
new/usr/src/uts/common/fs/fsh.c 1

**
 34567 Mon Sep 9 17:14:59 2013
new/usr/src/uts/common/fs/fsh.c
Update from fsd_sep3 webrev to fsd_sep9
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2013 Damian Bogel. All rights reserved.
14 */

16 #include <sys/debug.h>
17 #include <sys/errno.h>
18 #include <sys/fsh.h>
19 #include <sys/fsh_impl.h>
20 #include <sys/id_space.h>
21 #include <sys/kmem.h>
22 #include <sys/ksynch.h>
23 #include <sys/list.h>
24 #include <sys/sunddi.h>
25 #include <sys/sysmacros.h>
26 #include <sys/types.h>
27 #include <sys/vfs.h>
28 #include <sys/vnode.h>

30 /*
31 * Filesystem hook framework (fsh)
32 *
33 * 1. Abstract.
34 * The main goal of the filesystem hook framework is to provide an easy way to
35 * inject client-defined behaviour into vfs/vnode calls. fsh works on
36 * vfs_t granularity.
37 *
38 * Note: In this document, both an fsh_t structure and hooking function for a
39 * vnodeop/vfsop is referred to as *hook*.
40 *
41 *
42 * 2. Overview.
43 * fsh_t is the main object in the fsh. An fsh_t is a structure containing:
44 * - pointers to hooking functions
45 * - an argument to pass (this is shared for all the hooks in a given
46 * fsh_t)
47 * - a pointer to the *hook remove callback*
41 * - pointers to hooking functions (named after corresponding
42 * vnodeops/vfsops)
43 * - a pointer to an argument to pass (this is shared for all the
44 * hooks in a given fsh_t)
45 * - a pointer to the *hook remove callback* - it’s being fired after a
46 * hook is removed and the hook has stopped executing. It’s safe to destroy
47 * any data associated with this hook.
48 *
49 * The information from fsh_t is copied by the fsh and an fsh_handle_t
50 * is returned. It should be used for further removing.
51 *
52 *
53 * 3. Usage.
54 * It is expected that vfs_t/vnode_t passed to fsh_foo() functions are held by

new/usr/src/uts/common/fs/fsh.c 2

55 * the caller when needed. fsh does no vfs_t/vnode_t locking.
54 * It is expected that vfs_t/vnode_t that are passed to fsh_foo() functions
55 * are held by the caller when needed. fsh does no vfs_t/vnode_t locking.
56 *
57 * fsh_t is a structure filled out by the client. It contains:
58 * - pointers to hooking functions
59 * - the argument passed to the hooks
60 * - the *hook remove callback*
57 * fsh_t is a structure filled out by the client. If a client does not want
58 * to add/remove a hook for function foo(), he should fill the foo field of
59 * fsh_t with NULL. Every hook has a type of corresponding vfsop/vnodeop with
60 * two additional arguments:
61 * - fsh_int_t *fsh_int - this argument MUST be passed to
62 * hook_next_foo(). fsh wouldn’t know which hook to execute next
63 * without it
64 * - void *arg - this is the argument passed with fsh_t during
65 * installation
66 * - void (*remove_cb)(void *, fsh_handle_t) - hook remove callback
67 * (mentioned earlier); it’s first argument is arg, the second is the
68 * handle
61 *
62 * If a client does not want to add a hook for function foo(), he should fill
63 * corresponding fields with NULLs. For every vfsop/vnodeop there are two
64 * fields: pre_foo() and post_foo(). These are the functions called before and
65 * after the next hook or underlying vfsop/vnodeop.
66 *
67 * Pre hooks take:
68 * - arg
69 * - pointer to a field containing void* - it should be filled whenever
70 * the client wants to have some data shared by the pre and post hooks in
71 * the same syscall execution. This is called the *instance data*.
72 * - pointers to the arguments passed to the underlying vfsop/vnodeop
73 * Pre hooks return void.
74 *
75 * Post hooks take:
76 * - value returned by the previous post hook or underlying vfsop/vnodeop
77 * - arg
78 * - pointer to the *instance data*
79 * - arguments passed to the underlying vfsop/vnodeop
80 * Post hooks return an int, which should be treated as the vfsop/vnodeop
81 * return value.
82 * Memory allocated by pre hook must be deallocated by the post hook.
83 *
84 * Execution path of hooks A, B, C is as follows:
85 * foo()
86 * preA(argA, &instancepA, ...);
87 * preB(argB, &instancepB, ...);
88 * preC(argC, &instancepC, ...);
89 * ret = VOP_FOO();
90 * ret = postC(ret, argC, instancepC, ...);
91 * ret = postB(ret, argB, instancepB, ...);
92 * ret = postC(ret, argA, instancepA, ...);
93 * return (ret);
94 *
95 * After installation, an fsh_handle_t is returned to the caller.
96 *
97 * Hook remove callback - it’s a function being fired after a hook is removed
98 * and no thread is going to execute it anymore. It’s safe to destroy all the
99 * data associated with this hook inside it.
72 * Every hook function is responsible for passing the control to the next
73 * hook associated with a particular call. In order to provide an easy way to
74 * modify the behaviour of a function call both before and after the
75 * underlying vfsop/vnodeop (or next hook) execution, a hook has to call
76 * fsh_next_foo() at some point. This function does necessary internal
77 * operations and calls the next hook, until there’s no hook left, then it
78 * calls the underlying vfsop/vnodeop.

new/usr/src/uts/common/fs/fsh.c 3

79 * Example:
80 * my_freefs(fsh_int_t *fsh_int, void *arg, vfs_t *vfsp) {
81 * cmn_err(CE_NOTE, "freefs called!\n");
82 * return (fsh_next_freefs(fsh_int, vfsp));
83 * }
100 *
101 * It is guaranteed, that whenever a pre_hook() is called, there will be also
102 * post_hook() called within the same syscall.
103 *
104 * If a hook (HNew) is installed/removed on/from a vfs_t within execution of
105 * another hook (HExec) installed on this vfs_t, the syscall that executes
106 * HExec won’t fire HNew.
107 *
108 * A client might want to fire callbacks when vfs_ts are being mounted
86 * A client might want to fire callbacks when vfs_t’s are being mounted
109 * or freed. There’s an fsh_callback_t structure provided to install such
110 * callbacks along with the API.
111 * It is legal to call fsh_hook_{install,remove}() inside a mount callback
112 * WITHOUT holding the vfs_t.
113 *
114 * After vfs_t’s free callback returns, all the handles associated with the
115 * hooks installed on this vfs_t are invalid and must not be used.
116 *
95 *
117 * 4. API
118 * None of the APIs should be called during interrupt context above lock
119 * level.
98 * level. The only exceptions are fsh_next_foo() functions, which do not use
99 * locks.
120 *
121 * a) fsh.h
122 * Any of these functions could be called in a hook or a hook remove callback.
123 * The only functions that must not be called inside a {mount,free} callback are
124 * fsd_callback_{install,remove}. Using them will cause a deadlock.
102 * Any of these functions could be called inside a hook or a hook remove
103 * callback.
104 * fsh_callback_{install,remove}() must not be called inside a {mount,free}
105 * callback. Doing so will cause a deadlock. Other functions can be called
106 * inside {mount,free} callbacks.
125 *
126 *
127 * fsh_fs_enable(vfs_t *vfsp)
128 * fsh_fs_disable(vfs_t *vfsp)
129 * Enables/disables fsh for a given vfs_t.
130 *
131 * fsh_hook_install(vfs_t *vfsp, fsh_t *hooks)
132 * Installs hooks on vfsp filesystem.
133 * It’s important that hooks are executed in LIFO installation order,
134 * which means that if there are hooks A and B installed in this order, B
135 * is going to be executed before A.
136 * It returns a correct handle, or (-1) if hook/callback limit exceeded.
137 * The handle is valid until a free callback returns or an explicit call
138 * to fsh_hook_remove().
139 *
140 * fsh_hook_remove(fsh_handle_t handle)
141 * Removes a hook and invalidates the handle.
142 * It is guaranteed that after this funcion returns, calls to
143 * vnodeops/vfsops won’t go through this hook, although there might be
144 * some threads still executing this hook. When hook remove callback is
145 * fired, it is guaranteed that the hook won’t be executed anymore. It is
146 * safe to remove all the internal data associated with this hook inside
147 * the hook remove callback. The hook remove callback could be called
148 * inside fsh_hook_remove().
149 *
131 * fsh_next_foo(fsh_int_t *fsh_int, void *arg, ARGUMENTS)
132 * This is the function which should be called once in every hook. It

new/usr/src/uts/common/fs/fsh.c 4

133 * does the necessary internal operations and passes control to the
134 * next hook or, if there’s no hook left, to the underlying
135 * vfsop/vnodeop.
150 *
151 * fsh_callback_install(fsh_callback_t *callback)
152 * fsh_callback_remove(fsh_callback_handle_t handle)
153 * Installs/removes callbacks for vfs_t mount/free. The mount callback
154 * is executed right before domount() returns. The free callback is
155 * called right before VFS_FREEVFS() is called.
156 * The fsh_callback_install() returns a correct handle, or (-1) if
157 * hook/callback limit exceeded.
158 *
159 *
160 * b) fsh_impl.h (for vfs.c and vnode.c only)
161 * fsh_init()
162 * This call has to be done in vfsinit(). It initialises the fsh. It
163 * is absolutely necessary that this call is made before any other fsh
164 * operation.
165 *
166 * fsh_exec_mount_callbacks(vfs_t *vfsp)
167 * fsh_exec_free_callbacks(vfs_t *vfsp)
168 * Used to execute all fsh callbacks for {mount,free} of a vfs_t.
169 *
170 * fsh_fsrec_destroy(struct fsh_fsrecord *fsrecp)
171 * Destroys an fsh_fsrecord structure. All the hooks installed on this
172 * vfs_t are then destroyed. free callback is called before this function.
173 *
174 * fsh_foo(ARGUMENTS)
175 * Function used to execute the hook chain for a given syscall.
160 * Function used to start executing the hook chain for a given call.
176 *
177 *
178 * 5. Internals.
179 * fsh_int_t is an internal hook structure. It is reference counted.
180 * fshi_hold() and fshi_rele() should be used whenever needed.
181 * fsh_int_t entries are elements of both fsh_map (global) and fshfsr_list
182 * (local to vfs_t). All entries are unique and are identified by fshi_handle.
183 *
184 * fsh_int_t properties:
185 * - fsh_hook_install() sets the ref. counter to 1 and adds it to both
186 * fsh_map and fshfsr_list
187 * - fsh_hook_remove() decreases the ref. counter by 1, removes the hook
188 * from fsh_map and marks the hook as *doomed*
189 * - if fsh_int_t is on the fshfsr_list, it’s alive and there is a thread
190 * executing it
191 * - if fsh_int_t is marked as *doomed*, the reference counter is not
192 * be increased and thus no thread can acquire this fsh_int_t
193 * - ref. counter can drop to 0 only after an fsh_hook_remove() call; this
194 * also means that the fsh_int_t is *doomed* and isn’t a part of fsh_map
195 * - fsh_int_t could be also destroyed without fsh_hook_remove() call,
196 * that happens only inside fsh_fsrec_destroy() where it is guaranteed
197 * that there is no thread executing the hook
198 *
199 *
200 * fsh_fsrecord_t is a structure which lives inside a vfs_t.
201 * fsh_fsrecord_t contains:
202 * - an rw-lock that protects the structure
203 * - a list of hooks installed on this vfs_t
204 * - a flag which tells whether fsh is enabled on this vfs_t
205 *
206 *
207 * fsh_fsrec_prepare rule:
192 * fsh_prepare_fsrec rule:
208 * Every function that needs vfsp->vfs_fshrecord has to call
209 * fsh_fsrec_prepare() first. If and only if the call is made, it is safe to
194 * fsh_prepare_fsrec() first. If and only if the call is made, it is safe to

