* We've finished this pass over this dataset.
*/
/*

* |If we did not conpletely visit this dataset, do another pass.
*/
if (scn->scn_phys.scn_flags & DSF_VISIT_DS AGAIN) {
zfs_dbgmsg("inconpl ete pass; visiting again");
scn->scn_phys. scn_flags & ~DSF_VI SI T_DS _AGAl N
VERI FY(zap_add_i nt _key(dp->dp_net a_obj set,
scn->scn_phys. scn_queue_obj, ds->ds Ob] ect,

scn->scn_phys. scn_cur _max_t xg, tx) == 0);
goto out;

}
/*

* Add descendent datasets to work queue.

*

/
if (ds->ds_phys->ds_next_snap_obj != 0)

{
VERI FY(zap_add_i nt _key(dp->dp_net a_obj set,
scn->scn_phys. scn_queue_obj, ds->ds phys—>ds_next_snap_obj,
ds->ds_phys->ds_creation_txg, tx) == 0);

}
if (ds->ds_phys->ds_numchildren > 1) {
bool ean_t usenext = B_FALSE;

if (ds->ds_phys- >ds next _clones_obj != 0) {
uint64_t count;
/*

* A bug in a previous version of the code could
* cause upgrade_clones_cb() to not set
* ds_next _snap_obj when it should, leading to a
* mssing entry. Therefore we can only use the
* next_clones_obj when its count is correct.
*
/
int err = zap_count (dp->dp_net a_obj set,
ds- >ds_phys->ds_next _cl ones_obj, &count);
if (err == 0 &&
count == ds->ds_phys->ds_num children - 1)
usenext = B_TRUE;
}

if (usenext) {
VERI FY(zap_j oi n_key(dp->dp_net a_obj set,
ds- >ds_phys- >ds_next _cl ones_obj ,
scn->scn_phys. scn_queue_obj ,
ds->ds_phys->ds_creation_txg, tx) == 0);
} else {
struct enqueue_cl ones_arg eca;
eca.tx = tx;
eca. ori gi nobj = ds->ds_object;

(voi d) dmu_objset_find_spa(ds->ds_dir->dd_pool - >dp_spa,

new usr/src/uts/comon/fs/zfs/dsl_scan.c

1104
1105
1106

1108 out:

1109
1110 }

NULL, enqueue_cl ones_cb, &eca, DS_FI ND_CHI LDREN);

dsl _dat aset _rel e(ds, FTAQ;

__unchanged_portion_omtted_

1249 static void

1250 ds
1251 {
1252
1253
1254

1256
1257
1258
1259
1260
1261
1262
1263

1265
1266

1268
1269
1270
1271
1272
1273
1274

1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1297
1298
1299
1300
1301

1303
1304
1305

_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)

dsl _pool _t *dp = scn->scn_dp;
zap_cursor _t zc;
zap_attribute_t za;

if (scn->scn_phys. scn_ddt_bookmar k. ddb_cl ass <=
scn->scn_phys. scn_ddt _cl ass_nax)
scn->scn_phys.scn_cur _m n_t xg
scn->scn_phys. scn_cur _max_t xg
dsl _scan_ddt (scn, tx);
if (scn->scn_pausing)
return;

n- >scn_phys. scn_m n_t xg;

= sc
= scn->scn_phys. scn_nmax_t xg;

}

if (scn->scn_phys. scn_bookmark. zb_obj set == DMJ_META_OBJSET) {
/* First do the MOS & ORIGA N */

scn->scn_phys. scn_cur_m n_t xg
scn->scn_phys. scn_cur _max_t xg
dsl _scan_vi sit_rootbp(scn, NULL,
&dp->dp_neta_root bp, tx);
spa_set _root bl kptr(dp >dp_spa, &dp->dp_neta_r oot bp);
if (scn->scn_pausing)
return;

scn->scn_phys. scn_m n_t xg;
scn->scn_phys. scn_max_t xg;

if (spa_version(dp->dp_spa) < SPA VERSI ON DSL_SCRUB) {
VERI FY(0O == dnu_obj set _fi nd_spa(dp->dp_spa,
NULL, enqueue_ch, tx, DS_FIND_CHI LDREN));
} else {
dsl _scan_vi si tds(scn,
dp- >dp_ori gi n_snap- >ds_obj ect, tx);

}
ASSERT(! scn->scn_pausi ng) ;
} else if (scn->scn_phys. scn_bookmark. zb_obj set !=
ZB_DESTROYED_OBJSET) {
/*
* If we were paused, continue fromhere. Note if the
* ds we were paused on was del eted, the zb_objset may
Eel—l, so we will skip this and find a new obj set
el ow.

* %

*/

dsl _scan_vi sitds(scn, scn->scn_phys. scn_booknmark. zb_obj set,

if (scn->scn_pausing)

return;
}
/'k
* |n case we were paused right at the end of the ds, zero the
:/bookmirk so we don’t think that we're still trying to resune.

bzero(&scn->scn_phys. scn_bookmark, sizeof (zbookmark_t));

/* keep pulling things out of the zap-object-as-queue */
while (zap_cursor_init(&c, dp->dp_neta_objset,
scn->scn_phys. scn_queue_obj),

tx)

new usr/src/uts/comon/fs/zfs/dsl_scan.c

1306
1307
1308

1310
1311
1311
1312

1314
1315
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326

1328
1329
1330
1331
1332
1333
1334 }

zap_cursor_retrieve(&c, &a) == 0) {
ds| dataset t *ds;
uint64_t dsobj;

dsobj = strtonun{za.za_nanme, NULL);

VERI FYO(zap_r enove_i nt (dp->dp_net a_obj set,

VERI FY3U(0, ==, zap_renove_int (dp->dp_ net a _obj set,
scn->scn_phys. scn_queue_obj, dsobj, tx));

/* Set up min/max txg */
VERI FYO(dsl _dat aset _hol d_obj (dp, dsobj, FTAG &ds));
VERI FY3U(0, ==, dsl _dataset_hol d_obj (dp, dsobj, FTAG &ds));
if (za.za_first_integer !'=0) {
scn->scn_phys. scn_cur_mn_txg =
MAX(scn- >scn_phys. scn_mi n_t xg,
za.za_first_integer);
} else {
scn->scn_phys. scn_cur_min_txg =
MAX(scn- >scn_phys. scn_m n_t xg,
ds- >ds_phys->ds_prev_snap_t xg);

scn->scn_phys. scn_cur _max_txg = dsl _scan_ds_maxt xg(ds);
dsl _dataset_rel e(ds, FTAQ;

dsl _scan_vi snds(scn dsobj, tx);
zap_cursor _fini (&
if (scn->scn_pausi ng)

return;

zap_cursor _fini (&zc);

__unchanged_portion_onitted_

1393 voi d
_scan_sync(dsl _pool _t *dp, dmu_tx_t *tx)

1394 ds
1395 {
1396
1397
1398

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

1416
1417
1418

1420
1421
1422
1423

1425

dsl _scan_t *scn = dp->dp_scan;
spa_t *spa = dp->dp_spa;
int err;

/*

* Check for scn_restart_txg before checking spa_|l oad_state, so
* that we can restart an old-style scan while the pool is being
* inported (see dsl_scan_init).

if (scn->scn_restart_txg != 0 &&

scn->scn_restart_txg <= tx->tx _txg)
pool _scan_func_t func = POOL_SCAN_SCRUB;
dsl _scan_done(scn, B_FALSE, tx);
if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))

func = POOL_SCAN_RESI LVER,
zfs_dbgmsg(" rest arting scan func=%i txg=%Iu"
func, tx->tx_txg);

dsl _scan_setup_sync(scn, & unc, tx);

}

if (!dsl_scan_active(scn) ||
spa_sync_pass(dp->dp_spa) > 1)
return;

scn->scn_visited_this_txg = 0;
scn->scn_pausi ng = B_FALSE;
scn->scn_sync_start_tinme = gethrtime();
spa- >spa_scrub_active = B_TRUE;

| *

new usr/src/uts/comon/fs/zfs/dsl_scan.c

1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1437

1439
1440
1441
1442
1443
1444
1445
1446
1447
1447
1448
1449

1451
1452
1453
1454
1455
1456
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479

1481
1482

1484
1485
1486
1487

* First process the free list. |If we pause the free, don't do
* any scanning. This ensures that there is no free list when
* we are scanning, so the scan code doesn’t have to worry about
* traversing it.

*

if (spa_version(dp->dp_spa) >= SPA_VERS|I ON_DEADLI STS) {
scn->scn_i s_bptree = B_FALSE;
scn->scn_zi o_root = zio_root(dp->dp_spa, NULL,
NULL, ZI O FLAG MJSTSUCCEED) ;
err = bpobj _iterate(&dp- >dp_free_bpobj ,
dsl _scan_free_bl ock_ch, scn, tx);

VERI FYO(zi 0_wai t (scn->scn_zi o_root));
VERI FY3U(0, ==, zio_wait(scn->scn_zio_root));
if (err == 0 && spa_feature_is_active(spa,

&spa_feature_table] SPA_FEATURE_ASYNC_DESTRO{])) {
scn->scn_i s_bptree = B_TRUE;
scn->scn_zi o_root = zio_root (dp->dp_spa, NULL,
NULL ZI O FLAG _MJSTSUCCEED) ;
err = bpt ree_iterate(dp->dp_net a_obj set,

dp- >dp_bptree_obj, B_TRUE, dsl_scan_free_bl ock_

scn, tx);
VERI FYO(zi 0o_wai t (scn->scn_zi o_root));
VERI FY3U(0, ==, zio_wait(scn->scn_zio_root));
if (err 1=0)
return;

/* disable async destroy feature */

spa_ feature _decr (spa,

&spa_feature tabI e[SPA_FEATURE_ASYNC_DESTROY] ,

ASSERT(! spa_feature_is_active(spa,

&spa_f eat ure_t abl e[SPA_FEATURE_ASYNC DESTROY]));

VERI FYO(zap_r enove(dp- >dp_net a_obj set ,

VERI FY3U(0, ==, zap_renove(dp->dp_net a_obj set,
DMJ_POOL_DI RECTORY_OBJECT,
DMU_POOL_BPTREE_OBJ, tX));

VERI FYO(bptree_free(dp- >dp nmet a_obj set,

VERI FY3U(0, ==, bptree_free(dp->dp_net a_obj set,
dp->dp_bptree_obj, tx));

dp- >dp_bptree_obj = 0;

if (scn->scn_visited_this_txg) {
zfs_dbgmsg(“"freed % lu blocks in %luns from"
"free_bpobj/bptree txg %Iu",
(longlong_t)scn->scn_visited_this_txg,
(I onglong_t)

(gethrtime() - scn->scn_sync_start_tine) / M CROSEC,

(l'onglong_t)tx->tx_txg);
scn->scn_visited_this_txg =
/*
* Re-sync the ddt so that we can further nodify
* it when doing bprewrite.
*

ddt _sync(spa, tx->tx_txg);

}
1 f (err == ERESTART)
return;

}

if (scn->scn_phys.scn_state ! = DSS_SCANN NG
return;

if (scn->scn_phys. scn_ddt_bookmar k. ddb_cl ass <=
scn->scn_phys. scn_ddt _cl ass_max) {
zfs_dbgmsg(" doi ng” scan sync txg %l u;
"ddt bmr% lu/ % 1u/%1u/ %I x",

ch,

tx);

new usr/src/uts/comon/fs/zfs/dsl_scan.c

1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504

1506
1507
1508
1509
1510

1512
1513
1514

1516
1517
1518
1519
1520

1522
1523
1524
1525
1526
1527
1528
1529

1531
1532 }

(longl ong_t)tx->tx_t xg,

(1 ongl ong_t) scn->scn_phys. scn_ddt _booknar k. ddb_cl ass,

(1 ongl ong_t) scn->scn_phys. scn_ddt _booknar k. ddb_t ype,

(1 ongl ong_t)scn->scn_phys. scn_ddt _bookmar k. ddb_checksum
(1 ongl ong_t) scn->scn_phys. scn_ddt _bookmar k. ddb_cursor);

ASSERT(scn->scn_phys. scn_bookmar k. zb_obj set == 0);
ASSERT(scn- >scn_phys. scn_bookmar k. zb_obj ect == 0);
ASSERT(scn- >scn_phys. scn_bookmark. zb_| evel == 0);

ASSERT(scn- >scn_phys. scn_bookmar k. zb_bl ki d == 0);
} else {
zfs_dbgnmsg("doi ng scan sync txg %lu; bne%Ilu/ %1u/ %I1u/ %1u",
(longlong_t)tx->tx_txg,
(1 ongl ong_t)scn->scn_phys. scn_booknar k. zb_obj set,
(1 ongl ong_t) scn->scn_phys. scn_booknar k. zb_obj ect,
(1 ongl ong_t) scn->scn_phys. scn_booknark. zb_I evel ,
) (1 ongl ong_t)scn->scn_phys. scn_bookmar k. zb_bl ki d) ;

scn->scn_zi o_root = zio_root (dp->dp_spa, NULL,
NULL, ZI O FLAG CANFAIL);

dsl _scan_visit(scn, tx);

(void) zio_wai t(scn—>scn_zi o_root);

scn->scn_zi o_root = NULL;

zfs_dbgmsg("visited % lu blocks in %I uns"
(longlong_t)scn->scn_visited_this txg,
(longlong_t)(gethrtime() - scn->scn_sync_start_time) / M CROSEC);

if (!scn->scn_pausing)
/* finished wth scan. */
zfs_dbgnmsg("finished scan txg %Ilu", (longlong_t)tx->tx_txg);
dsl _scan_done(scn, B_TRUE, tx);

}

if (DSL_SCAN_| S_SCRUB_RESI LVER(scn)) {
mut ex_ent er (&pa- >spa_scrub_| ock) ;
whil e (spa->spa_scrub —inflight > O) {
cv_wai t (&pa- >spa_scrub_i o_cv,
&spa- >spa_scrub_I ock);

}
mut ex_exi t (&pa- >spa_scrub_I ock);

}

dsl _scan_sync_state(scn, tx);

__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/zfs/dsl_synctask.c

R R R R

6280 Thu Jul 26 14:19:17 2012
new usr/src/uts/comon/fs/zfs/dsl_synctask.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

159 void

160 dsl _sync_task_group_sync(dsl _sync_task_group_t *dstg, dnu_tx_t *tx)
161 {

162 dsl _sync_task_t *dst;

163 dsl _pool _t *dp = dstg->dstg_pool ;

164 uint64_t quota, used;

166 ASSERTO(dst g- >dstg_err);

166 ASSERT3U(dst g- >dstg_err, ==, 0);

168 /*

169 * Check for sufficient space. W just check against what's
170 * on-disk; we don't want any in-flight accounting to get in our
171 * way, because open context may have already used up various
172 * in-core limts (arc_tenpreserve, dsl_pool _tenpreserve).

173 */

174 quota = dsl _pool _adj ust edsi ze(dp, B_FALSE) -

175 nmet asl ab_cl ass_get _def erred(spa_nornal _cl ass(dp->dp_spa));
176 used = dp->dp_root_dir->dd_phys->dd_used_bytes;

177 /* MOS space is triple-dittoed, so we nmultiply by 3. */

178 if (dstg->dstg_space > 0 && used + dstg->dstg_space * 3 > quota) {
179 dstg->dstg_err = ENGCSPC,

180 return;

181 }

183 /*

184 * Check for errors by calling checkfuncs.

185 */

186 rw_ent er (&p->dp_config_rw ock, RWWRI TER);

187 for (dst = list_head(&dstg->dstg_tasks); dst;

188 dst = |ist_next(&Istg->dstg_tasks, dst)) {

189 dst->dst_err =

190 dst - >dst _checkfunc(dst->dst _argl, dst->dst_arg2, tx);
191 if (dst->dst_err)

192 dstg->dstg_err = dst->dst_err;

193 }

195 if (dstg->dstg_err == 0) {

196 /*

197 * Execute sync tasks.

198 */

199 for (dst = list_head(&dstg->dstg_tasks); dst;

200 dst = |ist_next(&dstg->dstg_tasks, dst))

201 dst - >dst_syncfunc(dst->dst_argl, dst->dst_arg2, tx);
202 }

203 }

204 rw_exit (&dp->dp_config_rw ock);

206 if (dstg->dstg_nowaiter)

207 dsl _sync_t ask_group_destroy(dstg);

208 }

__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/zfs/metasl ab. c

R R R R
43720 Thu Jul 26 14:19:18 2012

new usr/src/uts/comon/fs/zfs/metasl ab.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
* ok ok ok

L Es kAR KK IR AR AR KKKk Kk Kk

__unchanged_portion_onitted_

749 void

750 netasl ab_fini(nmetaslab_t *nsp)

751 {

752 met asl ab_group_t *ng = msp- >ms_group;

754 vdev_space_updat e(ng- >ng_vd,

755 -msp->ns_sno. sno_al l oc, 0, -nsp->ns_map.smsize);
757 met asl ab_group_r enove(ng, msp);

759 mut ex_ent er (&rsp- >nms_| ock) ;

761 space_map_unl oad(&vsp- >ns_nap) ;

762 space_map_dest r oy(&rsp- >ns_map) ;

764 for (int t =0; t < TXG SIZE, t++)

765 space_nmap_destroy(&sp->ns_al | ocmap[t]);
766 space_map_destroy(&rsp->ns_freenmap[t]);
767 }

769 for (int t = 0; t < TXG DEFER_SIZE; t++)

770 space_map_destroy(&rsp- >ns_def ermap[t]);
772 ASSERTO(nsp- >ns_def er space) ;

772 ASSERT3S(nsp- >ns_def er space, ==, 0);

774 mut ex_exi t (&rsp->nms_| ock) ;

775 mut ex_dest roy(&rsp- >nms_| ock) ;

777 kmem free(nmsp, sizeof (metaslab_t));

778 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/spa.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
169821 Thu Jul 26 14:19:19 2012
new usr/src/uts/comron/fs/zfs/spa.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
*

R R R R R R R

__unchanged_portion_onitted_

2942 static void
2943 spa_add_feature_stats(spa_t *spa, nvlist_t *config)

2944 {
2945 nvlist_t *features;
2946 zap_cursor_t zc;
2947 zap_attribute_t za;
2949 ASSERT(spa_confi g_hel d(spa, SCL_ CO\JFI G RWREADER));
2950 VERI FY(nvlist_alloc(& eatures, NV_UNI QUE_NAME, KM SLEEP) == 0);
2952 if (spa->spa_feat_for_read_obj != 0) {
2953 for (zap_cursor_init(&c, spa->spa_neta_objset,
2954 spa- >spa_feat_for_read_obj);
2955 zap_cursor_retrieve(&c, &a) == 0;
2956 zap_cursor _advance(é&zc)) {
2957 ASSERT(za. za_i nteger_length == sizeof (uint64_t) &&
2958 za. za_numintegers == 1);
2959 VERI FYO(nvl i st_add_ui nt 64(f eat ur es, za.za_nane,
2959 VERI FY3U(0, ==, nvlist_add_uint 64(feat ures, za.za_nhane,
2960 za. za_f irst_integer));
2961 }
2962 zap_cursor_fini (&zc);
2963 }
2965 if (spa->spa_feat_for_wite_obj !=0)
2966 for (zap_cursor_init(&c, spa->spa_neta_objset,
2967 spa->spa_feat _for_wite_obj);
2968 zap_cursor_retri eve(&zc, &za) ==
2969 zap_cur sor _advance(&zc))
2970 ASSERT(za. za_i nt eger Iength == sizeof (uint64_t) &&
2971 za.za_num.integers == 1);
2972 VERI FYO(nvl i st_add_ui nt 64(features za. za_nane,
2972 VERI FY3U(0, ==, nvlist_add_uint64(features, za.za_nane,
2973 za.za_first_integer));
2974 }
2975 zap_cursor_fini(&zc);
2976 1
2978 VERI FY(nvlist_add_nvlist(config, ZPOOL_CONFI G FEATURE_STATS,
2979 features) == 0);
2980 nvlist_free(featur es)
2981 }
__unchanged_portion_omtted_
3224 | *
3225 * Pool Creation
3226 */
3227 int

3228 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3229 nvlist_t *zpl props)

3230 {

3231 spa_t *spa;

3232 char *altroot = NULL;

3233 vdev_t *rvd;

3234 dsl _pool _t *dp;

3235 dmu_t x_t *tx;

3236 int error = 0;

3237 uint64_t txg = TXG. I NI TIAL;

3238 nvlist_t **spares, **|2cache;

new usr/src/uts/comron/fs/zfs/spa.c

3239 ui nt _t nspares, nl2cache;

3240 uint64_t version, obj;

3241 bool ean_t has_feat ures;

3243 /*

3244 * |f this pool already exists, return failure.

3245 */

3246 nmut ex_ent er (&spa_nanespace_| ock) ;

3247 if (spa_l ookup(pool) != NULL)

3248 mut ex_exi t (&pa_nanmespace_| ock) ;

3249 return (EEXIST);

3250 }

3252 /*

3253 * Allocate a new spa_t structure.

3254 */

3255 (void) nvlist_|ookup_string(props,

3256 zpool _prop_t o_nane(ZPOOL_PROP_ALTROOT), &altroot);
3257 spa = spa_add(pool, NULL, altroot);

3258 spa_activate(spa, spa_node_gl obal);

3260 if (props & (error = spa_prop_validate(spa, props))) {
3261 spa_deacti vat e(spa);

3262 spa_renove(spa);

3263 mut ex_exi t (& pa_nanmespace_| ock) ;

3264 return (error);

3265 }

3267 has_features = B_FALSE;

3268 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3269 elem!= NULL; elem = nvlist_next_nvpalr(props, elem) {
3270 if (zpool _prop_featur e(nvpai r_nane(el em))
3271 has_features = B_TRUE,

3272 }

3274 if (has_features || nvlist_| ookup_uint64(props,

3275 zpool _prop_t o_nane(ZPOOL_PROP_VERSI QN), &version) != 0) {
3276 version = SPA VERSI ON,

3277 }

3278 ASSERT(SPA_VERSI ON_| S_SUPPORTED(ver si on)) ;

3280 spa->spa_first_txg = txg;

3281 spa- >spa_uber bl ock. ub_txg = txg - 1;

3282 spa- >spa_uber bl ock. ub_version = version;

3283 spa- >spa_ubsync = spa- >spa_uber bl ock;

3285 /*

3286 * Create "The CGodfather" zio to hold all async |Cs
3287 */

3288 spa- >spa_async_zi o_root = zio_root(spa, NULL, NULL,
3289 ZI O FLAG CANFAIL | zI O FLAG_SPECULATI VE | ZI O_FLAG_GODFATHER);
3291 /*

3292 * Create the root vdev.

