Print this page
XXXX adding PID information to netstat output
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/cmd/perl/contrib/Sun/Solaris/Kstat/Kstat.xs
+++ new/usr/src/cmd/perl/contrib/Sun/Solaris/Kstat/Kstat.xs
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2014 Racktop Systems.
25 25 */
26 26
27 27 /*
28 28 * Kstat.xs is a Perl XS (eXStension module) that makes the Solaris
29 29 * kstat(3KSTAT) facility available to Perl scripts. Kstat is a general-purpose
30 30 * mechanism for providing kernel statistics to users. The Solaris API is
31 31 * function-based (see the manpage for details), but for ease of use in Perl
32 32 * scripts this module presents the information as a nested hash data structure.
33 33 * It would be too inefficient to read every kstat in the system, so this module
34 34 * uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which
35 35 * only reads and updates kstats as and when they are actually accessed.
36 36 */
37 37
38 38 /*
39 39 * Ignored raw kstats.
40 40 *
41 41 * Some raw kstats are ignored by this module, these are listed below. The
42 42 * most common reason is that the kstats are stored as arrays and the ks_ndata
43 43 * and/or ks_data_size fields are invalid. In this case it is impossible to
44 44 * know how many records are in the array, so they can't be read.
45 45 *
46 46 * unix:*:sfmmu_percpu_stat
47 47 * This is stored as an array with one entry per cpu. Each element is of type
48 48 * struct sfmmu_percpu_stat. The ks_ndata and ks_data_size fields are bogus.
49 49 *
50 50 * ufs directio:*:UFS DirectIO Stats
51 51 * The structure definition used for these kstats (ufs_directio_kstats) is in a
52 52 * C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it
53 53 * isn't accessible.
54 54 *
↓ open down ↓ |
54 lines elided |
↑ open up ↑ |
55 55 * qlc:*:statistics
56 56 * This is a third-party driver for which we don't have source.
57 57 *
58 58 * mm:*:phys_installed
59 59 * This is stored as an array of uint64_t, with each pair of values being the
60 60 * (address, size) of a memory segment. The ks_ndata and ks_data_size fields
61 61 * are both zero.
62 62 *
63 63 * sockfs:*:sock_unix_list
64 64 * This is stored as an array with one entry per active socket. Each element
65 - * is of type struct k_sockinfo. The ks_ndata and ks_data_size fields are both
66 - * zero.
65 + * is of type struct sockinfo. ks_ndata is the number of elements of that array
66 + * and ks_data_size is the total size of the array.
67 67 *
68 68 * Note that the ks_ndata and ks_data_size of many non-array raw kstats are
69 69 * also incorrect. The relevant assertions are therefore commented out in the
70 70 * appropriate raw kstat read routines.
71 71 */
72 72
73 73 /* Kstat related includes */
74 74 #include <libgen.h>
75 75 #include <kstat.h>
76 76 #include <sys/var.h>
77 77 #include <sys/utsname.h>
78 78 #include <sys/sysinfo.h>
79 79 #include <sys/flock.h>
80 80 #include <sys/dnlc.h>
81 81 #include <nfs/nfs.h>
82 82 #include <nfs/nfs_clnt.h>
83 83
84 84 /* Ultra-specific kstat includes */
85 85 #ifdef __sparc
86 86 #include <vm/hat_sfmmu.h> /* from /usr/platform/sun4u/include */
87 87 #include <sys/simmstat.h> /* from /usr/platform/sun4u/include */
88 88 #include <sys/sysctrl.h> /* from /usr/platform/sun4u/include */
89 89 #include <sys/fhc.h> /* from /usr/include */
90 90 #endif
91 91
92 92 /*
93 93 * Solaris #defines SP, which conflicts with the perl definition of SP
94 94 * We don't need the Solaris one, so get rid of it to avoid warnings
95 95 */
96 96 #undef SP
97 97
98 98 /* Perl XS includes */
99 99 #include "EXTERN.h"
100 100 #include "perl.h"
101 101 #include "XSUB.h"
102 102
103 103 /* Debug macros */
104 104 #define DEBUG_ID "Sun::Solaris::Kstat"
105 105 #ifdef KSTAT_DEBUG
106 106 #define PERL_ASSERT(EXP) \
107 107 ((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \
108 108 DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0))
109 109 #define PERL_ASSERTMSG(EXP, MSG) \
110 110 ((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0))
111 111 #else
112 112 #define PERL_ASSERT(EXP) ((void)0)
113 113 #define PERL_ASSERTMSG(EXP, MSG) ((void)0)
114 114 #endif
115 115
116 116 /* Macros for saving the contents of KSTAT_RAW structures */
117 117 #if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
118 118 #define NEW_IV(V) \
119 119 (newSViv((IVTYPE) V))
120 120 #define NEW_UV(V) \
121 121 (newSVuv((UVTYPE) V))
122 122 #else
123 123 #define NEW_IV(V) \
124 124 (V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
125 125 #if defined(UVTYPE)
126 126 #define NEW_UV(V) \
127 127 (V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V))
128 128 # else
129 129 #define NEW_UV(V) \
130 130 (V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
131 131 #endif
132 132 #endif
133 133 #define NEW_HRTIME(V) \
134 134 newSVnv((NVTYPE) (V / 1000000000.0))
135 135
136 136 #define SAVE_FNP(H, F, K) \
137 137 hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE)(uintptr_t)&F), 0)
138 138 #define SAVE_STRING(H, S, K, SS) \
139 139 hv_store(H, #K, sizeof (#K) - 1, \
140 140 newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0)
141 141 #define SAVE_INT32(H, S, K) \
142 142 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
143 143 #define SAVE_UINT32(H, S, K) \
144 144 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
145 145 #define SAVE_INT64(H, S, K) \
146 146 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
147 147 #define SAVE_UINT64(H, S, K) \
148 148 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
149 149 #define SAVE_HRTIME(H, S, K) \
150 150 hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0)
151 151
152 152 /* Private structure used for saving kstat info in the tied hashes */
153 153 typedef struct {
154 154 char read; /* Kstat block has been read before */
155 155 char valid; /* Kstat still exists in kstat chain */
156 156 char strip_str; /* Strip KSTAT_DATA_CHAR fields */
157 157 kstat_ctl_t *kstat_ctl; /* Handle returned by kstat_open */
158 158 kstat_t *kstat; /* Handle used by kstat_read */
159 159 } KstatInfo_t;
160 160
161 161 /* typedef for apply_to_ties callback functions */
162 162 typedef int (*ATTCb_t)(HV *, void *);
163 163
164 164 /* typedef for raw kstat reader functions */
165 165 typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int);
166 166
167 167 /* Hash of "module:name" to KSTAT_RAW read functions */
168 168 static HV *raw_kstat_lookup;
169 169
170 170 /*
171 171 * Kstats come in two flavours, named and raw. Raw kstats are just C structs,
172 172 * so we need a function per raw kstat to convert the C struct into the
173 173 * corresponding perl hash. All such conversion functions are in the following
174 174 * section.