new/usr/src/uts/common/fs/fsh.c 5

210 * use vfsp->vfs_fshrecord.
211 *
212 * Unfortunately, because of unexpected behaviour of some filesystems (no use
213 * of vfs_alloc()/vfs_init()) there’s no good place to initialise the
214 * fsh_fshrecord_t structure. The approach being used here is to check if it’s
215 * initialised in every call. Because of the fact that no lock could be used
216 * here (the same problem with initialisation), a spinlock is used. This is
217 * explained in more detail in a comment before fsh_fsrec_prepare(). After
202 * explained in more detail in a comment before fsh_prepare_fsrec(). After
218 * calling fsh_preapre_fsrec() it’s completely safe to keep the vfs_fshrecord
219 * pointer locally, because it won’t be changed until vfs_free() is called.
220 *
221 * Exceptions from this rule:
222 * - vfs_free() - it is expected that no other fsh calls would be made for the
206 * The only exception from the fsh_prepare_fsrec() rule is vfs_free(),
207 * where there is expected that no other fsh calls would be made for the
223 * vfs_t that’s being freed. That’s why vfs_fshrecord could be only NULL or a
224 * valid pointer and could not be concurrently accessed.
225 * - fshi_rele() - fsh_hook_install() comes before first fshi_rele() call;
226 * the fsh_fsrecord_t has been initialised there
227 *
228 *
229 * When there are no fsh functions (that use a particular fsh_fsrecord_t)
230 * executing, the vfs_fshrecord pointer won’t be equal to fsh_res_ptr. It
231 * would be NULL or a pointer to an initialised fsh_fsrecord_t.
232 *
233 * It is required and sufficient to check if fsh_fsrecord_t is not NULL before
234 * passing it to fsh_fsrec_destroy. We don’t have to check if it is not equal
235 * to fsh_res_ptr, because all the fsh API calls involving this vfs_t should
236 * end before vfs_free() is called (outside the fsh, fsh_fsrecord is never
237 * equal to fsh_res_ptr). That is guaranteed by the explicit requirement that
238 * the caller of fsh API holds the vfs_t when needed. fsh_hook_remove() must not
239 * be called either, because the handles are invalidated after free callback has
240 * fired.
241 *
242 *
243 * Callbacks:
244 * Mount callbacks are executed by a call to fsh_exec_mount_callbacks() right
245 * before returning from domount()@vfs.c.
246 *
247 * Free callbacks are executed by a call to fsh_exec_free_callbacks() right
248 * before calling VFS_FREEVFS(), after vfs_t’s reference count drops to 0.
249 *
250 *
224 * fsh_next_foo(fsh_int_t *fshi, ARGUMENTS)
225 * This function is quite simple. It takes the fsh_int_t and passes control
226 * to the next hook or to the underlying vnodeop/vfsop.
227 *
228 *
251 * 6. Locking
252 * a) public
253 * fsh does no vfs_t nor vnode_t locking. It is expected that whenever it is
254 * needed, the client does that.
255 *
256 * No locks are held across hooks or hook remove callbacks execution. It is
257 * safe to use fsh API inside hooks and hook remove callbacks.
234 * fsh_callback_{install,remove} must not be called inside a callback, because
235 * it will cause a deadlock.
258 *
259 * fsh_cb_lock is held across {mount,free} callbacks. Calling
260 * fsh_callback_{install,remove} inside of a callback will cause a deadlock.
261 *
262 * b) internals
237 * b) internal
263 * Locking diagram:
264 *

new/usr/src/uts/common/fs/fsh.c 6

265 * fsh_hook_remove() fsh_hook_install() fsh_fsrec_destroy()
240 * fsh_hook_install() fsh_hook_remove() fsh_fsrec_destroy()
266 * | | |
267 * | | |
268 * +------------------+ | +------------+
269 * | | | |
270 * | V | |
271 * V +------------|---|-+
272 * fshi_rele() | fsh_lock | | |
273 * (sometimes) +------------|---|-+
274 * | | |
275 * | +---+-- fshfsr_lock, RW_WRITER -+
245 * V V V
246 * fsh_lock
276 * | |
248 * | +----- fshfsr_lock, RW_WRITER ---+
249 * | |
277 * V |
278 * +---------------------------------------+ |
279 * | fsh_map | |
280 * | | |
281 * +----|-> vfsp->vfs_fshrecord->fshfsr_list <--|----------------+
254 * +----|-> vfsp->vfs_fshrecord->fshfsr_list <--|--------------+
282 * | +------------------------------^--------+
283 * | |
284 * | |
285 * fshfsr_lock, RW_READER fshfsr_lock, RW_WRITER
286 * | |
287 * | |
288 * fsh_read(), fshi_rele()
289 * fsh_write(),
290 * ... Might be called from:
291 * fsh_hook_remove()
292 * fsh_read(), fsh_write(), ...
263 * ..., Might be called from:
264 * fsh_next_read(), fsh_hook_remove()
265 * fsh_next_write(), fsh_read(), fsh_write(), ...
266 * ... fsh_next_read(), fsh_next_write(), ...
293 *
294 *
295 * fsh_lock is a global lock for adminsitrative path (fsh_hook_install,
296 * fsh_hook_remove) and fsh_fsrec_destroy() (which is semi-administrative, since
297 * it destroys the unremoved hooks). It is used only when fsh_map needs to be
298 * locked. The usage of this lock guarantees that the data in fsh_map and
299 * fshfsr_lists is consistent.
300 *
301 * In order to make calling callbacks inside callbacks possible, fsh_cb_owner is
302 * set by fsh_exec_{mount,free} callbacks to the thread that owns the
303 * fsh_cb_lock. It’s always checked if we are owners of the mutex before
304 * entering it.
305 *
306 */

309 /* Internals */
310 typedef struct fsh_int {
277 struct fsh_int {
311 fsh_handle_t fshi_handle;
312 fsh_t fshi_hooks;
313 vfs_t *fshi_vfsp;

315 kmutex_t fshi_lock;
316 uint64_t fshi_ref;
317 uint64_t fshi_doomed; /* changed inside fsh_lock */

319 /* next node in fshfsr_list */

new/usr/src/uts/common/fs/fsh.c 7

320 list_node_t fshi_node;
287 list_node_t fshi_next;

322 /* next node in fsh_map */
323 list_node_t fshi_global;
324 } fsh_int_t;
291 };

326 typedef struct fsh_callback_int {
327 fsh_callback_t fshci_cb;
328 fsh_callback_handle_t fshci_handle;
329 list_node_t fshci_node;
296 list_node_t fshci_next;
330 } fsh_callback_int_t;

333 typedef struct fsh_exec {
334 fsh_int_t *fshe_fshi;
335 void *fshe_instance;
336 list_node_t fshe_node;
337 } fsh_exec_t;

340 static kmutex_t fsh_lock;

342 /*
343 * fsh_fsrecord_t is the main internal structure. It’s content is protected
344 * by fshfsr_lock. The fshfsr_list is a list of fsh_int_t hook entries for
345 * the vfs_t that contains the fsh_fsrecord_t.
346 */
347 struct fsh_fsrecord {
348 krwlock_t fshfsr_lock;
349 int fshfsr_enabled;
350 list_t fshfsr_list;
351 };

353 /*
354 * Global list of fsh_int_t. Protected by fsh_lock.
355 */
356 static list_t fsh_map;

358 /*
359 * Global list of fsh_callback_int_t.
360 */
361 static kmutex_t fsh_cb_lock;
362 static kmutex_t fsh_cb_owner_lock;
363 static kthread_t *fsh_cb_owner;
321 static krwlock_t fsh_cblist_lock;
364 static list_t fsh_cblist;

366 /*
367 * A reserved pointer for fsh purposes. It is used because of the method
368 * chosen for solving concurrency issues with vfs_fshrecord. The full
369 * explanation is in the big theory statement at the beginning of this
370 * file and above fsh_fsrec_prepare(). It is initialised in fsh_init().
371 */
372 static void *fsh_res_ptr;

374 static fsh_fsrecord_t *fsh_fsrec_create();

376 int fsh_limit = INT_MAX;
377 static id_space_t *fsh_idspace;

379 /*
380 * fsh_fsrec_prepare()
338 * fsh_prepare_fsrec()

new/usr/src/uts/common/fs/fsh.c 8

381 *
382 * Important note:
383 * Before using this function, fsh_init() MUST be called. We do that in
384 * vfsinit()@vfs.c.
385 *
386 * One would ask, why isn’t the vfsp->vfs_fshrecord initialised when the
387 * vfs_t is created. Unfortunately, some filesystems (e.g. fifofs) do not
388 * call vfs_init() or even vfs_alloc(), It’s possible that some unbundled
389 * filesystems could do the same thing. That’s why this solution is
390 * introduced. It should be called before any code that needs access to
391 * vfs_fshrecord.
392 *
393 * Locking:
394 * There are no locks here, because there’s no good place to initialise
395 * the lock. Concurrency issues are solved by using atomic instructions
396 * and a spinlock, which is spinning only once for a given vfs_t. Because
397 * of that, the usage of the spinlock isn’t bad at all.
398 *
399 * How it works:
400 * a) if vfsp->vfs_fshrecord equals NULL, atomic_cas_ptr() changes it to
401 * fsh_res_ptr. That’s a signal for other threads, that the structure
402 * is being initialised.
403 * b) if vfsp->vfs_fshrecord equals fsh_res_ptr, that means we have to wait,
404 * because vfs_fshrecord is being initialised by another call.
405 * c) other cases:
406 * vfs_fshrecord is already initialised, so we can use it. It won’t change
407 * until vfs_free() is called. It can’t happen when someone is holding
408 * the vfs_t, which is expected from the caller of fsh API.
409 */
410 static void
411 fsh_fsrec_prepare(vfs_t *vfsp)
369 fsh_prepare_fsrec(vfs_t *vfsp)
412 {
413 fsh_fsrecord_t *fsrec;

415 while ((fsrec = atomic_cas_ptr(&vfsp->vfs_fshrecord, NULL,
416 fsh_res_ptr)) == fsh_res_ptr)
417 ;

419 if (fsrec == NULL)
420 atomic_swap_ptr(&vfsp->vfs_fshrecord, fsh_fsrec_create());
421 }

423 /*
424 * API for enabling/disabling fsh per vfs_t.
425 *
426 * A newly created vfs_t has fsh enabled by default. If one would want to change
427 * this behaviour, mount callbacks could be used.
428 *
429 * The caller is expected to hold the vfs_t.
430 *
431 * These functions must NOT be called in a hook.
432 */
433 void
434 fsh_fs_enable(vfs_t *vfsp)
435 {
436 fsh_fsrec_prepare(vfsp);
394 fsh_prepare_fsrec(vfsp);