3293 */

3294 spa_config_enter(spa, SCL_ALL, FTAG RWWRI TER);

3296 error = spa_config_parse(spa, & vd, nvroot, NULL, O, VDEV_ALLOC ADD);
3298 ASSERT(error !'= 0 || rvd !'= NULL);

3299 ASSERT(error !'= 0 || spa->spa_root_vdev == rvd);

3301 if (error == 0 && !zfs_all ocatabl e_devs(nvroot))

3302 error = EI NVAL;

3304 if (error == 0 &&

3305

new usr/src/uts/comon/fs/zfs/spa.c
(error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
(error = spa_val i date_aux(spa, nvroot, txg,

3306
3307
3308
3309
3310
3311
3312

3314

3316
3317
3318
3319
3320
3321
3322

3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337

3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352

3354
3355
3356
3357

3359
3360
3361
3362

3364
3366
3368

3369
3370

VDEV_ALLOC_ADD)) == 0) {
for (int ¢ = 0; ¢ < rvd->vdev_children; c++) {
vdev_net asl ab_set _si ze(rvd- svdev_chi | dfc]l);
vdev_expand(rvd->vdev_child[c], txg);

}
spa_config_exit(spa, SCL_ALL, FTAG;

if (error I=0) {
spa_unl oad(spa);
spa_deacti vat e(spa);
spa_r enove(spa);
mut ex_exi t (&pa_nanespace_| ock);
return (error);

}
| *

* Get the list of spares, if specified.
*/

if (nvlist_lookup_nvli st_array(nvroot, ZPOOL_CONFI G_SPARES,
&spares, &nspares) == 0) {

VERI FY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UN QUE_NAMNE,
KM SLEEP) == 0);

VERI FY(nvl i st _add nvl i st _array(spa->spa_spares. sav_config,
ZPOOL_CONFI G _SPARES, “spares, nspares) == 0);

spa_config_enter(spa, SCL_ALL, FTAG R\N\ARI TER)

spa_| oad_spar es(spa);

spa_config_exit(spa, SCL_ALL, FTAG;

spa- >spa_spar es. sav_sync = B_TRUE;

}

/*
* CGet the list of level 2 cache devices, if specified.
*

if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFI G L2CACHE,
&l 2cache, &nl2cache) == 0

VERI FY(nvlist_alloc(&spa->spa_| 2cache. sav_confi g,
NV_UNI QUE_NANE, KM SLEEP) == 0);

VERI FY(nvl i st _add_nvl i st _array(spa->spa_| 2cache. sav_confi g,
ZPOOL_CONFI G L2CACHE, | 2cache, nl 2cache) == 0);

spa_config_enter(spa, SCL_ALL, FTAG. RW VRI TER) ;

spa_|l oad_I| 2cache(spa);

spa_config_exit(spa, SCL_ALL, FTAG;

spa- >spa_| 2cache. sav_sync = B_TRUE;

}
spa->spa_is_initializing = B_TRUE;
spa- >spa_dsl| _pool = dp = dsl _pool _create(spa, zplprops, txg);

spa- >spa_net a_obj set = dp->dp_net a_obj set;
spa->spa_is_initializing = B_FALSE;

/*

* Create DDTs (dedup tables).
*

/

ddt _create(spa);
spa_updat e_dspace(spa) ;
tx = dmu_tx_create_assigned(dp, txg);

/*
* Create the pool config object.
*/

new usr/src/uts/comron/fs/zfs/spa.c

3371
3372
3373

3375
3376
3377
3378
3379

3381
3382

3384
3385
3386
3387
3388

3390
3391
3392
3393
3394
3395
3396
3397
3398

3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3413
3414

3416
3417
3418
3419
3420

3422
3423
3424
3425
3426
3427
3428

3430
3431
3432
3433

3435

spa- >spa_confi g_obj ect = dmu_obj ect_al | oc(spa- >spa_net a_obj set,
DMJ_OT_PACKED _| NVLIST SPA_CONFI G_BLOCKSI ZE,
DMJ_OT_PACKED _NVLI ST_SI ZE, si zeof (uint64_ t) t x)

if (zap_add(spa->spa_neta_obj set,

DMJ_POOL_ DI RECTORY_OBJECT, DNU POOL_CONFI G,

sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
) cmm_err (CE_ PANIC "failed to add pool config");

if (spa_version(spa) >= SPA VERS|I ON_FEATURES)
spa_feature_create_zap_objects(spa, tx);

if (zap_add(spa->spa_neta_objset,
DMJ_POOL_DI RECTORY_OBJECT, DNU POOL_CREATI ON_VERSI ON,
sizeof (uint64_t), 1, &ersion, tx) != 0) {
cmm_err (CE_ PANI C, "failed to add pool version");
}

/* Newly created pools with the right version are always deflated. */
if (version >= SPA_VERSI ON_RAI DZ_DEFLATE) {
spa- >spa_defl ate = TRUE;
if (zap_add(spa->spa_neta_objset,
DMJ_POOL_DI RECTORY_OBJECT, DNU POCL_DEFLATE,
sizeof (uint64_t), 1, &spa >spa_defTat e, tx) 1= 0) {
cmm_err (CE_ PANIC "failed to add deflate"”)

}

/*

* Create the deferred-free bpobj. Turn off conpression

* because sync-to-convergence takes longer if the bl ocksize
* keeps changing.

*/

obj = bpobj _al | oc(spa->spa_neta_objset, 1 << 14, tXx);
drmu_obj ect _set _conpr ess(spa->spa_net a_obj set, obj,
ZI O_COWPRESS_OFF, tx)
if (zap_add(spa->spa_neta_obj set,
DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL SYNC_BPOBJ,
sizeof (uint64_t), 1, &Obj tx) 1=10) {
cmm_err (CE_ PANI C, "failed to add bpobj ") ;

}

VERI FYO(bpobj _open(&spa- >spa_def erred_bpobj,

VERI FY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
spa- >spa_net a_obj set, obj));

/*
* Create the pool’s history object.
*

if (version >= SPA_VERSI ON_ZPOOL_H STORY)
spa_hi story_create_obj (spa, tx);

/*
* Set pool properties.
*/

spa- >spa_bootfs = zpool _prop_defaul t _numeric(ZPOOL_PROP_BOOTFS) ;

spa- >spa_del egat|on = zpool _prop_defaul t _numeri c(ZPOOL_PROP_| DELEGATI N) ;
spa- >spa_f ai | node = zpool _prop_defaul t _nuneri c(ZPOOL_PROP_| FAI LUREMODE) ;
spa- >spa_aut oexpand = zpool _prop_default _numneri c(ZPOOL_PROP AUTGEXPAND)

if (props != NULL)
spa_configfile_set(spa, props, B FALSE);
spa_sync_props(spa, props, tx);

}

dmu_t x_commi t (tx);

new usr/src/uts/comon/fs/zfs/spa.c

3437
3438

3440
3441
3442
3443
3444
3446
3448
3450
3452

3454
3455 }

spa- >spa_sync_on = B_TRUE;
txg_sync_st art(spa- >spa_| dsl _pool);

/: We explicitly wait for the first transaction to conplete so that our
:/bean counters are appropriately updated.

t xg_wai t _synced(spa->spa_dsl| _pool, txg);

spa_config_sync(spa, B_FALSE, B TRUE);

spa_history_|l og_version(spa, "create");

spa->spa_m nref = refcount_count (&spa->spa_refcount);

nmut ex_exi t (&spa_nanmespace_| ock) ;

return (0);

__unchanged_portion_omtted_

4955 [*
4956 *

4957 */

Evacuat e the devi ce.

4958 static int
4959 spa_vdev_renove_evacuat e(spa_t *spa, vdev_t *vd)

4960 {
4961
4962

4964
4965
4966

4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979

4981
4982

4984
4985
4986
4987
4988
4988
4989
4990
4991
4992
4993

4995
4996 }

uint64_t txg;
int error = 0;

ASSERT(MUTEX_HELD(& pa_nanespace_| ock));
ASSERT(spa_confi g_hel d(spa, SCL_ALL, R\NV\RI TER) == 0);
ASSERT(vd == vd- >vdev_t op);

/*
* Evacuate the device. W don't hold the config lock as witer
* since we need to do |/O but we do keep the
* spa_nanespace_|l ock held. Once this conpletes the device
* should no I onger have any bl ocks allocated on it.
*
if (vd->vdev_islog) {
if (vd->vdev_stat.vs_alloc != 0)
error = spa_offline_l og(spa);

} else {

error = ENOTSUP;
}
if (error)

return (error);
/*

* The evacuation succeeded. Renpbve any renai ning MOS net adat a
*/associ ated with this vdev, and wait for these changes to sync.
*

ASSERTO(vd- >vdev_stat.vs_all oc);

ASSERTSU(vd >vdev_stat.vs_alloc, == 0);

txg = spa_vdev_config_ent er(spa)

vd- >vdev_renovi ng = B_TRUE;

vdev_dirty(vd, 0, NULL, txg);

vdev_config_| dlrty(v)

spa_vdev_config_ eX|t(spa NULL, txg, 0, FTAG;

return (0);

__unchanged_portion_onitted_

new usr/src/uts/comron/fs/zfs/spa.c

5706 /*

5707
5708

zpool properti

5709 static void
5710 spa_sync_props(void *argl, void *arg2, dmu_tx_t *tx)

5711 {

5712
5713
5714
5715

5717

5719
5720
5721
5722
5723
5724
5725

5727
5728
5729
5730
5731
5732

5734
5735
5735

5737
5738
5739
5740

5742
5743
5744
5745
5746
5747
5748
5749

5751
5752
5753
5754
5755
5756
5757

5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769

spa_t *spa =
obj set _t *nps
nvlist_t *nvp
nvpair_t *ele

es.

argl;

= spa- >spa_net a_obj set;
= arg2;

m = NULL;

nmut ex_ent er (&spa- >spa_props_| ock) ;

while ((elem
uint6
char
zpool
const
zprop
zf eat

switc
case

case

case

case
case

case

= nvlist_next_nvpair(nvp, elem)) {
4_t intval;
*strval, *fnanme;
_prop_t prop;
char *propnane;
_type_t proptype;
ure_info_t *feature;

h (prop = zpool _name_to_prop(nvpair_nane(elem))) {
ZPROP_| NVAL:
/*

* We checked this earlier in spa_prop_validate().
*/
ASSERT(zpool _prop_feature(nvpair_nane(elem));

fname = strchr(nvpair_nane(elem), '@) + 1;
VERI FYO(zf eat ur e_| ookup_nane(f name, &feature));
VERI FY3U(0, ==, zfeature_l ookup_nane(fnanme, &feature));

spa_feature_enabl e(spa, feature, tx);

spa_history_|l og_internal (spa, "set", tx,
"os=enabl ed", nvpair_nane(elem);

br eak;

ZPOOL_PROP_VERSI ON:
VERI FY(nvpair_val ue_ui nt64(elem & ntval) == 0);
*

* The version is synced seperatly before other
* properties and should be correct by now.
*/

ASSERT3U(spa_version(spa), >=, intval);
br eak;

ZPOCOL_PROP_ALTROQT:
*

* "altroot’ is a non-persistent property. It should

* have been set tenporarily at creation or inport tine.
*/

ASSERT(spa- >spa_root != NULL);

br eak;

ZPOOL_PROP_READONLY:
ZPOOL_PROP_CACHEFI LE:
/*
* 'readonly’ and 'cachefile’ are al so non-persisitent
* properties.
*/

br eak;

ZPOOL_| PR(P COVMENT:
VERI FY(nvpair_val ue_string(el em &strval) == 0);
if (spa->spa_coment != NULL)

spa_strfree(spa->spa_comment);

new usr/src/uts/comon/fs/zfs/spa.c

5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791

5793
5794
5795

5797
5798
5799
5800
5801
5802
5803
5804
5805
5806

5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820

5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835

defaul t:

spa- >spa_conmment = spa_strdup(strval);
/*

* W& need to dirty the configuration on all the vdevs
* so that their |abels get updated. |It’s unnecessary
* to do this for pool creation since the vdev's
* configuratoin has already been dirtied.
*

/

if (tx->tx_txg !'= TXG_I N TIAL)
vdev_confi g_dirty(spa->spa_root_vdev);
spa_history_l og_internal (spa, "set", tx,
"Us=%", nvpair_nane(elen), strval);

br eak;
/*
* Set pool property values in the pool props npbs object.
*
i f (spa->spa_pool _props_object == 0)
spa- >spa_pool _props_obj ect =
zap_create_l i nk(nos, DMJ_OT_POOL_PROPS,
DMJ_POOL_DI RECTORY_OBJECT, DMJ_POOL_PROPS,
tx);
}

/* nornalize the property nane */
propnane = zpool _prop_to_nane(prop);
proptype = zpool _prop_get_type(prop);

if (nvpair_type(elen) == DATA_TYPE_STRING {
ASSERT(pr opt ype == PROP_TYPE_STRI NG ;

VERI FY(nvpair_val ue_string(elem &strval) == 0);

VERI FY(zap_updat e(nos,
spa- >spa_pool _props_obj ect, propnane,
1, strlen(strval) + 1, strval, tx) == 0);
spa_history_l og_i nternal (spa, "set", tx,
"U%s=%", nvpair_nane(elen), strval);
} else if (nvpair_type(elem) == DATA TYPE_UI NT64) {

VERI FY(nvpai r _val ue_ui nt 64(el em & ntval) == 0);

if (proptype == PROP_TYPE_I NDEX) {
const char *unused;
VERI FY(zpool _prop_ i ndex to_string(
prop, intval, &unused) == 0);

}
VERI FY(zap_updat e(nos,
spa- >spa_pool _props_obj ect propnane,
8, 1, & ntval, tx) ==
spa_| h| story_| Iog |nterna|(spa "set", tx,
"%=%1d", nvpair_nane(elen), intval);

} else {
) ASSERT(0); /* not allowed */
switch (prop) {
case ZPOOL_PROP_DELEGATI ON:
spa- >spa_del egation = intval;
br eak;
case ZPOOL_PROP_BOOTFS
spa- >spa_bootfs = intval;
br eak;
case ZPOOL_PROP_FAI LUREMODE:
spa->spa_fail node = intval;
br eak;
case ZPOOL_PROP_AUTCOEXPAND:
spa- >spa_aut oexpand = intval;

if (tx->Ix_txg != TXG IN TIAL)
spa_async_r equest (spa,

new usr/src/uts/comon/fs/zfs/spa.c

5836 SPA_ASYNC_AUTCEXPAND) ;
5837 br eak;
5838 case ZPOOL_PROP_DEDUPDI TTCO
5839 spa- >spa_dedup_ditto = intval;
5840 br eak;
5841 defaul t:
5842 br eak;
5843 }
5844 }
5846 1
5848 nmut ex_exi t (&spa->spa_props_| ock);
5849 }
__unchanged_portion_onitted_
5892 /*
5893 * Sync the specified transaction group. New blocks may be dirtied as
5894 * part of the process, so we iterate until it converges.
5895 */
5896 void
5897 spa_sync(spa_t *spa, uint64_t txg)
5898 {
5899 dsl _pool _t *dp = spa->spa_dsl _pool ;
5900 obj set _t *npbs = spa- >spa_net a_obj set;
5901 bpobj _t *defer_bpo = &spa->spa_def erred _bpobj ;
5902 bplist_t *free_bpl = &spa->spa_free_bpli st[txg & TXG_MASK] ;
5903 vdev_t *rvd = spa- >spa_root_vdev
5904 vdev_t *vd;
5905 dmu_tx_t *tx;
5906 int error;
5908 VERI FY(spa_writeabl e(spa));
5910 /*
5911 * Lock out configuration changes.
5912 */
5913 spa_config_enter(spa, SCL_CONFIG FTAG RW READER);
5915 spa- >spa_synci ng_txg = txg;
5916 spa- >spa_sync_pass = O;
5918 /*
5919 * |f there are any pendi ng vdev state changes, convert them
5920 */I nto config changes that go out with this transaction group.
5921 *
5922 spa_config_enter(spa, SCL_STATE, FTAG RW READER);
5923 whiTe (list_head(&spa->spa_state dirty list) != NULL) {
5924 /*
5925 * We need the wite |lock here because, for aux vdevs,
5926 * calling vdev_config_dirty() nodifies sav_config.
5927 * This is ugly and will becone unnecessary when we
5928 * elimnate the aux vdev wart by integrating all vdevs
5929 * into the root vdev tree.
5930 */
5931 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5932 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG RW VRI TER) ;
5933 whiTe ((vd = |ist_head(&spa->spa_state_dirty list)) !'= NULL) {
5934 vdev_state_cl ean(vd);
5935 vdev_config_di rty(vd);
5936 }
5937 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG;
5938 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG RW READER);
5939 }
5940 spa_config_exit(spa, SCL_STATE, FTAG;

new usr/src/uts/comon/fs/zfs/spa.c

5942

5944
5945
5946
5947
5948
5949
5950

5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963

5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5980
5981

5983
5984
5985
5986
5987

5989
5990
5991
5992
5993
5994
5995

5997
5998
5999
6000
6001
6002
6003
6004
6005

tx = dnu_t x_create_assi gned(dp, txg);

/*
* |f we are upgrading to SPA_VERSI ON_RAI DZ_DEFLATE this txg,
* set spa_deflate if we have no raid-z vdevs.
*
/

if (spa->spa_ubsync.ub_version < SPA VERSI ON_RAI DZ_DEFLATE &&
spa- >spa_uber bl ock. ub_versi on >= SPA_VERSI ON_RAI DZ_DEFLATE) {

int i;
for (i =0; i < rvd->vdev_children; i++) {
vd = rvd->vdev_child[i];
if (vd->vdev_deflate_ratio != SPA M NBLOCKSI ZE)
break;
if (i == rvd->vdev_children) {

spa->spa_defl ate = TRUE;

VERI FY(0 == zap_add(spa- >spa_net a_obj set,
DMU_POOL_DI RECTORY_OBJECT, DMJ POOL_DEFLATE,
sizeof (uint64_t), 1, &spa->spa_deflate, tx));

*
* |f anything has changed in this txg, or if someone is waiting
* for this txg to sync (eg, spa_vdev_renove()), push the

* deferred frees fromthe previous txg. |If not, |eave them

* alone so that we don't generate work on an otherwi se idle

* system

*/

if

Ttxg_list_enpty(&p->dp_dirty_dirs, txg)
ltxg_list_enpty(&p->dp_sync_tasks, txg)
((dsl _scan_active(dp->dp_scan) ||
txg_sync_wai ting(dp)) && !spa_shutting_down(spa))) {
zio_t *zio = zio_root(spa, NULL, NULL, 0);
VERI FY3U(bpobj _i t er at e(def er _bpo,

('txg_list_enpty(&dp->dp_dirty_datasets, txg) ||
[
[

spa_free_sync_cb, zio, tx), == 0);
VERI FYO(zi o_wai t (zi 0));
VERI FY3U(zi o_wai t (zi o), ==, 0);
}
/*
* |terate to convergence.
*
do {

int pass = ++spa->spa_sync_pass;

spa_sync_confi g_obj ect (spa, tx);

spa_sync_aux_dev(spa, &spa->spa_spares, tx,
ZPOOL_CONFI G_SPARES, DMJ_POOL_SPARES) ;

spa_sync_aux_dev(spa, &spa->spa_| 2cache, tx,
ZPOOL_CONFI G_L2CACHE, DMJ_POOL_L2CACHE) ;

spa_errl og_sync(spa, txg);

dsl _pool _sync(dp, txg);

if (pass <= SYNC PASS DEFERRED FREE)
zio_t *zio = zio_root(spa, NULL, NULL, 0);
bplist_iterate(free_bpl, spa_free_sync_cb,
zio, tx);
VERI FY(zi o_wai t (zio) == 0);
} else {
bplist_iterate(free_bpl, bpobj_enqueue_cb,
defer_bpo, tx);

new usr/src/uts/comon/fs/zfs/spa.c 10
6007 ddt _sync(spa, txg);

6008 dsl _scan_sync(dp, tx);

6010 while (vd = txg_list_renmove(&spa->spa_vdev_txg_list, txg))
6011 vdev_sync(vd, txg);

6013 if (pass == 1)

6014 spa_sync_upgrades(spa, tx);

6016 } while (dnu_objset_is_dirty(nos, txg));

6018 /*

6019 * Rewite the vdev configuration (which includes the uberbl ock)
6020 * to commit the transaction group.

6021 *

6022 * If there are no dirty vdevs, we sync the uberblock to a few
6023 * random top-|evel vdevs that are known to be visible in the
6024 * config cache (see spa_vdev_add() for a conplete description).
6025 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6026 */

6027 for (;;) {

6028 I*

6029 * We hold SCL_STATE to prevent vdev open/close/etc.

6030 * while we're attenpting to wite the vdev | abels.

6031 */

6032 spa_config_enter(spa, SCL_STATE, FTAG RW READER);

6034 if (list_is_enpty(&spa->spa_config_ dirty_list)) {

6035 vdev_t *svd[SPA_DVAS_PER BP];

6036 int svdcount = 0;

6037 int children = rvd->vdev_chil dren;

6038 int cO = spa_get_randon(children);

6040 for (int ¢ = 0; ¢ < children; c++)

6041 vd = rvd->vdev_child[(cO + c) %children];
6042 if (vd->vdev_ns_array == 0 || vd->vdev_isl og)
6043 conti nue;

6044 svd[svdcount ++] = vd;

6045 if (svdcount == SPA_DVAS_PER _BP)

6046 br eak;

6047

6048 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6049 if (error 1= 0)

6050 error = vdev_config_sync(svd, svdcount, txg,
6051 B_TRUE) ;

6052 } else {

6053 error = vdev_config_sync(rvd->vdev_child,

6054 rvd- >vdev_children, txg, B_FALSE);

6055 if (error '=0)

6056 error = vdev_config_sync(rvd->vdev_child,
6057 rvd->vdev_children, txg, B_TRUE);

6058 }

6060 spa_config_exit(spa, SCL_STATE, FTAG;

6062 if (error == 0)

6063 break;

6064 zi o_suspend(spa, NULL);

6065 zi o_resune_wal t (spa);

6066 }

6067 drmu_t x_commi t (tx);

6069 I

6070 * Clear the dirty config list.

6071 */

6072 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)

new usr/src/uts/comon/fs/zfs/spa.c 11

6073

6075
6076
6077
6078
6079
6080
6081
6082
6083

6085
6087

6089
6090
6091
6092
6093

6095

6097
6098
6099
6100
6101
6102
6103

6105
6107
6109
6111
6112

6113
6114

6115 }

vdev_config_cl ean(vd);

/*
* Now that the new config has synced transactionally,
* let it becorme visible to the config cache.
*
/
if (spa->spa_config_syncing != NULL) {
spa_config_set(spa, spa->spa_config_syncing);
spa- >spa_config_txg = txg;
spa- >spa_config_syncing = NULL;
}

spa- >spa_ubsync = spa- >spa_uber bl ock;
dsl _pool _sync_done(dp, txg);
/*

* Updat e usabl e space statistics.

*

/
while (vd = txg_list_renove(&spa->spa_vdev_txg_list, TXG CLEAN(txQ)))
vdev_sync_done(vd, txg);

spa_updat e_dspace(spa) ;

*

* |t had better be the case that we didn't dirty anything

* since vdev_config_sync().

*/
ASSERT(txg_list_enpty(&p->dp_dirty_datasets, txg));
ASSERT(txg_list_enpty(&Jp->dp_dirty_dirs, txg));
ASSERT(txg_list_enpty(&spa->spa_vdev_txg_list, txg));

spa- >spa_sync_pass = 0;
spa_config_exit(spa, SCL_CONFIG FTAG;
spa_handl e_i gnored_wri tes(spa);

/*
* |If any async tasks have been requested, kick them off.
*/

spa_async_di spat ch(spa);

__unchanged_portion_ontted_

new usr/src/uts/comon/fs/zfs/space_nmap.c

R R R R

15272 Thu Jul 26 14:19:21 2012
new usr/src/uts/comon/fs/zfs/space_nap.c

3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
*

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.

23 * Use is subject to license terns.

24 *

25 */

27 | *

%g :/Copyright (c) 2012 by Del phix. Al rights reserved.

31 #include <sys/zfs_context.h>
32 #include <sys/spa. h>

33 #include <sys/dnu. h>

34 #include <sys/zio.h>

35 #include <sys/space_nap. h>

37 /*

38 * Space map routines.

39 * NOTE: caller is responsible for all |ocking.
40 */

41 static int
42 space_nmap_seg_conpare(const void *x1, const void *x2)
{

43

44 const space_seg_t *sl = x1;

45 const space_seg_t *s2 = x2;

47 if (sl->ss_start < s2->ss_start)

48 if (sl->ss_end > s2->ss_start)
49 return (0);

50 return (-1);

51 1

52 if (sl->ss_start > s2->ss_start) {

53 if (sl->ss_start < s2->ss_end)
54 return (0);

55 return (1);

56 1

57 return (0);

58

__unchanged_portion_onitted_

77 void

new usr/src/uts/comon/fs/zfs/space_nap.c

78 space_map_destroy(space_map_t *sm
9 {

7

80 ASSERT(! sm >sm | oaded && ! sm >sm | oadi ng);
81 VERI FYO(sm >sm space) ;

76 VERI FY3U(sm >sm space, ==, 0);

82 avl _destroy(&m >smroot);

83 cv_destroy(&m >sm | oad_cv);

84

}
__unchanged_portion_omtted_

272 | *
273 * Note: space_map_load() will drop smlock across dnmu_read() calls.
274 * The caller nmust be OK with this.

275 */

276 int

277 space_map_| oad(space_nap_t *sm space_nap_ops_t *ops, uint8_t maptype,
278 space_map_obj _t *snp, objset_t *os)

279 {

280 uint64_t *entry, *entry_map, *entry_nap_end;

281 uint64_t bufsize, size, offset, end, space;

282 uint64_t nmapstart = sm>smstart;

283 int error = 0;

285 ASSERT(MUTEX_HELD(sm >sm | ock)) ;

286 ASSERT(! sm >sm | oaded) ;

287 ASSERT(! sm >sm | oadi ng) ;

289 sm >sm | oadi ng = B_TRUE;

290 end = sno->snp_obj si ze;

291 space = snp->sno_al | oc;

293 ASSERT(sm >sm ops == NULL);

294 VERI FYO(sm >sm space) ;

289 VERI FY3U(sm >sm space, ==, 0);

296 if (maptype == SM FREE)

297 space_map_add(sm sm>smstart, sm >smsize);

298 space = sm >sm size - space;

299 }

301 bufsize = 1ULL << SPACE_MAP_BLOCKSHI FT;

302 entry_map = zi o_buf _al | oc(bufsize);

304 mut ex_exit(sm >sm | ock);

305 if (end > bufsize)

306 dnu_prefetch(os, snp->snp_object, bufsize, end - bufsize);
307 mut ex_enter (sm >sm | ock) ;

309 for (offset = 0; offset < end; offset += bufsize) {

310 size = MN(end - offset, bufsize);

311 VERI FY(P2PHASE(si ze, sizeof (uint64_t)) == 0);

312 VERI FY(size !'= 0);

314 dprintf("object=%1u offset=%Ix size=%Ix\n",

315 sno- >sno_obj ect, offset, size);

317 mut ex_exi t (sm >sm | ock);

318 error = dnu_read(os, snpb->snp_object, offset, size, entry_map,
319 DMJ_READ_PREFETCH) ;

320 mut ex_enter (sm >sm | ock);

321 if (error 1= 0)

322 br eak;

324 entry_map_end = entry_map + (size / sizeof (uint64_t));
325 for (entry = entry_map; entry < entry_map_end; entry++) {

326 uint64_t e = *entry;

new usr/src/uts/comon/fs/zfs/space_nmap.c 3

328 i f (SM_DEBUG DECODE(e)) /* Skip debug entries */
329 continue;

331 (SM_TYPE_DECODE(e) == maptype ?