175 175 */
176 176
177 177 /*
178 178 * Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h
179 179 */
180 180
181 181 static void
182 182 save_cpu_stat(HV *self, kstat_t *kp, int strip_str)
183 183 {
184 184 cpu_stat_t *statp;
185 185 cpu_sysinfo_t *sysinfop;
186 186 cpu_syswait_t *syswaitp;
187 187 cpu_vminfo_t *vminfop;
188 188
189 189 /* PERL_ASSERT(kp->ks_ndata == 1); */
190 190 PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t));
191 191 statp = (cpu_stat_t *)(kp->ks_data);
192 192 sysinfop = &statp->cpu_sysinfo;
193 193 syswaitp = &statp->cpu_syswait;
194 194 vminfop = &statp->cpu_vminfo;
195 195
196 196 hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0);
197 197 hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0);
198 198 hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0);
199 199 hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0);
200 200 hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0);
201 201 hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0);
202 202 hv_store(self, "wait_pio", 8, NEW_UV(sysinfop->wait[W_PIO]), 0);
203 203 SAVE_UINT32(self, sysinfop, bread);
204 204 SAVE_UINT32(self, sysinfop, bwrite);
205 205 SAVE_UINT32(self, sysinfop, lread);
206 206 SAVE_UINT32(self, sysinfop, lwrite);
207 207 SAVE_UINT32(self, sysinfop, phread);
208 208 SAVE_UINT32(self, sysinfop, phwrite);
209 209 SAVE_UINT32(self, sysinfop, pswitch);
210 210 SAVE_UINT32(self, sysinfop, trap);
211 211 SAVE_UINT32(self, sysinfop, intr);
212 212 SAVE_UINT32(self, sysinfop, syscall);
213 213 SAVE_UINT32(self, sysinfop, sysread);
214 214 SAVE_UINT32(self, sysinfop, syswrite);
215 215 SAVE_UINT32(self, sysinfop, sysfork);
216 216 SAVE_UINT32(self, sysinfop, sysvfork);
217 217 SAVE_UINT32(self, sysinfop, sysexec);
218 218 SAVE_UINT32(self, sysinfop, readch);
219 219 SAVE_UINT32(self, sysinfop, writech);
220 220 SAVE_UINT32(self, sysinfop, rcvint);
221 221 SAVE_UINT32(self, sysinfop, xmtint);
222 222 SAVE_UINT32(self, sysinfop, mdmint);
223 223 SAVE_UINT32(self, sysinfop, rawch);
224 224 SAVE_UINT32(self, sysinfop, canch);
225 225 SAVE_UINT32(self, sysinfop, outch);
226 226 SAVE_UINT32(self, sysinfop, msg);
227 227 SAVE_UINT32(self, sysinfop, sema);
228 228 SAVE_UINT32(self, sysinfop, namei);
229 229 SAVE_UINT32(self, sysinfop, ufsiget);
230 230 SAVE_UINT32(self, sysinfop, ufsdirblk);
231 231 SAVE_UINT32(self, sysinfop, ufsipage);
232 232 SAVE_UINT32(self, sysinfop, ufsinopage);
233 233 SAVE_UINT32(self, sysinfop, inodeovf);
234 234 SAVE_UINT32(self, sysinfop, fileovf);
235 235 SAVE_UINT32(self, sysinfop, procovf);
236 236 SAVE_UINT32(self, sysinfop, intrthread);
237 237 SAVE_UINT32(self, sysinfop, intrblk);
238 238 SAVE_UINT32(self, sysinfop, idlethread);
239 239 SAVE_UINT32(self, sysinfop, inv_swtch);
240 240 SAVE_UINT32(self, sysinfop, nthreads);
241 241 SAVE_UINT32(self, sysinfop, cpumigrate);
242 242 SAVE_UINT32(self, sysinfop, xcalls);
243 243 SAVE_UINT32(self, sysinfop, mutex_adenters);
244 244 SAVE_UINT32(self, sysinfop, rw_rdfails);
245 245 SAVE_UINT32(self, sysinfop, rw_wrfails);
246 246 SAVE_UINT32(self, sysinfop, modload);
247 247 SAVE_UINT32(self, sysinfop, modunload);
248 248 SAVE_UINT32(self, sysinfop, bawrite);
249 249 #ifdef STATISTICS /* see header file */
250 250 SAVE_UINT32(self, sysinfop, rw_enters);
251 251 SAVE_UINT32(self, sysinfop, win_uo_cnt);
252 252 SAVE_UINT32(self, sysinfop, win_uu_cnt);
253 253 SAVE_UINT32(self, sysinfop, win_so_cnt);
254 254 SAVE_UINT32(self, sysinfop, win_su_cnt);
255 255 SAVE_UINT32(self, sysinfop, win_suo_cnt);
256 256 #endif
257 257
258 258 SAVE_INT32(self, syswaitp, iowait);
259 259 SAVE_INT32(self, syswaitp, swap);
260 260 SAVE_INT32(self, syswaitp, physio);
261 261
262 262 SAVE_UINT32(self, vminfop, pgrec);
263 263 SAVE_UINT32(self, vminfop, pgfrec);
264 264 SAVE_UINT32(self, vminfop, pgin);
265 265 SAVE_UINT32(self, vminfop, pgpgin);
266 266 SAVE_UINT32(self, vminfop, pgout);
267 267 SAVE_UINT32(self, vminfop, pgpgout);
268 268 SAVE_UINT32(self, vminfop, swapin);
269 269 SAVE_UINT32(self, vminfop, pgswapin);
270 270 SAVE_UINT32(self, vminfop, swapout);
271 271 SAVE_UINT32(self, vminfop, pgswapout);
272 272 SAVE_UINT32(self, vminfop, zfod);
273 273 SAVE_UINT32(self, vminfop, dfree);
274 274 SAVE_UINT32(self, vminfop, scan);
275 275 SAVE_UINT32(self, vminfop, rev);
276 276 SAVE_UINT32(self, vminfop, hat_fault);
277 277 SAVE_UINT32(self, vminfop, as_fault);
278 278 SAVE_UINT32(self, vminfop, maj_fault);
279 279 SAVE_UINT32(self, vminfop, cow_fault);
280 280 SAVE_UINT32(self, vminfop, prot_fault);
281 281 SAVE_UINT32(self, vminfop, softlock);
282 282 SAVE_UINT32(self, vminfop, kernel_asflt);
283 283 SAVE_UINT32(self, vminfop, pgrrun);
284 284 SAVE_UINT32(self, vminfop, execpgin);
285 285 SAVE_UINT32(self, vminfop, execpgout);
286 286 SAVE_UINT32(self, vminfop, execfree);
287 287 SAVE_UINT32(self, vminfop, anonpgin);
288 288 SAVE_UINT32(self, vminfop, anonpgout);
289 289 SAVE_UINT32(self, vminfop, anonfree);
290 290 SAVE_UINT32(self, vminfop, fspgin);
291 291 SAVE_UINT32(self, vminfop, fspgout);
292 292 SAVE_UINT32(self, vminfop, fsfree);
293 293 }
294 294
295 295 /*
296 296 * Definitions in /usr/include/sys/var.h
297 297 */
298 298
299 299 static void
300 300 save_var(HV *self, kstat_t *kp, int strip_str)
301 301 {
302 302 struct var *varp;
303 303
304 304 /* PERL_ASSERT(kp->ks_ndata == 1); */
305 305 PERL_ASSERT(kp->ks_data_size == sizeof (struct var));
306 306 varp = (struct var *)(kp->ks_data);
307 307
308 308 SAVE_INT32(self, varp, v_buf);
309 309 SAVE_INT32(self, varp, v_call);
310 310 SAVE_INT32(self, varp, v_proc);
311 311 SAVE_INT32(self, varp, v_maxupttl);
312 312 SAVE_INT32(self, varp, v_nglobpris);
313 313 SAVE_INT32(self, varp, v_maxsyspri);
314 314 SAVE_INT32(self, varp, v_clist);
315 315 SAVE_INT32(self, varp, v_maxup);
316 316 SAVE_INT32(self, varp, v_hbuf);
317 317 SAVE_INT32(self, varp, v_hmask);
318 318 SAVE_INT32(self, varp, v_pbuf);
319 319 SAVE_INT32(self, varp, v_sptmap);
320 320 SAVE_INT32(self, varp, v_maxpmem);
321 321 SAVE_INT32(self, varp, v_autoup);
322 322 SAVE_INT32(self, varp, v_bufhwm);
323 323 }
324 324
325 325 /*
326 326 * Definition in /usr/include/sys/dnlc.h
327 327 */
328 328
329 329 static void
330 330 save_ncstats(HV *self, kstat_t *kp, int strip_str)
331 331 {
332 332 struct ncstats *ncstatsp;
333 333
334 334 /* PERL_ASSERT(kp->ks_ndata == 1); */
335 335 PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats));
336 336 ncstatsp = (struct ncstats *)(kp->ks_data);
337 337
338 338 SAVE_INT32(self, ncstatsp, hits);
339 339 SAVE_INT32(self, ncstatsp, misses);
340 340 SAVE_INT32(self, ncstatsp, enters);
341 341 SAVE_INT32(self, ncstatsp, dbl_enters);
342 342 SAVE_INT32(self, ncstatsp, long_enter);
343 343 SAVE_INT32(self, ncstatsp, long_look);
344 344 SAVE_INT32(self, ncstatsp, move_to_front);
345 345 SAVE_INT32(self, ncstatsp, purges);
346 346 }
347 347
348 348 /*
349 349 * Definition in /usr/include/sys/sysinfo.h
350 350 */
351 351
352 352 static void
353 353 save_sysinfo(HV *self, kstat_t *kp, int strip_str)
354 354 {
355 355 sysinfo_t *sysinfop;
356 356
357 357 /* PERL_ASSERT(kp->ks_ndata == 1); */
358 358 PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t));
359 359 sysinfop = (sysinfo_t *)(kp->ks_data);
360 360
361 361 SAVE_UINT32(self, sysinfop, updates);
362 362 SAVE_UINT32(self, sysinfop, runque);
363 363 SAVE_UINT32(self, sysinfop, runocc);
364 364 SAVE_UINT32(self, sysinfop, swpque);
365 365 SAVE_UINT32(self, sysinfop, swpocc);
366 366 SAVE_UINT32(self, sysinfop, waiting);
367 367 }
368 368
369 369 /*
370 370 * Definition in /usr/include/sys/sysinfo.h
371 371 */
372 372
373 373 static void
374 374 save_vminfo(HV *self, kstat_t *kp, int strip_str)
375 375 {
376 376 vminfo_t *vminfop;
377 377
378 378 /* PERL_ASSERT(kp->ks_ndata == 1); */
379 379 PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t));
380 380 vminfop = (vminfo_t *)(kp->ks_data);
381 381
382 382 SAVE_UINT64(self, vminfop, freemem);
383 383 SAVE_UINT64(self, vminfop, swap_resv);
384 384 SAVE_UINT64(self, vminfop, swap_alloc);
385 385 SAVE_UINT64(self, vminfop, swap_avail);
386 386 SAVE_UINT64(self, vminfop, swap_free);
387 387 SAVE_UINT64(self, vminfop, updates);
388 388 }
389 389
390 390 /*
391 391 * Definition in /usr/include/nfs/nfs_clnt.h
392 392 */
393 393
394 394 static void
395 395 save_nfs(HV *self, kstat_t *kp, int strip_str)
396 396 {
397 397 struct mntinfo_kstat *mntinfop;
398 398
399 399 /* PERL_ASSERT(kp->ks_ndata == 1); */
400 400 PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat));
401 401 mntinfop = (struct mntinfo_kstat *)(kp->ks_data);
402 402
403 403 SAVE_STRING(self, mntinfop, mik_proto, strip_str);
404 404 SAVE_UINT32(self, mntinfop, mik_vers);
405 405 SAVE_UINT32(self, mntinfop, mik_flags);
406 406 SAVE_UINT32(self, mntinfop, mik_secmod);
407 407 SAVE_UINT32(self, mntinfop, mik_curread);
408 408 SAVE_UINT32(self, mntinfop, mik_curwrite);