438 rw_enter(&vfsp->vfs_fshrecord->fshfsr_lock, RW_WRITER);
439 vfsp->vfs_fshrecord->fshfsr_enabled = 1;
440 rw_exit(&vfsp->vfs_fshrecord->fshfsr_lock);
441 }

443 void
444 fsh_fs_disable(vfs_t *vfsp)

new/usr/src/uts/common/fs/fsh.c 9

445 {
446 fsh_fsrec_prepare(vfsp);
404 fsh_prepare_fsrec(vfsp);

448 rw_enter(&vfsp->vfs_fshrecord->fshfsr_lock, RW_WRITER);
449 vfsp->vfs_fshrecord->fshfsr_enabled = 0;
450 rw_exit(&vfsp->vfs_fshrecord->fshfsr_lock);
451 }

453 /*
454 * API used for installing hooks. fsh_handle_t is returned for further
455 * actions (currently just removing) on this set of hooks.
456 *
415 * fsh_t fields:
416 * - arg - argument passed to every hook
417 * - remove_cb - remove callback, called after a hook is removed and all the
418 * threads stops executing it
419 * - read, write, ... - pointers to hooks for corresponding vnodeops/vfsops;
420 * if there is no hook desired for an operation, it should be set to
421 * NULL
422 *
457 * It’s important that the hooks are executed in LIFO installation order (they
458 * are added to the head of the hook list).
459 *
460 * The caller is expected to hold the vfs_t.
461 *
462 * Returns (-1) if hook/callback limit exceeded, handle otherwise.
463 */
464 fsh_handle_t
465 fsh_hook_install(vfs_t *vfsp, fsh_t *hooks)
466 {
467 fsh_handle_t handle;
468 fsh_int_t *fshi;

470 fsh_fsrec_prepare(vfsp);
436 fsh_prepare_fsrec(vfsp);

472 if ((handle = id_alloc(fsh_idspace)) == -1)
473 return (-1);

475 fshi = kmem_alloc(sizeof (*fshi), KM_SLEEP);
476 mutex_init(&fshi->fshi_lock, NULL, MUTEX_DRIVER, NULL);
477 (void) memcpy(&fshi->fshi_hooks, hooks, sizeof (fshi->fshi_hooks));
478 fshi->fshi_handle = handle;
479 fshi->fshi_doomed = 0;
480 fshi->fshi_ref = 1;
481 fshi->fshi_vfsp = vfsp;

483 mutex_enter(&fsh_lock);
484 rw_enter(&vfsp->vfs_fshrecord->fshfsr_lock, RW_WRITER);
485 list_insert_head(&vfsp->vfs_fshrecord->fshfsr_list, fshi);
486 rw_exit(&vfsp->vfs_fshrecord->fshfsr_lock);

488 list_insert_head(&fsh_map, fshi);
489 mutex_exit(&fsh_lock);

491 return (handle);
492 }

______unchanged_portion_omitted_

511 /*
512 * This function must not be called while fshfsr_lock is held. Doing so could
513 * cause a deadlock.
514 */
515 static void
516 fshi_rele(fsh_int_t *fshi)

new/usr/src/uts/common/fs/fsh.c 10

517 {
518 int destroy;

520 mutex_enter(&fshi->fshi_lock);
521 ASSERT(fshi->fshi_ref > 0);
522 fshi->fshi_ref--;
523 if (fshi->fshi_ref == 0) {
524 ASSERT(fshi->fshi_doomed == 1);
525 destroy = 1;
526 } else {
527 destroy = 0;
528 }
529 mutex_exit(&fshi->fshi_lock);

531 if (destroy) {
532 /*
533 * At this point, we are sure that fsh_hook_remove() has been
534 * called, that’s why we don’t remove the fshi from fsh_map.
535 * fsh_hook_remove() did that already.
536 * There is also no need to call fsh_fsrec_prepare() here.
537 */
538 fsh_fsrecord_t *fsrecp;

505 if (fshi->fshi_hooks.remove_cb != NULL)
506 (*fshi->fshi_hooks.remove_cb)(
507 fshi->fshi_hooks.arg, fshi->fshi_handle);
540 /*
541 * We don’t have to call fsh_fsrec_prepare() here.
509 * We don’t have to call fsh_prepare_fsrec() here.
542 * fsh_fsrecord_t is already initialised, because we’ve found a
543 * mapping for the given handle.
544 */
545 fsrecp = fshi->fshi_vfsp->vfs_fshrecord;
546 ASSERT(fsrecp != NULL);
547 ASSERT(fsrecp != fsh_res_ptr);

549 rw_enter(&fsrecp->fshfsr_lock, RW_WRITER);
550 list_remove(&fsrecp->fshfsr_list, fshi);
551 rw_exit(&fsrecp->fshfsr_lock);

553 if (fshi->fshi_hooks.remove_cb != NULL)
554 (*fshi->fshi_hooks.remove_cb)(
555 fshi->fshi_hooks.arg, fshi->fshi_handle);

557 id_free(fsh_idspace, fshi->fshi_handle);
558 mutex_destroy(&fshi->fshi_lock);
559 kmem_free(fshi, sizeof (*fshi));
560 }
561 }

______unchanged_portion_omitted_

611 /*
612 * API for installing global mount/free callbacks.
613 *
614 * fsh_callback_t fields:
615 * fshc_arg - argument passed to the callbacks
616 * fshc_free - callback fired before VFS_FREEVFS() is called, after vfs_count
617 * drops to 0
618 * fshc_mount - callback fired right before returning from domount()
619 * The first argument of these callbacks is the vfs_t that is mounted/freed.
620 * The second one is the fshc_arg.
621 *
622 * fsh_callback_handle_t is filled out by this function.
623 *
624 * Returns (-1) if hook/callback limit exceeded.
588 * This function must NOT be called in a callback, because it will cause

new/usr/src/uts/common/fs/fsh.c 11

589 * a deadlock.
625 *
626 * Calling this function in a {mount,free} callback will cause a deadlock.
591 * Returns (-1) if hook/callback limit exceeded.
627 */
628 fsh_callback_handle_t
629 fsh_callback_install(fsh_callback_t *callback)
630 {
631 fsh_callback_int_t *fshci;
632 fsh_callback_handle_t handle;

634 if ((handle = id_alloc(fsh_idspace)) == -1)
635 return (-1);

637 fshci = (fsh_callback_int_t *)kmem_alloc(sizeof (*fshci), KM_SLEEP);
638 (void) memcpy(&fshci->fshci_cb, callback, sizeof (fshci->fshci_cb));
639 fshci->fshci_handle = handle;

641 mutex_enter(&fsh_cb_lock);
606 /* If it is called in a {mount,free} callback, causes deadlock. */
607 rw_enter(&fsh_cblist_lock, RW_WRITER);
642 list_insert_head(&fsh_cblist, fshci);
643 mutex_exit(&fsh_cb_lock);
609 rw_exit(&fsh_cblist_lock);

645 return (handle);
646 }

648 /*
649 * API for removing global mount/free callbacks.
650 *
651 * Returns (-1) if callback wasn’t found, 0 otherwise.
617 * This function must NOT be called in a callback, because it will cause
618 * a deadlock.
652 *
653 * Calling this function in a {mount,free} callback will cause a deadlock.
620 * Returns (-1) if callback wasn’t found, 0 otherwise.
654 */
655 int
656 fsh_callback_remove(fsh_callback_handle_t handle)
657 {
658 fsh_callback_int_t *fshci;

660 mutex_enter(&fsh_cb_lock);

627 /* If it is called in a {mount,free} callback, causes deadlock. */
628 rw_enter(&fsh_cblist_lock, RW_WRITER);
662 for (fshci = list_head(&fsh_cblist); fshci != NULL;
663 fshci = list_next(&fsh_cblist, fshci)) {
664 if (fshci->fshci_handle == handle) {
665 list_remove(&fsh_cblist, fshci);
666 break;
667 }
668 }
636 rw_exit(&fsh_cblist_lock);

670 mutex_exit(&fsh_cb_lock);

672 if (fshci == NULL)
673 return (-1);

675 kmem_free(fshci, sizeof (*fshci));
676 id_free(fsh_idspace, handle);

678 return (0);
679 }

new/usr/src/uts/common/fs/fsh.c 12

681 /*
682 * This function is executed right before returning from domount()@vfs.c.
683 * We are sure that it’s called only after fsh_init().
684 * It executes all the mount callbacks installed in the fsh.
685 *
686 * Since fsh_exec_mount_callbacks() is called only inside domount(), it is legal
687 * to call fsh_hook_{install,remove}() inside a mount callback WITHOUT holding
688 * this vfs_t. This guarantee should be preserved, because it’s in the "Usage"
689 * section in the big theory statement at the top of this file.
690 */
691 void
692 fsh_exec_mount_callbacks(vfs_t *vfsp)
693 {
694 fsh_callback_int_t *fshci;
695 fsh_callback_t *cb;
696 int fsh_context;

698 mutex_enter(&fsh_cb_owner_lock);
699 fsh_context = fsh_cb_owner == curthread;
700 mutex_exit(&fsh_cb_owner_lock);

702 if (!fsh_context) {
703 mutex_enter(&fsh_cb_lock);
704 mutex_enter(&fsh_cb_owner_lock);
705 fsh_cb_owner = curthread;
706 mutex_exit(&fsh_cb_owner_lock);
707 }

709 ASSERT(MUTEX_HELD(&fsh_cb_lock));

663 rw_enter(&fsh_cblist_lock, RW_READER);
711 for (fshci = list_head(&fsh_cblist); fshci != NULL;
712 fshci = list_next(&fsh_cblist, fshci)) {
713 cb = &fshci->fshci_cb;
714 if (cb->fshc_mount != NULL)
715 (*(cb->fshc_mount))(vfsp, cb->fshc_arg);
716 }

718 if (!fsh_context) {
719 mutex_enter(&fsh_cb_owner_lock);
720 fsh_cb_owner = NULL;
721 mutex_exit(&fsh_cb_owner_lock);
722 mutex_exit(&fsh_cb_lock);
723 }
670 rw_exit(&fsh_cblist_lock);
724 }

726 /*
727 * This function is executed right before VFS_FREEVFS() is called in
728 * vfs_rele()@vfs.c. We are sure that it’s called only after fsh_init().
729 * It executes all the free callbacks installed in the fsh.
730 *
731 * free() callback is the point after the handles associated with the hooks
732 * installed on this vfs_t become invalid
733 */
734 void
735 fsh_exec_free_callbacks(vfs_t *vfsp)
736 {
737 fsh_callback_int_t *fshci;
738 fsh_callback_t *cb;
739 int fsh_context;

741 mutex_enter(&fsh_cb_owner_lock);
742 fsh_context = fsh_cb_owner == curthread;
743 mutex_exit(&fsh_cb_owner_lock);

new/usr/src/uts/common/fs/fsh.c 13

745 if (!fsh_context) {
746 mutex_enter(&fsh_cb_lock);
747 mutex_enter(&fsh_cb_owner_lock);
748 fsh_cb_owner = curthread;
749 mutex_exit(&fsh_cb_owner_lock);
750 }

752 ASSERT(MUTEX_HELD(&fsh_cb_lock));

687 rw_enter(&fsh_cblist_lock, RW_READER);
754 for (fshci = list_head(&fsh_cblist); fshci != NULL;
755 fshci = list_next(&fsh_cblist, fshci)) {
756 cb = &fshci->fshci_cb;
757 if (cb->fshc_free != NULL)
758 (*(cb->fshc_free))(vfsp, cb->fshc_arg);
759 }

