1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. 25 */ 26 27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 28 /* All Rights Reserved */ 29 30 #include <sys/types.h> 31 #include <sys/sysmacros.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/errno.h> 35 #include <sys/signal.h> 36 #include <sys/cred.h> 37 #include <sys/user.h> 38 #include <sys/conf.h> 39 #include <sys/vfs.h> 40 #include <sys/vnode.h> 41 #include <sys/pathname.h> 42 #include <sys/file.h> 43 #include <sys/flock.h> 44 #include <sys/proc.h> 45 #include <sys/var.h> 46 #include <sys/cpuvar.h> 47 #include <sys/open.h> 48 #include <sys/cmn_err.h> 49 #include <sys/priocntl.h> 50 #include <sys/procset.h> 51 #include <sys/prsystm.h> 52 #include <sys/debug.h> 53 #include <sys/kmem.h> 54 #include <sys/atomic.h> 55 #include <sys/fcntl.h> 56 #include <sys/poll.h> 57 #include <sys/rctl.h> 58 #include <sys/port_impl.h> 59 #include <sys/dtrace.h> 60 61 #include <c2/audit.h> 62 #include <sys/nbmlock.h> 63 64 #ifdef DEBUG 65 66 static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ 67 static uint32_t afd_alloc; /* count of kmem_alloc()s */ 68 static uint32_t afd_free; /* count of kmem_free()s */ 69 static uint32_t afd_wait; /* count of waits on non-zero ref count */ 70 #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) 71 #define COUNT(x) atomic_inc_32(&x) 72 73 #else /* DEBUG */ 74 75 #define MAXFD(x) 76 #define COUNT(x) 77 78 #endif /* DEBUG */ 79 80 kmem_cache_t *file_cache; 81 82 static void port_close_fd(portfd_t *); 83 84 /* 85 * File descriptor allocation. 86 * 87 * fd_find(fip, minfd) finds the first available descriptor >= minfd. 88 * The most common case is open(2), in which minfd = 0, but we must also 89 * support fcntl(fd, F_DUPFD, minfd). 90 * 91 * The algorithm is as follows: we keep all file descriptors in an infix 92 * binary tree in which each node records the number of descriptors 93 * allocated in its right subtree, including itself. Starting at minfd, 94 * we ascend the tree until we find a non-fully allocated right subtree. 95 * We then descend that subtree in a binary search for the smallest fd. 96 * Finally, we ascend the tree again to increment the allocation count 97 * of every subtree containing the newly-allocated fd. Freeing an fd 98 * requires only the last step: we ascend the tree to decrement allocation 99 * counts. Each of these three steps (ascent to find non-full subtree, 100 * descent to find lowest fd, ascent to update allocation counts) is 101 * O(log n), thus the algorithm as a whole is O(log n). 102 * 103 * We don't implement the fd tree using the customary left/right/parent 104 * pointers, but instead take advantage of the glorious mathematics of 105 * full infix binary trees. For reference, here's an illustration of the 106 * logical structure of such a tree, rooted at 4 (binary 100), covering 107 * the range 1-7 (binary 001-111). Our canonical trees do not include 108 * fd 0; we'll deal with that later. 109 * 110 * 100 111 * / \ 112 * / \ 113 * 010 110 114 * / \ / \ 115 * 001 011 101 111 116 * 117 * We make the following observations, all of which are easily proven by 118 * induction on the depth of the tree: 119 * 120 * (T1) The least-significant bit (LSB) of any node is equal to its level 121 * in the tree. In our example, nodes 001, 011, 101 and 111 are at 122 * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. 123 * 124 * (T2) The child size (CSIZE) of node N -- that is, the total number of 125 * right-branch descendants in a child of node N, including itself -- is 126 * given by clearing all but the least significant bit of N. This 127 * follows immediately from (T1). Applying this rule to our example, we 128 * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. 129 * 130 * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest 131 * ancestor containing node N in its right child -- is given by clearing 132 * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. 133 * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting 134 * the fact that these are leftmost nodes. Note that this algorithm 135 * automatically skips generations as necessary. For example, the parent 136 * of node 101 is 110, which is a *right* ancestor (not what we want); 137 * but its grandparent is 100, which is a left ancestor. Clearing the LSB 138 * of 101 gets us to 100 directly, skipping right past the uninteresting 139 * generation (110). 140 * 141 * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* 142 * the LSB, we can express LPARENT() nicely in terms of CSIZE(): 143 * 144 * LPARENT(N) = N - CSIZE(N) 145 * 146 * (T4) The nearest right ancestor (RPARENT) of node N is given by: 147 * 148 * RPARENT(N) = N + CSIZE(N) 149 * 150 * (T5) For every interior node, the children differ from their parent by 151 * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, 152 * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. 153 * 154 * Next, we'll need a few two's-complement math tricks. Suppose a number, 155 * N, has the following form: 156 * 157 * N = xxxx10...0 158 * 159 * That is, the binary representation of N consists of some string of bits, 160 * then a 1, then all zeroes. This amounts to nothing more than saying that 161 * N has a least-significant bit, which is true for any N != 0. If we look 162 * at N and N - 1 together, we see that we can combine them in useful ways: 163 * 164 * N = xxxx10...0 165 * N - 1 = xxxx01...1 166 * ------------------------ 167 * N & (N - 1) = xxxx000000 168 * N | (N - 1) = xxxx111111 169 * N ^ (N - 1) = 111111 170 * 171 * In particular, this suggests several easy ways to clear all but the LSB, 172 * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. 173 * We'll opt for this formulation: 174 * 175 * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) 176 * 177 * Similarly, we have an easy way to determine LPARENT(N), which requires 178 * that we clear the LSB of N: 179 * 180 * (L1) LPARENT(N) = N & (N - 1) 181 * 182 * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. 183 * When combined with (T4), this yields an easy way to compute RPARENT(N): 184 * 185 * (R1) RPARENT(N) = (N | (N - 1)) + 1 186 * 187 * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to 188 * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, 189 * so there's no need to belabor the algebra; the revised relations become: 190 * 191 * (C1a) CSIZE(N) = N ^ (N | (N + 1)) 192 * 193 * (L1a) LPARENT(N) = (N & (N + 1)) - 1 194 * 195 * (R1a) RPARENT(N) = N | (N + 1) 196 * 197 * This completes the mathematical framework. We now have all the tools 198 * we need to implement fd_find() and fd_reserve(). 