409 409 SAVE_INT32(self, mntinfop, mik_timeo);
410 410 SAVE_INT32(self, mntinfop, mik_retrans);
411 411 SAVE_UINT32(self, mntinfop, mik_acregmin);
412 412 SAVE_UINT32(self, mntinfop, mik_acregmax);
413 413 SAVE_UINT32(self, mntinfop, mik_acdirmin);
414 414 SAVE_UINT32(self, mntinfop, mik_acdirmax);
415 415 hv_store(self, "lookup_srtt", 11,
416 416 NEW_UV(mntinfop->mik_timers[0].srtt), 0);
417 417 hv_store(self, "lookup_deviate", 14,
418 418 NEW_UV(mntinfop->mik_timers[0].deviate), 0);
419 419 hv_store(self, "lookup_rtxcur", 13,
420 420 NEW_UV(mntinfop->mik_timers[0].rtxcur), 0);
421 421 hv_store(self, "read_srtt", 9,
422 422 NEW_UV(mntinfop->mik_timers[1].srtt), 0);
423 423 hv_store(self, "read_deviate", 12,
424 424 NEW_UV(mntinfop->mik_timers[1].deviate), 0);
425 425 hv_store(self, "read_rtxcur", 11,
426 426 NEW_UV(mntinfop->mik_timers[1].rtxcur), 0);
427 427 hv_store(self, "write_srtt", 10,
428 428 NEW_UV(mntinfop->mik_timers[2].srtt), 0);
429 429 hv_store(self, "write_deviate", 13,
430 430 NEW_UV(mntinfop->mik_timers[2].deviate), 0);
431 431 hv_store(self, "write_rtxcur", 12,
432 432 NEW_UV(mntinfop->mik_timers[2].rtxcur), 0);
433 433 SAVE_UINT32(self, mntinfop, mik_noresponse);
434 434 SAVE_UINT32(self, mntinfop, mik_failover);
435 435 SAVE_UINT32(self, mntinfop, mik_remap);
436 436 SAVE_STRING(self, mntinfop, mik_curserver, strip_str);
437 437 }
438 438
439 439 /*
440 440 * The following struct => hash functions are all only present on the sparc
441 441 * platform, so they are all conditionally compiled depending on __sparc
442 442 */
443 443
444 444 /*
445 445 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
446 446 */
447 447
448 448 #ifdef __sparc
449 449 static void
450 450 save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str)
451 451 {
452 452 struct sfmmu_global_stat *sfmmugp;
453 453
454 454 /* PERL_ASSERT(kp->ks_ndata == 1); */
455 455 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat));
456 456 sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data);
457 457
458 458 SAVE_INT32(self, sfmmugp, sf_tsb_exceptions);
459 459 SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception);
460 460 SAVE_INT32(self, sfmmugp, sf_pagefaults);
461 461 SAVE_INT32(self, sfmmugp, sf_uhash_searches);
462 462 SAVE_INT32(self, sfmmugp, sf_uhash_links);
463 463 SAVE_INT32(self, sfmmugp, sf_khash_searches);
464 464 SAVE_INT32(self, sfmmugp, sf_khash_links);
465 465 SAVE_INT32(self, sfmmugp, sf_swapout);
466 466 SAVE_INT32(self, sfmmugp, sf_tsb_alloc);
467 467 SAVE_INT32(self, sfmmugp, sf_tsb_allocfail);
468 468 SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create);
469 469 SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_alloc);
470 470 SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_alloc);
471 471 SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_allocfail);
472 472 SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_allocfail);
473 473 SAVE_INT32(self, sfmmugp, sf_tteload8k);
474 474 SAVE_INT32(self, sfmmugp, sf_tteload64k);
475 475 SAVE_INT32(self, sfmmugp, sf_tteload512k);
476 476 SAVE_INT32(self, sfmmugp, sf_tteload4m);
477 477 SAVE_INT32(self, sfmmugp, sf_tteload32m);
478 478 SAVE_INT32(self, sfmmugp, sf_tteload256m);
479 479 SAVE_INT32(self, sfmmugp, sf_tsb_load8k);
480 480 SAVE_INT32(self, sfmmugp, sf_tsb_load4m);
481 481 SAVE_INT32(self, sfmmugp, sf_hblk_hit);
482 482 SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate);
483 483 SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc);
484 484 SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate);
485 485 SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc);
486 486 SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt);
487 487 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt);
488 488 SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt);
489 489 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit);
490 490 SAVE_INT32(self, sfmmugp, sf_get_free_success);
491 491 SAVE_INT32(self, sfmmugp, sf_get_free_throttle);
492 492 SAVE_INT32(self, sfmmugp, sf_get_free_fail);
493 493 SAVE_INT32(self, sfmmugp, sf_put_free_success);
494 494 SAVE_INT32(self, sfmmugp, sf_put_free_fail);
495 495 SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict);
496 496 SAVE_INT32(self, sfmmugp, sf_uncache_conflict);
497 497 SAVE_INT32(self, sfmmugp, sf_unload_conflict);
498 498 SAVE_INT32(self, sfmmugp, sf_ism_uncache);
499 499 SAVE_INT32(self, sfmmugp, sf_ism_recache);
500 500 SAVE_INT32(self, sfmmugp, sf_recache);
501 501 SAVE_INT32(self, sfmmugp, sf_steal_count);
502 502 SAVE_INT32(self, sfmmugp, sf_pagesync);
503 503 SAVE_INT32(self, sfmmugp, sf_clrwrt);
504 504 SAVE_INT32(self, sfmmugp, sf_pagesync_invalid);
505 505 SAVE_INT32(self, sfmmugp, sf_kernel_xcalls);
506 506 SAVE_INT32(self, sfmmugp, sf_user_xcalls);
507 507 SAVE_INT32(self, sfmmugp, sf_tsb_grow);
508 508 SAVE_INT32(self, sfmmugp, sf_tsb_shrink);
509 509 SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures);
510 510 SAVE_INT32(self, sfmmugp, sf_tsb_reloc);
511 511 SAVE_INT32(self, sfmmugp, sf_user_vtop);
512 512 SAVE_INT32(self, sfmmugp, sf_ctx_inv);
513 513 SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz);
514 514 SAVE_INT32(self, sfmmugp, sf_region_remap_demap);
515 515 SAVE_INT32(self, sfmmugp, sf_create_scd);
516 516 SAVE_INT32(self, sfmmugp, sf_join_scd);
517 517 SAVE_INT32(self, sfmmugp, sf_leave_scd);
518 518 SAVE_INT32(self, sfmmugp, sf_destroy_scd);
519 519 }
520 520 #endif
521 521
522 522 /*
523 523 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
524 524 */
525 525
526 526 #ifdef __sparc
527 527 static void
528 528 save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str)
529 529 {
530 530 struct sfmmu_tsbsize_stat *sfmmutp;
531 531
532 532 /* PERL_ASSERT(kp->ks_ndata == 1); */
533 533 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
534 534 sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
535 535
536 536 SAVE_INT32(self, sfmmutp, sf_tsbsz_8k);
537 537 SAVE_INT32(self, sfmmutp, sf_tsbsz_16k);
538 538 SAVE_INT32(self, sfmmutp, sf_tsbsz_32k);
539 539 SAVE_INT32(self, sfmmutp, sf_tsbsz_64k);
540 540 SAVE_INT32(self, sfmmutp, sf_tsbsz_128k);
541 541 SAVE_INT32(self, sfmmutp, sf_tsbsz_256k);
542 542 SAVE_INT32(self, sfmmutp, sf_tsbsz_512k);
543 543 SAVE_INT32(self, sfmmutp, sf_tsbsz_1m);
544 544 SAVE_INT32(self, sfmmutp, sf_tsbsz_2m);
545 545 SAVE_INT32(self, sfmmutp, sf_tsbsz_4m);
546 546 }
547 547 #endif
548 548
549 549 /*
550 550 * Definition in /usr/platform/sun4u/include/sys/simmstat.h
551 551 */
552 552
553 553 #ifdef __sparc
554 554 static void
555 555 save_simmstat(HV *self, kstat_t *kp, int strip_str)
556 556 {
557 557 uchar_t *simmstatp;
558 558 SV *list;
559 559 int i;
560 560
561 561 /* PERL_ASSERT(kp->ks_ndata == 1); */
562 562 PERL_ASSERT(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT);
563 563
564 564 list = newSVpv("", 0);
565 565 for (i = 0, simmstatp = (uchar_t *)(kp->ks_data);
566 566 i < SIMM_COUNT - 1; i++, simmstatp++) {
567 567 sv_catpvf(list, "%d,", *simmstatp);
568 568 }
569 569 sv_catpvf(list, "%d", *simmstatp);
570 570 hv_store(self, "status", 6, list, 0);
571 571 }
572 572 #endif
573 573
574 574 /*
575 575 * Used by save_temperature to make CSV lists from arrays of
576 576 * short temperature values
577 577 */
578 578
579 579 #ifdef __sparc
580 580 static SV *
581 581 short_array_to_SV(short *shortp, int len)
582 582 {
583 583 SV *list;
584 584
585 585 list = newSVpv("", 0);
586 586 for (; len > 1; len--, shortp++) {
587 587 sv_catpvf(list, "%d,", *shortp);
588 588 }
589 589 sv_catpvf(list, "%d", *shortp);
590 590 return (list);
591 591 }
592 592
593 593 /*
594 594 * Definition in /usr/platform/sun4u/include/sys/fhc.h
595 595 */
596 596
597 597 static void
598 598 save_temperature(HV *self, kstat_t *kp, int strip_str)
599 599 {
600 600 struct temp_stats *tempsp;
601 601
602 602 /* PERL_ASSERT(kp->ks_ndata == 1); */
603 603 PERL_ASSERT(kp->ks_data_size == sizeof (struct temp_stats));
604 604 tempsp = (struct temp_stats *)(kp->ks_data);
605 605
606 606 SAVE_UINT32(self, tempsp, index);
607 607 hv_store(self, "l1", 2, short_array_to_SV(tempsp->l1, L1_SZ), 0);
608 608 hv_store(self, "l2", 2, short_array_to_SV(tempsp->l2, L2_SZ), 0);
609 609 hv_store(self, "l3", 2, short_array_to_SV(tempsp->l3, L3_SZ), 0);
610 610 hv_store(self, "l4", 2, short_array_to_SV(tempsp->l4, L4_SZ), 0);
611 611 hv_store(self, "l5", 2, short_array_to_SV(tempsp->l5, L5_SZ), 0);
612 612 SAVE_INT32(self, tempsp, max);
613 613 SAVE_INT32(self, tempsp, min);
614 614 SAVE_INT32(self, tempsp, state);
615 615 SAVE_INT32(self, tempsp, temp_cnt);
616 616 SAVE_INT32(self, tempsp, shutdown_cnt);
617 617 SAVE_INT32(self, tempsp, version);
618 618 SAVE_INT32(self, tempsp, trend);
619 619 SAVE_INT32(self, tempsp, override);
620 620 }
621 621 #endif
622 622
623 623 /*
624 624 * Not actually defined anywhere - just a short. Yuck.