761 if (!fsh_context) {
762 mutex_enter(&fsh_cb_owner_lock);
763 fsh_cb_owner = NULL;
764 mutex_exit(&fsh_cb_owner_lock);
765 mutex_exit(&fsh_cb_lock);
766 }
694 rw_exit(&fsh_cblist_lock);
767 }

769 /*
770 * API for vnode.c/vfs.c to start executing the fsh for a given operation.
771 *
772 * fsh_xxx() tries to find the first non-NULL xxx hook on the fshfsr_list. If it
773 * does, it executes it. If not, underlying vnodeop/vfsop is called.
774 *
775 * These interfaces are using fsh_res_ptr (in fsh_fsrec_prepare()), so it’s
703 * These interfaces are using fsh_res_ptr (in fsh_prepare_fsrec()), so it’s
776 * absolutely necessary to call fsh_init() before using them. That’s done in
777 * vfsinit().
778 *
779 * While these functions are executing, it’s expected that necessary vfs_t’s
780 * are held so that vfs_free() isn’t called. vfs_free() expects that noone
781 * accesses vfs_fshrecord of a given vfs_t.
782 * It’s also the caller’s responsibility to keep vnode_t passed to fsh_foo()
783 * alive and valid.
784 * All these expectations are met because these functions are used only in
785 * correspondng {fop,fsop}_foo() functions.
786 */
787 int
788 fsh_read(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr,
789 caller_context_t *ct)
790 {
791 int ret;
792 fsh_fsrecord_t *fsrecp;
793 fsh_int_t *fshi;
794 fsh_exec_t *fshe;
795 list_t exec_list;

797 fsh_fsrec_prepare(vp->v_vfsp);
723 fsh_prepare_fsrec(vp->v_vfsp);
798 fsrecp = vp->v_vfsp->vfs_fshrecord;

800 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
801 if (!(fsrecp->fshfsr_enabled)) {
802 rw_exit(&fsrecp->fshfsr_lock);
803 return ((*vp->v_op->vop_read)(vp, uiop, ioflag, cr, ct));
729 return ((*(vp->v_op->vop_read))(vp, uiop, ioflag, cr, ct));
804 }

new/usr/src/uts/common/fs/fsh.c 14

806 list_create(&exec_list, sizeof (fsh_exec_t),
807 offsetof(fsh_exec_t, fshe_node));

809 for (fshi = list_head(&fsrecp->fshfsr_list); fshi != NULL;
810 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
811 if (fshi->fshi_hooks.pre_read != NULL ||
812 fshi->fshi_hooks.post_read != NULL) {
813 if (fshi_hold(fshi)) {
814 fshe = kmem_alloc(sizeof (*fshe), KM_SLEEP);
815 fshe->fshe_fshi = fshi;
816 list_insert_tail(&exec_list, fshe);
734 if (fshi->fshi_hooks.read != NULL)
735 if (fshi_hold(fshi))
736 break;
817 }
818 }
819 }
820 rw_exit(&fsrecp->fshfsr_lock);

822 /* Execute pre hooks */
823 for (fshe = list_head(&exec_list); fshe != NULL;
824 fshe = list_next(&exec_list, fshe)) {
825 if (fshe->fshe_fshi->fshi_hooks.pre_read != NULL)
826 (*fshe->fshe_fshi->fshi_hooks.pre_read)(
827 fshe->fshe_fshi->fshi_hooks.arg,
828 &fshe->fshe_instance,
829 &vp, &uiop, &ioflag, &cr, &ct);
830 }
740 if (fshi == NULL)
741 return ((*(vp->v_op->vop_read))(vp, uiop, ioflag, cr, ct));

832 ret = (*vp->v_op->vop_read)(vp, uiop, ioflag, cr, ct);

834 /* Execute post hooks */
835 while ((fshe = list_remove_tail(&exec_list)) != NULL) {
836 if (fshe->fshe_fshi->fshi_hooks.post_read != NULL)
837 ret = (*fshe->fshe_fshi->fshi_hooks.post_read)(
838 ret, fshe->fshe_fshi->fshi_hooks.arg,
839 fshe->fshe_instance,
743 ret = (*fshi->fshi_hooks.read)(fshi, fshi->fshi_hooks.arg,
840 vp, uiop, ioflag, cr, ct);
841 fshi_rele(fshe->fshe_fshi);
842 kmem_free(fshe, sizeof (*fshe));
843 }
844 list_destroy(&exec_list);

745 fshi_rele(fshi);
846 return (ret);
847 }

849 int
850 fsh_write(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr,
851 caller_context_t *ct)
852 {
753 fsh_int_t *fshi;
853 int ret;
854 fsh_fsrecord_t *fsrecp;
855 fsh_int_t *fshi;
856 fsh_exec_t *fshe;
857 list_t exec_list;

859 fsh_fsrec_prepare(vp->v_vfsp);
757 fsh_prepare_fsrec(vp->v_vfsp);
860 fsrecp = vp->v_vfsp->vfs_fshrecord;

new/usr/src/uts/common/fs/fsh.c 15

862 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
863 if (!(fsrecp->fshfsr_enabled)) {
761 if (!(vp->v_vfsp->vfs_fshrecord->fshfsr_enabled)) {
864 rw_exit(&fsrecp->fshfsr_lock);
865 return ((*vp->v_op->vop_write)(vp, uiop, ioflag, cr, ct));
763 return ((*(vp->v_op->vop_write))(vp, uiop, ioflag, cr, ct));
866 }

868 list_create(&exec_list, sizeof (fsh_exec_t),
869 offsetof(fsh_exec_t, fshe_node));

871 for (fshi = list_head(&fsrecp->fshfsr_list); fshi != NULL;
872 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
873 if (fshi->fshi_hooks.pre_write != NULL ||
874 fshi->fshi_hooks.post_write != NULL) {
875 if (fshi_hold(fshi)) {
876 fshe = kmem_alloc(sizeof (*fshe), KM_SLEEP);
877 fshe->fshe_fshi = fshi;
878 list_insert_tail(&exec_list, fshe);
768 if (fshi->fshi_hooks.write != NULL)
769 if (fshi_hold(fshi))
770 break;
879 }
880 }
881 }
882 rw_exit(&fsrecp->fshfsr_lock);

884 /* Execute pre hooks */
885 for (fshe = list_head(&exec_list); fshe != NULL;
886 fshe = list_next(&exec_list, fshe)) {
887 if (fshe->fshe_fshi->fshi_hooks.pre_write != NULL)
888 (*fshe->fshe_fshi->fshi_hooks.pre_write)(
889 fshe->fshe_fshi->fshi_hooks.arg,
890 &fshe->fshe_instance,
891 &vp, &uiop, &ioflag, &cr, &ct);
892 }
774 if (fshi == NULL)
775 return ((*(vp->v_op->vop_write))(vp, uiop, ioflag, cr, ct));

894 ret = (*vp->v_op->vop_write)(vp, uiop, ioflag, cr, ct);

896 /* Execute post hooks */
897 while ((fshe = list_remove_tail(&exec_list)) != NULL) {
898 if (fshe->fshe_fshi->fshi_hooks.post_write != NULL)
899 ret = (*fshe->fshe_fshi->fshi_hooks.post_write)(
900 ret, fshe->fshe_fshi->fshi_hooks.arg,
901 fshe->fshe_instance,
777 ret = (*fshi->fshi_hooks.write)(fshi, fshi->fshi_hooks.arg,
902 vp, uiop, ioflag, cr, ct);
903 fshi_rele(fshe->fshe_fshi);
904 kmem_free(fshe, sizeof (*fshe));
905 }
906 list_destroy(&exec_list);

779 fshi_rele(fshi);
908 return (ret);
909 }

911 int
912 fsh_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
913 {
914 int ret;
915 fsh_fsrecord_t *fsrecp;
916 fsh_int_t *fshi;
917 fsh_exec_t *fshe;
918 list_t exec_list;

new/usr/src/uts/common/fs/fsh.c 16

788 int ret;

920 fsh_fsrec_prepare(vfsp);
790 fsh_prepare_fsrec(vfsp);
921 fsrecp = vfsp->vfs_fshrecord;

923 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
924 if (!(fsrecp->fshfsr_enabled)) {
925 rw_exit(&fsrecp->fshfsr_lock);
926 return ((*vfsp->vfs_op->vfs_mount)(vfsp, mvp, uap, cr));
796 return ((*(vfsp->vfs_op->vfs_mount))(vfsp, mvp, uap, cr));
927 }

929 list_create(&exec_list, sizeof (fsh_exec_t),
930 offsetof(fsh_exec_t, fshe_node));

932 for (fshi = list_head(&fsrecp->fshfsr_list); fshi != NULL;
933 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
934 if (fshi->fshi_hooks.pre_mount != NULL ||
935 fshi->fshi_hooks.post_mount != NULL) {
936 if (fshi_hold(fshi)) {
937 fshe = kmem_alloc(sizeof (*fshe), KM_SLEEP);
938 fshe->fshe_fshi = fshi;
939 list_insert_tail(&exec_list, fshe);
801 if (fshi->fshi_hooks.mount != NULL)
802 if (fshi_hold(fshi))
803 break;
940 }
941 }
942 }
943 rw_exit(&fsrecp->fshfsr_lock);

945 /* Execute pre hooks */
946 for (fshe = list_head(&exec_list); fshe != NULL;
947 fshe = list_next(&exec_list, fshe)) {
948 if (fshe->fshe_fshi->fshi_hooks.pre_mount != NULL)
949 (*fshe->fshe_fshi->fshi_hooks.pre_mount)(
950 &fshe->fshe_fshi->fshi_hooks.arg,
951 &fshe->fshe_instance,
952 &vfsp, &mvp, &uap, &cr);
953 }
807 if (fshi == NULL)
808 return ((*(vfsp->vfs_op->vfs_mount))(vfsp, mvp, uap, cr));

955 ret = (*vfsp->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);

957 /* Execute post hooks */
958 while ((fshe = list_remove_tail(&exec_list)) != NULL) {
959 if (fshe->fshe_fshi->fshi_hooks.post_mount != NULL)
960 ret = (*fshe->fshe_fshi->fshi_hooks.post_mount)(
961 ret, fshe->fshe_fshi->fshi_hooks.arg,
962 fshe->fshe_instance,
810 ret = (*fshi->fshi_hooks.mount)(fshi, fshi->fshi_hooks.arg,
963 vfsp, mvp, uap, cr);
964 fshi_rele(fshe->fshe_fshi);
965 kmem_free(fshe, sizeof (*fshe));
966 }
967 list_destroy(&exec_list);

812 fshi_rele(fshi);
969 return (ret);
970 }

972 int
973 fsh_unmount(vfs_t *vfsp, int flag, cred_t *cr)
974 {

new/usr/src/uts/common/fs/fsh.c 17

975 int ret;
976 fsh_fsrecord_t *fsrecp;
977 fsh_int_t *fshi;
978 fsh_exec_t *fshe;
979 list_t exec_list;
821 int ret;

981 fsh_fsrec_prepare(vfsp);
823 fsh_prepare_fsrec(vfsp);
982 fsrecp = vfsp->vfs_fshrecord;

984 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
985 if (!(fsrecp->fshfsr_enabled)) {
986 rw_exit(&fsrecp->fshfsr_lock);
987 return ((*vfsp->vfs_op->vfs_unmount)(vfsp, flag, cr));
829 return ((*(vfsp->vfs_op->vfs_unmount))(vfsp, flag, cr));
988 }

990 list_create(&exec_list, sizeof (fsh_exec_t),
991 offsetof(fsh_exec_t, fshe_node));

993 for (fshi = list_head(&fsrecp->fshfsr_list); fshi != NULL;
994 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
995 if (fshi->fshi_hooks.pre_unmount != NULL ||
996 fshi->fshi_hooks.post_unmount != NULL) {
997 if (fshi_hold(fshi)) {
998 fshe = kmem_alloc(sizeof (*fshe), KM_SLEEP);
999 fshe->fshe_fshi = fshi;
1000 list_insert_tail(&exec_list, fshe);
834 if (fshi->fshi_hooks.unmount != NULL)
835 if (fshi_hold(fshi))
836 break;

1001 }
1002 }
1003 }
1004 rw_exit(&fsrecp->fshfsr_lock);

1006 /* Execute pre hooks */
1007 for (fshe = list_head(&exec_list); fshe != NULL;
1008 fshe = list_next(&exec_list, fshe)) {
1009 if (fshe->fshe_fshi->fshi_hooks.pre_unmount != NULL)
1010 (*fshe->fshe_fshi->fshi_hooks.pre_unmount)(
1011 fshe->fshe_fshi->fshi_hooks.arg,
1012 &fshe->fshe_instance,
1013 &vfsp, &flag, &cr);
1014 }
840 if (fshi == NULL)
841 return ((*(vfsp->vfs_op->vfs_unmount))(vfsp, flag, cr));

1016 ret = (*vfsp->vfs_op->vfs_unmount)(vfsp, flag, cr);

1018 /* Execute post hooks */
1019 while ((fshe = list_remove_tail(&exec_list)) != NULL) {
1020 if (fshe->fshe_fshi->fshi_hooks.post_unmount != NULL)
1021 ret = (*fshe->fshe_fshi->fshi_hooks.post_unmount)(
1022 ret, fshe->fshe_fshi->fshi_hooks.arg,
1023 fshe->fshe_instance,
843 ret = (*fshi->fshi_hooks.unmount)(fshi, fshi->fshi_hooks.arg,
1024 vfsp, flag, cr);
1025 fshi_rele(fshe->fshe_fshi);
1026 kmem_free(fshe, sizeof (*fshe));
1027 }
1028 list_destroy(&exec_list);

845 fshi_rele(fshi);
1030 return (ret);

new/usr/src/uts/common/fs/fsh.c 18

1031 }

1033 /*
1034 * This is the funtion used by fsh_fsrec_prepare() to allocate a new
850 * This is the funtion used by fsh_prepare_fsrec() to allocate a new
1035 * fsh_fsrecord. This function is called by the first function which
1036 * access the vfs_fshrecord and finds out it’s NULL.
1037 */
1038 static fsh_fsrecord_t *
1039 fsh_fsrec_create()
1040 {
1041 fsh_fsrecord_t *fsrecp;

1043 fsrecp = (fsh_fsrecord_t *)kmem_zalloc(sizeof (*fsrecp), KM_SLEEP);
1044 list_create(&fsrecp->fshfsr_list, sizeof (fsh_int_t),
1045 offsetof(fsh_int_t, fshi_node));
861 offsetof(fsh_int_t, fshi_next));
1046 rw_init(&fsrecp->fshfsr_lock, NULL, RW_DRIVER, NULL);
1047 fsrecp->fshfsr_enabled = 1;
1048 return (fsrecp);
1049 }

1052 /*
1053 * This call must be used ONLY in vfs_free().
869 * This call can be used ONLY in vfs_free(). It’s assumed that no other
870 * fsh calls using the vfs_t that owns the fsh_fsrecord to be destroyed
871 * are executing while a call to fsh_fsrec_destroy() is made. With this
872 * assumptions, no concurrency issues occur.
1054 *
1055 * It is required and sufficient to check if fsh_fsrecord_t is not NULL before
1056 * passing it to fsh_fsrec_destroy.
874 * Before calling this function outside the fsh, it’s sufficient and
875 * required to check if the passed fsh_fsrecord * is not NULL. We don’t
876 * have to check if it is not equal to fsh_res_ptr, because all the fsh API
877 * calls involving this vfs_t should end before vfs_free() is called
878 * (outside the fsh, fsh_fsrecord is never equal to fsh_res_ptr). That is
879 * guaranteed by the explicit requirement that the caller of fsh API holds
880 * the vfs_t when needed.
1057 *
1058 * All the remaining hooks are being removed here.
882 * All the remaining hooks are being removed.
1059 */
1060 void
1061 fsh_fsrec_destroy(struct fsh_fsrecord *volatile fsrecp)
1062 {
1063 fsh_int_t *fshi;

1065 VERIFY(fsrecp != NULL);

1067 _NOTE(CONSTCOND)
1068 while (1) {
1069 mutex_enter(&fsh_lock);
1070 rw_enter(&fsrecp->fshfsr_lock, RW_WRITER);
894 /* No need here to hold fshfsr_lock */
1071 fshi = list_remove_head(&fsrecp->fshfsr_list);
1072 rw_exit(&fsrecp->fshfsr_lock);
1073 if (fshi == NULL) {
1074 mutex_exit(&fsh_lock);
1075 break;
1076 }
1077 ASSERT(fshi->fshi_doomed == 0);
1078 list_remove(&fsh_map, fshi);
1079 mutex_exit(&fsh_lock);

1081 if (fshi->fshi_hooks.remove_cb != NULL)

new/usr/src/uts/common/fs/fsh.c 19

1082 (*fshi->fshi_hooks.remove_cb)(fshi->fshi_hooks.arg,
1083 fshi->fshi_handle);

1085 id_free(fsh_idspace, fshi->fshi_handle);
1086 mutex_destroy(&fshi->fshi_lock);
1087 kmem_free(fshi, sizeof (*fshi));

1089 }

1091 list_destroy(&fsrecp->fshfsr_list);
1092 rw_destroy(&fsrecp->fshfsr_lock);
1093 kmem_free(fsrecp, sizeof (*fsrecp));
1094 }

1096 /*
1097 * fsh_init() is called in vfsinit()@vfs.c. This function MUST be called
1098 * before every other fsh call.
1099 */
1100 void
1101 fsh_init(void)
1102 {
1103 mutex_init(&fsh_cb_lock, NULL, MUTEX_DRIVER, NULL);
1104 mutex_init(&fsh_cb_owner_lock, NULL, MUTEX_DRIVER, NULL);
925 rw_init(&fsh_cblist_lock, NULL, RW_DRIVER, NULL);
1105 list_create(&fsh_cblist, sizeof (fsh_callback_int_t),
1106 offsetof(fsh_callback_int_t, fshci_node));
927 offsetof(fsh_callback_int_t, fshci_next));

1108 mutex_init(&fsh_lock, NULL, MUTEX_DRIVER, NULL);

1110 list_create(&fsh_map, sizeof (fsh_int_t), offsetof(fsh_int_t,
1111 fshi_global));

1113 /* See comment above fsh_fsrec_prepare() */
934 /* See comment above fsh_prepare_fsrec() */
1114 fsh_res_ptr = (void *)-1;

1116 fsh_idspace = id_space_create("fsh", 0, fsh_limit);
938 }

940 /*
941 * These functions are used to pass control to the next hook or underlying
942 * vop or vfsop. It’s client doesn’t have to worry about any locking.
943 */
944 int
945 fsh_next_read(fsh_int_t *fshi, vnode_t *vp, uio_t *uiop, int ioflag,
946 cred_t *cr, caller_context_t *ct)
947 {
948 int ret;
949 fsh_fsrecord_t *fsrecp = vp->v_vfsp->vfs_fshrecord;

951 /*
952 * The passed fshi is the previous hook (the one from which we’ve been
953 * called). We need to find the next one.
954 */
955 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
956 for (fshi = list_next(&fsrecp->fshfsr_list, fshi); fshi != NULL;
957 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
958 if (fshi->fshi_hooks.read != NULL)
959 if (fshi_hold(fshi))
960 break;
961 }
962 rw_exit(&fsrecp->fshfsr_lock);

964 if (fshi == NULL)
965 return ((*vp->v_op->vop_read)(vp, uiop, ioflag, cr, ct));

new/usr/src/uts/common/fs/fsh.c 20

967 ret = (*fshi->fshi_hooks.read)(fshi, fshi->fshi_hooks.arg,
968 vp, uiop, ioflag, cr, ct);
969 fshi_rele(fshi);
970 return (ret);
971 }

973 int
974 fsh_next_write(fsh_int_t *fshi, vnode_t *vp, uio_t *uiop, int ioflag,
975 cred_t *cr, caller_context_t *ct)
976 {
977 fsh_fsrecord_t *fsrecp = vp->v_vfsp->vfs_fshrecord;
978 int ret;

980 /*
981 * The passed fshi is the previous hook (the one from which we’ve been
982 * called). We need to find the next one.
983 */
984 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
985 for (fshi = list_next(&fsrecp->fshfsr_list, fshi); fshi != NULL;
986 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
987 if (fshi->fshi_hooks.write != NULL)
988 if (fshi_hold(fshi))
989 break;
990 }
991 rw_exit(&fsrecp->fshfsr_lock);

993 if (fshi == NULL)
994 return ((*vp->v_op->vop_write)(vp, uiop, ioflag, cr, ct));

996 ret = (*fshi->fshi_hooks.write)(fshi, fshi->fshi_hooks.arg,
997 vp, uiop, ioflag, cr, ct);
998 fshi_rele(fshi);
999 return (ret);

1000 }

1002 int
1003 fsh_next_mount(fsh_int_t *fshi, vfs_t *vfsp, vnode_t *mvp, struct mounta *uap,
1004 cred_t *cr)
1005 {
1006 fsh_fsrecord_t *fsrecp = vfsp->vfs_fshrecord;
1007 int ret;

1009 /*
1010 * The passed fshi is the previous hook (the one from which we’ve been
1011 * called). We need to find the next one.
1012 */
1013 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
1014 for (fshi = list_next(&fsrecp->fshfsr_list, fshi); fshi != NULL;
1015 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
1016 if (fshi->fshi_hooks.mount != NULL)
1017 if (fshi_hold(fshi))
1018 break;
1019 }
1020 rw_exit(&fsrecp->fshfsr_lock);

1022 if (fshi == NULL)
1023 return ((*(vfsp->vfs_op->vfs_mount))(vfsp, mvp, uap, cr));

1025 ret = (*fshi->fshi_hooks.mount)(fshi, fshi->fshi_hooks.arg,
1026 vfsp, mvp, uap, cr);
1027 fshi_rele(fshi);
1028 return (ret);
1029 }

1031 int

new/usr/src/uts/common/fs/fsh.c 21

1032 fsh_next_unmount(fsh_int_t *fshi, vfs_t *vfsp, int flag, cred_t *cr)
1033 {
1034 fsh_fsrecord_t *fsrecp = vfsp->vfs_fshrecord;
1035 int ret;

1037 /*
1038 * The passed fshi is the previous hook (the one from which we’ve been
1039 * called). We need to find the next one.
1040 */
1041 rw_enter(&fsrecp->fshfsr_lock, RW_READER);
1042 for (fshi = list_next(&fsrecp->fshfsr_list, fshi); fshi != NULL;
1043 fshi = list_next(&fsrecp->fshfsr_list, fshi)) {
1044 if (fshi->fshi_hooks.unmount != NULL)
1045 if (fshi_hold(fshi))
1046 break;
1047 }
1048 rw_exit(&fsrecp->fshfsr_lock);

1050 if (fshi == NULL)
1051 return ((*vfsp->vfs_op->vfs_unmount)(vfsp, flag, cr));

1053 ret = (*fshi->fshi_hooks.unmount)(fshi, fshi->fshi_hooks.arg,
1054 vfsp, flag, cr);
1055 fshi_rele(fshi);
1056 return (ret);
1117 }
______unchanged_portion_omitted_

new/usr/src/uts/common/io/fsd/fsd.c 1

**
 25828 Mon Sep 9 17:14:59 2013
new/usr/src/uts/common/io/fsd/fsd.c
Update from fsd_sep3 webrev to fsd_sep9
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2013 Damian Bogel. All rights reserved.
14 */

16 /*
17 * Filesystem disturber pseudo-device driver.
18 */

20 #include <sys/conf.h>
21 #include <sys/ddi.h>
22 #include <sys/file.h>
23 #include <sys/fsd.h>
24 #include <sys/fsh.h>
25 #include <sys/kmem.h>
26 #include <sys/ksynch.h>
27 #include <sys/list.h>
28 #include <sys/mkdev.h>
29 #include <sys/refstr.h>
30 #include <sys/stat.h>
31 #include <sys/sunddi.h>
32 #include <sys/sysmacros.h>
33 #include <sys/types.h>

35 /*
36 * TODO:
37 * - add checking if a file descriptor passed by the client is indeed
38 * a mountpoint (we’d like to avoid disturbing / instead of an
39 * unmounted filesystem)
40 */
41 /*
42 * fsd - filesystem disturber
43 *
44 * 1. Abstract
45 * Filesystem disturber is a pseudo-device driver used to inject pathological
46 * behaviour into vfs calls. It is NOT a fuzzer. That kind of behaviour
47 * should be expected and correctly handled by software. A simple example of
48 * such behaviour is read() reading less bytes than it was requested. It’s
49 * well documented and every read() caller should check the return value of
50 * this function before proceeding.
51 *
52 * 2. Features
53 * * per-vfs injections
54 * * injection installing on every newly mounted vfs (that’s called an
55 * omnipresent disturber)
56 *
57 * 3. Usage
58 * fsd_t is a structure which contains all the parameters for the disturbers.
59 * This structure is shared by all hooks on a vfs_t.
60 *
61 * fsd_info_t is filled out by a call to ioctl() and it provides basic

new/usr/src/uts/common/io/fsd/fsd.c 2

62 * information about fsd’s current status.
63 *
64 * fsd_dis_t is passed to ioctl() when a request to disturb a filesystem is
65 * made. It’s just a descriptor of a representative file and an fsd_t structure.
66 *
67 * fsd_fs_t is a structure filled out by ioctl() call when the client requests a
68 * full list of disturbers installed in the system.
69 *
70 * fsd_ioc_t is an union for different ioctl() commands.
71 *
72 * ioctl() commands:
73 * FSD_ENABLE:
74 * ioctl(fd, FSD_ENABLE);
75 * Enables the fsd. When fsd is enabled, any attemps to detach the driver
76 * will fail.
77 *
78 * FSD_DISABLE:
79 * ioctl(fd, FSD_DISABLE);
80 * Disables the fsd.
81 *
82 * FSD_GET_PARAM:
83 * ioctl(fd, FSD_GET_PARAM, ioc);
84 * Get’s fsd_t associated with a given filesystem. ioc is fsdioc_mnt when
85 * passed to ioctl(). fsdioc_param is the output.
86 * Errors:
87 * ENOENT - the filesystem is not being disturbed
88 *
89 * FSD_DISTURB:
90 * ioctl(fd, FSD_DISTURB, ioc);
91 * Installs a disturber on a given filesystem. If a disturber is already
92 * installed on this filesystem, it overwrites it. ioc is fsdioc_dis.
93 * Errors:
94 * EAGAIN - hook limit exceeded
95 * EBADFD - cannot open the file descriptor
96 * EINVAL - parameters are invalid
97 *
98 * FSD_DISTURB_OFF:
99 * ioctl(fd, FSD_DISTURB_OFF, ioc);
100 * Removes a disturber from a given filesystem. ioc is fsdioc_mnt
101 * Errors:
102 * EBADFD - cannot open the file descriptor
103 * ENOENT - the filesystem is not being disturbed
104 *
105 * FSD_DISTURB_OMNI:
106 * ioctl(fd, FSD_DISTURB_OMNI, ioc);
107 * Install an omnipresent disturber. It means that whenever a new vfs_t is
108 * being created, this disturber is installed on it. If an omnipresent
109 * disturber is already installed, it overwrites it. ioc is fsdioc_param
110 * Errors:
111 * EINVAL - parameters are invalid
112 *
113 * FSD_DISTURB_OMNI_OFF:
114 * ioctl(fd, FSD_DISTURB_OMNI_OFF);
115 * Removes the omnipresent disturber. That does NOT mean that filesystems
116 * which are disturbed because of the omnipresent disturber presence in the
117 * past are going to stop being disturbed after this call.
118 *
119 * FSD_GET_LIST:
120 * ioctl(fd, FSD_GET_LIST, ioc);
121 * Get’s a full list of disturbers installed in the system. ioc is
122 * fsdioc_list here. This is a structure with two fields, count and listp.
123 * The count is the number of fsd_fs_t’s allocated on the address that
124 * listp is pointing to. There would be at most count fsd_fs_t entries
125 * copied out to the caller. Also, count is set to the number of entries
126 * copied out.
127 *

new/usr/src/uts/common/io/fsd/fsd.c 3

128 * FSD_GET_INFO:
129 * ioctl(fd, FSD_GET_INFO, ioc);
130 * Get’s current information about fsd. ioc is fsdioc_info here.
131 *
132 * At most one hook is installed per vfs_t, and fsd_t describes all possible
133 * disturbance methods. Multiple commands using the fsd should somehow cooperate
134 * in order not to destroy each other efforts in installing disturbers.
135 *
136 * 4. Internals
137 * When fsd_enabled is nonzero, fsd_detach() fails.
138 *
139 * These mount callback is used for installing injections on newly mounted
140 * vfs_t’s (omnipresent). The free callback is used for cleaning up.
140 * vfs_t’s (omnipresent).
141 *
142 * The list of currently installed hooks is kept in fsd_list.
143 *
144 * fsd installs at most one hook on a vfs_t.
145 *
146 * Inside fsd_detach, we go through fsd_hooks list. There is no guarantee that
147 * a hook remove callback (fsd_remove_cb) wouldn’t execute inside
148 * fsh_hook_remove(), thus we can’t assume that while walking through fsd_hooks,
149 * our iterator will be valid, because fsh_hook_remove() could invalidate it.
150 * That’s why fsd_detaching flag is introduced.
151 *
152 * 5. Locking
153 * Every modification of fsd_enable, fsd_hooks, fsd_omni_param and fsd_list is
154 * protected by fsd_lock.
155 *
156 * Hooks use only the elements of fsd_list, nothing else. Before an element of
157 * fsd_list is destroyed, a hook which uses it is removed. Elements from
158 * fsd_lists are removed and destroyed in the hook remove callback
159 * (fsd_remove_cb).
160 *
161 * Because of the fact that fsd_remove_cb() could be called both in the context
162 * of the thread that executes fsh_hook_remove() or outside the fsd, we need to
163 * use fsd_rem_thread in order not to cause a deadlock. fsh_hook_remove() could
164 * be called by at most one thread inside fsd (fsd_disturber_remove() holds
164 * be called by at most one thread inside fsd (fsd_remove_disturber() holds
165 * fsd_lock). We just have to check inside fsd_remove_cb() if it was called
166 * from fsh_hook_remove() or not. We use fsd_rem_thread to determine that.
167 *
168 * fsd_int_t.fsdi_param is protected by fsd_int_t.fsdi_lock which is an rwlock.
169 */

171 /*
172 * Once a set of hooks is installed on a filesystem, there’s no need
173 * to bother fsh if we want to change the parameters of disturbance.
174 * Intead, we use fsd_lock to protect the fsd_int_t when it’s being
175 * used or changed.
176 */
177 typedef struct fsd_int {
178 krwlock_t fsdi_lock; /* protects fsd_param */
179 fsd_t fsdi_param;
180 fsh_handle_t fsdi_handle; /* we use fsh’s handle in fsd */
181 vfs_t *fsdi_vfsp;
182 int fsdi_doomed;
183 list_node_t fsdi_node;
183 list_node_t fsdi_next;
184 } fsd_int_t;

______unchanged_portion_omitted_

229 /* vnode hooks */
230 /*
231 * A pointer to a given fsd_int_t is valid always inside fsh_hook_xxx()
232 * call, because it’s valid until the hooks associated with it are removed.

new/usr/src/uts/common/io/fsd/fsd.c 4

233 * If a hook is removed, it cannot be executing.
234 */
235 static void
236 fsd_hook_pre_read(void *arg, void **instancep, vnode_t **vpp, uio_t **uiopp,
237 int *ioflagp, cred_t **crp, caller_context_t **ctp)
235 static int
236 fsd_hook_read(fsh_int_t *fshi, void *arg, vnode_t *vp, uio_t *uiop,
237 int ioflag, cred_t *cr, caller_context_t *ct)
238 {
239 _NOTE(ARGUNUSED(ioflagp));
240 _NOTE(ARGUNUSED(crp));
241 _NOTE(ARGUNUSED(ctp));

243 fsd_int_t *fsdi = (fsd_int_t *)arg;
244 uint64_t less_chance;
240 uint64_t count, less, less_chance;

246 /*
247 * It is used to keep an odd number of fsd_rand() calls in every
248 * fsd_hook_pre_read() call. That is desired because when a range of
249 * width 2 is set as a parameter, we don’t want to make it a constant.
244 * fsd_hook_read() call. That is desired because when a range of width
245 * 2 is set as a parameter, we don’t want to make it a constant.
250 * The pseudo-random number generator returns a number with different
251 * parity with every call. If this function is called in every
252 * fsd_hook_pre_read() execution even number of times, it would always
253 * be the same % 2.
248 * fsd_hook_read() execution even number of times, it would always be
249 * the same % 2.
254 */
255 (void) fsd_rand();

257 ASSERT((*vpp)->v_vfsp == fsdi->fsdi_vfsp);
253 ASSERT(vp->v_vfsp == fsdi->fsdi_vfsp);

259 rw_enter(&fsdi->fsdi_lock, RW_READER);
260 less_chance = fsdi->fsdi_param.read_less_chance;
257 less = (uint64_t)fsd_rand() %
258 (fsdi->fsdi_param.read_less_r[1] + 1 -
259 fsdi->fsdi_param.read_less_r[0]) + fsdi->fsdi_param.read_less_r[0];
261 rw_exit(&fsdi->fsdi_lock);

262 count = uiop->uio_iov->iov_len;
263 if ((uint64_t)fsd_rand() % 100 < less_chance) {
264 extern size_t copyout_max_cached;
265 uint64_t r[2];
266 uint64_t count, less;
265 int ret;