199 * 200 * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. 201 * It does not actually allocate the descriptor; that's done by fd_reserve(). 202 * fd_find() proceeds in two steps: 203 * 204 * (1) Find the leftmost subtree that contains a descriptor >= minfd. 205 * We start at the right subtree rooted at minfd. If this subtree is 206 * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then 207 * step 1 is done. Otherwise, we know that all fds in this subtree 208 * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat 209 * this process until we either find a candidate subtree or exceed 210 * fip->fi_nfiles. We use (C1a) to compute CSIZE(). 211 * 212 * (2) Find the smallest fd in the subtree discovered by step 1. 213 * Starting at the root of this subtree, we descend to find the 214 * smallest available fd. Since the left children have the smaller 215 * fds, we will descend rightward only when the left child is full. 216 * 217 * We begin by comparing the number of allocated fds in the root 218 * to the number of allocated fds in its right child; if they differ 219 * by exactly CSIZE(child), we know the left subtree is full, so we 220 * descend right; that is, the right child becomes the search root. 221 * Otherwise we leave the root alone and start following the right 222 * child's left children. As fortune would have it, this is very 223 * simple computationally: by (T5), the right child of fd is just 224 * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, 225 * we find that the right child's left child is fd + size - (size / 2) = 226 * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = 227 * fd + (size / 4), and so on. In general, fd's right child's 228 * leftmost nth descendant is fd + (size >> n). Thus, to follow 229 * the right child's left descendants, we just halve the size in 230 * each iteration of the search. 231 * 232 * When we descend leftward, we must keep track of the number of fds 233 * that were allocated in all the right subtrees we rejected, so we 234 * know how many of the root fd's allocations are in the remaining 235 * (as yet unexplored) leftmost part of its right subtree. When we 236 * encounter a fully-allocated left child -- that is, when we find 237 * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right 238 * (as described earlier), resetting ralloc to zero. 239 * 240 * fd_reserve(fip, fd, incr) either allocates or frees fd, depending 241 * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends 242 * the leftmost ancestors (see (T3)) and updates the allocation counts. 243 * At each step we use (L1a) to compute LPARENT(), the next left ancestor. 244 * 245 * flist_minsize() finds the minimal tree that still covers all 246 * used fds; as long as the allocation count of a root node is zero, we 247 * don't need that node or its right subtree. 248 * 249 * flist_nalloc() counts the number of allocated fds in the tree, by starting 250 * at the top of the tree and summing the right-subtree allocation counts as 251 * it descends leftwards. 252 * 253 * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form 254 * 2^n - 1. This ensures that the fd trees are always full, which saves 255 * quite a bit of boundary checking. 256 */ 257 static int 258 fd_find(uf_info_t *fip, int minfd) 259 { 260 int size, ralloc, fd; 261 262 ASSERT(MUTEX_HELD(&fip->fi_lock)); 263 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 264 265 for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { 266 size = fd ^ (fd | (fd + 1)); 267 if (fip->fi_list[fd].uf_alloc == size) 268 continue; 269 for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { 270 ralloc += fip->fi_list[fd + size].uf_alloc; 271 if (fip->fi_list[fd].uf_alloc == ralloc + size) { 272 fd += size; 273 ralloc = 0; 274 } 275 } 276 return (fd); 277 } 278 return (-1); 279 } 280 281 static void 282 fd_reserve(uf_info_t *fip, int fd, int incr) 283 { 284 int pfd; 285 uf_entry_t *ufp = &fip->fi_list[fd]; 286 287 ASSERT((uint_t)fd < fip->fi_nfiles); 288 ASSERT((ufp->uf_busy == 0 && incr == 1) || 289 (ufp->uf_busy == 1 && incr == -1)); 290 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 291 ASSERT(MUTEX_HELD(&fip->fi_lock)); 292 293 for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) 294 fip->fi_list[pfd].uf_alloc += incr; 295 296 ufp->uf_busy += incr; 297 } 298 299 static int 300 flist_minsize(uf_info_t *fip) 301 { 302 int fd; 303 304 /* 305 * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called 306 * by flist_fork(), which relies on other mechanisms for mutual 307 * exclusion. 308 */ 309 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 310 311 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 312 if (fip->fi_list[fd >> 1].uf_alloc != 0) 313 break; 314 315 return (fd); 316 } 317 318 static int 319 flist_nalloc(uf_info_t *fip) 320 { 321 int fd; 322 int nalloc = 0; 323 324 ASSERT(MUTEX_HELD(&fip->fi_lock)); 325 ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); 326 327 for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) 328 nalloc += fip->fi_list[fd >> 1].uf_alloc; 329 330 return (nalloc); 331 } 332 333 /* 334 * Increase size of the fi_list array to accommodate at least maxfd. 335 * We keep the size of the form 2^n - 1 for benefit of fd_find(). 336 */ 337 static void 338 flist_grow(int maxfd) 339 { 340 uf_info_t *fip = P_FINFO(curproc); 341 int newcnt, oldcnt; 342 uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; 343 uf_rlist_t *urp; 344 345 for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) 346 continue; 347 348 newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); 349 350 mutex_enter(&fip->fi_lock); 351 oldcnt = fip->fi_nfiles; 352 if (newcnt <= oldcnt) { 353 mutex_exit(&fip->fi_lock); 354 kmem_free(newlist, newcnt * sizeof (uf_entry_t)); 355 return; 356 } 357 ASSERT((newcnt & (newcnt + 1)) == 0); 358 oldlist = fip->fi_list; 359 oldend = oldlist + oldcnt; 360 newend = newlist + oldcnt; /* no need to lock beyond old end */ 361 362 /* 363 * fi_list and fi_nfiles cannot change while any uf_lock is held, 364 * so we must grab all the old locks *and* the new locks up to oldcnt. 365 * (Locks beyond the end of oldcnt aren't visible until we store 366 * the new fi_nfiles, which is the last thing we do before dropping 367 * all the locks, so there's no need to acquire these locks). 