625 625 */
626 626
627 627 #ifdef __sparc
628 628 static void
629 629 save_temp_over(HV *self, kstat_t *kp, int strip_str)
630 630 {
631 631 short *shortp;
632 632
633 633 /* PERL_ASSERT(kp->ks_ndata == 1); */
634 634 PERL_ASSERT(kp->ks_data_size == sizeof (short));
635 635
636 636 shortp = (short *)(kp->ks_data);
637 637 hv_store(self, "override", 8, newSViv(*shortp), 0);
638 638 }
639 639 #endif
640 640
641 641 /*
642 642 * Defined in /usr/platform/sun4u/include/sys/sysctrl.h
643 643 * (Well, sort of. Actually there's no structure, just a list of #defines
644 644 * enumerating *some* of the array indexes.)
645 645 */
646 646
647 647 #ifdef __sparc
648 648 static void
649 649 save_ps_shadow(HV *self, kstat_t *kp, int strip_str)
650 650 {
651 651 uchar_t *ucharp;
652 652
653 653 /* PERL_ASSERT(kp->ks_ndata == 1); */
654 654 PERL_ASSERT(kp->ks_data_size == SYS_PS_COUNT);
655 655
656 656 ucharp = (uchar_t *)(kp->ks_data);
657 657 hv_store(self, "core_0", 6, newSViv(*ucharp++), 0);
658 658 hv_store(self, "core_1", 6, newSViv(*ucharp++), 0);
659 659 hv_store(self, "core_2", 6, newSViv(*ucharp++), 0);
660 660 hv_store(self, "core_3", 6, newSViv(*ucharp++), 0);
661 661 hv_store(self, "core_4", 6, newSViv(*ucharp++), 0);
662 662 hv_store(self, "core_5", 6, newSViv(*ucharp++), 0);
663 663 hv_store(self, "core_6", 6, newSViv(*ucharp++), 0);
664 664 hv_store(self, "core_7", 6, newSViv(*ucharp++), 0);
665 665 hv_store(self, "pps_0", 5, newSViv(*ucharp++), 0);
666 666 hv_store(self, "clk_33", 6, newSViv(*ucharp++), 0);
667 667 hv_store(self, "clk_50", 6, newSViv(*ucharp++), 0);
668 668 hv_store(self, "v5_p", 4, newSViv(*ucharp++), 0);
669 669 hv_store(self, "v12_p", 5, newSViv(*ucharp++), 0);
670 670 hv_store(self, "v5_aux", 6, newSViv(*ucharp++), 0);
671 671 hv_store(self, "v5_p_pch", 8, newSViv(*ucharp++), 0);
672 672 hv_store(self, "v12_p_pch", 9, newSViv(*ucharp++), 0);
673 673 hv_store(self, "v3_pch", 6, newSViv(*ucharp++), 0);
674 674 hv_store(self, "v5_pch", 6, newSViv(*ucharp++), 0);
675 675 hv_store(self, "p_fan", 5, newSViv(*ucharp++), 0);
676 676 }
677 677 #endif
678 678
679 679 /*
680 680 * Definition in /usr/platform/sun4u/include/sys/fhc.h
681 681 */
682 682
683 683 #ifdef __sparc
684 684 static void
685 685 save_fault_list(HV *self, kstat_t *kp, int strip_str)
686 686 {
687 687 struct ft_list *faultp;
688 688 int i;
689 689 char name[KSTAT_STRLEN + 7]; /* room for 999999 faults */
690 690
691 691 /* PERL_ASSERT(kp->ks_ndata == 1); */
692 692 /* PERL_ASSERT(kp->ks_data_size == sizeof (struct ft_list)); */
693 693
694 694 for (i = 1, faultp = (struct ft_list *)(kp->ks_data);
695 695 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
696 696 i++, faultp++) {
697 697 (void) snprintf(name, sizeof (name), "unit_%d", i);
698 698 hv_store(self, name, strlen(name), newSViv(faultp->unit), 0);
699 699 (void) snprintf(name, sizeof (name), "type_%d", i);
700 700 hv_store(self, name, strlen(name), newSViv(faultp->type), 0);
701 701 (void) snprintf(name, sizeof (name), "fclass_%d", i);
702 702 hv_store(self, name, strlen(name), newSViv(faultp->fclass), 0);
703 703 (void) snprintf(name, sizeof (name), "create_time_%d", i);
704 704 hv_store(self, name, strlen(name),
705 705 NEW_UV(faultp->create_time), 0);
706 706 (void) snprintf(name, sizeof (name), "msg_%d", i);
707 707 hv_store(self, name, strlen(name), newSVpv(faultp->msg, 0), 0);
708 708 }
709 709 }
710 710 #endif
711 711
712 712 /*
713 713 * We need to be able to find the function corresponding to a particular raw
714 714 * kstat. To do this we ignore the instance and glue the module and name
715 715 * together to form a composite key. We can then use the data in the kstat
716 716 * structure to find the appropriate function. We use a perl hash to manage the
717 717 * lookup, where the key is "module:name" and the value is a pointer to the
718 718 * appropriate C function.
719 719 *
720 720 * Note that some kstats include the instance number as part of the module
721 721 * and/or name. This could be construed as a bug. However, to work around this
722 722 * we omit any digits from the module and name as we build the table in
723 723 * build_raw_kstat_loopup(), and we remove any digits from the module and name
724 724 * when we look up the functions in lookup_raw_kstat_fn()
725 725 */
726 726
727 727 /*
728 728 * This function is called when the XS is first dlopen()ed, and builds the
729 729 * lookup table as described above.
730 730 */
731 731
732 732 static void
733 733 build_raw_kstat_lookup()
734 734 {
735 735 /* Create new hash */
736 736 raw_kstat_lookup = newHV();
737 737
738 738 SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat");
739 739 SAVE_FNP(raw_kstat_lookup, save_var, "unix:var");
740 740 SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats");
741 741 SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo");
742 742 SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo");
743 743 SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo");
744 744 #ifdef __sparc
745 745 SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat,
746 746 "unix:sfmmu_global_stat");
747 747 SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat,
748 748 "unix:sfmmu_tsbsize_stat");
749 749 SAVE_FNP(raw_kstat_lookup, save_simmstat, "unix:simm-status");
750 750 SAVE_FNP(raw_kstat_lookup, save_temperature, "unix:temperature");
751 751 SAVE_FNP(raw_kstat_lookup, save_temp_over, "unix:temperature override");
752 752 SAVE_FNP(raw_kstat_lookup, save_ps_shadow, "unix:ps_shadow");
753 753 SAVE_FNP(raw_kstat_lookup, save_fault_list, "unix:fault_list");
754 754 #endif
755 755 }
756 756
757 757 /*
758 758 * This finds and returns the raw kstat reader function corresponding to the
759 759 * supplied module and name. If no matching function exists, 0 is returned.