332 space_map_add : space map_renove) (sm
333 (SM OFFSET_DECODE(e) << sm>smshift) + mapstart,
334 SM RUN_DECCDE(e) << sm >smshift);
335 }

336 }

338 if (error == 0) {

339 VERI FY3U(sm >sm space, ==, space);

341 sm>sm | oaded = B_TRUE;

342 sm>sm ops = ops

343 if (ops !'= NULL)

344 ops->snop_| cad(sm ;

345 } else {

346 space_map_vacate(sm NULL, NULL);

347 }

349 zi o_buf _free(entry_nap, bufsize);

351 sm >sm | oadi ng = B_FALSE;

353 cv_broadcast (& m >sm | oad_cv);

355 return (error);

356 }

__unchanged_portion_onitted_

404 | *

405 * Note: space_map_sync() will drop smlock across dnu_wite() calls.
406 */

407 void

408 space_nmap_sync(space_map_t *sm uint8_t maptype,

409 space_map_obj _t *snp, objset_t *os, dnu_tx_t *tx)

410 {

411 spa_t *spa = drm _obj set _spa(o0s);

412 voi d *cookie = NULL;

413 space_seg_t *ss;

414 uint64_t bufsize, start, size, run_len;

415 uint64_t *entry, *entry_map, *entry_nap_end;

417 ASSERT(MUTEX_HELD(sm >sm | ock)) ;

419 if (sm>smspace == 0)

420 return;

422 dprintf("object %l lu, txg %Ilu, pass %, %, count %u, space %Ix\n",
423 snmo- >sno_obj ect, dnu_tx_get_txg(tx), spa_sync_pass(spa),
424 maptype == SMALLOCC ? "A" : 'F, avl_numodes(&sm >smroot),
425 sm >sm space) ;

427 if (maptype == SM ALLCC)

428 sno- >sno_al | oc += sm >sm space;

429 el se

430 snmo->sno_al | oc -= sm >sm space;

432 bufsize = (8 + avl _numodes(&m >smroot)) * sizeof (uint64_t);
433 buf si ze = M N(bufsize, 1ULL << SPACE_MAP BLOCKSH FT);

434 entry_map = zi o_buf _al | oc(bufsize);

435 entry_map_end = entry_map + (bufsize / sizeof (uint64_t));

436 entry = entry_map;

new usr/src/uts/comon/fs/zfs/space_nmap.c

438
439
440
441

443
444
445

447
448

450
451

453
454
455
456
457
458
459
460

462
463
464

466
467
468
469
470

472
473
474
475
476
477
478
479

481

483
478

484 }
__unchanged_portion_onitted_

*entry++ = SM DEBUG ENCODE(1)

|
SM _DEBUG_ACTI ON_ENCODE(mapt ype)

SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
SM_DEBUG_TXG_ENCCDE(dmu_t x_get _t xg(tx));

while ((ss = avl_destroy_nodes(&m >smroot, &cookie))

size = ss->ss_end -

start = (ss->ss_start

sm >sm space -= size,;
size >>= sm>smshift;

while (size) {
run_l en

M N(si ze,

ss->ss_start;

= NULL) {

- sm>smstart) >> sm>smshift;

SM_RUN_MAX) ;

if (entry == entry_map_end) {
mut ex_exi t (sm >sm | ock);
dmu_write(os, snp->snp_object,

}

buf si ze,

entry_map, tx);

mut ex_enter (sm >sm | ock) ;
sno- >sno_obj si ze += bufsi ze;
entry = entry_map;

*entry++ = SM OFFSET_ENCODE(start) |
SM_TYPE_ENCCODE(napt ype) |
SM_RUN_ENCODE(run_l en);

start += run_len;
size -= run_|l en;

}
kmem free(ss, sizeof (*ss));

}

if (entry != entry map)

{
si ze (entry - entry
mut ex_exit(sm>sm| ock) ;
dnu_write(os, snp->snp_object, sno->snp_objsize,
size, entry_map,
mut ex_ent er (sm >sm_| ock) ;
snmo- >sno_obj si ze += si ze;

}
zi o_buf _free(entry_nap,

VERI FYO(sm >sm space) ;
VERI FY3U(sm >sm space,

_map)

tx);

buf si ze) ;

0);

* sizeof (uint64_t);

snmo- >sno_obj si ze,

new usr/src/uts/comon/fs/zfs/vdev.c

R R R R

85047 Thu Jul 26 14:19:22 2012
new usr/src/uts/comon/fs/zfs/vdev.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

P R]

__unchanged_portion_onitted_

kAR KK IR AR AR KKKk Kk Kk

564 void
565 vdev_free(vdev_t *vd)
566 {

567

569
570
571
572
573

575
576

578
579
580
581
582

584
585

587
588
589
590
591
592
593

595
596
597
595
596
597

599
600
601
602

604

606
607
608
609
610

612
613
614
615
616
617
618
619

spa_t *spa = vd->vdev_spa;
*

* vdev_free() inplies closing the vdev first. This is sinpler than
* trying to ensure conplicated semantics for all callers.
*

vdev_cl ose(vd);

ASSERT(!list_link_active(&d->vdev_config_dirty_node));
ASSERT(!list_link_active(&d->vdev_state_dirty_node));

/*
* Free all children.
*

(int ¢ = 0; ¢ < vd->vdev_children; c++)
vdev_free(vd->vdev_child[c]);

ASSERT(vd->vdev_child == NULL)
ASSERT(vd- >vdev_gui d_sum == vd- >vdev_gui d);

/*
* Discard allocation state.
*

if (vd->vdev_ng != NULL) {
vdev_net asl ab_fi ni (vd);
nmet asl ab_gr oup_destroy(vd->vdev_ng);

}

ASSERTO(vd- >vdev_st at . vs_space) ;
ASSERTO(vd- >vdev_st at . vs_dspace) ;
ASSERTO(vd- >vdev_stat.vs_al l oc);
ASSERT3U(vd- >vdev_st at . vs_space,
ASSERT3U(vd- >vdev_st at . vs_dspace,
ASSERT3U(vd- >vdev_st at.vs_al | oc,

*
/: Renove this vdev fromits parent’s child list.
vd/ev_r enove_chil d(vd->vdev_parent, vd);
ASSERT(vd- >vdev_parent == NULL);

/*

* Clean up vdev structure.
*/

vdev_queue_fini (vd);
vdev_cache_fini (vd);

if (vd->vdev_path)
spa_strfree(vd->vdev_path);

if (vd->vdev_devid)
spa_strfree(vd->vdev_devid);

if (vd->vdev_physpat h)
spa_strfree(vd->vdev_physpath);

if (vd->vdev_fru)
spa_strfree(vd->vdev_fru);

new usr/src/uts/comon/fs/zfs/vdev.c

621 if (vd->vdev_isspare)
622 spa_spare_renove(vd);
623 if (vd->vdev_i sl 2cache)
624 spa_| 2cache_r enove(vd);
626 txg_list_destroy(&vd->vdev_ns_list);
627 txg_list_destroy(&d->vdev_dtT _list);
629 mut ex_ent er (& d- >vdev_dt| _| ock);
630 for (int t =0; t < DIL_TYPES; t++) {
631 space_map_unl oad(&vd- >vdev_dt| [t]);
632 space_map_destroy(&vd->vdev_dtl[t]);
633 }
634 mut ex_exi t (&vd->vdev_dt| _| ock);
636 nmut ex_destroy(&d- >vdev_dt| _I ock);
637 mut ex_dest r oy(&d- >vdev_st at Iock)
638 mut ex_dest r oy(& d- >vdev_pr obe_ Iock)
640 if (vd == spa->spa_root_vdev)
641 spa- >spa_r oot _vdev = NULL;
643 kmem free(vd, sizeof (vdev_t));
644 }
__unchanged_portion_omtted_
1789 void
1790 vdev_dtl _sync(vdev_t *vd, uint64_t txg)
1791 {
1792 spa_t *spa = vd->vdev_spa;
1793 space_map_obj _t *snp = &vd->vdev_dt| _snp;
1794 space_map_t *sm = &vd->vdev_dt|[DTL_M Ssi NG ;
1795 obj set _t *nmps = spa->spa_neta_obj set;
1796 space_map_t snsync;
1797 kmut ex_t sml ock;
1798 drmu_buf _t *db;
1799 dmu_tx_t *tx;
1801 ASSERT(! vd- >vdev_i shol e) ;
1803 tx = dnu_t x_creat e_assi gned(spa->spa_dsl| _pool, txg);
1805 if (vd->vdev_detached) {
1806 if (sno->snp_obj ect 1= 0)
1807 int err = dmu_obj ect _free(nps, snp->sno_obj ect,
1808 ASSERTO(err);
1808 ASSERT3U(err, ==, 0);
1809 snmo- >sno_obj ect = O;
1810 }
1811 dmu_t x_commi t (tx);
1812 return;
1813 }
1815 if (smo->snmo_object == 0) {
1816 ASSERT(snp- >sno_obj si ze == 0);
1817 ASSERT(sno- >snp_ aI loc == 0);
1818 sno- >sno_obj ect = dnmu_obj ect _al | oc(nos,
1819 DMJU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHI FT,
1820 DMJ_OT_SPACE_MAP_HEADER, sizeof (*smp), tx);
1821 ASSERT('sno- >sno_obj ect != 0);
1822 vdev_config_dirty(vd->vdev_t op);
1823 }
1825 mut ex_init(&nock, NULL, MJUTEX DEFAULT, NULL);

tx);

new usr/src/uts/comon/fs/zfs/vdev.c

1827
1828

1830

1832
1833
1834

1836
1837

1839

1841
1842

1844
1845
1846
1847
1848

1850

1851 }
__unchanged_portion_omtted_

1998 voi d

space_map_creat e(&nmsync, sm>smstart, sm>smsize, sm>smshift,
&sm ock) ;

mut ex_ent er (&snl ock) ;

mut ex_ent er (& d- >vdev_dt| _I ock);
space_map_wal k(sm space_map_add, &snsync);
mut ex_exi t (&vd->vdev_dt ! _| ock);

space_map_truncate(sno, nos, tx);
space_map_sync(&snsync, SM ALLCC, snp, nos, tx);

space_map_dest roy(&snsync) ;

mut ex_exi t (&smnl ock) ;
mut ex_dest roy(&sm ock) ;

VERI FY(0 == dmu_bonus_hol d(nmos, sno->sno_obj ect, FTAG &db));
dnu_buf_mAII _dirty(db, tx);

ASSERT3U(db- >db_si ze, >=, si zeof (*sm));

bcopy(sno, db- >db_dat a, sizeof (*sm));

dmu_buf _rel e(db, FTAG;

drmu_t x_commi t (tx);

1999 vdev_renove(vdev_t *vd, uint64_t txg)

2000 {

2001
2002
2003

2005

2007
2008
2008
2009
2010
2011

2013
2014
2015

2017
2018

2020
2020
2021
2022
2023
2024

2026
2027
2028
2029
2030
2031

2032 }
__unchanged_portion_onitted_

spa_t *spa = vd->vdev_spa;
obj set _t *npbs = spa->spa_neta_obj set;
dmu_t x_t *tx;

tx = dnmu_t x_create_assi gned(spa_get_dsl (spa), txg);

if (vd->vdev_dtl_sno.sno_object) {
ASSERTO(vd- >vdev_dt| _smp. sno_al | oc);
ASSERT3U(vd- >vdev_dt| _snmo.snmo_al | oc, ==, 0);
(void) dmu_object_free(nos, vd->vdev_dtl_snp.snp_object, tx);
vd->vdev_dt| _sno. sno_obj ect = 0;

}

if (vd->vdev_ms != NULL)
for (int m= 0; m< vd->vdev_ns_count; mt+) {
netaslab_t *msp = vd->vdev_ns[nj;

if (msp == NULL || nsp->ns_sno.sno_obj ect == 0)
conti nue;

ASSERTO(msp->nms_sno. sno_al | oc) ;
ASSERT3U(nsp->ns_sno. sno_al l oc, ==, 0);

(voi d) dnu_obj ect _free(nps, nmsp->ns_sno.sno_object, tx);

nep- >Ns_sno. sno_obj ect = 0;

}

if (vd->vdev_ns_array)
(void) dnu_object_free(nos, vd->vdev_ns_array, tx);
vd->vdev_ns_array = O;
vd->vdev_ns_shift = 0;

dmu_t x_commi t (tx);

new usr/src/uts/comon/fs/zfs/vdev.c

2236 static int
2237 vdev_of fline_l ocked(spa_t *spa, uint64_t guid, uint64_t flags)

2238
2239
2240
2241
2242

2244
2245

2247
2248

2250
2251

2253
2254
2255

2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268

2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281

2283
2285

2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2298
2299

{

top:

vdev_t *vd, *tvd;

int error = 0;
uint64_t generati on
met asl ab_group_t *ny;

spa_vdev_state_enter(spa, SCL_ALLOC);

if ((vd = spa_l ookup_by_gui d(spa, guid, B_TRUE)) == NULL)
return (spa_vdev_state_exit(spa, NULL, ENODEV));

if (!vd->vdev_ops->vdev_op_| eaf)
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));

tvd = vd->vdev_t op;
my = tvd->vdev_ny;
generation = spa->spa_config_generation + 1;

/*
* If the device isn't already offline, try to offline it.

*

if (!vd—/>vdev_off| ine) {

* If this device has the only valid copy of sonme data,
* don't allowit to be offlined. Log devices are al ways
* expendabl e.

*/

if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
vdev_dt| _required(vd))

return (spa_vdev_state_exit(spa, NULL, EBUSY));
/*
* |f the top-level is a slog and it has had allocations
* then proceed. W check that the vdev's netaslab group
* is not NULL since it's possible that we nay have | ust
* added this vdev but not yet initialized its metaslabs.
*

if (tvd->vdev_islog & ng != NULL) {
/*

* Prevent any future allocations.
*/
net asl ab_group_passi vat e(ng) ;
(void) spa_vdev_state_exit(spa, vd, 0);

error = spa_offline_l og(spa);
spa_vdev_state_enter(spa, SCL_ALLCC);

/*

* Check to see if the config has changed.
*

/

if (error || generation != spa->spa_config_generation)
met asl ab_group_acti vate(ng);
if (error)
return (spa_vdev_state_exit(spa,
vd, error))
(void) spa_vdev_state_exit(spa, vd, 0);
goto top;

}
ASSERTO(t vd- >vdev_stat.vs_al | oc);
ASSERT3U(t vd- >vdev_stat.vs_alloc, ==, 0);

new usr/src/uts/comon/fs/zfs/vdev.c

2301
2302
2303
2304
2305
2306
2307
2308

2310
2311
2312
2313
2314
2315

2317
2318
2319
2320
2321
2322
2323

2325
2327

2328 }

}

/
fline this device and reopen its top-1level vdev.

the top-level vdev is a |log device then just offline
. Oherwise, if this action results in the top-Ievel

ev becom ng unusable, undo it and fail the request.

*
O
* 0 f
it
* vd
*/

vd->vdev_of fl i ne = B_TRUE;
vdev_reopen(tvd);

if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
vdev_i s_dead(tvd))
vd- >vdev_of fl i ne = B_FALSE;
vdev_reopen(tvd);
return (spa_vdev_state_exit(spa, NULL, EBUSY));
}

*

* Add the device back into the netaslab rotor so that
* once we online the device it’'s open for business.
*/
if (tvd->vdev_islog & ng != NULL)

met asl ab_group_acti vate(ng);

vd->vdev_tnmpoffline = !l (flags & ZFS_OFFLI NE_TEMPORARY) ;

return (spa_vdev_state_exit(spa, vd, 0));

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

R R R R

61791 Thu Jul 26 14:19:23 2012
new usr/src/uts/comon/fs/zfs/vdev_raidz.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

279 static void
280 vdev_raidz_nmap_free_vsd(zio_t *zio)

281 {
282

284
284
285

287
288
289 }

raidz_map_t *rm = zio->io_vsd;

ASSERTO(rm >rm freed);
ASSERT3U(rm >rm freed, ==, 0);
rm>mfreed = 1;

if (rm>mreports == 0)
vdev_raidz_map_free(rm;

__unchanged_portion_onitted_

1090 static void
1091 vdev_raidz_matrix_invert(raidz_map_t *rm int n, int nmssing, int *mssing,

1092
1093 {
1094
1095

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107

1109
1110
1111
1112
1113
1114
1115
1116

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129

1131
1132
1133
1134

uint8_t **rows, uint8_t **invrows, const uint8_t *used)

[L I I N A O
uint8_t |og;

/*

* Assert that the first nmssing entries fromthe array of used

* colums correspond to parity columms and that subsequent entries
* correspond to data col ums.

*

(i =0; i < nmssing; i++)
r

i {
ASSERT3S(used[i], <, rm>mfirstdatacol);

for (; i <n; i++) {
ASSERT3S(used[i], >=, rm>mfirstdatacol);
}
/*
* First initialize the storage where we’'ll conpute the inverse rows.
*/
for (i =0; i < nmssmg, i++) {
for (j =0, <n; j++) {
|nvr0ws[|][j] = (i ==j)y ?21: 0
}
}
/*
* Subtract all trivial rows fromthe rows of consequence.
for (i =0; i < nmssmg, i++) {
for (j = nmissing; j <n; j++) {
ASSERT3U(used[], >= rm>mfirstdatacol);
= used[]] - rm>rmfirstdataco|;
ASSERT3S(]j, < n
invrows[i][j] = rows[i][jj];
rows[i][jJ] = O;
}
}
/*

* For each of the rows of interest, we nust normalize it and subtract
*anmultiple of it fromthe other rows.
*/

new usr/src/uts/comon/fs/zfs/vdev_raidz.c

1135
1136
1137
1137
1138
1139

1141
1142
1143
1144
1145

1147
1148
1149
1150

1152
1153
1154

1156
1158

1160
1161
1162
1163
1164
1165
1166
1167

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1178
1179
1180
1181
1182 }

(i =0; i <nmissing;, i++) {
for (j =0; j <missing[i]; j++) {
ASSERTO(rows[i][j]);
ASSERT3U(rows[i][j], ==, 0);
}ASSERT3U(r0ws[i][m'ssing[|]] = 0);

/*
* Conpute the inverse of the first elenment and multiply each
* element in the row by that val ue.
*
/
log = 255 - vdev_raidz_log2[rows[i][m ssing[i]]];
for (j =0, j <y j+4)

rows[i][]j] = vdev_rai dz_exp2(rows[i]
invrows[i]

il

| ;
) [j]1 = vdev_raidz exp2(|nvrgms[|]F %, | 0g)

for (ii =0; ii < nmissing; ii++) {
if (i =1ii)
conti nue;

ASSERT3U(rows[ii][mssing[i]], !'=, 0);
log = vdev_raidz_l og2[rows[ii][missing[i]]];

for (j =0; j <n; j++) {
rows[ii][j] "=
vdev_rai dz exp2(rows[|][j], 1 0g);
|nvr0\/\s[||][J]
vdev_rai dz_exp2(|nvr0\/\s[i][j], 1 0g);

}

/*
* Verify that the data that is left in the rows are properly part of
* an identity matrix.
*/
for (i =0; i < nmssmg, i++) {
for (j =0; j <n; j++) {

if (] == m'ssing[i]) {
ASSERT3U(rows[i][j], ==, 1);
} else {
ASSERTO(rows[i][j]);
ASSERT3U(rows[i][]J], == 0);

__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/zfs/zap.c 1 new usr/src/uts/comon/fs/zfs/zap.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES]
33603 Thu Jul 26 14:19:24 2012 199 dprintf("copied block %lu of %Iu\n",
new usr/src/uts/comon/fs/zfs/zap.c 200 tbl ->zt _bl ks_copi ed, tbl->zt_nunbl ks);
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
LEEE R R R R EEE R EEEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREEEEEEEEEEESES] 202 If (tbl >Zt bl kS Copl ed = tbl >Zt_nUrTb| kS) {
__unchanged_portion_onitted_ 203 (void) dnu_free_range(zap->zap_objset, zap->zap_object,
204 tbhl->zt_bl k<< bs, tbl->zt _nunbl ks << bs, tXx);
140 /*
141 * Ceneric routines for dealing with the pointer & cookie tables. 206 tbl->zt _bl k = newbl k;
142 */ 207 tbl ->zt _nunbl ks *= 2;
208 tbl ->zt _shi ft++
144 static int 209 tbl ->zt _nextblk = 0;
145 zap_tabl e_growzap_t *zap, zap_table_phys_t *tbl, 210 tbl ->zt _bl ks_copi ed = 0;
146 void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
147 dmu_t x_t *tx) 212 dprintf("finished; nunblocks now %lu (%Iluk entries)\n",
148 { 213 tbl ->zt _nunbl ks, 1<<(tbl->zt_shift-10));
149 uint64_t b, newblk; 214 }
150 drmu_buf _t *db_ol d, *db_new,
151 int err; 216 return (0);
152 int bs = FZAP_BLOCK_SHI FT(zap); 217 }
153 int hepb = 1<<(bs-4); __unchanged_portion_omtted_
154 /* hepb = half the nunber of entries in a block */
318 static int
156 ASSERT(RW WRI TE_HELD(& ap- >zap_rw ock)) ; 319 zap_grow ptrtbl (zap_t *zap, dmu_tx_t *tx)
157 ASSERT(tbl->zt _blk !'= 0); 320 {
158 ASSERT(t bl - >zt _numbl ks > 0); 321 /*
322 * The pointer table should never use nore hash bits than we
160 if (tbl->zt_nextblk = 0) { 323 * have (otherwi se we'd be using useless zero bits to index it).
161 newbl k = tbl->zt_nextbl k; 324 * |f we are within 2 bits of running out, stop growi ng, since
162 } else { 325 * this is already an aberrant condition.
163 newbl k = zap_al | ocat e_bl ocks(zap, tbl->zt_nunbl ks * 2); 326 */
164 tbl - >zt _nextbl k = newbl k; 327 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
165 ASSERTO(t bl - >zt _bl ks_copi ed) ; 328 return (ENGCSPC);
165 ASSERT3U(t bl - >zt _bl ks_copi ed, ==, 0);
166 dmu_pr ef et ch(zap- >zap_obj set, zap->zap_obj ect, 330 if (zap->zap_f.zap_phys->zap_ptrtbl.zt_nunbl ks == 0) {
167 tbl->zt _blk << bs, thl- >zt_nurrb| ks << bs); 331 /*
168 } 332 * W are outgrowi ng the "enbedded" ptrtbl (the one
333 * stored in the header block). Gve it its own entire
170 /* 334 * bl ock, which will double the size of the ptrtbl.
171 * Copy the ptrtbl fromthe old to new | ocation. 335 */
172 */ 336 ui nt 64_t newbl k;
337 drmu_buf _t *db_new,
174 b = tbl >zt _bl ks_copi ed; 338 int err;
175 err = dnu_buf _hol d(zap->zap_obj set, zap->zap_obj ect,
176 (tbl->zt _blk + b) << bs, FTAG &db_ol d, DMJ_READ NO PREFETCH); 340 ASSERT3U(zap- >zap_f . zap_phys->zap_ptrtbl.zt_shift, ==,
177 if (err) 341 ZAP_EMBEDDED_PTRTBL_SHI FT(zap)) ;
178 return (err); 342 ASSERTO(zap- >zap_f . zap_phys- >zap_ ptrtbl.zt_bl k) ;
342 ASSERT3U(zap- >zap_f. zap_phys->zap_ptrtbl.zt_blk, == 0);
180 /* first half of entries in old[b] go to new 2*b+0] */
181 VERI FY(0 == dmu_buf _hol d(zap- >zap_obj set, zap->zap_obj ect, 344 newbl k = zap_al | ocat e_bl ocks(zap, 1);
182 (newbl k + 2*b+0) << bs, FTAG &db_new, DMJ_READ NO _PREFETCH)); 345 err = dmu_buf _hol d(zap->zap_obj set, zap->zap_obj ect,
183 dmu_buf _will _dirty(db_new, tx); 346 newbl k << FZAP_BLOCK_SHI FT(zap), FTAG &db_new,
184 transfer_func(db_ol d->db_data, db_new >db_data, hepb); 347 DMJ_READ NO PREFETCH) ;
185 dmu_buf _rel e(db_new, FTAQ; 348 if (err)
349 return (err);
187 /* second half of entries in old[b] go to new 2*b+1] */ 350 drmu_buf _wi Il _dirty(db_new, tx);
188 VERI FY(0 == dmu_buf _hol d(zap- >zap_obj set, zap->zap_obj ect, 351 zap_ptrtbl _transfer(&ZAP_ EI\/BEDDED PTRTBL_ENT(zap, O),
189 (newbl k + 2¥b+1) << bs, FTAG &db_new, DMJ_READ_NO PREFETCH)); 352 db_new >db_data, 1 << ZAP_EMBEDDED_PTRTBL_SH FT(zap));
190 dmu_buf _wi Il _dirty(db_new, tx); 353 dmu_buf _rel e(db_new, FTAQ;
191 transfer_func((uint64_t *)db_ ol d- >db_data + hepb,
192 db_new >db_data, hepb); 355 zap- >zap_f.zap_phys->zap_ptrtbl .zt _bl k = newbl k;
193 drmu_buf_rel e(db_new, FTAG; 356 zap- >zap_f.zap_phys->zap_ptrtbl .zt _nunbl ks = 1;
357 zap->zap_f . zap_phys->zap_ptrtbl.zt_shift++;
195 drmu_buf _rel e(db_ol d, FTAQ;
359 ASSERT3U(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==,
197 t bl ->zt _bl ks_copi ed++; 360 zap- >zap_f . zap_phys->zap_ptrtbl.zt_nunbl ks <<

new usr/src/uts/comon/ fs/zfs/zap.c 3 new usr/src/uts/comon/fs/zfs/zap.c
361 (FZAP_BLOCK_SHI FT(zap)-3)); 597 int prefix_diff, i, err;
598 uint64_t sibling;
363 return (0); 599 int old_prefix_len = 1->_phys->_hdr.lh_prefix_|len;
364 } else {
365 return (zap_tabl e_grow(zap, &zap->zap_f.zap_phys->zap_ptrthl, 601 ASSERT3U(ol d_prefix_len, <= zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
366 zap_ptrthbl _transfer, tx)); 602 ASSERT(RW LOCK_HELD(& ap- >zap rw ock));
367 }
368 } 604 ASSERT3U(ZAP_HASH_| DX(hash, ol d_prefix_len), ==,
__unchanged_portion_omtted_ 605 | ->l _phys->I _hdr.lh prefl X);
449 static zap_leaf t * 607 if (zap_tryupgradedir(zap, tx) == 0 ||
450 zap_open_|l eaf (uint64_t blkid, dnu_buf_t *db) 608 old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) {
451 { 609 /* We failed to upgrade, or need to grow the pointer table */
452 zap_l eaf _t *|, *wi nner; 610 objset _t *os = zap >zap_obj set;
611 uint64_t obj ect = zap->zap_obj ect;
454 ASSERT(bl kid != 0);
613 zap_put _leaf (1);
456 I = kmem_ al | oc(si zeof (zap_leaf_t), KM SLEEP); 614 zap_unl ockdi r (zap);
457 rwinit(&->_rwock, 0, 0, 0); 615 err = zap_l ockdir(os, object, tx, RWWR TER
458 rw_enter (& -> _rw ock RWV\RI TER) 616 FALSE, FALSE, &zn->zn_zap);
459 I->I _blkid = blkid 617 zap = zn->zn_zap;
460 |->l"bs = hi ghblt(db >db_si ze) - 1; 618 if (err)
461 | ->l “dbuf = db; 619 return (err);
462 I-> “phys = NULL; 620 ASSERT(! zap- >zap_i smi cro);
464 wi nner = dmu_buf_set _user(db, |, & ->l_phys, zap_leaf_pageout); 622 while (old_prefix_len ==
623 zap- >zap_f.zap_phys->zap_ptrtbl.zt_shift) {
466 rw_exit(& ->l_rw ock); 624 err = zap_grow ptrtbl (zap, tx);
467 if (winner !'= NULL) { 625 if (err)
468 /* someone else set it first */ 626 return (err);
469 zap_| eaf _pageout (NULL, I); 627 }
470 | = winner;
471 } 629 err = zap_deref_| eaf (zap, hash, tx, RWWRI TER, &l);
630 if (err)
473 I* 631 return (err);
474 * | hr_pad was previously used for the next leaf in the |eaf
475 * chain. There should be no chained | eafs (as we have renpved 633 if (1->_phys->l _hdr.lh_prefix_len != old_prefix_len) {
476 * support for thenm. 634 /* 1t split while our |ocks were down */
477 */ 635 *Ip=1;
478 ASSERTO(| - >l _phys->| _hdr. | h_padl); 636 return (0);
478 ASSERT3U(| ->I _phys->I_hdr.1h_padl, ==, 0); 637 }
638 }
480 /* 639 ASSERT(RW WRI TE_HELD(& ap- >zap_rw ock)) ;
481 * There shoul d be nore hash entries than there can be 640 ASSERT3U(ol d_prefix_len, <, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
482 * chunks to put in the hash table 641 ASSERT3U(ZAP_HASH | DX(hash old_prefix_len), ==
483 */ 642 | ->I _phys->I _hdr. | h_prefix);
484 ASSERT3U(ZAP_LEAF_HASH NUMENTRI ES(1), >, ZAP_LEAF_NUMCHUNKS(1) / 3);
644 prefix_diff = zap->zap_f. -zap_ phys->zap_ptrtbl.zt_shift -
486 /* The chunks should begin at the end of the hash table */ 645 (old_prefix_len + 1
487 ASSERT3P(&AP_LEAF_CHUNK(I, 0), ==, 646 sibling = (ZAP_HASH_I DX(hash old_prefix_len + 1) | 1) << prefix_diff;
488 &l -> _phys-> _hash[ZAP_LEAF_HASH NUMENTRI ES(1)]);
648 I* check for i/o errors before doing zap_leaf_split */
490 /* The chunks should end at the end of the block */ 649 for (i =0; i < (lULL<<prefix_diff); i++) {
491 ASSERT3U((ui nt ptr_t)&AP_LEAF_CHUNK(I, ZAP_LEAF_NUMCHUNKS(1)) - 650 uint64_t blk;
492 (uintptr_t)l->l_phys, == 1->_dbuf->db_size); 651 err = zap_idx_to_bl k(zap, sibling+i, &blk);
652 if (err)
494 return (1); 653 return (err);
495 } 654 ASSERT3U(bl k, ==, |- S| _blkid);
__unchanged_portion_omtted_ 655 }
591 static int 657 nl = zap_create_| eaf (zap, tx);
592 {zap_expand_l eaf (zap_nane_t *zn, zap_leaf_t *I, dnu_tx_t *tx, zap_leaf_t **Ip) 658 zap_leaf _split(l, nl, zap->zap_nornflags != 0);
593
594 zap_t *zap = zn- >zn_zap; 660 /* set sibling pointers */
595 uint64_t hash = zn->zn_hash; 661 for (i =0; i < (1ULL << prefix_diff); i++) {
596 zap_l eaf _t *nl; 661 for (i =0; i < (1ULL<<prefix_diff); |++) {

new usr/src/uts/comon/ fs/zfs/zap.c

662 err = zap_set_idx_to_bl k(zap, sibling+i, nl->_blkid, tx);
663 ASSERTO(err); /* we checked for i/o errors above */

663 ASSERT3U(err, ==, 0); /* we checked for i/o errors above */
664 }

666 if (hash & (1ULL << (64 - |->I _phys->I_hdr.Ih_prefix_len))) {

667 /* we want the sibling */

668 zap_put _leaf (1);

669 *Ip = nl;

670 } else {

671 zap_put _l eaf (nl);

672 *Ip =1;

673 }

675 return (0);

676 }

____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/zap_micro.c

R R R R

34759 Thu Jul 26 14:19:25 2012
new usr/src/uts/comon/fs/zfs/zap_micro.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

445 i nt

446 zap_| Iockdlr(ob]set t *os, uint64_t obj, dmu_tx_t *tx,

447 krwt Iti, boolean_t fatreader, bool ean_t adding, zap_t **zapp)

448 {

449 zap_t *zap;

450 dmu_buf _t *db;

451 krwt It;

452 int err;

454 *zapp = NULL;

456 err = dmu_buf _hol d(os, obj, 0, NULL, &b, DMJ READ NO PREFETCH);
457 if (err)

458 return (err);

460 #ifdef ZFS_DEBUG

461 {

462 dnu_obj ect _info_t doi

463 dnu_obj ect _i nfo_from db(db &doi) ;

464 ASSERT3U(DMJ_OT_BYTESWAP(doi . doi type), ==, DMJ_BSWAP_ZAP) ;
465

466 #endi f

468 zap = dnu_| buf _get _user (db);

469 if (zap = ULL

470 zap nzap_open(os, obj, db);

472 /*

473 * We're checking zap_ismcro without the lock held, in order to
474 * tell what type of lock we want. Once we have sone sort of
475 * lock, see if it really is the right type. In practice this
476 * can only be different if it was upgraded frommcro to fat,
477 * and micro wanted WRI TER but fat only needs READER

478 */

479 It = (!zap->zap_ismcro & fatreader) ? RWREADER : |ti;

480 rw_enter (&ap->zap_rw ock, It);

481 if (It != ((!zap->zap_ismcro &&fatreader) ? RWREADER : 1ti)) {
482 /* it was upgraded, now we only need reader */

483 ASSERT(It == RWWRI TER)

484 SERT(RWREADER

485 (!zap- >zap|smcr0 && fatreader) ? RWREADER : Iti);
486 rw_downgr ade(& ap- >zap_rw ock) ;

487 It = RW READER

488 }

490 zap- >zap_obj set = os;

492 if (It == RWWRI TER)

493 drmu_buf _wi Il _dirty(db, tx);

495 ASSERT3P(zap- >zap_dbuf, ==, db);

497 ASSERT(! zap->zap_i smcro ||

498 zap->zap_m zap_numentries <= zap->zap_m zap_num chunks);
499 if (zap->zap_ismcro & tx && adding &&

500 zap->zap_m zap_numentries == zap->zap_m zap_num chunks) {
501 uint64_t newsz = db->db_size + SPA_M NBLOCKSI ZE;

502 if (newsz > MZAP_NMAX BLKSZ) {

503 dprintf("upgrading obj %Ilu: numentries=%\n",

new usr/src/uts/comon/fs/zfs/zap_micro.c

504 obj, zap->zap_m zap_numentries);
505 *zapp = zap;

506 return (nzap_upgrade(zapp, tx, 0));
507

508 err = dmu_obj ect _set_bl ocksi ze(os, obj, newsz, 0, tx);
509 ASSERTO(err);

509 ASSERT3U(err, ==, 0);

510 zap->zap_m zap_num_chunks =

511 db- >db_si ze / MZAP_ENT_LEN - 1;

512 }

514 *zapp = zap;

515 return (0);

516 }

__unchanged_portion_onitted_

575 static void

576 neap_create_inpl (objset_t *os, uint64_t obj, int nornflags, zap_flags_t flags,

577 dmu_t x_t *tx)

578 {

579 drmu_buf _t *db;

580 neap_phys_t *zp;

582 VERI FY(0 == dmu_buf _hol d(os, obj, 0, FTAG &db, DMJ READ NO PREFETCH));
584 t#ifdef ZFS_DEBUG

585 {

586 dnmu_obj ect _info_t doi

587 dmu_obj ect _i nfo_from db(db &doi) ;

588 ASSERT3U() OT_BYTESWAP(doi . doi type), ==, DMJ_BSWAP_ZAP) ;
589

590 #endi f

592 dmu_buf _will _dirty(db, tx);

593 zp = db->db_dat a;

594 zp->nme_bl ock type ZBT_M CRO,

595 zp->ne_salt = ((UI ntptr_t)db A (uintptr_t)tx A (obj << 1)) | 1ULL;
596 zp->nz_nornflags = nornfl ags;

597 drmu_buf _rel e(db, FTAQ;

599 if (flags !'=0) {

600 zap_t *zap;

601 /* Only fat zap supports flags; upgrade i mediately. */
602 VERI FY(0 == zap_Il ockdir(os, obj, tx, RWWRI TER

603 B FALSE, B FALSE, é&zap));

604 VERI FYO(nzap_upgr ade(&ap, tx, flags));

604 VERI FY3U(0, ==, nzap_| upgrade(&zap, tx, flags));

605 zap_unl ockdi r (zap);

606 }

607 }

__unchanged_portion_omtted_

new usr/src/uts/comon/ fs/zfs/zfeature.c

R R R R

14191 Thu Jul 26 14:19:26 2012
new usr/src/uts/comon/fs/zfs/zfeature.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
* ok ok ok

L Es kAR KK IR AR AR KKKk Kk Kk

__unchanged_portion_onitted_

342 | *

343 * Enabl e any required dependencies, then enable the requested feature.
344 =/

345 void

346 {spa_f eature_enabl e(spa_t *spa, zfeature_info_t *feature, dmu_tx_t *tx)
347

348 ASSERT3U(spa_versi on(spa), >=, SPA VERS|I ON_FEATURES);

349 VERI FYO(f eature_do_acti on(spa- >spa_net a_obj set,

349 VERI FY3U(0, ==, feature_do_action(spa->spa_neta_objset,

350 spa- >spa_feat _for_read_obj, spa->spa_feat_for_wite_obj,

351 spa- >spa_f eat _desc_obj, feature, FEATURE_ACTI ON_ENABLE, tXx));
352 }

354 /[*

355 * If the specified feature has not yet been enabled, this function returns
356 * ENOTSUP; otherwi se, this function increnents the feature' s refcount (or
357 * returns EOVERFLOWIif the refcount cannot be increnented). This function nust
358 * be called fromsyncing context.

359 */

360 void

361 {spa_feature_i ncr(spa_t *spa, zfeature_info_t *feature, dnu_tx_t *tx)

362

363 ASSERT3U(spa_version(spa), >=, SPA_VERSI ON_FEATURES);

364 VERI FYO(f eat ure_do_act | on(spa- >spa_net a_obj set,

364 VERI FY3U(0, ==, feature_do_action(spa->spa_neta_objset,

365 spa- >spa_feat _for_read_obj, spa->spa_feat_for_wite_obj,

366 spa- >spa_f eat _desc_obj, feature, FEATURE_ACTION_INCR, tx));
367 }

369 /*

370 * |If the specified feature has not yet been enabled, this function returns
371 * ENOTSUP; otherwi se, this function decrenents the feature's refcount (or
372 * returns EOVERFLOWif the refcount is already 0). This function nust

373 * be called fromsyncing context.

374 *

375 void

376 spa_feature_decr(spa_t *spa, zfeature_info_t *feature, dmu_tx_t *tx)
377 {

378 ASSERT3U(spa_version(spa), >=, SPA_VERSI ON_FEATURES);

379 VERI FYO(f eature_do_acti on(spa- >spa_net a_obj set,

379 VERI FY3U(0, ==, feature_do_action(spa->spa_mneta_objset,

380 spa->spa_feat _for_read_obj, spa->spa_feat_for_wite_obj,
381) spa- >spa_f eat _desc_obj, feature, FEATURE_ACTI ON _DECR, tx));
382

__unchanged_portion_onitted_

new

* ok kK

new
3006

* ok kK

1

usr/src/uts/ comon/ fs/zfs/zfs_debug.c

B R

2598 Thu Jul 26 14:19:26 2012
usr/src/uts/comon/ fs/zfs/zfs_debug.c

VERI FY[S, U, P] and ASSERT[S, U, P] frequently check if first argument is zero
LR R R R R RS SRR EEEEEEEEEEEEEEEEEEREEEEEEEREREEEEEREEEEEEEERES
/*

CDDL HEADER START

The contents of this file are subject to the ternms of the

Common Devel opment and Distribution License (the "License").

You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

or http://ww. opensol aris.org/os/licensing.
See the License for the specific | anguage governing perm ssions
and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

B O I T
~

/
* Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
* Copyright (c) 2012 by Del phix. Al rights reserved.

*
/

#i ncl ude <sys/zfs_context.h>

list_t zfs_dbgnsgs;
int zfs_dbgnmsg_si ze;

kmut ex_t zfs_dbgnmsgs_| ock;
int zfs_dbgnmsg_naxsize = 1<<20; /* 1MB */
voi d

zfs_dbgmsg_init(void)
{

i st_create(&fs_dbgnsgs, sizeof (zfs_dbgnsg_t),
of f set of (zf s_dbgnsg_t, zdm node));
mut ex_i ni t (&fs_dbgmsgs_l ock, NULL, MJTEX_DEFAULT, NULL);
}

voi d
zfs_dbgmsg_fini (void)
{

zfs_dbgnsg_t *zdm

while ((zdm = list_renmove_head(&zfs_dbgnmsgs)) != NULL) {
int size = sizeof (zfs_dbgnsg_t) + strlen(zdm >zdm nsg);
kmem free(zdm size);
zfs_dbgnsg_si ze -= size;

}

mut ex_dest roy(&fs_dbgnmsgs_| ock);
ASSERTO(zf s_dbgnsg_si ze) ;
ASSERT3U(zf s_dbgnsg_si ze, ==, 0);

}
____unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/zfs_dir.c

R R R R

29716 Thu Jul 26 14:19:27 2012
new usr/src/uts/comon/fs/zfs/zfs_dir.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END

*/

*

21/
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright (c) 2012 by Del phix. Al rights reserved.

*

/

26 #include <sys/types. h>

27 #include <sys/param h>

28 #include <sys/time. h>

29 #include <sys/systm h>

30 #include <sys/sysnmacros. h>
31 #include <sys/resource. h>
32 #include <sys/vfs. h>

33 #include <sys/vnode. h>

34 #include <sys/file.h>

35 #include <sys/node. h>

36 #include <sys/knmem h>

37 #include <sys/uio.h>

38 #include <sys/ pat hnane. h>
39 #include <sys/cmm_err. h>
40 #incl ude <sys/errno. h>

41 #include <sys/stat.h>

42 #include <sys/unistd. h>
43 #incl ude <sys/sunddi . h>
44 #include <sys/random h>
45 #incl ude <sys/policy. h>
46 #include <sys/zfs_dir.h>
47 #include <sys/zfs_acl.h>
48 #incl ude <sys/fs/zfs. h>
49 #include "fs/fs_subr.h"
50 #include <sys/zap. h>

51 #include <sys/dnu. h>

52 #include <sys/atonmic.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid. h>
55 #include <sys/sa. h>

56 #include <sys/zfs_sa. h>
57 #include <sys/dnlc. h>

58 #include <sys/extdirent.h>

60 /*
61 * zfs_match_find() is used by zfs_dirent_lock() to peform zap | ookups

new usr/src/uts/comon/fs/zfs/zfs_dir.c

62 * of names after deciding which is the appropriate |ookup interface.

63 */

64 static int

65 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *nanme, bool ean_t exact,

66 bool ean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid)

67 {

68 int error;

70 if (zfsvfs->z_norm

71 mat chtype_t m = MI_FI RST;

72 bool ean_t conflict = B_FALSE;

73 size_t bufsz = 0;

74 char *buf = NULL;

76 if (rpnp) {

77 buf = rpnp->pn_buf;

78 buf sz = rpnp->pn_bufsi ze;

79 }

80 1f (exact)

81 nt = MI_EXACT;

82 /*

83 * I'n the non-nixed case we only expect there would ever
84 * be one match, but we need to use the normalizing | ookup.
85 */

86 error = zap_l ookup_norn{zfsvfs->z_os, dzp->z_id, name, 8, 1,
87 zoid, nmt, buf, bufsz, &conflict);

88 if (lerror & defl ags)

89 *deflags = conflict ? ED CASE CONFLICT : O;

90 } else {

91 error = zap_| ookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
92 }

93 *zoid = ZFS_DI RENT_OBJ(*zoi d);

95 if (error == ENCENT && update)

96 dnl c_updat e(ZTOV(dzp), name, DNLC_NO_VNODE);

98 return (error);

99

__unchanged_portion_onitted_

436 /*

437 * unlinked Set (fornerly known as the "del ete queue") Error Handling
438 *

439 * \Wen dealing with the unlinked set, we dmu_tx_hol d_zap(), but we

440 * don't specify the name of the entry that we will be manipulating. W
441 * also fib and say that we won't be adding any new entries to the

442 * unlinked set, even though we mght (this is to lower the minimnumfile
443 * size that can be deleted in a full filesystem). So on the small

444 * chance that the nlink list is using a fat zap (ie. has nore than

445 * 2000 entries), we *may* not pre-read a bl ock that's needed.

446 * Therefore it is renotely possible for some of the assertions

447 * regarding the unlinked set belowto fail due toi/o error. On a

448 * nondebug system this will result in the space being | eaked.

449 =/

450 void

451 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)

452 {

453 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

455 ASSERT(zp->z_unl i nked) ;

456 ASSERT(zp->z_links == 0);

458 VERI FYO(zap_add_i nt (zf svfs->z_os, zfsvfs->z_unlinkedobj,

459 zp->z_id, tx));

457 VERI FY3U(0, ==,

458 zap_add_i nt (zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx));

new usr/src/uts/comon/fs/zfs/zfs_dir.c

460 }
__unchanged_portion_onitted_
581 void
582 zfs_rmmode(znode_t *zp)
583 {
584 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
585 obj set _t *os = zfsvfs->z_os;
586 znode_t *xzp = NULL;
587 drmu_t x_t *tX;
588 ui nt 64_t acl _obj ;
589 ui nt64_t xattr_obj;
590 int error;
592 ASSERT(zp->z_l i nks == ;
593 ASSERT(ZTOV(Zp) - >v count == 0);
595 /*
596 * If this is an attribute directory, purge its contents.
597 */
598 if (ZTOJ(zp) >v_type == VDI R && (zp >z_pflags & ZFS XATTR)) {
599 if (zfs purgedlr(zp) 1= 0)
600
601 * Not enough space to delete sonme xattrs.
602 * Leave it in the unlinked set.
603 */
604 zfs_znode_dmu_fini (zp);
605 zfs_znode_free(zp);
606 return;
607 }
608 }
610 /*
611 * Free up all the data in the file.
612 */
613 error = dnu_free_l ong_range(os, zp->z_id, 0, DMJ OBJECT_END);
614 if (error) {
615 /*
616 * Not enough space. Leave the file in the unlinked set.
617 */
618 zfs_znode_dmu_fini (zp);
619 zfs_znode_free(zp);
620 return;
621 1
623 /*
624 * If the file has extended attributes, we're going to unlink
625 * the xattr dir.
626 */
627 error = sa_l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
628 &xattr_obj, sizeof (xattr_obj));
629 if (error == 0 & xattr_obj) {
630 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
631 ASSERT(error == 0);
632 }
634 acl _obj = zfs_external _acl (zp);
636 /*
637 * Set up the final transaction.
638 */
639 tx = dmu_tx_create(os);
640 dmu_t x_hol d_free(tx, zp->z_id, 0, DMJ OBJECT_END);
641 dmu_t x_hol d_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
642 if (xzp) {

643 dmu_t x_hol d_zap(tx, zfsvfs->z_unlinkedobj,

TRUE, NULL);

new usr/src/uts/comon/fs/zfs/zfs_dir.c

in the

/* mark xzp for deletion */

SA ZPL_LI NKS(zf svfs),

zp->z_id,

tx));

644 dnmu_t x_hol d_sa(tx, xzp->z_sa_hdl, B_FALSE);

645 1

646 if (acl_obj)

647 dnmu_t x_hol d_free(tx, acl_obj, 0, DMJ OBJECT_END);
649 zfs_sa_upgrade_t xhol ds(tx, zp);

650 error = dnu_tx_assign(tx, TXG WAIT);

651 if (error) {

652 /*

653 * Not enough space to delete the file. Leave it
654 * unlinked set, leaking it until the fs is remunted (at
655 */Wni ch point we'll call zfs_unlinked_drain() to process it).
656 *

657 drmu_t x_abort (tx);

658 zfs_znode_dmu_fini (zp);

659 zfs_znode_free(zp);

660 goto out;

661 }

663 if (xzp) {

664 ASSERT(error == 0);

665 mut ex_ent er (&xzp->z_| ock);

666 xzp->z_unlinked = B_TRUE;

667 Xzp- >z||nks:0' 7* no more links to it
668 VERI FY(0 == sa_updat e(xzp->z_sa_hdl,

669 &xzp->z_links, sizeof (xzp->z Ilnks) tx));
670 mut ex_exi t (&zp->z_| ock);

671 zfs_unl i nked_add(xzp, tx) ;

672 }

674 /* Renpve this znode fromthe unlinked set */

675 VERI FYO(zap_renove_i nt (zfsvfs->z_os, zfsvfs->z_unlinkedobj,
676 xzp->z_id, tx));

674 VERI FY3U(0, ==,

675 zap_renove_int (zfsvfs->z_os, zfsvfs->z_unlinkedobj,
678 zfs_znode_del ete(zp, tx);

680 drmu_t x_commi t (tx);

681 out:

682 if (xzp)

683 VN_RELE(ZTOV(xzp)) ;

684 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c

R R R R
142364 Thu Jul 26 14:19:28 2012

new usr/src/uts/comon/fs/zfs/zfs_ioctl.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

1938 static int
1939 zfs_ioc_objset_stats_inpl(zfs_cnd_t *zc, objset_t *os)

1940 {

1941 int error = 0;

1942 nvlist_t *nv;

1944 drmu_obj set _fast _stat (os, &zc->zc_objset_stats);

1946 if (zc->zc_nvlist_dst !'=0 &&

1947 (error = dsl_prop_get_all(os, &wv)) == 0) {

1948 drmu_obj set _stats(os, nv);

1949 /*

1950 * NB: zvol _get_stats() will read the objset contents,
1951 * which we aren’t supposed to do with a
1952 * DS_MODE_USER hol d, because it could be
1953 * inconsistent. So this is a bit of a workaround...
1954 * XXX reading with out owning

1955 *

1956 if (!zc->zc_objset_stats.dds_inconsistent &&
1957 dmu_obj set _type(os) == DMJ_OST_zVOL) {
1958 error = zvol _get_stats(os, nv);

1959 if (error == EIOQ

1960 return (error);

1961 VERI FYO(error);

1961 VERI FY3S(error, ==, 0);

1962

1963 error = put_nvlist(zc, nv);

1964 nvlist_free(nv);

1965 1

1967 return (error);

1968 }

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/zfs_rlock.c

R R R R

17055 Thu Jul 26 14:19:29 2012
new usr/src/uts/comon/fs/zfs/zfs_rlock.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

15 * |f applicable, add the follow ng below this CODL HEADER, wth the

16 * fields enclosed by brackets "[]" replaced with your own identifying

17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.

23 * Use is subject to license terns.

24 */

26 /*

% :/Oopyright (c) 2012 by Del phix. Al rights reserved.

32 /*

33 * This file contains the code to inplenent file range |ocking in

34 * ZFS, although there isn’'t nuch specific to ZFS (all that comes to mind

35 * support for growing the blocksize).

36 *

37 * Interface

38 * o---------

39 * Defined in zfs_rlock.h but essentially:

40 = rl = zfs_range_l ock(zp, off, len, lock_type);

41 = zfs_range_unl ock(rl);

42 * zfs_range_reduce(rl, off, len);

43 *

44 * AVL tree

45 * oo

46 * An AVL tree is used to nmintain the state of the existing ranges

47 * that are locked for exclusive (witer) or shared (reader) use.

48 * The starting range offset is used for searching and sorting the tree.

49 *

50 * Common case

51 * -----------

52 * The (hopefully) usual case is of no overlaps or contention for

53 * locks. On entry to zfs_lock_range() arl_t is allocated; the tree

54 * searched that finds no overlap, and *this* rl_t is placed in the tree.

55 *

56 * Overl aps/ Reference counting/Proxy | ocks

57 X e e i e e e e c e e e cccaccccaeccaaa e

58 * The avl code only allows one node at a particular offset. Also it’'s very

59 * inefficient to search through all previous entries |ooking for overlaps
*
*

(because the very 1st in the ordered list mght be at offset 0 but
cover the whole file).

new usr/src/uts/comon/fs/zfs/zfs_rlock.c

62 * So this inplenmentation uses reference counts and proxy range | ocks.
63 * Firstly, only reader |ocks use reference counts and proxy | ocks,

64 * because writer |ocks are exclusive.

65 * WWen a reader |ock overlaps with another then a proxy lock is created
66 * for that range and replaces the original lock. If the overlap

67 * is exact then the reference count of the proxy is sinply increnented.
68 * COtherw se, the proxy lock is split into snaller |ock ranges and

69 * new proxy |ocks created for non overlapping ranges.

70 * The reference counts are adjusted accordingly.

71 * Meanwhile, the orginal lock is kept around (this is the callers handle)
72 * and its offset and length are used when rel easing the |ock.

73 *

74 * Thread coordination

75 K e e e e e e e — - -

76 * In order to nmake wakeups efficient and to ensure nultiple continuous
77 * readers on a range don’'t starve a witer for the sane range |ock,

78 * two condition variables are allocated in each rl _t.

79 * If a witer (or reader) can't get arange it initialises the witer
80 * (or reader) cv; sets a flag saying there’'s a witer (or reader) waiting;
81 * and waits on that cv. Wen a thread unlocks that range it wakes up all
82 * witers then all readers before destroying the |ock.

83 *

84 * Append node wites

85 K e e e e e

86 * Append nopde wites need to |lock a range at the end of a file.

87 * The offset of the end of the file is determ ned under the

88 * range |ocking nutex, and the |ock type converted from RL_APPEND to
89 * RL_WRITER and the range | ocked.

90 *

91 * Grow bl ock handling

92 K e e e — e =

93 * ZFS supports multiple block sizes currently upto 128K. The snall est
94 * block size is used for the file which is grown as needed. During this
95 * growth all other witers and readers nust be excluded.

96 * So if the block size needs to be grown then the whole file is

97 * exclusively locked, then later the caller will reduce the |ock

98 */range to just the range to be witten using zfs_reduce_range.

99 *

101 #i nclude <sys/zfs_rlock. h>

103 /*

104 * Check if a wite |lock can be grabbed, or wait and recheck until avail able.
105 */

106 static void

107 zfs_range_l ock_witer(znode_t *zp, rl_t *new)

108 {

109 avl _tree_t *tree = &p->z_range_avl;

110 rl_t *rl;

111 avl _i ndex_t where;

112 uint64_t end_si ze;

113 uint64_t off = new >r_off;

114 uint64_t len = new >r_|en;

116 for (;;) {

117 /*

118 * Range locking is also used by zvol and uses a

119 * dunm ed up znode. However, for zvol, we don’t need to
120 * append or grow bl ocksize, and besides we don’t have

121 * a "sa" data or z_zfsvfs - so skip that processing.

122 *

123 * Yes, this is ugly, and would be solved by not handling
124 * grow or append in range |ock code. If that was done then
125 * we coul d nmake the range | ocking code generically available
126 * to other non-zfs consuners.

127 */

new usr/src/uts/comon/fs/zfs/zfs_rlock.c 3 new usr/src/uts/comon/fs/zfs/zfs_rlock.c
128 if (zp->z_vnode) { /* caller is ZPL */ 466 zfs_range_unl ock_reader(znode_t *zp, rl_t *renove)
129 /* 467 {
130 * |f in append node pick up the current end of file. 468 avl _tree_t *tree = &p->z_range_avl;
131 * This is done under z_range_|lock to avoid races. 469 rl_t *rl, *next;
132 */ 470 uint64_t len;
133 if (new >r_type == RL_APPEND)
134 new >r_of f = zp->z_si ze; 472 /*
473 * The common case is when the renpve entry is in the tree
136 /* 474 * (cnt == 1) neaning there's been no other reader |ocks overl apping
137 * If we need to grow the block size then grab the whol e 475 * with this one. Gtherwi se the renmove entry will have been
138 * file range. This is also done under z_range_lock to 476 * renoved fromthe tree and replaced by proxies (one or
139 * avoid races. 477 * nore ranges mapping to the entire range).
140 */ 478 *
141 end_si ze = MAX(zp->z_size, new>r_off + len); 479 f (renopve->r_cnt == 1)
142 if (end_size > zp->z_bl ksz && (11SP2(zp->z b ksz) || 480 avl _renove(tree, renove);
143 zp->z_bl ksz < zp->z_zfsvfs->z_max_bl ksz)) { 481 if (remove->r_wite_wanted)
144 new >r_off = 0; 482 cv_broadcast (& enpve->r_w _cv);
145 new >r_| en = Ul NT64_MAX; 483 cv_destroy(& enmove->r_w _cv);
146 } 484 }
147 } 485 if (renmove->r_read_want ed)
486 cv_broadcast (& enpve->r_rd_cv);
149 1* 487 cv_destroy(& enmove->r_rd_cv);
150 * First check for the usual case of no |ocks 488 }
151 */ 489 } else {
152 if (avl_numodes(tree) == 0) { 490 ASSERTO(r enpve->r_cnt);
153 new >r_type = RL_WRITER; /* convert to witer */ 491 ASSERTO(r enpve->r_write_want ed);
154 avl _add(tree, new); 492 ASSERTO(r enove- >r _r ead_want ed) ;
155 return; 484 ASSERT3U(r emove->r_cnt, ==, 0);
156 } 485 ASSERT3U(r enpve- >r “write want ed ==, 0);
486 ASSERT3U(r enpve->r_read_wanted, ==, 0);
158 /* 493 /*
159 * Look for any locks in the range. 494 * Find start proxy representing this reader |ock,
160 */ 495 * then decrenment ref count on all proxies
161 rl = avl _find(tree, new, &where); 496 * that make up this range, freeing them as needed.
162 if (rl) 497 */
163 goto wait; /* already |ocked at sane offset */ 498 rl = avl _find(tree, renove, NULL);
499 ASSERT(r1);
165 rl = (rl_t *)avl _nearest(tree, where, AVL_AFTER); 500 ASSERT(rl->r_cnt);
166 if (rl && (rl->r_off < new>r_off + new>r_len)) 501 ASSERT(rl->r_type == RL_READER);
167 goto wait; 502 for (len = renpve->r_len; len !'=0; rl = next) {
503 len -=rl->r_len;
169 rl = (rl_t *)avl _nearest(tree, where, AVL_BEFORE); 504 if (len) {
170 if (rl & & rl->r_off + rl->_len > new>r_off) 505 next = AVL_NEXT(tree, rl);
171 goto wait; 506 ASSERT(next) ;
507 ASSERT(rl->r_off + rl->r_len == next->r_off);
173 new>r_type = RL_WRI TER, /* convert possible RL_APPEND */ 508 ASSERT(next->r_cnt);
174 avl _insert(tree, new, where); 509 ASSERT(next ->r _type == RL_READER);
175 return; 510 }
176 wait: 511 rl->r_cnt--;
177 if (!Irl->_wite_wanted) { 512 if (rT->r_cnt == 0) {
178 cv_init(&l->_w_cv, NULL, CV_DEFAULT, NULL); 513 avl _remove(tree, rl);
179 rl->r_wite_wanted = B_TRUE; 514 if (rl->r_wite_wanted)
180 } 515 cv_broadcast (&1 ->r_wr_cv);
181 cv_wait (&Il ->_w_cv, &p->z_range_| ock); 516) cv_destroy(&l->r_w_cv);
517
183 /* reset to original */ 518 i1f (rl->r_read_wanted) {
184 new >r_off = off; 519 cv_broadcast (&l ->r_rd_cv);
185 new>r_len = len; 520 cv_destroy(&l->r_rd_cv);
186 } 521 }
187 } 522 kmem free(rl, sizeof (rl_t));
__unchanged_portion_onitted_ 523 }
524 }
462 | * 525 }
463 * Unlock a reader |ock 526 kmem free(renove, sizeof (rl_t));
464 */ 527 }
465 static void __unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/zfs_vfsops.c

R R R R

58641 Thu Jul 26 14:19: 30 2012
new usr/src/uts/comon/fs/zfs/zfs_vfsops.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

__unchanged_portion_onitted_

2198 int

2199 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newers)

2200 {

2201 int error;

2202 obj set _t *os = zfsvfs->z_os;

2203 dmu_tx_t *tx;

2205 if (newers < ZPL_VERSION_INITIAL || newers > ZPL_VERSI ON)
2206 return (EINVAL);

2208 if (newers < zfsvfs->z_version)

2209 return (EINVAL);

2211 if (zfs_spa_version_nap(newers) >

2212 spa_versi on(dnu_obj set _spa(zfsvfs->z_0s)))

2213 return (ENOTSUP);

2215 tx = dnu_tx_create(os);

2216 dmu_t x_hol d_zap(tx, MASTER NODE_OBJ, B_FALSE, ZPL_VERSI ON_STR);
2217 if (newers >= ZPL_VERSI ON_SA && !zfsvfs->z_use_sa) {
2218 dmu_t x_hol d_zap(tx, MASTER NODE_OBJ, B_TRUE,

2219 ZFS_SA ATTRS);

2220 dnu_t x_hol d_zap(tx, DMJ_NEW OBJECT, FALSE, NULL);
2221 }

2222 error = dnu_tx_assign(tx, TXG WAIT);

2223 if (error)

2224 dnu_t x_abort (tx);

2225 return (error);

2226 1

2228 error = zap_update(os, MASTER NCDE OBJ, ZPL_VERSI ON_STR,
2229 8, 1, &newers, tx);

2231 if (error) {

2232 dnu_t x_commi t (tx);

2233 return (error);

2234 1

2236 if (newers >= ZPL_VERSI ON_SA && !zfsvfs->z_use_sa) {
2237 uint64_t sa_obj;

2239 ASSERT3U(spa_ver si on(dnu_obj set _spa(zfsvfs->z_os)), >=,
2240 SPA_VERSI ON_SA) ;

2241 sa_obj = zap_create(os, DMJ_OT_SA MASTER_ NODE,
2242 DMJ_OT_NONE, 0, tx);

2244 error = zap_add(os, MASTER NODE_OBJ,

2245 ZFS_SA ATTRS, 8, 1, &sa_obj, tx);

2246 ASSERTO(error);

2246 ASSERT3U(error, ==, 0);

2248 VERI FY(0 == sa_set_sa_object(os, sa_obj));

2249 sa_regi ster_updat e_cal | back(os, zfs_sa_upgrade);
2250 1

2252 spa_history_l og_i nternal _ds(dnu_obj set _ds(os), "upgrade", tx,
2253 "from%lu to %Ilu", zfsvfs->z_version, newers);

2255 drmu_t x_commi t (tx);

new usr/src/uts/comon/ fs/zfs/zfs_vfsops.c

2257 zfsvfs->z_version = newers;
2259 zfs_set_fuid_feature(zfsvfs);
2261 return (0);

2262 }

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

R R R R

129321 Thu Jul 26 14:19: 31 2012
new usr/src/uts/comon/fs/zfs/zfs_vnops.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*

N
©
~—

32 #i
33 #i
34 #i
35 #i
36 #i
37 #i
38 #i
39 #i
40 #i
41 #i
42 #i
43 #i
44 #i
45 #i
46 #i
47 #i
48 #i
49 #i
50 #i
51 #i
52 #i
53 #i
54 #i
55 #i
56 #i
57 #i
58 #i
59 #i
60 #i
61 #i

=
w

® Ok kR ok ok ok ok Ok b ok OF 3k Ok 3k Ok R % k% %

- -

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2012 by Del phix. Al rights reserved.

Portions Copyright 2007 Jerenmy Teo */
Portions Copyright 2010 Robert M| kowski */

ncl ude <sys/types. h>

ncl ude <sys/param h>

ncl ude <sys/tinme. h>

ncl ude <sys/systm h>

ncl ude <sys/sysnmacros. h>
ncl ude <sys/resource. h>
ncl ude <sys/vfs. h>

ncl ude <sys/vfs_opreg. h>
ncl ude <sys/vnode. h>

ncl ude <sys/file.h>

ncl ude <sys/stat. h>

ncl ude <sys/kmem h>

ncl ude <sys/taskqg. h>

ncl ude <sys/uio. h>

ncl ude <sys/vnsystm h>
ncl ude <sys/atom c. h>
ncl ude <sys/vm h>

ncl ude <vni seg_vn. h>

ncl ude <vnf pvn. h>

ncl ude <vnf as. h>

ncl ude <vni kpm h>

ncl ude <vnf seg_kpm h>
ncl ude <sys/ man. h>

ncl ude <sys/ pat hnane. h>
ncl ude <sys/cmm_err. h>
ncl ude <sys/errno. h>

ncl ude <sys/unistd. h>
ncl ude <sys/zfs_dir.h>
ncl ude <sys/zfs_acl.h>
ncl ude <sys/zfs_ioctl.h>

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i
#i

/

® Ok ok ok E Rk O Sk O SF b Sk b Sk ok R b SR Sk b F O 3k OF 3F OF R b R b ok ok ok bk b % b % %

ncl ude <sys/fs/zfs.h>
ncl ude <sys/dmu. h>

ncl ude <sys/dnu_obj set. h>
ncl ude <sys/spa. h>

ncl ude <sys/txg. h>

ncl ude <sys/dbuf. h>

ncl ude <sys/zap. h>

ncl ude <sys/sa. h>

ncl ude <sys/dirent.h>
ncl ude <sys/policy. h>
ncl ude <sys/sunddi . h>
ncl ude <sys/filio.h>

ncl ude <sys/sid. h>

ncl ude "fs/fs_subr.h"

ncl ude <sys/zfs_ctldir.h>
ncl ude <sys/zfs_fuid. h>
ncl ude <sys/zfs_sa. h>
ncl ude <sys/dnlc. h>

ncl ude <sys/zfs_rlock. h>
ncl ude <sys/extdirent.h>
ncl ude <sys/ ki dmap. h>
ncl ude <sys/cred. h>

ncl ude <sys/attr.h>

Progranmi ng rul es.

Each vnode op perfornms some logical unit of work. To do this, the ZPL nust
properly lock its in-core state, create a DMJ transaction, do the work,
record this work in the intent log (ZIL), commt the DMJ transaction,

and wait for the intent log to commit if it is a synchronous operation.

Mor eover, the vnode ops nust work in both normal and | og replay context.
The ordering of events is inportant to avoid deadl ocks and references

to freed menory. The exanple below illustrates the followi ng Big Rules:

(1) A check nmust be nmade in each zfs thread for a nounted file system
This is done avoiding races using ZFS_ENTER(zfsvfs).
A ZFS EXI T(zfsvfs) is needed before all returns. Any znodes
must be checked wth ZFS_VERI FY_ZP(zp). Both of these macros
can return EIO fromthe calling function.

(2) VN_RELE() should always be the | ast thing except for zil_commit()
(if necessary) and ZFS_EXIT(). This is for 3 reasons:
First, if it’s the last reference, the vnode/ znode
can be freed, so the zp may point to freed menory. Second, the |ast
reference will call zfs_zinactive(), which may induce a | ot of work --
pushi ng cached pages (whi ch acquires range | ocks) and syncing out
cached atinme changes. Third, zfs_zinactive() may require a new tx,
whi ch coul d deadl ock the systemif you were already hol di ng one.
If you nust call VN_RELE() within a tx then use VN _RELE_ASYNC().

(3) Al range | ocks nmust be grabbed before calling dnu_tx_assign(),
as they can span dnu_tx_assign() calls.

(4) Always pass TXG NOMIT as the second argument to dmu_tx_assign().
This is critical because we don’t want to bl ock while hol ding | ocks.
Note, in particular, that if a lock is sonetines acquired before
the tx assigns, and sonetines after (e.g. z_lock), then failing to
use a non-bl ocki ng assign can deadl ock the system The scenario:

Thread A has grabbed a | ock before calling dmu_tx_assign().

Thread B is in an al ready-assigned tx, and blocks for this |ock.
Thread A calls dnu_tx_assi gn(TXG_WAI T) and bl ocks in txg_wait_open()
forever, because the previous txg can’t quiesce until B's tx commits.

If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG NOMIT,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

128 * then drop all locks, call dmi_tx_wait(), and try again.

129 *

130 * (5) If the operation succeeded, generate the intent log entry for it
131 * before dropping | ocks. This ensures that the ordering of events
132 * in the intent log matches the order in which they actually occurred.
133 * During ZIL replay the zfs_log_* functions will update the sequence
134 * nunber to indicate the zil transaction has repl ayed.

135 *

136 * (6) At the end of each vnode op, the DMJ tx nust always commit,

137 * regardl ess of whether there were any errors.

138 *

139 * (7) After dropping all locks, invoke zil_commit(zilog, foid)

140 * to ensure that synchronous semantics are provided when necessary.
141 *

142 * In general, this is how things should be ordered in each vnode op:
143 *

144 * ZFS_ENTER(zf svfs); /1l exit if unnmounted

145 * top

146 * zfs_dirent _lock(&dl, ...) /1 lock directory entry (may VN_HOLD())
147 ~* rwenter(...); /1 grab any other |ocks you need
148 * tx—drrutx create(L) /1 get DMJ tx

149 * drmu_t x_| hold _*(); hol d each object you might nodify
150 * error = dnu_tx_assign(tx, TXGNOWAIT); // try to assign

151 ~* if (error) I

152 * rwexit(...); /1 drop | ocks

153 * zfs_dirent _unl ock(dl); // unlock directory entry

154 * VN_RELE(...); /1 rel ease hel d vnodes

155 ~* if (error == ERESTART) {

156 * dmu_t x_wai t (tx);

157 * dmu_t x_abort (tx);

igg :) goto top;

160 * dnu_t x_abort (tx); /1 abort DMJ tx

161 * ZFS EXIT(zfsvfs); /1 finished in zfs

162 * return (error); /1 really out of space

163 *

164 * error = do_real _work(); /1 do whatever this VOP does

165 * if (error == 0)

166 * zfs_log_*(...); /1 on success, nake ZIL entry
167 * drmu_t x_comit (tx); // commit DMJtx -- error or not
168 * rwexit(...); /1 drop | ocks

169 * zfs dirent unl ock(dl); /1 unlock directory entry

170 * VN_RELE(. /'l release held vnodes

171 * ziT, conmt(zr log, foid); /'l synchronous when necessary
172 ~* ZFS_EXI T(zfsvfs); /1 finished in zfs

173 * return (error); /1 done, report error

174 */

176 /* ARGSUSED */

177 static int

178 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)

179 {

180 znode_t *zp = VTOZ(*vpp);

181 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

183 ZFS_ENTER(zf svfs);

184 ZFS_VERI FY_ZP(zp);

186 fo((fl g & FWRI TE) && (zp->z_pflags & ZFS_APPENDONLY) &&

187 ((flag & FAPPEND) == 0)) {

188 ZFS_EXIT(zfsva);

189 return (EPERM;

190 }

192 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&

193 ZTOV(zp) - >v_type == VREG &&

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

cal ler

_context _t

*ct,

194 ! (zp->z_pflags & ZFS_AV QJARANTINED) && zp->z_size > 0) {
195 if (fs_vscan(*vpp, cr, 0) I=
196 ZFS_EXI T(zf svi s);
197 return (EACCES);
198 }
199 }
201 /* Keep a count of the synchronous opens in the znode */
202 if (flag & (FSYNC | FDSYNC))
203 atom c_i nc_32(&p->z_sync_cnt);
205 ZFS_EXI T(zfsvfs);
206 return (0);
207 }
__unchanged_portion_onitted_
1532 /*
1533 * Renopve an entry froma directory.
1534 *
1535 * I'N: dvp - vnode of directory to renove entry from
1536 * name - nane of entry to renove.
1537 * cr - credentials of caller.
1538 * ct - caller context
1539 * flags - case flags
1540 *
1541 ~* RETURN: O if success
1542 * error code if failure
1543 *
1544 * Ti mest anps:
1545 * dvp - ctine|nti
1546 * vp - ctine (if I|nk>0)
1547 */
1549 uint64_t null_xattr = 0;
1551 /* ARGSUSED* /
1552 static int
1553 zfs_renove(vnode_t *dvp, char *nanme, cred_t
1554 int flags)
1555 {
1556 znode_t *zp, *dzp = VTIQZ(dvp);
1557 znode_t *Xzp;
1558 vnode_t *vp;
1559 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1560 zilog_t *zil og;
1561 ui nt64_t acl _obj, xattr_obj;
1562 ui nt 64_t xattr_obj _unlinked =
1563 ui nt 64_t obj = 0;
1564 zfs_dirlock_t *dl;
1565 drmu_tx_t *tX;
1566 bool ean_t may_del et e_now, del ete_now = FALSE;
1567 bool ean_t unl i nked, toobig = FALSE;
1568 ui nt 64_t txtype;
1569 pat hnane_t *real nnp = NULL;
1570 pat hnanme_t real nm
1571 I nt error;
1572 int zfl g = ZEXI STS;
1574 ZFS_ENTER(zf svfs);
1575 ZFS_VER| FY_ZP(dzp);
1576 zilog = zfsvfs- >z_| 0g;
1578 if (flags & FI GNORECASE) {
1579 zflg | = ZCl LOCK;
1580 pn_al l oc(& eal nm;
1581 real nnp = & eal nm

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

1582

1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

1598

1600
1601
1602

1604
1605
1606
1607
1608
1609
1610

1612

1614
1615
1616
1617

1619
1620
1621

1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

1643
1644
1645
1646
1647

top:

}

xattr_obj = 0O;
xzp = NULL;
/*

* Attenpt to lock directory; fail if entry doesn’t exist.
*

if (error = zfs_dirent_| ock(&l, dzp, nane, &p, zflg,
NULL, real nnp)) {
if (real nmp)
pn_free(real nnp)
ZFS_EXI T(zfsvfs);
return (error);

}

vp = ZTOV(zp);

if (error = zfs_zaccess_del ete(dzp, zp, cr)) {
goto out;

}

/*

* Need to use rmdir for renoving directories.
*

if (vp->v_type == VDIR) {
error = EPERM
goto out;

}
vnevent _renove(vp, dvp, nanme, ct);

if (real nnp)

dnl c_renpve(dvp, real nnp->pn_buf);
el se

dnl c_renove(dvp, nane);

mut ex_ent er (&p->v_| ock);
may_del ete_now = vp->v_count == 1 && !vn_has_cached_dat a(vp);
mut ex_exi t (& p->v_| ock);