268 count = (*uiopp)->uio_iov->iov_len;
269 r[0] = fsdi->fsdi_param.read_less_r[0];
270 r[1] = fsdi->fsdi_param.read_less_r[1];
271 less = (uint64_t)fsd_rand() % (r[1] + 1 - r[0]) + r[0];

273 if (count > less) {
267 if (count > less)
274 count -= less;
275 *instancep = kmem_alloc(sizeof (uint64_t), KM_SLEEP);
276 *(*(uint64_t **)instancep) = less;
277 } else {
278 *instancep = NULL;
279 return;
280 }
269 else
270 less = 0;

new/usr/src/uts/common/io/fsd/fsd.c 5

282 (*uiopp)->uio_iov->iov_len = count;
283 (*uiopp)->uio_resid = count;
272 uiop->uio_iov->iov_len = count;
273 uiop->uio_resid = count;
284 if (count <= copyout_max_cached)
285 (*uiopp)->uio_extflg = UIO_COPY_CACHED;
275 uiop->uio_extflg = UIO_COPY_CACHED;
286 else
287 (*uiopp)->uio_extflg = UIO_COPY_DEFAULT;
288 } else {
289 *instancep = NULL;
290 }
291 }
277 uiop->uio_extflg = UIO_COPY_DEFAULT;

293 static int
294 fsd_hook_post_read(int ret, void *arg, void *instance, vnode_t *vp,
295 uio_t *uiop, int oflag, cred_t *cr, caller_context_t *ct)
296 {
297 _NOTE(ARGUNUSED(arg));
298 _NOTE(ARGUNUSED(vp));
299 _NOTE(ARGUNUSED(oflag));
300 _NOTE(ARGUNUSED(cr));
301 _NOTE(ARGUNUSED(ct));

303 if (instance != NULL) {
304 uint64_t *lessp = instance;
305 uiop->uio_resid += *lessp;
306 kmem_free(lessp, sizeof (*lessp));
307 }
279 ret = fsh_next_read(fshi, vp, uiop, ioflag, cr, ct);
280 uiop->uio_resid += less;
308 return (ret);
282 }

284 return (fsh_next_read(fshi, vp, uiop, ioflag, cr, ct));
309 }

311 static void
312 fsd_remove_cb(void *arg, fsh_handle_t handle)
313 {
314 _NOTE(ARGUNUSED(handle));

316 fsd_int_t *fsdi = (fsd_int_t *)arg;
317 int fsd_context;

319 mutex_enter(&fsd_rem_thread_lock);
320 fsd_context = fsd_rem_thread == curthread;
321 mutex_exit(&fsd_rem_thread_lock);

323 if (!fsd_context)
324 mutex_enter(&fsd_lock);

326 ASSERT(MUTEX_HELD(&fsd_lock));

328 if (!fsd_detaching)
329 list_remove(&fsd_list, fsdi);

331 rw_destroy(&fsdi->fsdi_lock);
332 kmem_free(fsdi, sizeof (*fsdi));

334 fsd_list_count--;
335 if (fsd_list_count == 0)
336 cv_signal(&fsd_cv_empty);

new/usr/src/uts/common/io/fsd/fsd.c 6

338 if (!fsd_context)
339 mutex_exit(&fsd_lock);
340 }

342 /*
343 * Installs a set of hook with given parameters on a vfs_t.
344 *
345 * It is expected that fsd_lock is being held.
346 *
347 * Returns 0 on success and non-zero if hook limit exceeded.
348 */
349 static int
350 fsd_disturber_install(vfs_t *vfsp, fsd_t *fsd)
327 fsd_install_disturber(vfs_t *vfsp, fsd_t *fsd)
351 {
352 fsd_int_t *fsdi;

354 ASSERT(MUTEX_HELD(&fsd_lock));

356 for (fsdi = list_head(&fsd_list); fsdi != NULL;
357 fsdi = list_next(&fsd_list, fsdi)) {
358 if (fsdi->fsdi_vfsp == vfsp)
359 break;
360 }

362 if (fsdi != NULL) {
363 /* Just change the existing fsd_int_t */
364 rw_enter(&fsdi->fsdi_lock, RW_WRITER);
365 (void) memcpy(&fsdi->fsdi_param, fsd,
366 sizeof (fsdi->fsdi_param));
367 rw_exit(&fsdi->fsdi_lock);
368 } else {
369 fsh_t hook = { 0 };

371 fsdi = kmem_zalloc(sizeof (*fsdi), KM_SLEEP);
372 fsdi->fsdi_vfsp = vfsp;
373 (void) memcpy(&fsdi->fsdi_param, fsd,
374 sizeof (fsdi->fsdi_param));
375 rw_init(&fsdi->fsdi_lock, NULL, RW_DRIVER, NULL);

377 hook.arg = fsdi;
378 hook.pre_read = fsd_hook_pre_read;
379 hook.post_read = fsd_hook_post_read;
355 hook.read = fsd_hook_read;
380 hook.remove_cb = fsd_remove_cb;

382 /*
383 * It is safe to do so, because none of the hooks installed
384 * by fsd uses fsdi_handle nor the fsd_list.
385 */
386 fsdi->fsdi_handle = fsh_hook_install(vfsp, &hook);
387 if (fsdi->fsdi_handle == -1) {
388 kmem_free(fsdi, sizeof (*fsdi));
389 rw_destroy(&fsdi->fsdi_lock);
390 return (-1);
391 }
392 list_insert_head(&fsd_list, fsdi);
393 fsd_list_count++;
394 }
395 return (0);
396 }

398 static int
399 fsd_disturber_remove(vfs_t *vfsp)
375 fsd_remove_disturber(vfs_t *vfsp)
400 {

new/usr/src/uts/common/io/fsd/fsd.c 7

401 fsd_int_t *fsdi;

403 ASSERT(MUTEX_HELD(&fsd_lock));

405 for (fsdi = list_head(&fsd_list); fsdi != NULL;
406 fsdi = list_next(&fsd_list, fsdi)) {
407 if (fsdi->fsdi_vfsp == vfsp)
408 break;
409 }
410 if (fsdi == NULL || fsdi->fsdi_doomed)
411 return (ENOENT);

413 fsdi->fsdi_doomed = 1;

415 mutex_enter(&fsd_rem_thread_lock);
416 fsd_rem_thread = curthread;
417 mutex_exit(&fsd_rem_thread_lock);

419 ASSERT(fsh_hook_remove(fsdi->fsdi_handle) == 0);

421 mutex_enter(&fsd_rem_thread_lock);
422 fsd_rem_thread = NULL;
423 mutex_exit(&fsd_rem_thread_lock);

425 return (0);
426 }

428 static void
429 fsd_mount_callback(vfs_t *vfsp, void *arg)
405 fsd_callback_mount(vfs_t *vfsp, void *arg)
430 {
431 _NOTE(ARGUNUSED(arg));

433 int error = 0;

435 mutex_enter(&fsd_lock);
436 if (fsd_omni_param != NULL)
437 error = fsd_disturber_install(vfsp, fsd_omni_param);
413 error = fsd_install_disturber(vfsp, fsd_omni_param);
438 mutex_exit(&fsd_lock);

440 if (error != 0) {
441 refstr_t *mntref;

443 mntref = vfs_getmntpoint(vfsp);
444 (void) cmn_err(CE_NOTE, "Installing disturber for %s failed.\n",
445 refstr_value(mntref));
446 refstr_rele(mntref);
447 }
448 }

450 /*
451 * Although, we might delete the fsd_free_callback(), it would make the whole
452 * proces less clear. There’s a time window between firing free callbacks and
453 * freeing the vfs_t in fsd_disturber_remove() could be called. fsh can
454 * deal with invalid handles (until there is no collision), but we’d like to
455 * have a nice assertion instead.
456 */
457 static void
458 fsd_free_callback(vfs_t *vfsp, void *arg)
459 {
460 _NOTE(ARGUNUSED(arg));

462 fsd_int_t *fsdi;

464 mutex_enter(&fsd_lock);

new/usr/src/uts/common/io/fsd/fsd.c 8

465 for (fsdi = list_head(&fsd_list); fsdi != NULL;
466 fsdi = list_next(&fsd_list, fsdi)) {
467 if (fsdi->fsdi_vfsp == vfsp) {
468 if (fsdi->fsdi_doomed)
469 continue;

471 fsdi->fsdi_doomed = 1;
472 /*
473 * We make such assertion, because fsd_lock is held
474 * and that means that neither fsd_disturber_remove()
475 * nor fsd_remove_cb() has removed this hook in
476 * different thread.
477 */
478 mutex_enter(&fsd_rem_thread_lock);
479 fsd_rem_thread = curthread;
480 mutex_exit(&fsd_rem_thread_lock);

482 ASSERT(fsh_hook_remove(fsdi->fsdi_handle) == 0);

484 mutex_enter(&fsd_rem_thread_lock);
485 fsd_rem_thread = NULL;
486 mutex_exit(&fsd_rem_thread_lock);

488 /*
489 * Since there is at most one hook installed by fsd,
490 * we break.
491 */
492 break;
493 }
494 }
495 /*
496 * We can’t write ASSERT(fsdi != NULL) because it is possible that
497 * there was a concurrent call to fsd_disturber_remove() or
498 * fsd_detach().
499 */
500 mutex_exit(&fsd_lock);
501 }

503 static void
504 fsd_enable()
505 {
506 mutex_enter(&fsd_lock);
507 fsd_enabled = 1;
508 mutex_exit(&fsd_lock);
509 }

______unchanged_portion_omitted_

520 /* Entry points */
521 static int
522 fsd_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
523 {
524 minor_t instance;
525 fsh_callback_t cb = { 0 };

527 if (cmd != DDI_ATTACH)
528 return (DDI_FAILURE);

530 if (fsd_devi != NULL)
531 return (DDI_FAILURE);

533 instance = ddi_get_instance(dip);
534 if (ddi_create_minor_node(dip, "fsd", S_IFCHR, instance,
535 DDI_PSEUDO, 0) == DDI_FAILURE)
536 return (DDI_FAILURE);
537 fsd_devi = dip;

new/usr/src/uts/common/io/fsd/fsd.c 9

538 ddi_report_dev(fsd_devi);

540 list_create(&fsd_list, sizeof (fsd_int_t),
541 offsetof(fsd_int_t, fsdi_node));
464 offsetof(fsd_int_t, fsdi_next));

543 fsd_rand_seed = gethrtime();

545 mutex_init(&fsd_lock, NULL, MUTEX_DRIVER, NULL);
546 mutex_init(&fsd_rem_thread_lock, NULL, MUTEX_DRIVER, NULL);
547 cv_init(&fsd_cv_empty, NULL, CV_DRIVER, NULL);

549 cb.fshc_mount = fsd_mount_callback;
550 cb.fshc_free = fsd_free_callback;
472 cb.fshc_mount = fsd_callback_mount;
551 cb.fshc_arg = fsd_omni_param;
552 fsd_cb_handle = fsh_callback_install(&cb);
553 if (fsd_cb_handle == -1) {
554 /* Cleanup */
555 list_destroy(&fsd_list);
556 cv_destroy(&fsd_cv_empty);
557 mutex_destroy(&fsd_rem_thread_lock);
558 mutex_destroy(&fsd_lock);
559 ddi_remove_minor_node(fsd_devi, NULL);
560 fsd_devi = NULL;
561 return (DDI_FAILURE);
562 }

564 return (DDI_SUCCESS);
565 }

567 /*
568 * If fsd_enable() was called and there was no subsequent fsd_disable() call,
569 * detach will fail.
570 */
571 static int
572 fsd_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
573 {
574 fsd_int_t *fsdi;

576 if (cmd != DDI_DETACH)
577 return (DDI_FAILURE);

579 ASSERT(dip == fsd_devi);

581 /*
582 * No need to hold fsd_lock here. Since only the hooks and callbacks
583 * might be running at this point.
584 */
585 if (fsd_enabled)
586 return (DDI_FAILURE);

588 ddi_remove_minor_node(dip, NULL);
589 fsd_devi = NULL;

591 /*
592 * 1. Remove the hooks.
593 * 2. Remove the callbacks.
594 *
595 * This order has to be preserved, because of the fact that
596 * fsd_free_callback() is the last stop before a vfs_t is destroyed.
597 * Without it, this might happen:
598 * vfs_free() fsd_detach()
599 * 1. Handle for the hook is
600 * invalidated.
601 * 2. Fired fsd_remove_cb().

new/usr/src/uts/common/io/fsd/fsd.c 10

602 * 3. fsd_remove_cb() hasn’t yet fsd_lock is acquired.
603 * acquired the fsd_lock.
604 * 4 Waiting for fsd_lock. That ASSERT(fsh_hook_remove(..) == 0);
605 * means that the hook hasn’t failed, because the handle is
606 * been removed from fsd_hooks already invalid.
607 * fsd_hooks yet.
608 *
609 * The ASSERT() here is nice and without a good reason, we don’t want
610 * to get rid of it.
611 */
612 mutex_enter(&fsd_lock);
613 /*
614 * After we set fsd_detaching to 1, hook remove callback (fsd_remove_cb)
615 * won’t try to remove entries from fsd_list.
616 */
617 fsd_detaching = 1;
618 while ((fsdi = list_remove_head(&fsd_list)) != NULL) {
515 while ((fsdi = list_remove_head(&fsd_list)) != NULL)
619 if (fsdi->fsdi_doomed == 0) {
620 fsdi->fsdi_doomed = 1;

622 mutex_enter(&fsd_rem_thread_lock);
623 fsd_rem_thread = curthread;
624 mutex_exit(&fsd_rem_thread_lock);

626 /*
627 * fsd_lock is held, so no other thread could have
628 * removed this hook.
629 */
630 ASSERT(fsh_hook_remove(fsdi->fsdi_handle) == 0);

632 mutex_enter(&fsd_rem_thread_lock);
633 fsd_rem_thread = NULL;
634 mutex_exit(&fsd_rem_thread_lock);
635 }
636 }

638 while (fsd_list_count > 0)
639 cv_wait(&fsd_cv_empty, &fsd_lock);
640 mutex_exit(&fsd_lock);
641 cv_destroy(&fsd_cv_empty);

643 ASSERT(fsh_callback_remove(fsd_cb_handle) == 0);
644 if (fsd_omni_param != NULL) {
645 kmem_free(fsd_omni_param, sizeof (*fsd_omni_param));
646 fsd_omni_param = NULL;
647 }

649 /* After removing the callback and hooks, it is safe to remove these */
650 list_destroy(&fsd_list);
651 mutex_destroy(&fsd_rem_thread_lock);
652 mutex_destroy(&fsd_lock);

654 return (DDI_SUCCESS);
655 }

______unchanged_portion_omitted_

716 static int
717 fsd_ioctl_disturb(fsd_ioc_t *ioc, int mode, int *rvalp)
718 {
719 file_t *file;
720 fsd_dis_t dis;
721 int rv;

723 if (ddi_copyin(&ioc->fsdioc_dis, &dis, sizeof (dis), mode))
724 return (EFAULT);

new/usr/src/uts/common/io/fsd/fsd.c 11

726 if ((rv = fsd_check_param(&dis.fsdd_param)) != 0) {
727 *rvalp = rv;
728 return (0);
729 }

731 if ((file = getf((int)dis.fsdd_mnt)) == NULL) {
732 *rvalp = EBADFD;
733 return (0);
734 }

736 mutex_enter(&fsd_lock);
737 rv = fsd_disturber_install(file->f_vnode->v_vfsp, &dis.fsdd_param);
633 rv = fsd_install_disturber(file->f_vnode->v_vfsp, &dis.fsdd_param);
738 mutex_exit(&fsd_lock);

740 releasef((int)dis.fsdd_mnt);

742 if (rv != 0)
743 *rvalp = EAGAIN;
744 else
745 *rvalp = 0;

747 return (0);
748 }

______unchanged_portion_omitted_

875 static int
876 fsd_ioctl_disturb_off(fsd_ioc_t *ioc, int mode, int *rvalp)
877 {
878 file_t *file;
879 int64_t fd;

881 if (ddi_copyin(&ioc->fsdioc_mnt, &fd, sizeof (fd), mode))
882 return (EFAULT);

884 if ((file = getf((int)fd)) == NULL) {
885 *rvalp = EBADFD;
886 return (0);
887 }

889 mutex_enter(&fsd_lock);
890 *rvalp = fsd_disturber_remove(file->f_vnode->v_vfsp);
786 *rvalp = fsd_remove_disturber(file->f_vnode->v_vfsp);
891 releasef((int)fd);
892 mutex_exit(&fsd_lock);

894 return (0);
895 }

______unchanged_portion_omitted_

923 static int
924 fsd_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
925 int *rvalp)
926 {
927 _NOTE(ARGUNUSED(dev));
928 _NOTE(ARGUNUSED(credp));

930 int enabled;

932 mutex_enter(&fsd_lock);
933 enabled = fsd_enabled;
934 mutex_exit(&fsd_lock);

936 if (!enabled && cmd != FSD_ENABLE) {

new/usr/src/uts/common/io/fsd/fsd.c 12

826 if (!fsd_enabled && cmd != FSD_ENABLE) {
937 *rvalp = ENOTACTIVE;
938 return (0);
939 }

941 switch (cmd) {
942 case FSD_ENABLE:
943 fsd_enable();
944 *rvalp = 0;
945 return (0);

947 case FSD_DISABLE:
948 fsd_disable();
949 *rvalp = 0;
950 return (0);

952 case FSD_GET_PARAM:
953 return (fsd_ioctl_get_param((fsd_ioc_t *)arg, mode, rvalp));

955 case FSD_DISTURB:
956 return (fsd_ioctl_disturb((fsd_ioc_t *)arg, mode, rvalp));

958 case FSD_DISTURB_OFF:
959 return (fsd_ioctl_disturb_off((fsd_ioc_t *)arg, mode, rvalp));

961 case FSD_DISTURB_OMNI:
962 return (fsd_ioctl_disturb_omni((fsd_ioc_t *)arg, mode, rvalp));

964 case FSD_DISTURB_OMNI_OFF:
965 mutex_enter(&fsd_lock);
966 if (fsd_omni_param != NULL)
967 kmem_free(fsd_omni_param, sizeof (*fsd_omni_param));
968 fsd_omni_param = NULL;
969 mutex_exit(&fsd_lock);

971 *rvalp = 0;
972 return (0);

974 case FSD_GET_LIST:
975 return (fsd_ioctl_get_list((fsd_ioc_t *)arg, mode, rvalp));

977 case FSD_GET_INFO:
978 return (fsd_ioctl_get_info((fsd_ioc_t *)arg, mode, rvalp));

980 default:
981 return (ENOTTY);
982 }
983 }

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/fsh.h 1

**
 2022 Mon Sep 9 17:14:59 2013
new/usr/src/uts/common/sys/fsh.h
Update from fsd_sep3 webrev to fsd_sep9
**

1 /*
2 * This file and its contents are supplied under the terms of the
3 * Common Development and Distribution License ("CDDL"), version 1.0.
4 * You may only use this file in accordance with the terms of version
5 * 1.0 of the CDDL.
6 *
7 * A full copy of the text of the CDDL should have accompanied this
8 * source. A copy of the CDDL is also available via the Internet at
9 * http://www.illumos.org/license/CDDL.

10 */

12 /*
13 * Copyright 2013 Damian Bogel. All rights reserved.
14 */

16 #ifndef _FSH_H
17 #define _FSH_H

19 #include <sys/id_space.h>
20 #include <sys/types.h>
21 #include <sys/vfs.h>
22 #include <sys/vnode.h>

24 #ifdef __cplusplus
25 extern "C" {
26 #endif

28 typedef id_t fsh_handle_t;
29 typedef id_t fsh_callback_handle_t;

31 struct fsh_int;
32 typedef struct fsh_int fsh_int_t;

31 typedef struct fsh {
32 void *arg;
33 void (*remove_cb)(void *, fsh_handle_t);

35 /* vnode */
36 void (*pre_read)(void *, void **, vnode_t **, uio_t **, int *,
37 cred_t **, caller_context_t **);
38 int (*post_read)(int, void *, void *, vnode_t *, uio_t *, int, cred_t *,
39 int (*read)(fsh_int_t *, void *, vnode_t *, uio_t *, int, cred_t *,
39 caller_context_t *);
40 void (*pre_write)(void *, void **, vnode_t **, uio_t **, int *,
41 cred_t **, caller_context_t **);
42 int (*post_write)(int, void *, void *, vnode_t *, uio_t *, int,
43 cred_t *, caller_context_t *);
41 int (*write)(fsh_int_t *, void *, vnode_t *, uio_t *, int, cred_t *,
42 caller_context_t *);

45 /* vfs */
46 void (*pre_mount)(void *, void **, vfs_t **, vnode_t **,
47 struct mounta **, cred_t **);
48 int (*post_mount)(int, void *, void *, vfs_t *, vnode_t *,
49 struct mounta *, cred_t *);
50 void (*pre_unmount)(void *, void **, vfs_t **, int *, cred_t **);
51 int (*post_unmount)(int, void *, void *, vfs_t *, int, cred_t *);
45 int (*mount)(fsh_int_t *, void *, vfs_t *, vnode_t *, struct mounta *,
46 cred_t *);
47 int (*unmount)(fsh_int_t *, void *, vfs_t *, int, cred_t *);
52 } fsh_t;

______unchanged_portion_omitted_

new/usr/src/uts/common/sys/fsh.h 2

60 /* API */
61 extern fsh_handle_t fsh_hook_install(vfs_t *, fsh_t *);
62 extern int fsh_hook_remove(fsh_handle_t);

64 extern fsh_callback_handle_t fsh_callback_install(fsh_callback_t *);
65 extern int fsh_callback_remove(fsh_callback_handle_t);

67 extern void fsh_fs_enable(vfs_t *);
68 extern void fsh_fs_disable(vfs_t *);

66 /* fsh control passing */
67 extern int fsh_next_read(fsh_int_t *, vnode_t *, uio_t *, int, cred_t *,
68 caller_context_t *);
69 extern int fsh_next_write(fsh_int_t *, vnode_t *, uio_t *, int, cred_t *,
70 caller_context_t *);

72 extern int fsh_next_mount(fsh_int_t *, vfs_t *, vnode_t *, struct mounta *uap,
73 cred_t *);
74 extern int fsh_next_unmount(fsh_int_t *, vfs_t *, int, cred_t *);

70 #ifdef __cplusplus
71 }

______unchanged_portion_omitted_