760 760 */
761 761
762 762 static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name)
763 763 {
764 764 char key[KSTAT_STRLEN * 2];
765 765 register char *f, *t;
766 766 SV **entry;
767 767 kstat_raw_reader_t fnp;
768 768
769 769 /* Copy across module & name, removing any digits - see comment above */
770 770 for (f = module, t = key; *f != '\0'; f++, t++) {
771 771 while (*f != '\0' && isdigit(*f)) { f++; }
772 772 *t = *f;
773 773 }
774 774 *t++ = ':';
775 775 for (f = name; *f != '\0'; f++, t++) {
776 776 while (*f != '\0' && isdigit(*f)) {
777 777 f++;
778 778 }
779 779 *t = *f;
780 780 }
781 781 *t = '\0';
782 782
783 783 /* look up & return the function, or teturn 0 if not found */
784 784 if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0)
785 785 {
786 786 fnp = 0;
787 787 } else {
788 788 fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry);
789 789 }
790 790 return (fnp);
791 791 }
792 792
793 793 /*
794 794 * This module converts the flat list returned by kstat_read() into a perl hash
795 795 * tree keyed on module, instance, name and statistic. The following functions
796 796 * provide code to create the nested hashes, and to iterate over them.
797 797 */
798 798
799 799 /*
800 800 * Given module, instance and name keys return a pointer to the hash tied to
801 801 * the bottommost hash. If the hash already exists, we just return a pointer
802 802 * to it, otherwise we create the hash and any others also required above it in
803 803 * the hierarchy. The returned tiehash is blessed into the
804 804 * Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are
805 805 * called when the bottommost hash is accessed. If the is_new parameter is
806 806 * non-null it will be set to TRUE if a new tie has been created, and FALSE if
807 807 * the tie already existed.
808 808 */
809 809
810 810 static HV *
811 811 get_tie(SV *self, char *module, int instance, char *name, int *is_new)
812 812 {
813 813 char str_inst[11]; /* big enough for up to 10^10 instances */
814 814 char *key[3]; /* 3 part key: module, instance, name */
815 815 int k;
816 816 int new;
817 817 HV *hash;
818 818 HV *tie;
819 819
820 820 /* Create the keys */
821 821 (void) snprintf(str_inst, sizeof (str_inst), "%d", instance);
822 822 key[0] = module;
823 823 key[1] = str_inst;
824 824 key[2] = name;
825 825
826 826 /* Iteratively descend the tree, creating new hashes as required */
827 827 hash = (HV *)SvRV(self);
828 828 for (k = 0; k < 3; k++) {
829 829 SV **entry;
830 830
831 831 SvREADONLY_off(hash);
832 832 entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE);
833 833
834 834 /* If the entry doesn't exist, create it */
835 835 if (! SvOK(*entry)) {
836 836 HV *newhash;
837 837 SV *rv;
838 838
839 839 newhash = newHV();
840 840 rv = newRV_noinc((SV *)newhash);
841 841 sv_setsv(*entry, rv);
842 842 SvREFCNT_dec(rv);
843 843 if (k < 2) {
844 844 SvREADONLY_on(newhash);
845 845 }
846 846 SvREADONLY_on(*entry);
847 847 SvREADONLY_on(hash);
848 848 hash = newhash;
849 849 new = 1;
850 850
851 851 /* Otherwise it already existed */
852 852 } else {
853 853 SvREADONLY_on(hash);
854 854 hash = (HV *)SvRV(*entry);
855 855 new = 0;
856 856 }
857 857 }
858 858
859 859 /* Create and bless a hash for the tie, if necessary */
860 860 if (new) {
861 861 SV *tieref;
862 862 HV *stash;
863 863
864 864 tie = newHV();
865 865 tieref = newRV_noinc((SV *)tie);
866 866 stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE);
867 867 sv_bless(tieref, stash);
868 868
869 869 /* Add TIEHASH magic */
870 870 hv_magic(hash, (GV *)tieref, 'P');
871 871 SvREADONLY_on(hash);
872 872
873 873 /* Otherwise, just find the existing tied hash */
874 874 } else {
875 875 MAGIC *mg;
876 876
877 877 mg = mg_find((SV *)hash, 'P');
878 878 PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic");
879 879 tie = (HV *)SvRV(mg->mg_obj);
880 880 }
881 881 if (is_new) {
882 882 *is_new = new;
883 883 }
884 884 return (tie);
885 885 }
886 886
887 887 /*
888 888 * This is an iterator function used to traverse the hash hierarchy and apply
889 889 * the passed function to the tied hashes at the bottom of the hierarchy. If
890 890 * any of the callback functions return 0, 0 is returned, otherwise 1
891 891 */
892 892
893 893 static int
894 894 apply_to_ties(SV *self, ATTCb_t cb, void *arg)
895 895 {
896 896 HV *hash1;
897 897 HE *entry1;
898 898 int ret;
899 899
900 900 hash1 = (HV *)SvRV(self);
901 901 hv_iterinit(hash1);
902 902 ret = 1;
903 903
904 904 /* Iterate over each module */
905 905 while ((entry1 = hv_iternext(hash1))) {
906 906 HV *hash2;
907 907 HE *entry2;
908 908
909 909 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
910 910 hv_iterinit(hash2);
911 911
912 912 /* Iterate over each module:instance */
913 913 while ((entry2 = hv_iternext(hash2))) {
914 914 HV *hash3;
915 915 HE *entry3;
916 916
917 917 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
918 918 hv_iterinit(hash3);
919 919
920 920 /* Iterate over each module:instance:name */
921 921 while ((entry3 = hv_iternext(hash3))) {
922 922 HV *hash4;
923 923 MAGIC *mg;
924 924
925 925 /* Get the tie */
926 926 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
927 927 mg = mg_find((SV *)hash4, 'P');
928 928 PERL_ASSERTMSG(mg != 0,
929 929 "apply_to_ties: lost P magic");
930 930
931 931 /* Apply the callback */
932 932 if (! cb((HV *)SvRV(mg->mg_obj), arg)) {
933 933 ret = 0;
934 934 }
935 935 }
936 936 }
937 937 }
938 938 return (ret);
939 939 }
940 940
941 941 /*
942 942 * Mark this HV as valid - used by update() when pruning deleted kstat nodes
943 943 */
944 944
945 945 static int
946 946 set_valid(HV *self, void *arg)
947 947 {
948 948 MAGIC *mg;
949 949
950 950 mg = mg_find((SV *)self, '~');
951 951 PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic");
952 952 ((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)(intptr_t)arg;
953 953 return (1);
954 954 }
955 955
956 956 /*
957 957 * Prune invalid kstat nodes. This is called when kstat_chain_update() detects
958 958 * that the kstat chain has been updated. This removes any hash tree entries
959 959 * that no longer have a corresponding kstat. If del is non-null it will be
960 960 * set to the keys of the deleted kstat nodes, if any. If any entries are
961 961 * deleted 1 will be retured, otherwise 0
962 962 */
963 963
964 964 static int
965 965 prune_invalid(SV *self, AV *del)
966 966 {
967 967 HV *hash1;
968 968 HE *entry1;
969 969 STRLEN klen;
970 970 char *module, *instance, *name, *key;
971 971 int ret;
972 972
973 973 hash1 = (HV *)SvRV(self);
974 974 hv_iterinit(hash1);
975 975 ret = 0;
976 976
977 977 /* Iterate over each module */
978 978 while ((entry1 = hv_iternext(hash1))) {
979 979 HV *hash2;
980 980 HE *entry2;
981 981
982 982 module = HePV(entry1, PL_na);
983 983 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
984 984 hv_iterinit(hash2);
985 985
986 986 /* Iterate over each module:instance */
987 987 while ((entry2 = hv_iternext(hash2))) {
988 988 HV *hash3;
989 989 HE *entry3;
990 990
991 991 instance = HePV(entry2, PL_na);
992 992 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
993 993 hv_iterinit(hash3);
994 994
995 995 /* Iterate over each module:instance:name */
996 996 while ((entry3 = hv_iternext(hash3))) {
997 997 HV *hash4;
998 998 MAGIC *mg;
999 999 HV *tie;
1000 1000
1001 1001 name = HePV(entry3, PL_na);
1002 1002 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
1003 1003 mg = mg_find((SV *)hash4, 'P');
1004 1004 PERL_ASSERTMSG(mg != 0,
1005 1005 "prune_invalid: lost P magic");
1006 1006 tie = (HV *)SvRV(mg->mg_obj);
1007 1007 mg = mg_find((SV *)tie, '~');
1008 1008 PERL_ASSERTMSG(mg != 0,
1009 1009 "prune_invalid: lost ~ magic");
1010 1010
1011 1011 /* If this is marked as invalid, prune it */
1012 1012 if (((KstatInfo_t *)SvPVX(
1013 1013 (SV *)mg->mg_obj))->valid == FALSE) {
1014 1014 SvREADONLY_off(hash3);
1015 1015 key = HePV(entry3, klen);
1016 1016 hv_delete(hash3, key, klen, G_DISCARD);
1017 1017 SvREADONLY_on(hash3);
1018 1018 if (del) {
1019 1019 av_push(del,
1020 1020 newSVpvf("%s:%s:%s",
1021 1021 module, instance, name));
1022 1022 }
1023 1023 ret = 1;
1024 1024 }
1025 1025 }
1026 1026
1027 1027 /* If the module:instance:name hash is empty prune it */
1028 1028 if (HvKEYS(hash3) == 0) {
1029 1029 SvREADONLY_off(hash2);
1030 1030 key = HePV(entry2, klen);
1031 1031 hv_delete(hash2, key, klen, G_DISCARD);
1032 1032 SvREADONLY_on(hash2);
1033 1033 }
1034 1034 }
1035 1035 /* If the module:instance hash is empty prune it */
1036 1036 if (HvKEYS(hash2) == 0) {
1037 1037 SvREADONLY_off(hash1);
1038 1038 key = HePV(entry1, klen);
1039 1039 hv_delete(hash1, key, klen, G_DISCARD);
1040 1040 SvREADONLY_on(hash1);
1041 1041 }
1042 1042 }
1043 1043 return (ret);
1044 1044 }
1045 1045
1046 1046 /*
1047 1047 * Named kstats are returned as a list of key/values. This function converts
1048 1048 * such a list into the equivalent perl datatypes, and stores them in the passed
1049 1049 * hash.