/
We nay delete the znode now, or we may put it in the unlinked set;
it depends on whether we’'re the last link, and on whether there are
other holds on the vnode. So we dmu_tx_hold() the right things to
* allow for either case.
*
/
obj = zp->z_id;
tx = dnu_tx_create(zfsvfs->z_os);
dmu_t x_hol d_zap(tx, dzp->z_id, FALSE, nane);
dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B _FALSE);
zfs_sa_upgrade_t xhol ds(tx, zp);
zfs_sa_upgrade_t xhol ds(tx, dzp);
if (may_del ete_now) {
toobig =
zp->z_size > zp->z_bl ksz * DMJ_MAX_DELETEBLKCNT;
/* if the file is too big, only hold_free a token amount */
dnu_t x_hol d_free(tx, zp->z_id, O,
(toobig ? DMJ_MAX ACCESS : DMJ_OBJECT_END));

B

}

/* are there any extended attributes? */
error = sa_l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
&xattr_obj, sizeof (xattr_obj));
if (error == 0 & xattr_obj)
error = zfs_zget(zfsvfs, xattr_obj, &xzp);

|

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

1648
1644
1649
1650
1651

1653
1654
1655
1656

1658
1659

1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

1679
1680
1681
1682

1684
1685
1686
1687

1689

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

1707
1708
1709
1710
1711
1712

ASSERTO(error);
ASSERT3U(error, ==, 0);
dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B TRUE);
) dnu_t x_hol d_sa(tx, xzp->z_sa_hdl, B_FALSE);

mut ex_ent er (&p->z_1 ock) ;

if ((acl _obj = zfs_external _acl (zp)) != 0 && may_del et e_now)
dnu_t x_hol d_free(tx, acl_obj, 0, DMJ OBJECT_END);

mut ex_exi t (&p->z_| ock);

/* charge as an update -- would be nice not to charge at all */
dmu_t x_hol d_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);

error = dnu_tx_assign(tx, TXG NOMIT);
if (error) {
zfs_dirent _unl ock(dl);
VN_RELE(vp);
if (xzp)
VN_RELE(ZTOV(xzp)) ;
if (error == ERESTART) {
drmu_t x_wai t (tx);
drmu_t x_abort (tx);
goto top;

if (real nnp)
pn_free(real nnp);
dmu_t x_abort (tx);
ZFS_EXI T(zfsvfs);
return (error);

}

/'k
* Renpve the directory entry.
*
/
error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);

if (error) {
drmu_t x_commi t (tx);
goto out;

}
if (unlinked) {

*

* Hold z_lock so that we can nake sure that the ACL obj
* hasn’t changed. Could have been del eted due to
* zfs_sa_upgrade().
*
/

mut ex_ent er (& p->z_| ock);

mut ex_ent er (& p->v_| ock);

(void) sa_l ookup(zp->z_sa_hdl, SA ZPL_XATTR(zfsvfs),
& attr_obj _unlinked, sizeof (xattr_obj_unlinked));

del ete_now = may_del ete_now && !toobig &&

vp->v_count == 1 && !vn_has_cached_data(vp) &&
xattr_obj == xattr_obj_unlinked && zfs_external _acl (zp) ==
acl _obj ;

mut ex_exi t (&p->v_| ock);

}

if (delete_now) {
if (xattr_obj_unlinked) {
ASSERT3U(xzp->z_links, ==, 2);
mut ex_ent er (& zp->z_| ock) ;
xzp->z_unlinked = 1;
xzp->z_links =0

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 7

1713 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LI NKS(zfsvfs),
1714 &zp->z_links, sizeof (xzp- >z _links), tx);
1715 ASSERT3U(error, ==, 0);
1716 nut ex eX|t(&xzp >z_| ock);
1717 zfs_unl i nked_add(xzp, tx)
1719 if (zp->z_is sa)
1720 error = sa_renove(zp->z_sa_hdl,
1721 SA_ZPL_XATTR(zfsvfs), tx);
1722 el se
1723 error = sa_update(zp->z_sa_hdl,
1724 SA ZPL_XATTR(zfsvfs), &null_xattr,
1725 sizeof (uint64_t), tx);
1726 ASSERTO(error);
1722 ASSERT3U(error, ==, 0);
1727 }
1728 mut ex_ent er (& p->v_| ock);
1729 vp->v_count - -;
1730 ASSERTO(vp->v_count);
1726 ASSERT3U(vp->v_count, ==, 0);
1731 mut ex_exi t (&p->v_| ock) ;
1732 mut ex_exi t (& p->z_| ock) ;
1733 zfs_znode_del ete(zp, tx);
1734 } else if (unlinked)
1735 mut ex_exi t (&p->z_| ock);
1736 zfs_unlinked_add(zp, tx);
1737 1
1739 txtype = TX_REMOVE;
1740 if (fl ags & FI GNORECASE)
1741 txtype | = TX C;
1742 zfs_l og_renove(zil og, tx t xtype, dzp, nane, obj);
1744 dmu_t x_commi t (tx);
1745 out:
1746 if (real nnp)
1747 pn_free(real nnp);
1749 zfs_dirent _unl ock(dl);
1751 if (!delete_now)
1752 VN_RELE(vp);
1753 if (xzp)
1754 VN_RELE(ZTOV(xzp)) ;
1756 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVAYS)
1757 zil _commt(zilog, 0);
1759 ZFS_EXI T(zfsvfs);
1760 return (error);
1761 }
__unchanged_portion_onitted_
2597 | *
2598 * Set the file attributes to the values contained in the
2599 * vattr structure.
2600 *
2601 * I'N: vp - vnode of file to be nodified.
2602 * vap - new attribute val ues.
2603 * If AT_XVATTR set, then optional attrs are being set
2604 * flags - ATTR_UTI ME set if non-default time val ues provi ded.
2605 * - ATTR_NOACLCHECK (CI FS context only).
2606 * cr - credentials of caller.
2607 * ct - caller context
2608 *
2609 * RETURN: O if success

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2610 * error code if failure

2611 *

2612 * Ti mest anps:

2613 * vp - ctinme updated, ntime updated if size changed.
2614 *

2615 /* ARGSUSED */
2616 static int
2617 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,

2618 caller_context_t *ct)

2619 {

2620 znode_t *zp = VTQZ(vp);

2621 zfsvfs_t *zfsvfs = zp->z_zfsvfs;

2622 zilog_t *zil og;

2623 drmu_t x_t *tX;

2624 vattr_t ol dva;

2625 xvattr_t tnpxvattr;

2626 uint_t mask = vap- >va_nask;

2627 uint_t saved_mask;

2628 int trimmsk = 0;

2629 ui nt 64_t new_node;

2630 ui nt64_t new_ui d, new_gid;

2631 ui nt 64_t xattr_obj;

2632 ui nt 64_t minme[2], ctine[2];

2633 znode_t *attrzp;

2634 int need_policy = FALSE;

2635 int err, err2;

2636 zfs_fuid_info_t *fuidp = NULL;

2637 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t
2638 xoptattr_t *xoap;

2639 zfs_acl _t *acl P

2640 bool ean_t ski pacl chk = (flags & ATTR_NOACLCHECK) ? B_TRUE :
2641 bool ean_t fuid dirtied = B_FALSE;

2642 sa_bulk_attr_t bul k[7], xattr_bul k[7];

2643 int count = 0, xattr_count = O0;

2645 if (mask == 0)

2646 return (0);

2648 if (mask & AT_NGCSET)

2649 return (EINVAL);

2651 ZFS_ENTER(zf svfs);

2652 ZFS_VERI FY_ZP(zp);

2654 zilog = zfsvfs->z_| og;

2656 /*

2657 * Make sure that if we have epheneral uid/gid or xvattr specified
2658 * that file systemis at proper version |evel

2659 */

2661 if (zfsvfs->z_use_fuids == B_FALSE &&

2662 (((mask & AT_UI D) && IS > EPHEMERAL (vap->va_uid)) ||
2663 ((mask & AT_G D) && |'S EPHEMERAL(vap->va_gid)) ||
2664 (mask & AT_XVATTR))) {

2665 ZFS_EXI T(zfsvfs);

2666 return (EINVAL);

2667 }

2669 if (mask & AT_SIZE && vp->v_type == VDIR) {

2670 ZFS EXI T(zfsvfs);

2671 return (EISDIR);

2672 }

2674 if (mask & AT _SIZE && vp->v_type ! = VREG && vp->v_type != VFIFO {

2675 ZFS EXI T(zfsvfs);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2676
2677

2679
2680
2681
2682
2683

2685

2687
2688
2689
2690
2691
2692
2693
2694
2695

2697
2698
2699
2700

2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714

2716
2717
2718

2720
2721
2722
2723
2724

2726
2727
2728

2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741

top:

return (EINVAL);
}

*

* |f this is an xvattr_t, then get a pointer to the structure of
* optional attributes. |If this is NULL, then we have a vattr_t.
*/

xoap = xva_get xoptattr(xvap);

xva_init (& npxvattr);
*

* Imutable files can only alter immtable bit and atine
*/

if ((zp->z_pflags & ZFS_| MMUTABLE) &&
((mask™ & (AT_SI ZE| AT_Ul D| AT_G D| AT_MI1 ME| AT_MODE)) | |
((mask & AT_XVATTR) && XVA | SSET_REQ(xvap, XAT_CREATETIME)))) {
ZFS_EXI T(zfsvfs);
return (EPERM;

if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
ZFS_EXI T(zf svfs);
return (EPERM;

}
/*
* Verify tinestanps doesn’t overflow 32 bits.
* ZFS can handl e |arge tinestanps, but 32bit syscalls can't
* handl e tines greater than 2039. This check should be renpved
*

once large tinmestanps are fully supported.
*
if (mask & (AT_ATIME | AT_MII ME))
if (((mask & AT_ATIME) && TI MESPEC_OVERFLON &ap->va_atine)) ||
((mask & AT_MII ME) && Tl MESPEC_OVERFLOW &vap->va_ntime))) {
ZFS EXI T(zfsvfs);
return (EO\/ERFLO/\);

attrzp = NULL;
acl p = NULL;

/* Can this be noved to before the top |abel ? */
if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
ZFS_EXI T(zfsvfs);
return (EROFS);
}

/*
* First validate perm ssions
*/

if (mask & AT_SIZE) {
err = zfs_zaccess(zp, ACE_WRI TE_DATA, 0, skipaclchk, cr);
if (err)
ZFS_EXI T(zfsvfs);
return (err);

—~—

* ok Ok ok F ok

XXX - Note, we are not providing any open
node flags here (like FNDELAY), so we may
block if there are |l ocks present... this
shoul d be addressed in openat ().

/

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 10

2742
2743
2744
2745
2746
2747
2748

2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760

2762
2763
2764
2765

2767
2768
2769
2770

2772
2773

2775
2776
2777

2779
2780
2781

2783
2784
2785
2786
2787
2788
2789
2790

2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

/* XXX - would it be OKto generate a |og record here? */
err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);

if (err) {

ZFS_EXI T(zfsvfs);
return (err);

}

if (mask & (AT_ATI ME| AT_MIIME) ||
((mask & AT_XVATTR) && (XVA | SSET_REQ(xvap, XAT_HI DDEN) ||
XVA | SSET_REQ(xvap, XAT_ READONLY) ||
XVA_| SSET_REQ(xvap, XAT_ARCHI VE) ||
XVA_| SSET_REQ xvap, XAT_OFFLINE) ||
XVA_| SSET_REQ(xvap, XAT_SPARSE) ||
XVA_| SSET_REQ(xvap, XAT_CREATETI ME) ||
XVA_I SSET_REQ(xvap, XAT_SYSTEM)))
“need_policy = zfs_zaccess(zp, ACE_WRI TE_ATTRI BUTES, 0,
ski pacl chk, cr);

}
if (rmsk &(AT UID|AT GID)) {
dmask = (nmask & (AT_U D AT_AD));
|nt take owner ;
int take_group;
/*

* NOTE: even if a new node is being set,
* we may clear S ISUD S I1SA@D bits.

*/

if (!(mask & AT_MODE))
vap- >va_node = zp->z_node;

/*
* Take ownership or chgrp to group we are a nenber of
*/

take_owner = (mask & AT_UI D) && (vap->va_uid == crgetuid(cr));
take_group = (mask & AT_G D) &&
zfs_groupnenber (zf svfs, vap->va_gid, cr);

/*

* |f both AT_U D and AT_A D are set then take_owner and

* take_group nust both be set in order to allow taking
owner shi p

*
*
* Otherwi se, send the check through secpolicy_vnode_setattr()
*
*/

if (((idmask == (AT_UID|AT_G D)) && take_owner && take_group) ||
((idmask == AT_UI D) && take_owner) ||

((idmask == AT_G D) && take_group))

{
if (zfs_zaccess(zp, ACE_WRI TE_OMNNER, O,
ski pacl chk, cr) == 0) {
/*

* Renpve setuid/setgid for non-privileged users
*
/
secpol i cy_setid_clear(vap, cr);
trimmsk = (mask & (AT_UIDAT_GD));
} else {
need_policy = TRUE

} else {
need_policy = TRUE
}

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2808

2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829

2831
2832
2833
2834
2835
2836
2837
2838
2839

2841
2842
2843
2844
2845
2846
2847
2848
2849

2851
2852
2853
2854
2855
2856
2857
2858
2859

2861
2862
2863
2864
2865
2866
2867
2868
2869

2871
2872
2873

}

nmut ex_ent
ol dva. va_
zfs_fuid_
if (mask

/*

}

}

}

}

}

er(&zp- >z_| ock);

node = zp->z_node;

_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
& AT _XVATTR) {

* Update xvattr mask to include only those attributes
that are actually changi ng.

the bits will be restored prior to actually setting
the attributes so the caller thinks they were set.

* Ok ok ok *

f (XVA | SSET_REQ xvap, XAT_APPENDONLY)) {
i f (xoap->xoa_appendonly !=
((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
need_policy = TRUE;
} else {
XVA CLR REQ(xvap, XAT_APPENDONLY);

XVA_SET_REQ(& npxvatt7, XAT_APPENDONLY);

if (XVA_ ISSET _REQ(xvap, XAT_NOUNLINK)) {
f (xoap->xoa_nounlink !=
((zp->z_pflags & ZFS_NOUNLINK) !'= 0)) {
need_pol i cy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NOUNLI NK) ;
XVA_SET_REQ(& nmpxvattr, XAT_ NOUNLI NK) ;

f (XVA_I SSET_REQ(xvap, XAT_| MUTABLE)) {
i f (xoap->xoa_immutable !=
((zp->z_pflags & ZFS | MUTABLE) != 0)) {
need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_| MMUTABLE);
XVA_SET_REQ(&t mpxvattr, XAT_| MMUTABLE) ;

if (XVA | SSET_REQ xvap, XAT NODUMP)) {
i f (xoap->xoa_nodunp !=
((zp->z pflags & ZFS NODUNP) 1=0)) {
need_pol icy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_NODUMP) ;
XVA_SET_REQ & mpxvattr, XAT NODUNP);

f (XVA_I SSET_REQ xvap, XAT_AV_MODI FIED)) {
if (xoap->xoa_av_nodified !=
((zp->z_pflags & ZFS_AV_MXDIFIED) != 0)) {
need_pol i cy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_MODI Fl ED);

XVA_SET_REQ & npxvattr, XAT_AV_MJ)I FI ED) ;

if (XVA | SSET_REQ xvap, XAT_ AV QUARANTl NED)) {
if ((vp->v_type != VREG &&
xoap- >xoa_av_quarantined) ||

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

2874
2875
2876
2877
2878
2879
2880
2881

2883
2884
2885
2886
2887

2889
2890
2891
2892
2893
2894

2896

2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910

2912
2913
2914
2915
2916
2917
2918
2919

2921
2922
2923
2924
2925
2926
2927
2928
2929
2930

2932
2933
2934

2936
2937
2938
2939

}

xoap- >xoa_av_quarantined ! =

((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {

need_policy = TRUE;
} else {
XVA_CLR_REQ(xvap, XAT_AV_QUARANTI NED) ;

XVA_SET_REQ(& npxvattT, XAT AV_QUARANTI NED);

}

if (XVA | SSET_REQ xvap, XAT REPARSE)) {
mut ex_exit (&p->z_l ock);
ZFS_EXI T(zfsvfs);
return (EPERV;

}

if (need_policy == FALSE &&
(XVA_| SSET_REQ(xvap, XAT_AV_SCANSTAWP) ||
XVA_| SSET_REQ(xvap, XAT_OPAQUE))) {
need_pol i cy = TRUE;

mut ex_exi t (&p->z_l ock);

if (mask & AT_

}

{
if (zfs zaccess(zp, ACE_WRI TE_ACL, 0, skipaclchk, cr)
err = secpolicy_setid_setsticky_clear(vp, vap,
&ol dva, cr);
if (err) {
ZFS_EXI T(zfsvfs);
return (err);

}

trimnmask | = AT_MODE
} else {

need_pol i cy = TRUE;
}

if (need_policy) {
/ *

}
/*

* If trimmask is set then take ownership
* has been granted or wite_acl is present and user

=0) {

* has the ability to nodify node. |In that case renove

* U D GD and or MODE from nask so that
* secpolicy_vnode_setattr() doesn't revoke it.
*/

if (trimmask)
saved_mask = vap->va_nask;
vap- >va_mask &= ~tri m mask;

err = secpol icy_vnode_setattr(cr, vp, vap, &oldva, flags,

(int (*)(void *, int, cred_t *))zfs_zaccess_unix,
if (err) {
ZFS_EXI T(zfsvfs);
return (err);

}

if (trimnmask)
vap->va_nask | = saved_nask;

* secpolicy_vnode_setattr, or take ownership may have
* changed va_mask

*/

zp);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 13

2940 mask = vap- >va_nask;

2942 if ((mask & (AT_UD | AT_GD))) {

2943 err = sa_|l ookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),

2944 &xattr_obj, sizeof (xattr _obj));

2946 if (err == 0 & xattr_obj) {

2947 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2948 if (err)

2949 goto out 2;

2950 }

2951 if (mask & AT_UID) {

2952 new uid = zfs_fuid_create(zfsvfs,

2953 (uint64_tyvap->va_uid, cr, ZFS OMNER, &f uidp);
2954 if (newuid != zp->z_uid 8&

2955 zfs_fuid_overquota(zfsvfs, B FALSE, new_uid)) {
2956 if (attrzp)

2957 VN_RELE(ZTOV(attrzp));

2958 err = EDQUCT,;

2959 goto out 2;

2960 }

2961 }

2963 if (mask & AT GID) {

2964 new gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2965 cr, ZFS_GROUP, &fwdp)

2966 if (new_gl d!'= zp->z_gid &&

2967 zfs_fuid_overquota(zfsvfs, B TRUE, new gid)) {
2968 Tif (attrz p)

2969 VN_RELE(ZTOV(attrzp));

2970 err = EDQUCT;

2971 goto out2;

2972 }

2973 }

2974 }

2975 tx = dnu_tx_create(zfsvfs->z_os);

2977 if (mask & AT_MODE) {

2978 uint64_t pnode = _zp- >z_node;

2979 uint 64_t acl _obj

2980 new_node = (perde & S I FMI) | (vap->va_npde & ~S_| FMI);
2982 if (err = zfs_acl _chnod_setattr(zp, &aclp, new_node))
2983 goto out;

2985 mut ex_ent er (&p->z_| ock) ;

2986 if (lzp->z_is_sa && ((acl _obj = zfs_external _acl (zp)) !'= 0)) {
2987 /*

2988 * Are we upgrading ACL fromold VO fornat

2989 * to V1 format?

2990 */

2991 if (zfsvfs->z_version >= ZPL_VERSI ON_FU D &&

2992 zfs_znode_acl _version(zp) ==

2993 ZFS_ACL_VERSI ON_I NI TIAL) * {

2994 “dmu_tx_hol d_free(tx, acl_obj, O,

2995 “DMJ_OBJECT_END);

2996 dmu_tx_hold wite(tx, DMJ_NEW OBJECT,

2997 0, acl p->z_acl _bytes);

2998 } else {

2999 dmu_t x_hol d_wite(tx, acl_obj, O,

3000 acl p->z_acl _bytes);

3001 }

3002 } else if (!zp->z_is_sa & acl p->z_acl _bytes > ZFS_ACE_SPACE) {
3003 drmu_t x hol d wrlte(tx DIVUNEWCBJECT,

3004 ~0, acl p->z_acl _bytes);

3005 }

new usr/src/uts/comon/ fs/zfs/zfs_vnops.c

3006 mut ex_exi t (&p->z_| ock);

3007 dmu_t x_hol d_sa(tx, zp->z_sa_hdl, B_TRUE);

3008 } else {

3009 if ((mask & AT_XVATTR) &&

3010 XVA_| SSET_REQ(xvap, XAT_AV_SCANSTAMWP))

3011 drmu_t x_hol d_sa(tx, zp->z_sa_hdl, B_TRUE);
3012 el se

3013 dnmu_t x_hol d_sa(tx, zp->z_sa_hdl, B_FALSE);
3014 }

3016 if (attrzp) {

3017 dmu_t x_hol d_sa(tx, attrzp->z_sa_hdl, B _FALSE);
3018 }

3020 fuid_dirtied = zfsvfs->z_fuid_dirty;

3021 if (fuid_dirtied)

3022 zfs_fuid_txhol d(zfsvfs, tx);

3024 zfs_sa_upgrade_t xhol ds(tx, zp);

3026 err = dmu_tx_assign(tx, TXG NOWAIT);

3027 if (err) {

3028 if (err == ERESTART)

3029 dmu_t x_wai t (tx);

3030 goto out;

3031 }

3033 count = O;

3034 /*

3035 * Set each attribute requested.

3036 * We group settings according to the |locks they need to acquire.
3037 *

3038 * Note: you cannot set ctime directly, although it will be
3039 * updated as a side-effect of calling this function.

3040 */

3043 if (mask & (AT_ UID|A G D| AT_MODE))

3044 mut ex_ent er (&p->z_acl _| ock);

3045 mut ex_ent er (8&p->z_| ock);

3047 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_FLAGS(zfsvfs), NULL,
3048 & p->z_pflags, sizeof (zp->z_pflags));

3050 if (attrzp) {

3051 if (mask & (AT_U D| AT_G D] AT_MODE))

3052 mut ex_enter (&attrzp->z_acl _| ock);

3053 mut ex_enter (&attrzp->z_| ock);

3054 SA _ADD_BULK_ATTR(xattr_bul k, xattr_count,

3055 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3056 sizeof (attrzp->z pflags));

3057 }

3059 if (mask & (AT_U D AT_GD)) {

3061 if (mask & AT_UID) {

3062 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_Ul D(zfsvfs),
3063 &new UI d, sizeof (new_uid));

3064 zp->z_uid = new_uid;

3065 if (attrzp)

3066 SA_ADD BULK_ATTR(xattr_bul k, xattr_count,
3067 SA_ZPL_Ul D(zf svfs), NULL &new_ui d,
3068 sizeof (new_uid));

3069 attrzp->z_uid = new_ui d;

3070 }

3071 }

14

NULL,

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 15

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

16

3073 if (msk & AT A D) {

3074 SA_ADD BULK_ATTR(bul k, count, SA ZPL_G D(zfsvfs),
3075 NULL, &new_gid, sizeof (new_gid));

3076 zp->z_gid = new_gid;

3077 if (attrzp) {

3078 SA ADD BULK_ATTR(xattr_bul k, xattr_count,
3079 SA ZPL_Q D(zf svfs), NULL, &new gid,
3080 si zeof (new_gid));

3081 attrzp->z_gid = new_gid,

3082 }

3083 }

3084 if ('(mask & AT_MODE)) {

3085 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MODE(zf svfs),
3086 NULL, &new node, sizeof (new node));

3087 new_node = zp->z nDde;

3088

3089 err = zfs_acl _chown_setattr(zp);

3090 ASSERT(err == 0);

3091 if (attrzp) {

3092 err = zfs_acl _chown_setattr(attrzp);

3093 ASSERT(err == 0);

3094 }

3095 }

3097 if (mask & AT_MODE) {

3098 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MODE(zfsvfs), NULL,
3099 &new node, sizeof (new_node));

3100 zp->z_node = new_node;

3101 ASSERT3U((u| ntptr t)acI p, !'=, NULL);

3102 err = zfs_acl set_comon(zp, aclp, cr, tx);

3103 ASSERTO(err) ;

3099 ASSERT3U(err, ==, ;

3104 if (zp->z_acl _cached)

3105 zfs_acl _free(zp->z_acl _cached);

3106 zp->z_acl _cached = acl p;

3107 acl p = NULL;

3108 }

3111 if (mask & AT_ATIME) {

3112 ZFS_TI ME_ENCODE(& ap- >va_atime, zp->z_atine);

3113 SA ADD BULK_ATTR(bul k, count, SA ZPL_ATI I\/E(zfsvfs) NULL,
3114 & p->z_atine, si zeof (zp- >z_atine));

3115 }

3117 if (mask & AT_MII ME)

3118 ZFS_TI ME_ENCODE(& ap->va_ntinme, ntine);

3119 SA_ADD BULK_ATTR(bul k, count, SA ZPL_| M| ME(zf svfs), NULL,
3120 mine, sizeof (r'rtlma));

3121 }

3123 /* XXX - shouldn’t this be done *before* the ATI ME/ MIl ME checks? */
3124 if (mask & AT_SIZE && ! (mask & AT_MTI ME))

3125 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_MrI ME(zf svfs),

3126 NULL, ntinme, si zeof (mti ma))

3127 SA_ADD_BULK_ATTR(bul k, count, SA ZPL_CTI ME(zfsvfs), NULL,
3128 &ctime, sizeof (cti ne));

3129 zfs tst anp_updat e_set up(zp, CONTENT_MODI FI ED, ntine, ctine,
3130 B_TRUE) ;

3131 } elseif (maskl—o){

3132 SA_ADD BULK_ATTR(bul k, count, SA_ZPL_CTI ME(zf svfs), NULL,
3133 &ctime, sizeof (ctine));

3134 zfs_tstanp_updat e_setup(zp, STATE_CHANGED, ntine, ctinme,
3135 B _TRUE) ;

3136 if (attrzp) {

3137 SA ADD_BULK_ATTR(xattr_bul k, xattr_count,
3138 SA_ZPL_CTI ME(zf svfs), NULL,

3139 &ctime, sizeof (ctine));

3140 zfs_tstanp_update_setup(attrzp, STATE_CHANGED,
3141 ntime, ctime, B_TRUE);

3142 }

3143 1

3144 /*

3145 * Do this after setting tinmestanps to prevent tinmestanp
3146 * update fromtoggling bit

3147 */

3149 if (xoap && (mask & AT_XVATTR)) {

3151 /*

3152 * restore trimmed off nmasks

3153 * so that return nasks can be set for caller.
3154 */

3156 if (XVA I SSET_REQ & npxvattr, XAT_APPENDONLY)) {
3157 XVA_SET_REQ(xvap, XAT_APPENDONLY);

3158 }

3159 if (XVA | SSET_REQ &t npxvattr, XAT NOUNLINK)) {
3160 XVA_SET_REQ(xvap, XAT_NOUNLI NK);

3161 }

3162 1f (XVA_| SSET_REQ(& npxvattr, XAT_| MMUTABLE)) {
3163 XVA_SET_REQ(xvap, XAT_| MMUTABLE) ;

3164 }

3165 1f (XVA_I SSET_REQ(& npxvattr, XAT_NODUWP)) {
3166 XVA_SET_REQ(xvap, XAT_NCDUMP);

3167 }

3168 if (XVA | SSET_REQ & npxvattr, XAT_AV_MODI FIED)) {
3169 XVA _SET_REQ xvap, XAT_AV_MODI Fl ED);

3170 }

3171 if (XVA | SSET_REQ &t npxvattr, XAT_AV_QUARANTI NED)) {
3172 XVA_SET_REQ(xvap, XAT_AV_QUARANTI NED) ;
3173 }

3175 if (XVA | SSET_REQ xvap, XAT_AV_SCANSTAMP))

3176 ASSERT(vp->v_type == VREG);

3178 zfs_xvattr_set(zp, xvap, tx);

3179 }

3181 if (fuid_dirtied)

3182 zfs_fuid_sync(zfsvfs, tx);

3184 if (mask 1= 0)

3185 zfs_log_setattr(zilog, tx, TX SETATTR zp, vap, nask, fuidp);
3187 mut ex_exi t (&p->z_| ock);

3188 if (mask & (AT_U D AT_ GD|AT MCDE))

3189 mut ex_exit (&p->z_acl _| ock);

3191 if (attrzp) {

3192 if (mask & (AT_U D| AT_G D] AT_MODE))

3193 mut ex_exit(&attrzp->z_acl _| ock);

3194 nut ex_exi t (&ttrzp->z_l ock);

3195 }

3196 out:

3197 if (err == 0 & attrzp)

3198 err2 = sa_bul k_update(attrzp->z_sa_hdl, xattr_bulk,
3199 xattr_count, tx);

3200 ASSERT(err2 == 0);

3201 1

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3203 if (attrzp)
3204 VN_RELE(ZTOV(attrzp));
3205 if (aclp)
3206 zfs_acl _free(acl p);
3208 if (fuidp) {
3209 zfs_fuid_info_free(fuidp);
3210 fuidp = NULL;
3211 }
3213 if (err) {
3214 dmu_t x_abort (tx);
3215 if (err == ERESTART)
3216 goto top;
3217 } else {
3218 err2 = sa_bul k update(zp >z_sa_hdl, bulk, count, tx);
3219 dmu_t x_commi t (Tx
3220 }
3222 out 2
3223 if (zfsvfs->z_os->0s_sync == ZFS_SYNC_ALVWAYS)
3224 zil _commit(zilog, O);
3226 ZFS_EXI T(zf svfs)
3227 return (err);
3228 }
__unchanged_portion_onitted_
3327 I*
3328 * Move an entry fromthe provided source directory to the target
3329 * directory. Change the entry nane as indicated.
3330 *
3331 * I'N: sdvp - Source directory containing the "old entry".
3332 * snm - Od entry nane.
3333 * tdvp - Target directory to contain the "new entry".
3334 * tnm - New entry nane.
3335 * cr - credentials of caller.
3336 * ct - caller context
3337 * flags - case flags
3338 *
3339 * RETURN: O if success
3340 * error code if failure
3341 *
3342 * Timestanps:
3343 * sdvp, tdvp - ctine|ntime updated
3344 */
3345 /* ARGSUSED*/

3346 static int
3347 zfs_renane(vnode_t *sdvp, char *snm vnode_t *tdvp, char *tnm cred_t

3348
3349 {
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360

3362
3363
3364

caller_context_t *ct, int flags)
znode_t *tdzp, *szp, *tzp;
znode_t *sdzp = VIOZ(sdvp);
zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
zilog_t *zil og;
vnode_t *real vp;
zfs_dirlock_t *sdl, *tdl;
dmu_t x_t *tX;
zfs_zl ock_t *zl;
int cnp, serr, terr;
int error = 0;
int zflg = 0;

ZFS_ENTER(zf svfs);
ZFS_VERI FY. ZP(sdzp)
zilog = zfsvfs->z_| og;

*cr,

17

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3366
3367
3368
3369
3370

3372
3373
3374
3375

3377
3378
3379
3380
3381
3382
3383

3385
3386

3388
3389
3390
3391

3393
3394
3395
3396
3397
3398
3399
3400
3401

3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418

3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430

top:

/*
* Make sure we have the real vp for the target directory.
*
/
if (VOP_REALVP(tdvp, &realvp, ct) == 0)
tdvp = real vp;

if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
ZFS_EXI T(zfsvfs);
return (EXDEV);

}

tdzp = VTQZ(tdvp);
ZFS_VERI FY_ZP(t dzp)
if (zfsvfs->z_utf8 & u8_validate(tnm
strien(tnn), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXI T(zfsvfs);
return (EILSEQ;
}

if (flags & Fl GNORECASE)
zflg | = ZCl LOCK;

szp = NULL;
tzp = NULL;
zl = NULL;
/*

* This is to prevent the creation of links into attribute space

* by renanming a linked file into/outof an attribute directory.

* See the comment in zfs_link() for why this is considered bad.

*

if ((tdzp->z_pflags & ZFS XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
ZFS_EXI T(zfsvfs);
return (EINVAL);

}

/*

* Lock source and target directory entries. To prevent deadl ock,
* a lock ordering nust be defined. W lock the directory with

* the smallest object id first, or if it’'s atie, the one with
* the lexically first nane.

*/

if (sdzp->z_id < tdzp->z_id) {

cmp = -1;
} else if (sdzp->z_id > tdzp->z_id) {

c
} else {/

* First conpare the two name argunents w thout
* consi dering any case folding.

*

int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TQOUPPER) ;
cnp = u8 strcnp(snm tnm 0, nofold, US_UN CODE_LATEST, &error);
ASSERT(error =0 || !zf svfs- >z_utf8);

if (crrp 0) {

* PCSI X: "If the old argunment and the new argunent
* both refer to links to the same existing file,

* the renane() function shall return successfully
* and performno other action.”

*/

ZFS_EXI T(zfsvfs);

return (0);

18

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462

3464
3465
3466
3467
3468
3469
3470
3471

3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484

3486
3487
3488
3489
3490
3491
3492
3493
3494

3496

If the file systemis case-folding, then we nmay
have sone nore checking to do. A case-folding file
systemis either supporting m xed case sensitivity
access or is conpletely case-insensitive. Note
that the file systemis always case preserving.

I'n mxed sensitivity node case sensitive behavior
is the default. FlIGNORECASE nust be used to
explicitly request case insensitive behavior.

If the source and target names provided differ only
by case (e.g., a request to renanme 'tim to 'Tim),
we will treat this as a special case in the
case-insensitive node: as long as the source nane
is an exact match, we will allow this to proceed as
a nane- change request.

* ok % ok ok ok ok 3k ok % b ok Ok k% ok F

if ((zfsvfs->z_case == ZFS CASE_I NSENSI Tl VE |
(zfsvfs->z_case == ZFS_CASE_M XED &&
flags & FI GNORECASE)) &&
u8_strecmp(snm tnm 0, zfsvfs->z_norm US_UN CODE_LATEST,
&err;)r) == 0) {
*

* case preserving renane request, require exact
* nanme natches

zfl g | = ZCl EXACT;
zflg & ~ZC LOXK;

}

/*

* |f the source and destination directories are the sane, we should
* grab the z_nane_l ock of that directory only once.

*

if (sdzp == tdzp) {
zflg | = ZHAVELOCK;
rw_ent er (&dzp->z_nane_| ock, RW READER);

}
if (cnmp < 0) {
serr = zfs_dirent _| ock(&sdl, sdzp, snm &szp,
ZEXI STS | zflg, NULL, NULL)
terr = zfs_dirent_l ock(&tdl,
tdzp, tnm & zp, ZRENAM NG | zflg, NULL, NULL);
} else {
terr = zfs_dirent _| ock(&tdl,
tdzp, tnm &t zp, zflg, NULL, NULL);
serr = zfs_dirent_| ock(&sdl,
sdzp, snm &szp, ZEXISTS | ZRENAM NG | zflg,
NULL, NULL)
}

if (serr) {
/*

* Source entry invalid or not there.

*/
if (lterr) {
zfs_dirent _unl ock(tdl);
if (tzp)
VN_RELE(ZTOV(t zp));
}

if (sdzp == tdzp)

new usr/src/uts/comon/fs/zfs/zfs_vnops.c

3497

3499
3500
3501
3502
3503
3504
3505
3506

3508
3509

3511
3512
3513
3514
3515

3517
3518
3519
3520
3521
3522

3524
3525

3527
3528
3529
3530
3531
3532
3533
3534

3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562

rw_exit(&sdzp->z_nane_| ock);

if (strenp(snm "..") == 0)
serr = EINVAL;

ZFS_EXI T(zfsvfs);

return (serr);

}

if (terr) {
zfs_dirent _unl ock(sdl);
VN_RELE(ZTOV(szp));

if (sdzp == tdzp)
rw_exit(&sdzp->z_nane_| ock);

if (strenmp(tnm "..") == 0)
terr = EINVAL;

ZFS_EXI T(zfsvfs);

return (terr);

Mist have wite access at the source to renove the old entry
and wite access at the target to create the new entry.

Note that if target and source are the sane, this can be
/done in a single check.

S

if (error = zfs_zaccess_renanme(sdzp, szp, tdzp, tzp, cr))
goto out;

if (ZTOV(szp)->v_type == VDIR) {
/*

* Check to neke sure renanme is valid.
* Can't do a nove like this: /usr/alb to /usr/albl/c/d
*
/
if (error = zfs_renane_| ock(szp, tdzp, sdzp, &zl))
goto out;

}

/*
* Does target exist?
*

if (tzp) {
/*
* Source and target must be the same type.
*
/

if (ZTOV(szp)->v_type == VDIR) {
if (ZTOV(tzp)->v_type != VDIR) {
error = ENOTDI R
goto out;

}
} else {
if (ZTOV(tzp)->v_type == VDIR) {
error = EISDR;
goto out;

——

*

* POSI X dictates that when the source and target
* entries refer to the sane file object, renane
* must do nothing and exit without error.

*/

if (szp->z_id == tzp->z_id) {
error = 0;
goto out;

}

20

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 21

3563 }

3565 vnevent _renane_src(ZTOV(szp), sdvp, snm ct);

3566 if (tzp)

3567 vnevent _renanme_dest (ZTOV(tzp), tdvp, tnm ct);
3569 /*

3570 * notify the target directory if it is not the same
3571 * as source directory.

3572 */

3573 if (tdvp !'= sdvp) {

3574 vnevent _renane_dest _dir(tdvp, ct);

3575 }

3577 tx = dnu_tx_create(zfsvfs->z_os);

3578 dmu_t x_hol d_sa(tx, szp->z_sa_hdl, B _FALSE);

3579 dmu_t x_hol d_sa(tx, sdzp->z_sa_hdl, B _FALSE);

3580 drmu_t x_hol d_zap(tx, sdzp->z_id, FALSE, snm);

3581 dmu_t x_hol d_zap(tx, tdzp->z_id, TRUE, tnn);

3582 if (sdzp !'= tdzp) {

3583 dmu_t x_ hoI d_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3584 zfs_sa_upgrade_t xhol ds(tx, tdzp);

3585 1

3586 if (tzp) {

3587 dnu_t x_hol d_sa(tx, tzp->z_sa_hdl, B _FALSE);

3588 zfs_sa_upgrade_t xhol ds(tx, tzp);

3589 }

3591 zfs_sa_upgrade_t xhol ds(tx, szp);

3592 dmu_tx_hol d_zap(tx, zfsvfs->z unl i nkedobj, FALSE, NULL);
3593 error = dnu_tx_assign(tx, TXG_NOWAIT);

3594 if (error) {

3595 if (zI !'= NULL)

3596 zfs_renane_unl ock(&zl);

3597 zfs_dirent _unl ock(sdl);

3598 zfs_dirent _unl ock(tdl);

3600 if (sdzp == tdzp)

3601 rw_exit(&sdzp->z_nane_| ock);

3603 VN_RELE(ZTOV(szp));

3604 if (tzp)

3605 VN_RELE(ZTOV(t zp));

3606 if (error == ERESTART) {

3607 drmu_t x_wai t (tx);

3608 dmu_t x_abort (tx);

3609 goto top;

3610 }

3611 dnmu_t x_abort (tx);

3612 ZFS EXI T(zfsvfs);

3613 return (error);

3614 }

3616 if (tzp) /* Attenpt to renmpve the existing target */
3617 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3619 if (error == 0) {

3620 error = zfs_link_create(tdl, szp, tx, ZRENAM NG ;
3621 if (error == {

3622 szp->z_pflags | = ZFS_AV_MODI Fl ED;

3624 error = sa_update(szp->z_sa_hdl, SA ZPL_FLAGS(zfsvfs),
3625 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3626 ASSERTO(error);

3622 ASSERT3U(error, ==, 0);

new usr/src/uts/comon/fs/zfs/zfs_vnops.c 22

3628 error = zfs_l i nk_destroy(sdl, szp, tx, ZRENAM NG NULL);
3629 if (error == 0) {

3630 zfs_log_renanme(zilog, tx, TX RENAME |

3631 (flags & FIGNORECASE ? TX_C : 0), sdzp,
3632 sdl ->dl _name, tdzp, tdl->dl _nane, szp);

3634 /*

3635 * Update path information for the target vnode
3636 */

3637 vn_renanepat h(tdvp, ZTOV(szp), tnm

3638 strlien(tnm);

3639 } else {
3640 /
3641

3642

3643

3644

3645

3646

3647

At this point, we have successfully created
the target nane, but have failed to renove
the source name. Since the create was done
with the ZRENAM NG flag, there are
conplications; for one, the link count is
wong. The easiest way to deal with this
is to renove the newy created target, and
3648 return the original error. This nust

3649 succeed; fortunately, it is very unlikely to
3650 * fail, since we just created it.

3651 */

3652 VERI FY3U(zfs_link destroy(tdl szp, tx,

3653 ZRENAM NG, NULL), ==, 0

3654 }

3655 }

3656 }

* ok ok ok k% k% kK

3658 drmu_t x_commi t (tx);

3659 out:

3660 if (zI !'= NULL)

3661 zfs_renane_unl ock(&zl);

3663 zfs_dirent _unl ock(sdl);
3664 zfs_dirent _unl ock(tdl);

3666 if (sdzp == tdzp)
3667 rw_exit(&sdzp->z_nane_| ock);

3670 VN_RELE(ZTOV(szp));
3671 if (tzp)
3672 VN_RELE(ZTOV(t zp));

3674 if (zfsvfs->z_os->0s_sync == ZFS SYNC_ALWAYS)
3675 zil _commt(zilog, 0);

3677 ZFS_EXI T(zfsvfs);

3678 return (error);

3679 }
__unchanged_portion_onitted_

new usr/src/uts/comon/ fs/zfs/zfs_znode. c 1 new usr/src/uts/comon/ fs/zfs/zfs_znode.c
LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 #I ncl ude <SyS/ref count . h>
52661 Thu Jul 26 14:19:32 2012 63 #include <sys/stat.h>
new usr/src/uts/comon/fs/zfs/zfs_znode. c 64 #include <sys/zap. h>
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero 65 #include <sys/zfs_znode. h>
LEEE R R R R EEE R EEEEEEEEEEEE R REEEE SRR EEEEEEEEEEEEREEEEEEEEEEESES] 66 #I nCl ude <SyS/ sa. h>
1/* 67 #include <sys/zfs_sa. h>
2 * CDDL HEADER START 68 #include <sys/zfs_stat.h>
3 *
4 * The contents of this file are subject to the terms of the 70 #include "zfs_prop. h"
5 * Common Devel opnent and Distribution License (the "License"). 71 #include "zfs_conutil.h"
6 * You may not use this file except in conpliance with the License.
7 * 73 [*
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
9 * or http://ww. opensol aris.org/os/licensing. 75 * turned on when DEBUG is al so defined.
10 * See the License for the specific |anguage governi ng perm ssions 76 */
11 * and limtations under the License. 77 #ifdef DEBUG
12 = 78 #define ZNODE_STATS
13 * When distributing Covered Code, include this CDDL HEADER in each 79 #endif /* DEBUG */
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the 81 #ifdef ZNODE_STATS
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 #define ZNODE_STAT_ADD(st at) ((stat)++)
17 * information: Portions Copyright [yyyy]l [nane of copyright owner] 83 #el se
18 * 84 #define ZNODE_STAT_ADD(st at) /* nothing */
19 * CDDL HEADER END 85 #endif /* ZNODE_STATS */
20 */
21 /* 87 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved. 88 * Functions needed for userland (ie: |ibzpool) are not put under
23 * Copyright (c) 2012 by Del phix. Al rights reserved. 89 * #ifdef _KERNEL; the rest of the functions have dependencies
24 =/ 90 */(such as VFS logic) that will not conpile easily in userland.
91 *
92 #ifdef _KERNEL
27 /* Portions Copyright 2007 Jereny Teo */ 93 /*
94 * Needed to close a small window in zfs_znode_nove() that allows the zfsvfs to
29 #ifdef _KERNEL 95 * be freed before it can be safely accessed.
30 #include <sys/types. h> 96 */
31 #include <sys/param h> 97 krw ock_t zfsvfs_Iock;
32 #include <sys/tine. h>
33 #include <sys/systm h> 99 static knmem cache_t *znode_cache = NULL;
34 #include <sys/sysnmacros. h>
35 #include <sys/resource. h> 101 /* ARGSUSED*/
36 #include <sys/mtent. h> 102 static void
37 #include <sys/nkdev. h> 103 znode_evi ct _error (dmu_buf _t *dbuf, void *user_ptr)
38 #include <sys/u8_textprep. h> 104 {
39 #include <sys/dsl_dataset. h> 105 /*
40 #include <sys/vfs.h> 106 * We should never drop all dbuf refs without first clearing
41 #include <sys/vfs_opreg. h> 107 * the eviction call back.
42 #include <sys/vnode. h> 108 */
43 #include <sys/file.h> 109 pani c("evicting znode %\ n", user_ptr);
44 #incl ude <sys/knmem h> 110 }
45 #incl ude <sys/errno. h> __unchanged_portion_omtted_
46 #incl ude <sys/unistd. h>
47 #incl ude <sys/node. h> 741 static uint64_t enpty_xattr;
48 #include <sys/atom c. h> 742 static uint64_t pad[4];
49 #incl ude <vni pvn. h> 743 static zfs_acl _phys_t acl _phys;
50 #include "fs/fs_subr.h" 744 | *
51 #include <sys/zfs_dir.h> 745 * Create a new DMJ object to hold a zfs znode.
52 #include <sys/zfs_acl.h> 746 *
53 #include <sys/zfs_ioctl.h> 747 * I'N: dzp - parent directory for new znode
54 #include <sys/zfs_rlock.h> 748 * vap - file attributes for new znode
55 #include <sys/zfs_fuid.h> 749 * tx - dmu transaction id for zap operations
56 #i ncl ude <sys/dnode. h> 750 * cr - credentials of caller
57 #include <sys/fs/zfs.h> 751 * flag - flags:
58 #incl ude <sys/ ki dmap. h> 752 * |'S_ROOT_NCDE - new object will be root
59 #endif /* _KERNEL */ 753 * IS _XATTR - new object is an attribute
754 * bonusl en - length of bonus buffer
61 #include <sys/dmu. h> 755 * setaclp - File/Dir initial ACL

new usr/src/uts/comon/ fs/zfs/zfs_znode. c

756 * fuidp - Tracks fuid allocation.

757 *

758 * QUT: zpp - allocated znode

759 *

760 */

761 void

762 zfs_nknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,

763 (uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids)

764

765 ui nt 64_t crtime[2], atinme[2], ntine[2], ctine[2];

766 ui nt 64_t node, size, links, parent, pflags;

767 ui nt64_t dzp_pflags = 0;

768 uint64_t rdev = 0;

769 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;

770 dmu_buf _t *db;

771 tinmestruc_t now,

772 ui nt64_t gen, obj;

773 int err;

774 int bonusl en;

775 sa_handl e_t *sa_hdl ;

776 dmu_obj ect _type_t obj_type;

777 sa_bulk_attr_t sa_attrs[ZPL_END];

778 int cnt = 0;

779 zfs_acl _locator_cb_t locate = { 0 };

781 ASSERT(vap && (vap->va_mask & (AT _TYPE| AT_MODE)) == (AT _TYPE| AT_MXE));
783 if (zfsvfs->z_replay)

784 obj = vap->va_nodei d;

785 now = vap->va_cti ne; /* see zfs_replay_create() */
786 gen = vap->va_nbl ocks; /* ditto */

787 } else {

788 obj = 0;

789 get hresti me(&ow) ;

790 gen = dmu_t x_get _txg(tx);

791 1

793 obj _type = zfsvfs->z_use_sa ? DMJ_OT_SA : DMJ_OT_ZNCDE;

794 bonusl en = (obj _type == DMJ_OT_SA) ?

795 DN_MAX_BONUSLEN : ZFS_OLD ZNODE_PHYS Sl ZE;

797 /*

798 * Create a new DWUJ obj ect.

799 */

800 /*

801 * There's currently no nmechanismfor pre-reading the blocks that will
802 * be needed to allocate a new object, so we accept the small chance
803 * that there will be an i/o error and we will fail one of the
804 * assertions bel ow

805 */

806 if (vap->va_type == VDIR) {

807 if (zfsvfs->z_replay) {

808 err = zap_create_clai mnorn(zfsvfs->z_os, obj,
809 zfsvfs->z_norm DMJ_OT_DI RECTORY_CONTENTS,
810 obj _type, bonuslen, tx);

811 ASSERTO(err);

809 ASSERT3U(err, ==, 0);

812 } else {

813 obj = zap_create_norn(zfsvfs->z_os,

814 zfsvfs->z_norm DMJ_OT_DI RECTORY_CONTENTS,
815 obj _type, bonuslen, tx);

816

817 } else {

818 if (zfsvfs->z_replay) {

819 err = dmu_obj ect _cl ai n(zf svfs->z_os, obj,

820 DMUJ_OT_PLAI N_FI LE_CONTENTS, 0,

new usr/src/uts/comon/fs/zfs/zfs_znode.c

821
822
820
823
824
825
826
827
828

830
831

833
834
835
836
837
838
839
840
841

843
844
845
846
847
848

850
851
852
853

855
856
857
858
859
860

862
863
864

866
867
868
869

871
872
873
874
875
876

878
879

881
882
883
884
885

obj _type, bonuslen, tx);
ASSERTO(err);
ASSERT3U(err, ==, 0);
} else {
obj = dmu_obj ect _al | oc(zfsvfs->z_os,
DMU_GT_PLAI N_FI LE_CONTENTS, 0,
obj _type, bonuslen, tx);
}
}
ZFS _OBJ_HOLD ENTER(zfsvfs, obj);

VERIFY(0 == sa_buf_hol d(zfsvfs->z_os, obj,

/*
*

If this is the root,

* to reference the just-allocated physical

*

if (flag & I'S_ROOT_NCDE) {
dzp->z_id = obj;

} else {
dzp_pflags = dzp->z_pfl ags;

/*
* |f parent is an xattr, so aml.
*
/
if (dzp_pflags & ZFS_XATTR) {

flag | = | S XATTR
}

if (zfsvfs->z_use_fuids)
pflags = ZFS_ARCHI VE |
el se
pflags = O;

if (vap->va_type == VDIR) {
size = 2;
links = (flag & (I S_ROOT_NCDE |
} else {
size = links = 0;
}

if (vap->va_type == VBLK ||
rdev = zfs_expl dev(vap->va_rdev);

}
parent = dzp->z_id;
nmode = acl _iI ds->z_node;

if (flag & |'S_XATTR)
pflags | = ZFS_XATTR;

/*

* No execs denied will
*

/

pflags | = acl _ids->z_acl p->z_hints &

NULL, &db));

data area.

ZFS_AV_MODI FI ED;

/* contents ("." a
| S_XATTR))

nd "..
?2:

vap->va_type == VCHR) {

1;

(ZFS_ACL_TRI VI ALTZFS_| NHERI T_ACE| ZFS_ACL_AUTO | NHERI T|

ZFS_ACL_DEFAULTED| ZFS_ACL_PROTECTED);

ZFS_TI ME_ENCODE(&how, crtime);
ZFS_TI ME_ENCODE(&ow, ctine);

if (vap->va_mask & AT_ATIME) {

ZFS_TI ME_ENCCDE(&vap- >va_ati e,
} else {

ZFS_TI ME_ENCODE(&ow, ati ne);
}

atine);

*/

be deterinmed when zfs_node_conpute()

fix up the half-initialized parent pointer

is called.

new usr/src/uts/comon/ fs/zfs/zfs_znode. c

887
888
889
890
891

893
894
895

897
898
899
900
901
902

904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

946

948
949
950
951

if (vap->va_mask & AT_MII ME) {
ZFS_TI ME_ENCODE(&vap->va_ntinme, ntine);

} else {
ZFS_TI ME_ENCCDE(&now, nti ne);

/* Now add inall of the "SA" attributes */

VERI FY(0 == sa_handl e_get _from db(zfsvfs->z_os, db, NULL, SA HDL_SHARED,

&sa_hdl));

Setup the array of attributes to be replaced/set on the new file

order for DMJ OT_ZNODE is critical since it needs to be constructed
in the old znode_phys_t format. Don’t change this ordering
/

U

if (obj_type == DMJ_OT_ZNCODE)

SA_ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_ATI ME(zfsvfs),
NULL, &atinme, 16);

SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_MTI ME(zfsvfs),
NULL, &ntinme, 16);

SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_CTI ME(zf svfs),
NULL, &ctinme, 16);

SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_CRTI ME(zf svfs),
NULL, &crtinme, 16);

SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_GEN(zfsvfs),

NULL, &gen, 8);

SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_MODE(zfsvfs),
NULL, &nmode, 8);

SA_ADD | BULK ATTR(sa_ attrs, cnt, SA ZPL_SI ZE(zfsvfs),
NULL, &size, 8

SA_ADD_BULK ATTR(sa attrs, cnt, SA ZPL_PARENT(zfsvfs),
NULCL, &parent, 8);

} else {

SA_ADD_BULK_ATTR(sa_ attrs, cnt, SA ZPL_MODE(zfsvfs),
NULL, &node, 8);

SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_SI ZE(zfsvfs),
NULL, &size, 8);

SA_ADD_ BULK ATTR(sa_attrs, cnt, SA ZPL_GEN(zfsvfs),
NULL, &gen, 8);

SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_U D(zfsvfs), NULL,
&acl _ids->z_fuid, 8);

SA_ADD BULK_ATTR(sa_ attr s, cnt, SA ZPL_d D(zfsvfs), NULL,
&acl _ids->z_fgid, 8);

SA _ADD BULK ATTR(sa_attrs, cnt, SA ZPL_PARENT(zfsvfs),
NULCL, &parent, 8);

SA_ADD_ BULK CATTR(sa attrs, cnt, SA ZPL_FLAGS(zfsvfs),
NULL, &pflags, 8);

SA_ADD_BULK_ATTR(sa_attrs, cnt, SA ZPL_ATI ME(zfsvfs),
NULL, &atime, 16);

SA_ADD_ BULK ATTR(sa_attrs, cnt, SA ZPL_MTI ME(zf svfs),
NULL, &ntinme, 16);

SA_ADD_BULK_ATTR(sa_attrs, cnt, SA ZPL_CTI ME(zfsvfs),
NULL, &ctime, 16);

SA_ADD | BULK ATTR(sa_attrs, cnt, SA ZPL_CRTI ME(zfsvfs),
NULL, &crtinme, 16);

}
SA ADD BULK_ATTR(sa_attrs, cnt, SA ZPL_LINKS(zfsvfs), NULL, & inks, 8);
if (obj_type == DMJ_OT_ZNODE)

SA _ADD BULK_ATTR(sa_attrs, cnt, SA ZPL XATTR(zfsvfs), NULL,
&enpty Xattr, 8);

new usr/src/uts/comon/ fs/zfs/zfs_znode.c

952
953
954
955

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

980

982
983
984
985
986
987
988
989
990

992
993

995
996

998
999

1001
1002
1003
1004
1002
1005
1006
1007 }

if (obj_type == DNUOTZNODE||

(vap->va_type == VBLK || vap->va_type == VCHR)

SA_ADD BULK_ATTR(sa_attrs, cnt,
NULL, &rdev, 8);

}
if (obj_type == DMJ_OT_ZNODE)
SA_ADD BULK_ATTR(sa_attrs, cnt,
NULL, &pflags, 8);
SA ADD BULK_ATTR(sa_attrs, cnt,
&acl _ids->z _fuid, 8);
SA_ADD BULK_ATTR(sa_ attrs cnt,
&acl _ids->z_fgid, 8);
SA_ADD BULK _ ATTR(sa_attrs, cnt,
sizeof (uint64_t) * 4);
SA ADD BULK_ATTR(sa_attrs, cnt,
&acl _phys, sizeof (zfs acl

SA_ZPL_RDE{/(gf svfs),

SA_ZPL_FLAGS(zf svfs),

SA ZPL_UI D(zf svfs), NULL,

SA ZPL_d D(zfsvfs), NULL,
SA_ZPL_PAD(zf svfs), NULL, pad,
SA ZPL_ZNODE_ACL(zfsvfs), NULL,

_phys_t));

} else if (acl_ids->z_acl p->z_version >= ZFS_ ACL_VERS| ON_FUI D)

SA ADD BULK_ATTR(sa_attrs, cnt,

SA_ZPL_DACL_COUNT(zf svfs), NULL,

&acl _i ds- >z_ac| p- >z_ac| _count 78);

| ocate.cb_aclp = acl _ids->z_aclp

SA_ADD BULK _ ATTR(sa_ attrs, cnt,

SA ZPL_DACL_ACES(zf svf s)

zfs_acl _data_l ocator, & ocate,
acl _i ds->z_acl p- >z_ac| _bytes);

mode = zfs_node_conput e(node, acl |ds >z_aclp, &pflags,
acl _ids->z_fuid, acl_ids->z_fgid

}

VERI FY(sa_repl ace_al | _by_tenpl ate(sa_hdl,

if ('(flag & |I'S ROOT_NCDE)) {
*zpp = zfs_znode_al | oc(zfsvfs,
ASSERT(*zpp != NULL);

} else {
/*

* |f we are creating the root

sa_attrs, cnt, tx) == 0);

db, 0, obj_type, sa_hdl);

node, the "parent" we

* passed in is the znode for the root.
*

*zpp = dzp

(*zpp)->z_sa_hdl = sa_hdl;
}

(*zpp)->z_pflags = pfl ags;
(*zpp) - >z_node = node;

if (vap->va_mask & AT_XVATTR)
zfs_xvattr_set(*zpp, (xvattr_t

if (obj_type == DMJ_OT_ZNCDE | |

*)vap, tx);

acl _ids->z_acl p->z_version < ZFS_ACL_VERSI ON_FUI D) {
err = zfs_acl set _comon(*zpp, acl _ids->z_aclp, cr, tx);

ASSERTO(err);
ASSERT3P(err, ==, 0);

}
ZFS_OBJ_HOLD_EXI T(zfsvfs, obj);

__unchanged_portion_omtted_

1395 /
1396
1397
1398
1399
1400
1401

*
*
*
*
*
*
*

G ow the block size for a file.

I'N: zp - znode of file to free data in.
si ze - requested bl ock size
tx - open transaction.

new usr/src/uts/comon/ fs/zfs/zfs_znode. c

1402
1403

1404 voi d

this function assunes that the znode is wite | ocked.

1405 zfs_grow bl ocksi ze(znode_t *zp, uint64_t size, dnu_tx_t *tx)

1406 {

1407
1408

1410
1411
1412
1413
1414
1415
1416
1417
1418

1420
1421

1423
1424
1425
1423

1427
1428

1429 }

int error;
u_l ongl ong_t dumy;

if (size <= zp->z_bl ksz)

return;
/*
* If the file size is already greater than the current bl ocksize,
* we will not grow If there is nore than one block in a file,
* the bl ocksize cannot change.
*

/
if (zp->z_blksz && zp->z_size > zp->z_bl ksz)
return;

error = dnu_obj ect _set _bl ocksi ze(zp->z_zfsvfs->z_os, zp->z_id,
size, 0, tx);

if (error == ENOTSUP)
return;

ASSERTO(error);

ASSERT3U(error, ==, 0);

/* \What bl ocksize did we actually get? */
dmu_obj ect _si ze_from db(sa_get _db(zp->z_sa_hdl), &zp->z_blksz, &Jumy);

__unchanged_portion_omtted_

new usr/src/uts/comon/fs/zfs/zil.c

R R R R

54147 Thu Jul 26 14:19: 33 2012
new usr/src/uts/comon/fs/zfs/zil.c
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.

7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions

11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each

14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 =

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.
23 * Copyright (c) 2012 by Del phix. Al rights reserved.

23 */Copyright (c) 2011 by Del phix. Al rights reserved.
*

26 /* Portions Copyright 2010 Robert M| kowski */

28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>

30 #include <sys/dnu. h>

31 #include <sys/zap. h>

32 #include <sys/arc. h>

33 #include <sys/stat. h>

34 #include <sys/resource. h>

35 #include <sys/zil.h>

36 #include <sys/zil _inpl.h>

37 #include <sys/dsl_dataset. h>
38 #include <sys/vdev_inpl.h>
39 #include <sys/dnu_tx. h>

40 #i ncl ude <sys/dsl _pool . h>

42 | *
43 * The zfs intent log (ZIL) saves transaction records of systemcalls
44 * that change the file systemin nenory with enough information
45 * to be able to replay them These are stored in nmenory until
46 * either the DMJ transaction group (txg) commts themto the stable pool
47 * and they can be discarded, or they are flushed to the stable |og
48 * (also in the pool) due to a fsync, O DSYNC or other synchronous
49 * requirenment. In the event of a panic or power fail then those |og
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system Its on-disk (pool) fornmat consists
53 * of 3 parts:
54 *
55 * - ZIL header
56 * - ZIL bl ocks
57 * - ZIL records
*
58 .
*

A log record holds a systemcall transaction. Log bl ocks can
hol d many | og records and the bl ocks are chai ned together.

new usr/src/uts/comon/fs/zfs/zil.c

61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed fromthe bl ocks available. Figure X shows the ZIL structure:
66 */
68 /*
69 * This global ZIL switch affects all pools
70 */
71 int zil_replay_disable = O; /* disable intent |ogging replay */
73 [*
74 * Tunabl e paraneter for debuggi ng or performance analysis. Setting
75 * zfs_nocacheflush will cause corruption on power loss if a volatile
76 * out-of-order wite cache is enabl ed.
77 *
78 bool ean_t zfs_nocacheflush = B_FALSE;
80 static knemcache_t *zil _|wb_cache;
82 static void zil _async_to_sync(zilog_t *zilog, uint64_t foid);
84 #define LWB_EMPTY(| wb) ((BP GET_LSI ZE(& wb- >l wb_bl k) - \
85 sizeof (zil_chain_t)) == (Iwb->lwb_sz - |wb->lwb_nused))
88 /*
89 * ziltest is by and large an ugly hack, but very useful in
90 * checking replay without tedious work
91 * When running ziltest we want to keep all itx's and so maintain
92 * asingle list inthe zl_itxg[] that uses a high txg: ZILTEST_TXG
93 * We subtract TXG CONCURRENT_STATES to allow for common code.
94 *
95 #define ZI LTEST_TXG (Ul NT64_MAX - TXG CONCURRENT STATES)
97 static int
98 zil _bp_conpare(const void *x1, const void *x2)
99
100 const dva_t *dval = &((zil _bp_node_t *)x1)->zn_dva;
101 const dva_t *dva2 = &((zil _bp_node_t *)x2)->zn_dva;
103 if (DVA_GET_VDEV(dval) < DVA_GET_VDEV(dva2))
104 return (-1);
105 if (DVA_GET_VDEV(dval) > DVA GET_VDEV(dva2))
106 return (1);
108 if (DVA GET_OFFSET(dval) < DVA GET_OFFSET(dva2))
109 return (-1);
110 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
111 return (1);
113 return (0);
114 }
__unchanged_portion_omtted_
980 static Iwb_t *

981
982
983
984
985
986
987
988

zil _Iwb_commit(zilog_t *zilog, itx_t *itx, Iwb_t *Iwb)
{
lr_t *lrc = &tx->tx_lr; /* comon |og record */
Ir_wite t *Irw= (lr_wite_t *)lrc;
char *I|r_buf;
uint64_t txg = Irc->lrc_txg;
uint64_t reclen = lrc->lrc_reclen;
uint64_t dlen = 0;

new usr/src/uts/comon/fs/zfs/zil.c

990
991

993

995
996
997

999
1001

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016

1018
1019
1020
1021

1023
1024
1025
1026
1027
1028
1029
1030
1031

1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

1055

if (Iwb == NULL)
return (NULL) ;

ASSERT(| wb- >l wb_buf !'= NULL);
if (lrc->lrc_txtype == TX WRITE && itx->itx_w _state == WR_NEED_COPY)
dl en = P2ROUNDUP. TYPEEX
Irw>lr_length, sizeof (uint64_t), uint64_t);
zil og->zl _cur _used += (reclen + dlen);
zil _Iwb_write_init(zilog, |wb)
/*

* If this record won't fit in the current |log block, start a new one.

*

if (lwbo- >IV\,b nused + reclen + dlen > | wb->lwbh_sz) {
= zil_Iwb_wite_start(zilog, |wb);
|f (I'wb == NULL)
return (NULL);
zil _Iwb_wite |n|t(Z|Iog, | wb) ;
ASSERT(LVB_EMPTY(| wb)) ;
if (lwb->lwb_nused + reclen + dlen > I wh- >l wb_sz) {
txg_wait_synced(zil og->zl _dmu_pool, txg);

return (Iw);

}
}
I'r_buf = Iwb->lwb_buf + |wb->lwb_nused;
bcopy(lrc, Ir_buf, reclen);
lrc = (lr_t *)Ir buf;
lrw= (lr_wite_t *)lrc;
/*

* If it’s awite, fetch the data or get its blkptr as appropriate.
*
/
if (Irc->lrc_txtype == TX WRITE) {
if (txg > spa_freeze_txg(zilog->zl_spa))
txg_wai t _synced(zil og->zl _dmu_pool, txg);
if (itx->tx_w_state != WR_COPI ED)

char *dbuf;

int error;

if (dlen) {
ASSERT(i tx->i tx_wr_state == WR_NEED_COPY) ;
dbuf = Ir_buf + reclen;
Irw>lr_comon.lrc_reclen += dlen;

} else {
ASSERT(i tx->i tx_wr_state == WR_| NDI RECT) ;
dbuf = NULL;

error = zilog->zl _get_dat a(
itx- >|tx _private, Irw, dbuf, |wb->lwb_zio);
if (error == EI O
t xg_wai t _synced(zi |l og- >zl _dmu_pool , txg);
return (lwb);

}
if (error) {
ASSERT(error == ENCENT || error == EEXI ST ||
error == EALREADY);
return (lwb);

new usr/src/uts/comon/fs/zfs/zil.c

1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1065

1067
1068 }

We're actually making an entry, so update Irc_seq to be the
| og record sequence nunber. Note that this is generally not
equal to the itx sequence nunber because not all transactions
are synchronous, and sonetinmes spa_sync() gets there first.

= ok * * *F *

/
Irc->lrc_seq = ++zilog->zl _Ir_seq; /* we are single threaded */
| wb- >l wb_nused += recien + dlen;
| wh- >l wo_max_t xg = MAX(| wb- >l wb_max_t xg, txg);
ASSERT3U(| wb->l wb_nused, <=, |wb->lwb_sz);
ASSERTO(P2PHASE(| wh- >l V\b_nused, si zeof (UI nt64_t)));
ASSERT3U(P2PHASE(| wb- >l wb_nused, sizeof (uint64_t)), == 0);

return (I wb);

__unchanged_portion_onitted_

new usr/src/uts/comon/fs/zfs/zio.c

R R R R

85223 Thu Jul 26 14:19:34 2012
new usr/src/uts/comon/fs/zfs/zio.c

3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero
*

P R]

__unchanged_portion_onitted_

kAR KK IR AR AR KKKk Kk Kk

2121 /*

2122 *

2123 * Allocate and free bl ocks

2124 *
2125 */
2126 static int

2127 zio_dva_al l ocate(zio_t *zio)

2128 {

2129 spa_t *spa = zio->io_spa;

2130 netasl ab_class_t *nt = spa_normal _cl ass(spa);

2131 bl kptr_t *bp = zi o->i o_bp;

2132 int error;

2133 int flags = 0;

2135 if (zio-> o_gang_|l eader == NULL) {

2136 ASSERT(zi o->i o_child_type > ZI O CH LD GANG) ;

2137 zi 0->i o_gang_| eader = zio;

2138 }

2140 ASSERT(BP_I S_HOLE(bp)) ;

2141 ASSERTO(BP_GET_NDVAS(bp)) ;

2141 ASSERT3U(BP_GET_NDVAS(bp), ==, 0);

2142 ASSERT3U(zi 0- >i o_prop. zp_copi es, >, 0);

2143 ASSERT3(zi 0- >i o_prop. zp_copi es, <=, spa_max_replication(spa));
2144 ASSERT3U(zi 0- >i 0_si ze, ==, BP_GET_PSI ZE(bp)):

2146 /*

2147 * The dunp device does not support gang bl ocks so allocation on
2148 * behal f of the dunp device (i.e. ZI O FLAG NODATA) nust avoid
2149 * the "fast" gang feature.

2150 */

2151 flags | = (zio->o_flags & ZI O FLAG NODATA) ? METASLAB_GANG AVO D : O;
2152 flags |= (zio->io fl ags&ZIOFLAGGANGCHILD) ?

2153 METASLAB_ GANG CH LD : O;

2154 error = netaslab_all oc(spa, nc, zio->io_size, bp,

2155 zi 0->i o_prop. zp_copi es, zio->i o_txg, NULL, flags);

2157 if (error) {

2158 spa_dbgnmsg(spa, "¥%: netaslab allocation failure: zio %, "
2159 "size %lu, error %", spa_nane(spa), zio, zio->io_size,
2160 error);

2161 if (error == ENOSPC && zi 0->i 0_size > SPA_M NBLOCKSI ZE)
2162 return (zio_wite_gang_bl ock(zio));

2163 zio->io_error = error;

2164 }

2166 return (ZI O_Pl PELI NE_CONTI NUE) ;

2167 }

__unchanged_portion_onitted_

new usr/src/ uts/comon/ sys/ debug. h

R R R R

4431 Thu Jul 26 14:19:35 2012
new usr/src/ uts/comon/sys/ debug. h
3006 VERIFY[S, U P] and ASSERT[S, U, P] frequently check if first argument is zero

R R R R R R R

1/*

2 * CDDL HEADER START

3 *

4 * The contents of this file are subject to the terms of the

5 * Common Devel opnent and Distribution License (the "License").

6 * You may not use this file except in conpliance with the License.
7 *

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.

10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.

12 =

13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 =

19 * CDDL HEADER END

20 */

21 /*

22 * Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.

23 * Use is subject to license terns.

24 */

26 /*

27 * Copyright (c) 2012 by Del phix. Al rights reserved.

28 */

30 /* Copyrlght (c) 1984, 1986, 1987, 1988, 1989 AT&T */

31 /* Al Rights Reser ved *

33 #i fndef _SYS_DEBUG H
34 #define _SYS_DEBUG H

36 #include <sys/isa_defs. h>
37 #include <sys/types. h>
38 #include <sys/note. h>

40 #ifdef __cplusplus

41 extern "C' {

42 #endif

44 | *

45 * ASSERT(ex) causes a panic or debugger entry if expression ex is not
46 * true. ASSERT() is included only for debugging, and is a no-op in
47 * production kernels. VERI FY(ex), on the other hand, behaves |ike
48 */ASSERT and is evaluated on both debug and non-debug kernels.

49 *

51 #if defined(__STDC)
52 extern int assfail(const char *, const char *, int);

53 #define VERIFY(EX) ((void)((EX) || assfail (#EX, __FILE__, __LINE__)))
54 #i f DEBUG

55 #define ASSERT(EX) ((void)((EX) || assfail(#EX, __FILE__, __LINE_))))
56 #el se

57 #define ASSERT(x) ((void)O0)

58 #endi f

59 #el se /* defined(__STDC_) */
60 extern int assfail(
61 #define VERI FY(EX) ((v0| d) ((EX) || assfail ("EX", _FILE__, __LINE_)))

new usr/src/uts/comon/ sys/ debug. h

121

123
124
125
126
127

#i f DEBUG
#define ASSERT(EX) ((void)((EX) || assfail ("EX", __FILE_ _, __LINE_)))
#el se
#defi ne ASSERT(x) ((void)O0)
#endi f
#endi f /* defined(__STDC) */
/*
* Assertion variants sensitive to the conpilation data nodel
*
/
#if defined(_LP64)

#def i ne ASSERT64(x)
#def i ne ASSERT32(x)
#el se
#def i ne ASSERT64(x)
#def i ne ASSERT32(x)
#endi f

ASSERT(X)
ASSERT(X)

I MPLY and EQUIV are assertions of the form
if (a) then (b)
if (a) then (b) *AND* if (b) then (a)

#i f DEBUG
#define | MPLY(A, B
((voI d)(((A
:3 ies (" #B ")", _FILE__, __LINE_))))

[|

(equivalent to (" #B ")", __FILE , __LINE_)))
#el se
#define | MPLY(A, B) ((voi
#define EQU V(A, B) ((voi
#endi f

/*
* ASSERT3() behaves |ike ASSERT() except that it is an explicit conditional,
* and prints out the values of the left and right hand expressions as part of
* the panic nessage to ease debugging. The three variants inply the type
* of their arguments. ASSERT3S() is for signed data types, ASSERT3U() Is
* for unsigned, and ASSERT3P() is for pointers. The VERI FY3*() macros
* have the sane rel ationship as above.
*
/
extern void assfail 3(const char *, uintmax_t, const char *, uintmax_t,
const char *, int);
#define VER FY3_I MPL(LEFT, OP, RIGHT, TYPE) do { \
const TYPE __left = (TYPE)(LEFT); \
const TYPE __right = (TYPE)(RIGHT); \
if (!(__left OP __right))

assfail 3(#LEFT " " #OP " " #RI CGHT, \
(uintmax_t)__left, #OP, (uintmax_t)__right, \
FILE_, __LINE_); \

_NOTE(CONSTCOND) } whi | € (0)

#def i ne VERI FY3S(x, y, z) VERI FY3_I MPL(X, Y, z, int64_t)
t

#define VERI FY3U(x, y, z) VERI FY3_I MPL(X, Yy, z, uint64_t)
#defi ne VERI FY3P(x, y, z) VERI FY3_I MPL(X, Yy, z, uintptr_t)
#defi ne VERI FYO(x) VERI FY3_| MPL(x, ==, 0, uintmax_t)
#i f DEBUG

#def i ne ASSERT3S(x, y, z) VERI FY3_| MPL(x, vy, z, int64_t)
#defi ne ASSERT3U(X, Yy, z) VERI FY3_I MPL(X, y, z, uint64_t)
#defi ne ASSERT3P(x, Yy, z) VERI FY3_IMPL(X, y, z, uintptr_t)
#def i ne ASSERTO(x) VERI FY3_I MPL(x, ==, 0, uintmax_t)

new usr/src/ uts/comon/ sys/ debug. h

128 tel se
129 #define ASSERT3S(x, Yy, z) ((v
130 #define ASSERT3U(X, Yy, z) ((v
131 #define ASSERT3P(Xx, y, z) ((v
132 #define ASSERTO(Xx) ((v
133 #endi f

135 #ifdef _KERNEL

137 extern void abort_sequence_enter(char *);
138 extern void debug_enter(char *);

140 #endif /* _KERNEL */

142 #if defined(DEBUG) && !defined(__sun)
143 /* CSTYLED */

144 #define STATIC

145 #el se

146 /* CSTYLED */

147 #define STATIC static

148 #endi f

150 #ifdef __ cplusplus
151 }
__unchanged_portion_omtted_