368 * Holding the new locks is necessary because when fi_list changes 369 * to point to the new list, fi_nfiles won't have been stored yet. 370 * If we *didn't* hold the new locks, someone doing a UF_ENTER() 371 * could see the new fi_list, grab the new uf_lock, and then see 372 * fi_nfiles change while the lock is held -- in violation of 373 * UF_ENTER() semantics. 374 */ 375 for (src = oldlist; src < oldend; src++) 376 mutex_enter(&src->uf_lock); 377 378 for (dst = newlist; dst < newend; dst++) 379 mutex_enter(&dst->uf_lock); 380 381 for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { 382 dst->uf_file = src->uf_file; 383 dst->uf_fpollinfo = src->uf_fpollinfo; 384 dst->uf_refcnt = src->uf_refcnt; 385 dst->uf_alloc = src->uf_alloc; 386 dst->uf_flag = src->uf_flag; 387 dst->uf_busy = src->uf_busy; 388 dst->uf_portfd = src->uf_portfd; 389 } 390 391 /* 392 * As soon as we store the new flist, future locking operations 393 * will use it. Therefore, we must ensure that all the state 394 * we've just established reaches global visibility before the 395 * new flist does. 396 */ 397 membar_producer(); 398 fip->fi_list = newlist; 399 400 /* 401 * Routines like getf() make an optimistic check on the validity 402 * of the supplied file descriptor: if it's less than the current 403 * value of fi_nfiles -- examined without any locks -- then it's 404 * safe to attempt a UF_ENTER() on that fd (which is a valid 405 * assumption because fi_nfiles only increases). Therefore, it 406 * is critical that the new value of fi_nfiles not reach global 407 * visibility until after the new fi_list: if it happened the 408 * other way around, getf() could see the new fi_nfiles and attempt 409 * a UF_ENTER() on the old fi_list, which would write beyond its 410 * end if the fd exceeded the old fi_nfiles. 411 */ 412 membar_producer(); 413 fip->fi_nfiles = newcnt; 414 415 /* 416 * The new state is consistent now, so we can drop all the locks. 417 */ 418 for (dst = newlist; dst < newend; dst++) 419 mutex_exit(&dst->uf_lock); 420 421 for (src = oldlist; src < oldend; src++) { 422 /* 423 * If any threads are blocked on the old cvs, wake them. 424 * This will force them to wake up, discover that fi_list 425 * has changed, and go back to sleep on the new cvs. 426 */ 427 cv_broadcast(&src->uf_wanted_cv); 428 cv_broadcast(&src->uf_closing_cv); 429 mutex_exit(&src->uf_lock); 430 } 431 432 mutex_exit(&fip->fi_lock); 433 434 /* 435 * Retire the old flist. We can't actually kmem_free() it now 436 * because someone may still have a pointer to it. Instead, 437 * we link it onto a list of retired flists. The new flist 438 * is at least double the size of the previous flist, so the 439 * total size of all retired flists will be less than the size 440 * of the current one (to prove, consider the sum of a geometric 441 * series in powers of 2). exit() frees the retired flists. 442 */ 443 urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); 444 urp->ur_list = oldlist; 445 urp->ur_nfiles = oldcnt; 446 447 mutex_enter(&fip->fi_lock); 448 urp->ur_next = fip->fi_rlist; 449 fip->fi_rlist = urp; 450 mutex_exit(&fip->fi_lock); 451 } 452 453 /* 454 * Utility functions for keeping track of the active file descriptors. 455 */ 456 void 457 clear_stale_fd() /* called from post_syscall() */ 458 { 459 afd_t *afd = &curthread->t_activefd; 460 int i; 461 462 /* uninitialized is ok here, a_nfd is then zero */ 463 for (i = 0; i < afd->a_nfd; i++) { 464 /* assert that this should not be necessary */ 465 ASSERT(afd->a_fd[i] == -1); 466 afd->a_fd[i] = -1; 467 } 468 afd->a_stale = 0; 469 } 470 471 void 472 free_afd(afd_t *afd) /* called below and from thread_free() */ 473 { 474 int i; 475 476 /* free the buffer if it was kmem_alloc()ed */ 477 if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 478 COUNT(afd_free); 479 kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); 480 } 481 482 /* (re)initialize the structure */ 483 afd->a_fd = &afd->a_buf[0]; 484 afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); 485 afd->a_stale = 0; 486 for (i = 0; i < afd->a_nfd; i++) 487 afd->a_fd[i] = -1; 488 } 489 490 static void 491 set_active_fd(int fd) 492 { 493 afd_t *afd = &curthread->t_activefd; 494 int i; 495 int *old_fd; 496 int old_nfd; 497 int *new_fd; 498 int new_nfd; 499 500 if (afd->a_nfd == 0) { /* first time initialization */ 501 ASSERT(fd == -1); 502 mutex_enter(&afd->a_fdlock); 503 free_afd(afd); 504 mutex_exit(&afd->a_fdlock); 505 } 506 507 /* insert fd into vacant slot, if any */ 508 for (i = 0; i < afd->a_nfd; i++) { 509 if (afd->a_fd[i] == -1) { 510 afd->a_fd[i] = fd; 511 return; 512 } 513 } 514 515 /* 516 * Reallocate the a_fd[] array to add one more slot. 517 */ 518 ASSERT(fd == -1); 519 old_nfd = afd->a_nfd; 520 old_fd = afd->a_fd; 521 new_nfd = old_nfd + 1; 522 new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); 523 MAXFD(new_nfd); 524 COUNT(afd_alloc); 525 526 mutex_enter(&afd->a_fdlock); 527 afd->a_fd = new_fd; 528 afd->a_nfd = new_nfd; 529 for (i = 0; i < old_nfd; i++) 530 afd->a_fd[i] = old_fd[i]; 531 afd->a_fd[i] = fd; 532 mutex_exit(&afd->a_fdlock); 533 534 if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { 535 COUNT(afd_free); 536 kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); 537 } 538 } 539 540 void 541 clear_active_fd(int fd) /* called below and from aio.c */ 542 { 543 afd_t *afd = &curthread->t_activefd; 544 int i; 545 546 for (i = 0; i < afd->a_nfd; i++) { 547 if (afd->a_fd[i] == fd) { 548 afd->a_fd[i] = -1; 549 break; 550 } 551 } 552 ASSERT(i < afd->a_nfd); /* not found is not ok */ 553 } 554 555 /* 556 * Does this thread have this fd active? 557 */ 558 static int 559 is_active_fd(kthread_t *t, int fd) 560 { 561 afd_t *afd = &t->t_activefd; 562 int i; 563 564 ASSERT(t != curthread); 565 mutex_enter(&afd->a_fdlock); 566 /* uninitialized is ok here, a_nfd is then zero */ 567 for (i = 0; i < afd->a_nfd; i++) { 568 if (afd->a_fd[i] == fd) { 569 mutex_exit(&afd->a_fdlock); 570 return (1); 571 } 572 } 573 mutex_exit(&afd->a_fdlock); 574 return (0); 575 } 576 577 /* 578 * Convert a user supplied file descriptor into a pointer to a file 579 * structure. Only task is to check range of the descriptor (soft 580 * resource limit was enforced at open time and shouldn't be checked 581 * here). 582 */ 583 file_t * 584 getf(int fd) 585 { 586 uf_info_t *fip = P_FINFO(curproc); 587 uf_entry_t *ufp; 588 file_t *fp; 589 590 if ((uint_t)fd >= fip->fi_nfiles) 591 return (NULL); 592 593 /* 594 * Reserve a slot in the active fd array now so we can call 595 * set_active_fd(fd) for real below, while still inside UF_ENTER(). 596 */ 597 set_active_fd(-1); 598 599 UF_ENTER(ufp, fip, fd); 600 601 if ((fp = ufp->uf_file) == NULL) { 602 UF_EXIT(ufp); 603 604 if (fd == fip->fi_badfd && fip->fi_action > 0) 605 tsignal(curthread, fip->fi_action); 606 607 return (NULL); 608 } 609 ufp->uf_refcnt++; 610 611 set_active_fd(fd); /* record the active file descriptor */ 612 613 UF_EXIT(ufp); 614 615 return (fp); 616 } 617 618 /* 619 * Close whatever file currently occupies the file descriptor slot 620 * and install the new file, usually NULL, in the file descriptor slot. 621 * The close must complete before we release the file descriptor slot. 622 * If newfp != NULL we only return an error if we can't allocate the 623 * slot so the caller knows that it needs to free the filep; 624 * in the other cases we return the error number from closef(). 625 */ 626 int 627 closeandsetf(int fd, file_t *newfp) 628 { 629 proc_t *p = curproc; 630 uf_info_t *fip = P_FINFO(p); 631 uf_entry_t *ufp; 632 file_t *fp; 633 fpollinfo_t *fpip; 634 portfd_t *pfd; 635 int error; 636 637 if ((uint_t)fd >= fip->fi_nfiles) { 638 if (newfp == NULL) 639 return (EBADF); 640 flist_grow(fd); 641 } 642 643 if (newfp != NULL) { 644 /* 645 * If ufp is reserved but has no file pointer, it's in the 646 * transition between ufalloc() and setf(). We must wait 647 * for this transition to complete before assigning the 648 * new non-NULL file pointer. 649 */ 650 mutex_enter(&fip->fi_lock); 651 if (fd == fip->fi_badfd) { 652 mutex_exit(&fip->fi_lock); 653 if (fip->fi_action > 0) 654 tsignal(curthread, fip->fi_action); 655 return (EBADF); 656 } 657 UF_ENTER(ufp, fip, fd); 658 while (ufp->uf_busy && ufp->uf_file == NULL) { 659 mutex_exit(&fip->fi_lock); 660 cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); 661 UF_EXIT(ufp); 662 mutex_enter(&fip->fi_lock); 663 UF_ENTER(ufp, fip, fd); 664 } 665 if ((fp = ufp->uf_file) == NULL) { 666 ASSERT(ufp->uf_fpollinfo == NULL); 667 ASSERT(ufp->uf_flag == 0); 668 fd_reserve(fip, fd, 1); 669 ufp->uf_file = newfp; 670 UF_EXIT(ufp); 671 mutex_exit(&fip->fi_lock); 672 return (0); 673 } 674 mutex_exit(&fip->fi_lock); 675 } else { 676 UF_ENTER(ufp, fip, fd); 677 if ((fp = ufp->uf_file) == NULL) { 678 UF_EXIT(ufp); 679 return (EBADF); 680 } 681 } 682 683 ASSERT(ufp->uf_busy); 684 ufp->uf_file = NULL; 685 ufp->uf_flag = 0; 686 687 /* 688 * If the file descriptor reference count is non-zero, then 689 * some other lwp in the process is performing system call 690 * activity on the file. To avoid blocking here for a long 691 * time (the other lwp might be in a long term sleep in its 692 * system call), we scan all other lwps in the process to 693 * find the ones with this fd as one of their active fds, 694 * set their a_stale flag, and set them running if they 695 * are in an interruptible sleep so they will emerge from 696 * their system calls immediately. post_syscall() will 697 * test the a_stale flag and set errno to EBADF. 698 */ 699 ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); 700 if (ufp->uf_refcnt > 0) { 701 kthread_t *t; 702 703 /* 704 * We call sprlock_proc(p) to ensure that the thread 705 * list will not change while we are scanning it. 706 * To do this, we must drop ufp->uf_lock and then 707 * reacquire it (so we are not holding both p->p_lock 708 * and ufp->uf_lock at the same time). ufp->uf_lock 709 * must be held for is_active_fd() to be correct 710 * (set_active_fd() is called while holding ufp->uf_lock). 711 * 712 * This is a convoluted dance, but it is better than 713 * the old brute-force method of stopping every thread 714 * in the process by calling holdlwps(SHOLDFORK1). 715 */ 716 717 UF_EXIT(ufp); 718 COUNT(afd_wait); 719 720 mutex_enter(&p->p_lock); 721 sprlock_proc(p); 722 mutex_exit(&p->p_lock); 723 724 UF_ENTER(ufp, fip, fd); 725 ASSERT(ufp->uf_file == NULL); 726 727 if (ufp->uf_refcnt > 0) { 728 for (t = curthread->t_forw; 729 t != curthread; 730 t = t->t_forw) { 731 if (is_active_fd(t, fd)) { 732 thread_lock(t); 733 t->t_activefd.a_stale = 1; 734 t->t_post_sys = 1; 735 if (ISWAKEABLE(t)) 736 setrun_locked(t); 737 thread_unlock(t); 738 } 739 } 740 } 741 742 UF_EXIT(ufp); 743 744 mutex_enter(&p->p_lock); 745 sprunlock(p); 746 747 UF_ENTER(ufp, fip, fd); 748 ASSERT(ufp->uf_file == NULL); 749 } 750 751 /* 752 * Wait for other lwps to stop using this file descriptor. 753 */ 754 while (ufp->uf_refcnt > 0) { 755 cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); 756 /* 757 * cv_wait_stop() drops ufp->uf_lock, so the file list 758 * can change. Drop the lock on our (possibly) stale 759 * ufp and let UF_ENTER() find and lock the current ufp. 760 */ 761 UF_EXIT(ufp); 762 UF_ENTER(ufp, fip, fd); 763 } 764 765 #ifdef DEBUG 766 /* 767 * catch a watchfd on device's pollhead list but not on fpollinfo list 768 */ 769 if (ufp->uf_fpollinfo != NULL) 770 checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); 771 #endif /* DEBUG */ 772 773 /* 774 * We may need to cleanup some cached poll states in t_pollstate 775 * before the fd can be reused. It is important that we don't 776 * access a stale thread structure. We will do the cleanup in two 777 * phases to avoid deadlock and holding uf_lock for too long. 778 * In phase 1, hold the uf_lock and call pollblockexit() to set 779 * state in t_pollstate struct so that a thread does not exit on 780 * us. In phase 2, we drop the uf_lock and call pollcacheclean(). 781 */ 782 pfd = ufp->uf_portfd; 783 ufp->uf_portfd = NULL; 784 fpip = ufp->uf_fpollinfo; 785 ufp->uf_fpollinfo = NULL; 786 if (fpip != NULL) 787 pollblockexit(fpip); 788 UF_EXIT(ufp); 789 if (fpip != NULL) 790 pollcacheclean(fpip, fd); 791 if (pfd) 792 port_close_fd(pfd); 793 794 /* 795 * Keep the file descriptor entry reserved across the closef(). 796 */ 797 error = closef(fp); 798 799 setf(fd, newfp); 800 801 /* Only return closef() error when closing is all we do */ 802 return (newfp == NULL ? error : 0); 803 } 804 805 /* 806 * Decrement uf_refcnt; wakeup anyone waiting to close the file. 807 */ 808 void 809 releasef(int fd) 810 { 811 uf_info_t *fip = P_FINFO(curproc); 812 uf_entry_t *ufp; 813 814 UF_ENTER(ufp, fip, fd); 815 ASSERT(ufp->uf_refcnt > 0); 816 clear_active_fd(fd); /* clear the active file descriptor */ 817 if (--ufp->uf_refcnt == 0) 818 cv_broadcast(&ufp->uf_closing_cv); 819 UF_EXIT(ufp); 820 } 821 822 /* 823 * Identical to releasef() but can be called from another process. 