1050 1050 */
1051 1051
1052 1052 static void
1053 1053 save_named(HV *self, kstat_t *kp, int strip_str)
1054 1054 {
1055 1055 kstat_named_t *knp;
1056 1056 int n;
1057 1057 SV* value;
1058 1058
1059 1059 for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
1060 1060 switch (knp->data_type) {
1061 1061 case KSTAT_DATA_CHAR:
1062 1062 value = newSVpv(knp->value.c, strip_str ?
1063 1063 strlen(knp->value.c) : sizeof (knp->value.c));
1064 1064 break;
1065 1065 case KSTAT_DATA_INT32:
1066 1066 value = newSViv(knp->value.i32);
1067 1067 break;
1068 1068 case KSTAT_DATA_UINT32:
1069 1069 value = NEW_UV(knp->value.ui32);
1070 1070 break;
1071 1071 case KSTAT_DATA_INT64:
1072 1072 value = NEW_UV(knp->value.i64);
1073 1073 break;
1074 1074 case KSTAT_DATA_UINT64:
1075 1075 value = NEW_UV(knp->value.ui64);
1076 1076 break;
1077 1077 case KSTAT_DATA_STRING:
1078 1078 if (KSTAT_NAMED_STR_PTR(knp) == NULL)
1079 1079 value = newSVpv("null", sizeof ("null") - 1);
1080 1080 else
1081 1081 value = newSVpv(KSTAT_NAMED_STR_PTR(knp),
1082 1082 KSTAT_NAMED_STR_BUFLEN(knp) -1);
1083 1083 break;
1084 1084 default:
1085 1085 PERL_ASSERTMSG(0, "kstat_read: invalid data type");
1086 1086 continue;
1087 1087 }
1088 1088 hv_store(self, knp->name, strlen(knp->name), value, 0);
1089 1089 }
1090 1090 }
1091 1091
1092 1092 /*
1093 1093 * Save kstat interrupt statistics
1094 1094 */
1095 1095
1096 1096 static void
1097 1097 save_intr(HV *self, kstat_t *kp, int strip_str)
1098 1098 {
1099 1099 kstat_intr_t *kintrp;
1100 1100 int i;
1101 1101 static char *intr_names[] =
1102 1102 { "hard", "soft", "watchdog", "spurious", "multiple_service" };
1103 1103
1104 1104 PERL_ASSERT(kp->ks_ndata == 1);
1105 1105 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t));
1106 1106 kintrp = KSTAT_INTR_PTR(kp);
1107 1107
1108 1108 for (i = 0; i < KSTAT_NUM_INTRS; i++) {
1109 1109 hv_store(self, intr_names[i], strlen(intr_names[i]),
1110 1110 NEW_UV(kintrp->intrs[i]), 0);
1111 1111 }
1112 1112 }
1113 1113
1114 1114 /*
1115 1115 * Save IO statistics
1116 1116 */
1117 1117
1118 1118 static void
1119 1119 save_io(HV *self, kstat_t *kp, int strip_str)
1120 1120 {
1121 1121 kstat_io_t *kiop;
1122 1122
1123 1123 PERL_ASSERT(kp->ks_ndata == 1);
1124 1124 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t));
1125 1125 kiop = KSTAT_IO_PTR(kp);
1126 1126 SAVE_UINT64(self, kiop, nread);
1127 1127 SAVE_UINT64(self, kiop, nwritten);
1128 1128 SAVE_UINT32(self, kiop, reads);
1129 1129 SAVE_UINT32(self, kiop, writes);
1130 1130 SAVE_HRTIME(self, kiop, wtime);
1131 1131 SAVE_HRTIME(self, kiop, wlentime);
1132 1132 SAVE_HRTIME(self, kiop, wlastupdate);
1133 1133 SAVE_HRTIME(self, kiop, rtime);
1134 1134 SAVE_HRTIME(self, kiop, rlentime);
1135 1135 SAVE_HRTIME(self, kiop, rlastupdate);
1136 1136 SAVE_UINT32(self, kiop, wcnt);
1137 1137 SAVE_UINT32(self, kiop, rcnt);
1138 1138 }
1139 1139
1140 1140 /*
1141 1141 * Save timer statistics
1142 1142 */
1143 1143
1144 1144 static void
1145 1145 save_timer(HV *self, kstat_t *kp, int strip_str)
1146 1146 {
1147 1147 kstat_timer_t *ktimerp;
1148 1148
1149 1149 PERL_ASSERT(kp->ks_ndata == 1);
1150 1150 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t));
1151 1151 ktimerp = KSTAT_TIMER_PTR(kp);
1152 1152 SAVE_STRING(self, ktimerp, name, strip_str);
1153 1153 SAVE_UINT64(self, ktimerp, num_events);
1154 1154 SAVE_HRTIME(self, ktimerp, elapsed_time);
1155 1155 SAVE_HRTIME(self, ktimerp, min_time);
1156 1156 SAVE_HRTIME(self, ktimerp, max_time);
1157 1157 SAVE_HRTIME(self, ktimerp, start_time);
1158 1158 SAVE_HRTIME(self, ktimerp, stop_time);
1159 1159 }
1160 1160
1161 1161 /*
1162 1162 * Read kstats and copy into the supplied perl hash structure. If refresh is
1163 1163 * true, this function is being called as part of the update() method. In this
1164 1164 * case it is only necessary to read the kstats if they have previously been
1165 1165 * accessed (kip->read == TRUE). If refresh is false, this function is being
1166 1166 * called prior to returning a value to the caller. In this case, it is only
1167 1167 * necessary to read the kstats if they have not previously been read. If the
1168 1168 * kstat_read() fails, 0 is returned, otherwise 1
1169 1169 */
1170 1170
1171 1171 static int
1172 1172 read_kstats(HV *self, int refresh)
1173 1173 {
1174 1174 MAGIC *mg;
1175 1175 KstatInfo_t *kip;
1176 1176 kstat_raw_reader_t fnp;
1177 1177
1178 1178 /* Find the MAGIC KstatInfo_t data structure */
1179 1179 mg = mg_find((SV *)self, '~');
1180 1180 PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic");
1181 1181 kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1182 1182
1183 1183 /* Return early if we don't need to actually read the kstats */
1184 1184 if ((refresh && ! kip->read) || (! refresh && kip->read)) {
1185 1185 return (1);
1186 1186 }
1187 1187
1188 1188 /* Read the kstats and return 0 if this fails */
1189 1189 if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) {
1190 1190 return (0);
1191 1191 }
1192 1192
1193 1193 /* Save the read data */
1194 1194 hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0);
1195 1195 switch (kip->kstat->ks_type) {
1196 1196 case KSTAT_TYPE_RAW:
1197 1197 if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module,
1198 1198 kip->kstat->ks_name)) != 0) {
1199 1199 fnp(self, kip->kstat, kip->strip_str);
1200 1200 }
1201 1201 break;
1202 1202 case KSTAT_TYPE_NAMED:
1203 1203 save_named(self, kip->kstat, kip->strip_str);
1204 1204 break;
1205 1205 case KSTAT_TYPE_INTR:
1206 1206 save_intr(self, kip->kstat, kip->strip_str);
1207 1207 break;
1208 1208 case KSTAT_TYPE_IO:
1209 1209 save_io(self, kip->kstat, kip->strip_str);
1210 1210 break;
1211 1211 case KSTAT_TYPE_TIMER:
1212 1212 save_timer(self, kip->kstat, kip->strip_str);
1213 1213 break;
1214 1214 default:
1215 1215 PERL_ASSERTMSG(0, "read_kstats: illegal kstat type");
1216 1216 break;
1217 1217 }
1218 1218 kip->read = TRUE;
1219 1219 return (1);
1220 1220 }
1221 1221
1222 1222 /*
1223 1223 * The XS code exported to perl is below here. Note that the XS preprocessor
1224 1224 * has its own commenting syntax, so all comments from this point on are in
1225 1225 * that form.
1226 1226 */
1227 1227
1228 1228 /* The following XS methods are the ABI of the Sun::Solaris::Kstat package */
1229 1229
1230 1230 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat
1231 1231 PROTOTYPES: ENABLE
1232 1232
1233 1233 # Create the raw kstat to store function lookup table on load
1234 1234 BOOT:
1235 1235 build_raw_kstat_lookup();
1236 1236
1237 1237 #
1238 1238 # The Sun::Solaris::Kstat constructor. This builds the nested
1239 1239 # name::instance::module hash structure, but doesn't actually read the
1240 1240 # underlying kstats. This is done on demand by the TIEHASH methods in
1241 1241 # Sun::Solaris::Kstat::_Stat
1242 1242 #
1243 1243
1244 1244 SV*
1245 1245 new(class, ...)
1246 1246 char *class;
1247 1247 PREINIT:
1248 1248 HV *stash;
1249 1249 kstat_ctl_t *kc;
1250 1250 SV *kcsv;
1251 1251 kstat_t *kp;
1252 1252 KstatInfo_t kstatinfo;
1253 1253 int sp, strip_str;
1254 1254 CODE:
1255 1255 /* Check we have an even number of arguments, excluding the class */
1256 1256 sp = 1;
1257 1257 if (((items - sp) % 2) != 0) {
1258 1258 croak(DEBUG_ID ": new: invalid number of arguments");
1259 1259 }
1260 1260
1261 1261 /* Process any (name => value) arguments */
1262 1262 strip_str = 0;
1263 1263 while (sp < items) {
1264 1264 SV *name, *value;
1265 1265
1266 1266 name = ST(sp);
1267 1267 sp++;
1268 1268 value = ST(sp);
1269 1269 sp++;
1270 1270 if (strcmp(SvPVX(name), "strip_strings") == 0) {
1271 1271 strip_str = SvTRUE(value);
1272 1272 } else {
1273 1273 croak(DEBUG_ID ": new: invalid parameter name '%s'",
1274 1274 SvPVX(name));
1275 1275 }
1276 1276 }
1277 1277
1278 1278 /* Open the kstats handle */
1279 1279 if ((kc = kstat_open()) == 0) {
1280 1280 XSRETURN_UNDEF;
1281 1281 }
1282 1282
1283 1283 /* Create a blessed hash ref */
1284 1284 RETVAL = (SV *)newRV_noinc((SV *)newHV());
1285 1285 stash = gv_stashpv(class, TRUE);
1286 1286 sv_bless(RETVAL, stash);
1287 1287
1288 1288 /* Create a place to save the KstatInfo_t structure */
1289 1289 kcsv = newSVpv((char *)&kc, sizeof (kc));
1290 1290 sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0);
1291 1291 SvREFCNT_dec(kcsv);
1292 1292
1293 1293 /* Initialise the KstatsInfo_t structure */
1294 1294 kstatinfo.read = FALSE;
1295 1295 kstatinfo.valid = TRUE;
1296 1296 kstatinfo.strip_str = strip_str;
1297 1297 kstatinfo.kstat_ctl = kc;
1298 1298
1299 1299 /* Scan the kstat chain, building hash entries for the kstats */
1300 1300 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1301 1301 HV *tie;
1302 1302 SV *kstatsv;
1303 1303
1304 1304 /* Don't bother storing the kstat headers */
1305 1305 if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1306 1306 continue;
1307 1307 }
1308 1308
1309 1309 /* Don't bother storing raw stats we don't understand */
1310 1310 if (kp->ks_type == KSTAT_TYPE_RAW &&
1311 1311 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) {
1312 1312 #ifdef REPORT_UNKNOWN
1313 1313 (void) fprintf(stderr,
1314 1314 "Unknown kstat type %s:%d:%s - %d of size %d\n",
1315 1315 kp->ks_module, kp->ks_instance, kp->ks_name,
1316 1316 kp->ks_ndata, kp->ks_data_size);
1317 1317 #endif
1318 1318 continue;
1319 1319 }
1320 1320
1321 1321 /* Create a 3-layer hash hierarchy - module.instance.name */
1322 1322 tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance,
1323 1323 kp->ks_name, 0);
1324 1324
1325 1325 /* Save the data necessary to read the kstat info on demand */
1326 1326 hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0);
1327 1327 hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0);
1328 1328 kstatinfo.kstat = kp;
1329 1329 kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo));
1330 1330 sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1331 1331 SvREFCNT_dec(kstatsv);
1332 1332 }
1333 1333 SvREADONLY_on(SvRV(RETVAL));
1334 1334 /* SvREADONLY_on(RETVAL); */
1335 1335 OUTPUT:
1336 1336 RETVAL
1337 1337
1338 1338 #
1339 1339 # Update the perl hash structure so that it is in line with the kernel kstats
1340 1340 # data. Only kstats athat have previously been accessed are read,
1341 1341 #
1342 1342
1343 1343 # Scalar context: true/false
1344 1344 # Array context: (\@added, \@deleted)
1345 1345 void
1346 1346 update(self)
1347 1347 SV* self;
1348 1348 PREINIT:
1349 1349 MAGIC *mg;
1350 1350 kstat_ctl_t *kc;
1351 1351 kstat_t *kp;
1352 1352 int ret;
1353 1353 AV *add, *del;
1354 1354 PPCODE:
1355 1355 /* Find the hidden KstatInfo_t structure */
1356 1356 mg = mg_find(SvRV(self), '~');
1357 1357 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1358 1358 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1359 1359
1360 1360 /* Update the kstat chain, and return immediately on error. */
1361 1361 if ((ret = kstat_chain_update(kc)) == -1) {
1362 1362 if (GIMME_V == G_ARRAY) {
1363 1363 EXTEND(SP, 2);
1364 1364 PUSHs(sv_newmortal());
1365 1365 PUSHs(sv_newmortal());
1366 1366 } else {
1367 1367 EXTEND(SP, 1);
1368 1368 PUSHs(sv_2mortal(newSViv(ret)));
1369 1369 }
1370 1370 }
1371 1371
1372 1372 /* Create the arrays to be returned if in an array context */
1373 1373 if (GIMME_V == G_ARRAY) {
1374 1374 add = newAV();
1375 1375 del = newAV();
1376 1376 } else {
1377 1377 add = 0;
1378 1378 del = 0;
1379 1379 }
1380 1380
1381 1381 /*
1382 1382 * If the kstat chain hasn't changed we can just reread any stats
1383 1383 * that have already been read
1384 1384 */
1385 1385 if (ret == 0) {
1386 1386 if (! apply_to_ties(self, (ATTCb_t)read_kstats, (void *)TRUE)) {
1387 1387 if (GIMME_V == G_ARRAY) {
1388 1388 EXTEND(SP, 2);
1389 1389 PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1390 1390 PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1391 1391 } else {
1392 1392 EXTEND(SP, 1);
1393 1393 PUSHs(sv_2mortal(newSViv(-1)));
1394 1394 }
1395 1395 }
1396 1396
1397 1397 /*
1398 1398 * Otherwise we have to update the Perl structure so that it is in
1399 1399 * agreement with the new kstat chain. We do this in such a way as to
1400 1400 * retain all the existing structures, just adding or deleting the
1401 1401 * bare minimum.