824 */ 825 void 826 areleasef(int fd, uf_info_t *fip) 827 { 828 uf_entry_t *ufp; 829 830 UF_ENTER(ufp, fip, fd); 831 ASSERT(ufp->uf_refcnt > 0); 832 if (--ufp->uf_refcnt == 0) 833 cv_broadcast(&ufp->uf_closing_cv); 834 UF_EXIT(ufp); 835 } 836 837 /* 838 * Duplicate all file descriptors across a fork. 839 */ 840 void 841 flist_fork(proc_t *pp, proc_t *cp) 842 { 843 int fd, nfiles; 844 uf_entry_t *pufp, *cufp; 845 846 uf_info_t *pfip = P_FINFO(pp); 847 uf_info_t *cfip = P_FINFO(cp); 848 849 mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); 850 cfip->fi_rlist = NULL; 851 852 /* 853 * We don't need to hold fi_lock because all other lwp's in the 854 * parent have been held. 855 */ 856 cfip->fi_nfiles = nfiles = flist_minsize(pfip); 857 858 cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); 859 860 for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; 861 fd++, pufp++, cufp++) { 862 cufp->uf_file = pufp->uf_file; 863 cufp->uf_alloc = pufp->uf_alloc; 864 cufp->uf_flag = pufp->uf_flag; 865 cufp->uf_busy = pufp->uf_busy; 866 867 if (cufp->uf_file != NULL && cufp->uf_file->f_vnode != NULL) { 868 (void) VOP_IOCTL(cufp->uf_file->f_vnode, F_ASSOCI_PID, 869 (intptr_t)cp->p_pidp->pid_id, FKIOCTL, kcred, 870 NULL, NULL); 871 } 872 873 if (pufp->uf_file == NULL) { 874 ASSERT(pufp->uf_flag == 0); 875 if (pufp->uf_busy) { 876 /* 877 * Grab locks to appease ASSERTs in fd_reserve 878 */ 879 mutex_enter(&cfip->fi_lock); 880 mutex_enter(&cufp->uf_lock); 881 fd_reserve(cfip, fd, -1); 882 mutex_exit(&cufp->uf_lock); 883 mutex_exit(&cfip->fi_lock); 884 } 885 } 886 } 887 } 888 889 /* 890 * Close all open file descriptors for the current process. 891 * This is only called from exit(), which is single-threaded, 892 * so we don't need any locking. 893 */ 894 void 895 closeall(uf_info_t *fip) 896 { 897 int fd; 898 file_t *fp; 899 uf_entry_t *ufp; 900 901 ufp = fip->fi_list; 902 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 903 if ((fp = ufp->uf_file) != NULL) { 904 ufp->uf_file = NULL; 905 if (ufp->uf_portfd != NULL) { 906 portfd_t *pfd; 907 /* remove event port association */ 908 pfd = ufp->uf_portfd; 909 ufp->uf_portfd = NULL; 910 port_close_fd(pfd); 911 } 912 ASSERT(ufp->uf_fpollinfo == NULL); 913 (void) closef(fp); 914 } 915 } 916 917 kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); 918 fip->fi_list = NULL; 919 fip->fi_nfiles = 0; 920 while (fip->fi_rlist != NULL) { 921 uf_rlist_t *urp = fip->fi_rlist; 922 fip->fi_rlist = urp->ur_next; 923 kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); 924 kmem_free(urp, sizeof (uf_rlist_t)); 925 } 926 } 927 928 /* 929 * Internal form of close. Decrement reference count on file 930 * structure. Decrement reference count on the vnode following 931 * removal of the referencing file structure. 932 */ 933 int 934 closef(file_t *fp) 935 { 936 vnode_t *vp; 937 int error; 938 int count; 939 int flag; 940 offset_t offset; 941 942 /* 943 * audit close of file (may be exit) 944 */ 945 if (AU_AUDITING()) 946 audit_closef(fp); 947 ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); 948 949 mutex_enter(&fp->f_tlock); 950 951 ASSERT(fp->f_count > 0); 952 953 count = fp->f_count--; 954 flag = fp->f_flag; 955 offset = fp->f_offset; 956 957 vp = fp->f_vnode; 958 if (vp != NULL) { 959 (void) VOP_IOCTL(vp, F_DASSOC_PID, 960 (intptr_t)(ttoproc(curthread)->p_pidp->pid_id), FKIOCTL, 961 kcred, NULL, NULL); 962 } 963 964 error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); 965 966 if (count > 1) { 967 mutex_exit(&fp->f_tlock); 968 return (error); 969 } 970 ASSERT(fp->f_count == 0); 971 /* Last reference, remove any OFD style lock for the file_t */ 972 ofdcleanlock(fp); 973 mutex_exit(&fp->f_tlock); 974 975 /* 976 * If DTrace has getf() subroutines active, it will set dtrace_closef 977 * to point to code that implements a barrier with respect to probe 978 * context. This must be called before the file_t is freed (and the 979 * vnode that it refers to is released) -- but it must be after the 980 * file_t has been removed from the uf_entry_t. That is, there must 981 * be no way for a racing getf() in probe context to yield the fp that 982 * we're operating upon. 983 */ 984 if (dtrace_closef != NULL) 985 (*dtrace_closef)(); 986 987 VN_RELE(vp); 988 /* 989 * deallocate resources to audit_data 990 */ 991 if (audit_active) 992 audit_unfalloc(fp); 993 crfree(fp->f_cred); 994 kmem_cache_free(file_cache, fp); 995 return (error); 996 } 997 998 /* 999 * This is a combination of ufalloc() and setf(). 1000 */ 1001 int 1002 ufalloc_file(int start, file_t *fp) 1003 { 1004 proc_t *p = curproc; 1005 uf_info_t *fip = P_FINFO(p); 1006 int filelimit; 1007 uf_entry_t *ufp; 1008 int nfiles; 1009 int fd; 1010 1011 /* 1012 * Assertion is to convince the correctness of the following 1013 * assignment for filelimit after casting to int. 1014 */ 1015 ASSERT(p->p_fno_ctl <= INT_MAX); 1016 filelimit = (int)p->p_fno_ctl; 1017 1018 for (;;) { 1019 mutex_enter(&fip->fi_lock); 1020 fd = fd_find(fip, start); 1021 if (fd >= 0 && fd == fip->fi_badfd) { 1022 start = fd + 1; 1023 mutex_exit(&fip->fi_lock); 1024 continue; 1025 } 1026 if ((uint_t)fd < filelimit) 1027 break; 1028 if (fd >= filelimit) { 1029 mutex_exit(&fip->fi_lock); 1030 mutex_enter(&p->p_lock); 1031 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1032 p->p_rctls, p, RCA_SAFE); 1033 mutex_exit(&p->p_lock); 1034 return (-1); 1035 } 1036 /* fd_find() returned -1 */ 1037 nfiles = fip->fi_nfiles; 1038 mutex_exit(&fip->fi_lock); 1039 flist_grow(MAX(start, nfiles)); 1040 } 1041 1042 UF_ENTER(ufp, fip, fd); 1043 fd_reserve(fip, fd, 1); 1044 ASSERT(ufp->uf_file == NULL); 1045 ufp->uf_file = fp; 1046 UF_EXIT(ufp); 1047 mutex_exit(&fip->fi_lock); 1048 return (fd); 1049 } 1050 1051 /* 1052 * Allocate a user file descriptor greater than or equal to "start". 1053 */ 1054 int 1055 ufalloc(int start) 1056 { 1057 return (ufalloc_file(start, NULL)); 1058 } 1059 1060 /* 1061 * Check that a future allocation of count fds on proc p has a good 1062 * chance of succeeding. If not, do rctl processing as if we'd failed 1063 * the allocation. 1064 * 1065 * Our caller must guarantee that p cannot disappear underneath us. 1066 */ 1067 int 1068 ufcanalloc(proc_t *p, uint_t count) 1069 { 1070 uf_info_t *fip = P_FINFO(p); 1071 int filelimit; 1072 int current; 1073 1074 if (count == 0) 1075 return (1); 1076 1077 ASSERT(p->p_fno_ctl <= INT_MAX); 1078 filelimit = (int)p->p_fno_ctl; 1079 1080 mutex_enter(&fip->fi_lock); 1081 current = flist_nalloc(fip); /* # of in-use descriptors */ 1082 mutex_exit(&fip->fi_lock); 1083 1084 /* 1085 * If count is a positive integer, the worst that can happen is 1086 * an overflow to a negative value, which is caught by the >= 0 check. 1087 */ 1088 current += count; 1089 if (count <= INT_MAX && current >= 0 && current <= filelimit) 1090 return (1); 1091 1092 mutex_enter(&p->p_lock); 1093 (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], 1094 p->p_rctls, p, RCA_SAFE); 1095 mutex_exit(&p->p_lock); 1096 return (0); 1097 } 1098 1099 /* 1100 * Allocate a user file descriptor and a file structure. 1101 * Initialize the descriptor to point at the file structure. 1102 * If fdp is NULL, the user file descriptor will not be allocated. 1103 */ 1104 int 1105 falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) 1106 { 1107 file_t *fp; 1108 int fd; 1109 1110 if (fdp) { 1111 if ((fd = ufalloc(0)) == -1) 1112 return (EMFILE); 1113 } 1114 fp = kmem_cache_alloc(file_cache, KM_SLEEP); 1115 /* 1116 * Note: falloc returns the fp locked 1117 */ 1118 mutex_enter(&fp->f_tlock); 1119 fp->f_count = 1; 1120 fp->f_flag = (ushort_t)flag; 1121 fp->f_flag2 = (flag & (FSEARCH|FEXEC)) >> 16; 1122 fp->f_vnode = vp; 1123 fp->f_offset = 0; 1124 fp->f_audit_data = 0; 1125 crhold(fp->f_cred = CRED()); 1126 /* 1127 * allocate resources to audit_data 1128 */ 1129 if (audit_active) 1130 audit_falloc(fp); 1131 *fpp = fp; 1132 if (fdp) 1133 *fdp = fd; 1134 return (0); 1135 } 1136 1137 /*ARGSUSED*/ 1138 static int 1139 file_cache_constructor(void *buf, void *cdrarg, int kmflags) 1140 { 1141 file_t *fp = buf; 1142 1143 mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); 1144 return (0); 1145 } 1146 1147 /*ARGSUSED*/ 1148 static void 1149 file_cache_destructor(void *buf, void *cdrarg) 1150 { 1151 file_t *fp = buf; 1152 1153 mutex_destroy(&fp->f_tlock); 1154 } 1155 1156 void 1157 finit() 1158 { 1159 file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, 1160 file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); 1161 } 1162 1163 void 1164 unfalloc(file_t *fp) 1165 { 1166 ASSERT(MUTEX_HELD(&fp->f_tlock)); 1167 if (--fp->f_count <= 0) { 1168 /* 1169 * deallocate resources to audit_data 1170 */ 1171 if (audit_active) 1172 audit_unfalloc(fp); 1173 crfree(fp->f_cred); 1174 mutex_exit(&fp->f_tlock); 1175 kmem_cache_free(file_cache, fp); 1176 } else 1177 mutex_exit(&fp->f_tlock); 1178 } 1179 1180 /* 1181 * Given a file descriptor, set the user's 1182 * file pointer to the given parameter. 1183 */ 1184 void 1185 setf(int fd, file_t *fp) 1186 { 1187 uf_info_t *fip = P_FINFO(curproc); 1188 uf_entry_t *ufp; 1189 1190 if (AU_AUDITING()) 1191 audit_setf(fp, fd); 1192 1193 if (fp == NULL) { 1194 mutex_enter(&fip->fi_lock); 1195 UF_ENTER(ufp, fip, fd); 1196 fd_reserve(fip, fd, -1); 1197 mutex_exit(&fip->fi_lock); 1198 } else { 1199 UF_ENTER(ufp, fip, fd); 1200 ASSERT(ufp->uf_busy); 1201 } 1202 ASSERT(ufp->uf_fpollinfo == NULL); 1203 ASSERT(ufp->uf_flag == 0); 1204 ufp->uf_file = fp; 1205 cv_broadcast(&ufp->uf_wanted_cv); 1206 UF_EXIT(ufp); 1207 } 1208 1209 /* 1210 * Given a file descriptor, return the file table flags, plus, 1211 * if this is a socket in asynchronous mode, the FASYNC flag. 1212 * getf() may or may not have been called before calling f_getfl(). 1213 */ 1214 int 1215 f_getfl(int fd, int *flagp) 1216 { 1217 uf_info_t *fip = P_FINFO(curproc); 1218 uf_entry_t *ufp; 1219 file_t *fp; 1220 int error; 1221 1222 if ((uint_t)fd >= fip->fi_nfiles) 1223 error = EBADF; 1224 else { 1225 UF_ENTER(ufp, fip, fd); 1226 if ((fp = ufp->uf_file) == NULL) 1227 error = EBADF; 1228 else { 1229 vnode_t *vp = fp->f_vnode; 1230 int flag = fp->f_flag | 1231 ((fp->f_flag2 & ~FEPOLLED) << 16); 1232 1233 /* 1234 * BSD fcntl() FASYNC compatibility. 1235 */ 1236 if (vp->v_type == VSOCK) 1237 flag |= sock_getfasync(vp); 1238 *flagp = flag; 1239 error = 0; 1240 } 1241 UF_EXIT(ufp); 1242 } 1243 1244 return (error); 1245 } 1246 1247 /* 1248 * Given a file descriptor, return the user's file flags. 1249 * Force the FD_CLOEXEC flag for writable self-open /proc files. 1250 * getf() may or may not have been called before calling f_getfd_error(). 1251 */ 1252 int 1253 f_getfd_error(int fd, int *flagp) 1254 { 1255 uf_info_t *fip = P_FINFO(curproc); 1256 uf_entry_t *ufp; 1257 file_t *fp; 1258 int flag; 1259 int error; 1260 1261 if ((uint_t)fd >= fip->fi_nfiles) 1262 error = EBADF; 1263 else { 1264 UF_ENTER(ufp, fip, fd); 1265 if ((fp = ufp->uf_file) == NULL) 1266 error = EBADF; 1267 else { 1268 flag = ufp->uf_flag; 1269 if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) 1270 flag |= FD_CLOEXEC; 1271 *flagp = flag; 1272 error = 0; 1273 } 1274 UF_EXIT(ufp); 1275 } 1276 1277 return (error); 1278 } 1279 1280 /* 1281 * getf() must have been called before calling f_getfd(). 1282 */ 1283 char 1284 f_getfd(int fd) 1285 { 1286 int flag = 0; 1287 (void) f_getfd_error(fd, &flag); 1288 return ((char)flag); 1289 } 1290 1291 /* 1292 * Given a file descriptor and file flags, set the user's file flags. 1293 * At present, the only valid flag is FD_CLOEXEC. 1294 * getf() may or may not have been called before calling f_setfd_error(). 1295 */ 1296 int 1297 f_setfd_error(int fd, int flags) 1298 { 1299 uf_info_t *fip = P_FINFO(curproc); 1300 uf_entry_t *ufp; 1301 int error; 1302 1303 if ((uint_t)fd >= fip->fi_nfiles) 1304 error = EBADF; 1305 else { 1306 UF_ENTER(ufp, fip, fd); 1307 if (ufp->uf_file == NULL) 1308 error = EBADF; 1309 else { 1310 ufp->uf_flag = flags & FD_CLOEXEC; 1311 error = 0; 1312 } 1313 UF_EXIT(ufp); 1314 } 1315 return (error); 1316 } 1317 1318 void 1319 f_setfd(int fd, char flags) 1320 { 1321 (void) f_setfd_error(fd, flags); 1322 } 1323 1324 #define BADFD_MIN 3 1325 #define BADFD_MAX 255 1326 1327 /* 1328 * Attempt to allocate a file descriptor which is bad and which 1329 * is "poison" to the application. It cannot be closed (except 1330 * on exec), allocated for a different use, etc. 1331 */ 1332 int 1333 f_badfd(int start, int *fdp, int action) 1334 { 1335 int fdr; 1336 int badfd; 1337 uf_info_t *fip = P_FINFO(curproc); 1338 1339 #ifdef _LP64 1340 /* No restrictions on 64 bit _file */ 1341 if (get_udatamodel() != DATAMODEL_ILP32) 1342 return (EINVAL); 1343 #endif 1344 1345 if (start > BADFD_MAX || start < BADFD_MIN) 1346 return (EINVAL); 1347 1348 if (action >= NSIG || action < 0) 1349 return (EINVAL); 1350 1351 mutex_enter(&fip->fi_lock); 1352 badfd = fip->fi_badfd; 1353 mutex_exit(&fip->fi_lock); 1354 1355 if (badfd != -1) 1356 return (EAGAIN); 1357 1358 fdr = ufalloc(start); 1359 1360 if (fdr > BADFD_MAX) { 1361 setf(fdr, NULL); 1362 return (EMFILE); 1363 } 1364 if (fdr < 0) 1365 return (EMFILE); 1366 1367 mutex_enter(&fip->fi_lock); 1368 if (fip->fi_badfd != -1) { 1369 /* Lost race */ 1370 mutex_exit(&fip->fi_lock); 1371 setf(fdr, NULL); 1372 return (EAGAIN); 1373 } 1374 fip->fi_action = action; 1375 fip->fi_badfd = fdr; 1376 mutex_exit(&fip->fi_lock); 1377 setf(fdr, NULL); 1378 1379 *fdp = fdr; 1380 1381 return (0); 1382 } 1383 1384 /* 1385 * Allocate a file descriptor and assign it to the vnode "*vpp", 1386 * performing the usual open protocol upon it and returning the 1387 * file descriptor allocated. It is the responsibility of the 1388 * caller to dispose of "*vpp" if any error occurs. 1389 */ 1390 int 1391 fassign(vnode_t **vpp, int mode, int *fdp) 1392 { 1393 file_t *fp; 1394 int error; 1395 int fd; 1396 1397 if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) 1398 return (error); 1399 if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { 1400 setf(fd, NULL); 1401 unfalloc(fp); 1402 return (error); 1403 } 1404 fp->f_vnode = *vpp; 1405 mutex_exit(&fp->f_tlock); 1406 /* 1407 * Fill in the slot falloc reserved. 1408 */ 1409 setf(fd, fp); 1410 *fdp = fd; 1411 return (0); 1412 } 1413 1414 /* 1415 * When a process forks it must increment the f_count of all file pointers 1416 * since there is a new process pointing at them. fcnt_add(fip, 1) does this. 1417 * Since we are called when there is only 1 active lwp we don't need to 1418 * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls 1419 * fcnt_add(fip, -1) to restore the counts. 1420 */ 1421 void 1422 fcnt_add(uf_info_t *fip, int incr) 1423 { 1424 int i; 1425 uf_entry_t *ufp; 1426 file_t *fp; 1427 1428 ufp = fip->fi_list; 1429 for (i = 0; i < fip->fi_nfiles; i++, ufp++) { 1430 if ((fp = ufp->uf_file) != NULL) { 1431 mutex_enter(&fp->f_tlock); 1432 ASSERT((incr == 1 && fp->f_count >= 1) || 1433 (incr == -1 && fp->f_count >= 2)); 1434 fp->f_count += incr; 1435 mutex_exit(&fp->f_tlock); 1436 } 1437 } 1438 } 1439 1440 /* 1441 * This is called from exec to close all fd's that have the FD_CLOEXEC flag 1442 * set and also to close all self-open for write /proc file descriptors. 1443 */ 1444 void 1445 close_exec(uf_info_t *fip) 1446 { 1447 int fd; 1448 file_t *fp; 1449 fpollinfo_t *fpip; 1450 uf_entry_t *ufp; 1451 portfd_t *pfd; 1452 1453 ufp = fip->fi_list; 1454 for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { 1455 if ((fp = ufp->uf_file) != NULL && 1456 ((ufp->uf_flag & FD_CLOEXEC) || 1457 ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { 1458 fpip = ufp->uf_fpollinfo; 1459 mutex_enter(&fip->fi_lock); 1460 mutex_enter(&ufp->uf_lock); 1461 fd_reserve(fip, fd, -1); 1462 mutex_exit(&fip->fi_lock); 1463 ufp->uf_file = NULL; 1464 ufp->uf_fpollinfo = NULL; 1465 ufp->uf_flag = 0; 1466 /* 1467 * We may need to cleanup some cached poll states 1468 * in t_pollstate before the fd can be reused. It 1469 * is important that we don't access a stale thread 1470 * structure. We will do the cleanup in two 1471 * phases to avoid deadlock and holding uf_lock for 1472 * too long. In phase 1, hold the uf_lock and call 1473 * pollblockexit() to set state in t_pollstate struct 1474 * so that a thread does not exit on us. In phase 2, 1475 * we drop the uf_lock and call pollcacheclean(). 1476 */ 1477 pfd = ufp->uf_portfd; 1478 ufp->uf_portfd = NULL; 1479 if (fpip != NULL) 1480 pollblockexit(fpip); 1481 mutex_exit(&ufp->uf_lock); 1482 if (fpip != NULL) 1483 pollcacheclean(fpip, fd); 1484 if (pfd) 1485 port_close_fd(pfd); 1486 (void) closef(fp); 1487 } 1488 } 1489 1490 /* Reset bad fd */ 1491 fip->fi_badfd = -1; 1492 fip->fi_action = -1; 1493 } 1494 1495 /* 1496 * Utility function called by most of the *at() system call interfaces. 1497 * 1498 * Generate a starting vnode pointer for an (fd, path) pair where 'fd' 1499 * is an open file descriptor for a directory to be used as the starting 1500 * point for the lookup of the relative pathname 'path' (or, if path is 1501 * NULL, generate a vnode pointer for the direct target of the operation). 1502 * 1503 * If we successfully return a non-NULL startvp, it has been the target 1504 * of VN_HOLD() and the caller must call VN_RELE() on it. 1505 */ 1506 int 1507 fgetstartvp(int fd, char *path, vnode_t **startvpp) 1508 { 1509 vnode_t *startvp; 1510 file_t *startfp; 1511 char startchar; 1512 1513 if (fd == AT_FDCWD && path == NULL) 1514 return (EFAULT); 1515 1516 if (fd == AT_FDCWD) { 1517 /* 1518 * Start from the current working directory. 1519 */ 1520 startvp = NULL; 1521 } else { 1522 if (path == NULL) 1523 startchar = '\0'; 1524 else if (copyin(path, &startchar, sizeof (char))) 1525 return (EFAULT); 1526 1527 if (startchar == '/') { 1528 /* 1529 * 'path' is an absolute pathname. 1530 */ 1531 startvp = NULL; 1532 } else { 1533 /* 1534 * 'path' is a relative pathname or we will 1535 * be applying the operation to 'fd' itself. 1536 */ 1537 if ((startfp = getf(fd)) == NULL) 1538 return (EBADF); 1539 startvp = startfp->f_vnode; 1540 VN_HOLD(startvp); 1541 releasef(fd); 1542 } 1543 } 1544 *startvpp = startvp; 1545 return (0); 1546 } 1547 1548 /* 1549 * Called from fchownat() and fchmodat() to set ownership and mode. 1550 * The contents of *vap must be set before calling here. 1551 */ 1552 int 1553 fsetattrat(int fd, char *path, int flags, struct vattr *vap) 1554 { 1555 vnode_t *startvp; 1556 vnode_t *vp; 1557 int error; 1558 1559 /* 1560 * Since we are never called to set the size of a file, we don't 1561 * need to check for non-blocking locks (via nbl_need_check(vp)). 1562 */ 1563 ASSERT(!(vap->va_mask & AT_SIZE)); 1564 1565 if ((error = fgetstartvp(fd, path, &startvp)) != 0) 1566 return (error); 1567 if (AU_AUDITING() && startvp != NULL) 1568 audit_setfsat_path(1); 1569 1570 /* 1571 * Do lookup for fchownat/fchmodat when path not NULL 1572 */ 1573 if (path != NULL) { 1574 if (error = lookupnameat(path, UIO_USERSPACE, 1575 (flags == AT_SYMLINK_NOFOLLOW) ? 1576 NO_FOLLOW : FOLLOW, 1577 NULLVPP, &vp, startvp)) { 1578 if (startvp != NULL) 1579 VN_RELE(startvp); 1580 return (error); 1581 } 1582 } else { 1583 vp = startvp; 1584 ASSERT(vp); 1585 VN_HOLD(vp); 1586 } 1587 1588 if (vn_is_readonly(vp)) { 1589 error = EROFS; 1590 } else { 1591 error = VOP_SETATTR(vp, vap, 0, CRED(), NULL); 1592 } 1593 1594 if (startvp != NULL) 1595 VN_RELE(startvp); 1596 VN_RELE(vp); 1597 1598 return (error); 1599 } 1600 1601 /* 1602 * Return true if the given vnode is referenced by any 1603 * entry in the current process's file descriptor table. 1604 */ 1605 int 1606 fisopen(vnode_t *vp) 1607 { 1608 int fd; 1609 file_t *fp; 1610 vnode_t *ovp; 1611 uf_info_t *fip = P_FINFO(curproc); 1612 uf_entry_t *ufp; 1613 1614 mutex_enter(&fip->fi_lock); 1615 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1616 UF_ENTER(ufp, fip, fd); 1617 if ((fp = ufp->uf_file) != NULL && 1618 (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { 1619 UF_EXIT(ufp); 1620 mutex_exit(&fip->fi_lock); 1621 return (1); 1622 } 1623 UF_EXIT(ufp); 1624 } 1625 mutex_exit(&fip->fi_lock); 1626 return (0); 1627 } 1628 1629 /* 1630 * Return zero if at least one file currently open (by curproc) shouldn't be 1631 * allowed to change zones. 1632 */ 1633 int 1634 files_can_change_zones(void) 1635 { 1636 int fd; 1637 file_t *fp; 1638 uf_info_t *fip = P_FINFO(curproc); 1639 uf_entry_t *ufp; 1640 1641 mutex_enter(&fip->fi_lock); 1642 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1643 UF_ENTER(ufp, fip, fd); 1644 if ((fp = ufp->uf_file) != NULL && 1645 !vn_can_change_zones(fp->f_vnode)) { 1646 UF_EXIT(ufp); 1647 mutex_exit(&fip->fi_lock); 1648 return (0); 1649 } 1650 UF_EXIT(ufp); 1651 } 1652 mutex_exit(&fip->fi_lock); 1653 return (1); 1654 } 1655 1656 #ifdef DEBUG 1657 1658 /* 1659 * The following functions are only used in ASSERT()s elsewhere. 1660 * They do not modify the state of the system. 1661 */ 1662 1663 /* 1664 * Return true (1) if the current thread is in the fpollinfo 1665 * list for this file descriptor, else false (0). 1666 */ 1667 static int 1668 curthread_in_plist(uf_entry_t *ufp) 1669 { 1670 fpollinfo_t *fpip; 1671 1672 ASSERT(MUTEX_HELD(&ufp->uf_lock)); 1673 for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) 1674 if (fpip->fp_thread == curthread) 1675 return (1); 1676 return (0); 1677 } 1678 1679 /* 1680 * Sanity check to make sure that after lwp_exit(), 1681 * curthread does not appear on any fd's fpollinfo list. 1682 */ 1683 void 1684 checkfpollinfo(void) 1685 { 1686 int fd; 1687 uf_info_t *fip = P_FINFO(curproc); 1688 uf_entry_t *ufp; 1689 1690 mutex_enter(&fip->fi_lock); 1691 for (fd = 0; fd < fip->fi_nfiles; fd++) { 1692 UF_ENTER(ufp, fip, fd); 1693 ASSERT(!curthread_in_plist(ufp)); 1694 UF_EXIT(ufp); 1695 } 1696 mutex_exit(&fip->fi_lock); 1697 } 1698 1699 /* 1700 * Return true (1) if the current thread is in the fpollinfo 1701 * list for this file descriptor, else false (0). 1702 * This is the same as curthread_in_plist(), 1703 * but is called w/o holding uf_lock. 1704 */ 1705 int 1706 infpollinfo(int fd) 1707 { 1708 uf_info_t *fip = P_FINFO(curproc); 1709 uf_entry_t *ufp; 1710 int rc; 1711 1712 UF_ENTER(ufp, fip, fd); 1713 rc = curthread_in_plist(ufp); 1714 UF_EXIT(ufp); 1715 return (rc); 1716 } 1717 1718 #endif /* DEBUG */ 1719 1720 /* 1721 * Add the curthread to fpollinfo list, meaning this fd is currently in the 1722 * thread's poll cache. Each lwp polling this file descriptor should call 1723 * this routine once. 1724 */ 1725 void 1726 addfpollinfo(int fd) 1727 { 1728 struct uf_entry *ufp; 1729 fpollinfo_t *fpip; 1730 uf_info_t *fip = P_FINFO(curproc); 1731 1732 fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); 1733 fpip->fp_thread = curthread; 1734 UF_ENTER(ufp, fip, fd); 1735 /* 1736 * Assert we are not already on the list, that is, that 1737 * this lwp did not call addfpollinfo twice for the same fd. 1738 */ 1739 ASSERT(!curthread_in_plist(ufp)); 1740 /* 1741 * addfpollinfo is always done inside the getf/releasef pair. 1742 */ 1743 ASSERT(ufp->uf_refcnt >= 1); 1744 fpip->fp_next = ufp->uf_fpollinfo; 1745 ufp->uf_fpollinfo = fpip; 1746 UF_EXIT(ufp); 1747 } 1748 1749 /* 1750 * Delete curthread from fpollinfo list if it is there. 1751 */ 1752 void 1753 delfpollinfo(int fd) 1754 { 1755 struct uf_entry *ufp; 1756 struct fpollinfo *fpip; 1757 struct fpollinfo **fpipp; 1758 uf_info_t *fip = P_FINFO(curproc); 1759 1760 UF_ENTER(ufp, fip, fd); 1761 for (fpipp = &ufp->uf_fpollinfo; 1762 (fpip = *fpipp) != NULL; 1763 fpipp = &fpip->fp_next) { 1764 if (fpip->fp_thread == curthread) { 1765 *fpipp = fpip->fp_next; 1766 kmem_free(fpip, sizeof (fpollinfo_t)); 1767 break; 1768 } 1769 } 1770 /* 1771 * Assert that we are not still on the list, that is, that 1772 * this lwp did not call addfpollinfo twice for the same fd. 1773 */ 1774 ASSERT(!curthread_in_plist(ufp)); 1775 UF_EXIT(ufp); 1776 } 1777 1778 /* 1779 * fd is associated with a port. pfd is a pointer to the fd entry in the 1780 * cache of the port. 1781 */ 1782 1783 void 1784 addfd_port(int fd, portfd_t *pfd) 1785 { 1786 struct uf_entry *ufp; 1787 uf_info_t *fip = P_FINFO(curproc); 1788 1789 UF_ENTER(ufp, fip, fd); 1790 /* 1791 * addfd_port is always done inside the getf/releasef pair. 1792 */ 1793 ASSERT(ufp->uf_refcnt >= 1); 1794 if (ufp->uf_portfd == NULL) { 1795 /* first entry */ 1796 ufp->uf_portfd = pfd; 1797 pfd->pfd_next = NULL; 1798 } else { 1799 pfd->pfd_next = ufp->uf_portfd; 1800 ufp->uf_portfd = pfd; 1801 pfd->pfd_next->pfd_prev = pfd; 1802 } 1803 UF_EXIT(ufp); 1804 } 1805 1806 void 1807 delfd_port(int fd, portfd_t *pfd) 1808 { 1809 struct uf_entry *ufp; 1810 uf_info_t *fip = P_FINFO(curproc); 1811 1812 UF_ENTER(ufp, fip, fd); 1813 /* 1814 * delfd_port is always done inside the getf/releasef pair. 1815 */ 1816 ASSERT(ufp->uf_refcnt >= 1); 1817 if (ufp->uf_portfd == pfd) { 1818 /* remove first entry */ 1819 ufp->uf_portfd = pfd->pfd_next; 1820 } else { 1821 pfd->pfd_prev->pfd_next = pfd->pfd_next; 1822 if (pfd->pfd_next != NULL) 1823 pfd->pfd_next->pfd_prev = pfd->pfd_prev; 1824 } 1825 UF_EXIT(ufp); 1826 } 1827 1828 static void 1829 port_close_fd(portfd_t *pfd) 1830 { 1831 portfd_t *pfdn; 1832 1833 /* 1834 * At this point, no other thread should access 1835 * the portfd_t list for this fd. The uf_file, uf_portfd 1836 * pointers in the uf_entry_t struct for this fd would 1837 * be set to NULL. 1838 */ 1839 for (; pfd != NULL; pfd = pfdn) { 1840 pfdn = pfd->pfd_next; 1841 port_close_pfd(pfd); 1842 } 1843 }