1402 1402 */
1403 1403 } else {
1404 1404 KstatInfo_t kstatinfo;
1405 1405
1406 1406 /*
1407 1407 * Step 1: set the 'invalid' flag on each entry
1408 1408 */
1409 1409 apply_to_ties(self, &set_valid, (void *)FALSE);
1410 1410
1411 1411 /*
1412 1412 * Step 2: Set the 'valid' flag on all entries still in the
1413 1413 * kernel kstat chain
1414 1414 */
1415 1415 kstatinfo.read = FALSE;
1416 1416 kstatinfo.valid = TRUE;
1417 1417 kstatinfo.kstat_ctl = kc;
1418 1418 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1419 1419 int new;
1420 1420 HV *tie;
1421 1421
1422 1422 /* Don't bother storing the kstat headers or types */
1423 1423 if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1424 1424 continue;
1425 1425 }
1426 1426
1427 1427 /* Don't bother storing raw stats we don't understand */
1428 1428 if (kp->ks_type == KSTAT_TYPE_RAW &&
1429 1429 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name)
1430 1430 == 0) {
1431 1431 #ifdef REPORT_UNKNOWN
1432 1432 (void) printf("Unknown kstat type %s:%d:%s "
1433 1433 "- %d of size %d\n", kp->ks_module,
1434 1434 kp->ks_instance, kp->ks_name,
1435 1435 kp->ks_ndata, kp->ks_data_size);
1436 1436 #endif
1437 1437 continue;
1438 1438 }
1439 1439
1440 1440 /* Find the tied hash associated with the kstat entry */
1441 1441 tie = get_tie(self, kp->ks_module, kp->ks_instance,
1442 1442 kp->ks_name, &new);
1443 1443
1444 1444 /* If newly created store the associated kstat info */
1445 1445 if (new) {
1446 1446 SV *kstatsv;
1447 1447
1448 1448 /*
1449 1449 * Save the data necessary to read the kstat
1450 1450 * info on demand
1451 1451 */
1452 1452 hv_store(tie, "class", 5,
1453 1453 newSVpv(kp->ks_class, 0), 0);
1454 1454 hv_store(tie, "crtime", 6,
1455 1455 NEW_HRTIME(kp->ks_crtime), 0);
1456 1456 kstatinfo.kstat = kp;
1457 1457 kstatsv = newSVpv((char *)&kstatinfo,
1458 1458 sizeof (kstatinfo));
1459 1459 sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1460 1460 SvREFCNT_dec(kstatsv);
1461 1461
1462 1462 /* Save the key on the add list, if required */
1463 1463 if (GIMME_V == G_ARRAY) {
1464 1464 av_push(add, newSVpvf("%s:%d:%s",
1465 1465 kp->ks_module, kp->ks_instance,
1466 1466 kp->ks_name));
1467 1467 }
1468 1468
1469 1469 /* If the stats already exist, just update them */
1470 1470 } else {
1471 1471 MAGIC *mg;
1472 1472 KstatInfo_t *kip;
1473 1473
1474 1474 /* Find the hidden KstatInfo_t */
1475 1475 mg = mg_find((SV *)tie, '~');
1476 1476 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1477 1477 kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1478 1478
1479 1479 /* Mark the tie as valid */
1480 1480 kip->valid = TRUE;
1481 1481
1482 1482 /* Re-save the kstat_t pointer. If the kstat
1483 1483 * has been deleted and re-added since the last
1484 1484 * update, the address of the kstat structure
1485 1485 * will have changed, even though the kstat will
1486 1486 * still live at the same place in the perl
1487 1487 * hash tree structure.
1488 1488 */
1489 1489 kip->kstat = kp;
1490 1490
1491 1491 /* Reread the stats, if read previously */
1492 1492 read_kstats(tie, TRUE);
1493 1493 }
1494 1494 }
1495 1495
1496 1496 /*
1497 1497 *Step 3: Delete any entries still marked as 'invalid'
1498 1498 */
1499 1499 ret = prune_invalid(self, del);
1500 1500
1501 1501 }
1502 1502 if (GIMME_V == G_ARRAY) {
1503 1503 EXTEND(SP, 2);
1504 1504 PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1505 1505 PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1506 1506 } else {
1507 1507 EXTEND(SP, 1);
1508 1508 PUSHs(sv_2mortal(newSViv(ret)));
1509 1509 }
1510 1510
1511 1511
1512 1512 #
1513 1513 # Destructor. Closes the kstat connection
1514 1514 #
1515 1515
1516 1516 void
1517 1517 DESTROY(self)
1518 1518 SV *self;
1519 1519 PREINIT:
1520 1520 MAGIC *mg;
1521 1521 kstat_ctl_t *kc;
1522 1522 CODE:
1523 1523 mg = mg_find(SvRV(self), '~');
1524 1524 PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic");
1525 1525 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1526 1526 if (kstat_close(kc) != 0) {
1527 1527 croak(DEBUG_ID ": kstat_close: failed");
1528 1528 }
1529 1529
1530 1530 #
1531 1531 # The following XS methods implement the TIEHASH mechanism used to update the
1532 1532 # kstats hash structure. These are blessed into a package that isn't
1533 1533 # visible to callers of the Sun::Solaris::Kstat module
1534 1534 #
1535 1535
1536 1536 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat
1537 1537 PROTOTYPES: ENABLE
1538 1538
1539 1539 #
1540 1540 # If a value has already been read, return it. Otherwise read the appropriate
1541 1541 # kstat and then return the value
1542 1542 #
1543 1543
1544 1544 SV*
1545 1545 FETCH(self, key)
1546 1546 SV* self;
1547 1547 SV* key;
1548 1548 PREINIT:
1549 1549 char *k;
1550 1550 STRLEN klen;
1551 1551 SV **value;
1552 1552 CODE:
1553 1553 self = SvRV(self);
1554 1554 k = SvPV(key, klen);
1555 1555 if (strNE(k, "class") && strNE(k, "crtime")) {
1556 1556 read_kstats((HV *)self, FALSE);
1557 1557 }
1558 1558 value = hv_fetch((HV *)self, k, klen, FALSE);
1559 1559 if (value) {
1560 1560 RETVAL = *value; SvREFCNT_inc(RETVAL);
1561 1561 } else {
1562 1562 RETVAL = &PL_sv_undef;
1563 1563 }
1564 1564 OUTPUT:
1565 1565 RETVAL
1566 1566
1567 1567 #
1568 1568 # Save the passed value into the kstat hash. Read the appropriate kstat first,
1569 1569 # if necessary. Note that this DOES NOT update the underlying kernel kstat
1570 1570 # structure.
1571 1571 #
1572 1572
1573 1573 SV*
1574 1574 STORE(self, key, value)
1575 1575 SV* self;
1576 1576 SV* key;
1577 1577 SV* value;
1578 1578 PREINIT:
1579 1579 char *k;
1580 1580 STRLEN klen;
1581 1581 CODE:
1582 1582 self = SvRV(self);
1583 1583 k = SvPV(key, klen);
1584 1584 if (strNE(k, "class") && strNE(k, "crtime")) {
1585 1585 read_kstats((HV *)self, FALSE);
1586 1586 }
1587 1587 SvREFCNT_inc(value);
1588 1588 RETVAL = *(hv_store((HV *)self, k, klen, value, 0));
1589 1589 SvREFCNT_inc(RETVAL);
1590 1590 OUTPUT:
1591 1591 RETVAL
1592 1592
1593 1593 #
1594 1594 # Check for the existence of the passed key. Read the kstat first if necessary
1595 1595 #
1596 1596
1597 1597 bool
1598 1598 EXISTS(self, key)
1599 1599 SV* self;
1600 1600 SV* key;
1601 1601 PREINIT:
1602 1602 char *k;
1603 1603 CODE:
1604 1604 self = SvRV(self);
1605 1605 k = SvPV(key, PL_na);
1606 1606 if (strNE(k, "class") && strNE(k, "crtime")) {
1607 1607 read_kstats((HV *)self, FALSE);
1608 1608 }
1609 1609 RETVAL = hv_exists_ent((HV *)self, key, 0);
1610 1610 OUTPUT:
1611 1611 RETVAL
1612 1612
1613 1613
1614 1614 #
1615 1615 # Hash iterator initialisation. Read the kstats if necessary.
1616 1616 #
1617 1617
1618 1618 SV*
1619 1619 FIRSTKEY(self)
1620 1620 SV* self;
1621 1621 PREINIT:
1622 1622 HE *he;
1623 1623 PPCODE:
1624 1624 self = SvRV(self);
1625 1625 read_kstats((HV *)self, FALSE);
1626 1626 hv_iterinit((HV *)self);
1627 1627 if ((he = hv_iternext((HV *)self))) {
1628 1628 EXTEND(SP, 1);
1629 1629 PUSHs(hv_iterkeysv(he));
1630 1630 }
1631 1631
1632 1632 #
1633 1633 # Return hash iterator next value. Read the kstats if necessary.
1634 1634 #
1635 1635
1636 1636 SV*
1637 1637 NEXTKEY(self, lastkey)
1638 1638 SV* self;
1639 1639 SV* lastkey;
1640 1640 PREINIT:
1641 1641 HE *he;
1642 1642 PPCODE:
1643 1643 self = SvRV(self);
1644 1644 if ((he = hv_iternext((HV *)self))) {
1645 1645 EXTEND(SP, 1);
1646 1646 PUSHs(hv_iterkeysv(he));
1647 1647 }
1648 1648
1649 1649
1650 1650 #
1651 1651 # Delete the specified hash entry.
1652 1652 #
1653 1653
1654 1654 SV*
1655 1655 DELETE(self, key)
1656 1656 SV *self;
1657 1657 SV *key;
1658 1658 CODE:
1659 1659 self = SvRV(self);
1660 1660 RETVAL = hv_delete_ent((HV *)self, key, 0, 0);
1661 1661 if (RETVAL) {
1662 1662 SvREFCNT_inc(RETVAL);
1663 1663 } else {
1664 1664 RETVAL = &PL_sv_undef;
1665 1665 }
1666 1666 OUTPUT:
1667 1667 RETVAL
1668 1668
1669 1669 #
1670 1670 # Clear the entire hash. This will stop any update() calls rereading this
1671 1671 # kstat until it is accessed again.
1672 1672 #
1673 1673
1674 1674 void
1675 1675 CLEAR(self)
1676 1676 SV* self;
1677 1677 PREINIT:
1678 1678 MAGIC *mg;
1679 1679 KstatInfo_t *kip;
1680 1680 CODE:
1681 1681 self = SvRV(self);
1682 1682 hv_clear((HV *)self);
1683 1683 mg = mg_find(self, '~');
1684 1684 PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic");
1685 1685 kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1686 1686 kip->read = FALSE;
1687 1687 kip->valid = TRUE;
1688 1688 hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0);
1689 1689 hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0);
↓ open down ↓ |
1613 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX