new usr/src/uts/comon/fs/fsh.c 1

R R R R

34567 Mon Sep 9 17:14:59 2013
new usr/src/uts/comon/fs/fsh.c
Update from fsd_sep3 webrev to fsd_sep9

L R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

12 /*
13 * Copyright 2013 Danian Bogel. Al rights reserved
14 */
16 #i ncl ude <sys/ debug. h>
17 #include <sys/errno. h>
18 #incl ude <sys/fsh. h>
19 #include <sys/fsh_inpl.h>
20 #include <sys/id_space. h>
21 #include <sys/kmem h>
22 #include <sys/ksynch. h>
23 #include <sys/list.h>
24 #include <sys/sunddi.h>
25 #include <sys/sysnmacros. h>
26 #include <sys/types. h>
27 #include <sys/vfs. h>
28 #include <sys/vnode. h>
30 /*
31 * Filesystem hook franmework (fsh)
32 *
33 * 1. Abstract.
34 * The nmain goal of the filesystem hook framework is to provide an easy way to
35 * inject client-defined behaviour into vfs/vnode calls. fsh works on
36 * vfs_t granularity
37 *
38 * Note: In this docunent, both an fsh_t structure and hooking function for a
39 * vnodeop/vfsop is referred to as *hook*
40 *
41 *
42 * 2. Overview
43 * fsh_t is the main object in the fsh. An fsh_t is a structure containing
44 * - pointers to hooking functions
45 = - an argunent to pass (this is shared for all the hooks in a given
46 * fsh_t)
47 * - a pointer to the *hook renove cal |l back*
41 = - pointers to hooking functions (nanmed after correspondi ng
42 = vnodeops/ vf sops)
43 = - a pointer to an argument to pass (this is shared for all the
44 * hooks in a given fsh_t)
45 * - a pointer to the *hook renove callback* - it's being fired after a
46 * hook is renoved and the hook has stopped executing. It’'s safe to destroy
47 = any data associated with this hook
48 *
49 * The information fromfsh_t is copied by the fsh and an fsh_handl e_t
50 * is returned. It should be used for further renoving.
51 *
52 *
*
*

3. Usage.
It is expected that vfs_t/vnode_t passed to fsh_foo() functions are held by

new usr/src/uts/comon/fs/fsh.c

B I I T T R T B N

the call er when needed. fsh does no vfs_t/vnode_t |ocking
It is expected that vfs_t/vnode_t that are passed to fsh_foo() functions
are held by the caller when needed. fsh does no vfs_t/vnode_t | ocking

fsh_t is a structure filled out by the client. It contains

- pointers to hooking functions

- the argunent passed to the hooks

- the *hook renove cal | back*
fsh_t is a structure filled out by the client. If a client does not want
to add/renpve a hook for function foo(), he should fill the foo field of
fsh_t with NULL. Every hook has a type of correspondi ng vfsop/vnodeop with
two additional argunents

- fsh_int_t *fsh_int - this argument MJST be passed to
hook_next _foo(). fsh woul dn’t know which hook to execute next
without it

- void *arg - this is the argunent passed with fsh_t during

instal lation

- void (*renove_cb)(void *, fsh_handle_t) - hook renove call back
(mentioned earlier); it's first argunent is arg, the second is the
handl e

If a client does not want to add a hook for function foo(), he should fil
corresponding fields with NULLs. For every vfsop/vnodeop there are two
fields: pre_foo() and post_foo(). These are the functions called before and
after the next hook or underlying vfsop/vnodeop

Pre hooks take:
- arg
- pointer to a field containing void* - it should be filled whenever
the client wants to have sonme data shared by the pre and post hooks in
the sane syscall execution. This is called the *instance data*.
- pointers to the argunents passed to the underlying vfsop/vnodeop

Pre hooks return void

Post hooks take
- value returned by the previous post hook or underlying vfsop/vnodeop
- arg
- pointer to the *instance data*
- argunents passed to the underlying vfsop/vnodeop
Post hooks return an int, which should be treated as the vfsop/vnodeop
return val ue
Mernory al | ocated by pre hook nmust be deal | ocated by the post hook

Execution path of hooks A, B, Cis as follows:

foo()

preA(argA, & nstancepA, ...);

preB(argB, & nstancepB, ...);

preCXargC & nstancepC, ...)

ret = VOP_FOQ();

ret = postCXret argC, instancepC, ...)
ret = postB(ret, argB, instancepB, ...);
ret = postC(ret, argA, instancepA ...)

return (ret)

After installation, an fsh_handle_t is returned to the caller

Hook renpve callback - it’s a function being fired after a hook is renoved
and no thread is going to execute it anynore. It’'s safe to destroy all the
data associated with this hook inside it

Every hook function is responsible for passing the control to the next
hook associated with a particular call. In order to provide an easy way to
nodi fy the behaviour of a function call both before and after the
under | yi ng vfsop/vnodeop (or next hook) execution, a hook has to cal
fsh_next _foo() at sone point. This function does necessary internal
operations and calls the next hook, until there’s no hook left, then it
calls the underlying vfsop/vnodeop

new usr/src/uts/comon/fs/fsh.c 3

® Ok ok ok E ok 3k ok E Ok F b ok OF 3k ok Sk b SR oF Sk SF S 3k O 3 b 3k b 3k SF Sk ok Sk 3k SR Sk Sk F O 3k O 3F O ok b Sk b R ok ok ok R Sk b % Ok ok 3k % ok 3k

Exanpl e:

ny_freefs(fsh_int_t *fsh_int, void *arg, vfs_t *vfsp) {
crm_err (CE_NOTE, "freefs called!'\n");
return (fsh_next_freefs(fsh_int, vfsp));

It is guaranteed, that whenever a pre_hook() there will be also

post _hook() called within the same syscall.

is called,

If a hook (HNew) is installed/renmoved on/froma vfs_t w thin execution of
anot her hook (HExec) installed on this vfs_t, the syscall that executes
HExec won’t fire HNew.

A client might want to fire callbacks when vfs_ts are being nounted

A client might want to fire callbacks when vfs_t’s are bei ng nounted
or freed. There's an fsh_callback_t structure provided to install such
cal I backs along with the API.

It is legal to call fsh_hook_{install,
W THOUT hol ding the vfs_t.

renmove} () inside a mount call back

After vfs_t’'s free callback returns, all the handles associated with the
hooks installed on this vfs_t are invalid and must not be used.

4. API

None of the API's should be called during interrupt context
level .
level .
| ocks.

above | ock

The only exceptions are fsh_next_foo() functions, which do not use

a) fsh.h

Any of these functions could be called in a hook or a hook renove call back.
The only functions that nust not be called inside a {mount,free} callback are
fsd_cal | back_{install,renove}. Using themw ||l cause a deadl ock.

Any of these functions could be called inside a hook or a hook renove

cal I back.

fsh_cal | back_{install,renpve}() nust not be called inside a {mount, free}

cal I back. Doing so will cause a deadl ock. Cther functions can be called
inside {rmount, free} call backs.

fsh_fs_enabl e(vfs_t *vfsp)
fsh_fs_disable(vfs_t *vfsp)
Enabl es/ di sables fsh for a given vfs_t.

fsh_hook_instal |l (vfs_t *vfsp, fsh_t *hooks)
Installs hooks on vfsp filesystem
It’s inportant that hooks are executed in LIFO installation order,
which nmeans that if there are hooks A and Binstalled in this order, B
is going to be executed before A
It returns a correct handle, or (-1) if hook/callback linmt exceeded.
The handle is valid until a free callback returns or an explicit call
to fsh_hook_renove()

f sh_hook_r enove(fsh_handl e_t handl e)
Renoves a hook and invalidates the handle.
It is guaranteed that after this funcion returns, calls to
vnodeops/ vfsops won’t go through this hook, although there m ght be
sone threads still executing this hook. When hook renove call back is
fired, it is guaranteed that the hook won’t be executed anynore. It is
safe to renove all the internal data associated with this hook inside
the hook renpve cal |l back. The hook renpve cal |l back coul d be called
inside fsh_hook_renove().

fsh_next _foo(fsh_int_t *fsh_int, void *arg, ARGUMENTS)
This is the function which should be called once in every hook. It

new usr/src/uts/comon/fs/fsh.c

133
134
135
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
160
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
192
208
209
194

B T T T I T T I

does the necessary internal operations and passes control to the
next hook or, if there’s no hook left, to the underlying

vf sop/ vhodeop.

fsh_cal | back_instal | (fsh_cal | back_t *cal | back)

fsh_cal | back_renove(fsh_cal | back_handl e_t handl e)
Installs/renoves call backs for vfs_t nount/free. The nount call back
is executed right before donount() returns. The free callback is
called right before VFS FREEVFS() is called.
The fsh_cal | back_instalT() returns a correct
hook/ cal'l back linit exceeded.

handl e, or (-1) if

b) fsh_inmpl.h (for vfs.c and vnode.c only)

fsh_init()
This call has to be done in vfsinit(). It initialises the fsh. It
is absolutely necessary that this call is nade before any other fsh
operati on.

fsh_exec_nount _cal | backs(vfs_t *vfsp)
fsh_exec_free_cal |l backs(vfs_t *vfsp)
Used to execute all fsh callbacks for {nount,free} of a vfs_t.

fsh_fsrec_destroy(struct fsh_fsrecord *fsrecp)
Destroys an fsh_fsrecord structure. All the hooks installed on this
vfs_t are then destroyed. free callback is called before this function.

f sh_f oo(ARGUMENTS)
Function used to execute the hook chain for a given syscall.
Function used to start executing the hook chain for a given call.

5. Internals.

fsh_int_t is an internal hook structure. It is reference counted.
fshi_hold() and fshi_rele() should be used whenever needed.

fsh_int_t entries are elenents of both fsh_map (global) and fshfsr_|ist
(local to vfs_t). Al entries are unique and are identified by fshi_handle.

fsh_int_t properties:
- fsh_hook_install() sets the ref.
fsh_map and fshfsr_list
- fsh_hook_renove() decreases the ref. counter by
fromfsh_map and marks the hook as *dooned*

counter to 1 and adds it to both

1, renoves the hook

- if fsh_int_t is on the fshfsr_list, it's alive and there is a thread
executing it
- if fsh_int_t is marked as *dooned*, the reference counter is not

be increased and thus no thread can acquire this fsh_int_t

- ref. counter can drop to O only after an fsh_hook renove() call; this
al so nmeans that the fsh_int_t is *dooned* and isn't a part of fsh _map

- fsh_int_t could be al so destroyed without fsh_hook _renove() calT,

t hat happens only inside fsh_fsrec_destroy() where it is guarant eed
that there is no thread executing the hook

fsh_fsrecord_t is a structure which lives inside a vfs_t.
fsh_fsrecord_t contains:

- an rwlock that protects the structure

- alist of hooks installed on this vfs_t

- a flag which tells whether fsh is enabled on this vfs_t

fsh_fsrec_prepare rule:

fsh_prepare_fsrec rule:

Every function that needs vfsp->vfs_fshrecord has to call
fsh_fsrec_prepare() first. If and only if the call is made, it is safe to
fsh_prepare_fsrec() first. If and only if the call is made, it is safe to

new usr/src/uts/comon/fs/fsh.c 5

210
211
212
213
214
215
216
217
202
218
219
220
221
222
206
207
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
224
225
226
227
228
251
252
253
254
255
256
257
234
235
258
259
260
261
262
237
263
264

® Ok ok ok E ok ok o S R 3k SR SE OF 3k ok Sk b SR Sk Sk F S 3k O F Ok 3k b 3k SF Sk ok Sk 3k Sk F SR F O 3k O 3F O 3k b 3k F R b ok 3k SR S ok % o % Ok ok % ok 3k

use vfsp->vfs_fshrecord.

Unfortunately, because of unexpected behavi our of sone filesystens (no use
of vfs_alloc()/vfs_init()) there’s no good place to initialise the
fsh_fshrecord_t structure. The approach being used here is to check if it’'s
initialised in every call. Because of the fact that no |lock could be used

here (the same problemw th initialisation), a spinlock is used. This is
explained in nore detail in a comment before fsh_fsrec_prepare(). After
explained in nore detail in a comment before fsh_prepare_fsrec(). After

calling fsh_preapre_fsrec() it's conpletely safe to keep the vfs_fshrecord
pointer locally, because it won't be changed until vfs_free() is called.

Exceptions fromthis rule:

- vfs_free() - it is expected that no other fsh calls would be made for the
The only exception fromthe fsh_prepare_fsrec() rule is vfs_free(),

where there is expected that no other fsh calls would be made for the

vfs_t that's being freed. That's why vfs_fshrecord could be only NULL or a
val id pointer and could not be concurrently accessed.

- fshi_rele() - fsh_hook_install() cones before first fshi
the fsh_fsrecord_t has been initialised there

_rele() call;

Wien there are no fsh functions (that use a particular fsh_fsrecord_t)
executing, the vfs_fshrecord pointer won't be equal to fsh_res_ptr. It
woul d be NULL or a pointer to an initialised fsh_fsrecord_t.

It is required and sufficient to check if fsh_fsrecord_t is not NULL before
passing it to fsh_fsrec_destroy. W don't have to check if it is not equal

to fsh_res_ptr, because all the fsh APl calls involving this vfs_t should
end before vfs_free() is called (outside the fsh, fsh_fsrecord is never

equal to fsh_res_ptr). That is guaranteed by the explicit requirenent that
the caller of fsh APl holds the vfs_t when needed. fsh_hook_renove() nust not
be called either, because the handles are invalidated after free cal |l back has

fired.

Cal | backs:

Mount cal | backs are executed by a call to fsh_exec_nount_call backs() right
before returning from donount () @fs.c.

Free cal | backs are executed by a call to fsh_exec_free_callbacks() right

before calling VFS_FREEVFS(), after vfs_t's reference count drops to O.

fsh_next_foo(fsh_int_t *fshi, ARGUMENTS)
This function is quite sinple. It takes the fsh_int_t
to the next hook or to the underlying vnodeop/ vfsop.

and passes control

6. Locking
a) public
fsh does no vfs_t nor vnode_t
needed, the client does that.

locking. It is expected that whenever it is

No | ocks are hel d across hooks or hook renove cal | backs execution. It is
safe to use fsh APl inside hooks and hook renpve cal |l backs.

fsh_cal I back_{install,renpve} nust not be called inside a callback,
it will cause a deadl ock.

because

fsh_cb_lock is held across {nount,free} callbacks. Calling
fsh_call back_{install,renove} inside of a callback will cause a deadl ock.

b) internals
b) internal
Locki ng di agram

new usr/src/uts/comon/fs/fsh.c 6

265
240
266
267
268
269
270
271
272
273
274
275
245
246
276
248
249
277
278
279
280
281
254
282
283
284
285
286
287
288
289
290
291
292
263
264
265
266
293
294
295
296
297
298
299
300
301
302
303
304
305
306

309
310
277
311
312
313

315
316
317

319

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/*

f sh_hook_r enove

) sh_hook_i nstal | () fsh_fsrec_destroy()
fsh_hook_i nstal |l ()
|

fsh_hook_rermve() fsh_fsrec_destroy()

+_
t
.
,
:
:
,
.
,
.
:
.
,
.
,
:
,
.
¥
+
1
.
,
.
,
:
.
,
.
:
:
¥

-- fshfsr_|lock, RWWRI TER -+

fshfsr_lock, RWWRITER ---+
|

|
|

+----|-> vfsp->vfs_fshrecord->fshfsr_list <--|---------------- +
| -> vfsp->vfs_fshrecord->fshfsr |IS'[S o +

|
fshfsr_l ock, RW READER fshfsr_l ock, RWWRI TER
|

|
fsh_read fshi_

_ 0, rele()
fsh_wite(),
M ght be called from
fsh_hook_renove
fsh_read(), fsh_wite(),
M ght be called from
fsh_hook_renove()
fsh_read(), fsh_wite(),
f sh_next read() f sh_next wrlte()

f's'hy_next_r ead(),
fsh_next_wite(),

fsh_lock is a global lock for admnsitrative path (fsh_hook_install,
fsh_hook_renove) and fsh_fsrec _destroy() (which is sem- adni ni stratlve si nce
it destroys the unrenoved hooks). It is used only when fsh_map needs to be

| ocked. The usage of this |ock guarantees that the data in fsh_map and
fshfsr_lists is consistent.

In order to nmake calling callbacks inside callbacks possible, fsh_cb_owner is
set by fsh_exec_{nount,free} callbacks to the thread that owns the
fsh_cb_lock. It’s always checked if we are owners of the nutex before
entering it.

Internals */

typedef struct fsh_int {
struct fsh_int

fshi _handl e;
f shi _hooks;
*fshi

_vfsp;

fsh_handl e_t
fsh_t
vis_t

kmut ex_t
ui nt64_t
ui nt 64_t

f shi _I ock;
fshi_ref;
f shi _doon®d; /* changed inside fsh_lock */

/* next node in fshfsr_list */

new usr/src/uts/comon/fs/fsh.c 7 new usr/src/uts/comon/fs/fsh.c 8
320 l'i st _node_t fshi _node; 381 *
287 l'ist_node_t f shi _next; 382 * Inportant note:
383 * Before using this function, fsh_init() MJST be called. W do that in
322 /* next node in fsh_map */ 384 * visinit()@rfs.c.
323 i st _node_t fshi _gl obal ; 385 *
324 } fsh_int_t; 386 * One would ask, why isn't the vfsp->vfs_fshrecord initialised when the
291 }; 387 * vfs_t is created. Unfortunately, sone filesysten's (e.g. fifofs) do not
388 * call vfs_init() or even vfs_alloc(), It’'s possible that some unbundl ed
326 typedef struct fsh_callback_int { 389 * filesystens could do the sane thing. That's why this solution is
327 fsh_cal | back_t fshci_cb; 390 * introduced. It should be called before any code that needs access to
328 fsh_cal | back_handl e_t fshm _handl e; 391 * vfs_fshrecord.
329 list_node_t fshci _node; 392 *
296 list_node_t fshci _next; 393 * Locking:
330 } fsh_callback_int_t; 394 * There are no | ocks here, because there’'s no good place to initialise
395 * the lock. Concurrency issues are solved by using atom c instructions
396 * and a spinlock, which is spinning only once for a given vfs_t. Because
333 typedef struct fsh_exec { 397 * of that, the usage of the spinlock isn't bad at all
334 fsh_int_t *fshe_fshi; 398 *
335 voi d *fshe_i nst ance; 399 * How it works:
336 list_node_t f she_node; 400 * a) if vfsp->vfs_fshrecord equals NULL, atomi c_cas_ptr() changes it to
337 } fsh_exec_t; 401 * fsh_res_ptr. That's a signal for other threads, that the structure
402 = is being initialised.
403 * b) if vfsp->vfs_fshrecord equals fsh_res_ptr, that neans we have to wait,
340 static kmutex_t fsh_I ock; 404 * because vfs_fshrecord is being initialised by another call.
405 * c) other cases:
342 | * 406 * vfs_fshrecord is already initialised, so we can use it. It won't change
343 * fsh_fsrecord_t is the nmain internal structure. It’s content is protected 407 * until vfs_free() is called. It can’t happen when soneone is hol ding
344 * by fshfsr_lock. The fshfsr_list is a list of fsh_int_t hook entries for 408 * the vfs_t, which is expected fromthe caller of fsh API.
345 * the vfs_t that contains the fsh_fsrecord_t. 409 */
346 */ 410 static void
347 struct fsh_fsrecord { 411 fsh_fsrec_prepare(vfs_t *vfsp)
348 krw ock_t f shfsr_I ock; 369 fsh_prepare_fsrec(vfs_t *vfsp)
349 int f shf sr _enabl ed; 412
350 list_t fshfsr_list; 413 fsh_fsrecord_t *fsrec;
351 };
415 while ((fsrec = atom c_cas_ptr(&fsp->vfs_fshrecord, NULL,
353 /* 416 fsh_res_ptr)) == fsh_res_ptr)
354 * Gdobal list of fsh_int_t. Protected by fsh_| ock. 417 ;
355 */
356 static list_t fsh_nap; 419 if (fsrec == NULL)
420 at om c_swap_ptr(&fsp->vfs_fshrecord, fsh_fsrec_create());
358 /* 421 }
359 * Gobal list of fsh_callback_int_t.
360 */ 423 | *
361 static kmutex_t fsh_cb_l ock; 424 * APl for enabling/disabling fsh per vfs_t.
362 static kmutex_t fsh_cb_owner _| ock; 425 =
363 static kthread_t *fsh_cbh_owner; 426 * A newly created vfs_t has fsh enabled by default. If one would want to change
321 static krw ock_t fsh_cblist_Iock; 427 * this behaviour, nount callbacks could be used.
364 static list_t fsh_cblist; 428 *
429 * The caller is expected to hold the vfs_t.
366 /* 430 *
367 * A reserved pointer for fsh purposes. It is used because of the nethod 431 * These functions nmust NOT be called in a hook.
368 * chosen for solving concurrency issues with vis_fshrecord. The full 432 */
369 * explanation is in the big theory statement at the beginning of this 433 voi d
370 * file and above fsh_fsrec_prepare(). It is initialised in fsh_init(). 434 fsh_fs_enabl e(vfs_t *vfsp)
371 */ 435 {
372 static void *fsh_res_ptr; 436 fsh_fsrec_prepare(vfsp);
394 fsh_prepare_fsrec(vfsp);
374 static fsh_fsrecord_t *fsh_fsrec_create();
438 rw_enter (&fsp->vfs_fshrecord- >fshfsr _lock, RWWRI TER);
376 int fsh_limt = I NT_MAX 439 vfsp->vfs_fshrecord->fshfsr_enabled = 1;
377 static id_space_t *fsh_idspace; 440) rw_exit(&fsp->vfs_fshrecord->fshfsr_| ock);
441
379 /*
380 * fsh_fsrec_prepare() 443 void
338 * fsh_prepare_fsrec() 444 fsh_fs_disable(vfs_t *vfsp)

new usr/src/uts/comon/fs/fsh.c

445 {
446
404

448
449
450
451 }
453 /
454
455
456
415
416
417
418
419
420
421
422
457
458
459
460
461
462

® Ok Sk ok Sk bk O R ok ok b R % k% k¥

463 */

fsh_fsrec_prepare(vfsp);
fsh_prepare_fsrec(vfsp);

rw_ent er (&f sp->vfs_fshrecord->fshfsr_|l ock, RWWR TER);
vfsp->vfs_fshrecord->fshfsr_enabled = 0;
rw_exit(&fsp->vfs_fshrecord->fshfsr_|ock);

APl used for installing hooks. fsh_handle_t is returned for further
actions (currently just renoving) on this set of hooks.

fsh_t fields:

- arg - argunent passed to every hook

- renmove_cb - renove callback, called after a hook is renoved and all the
threads stops executing it

- read, wite, ... - pointers to hooks for correspondi ng vnodeops/ vfsops;
if there is no hook desired for an operation, it should be set to
NULL

It's inportant that the hooks are executed in LIFO installation order (they
are added to the head of the hook list).

The caller is expected to hold the vfs_t.

Returns (-1) if hook/callback limt exceeded, handl e otherwi se.

464 fsh_handl e_t
465 fsh_hook_install (vfs_t *vfsp, fsh_t *hooks)

466 {
467
468

470
436

472
473

475
476
477
478
479
480
481

483
484
485
486

488
489

491
492 }

fsh_handl e_t
fsh_int_t

handl e;
*fshi;

fsh_fsrec_prepare(vfsp);
fsh_prepare_fsrec(vfsp);

if ((handle = id_alloc(fsh_idspace)) == -1)
return (-1);

fshi = kmem_ al | oc(sizeof (*fshi), KM SLEEP);

mut ex_i ni t (&f shi->fshi _| ock, NULL, MJTEX DRI VER, NULL);

(voi d) mencpy(&f shi->fshi_hooks, hooks, sizeof (fshi->fshi_hooks));
fshi->fshi _handl e = handl e;

fshi ->fshi _dooned = 0;

fshi->fshi _ref = 1;

fshi->fshi _vfsp = vfsp;

mut ex_ent er (& sh_| ock) ;

rw_ent er (&fsp->vfs_fshrecord->fshfsr_|l ock, RWWR TER);
l'ist_insert_head(&fsp->vfs_fshrecord->fshfsr_list, fshi);
rw_exit (&fsp->vfs_fshrecord->fshfsr_|ock);

list_insert_head(& sh_map, fshi);
mut ex_exi t (& sh_Il ock);

return (handle);

____unchanged_portion_onitted_

511 /*
512 *
513 *

514 */

This function nust not be called while fshfsr_lock is held. Doing so could
cause a deadl ock.

515 static void
516 fshi_rele(fsh_int_t *fshi)

new usr/src/uts/comon/fs/fsh.c

517 {
518

520
521
522
523
524
525
526
527
528
529

531
532
533
534
535
536
537
538

505
506
507
540
541
509
542
543
544
545
546
547

549
550
551

553
554
555

557
558
559
560
561 }

10

int destroy;

nmut ex_ent er (& shi - >f shi _| ock);
ASSERT(f shi ->fshi_ref > 0);
fshi->fshi_ref--;
if (fshi->fshi_ref == 0) {
ASSERT(f shi - >f shi _dooned == 1);
destroy = 1;
} else {
destroy = 0;

}
mut ex_exi t (& shi ->f shi _| ock);
if (destroy) {

/*

* At this point, we are sure that fsh_hook_renmove() has been
* called, that's why we don’t renove the fshi fromfsh_map.
* fsh_hook_renove() did that already.

* There is also no need to call fsh_fsrec_prepare() here.

*

fsh_fsrecord_t *fsrecp;

if (fshi->fshi_hooks.renove_cb !'= NULL)
(*fshi->fshi_hooks. renpve_cb) (
f shi - >f shi _hooks. arg, fshi->fshi_handle);

We don’t have to call fsh_fsrec_prepare() here.

We don’t have to call fsh_prepare_fsrec() here.
fsh_fsrecord_t is already initialised, because we’ve found a
mappi ng for the given handl e.

* ok kb F ok
-

fsrecp = fshi->fshi_vfsp->vfs_fshrecord;
ASSERT(fsrecp !'= NULL);
ASSERT(fsrecp != fsh_res_ptr);

rw_ent er (& srecp->fshfsr_| ock, RWWRI TER);
list_remove(& srecp->fshfsr_list, fshi);
rw_exit (& srecp->fshfsr_Iock);

if (fshi->fshi_hooks.renove_cb !'= NULL)
(*fshi->fshi_hooks. renpve_cb) (
f shi ->f shi _hooks. arg, fshi->fshi_handle);

id_free(fsh_idspace, fshi->fshi_handle);
nmut ex_destroy(&f shi - >fshi _| ock);
kmem free(fshi, sizeof (*fshi));

}

____unchanged_portion_onitted_

611 /
612
613
614
615
616
617
618
619
620
621
622
623
624
588

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

APl for installing global nmount/free call backs.

fsh_cal | back_t fields:

fshc_arg - argunent passed to the call backs

fshc_free - callback fired before VFS FREEVFS() is called, after vfs_count
drops to O

fshc_nount - callback fired right before returning from donount ()

The first argunent of these callbacks is the vfs_t that is nmounted/freed.

The second one is the fshc_arg.

fsh_cal | back_handle_t is filled out by this function.

Returns (-1) if hook/callback limt exceeded.
This function nmust NOT be called in a callback, because it wll cause

new usr/src/uts/comon/fs/fsh.c 11 new usr/src/uts/comon/fs/fsh.c 12
589 * a deadl ock.
625 * 681 /*
626 * Calling this function in a {nount,free} callback will cause a deadl ock. 682 * This function is executed right before returning from donount () @fs.c.
591 * Returns (-1) if hook/callback limt exceeded. 683 * W are sure that it's called only after fsh_init().
627 */ 684 * It executes all the nount callbacks installed in the fsh.
628 fsh_cal | back_handl e_t 685 *
629 fsh_cal | back_instal T(fsh_cal | back_t *cal | back) 686 * Since fsh_exec_nount_callbacks() is called only inside domount(), it is |egal
630 { 687 * to call fsh_hook_{install,renove}() inside a nmount callback W THOUT hol di ng
631 fsh_cal | back_int_t *fshci; 688 * this vfs_t. This guarantee shoul d be preserved, because it’s in the "Usage"
632 fsh_cal | back_handl e_t handl e; 689 * section in the big theory statenent at the top of this file.
690 */
634 if ((handle = id_alloc(fsh_idspace)) == -1) 691 void
635 return (-1); 692 fsh_exec_mount _cal | backs(vfs_t *vfsp)
693 {
637 fshci = (fsh_callback_int_t *)kmem all oc(sizeof (*fshci), KM SLEEP); 694 fsh_cal I back_int_t *fshci;
638 (voi d) nenctpy(&f shci->fshci_cb, callback, sizeof (fshci->fshci_cb)); 695 fsh_cal I back_t *cb;
639 fshci ->fshci _handl e = handl e; 696 int fsh_context;
641 mut ex_ent er (& sh_cb_| ock) ; 698 mut ex_ent er (&f sh_cb_owner _| ock) ;
606 /* 1f it is called in a {mount,free} callback, causes deadl ock. */ 699 fsh_context = fsh_cb_owner == curthread,;
607 rw_enter (& sh_cblist_|ock, RWWRI TER); 700 mut ex_exi t (& sh_cb_owner _| ock) ;
642 list_insert_head(& sh_cblist, fshci);
643 mut ex_exi t (& sh_cb_I ock); 702 if (!fsh_context)
609 rw_exit (& sh_cblist_I ock) 703 mut ex_ent er (& sh_cb_I ock) ;
704 mut ex_ent er (& sh_cb_owner _| ock) ;
645 return (handle); 705 fsh_cb_owner = curthread;
646 } 706 mut ex_exi t (& sh_cb_owner _| ock);
707 }
648 [*
649 * APl for renoving gl obal mount/free call backs. 709 ASSERT(MUTEX_HELD(& sh_cb_I ock));
650 *
651 * Returns (-1) if callback wasn’t found, O otherw se. 663 rw enter(&fsh chlist_I| ock, RW READER);
617 * This function nust NOT be called in a callback, because it will cause 711 for (fshci = list head(&fsh cblist); fshci 1= NULL;
618 * a deadl ock. 712 fshci = list_next(& sh_cblist, fshei)) {
652 * 713 b = &f shci ->fshci _cb;
653 * Calling this function in a {rmunt free} callback will cause a deadl ock. 714 if (cb->fshc_mount != NULL
620 * Returns (-1) if callback wasn’t found 0 ot herwi se. 715 (*(cb->fshc_mount)) (vfsp, ch->fshc_arg);
654 */ 716 }
655 int
656 fsh_call back_renove(fsh_call back_handl e_t handl e) 718 if (!fsh_context) {
657 { 719 mut ex_ent er (& sh_ cb owner _| ock) ;
658 fsh_cal Il back_int_t *fshci; 720 fsh_cbh_owner = NULL
721 mut ex_exi t (&f sh_cb_ovmer_l ock) ;
660 mut ex_ent er (& sh_cb_I ock) ; 722 mut ex_exi t (& sh_cb_l ock);
723
627 /* If it is called in a {nount,free} callback, causes deadl ock. */ 670 rw_exit (& sh_cblist_|ock);
628 rw_enter (& sh_cblist_| ock, RWWR TER); 724 }
662 for (fshci = list_head(& sh_cblist); fshci !'= NULL;
663 fshci = list_next(& sh_cblist, fshci)) { 726 | *
664 if (fshci->fshci_handl e == handle) { 727 * This function is executed right before VFS FREEVFS() is called in
665 l'ist_renpve(&f sh_cblist, fshci); 728 * vis_rele()@fs.c. W are sure that it's called only after fsh_init().
666 break; 729 * It executes all the free callbacks installed in the fsh.
667 } 730 *
668 } 731 * free() callback is the point after the handl es associated with the hooks
636 rw_exit (& sh_cblist_|ock); 732 * installed on this vfs_t becone invalid
733 */
670 mut ex_exi t (& sh_cb_l ock) ; 734 void
735 fsh_exec_free_cal | backs(vfs_t *vfsp)
672 if (fshci == NULL) 736 {
673 return (-1); 737 fsh_cal Il back_int_t *fshci;
738 fsh_cal | back_t *cb;
675 kmem free(fshci, sizeof (*fshci)); 739 i nt fsh_context;
676 id_free(fsh_idspace, handle);
741 mut ex_ent er(&fsh cb_owner _| ock);
678 return (0); 742 fsh_context = fsh_cb_owner == curthread,;
679 } 743 nmut ex_exi t (& sh_cb_owner _| ock) ;

new usr/src/uts/comon/fs/fsh.c

745
746
747
748
749
750

752

687
754
755
756
757
758
759

761
762
763
764
765
766
694
767

769
770
771
772
773
774
775
703
776
777
778
779
780
781
782
783
784
785
786
787
788

790
791
792
793
794
795

797
723
798

800
801
802
803
729
804

—_—

NS * ok k kR % ok Sk Ok Ok Ok k% F %
-~

if (!fsh_context) {
mut ex_ent er (& sh_cb_I ock) ;
mut ex_ent er (& sh_cb_owner _| ock);
fsh_cb_owner = curthread;

mut ex_exi t (& sh_cb_owner _| ock) ;
}
ASSERT(MUTEX_HELD(& sh_cb_| ock)) ;
rw enter(&fsh cblist_| ock, RWREADER);

for (fshci list head(&fsh cblist); fshci !'= NULL;
fshci = I i st_next (& sh_cblist, fshei)) {
cb = &f shci->fshci _cb;

if (cb->fshc_free T= NULL)
(*(cb->fshc_free))(vfsp, ch->fshc_arg);

}

if (!fsh_context)
nut ex enter(&fsh cb_owner _| ock) ;
fsh_cb_owner = NULL;
mut ex_exi t (& sh_cb_owner
mut ex_exi t (& sh_cb_Il ock);

_lock);

_lock);

}
rw_exit (& sh_cblist

APl for vnode.c/vfs.c to start executing the fsh for a given operation.

absol utely necessary to call
visinit()

fsh_init() before using them That's done in

Wil e these functions are executing, it’'s expected that necessary vfs_t's
are held so that vfs_free() isn't called. vfs_free() expects that noone
accesses vfs_fshrecord of a given vfs_t.

It's also the caller’s responsibility to keep vnode_t passed to fsh_foo()
alive and valid.

Al'l these expectations are nmet because these functions are used only in
correspondng {fop, fsop}_foo() functions.

t
h_read(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr,
caller_context_t *ct)

int ret;

fsh_fsrecord_t
fsh_int_t *fshi;
fsh_exec_t *fshe;
list_t exec_list;

*fsrecp;

fsh_fsrec_prepare(vp->v_vfsp);
fsh_prepare_fsrec(vp->v_vfsp);
fsrecp = vp->v_vfsp->vfs_fshrecord;

rw_ent er (&f srecp->fshfsr_| ock, RW READER);

i f (! (fsrecp->fshfsr_enabl ed)) {
rw_exit (& sreecp->fshfsr_| ock);
return ((*vp->v_op->vop_read)(vp, uiop,

ioflag, cr, ct));
return ((*(vp->v_op->vop_read))(vp, ct

uiop, ioflag, cr, j);

fsh_xxx() tries to find the first non-NULL xxx hook on the fshfsr_list. If
does, it executes it. If not, underlying vnodeop/vfsop is called.

These interfaces are using fsh_res_ptr (in fsh_fsrec_prepare()), soit’'s
These interfaces are using fsh_res_ptr (in fsh_prepare_fsrec()), soit's

13

it

new usr/src/uts/comon/fs/fsh.c 14
806 list_create(&exec_list, sizeof (fsh_exec_t),
807 of fset of (fsh_exec_t, fshe_node));
809 for (fshi = list_head(&f srecp->fshfsr_list); fshi != NULL;
810 fshi = list_next(& srecp->fshfsr_Tist, fshi))
811 if (fshi->fshi_hooks.pre_read != NULL |
812 fshi - >f shi _hooks. post_read != NULL) {
813 if (fshi hold(fshl))
814 he = kmem al | OC(SI zeof (*fshe), KM SLEEP);
815 fshe >fshe_fshi = fshi;
816 list_insert_tail (&xec_list, fshe);
734 if (fshi->fshi_hooks.read != NULL)
735 if (fshi_hold(fshi))
736 br eak;
817 }
818 }
819
820 rw_exit (&f srecp->fshfsr_Ilock);
822 /* Execute pre hooks */
823 for (fshe = list_head(&exec_list); fshe !'= NULL;
824 fshe = list_next(&xec_list, fshe))
825 if (fshe->fshe_fshi->fshi_hooks.pre_read != NULL)
826 (*fshe->f she_f shi ->f shi _hooks. pre_read) (
827 f she- >f she_f shi - >f shi _hooks. arg,
828 &f she- >f she_i nst ance,
829 &p, &uiop, & oflag, &cr, &ct);
830 }
740 if (fshi == NULL)
741 return ((*(vp->v_op->vop_read))(vp, uiop, ioflag, cr, ct));
832 ret = (*vp->v_op->vop_read)(vp, uiop, ioflag, cr, ct);
834 /* Execute post hooks */
835 while ((fshe = list_renove_tail (&xec_list)) !'= NULL) {
836 if (fshe->fshe_fshi->fshi_hooks. post_read != NULL)
837 ret = (*fshe->fshe_fshi->fshi_hooks. post _read) (
838 ret, fshe->fshe_fshi->fshi _hooks.arg,
839 fshe- >f she_i nst ance,
743 ret = (*fshi->fshi_hooks.read)(fshi, fshi->fshi_hooks.arg,
840 vp, uiop, ioflag, cr, ct);
841 fshi_rel e(fshe->fshe_fshi);
842 kmem free(fshe, sizeof (*fshe));
843 }
844 i st_destroy(&exec_list);
745 fshi_rele(fshi);
846 return (ret);
847 }
849 int
850 fsh_wite(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr,
851 caller_context_t *ct)
852 {
753 fsh_int_t *fshi;
853 int ret;
854 fsh_fsrecord_t *fsrecp;
855 fsh_int_t *fshi;
856 fsh_exec_t *fshe;
857 list_t exec_list;
859 fsh_fsrec_prepare(vp->v_vfsp);
757 fsh_prepare_fsrec(vp->v_vfsp);
860 fsrecp = vp->v_vfsp->vfs_fshrecord;

new usr/src/uts/comon/fs/fsh.c

862
863
761
864
865
763
866

868
869

871
872
873
874
875
876
877
878
768
769
770
879
880
881
882

884
885
886
887
888
889
890
891
892
774
775

894

896
897
898
899
900
901
777
902
903
904
905
906

779
908
909

911
912

914
915
916
917
918

}

i nt

rw_ent er (& srecp->f shfsr_| ock, RW READER);

if (!(fsrecp->fshfsr_enabled)) {

if (!(vp->v_vfsp->vfs_fshrecord->fshfsr_enabled)) {
rw_exit (& srecp->fshfsr_| ock);
return ((*vp->v_op->vop_write)(vp, uiop, ioflag, cr, ct));

return ((*(vp->v_op->vop_wite))(vp, uiop, ioflag, cr, ct));

}

list_create(&exec_list,

si zeof (fsh_exec_t),
of f set of (f sh_exec_t, ;

f she_node)) ;

for (fshi = list_head(& srecp->fshfsr_list); fshi != NULL;
fshi = list_next(& srecp->fshfsr_Tist, fshi)) {
if (fshi->fshi_hooks.pre_wite !'= NULL ||
fshi ->f shi _hooks. post_write !'= NULL) {

if (fshi h0|d(fshl)) {
fshe = knmem aIIoc(S|zeof (*fshe),
fshe->fshe_fshi = fshi;
list_insert ta|l(&exec_llst, fshe);
if (fsh| >fsh| hooks- write T= NULL)
f (fshi_hol d(fshi))
br eak;

}
rw_exit (& srecp->fshfsr_| ock);

/* Execute pre hooks */
for (fshe |ist_head(&exec_list);
fshe = list _next (&exec_Tist, fshe)) {
if (fshe->fshe_fshi- >fsh|_hooks.pre_write I'= NULL)
(*fshe->fshe_fshi->fshi_hooks.pre wite)(
f she- >f she_f shi - >f shi _hooks. arg,
&f she- >f she_i nst ance,
&vp, &uiop, & oflag, &cr, &ct);

fshe = NULL;

%f (fshi == NULL)

return ((*(vp->v_op->vop_wite))(vp, uiop, ioflag, cr, ct));

ret = (*vp->v_op->vop_wite)(vp, uiop, ioflag, cr, ct);

/* Execute post hooks */
while ((fshe = list_renove_tail (&xec_list)) !'= NULL) {
if (fshe->fshe_fshi->fshi_hooks. post_wite != NULL)
ret = (*fshe->fshe_fshi->fshi_hooks. post_wite)(
ret, fshe->fshe_fshi->fshi_hooks. arg,
f she- >f she_i nst ance,
ret = (*fshi->fshi_hooks.wite)(fshi, fshi->fshi_hooks. arg,
vp, uiop, 1oflag, cr, ct);
fshi _rel e(fshe->fshe_fshi);
kmem free(fshe, sizeof (*fshe));

}
l'ist_destroy(&exec_list);

fshi_rele(fshi);
return (ret);

fsh_nount (vfs_t *vfsp, vnode_t *mvp, struct nounta *uap, cred_t *cr)
913 {

int ret;

fsh_fsrecord_t *fsrecp;
fsh_int_t *fshi;
fsh_exec_t *fshe;
list_t exec_list;

KM SLEEP) ;

15

new usr/src/uts/comon/fs/fsh.c

788

920
790
921

923
924
925
926
796
927

929
930

932
933
934
935
936
937
938
939
801
802
803
940
941
942
943

945
946
947
948
949
950
951
952
953
807
808

955

957
958
959
960
961
962
810
963
964
965
966
967

812
969
970 }

972 int

int ret;

fsh_fsrec_prepare(vfsp);
fsh_prepare_fsrec(vfsp);
fsrecp = vfsp->vfs_fshrecord;

rw_ent er (& srecp->fshfsr_| ock, RW READER);
if (!(fsrecp->fshfsr_enabled))
rw eX|t(&fsrecp >f shf sr_| ock) ;
return ((*vfsp->vfs_op->vfs rmunt)

(nvp, uap, cr));
return ((*(vfsp->vfs_op->vfs_nount)

vfs
) (vf p, mp, uap, cr));

}

list_create(&exec_list,
of f set of (f sh_exec_t,

si zeof (fsh_exec_t),
f she_node)) ;

(fshi = list_head(&f srecp->fshfsr_list); fshi != NULL;
f shi =I|st _next (& srecp->fshfsr_list, fshi)) {
if (fshi->fshi_hooks.pre_nmount != NULL ||
f shi - >f shi _hooks. post _mount != NULL) {

if (fShI hol d(fshl)) {
fshe = knem al | OC(SI zeof (*fshe),
fshe->fshe_fshi = fshi;
list_insert_tail (&exec_l ist, fshe);
if (fshl >fsh| hooks. nount != NULL)
f (fshi_hol d(fshi))
br eak;

}
rw_exit (&f srecp->fshfsr_| ock);

/* Execute pre hooks */

for (fshe = list_head(&exec_list); fshe != NULL;
fshe = list_next(&xec_list, fshe)) {
if (fshe->fshe_fshi->fshi_hooks. pre_nount != NULL)

(*fshe->f she_f shi - >f shi _hooks. pre_nount) (
&f she->f she_f shi - > shi _hooks. ar g,
&f she- >f she_i nst ance,
&vfsp, &mwp, &uap, &cr);

}
if (fshi == NULL)
return ((*(vfsp->vfs_op->vfs_nount))(vfsp, nvp, uap, cr));

ret = (*vfsp->vfs_op->vfs_nount) (vfsp, nvp, uap, cr);

/* Execute post hooks */
while ((fshe = list_renove_tail (&xec_list)) !'= NULL)
if (fshe->fshe_fshi->fshi_hooks. post_mount != NULL)
ret = (*fshe->fshe_fshi->fshi_hooks. post_nount) (
ret, fshe->fshe_fshi->fshi _hooks.arg,
fshe- >f she_i nst ance,
ret = (*fshi->fshi_hooks. munt) (fshi, fshi->fshi_hooks.arg,
vfsp, nvp, uap, cr);
fshi _rel e(fshe->fshe_fshi);
kmem free(fshe, sizeof (*fshe));

}
i st_destroy(&exec_list);

fshi_rele(fshi);
return (ret);

973 fsh_unmount (vfs_t *vfsp, int flag, cred_t *cr)

974 {

KM SLEEP) ;

16

new usr/src/uts/comon/fs/fsh.c

975
976
977
978
979
821

981
823
982

984
985
986
987
829
988

990
991

993
994
995
996
997
998
999
1000
834
835
836
1001
1002
1003
1004

1006
1007
1008
1009
1010
1011
1012
1013
1014

840

841

1016

1018
1019
1020
1021
1022
1023

843
1024
1025
1026
1027
1028

845
1030

int ret;

fsh fsrecord t *fsrecp;
fsh_int_t *fshi;
fsh_exec_t *fshe;
list_t exec_list;

int ret;

fsh_fsrec_prepare(vfsp);
fsh_prepare_fsrec(vfsp);
fsrecp = vfsp->vfs_fshrecord;

rw_ent er (& srecp->f shfsr_| ock, RW READER);
if (! (fsrecp->fshfsr_enabl ed))
rw eX|t(&fsrecp >f shf sr_| ock) ;

return ((*vfsp->vfs_op->vfs unrmunt)(vf flag, cr));
return ((*(vfsp->vfs_op->vfs_unnount)) (vf p, flag, cr));
}
list_create(&exec_list, sizeof (fsh_exec_t),
of fset of (f sh_exec_t, fshe_node));
for (fshi = list_head(&f srecp->fshfsr_list); fshi !'= NULL;
fshi = list_next(& srecp->fshfsr_Tist, fshi)) {
if (fshi->fshi_hooks. pre_unmount != NULL ||
fshi ->f shi _hooks. post _unnount != NULL) {

if (fshi_hold(fshi)) {
fshe = knem al | oc(si zeof (*fshe),
fshe->fshe_fshi = fshi;
list_insert_tail (&xec_list, fshe);

if (fshi->fshi_hooks. unmount != NULL)

if (fshi_hold(fshi))
br eak;

}

}
}
rw_exit (& srecp->fshfsr_Ilock);

/* Execute pre hooks */

for (fshe = list_head(&exec_list); fshe !'= NULL;
fshe = list_next(&xec_list, fshe))
if (fshe->fshe_fshi->fshi_hooks. pre_unmount != NULL)

(*fshe->fshe_fshi->fshi _hooks. pre_unmount) (
f she- >f she_f shi - >f shi _hooks. ar g,
&f she- >f she_i nst ance,
& fsp, & lag, &cr);

}
if (fshi == NULL)
return ((*(vfsp->vfs_op->vfs_unnount))(vfsp, flag, cr));

ret = (*vfsp->vfs_op->vfs_unnount)(vfsp, flag, cr);

/* Execute post hooks */
while ((fshe = list_renpve_tail(&xec_list)) !'= NULL) {
if (fshe->fshe_fshi->fshi_hooks. post_unnount != NULL)
ret = (*fshe->fshe_fshi->fshi_hooks. post_unnount) (
ret, fshe->fshe_fshi->fshi_hooks. arg,
f she- >f she_i nst ance,
ret = (*fshi->fshi_hooks. unmount) (fshi, fshi->fshi_hooks.arg,
visp, flag, cr);
fshi_rel e(fshe->fshe_fshi);
kmem free(fshe, sizeof (*fshe))

}
i st_destroy(&exec_list);

fshi_rele(fshi);
return (ret);

KM SLEEP) ;

17

new usr/src/uts/comon/fs/fsh.c 18
1031 }

1033 /*

1034 * This is the funtion used by fsh_fsrec_prepare() to allocate a new

850 * This is the funtion used by fsh_prepare_fsrec() to allocate a new

1035 * fsh_fsrecord. This function is called by the first function which

1036 * access the vfs_fshrecord and finds out it’s NULL.

1037 */

1038 static fsh_fsrecord_t *
1039 fsh_fsrec_create()

1040 {

1041 fsh_fsrecord_t *fsrecp;

1043 fsrecp = (fsh_fsrecord_t *)kmem zall oc(sizeof (*fsrecp), KM SLEEP);
1044 list_create(& srecp->fshfsr_list, sizeof (fsh_int_t),

1045 of fsetof (fsh_int_t, fshi_node));

861 of fsetof (fsh_int_t, fshi_next));

1046 rw_init(& srecp->fshfsr_lock, NULL, RWDRI VER, NULL);

1047 fsrecp->fshfsr_enabled = 1;

1048) return (fsrecp);

1049

1052 /*

1053 * This call nmust be used ONLY in vfs_free().

869 * This call can be used ONLY in vfs_free(). It’'s assunmed that no other
870 * fsh calls using the vfs_t that owns the fsh_fsrecord to be destroyed
871 * are executing while a call to fsh_fsrec_destroy() is made. Wth this
872 * assunptions, no concurrency issues occur.

1054 *

1055 * It is required and sufficient to check if fsh_fsrecord_t is not NULL before
1056 * passing it to fsh_fsrec_destroy.

874 * Before calling this function outside the fsh, it’s sufficient and

875 * required to check if the passed fsh_fsrecord * is not NULL. W don't
876 * have to check if it is not equal to fsh_res_ptr, because all the fsh API
877 * calls involving this vfs_t should end before vfs _free() is called

878 * (outside the fsh, fsh_fsrecord is never equal to fsh_res_ptr). That is
879 * guaranteed by the explicit requirenent that the caller of fsh APl holds
880 * the vfs_t when needed.

1057 *

1058 * Al the remaining hooks are being renoved here.

882 * Al the renmining hooks are being renoved.

1059 */

1060 void

1061 {sh_fsrec_destroy(struct fsh_fsrecord *volatile fsrecp)

1062

1063 fsh_int_t *fshi;

1065 VERI FY(fsrecp !'= NULL);

1067 _NOTE(CONSTCOND)

1068 while (1) {

1069 mut ex_ent er (& sh_| ock);

1070 rw_ent er (& srecp->f shf sr_| ock, RWWRI TER) ;

894 /* No need here to hold fshfsr_lock */

1071 fshi = list_renove_head(&f srecp->fshfsr_list);

1072 rw_exit (& srecp->fshfsr_I ock);

1073 if (fshi == NULL)

1074 nut ex_exi t (& sh_I ock);

1075 break;

1076 }

1077 ASSERT(f shi - >f shi _dooned == 0);

1078 list_remove(& sh_map, fshi);

1079 mut ex_exi t (& sh_l ock);

1081 if (fshi->fshi_hooks.renove_cb !'= NULL)

new usr/src/uts/comon/fs/fsh.c 19

1082
1083

1085
1086
1087

1089

1091
1092
1093
1094

1096
1097
1098
1099
1100
1101

1103
1104
925
1105
1106
927

1108

1110
1111

1113
934
1114

1116
938

}
!

VOI

*
*
*
* [

fs
be
d

h
fore every other fsh cal

(*fshi->fshi ->f shi

f shi

_hooks. remove_cb) (f shi _hooks. arg,
->f shi _handl e) ;

id_free(fsh_idspace, fshi->fshi_|
mut ex_dest roy(&f shi - >f shi _| ock);
kmem free(fshi, sizeof (*fshi));

handl e) ;

}

Iist_destroy(&f srecp->fshfsr_list);
rw_dest roy(&f srecp->fshfsr_| ock);
kmem free(fsrecp, sizeof (*fsrecp));

init() This function MJST be called

is called in visinit()@fs.c.
I.

fsh_init(void)
1102 {

}

940 /

941
942
943
944
945
946
947
948
949

951
952
953
954
955
956
957
958
959
960
961
962

964
965

i nt
fsh_next_read(fsh_int_t *fshi,

{

*

* These functions are used to pass control
* vop or vfsop. It’
*/

mutex_init(& sh_cb_l ock, NULL, MJTEX_DRI VER, NULL);
mutex_init (&fsh_cb_owner I ock, NULL, MJTEX DRI VER, NULL);
rw_init(& sh_cblist_|ock, NULL RW DRI VER, "NULL) ;
list_create(& sh_cblist, si zeof (fsh_cal | back_i nt_t),

of fset of (fsh_cal | back_i nt _t, fshci_node));

of fset of (fsh_cal | back_int_t, fshci_next));
mut ex_i ni t (& sh_l ock, NULL, MJTEX DRI VER, NULL);
Iist_create(& sh_map,

fshi_global));

sizeof (fsh_int_t), offsetof(fsh_int_t,

/* See comment above fsh_fsrec_prepare() */
/* See comment above fsh_prepare_fsrec() */
fsh_res_ptr = (void *)-1;

fsh_idspace = id_space_create("fsh", 0, fsh_limt);

to the next hook or underlying

s client doesn’t have to worry about any | ocking.

vnode_t *vp, uio_t *uiop, int ioflag,

cred_t *cr, caller_context_t *ct)
int ret;
fsh_fsrecord_t *fsrecp = vp->v_vfsp->vfs_fshrecord;
/*
* The passed fshi is the previous hook (the one from which we’ve been
* called). W need to find the next one.
*/
rw enter(&fsrecp >f shf sr_| ock, RW READER);
for (fshi = list_next(& srecp->fshfsr_list, fshi); fshi != NULL;
fshi = list_next(& srecp->fshfsr_Tist, fshi)) {
if (fshi->fshi_hooks.read !=" NULL)
if (fshi_hol d(fShI))
br eak

rw_exit (& srecp->fshfsr_| ock);
if (fshi == NULL)

return ((*vp->v_op->vop_read)(vp, uiop, ioflag, cr, ct));

new usr/src/uts/comon/fs/fsh.c

967 ret = (*fshi->fshi_hooks.read)(fshi, fshi->fshi_hooks. arg,

968 vp, uiop, ioflag, cr, ct);

969 fshi_rele(fshi);

970 return (ret);

971 }

973 int

974 fsh_next_write(fsh_int_t *fshi, vnode_t *vp, uio_t *uiop, int ioflag,
975 cred_t *cr, caller_context_t *ct)

976 {

977 fsh_fsrecord_t *fsrecp = vp->v_vfsp->vfs_fshrecord;

978 int ret;

980 I*

981 * The passed fshi is the previous hook (the one from which we’ve been
982 * called). W need to find the next one.

983 */

984 rw enter(&fsrecp >f shf sr_| ock, RW READER);

985 for (fshi = list_next(&f srecp->fshfsr Ilst fshi); fshi != NULL;
986 fshi = list_next(& srecp->fshfsr _Tist, fshi)) {

987 if (fshi->fshi_hooks.wite !'= NULL)

988 if (fshi_hold(fshi))

989 br eak;

990 }

991 rw_exit (& srecp->fshfsr_|ock);

993 if (fshi == NULL)

994 return ((*vp->v_op->vop_wite)(vp, uiop, ioflag, cr, ct));
996 ret = (*fshi->fshi_hooks.wite)(fshi, fshi->fshi_hooks.arg,

997 vp, uiop, ioflag, cr, ct);

998 fshi_rel e(fshi);

999 return (ret);

1000 }

1002 int

1003 fsh_next_nount (fsh_int_t *fshi, vfs_t *vfsp, vnode_t *nvp, struct nmounta *uap,
1004 cred_t *cr)

1005 {

1006 fsh_fsrecord_t *fsrecp = vfsp->vfs_fshrecord;

1007 int ret;

1009 /*

1010 * The passed fshi is the previous hook (the one from which we’ve been
1011 * called). W need to find the next one.

1012 */

1013 rw enter(&fsrecp >f shf sr_| ock, RW READER);

1014 for (fshi = list_next(& srecp->fshfsr_list, fshi); fshi != NULL;
1015 fshi = list_next(& srecp->fshfsr_Tist, fshi)) {

1016 if (fshi->fshi_hooks.mount !'= NULL)

1017 if (fshi_hold(fshi))

1018 br eak;

1019

1020 rw_exit (& srecp->fshfsr_|ock);

1022 if (fshi == NULL)

1023 return ((*(vfsp->vfs_op->vfs_nount))(vfsp, nvp, uap, cr));
1025 ret = (*fshi->fshi_hooks. mount) (fshi, fshi->fshi_hooks. arg,

1026 vfsp, nvp, uap, cr);

1027 fshi_rele(fshi);

1028 return (ret);

1029 }

1031 int

20

new usr/src/uts/comon/fs/fsh.c

1032 fsh_next_unmount (fsh_int_t *fshi, vfs_t *vfsp, int flag, cred_t *cr)

1033 {
1034
1035

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

1050
1051

1053
1054
1055
1056
1117 }

fsh_fsrecord_t *fsrecp = vfsp->vfs_fshrecord;
int ret;

/*
* The passed fshi is the previous hook (the one from which we’ve been
* called). W need to find the next one.

*/
rw_ent er (&f srecp->fshfsr_| ock, RW READER);
for (fshi = list_next (& srecp->fshfsr_list, fshi); fshi != NULL;

fshi = list_next(& srecp->fshfsr_list, fshi)) {
if (fshi->fshi_hooks.unmount != NULL)
if (fshi_hold(fshi))
br eak;

}
rw_exit (& srecp->fshfsr_| ock);

if (fshi == NULL)
return ((*vfsp->vfs_op->vfs_unnount)(vfsp, flag, cr));

ret = (*fshi->fshi_hooks. unmount) (fshi, fshi->fshi_hooks. arg,
visp, flag, cr);

fshi_rele(fshi);

return (ret);

____unchanged_portion_onitted_

21

new usr/src/uts/comon/iolfsd/fsd.c

R R R R

25828 Mon Sep 9 17:14:59 2013
new usr/src/uts/comon/iolfsd/fsd.c
Update from fsd_sep3 webrev to fsd_sep9

L R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.

12 /*
13 * Copyright 2013 Dani an Bogel. Al rights reserved
14 */
16 /*
17 * Filesystem di sturber pseudo-device driver
18 */
20 #include <sys/conf.h>
21 #include <sys/ddi.h>
22 #include <sys/file.h>
23 #include <sys/fsd. h>
24 #include <sys/fsh. h>
25 #include <sys/knmem h>
26 #include <sys/ksynch. h>
27 #include <sys/list.h>
28 #include <sys/nkdev. h>
29 #include <sys/refstr.h>
30 #include <sys/stat. h>
31 #include <sys/sunddi.h>
32 #include <sys/sysnmacros. h>
33 #include <sys/types. h>
35 /*
36 * TODO
37 * - add checking if a file descriptor passed by the client is indeed
38 * a mountpoint (we'd like to avoid disturbing / instead of an
39 * unnmounted fil esystem
40 */
41 /*
42 * fsd - filesystem disturber
43 *
44 * 1. Abstract
45 * Filesystemdisturber is a pseudo-device driver used to inject pathol ogical
46 * behaviour into vfs calls. It is NOT a fuzzer. That kind of behaviour
47 * should be expected and correctly handl ed by software. A sinple exanple of
48 * such behaviour is read() reading less bytes than it was requested. It’'s
49 * well docunented and every read() caller should check the return val ue of
50 * this function before proceeding
51 *
52 * 2. Features
53 * * per-vfs injections
54 * * jnjection installing on every newy nounted vfs (that’s called an
55 * omi present di sturber)
56 *
57 * 3. Usage
58 * fsd_t is a structure which contains all the paranmeters for the disturbers
59 * This structure is shared by all hooks on a vfs_t
*
*

fsd_info_t is filled out by a call to ioctl() and it provides basic

new usr/src/uts/comon/iol/fsd/fsd.c 2
62 * information about fsd's current status
63 *
64 * fsd_dis_t is passed to ioctl() when a request to disturb a filesystemis
65 * made. It's just a descriptor of a representative file and an fsd_t structure
66 *
67 * fsd_fs_t is a structure filled out by ioctl() call when the client requests a
68 * full ITst of disturbers installed in the system
69 *
70 * fsd_ioc_t is an union for different ioctl() commands
71 *
72 * ioctl () conmmands
73 * FSD_ENABLE
74 * ioctl(fd, FSD_ENABLE);
75 * Enabl es the fsd. Wen fsd is enabled, any attenps to detach the driver
76 = will fail
77 *
78 * FSD_DI SABLE:
79 = ioctl(fd, FSD_DI SABLE);
80 * Di sabl es the fsd.
81 *
82 * FSD_GET_PARAM
83 * ioctl (fd, FSD GET_PARAM ioc);
84 * Cet’'s fsd_t associated with a given filesystem ioc is fsdioc_mt when
85 * passed to ioctl (). fsdioc_paramis the output.
86 * Errors:
87 * ENCENT - the filesystemis not being disturbed
88 *
89 * FSD_DI STURB:
90 * ioctl(fd, FSD_DI STURB, ioc)
91 = Installs a disturber on a given filesystem |f a disturber is already
92 * installed on this filesystem it overwites it. ioc is fsdioc_dis
93 * Errors:
94 = EAGAIN - hook limt exceeded
95 = EBADFD - cannot open the file descriptor
96 * EI NVAL - paraneters are invalid
97 *
98 * FSD_DI STURB_OFF:
99 * ioctl(fd, FSD_DI STURB_OFF, ioc)
100 * Renoves a disturber froma given filesystem ioc is fsdioc_mt
101 * Errors:
102 ~ EBADFD - cannot open the file descriptor
103 * ENCENT - the filesystemis not being disturbed
104 *
105 * FSD_DI STURB_OWN :
106 * ioctl (fd, FSD_DI STURB_OWNI, i oc)
107 * Install an ommi present disturber. It means that whenever a new vis_t is
108 * being created, this disturber is installed onit. If an omi present
109 * disturber is already installed, it overwites it. ioc is fsdioc_param
110 * Errors:
111 * EI NVAL - paraneters are invalid
112 *
113 * FSD DI STURB_OWN _OFF:
114 * ioctl (fd, FSD_DI STURB_OWNI _OFF);
115 * Renoves the omi present disturber. That does NOT mean that fil esystens
116 * whi ch are di sturbed because of the omnipresent disturber presence in the
117 * past are going to stop being disturbed after this call
118 *
119 * FSD GET_LI ST
120 * ioctl(fd, FSD GET_LIST, ioc)
121 * CGet’'s a full list of disturbers installed in the system ioc is
122 * fsdioc_list here. This is a structure with two fields, count and listp
123 * The count is the nunber of fsd_fs_t's allocated on the address that
124 * listp is pointing to. There would be at npst count fsd_fs_t entries
125 = copied out to the caller. Also, count is set to the nunber of entries
126 * copi ed out.
127 *

new usr/src/uts/comon/iolfsd/fsd.c 3

128 * FSD_GET_I NFO

129 * |oct|(fd FSD_GET_I NFO, ioc);

130 * Get's current information about fsd. ioc is fsdioc_info here.

131 *

132 * At nost one hook is installed per vfs_t, and fsd_t describes all possible
133 * disturbance nethods. Multiple commands using the fsd shoul d sonehow cooperate
134 * in order not to destroy each other efforts in installing disturbers.

135 *

136 * 4. Internals

137 * \When fsd_enabled is nonzero, fsd_detach() fails.

138 *

139 * These mount callback is used for installing injections on newly nounted

140 * vfs_t's (omipresent). The free callback is used for cleaning up.

140 * vfs_t’'s (ommipresent).

141 *

142 * The list of currently installed hooks is kept in fsd_list.

143 *

144 * fsd installs at nost one hook on a vfs_t.

145 *

146 * Inside fsd_detach, we go through fsd_hooks list. There is no guarantee that
147 * a hook renove cal |l back (fsd_renpve_cb) woul dn't execute inside

148 * fsh_hook_renove(), thus we can't assume that while wal king through fsd_hooks,
149 * our iterator will be valid, because fsh_hook_renove() could invalidate it.
150 * That’'s why fsd_detaching flag is introduced.

151 *

152 * 5. Locking

153 * Every nodification of fsd_enable, fsd_hooks, fsd_omi_paramand fsd_list is
154 * protected by fsd_l ock.

155 *

156 * Hooks use only the elements of fsd_list, nothing else. Before an el ement of
157 * fsd_list is destroyed, a hook which uses it is renoved. Elenents from

158 * fsd_lists are renoved and destroyed in the hook renove cal | back

159 * (fsd_renove_ch).

160 *

161 * Because of the fact that fsd_renmove_cb() could be called both in the context
162 * of the thread that executes fsh_hook_renove() or outside the fsd, we need to
163 * use fsd_remthread in order not to cause a deadl ock. fsh_hook_renove() coul d
164 * be called by at nost one thread inside fsd (fsd_disturber_renove() holds
164 * be called by at nost one thread inside fsd (fsd_renopve_disturber() holds
165 * fsd_lock). We just have to check inside fsd_renpve_cb() if it was called
166 * from fsh_hook_renmove() or not. We use fsd_remthread to determ ne that.

167 *

168 * fsd_int_t.fsdi_paramis protected by fsd_int_t.fsdi_lock which is an rw ock.
169 */

171 /*

172 * Once a set of hooks is installed on a filesystem there’'s no need

173 * to bother fsh if we want to change the paraneters of disturbance.

174 * Intead, we use fsd_|lock to protect the fsd_int_t when it’s being

175 * used or changed.

176 */

177 typedef struct fsd_int

178 krw ock_t f sdi _I ock; /* protects fsd_param */

179 fsd_t fsdi _param

180 fsh_handl e_t fsdi _handl e; /* we use fsh's handle in fsd */

181 vis_t *fsdi _vfsp;

182 int f sdi _doon®d;

183 list_node_t f sdi _node;

183 list_node_t f sdi _next;

184 } fsd_int_t;
__unchanged_| port| on_omtted_

229 /* vnode hooks */
230 /*

231
232

*
*

A pointer to a glven fsd_int_t
call, because it’s valid until

is valid always inside fsh_hook_xxx()
the hooks associated with it are renpved.

new usr/src/uts/comon/iolfsd/fsd.c

233
234
235
236
237
235
236
237
238
239
240
241

243
244
240

246
247
248
249
244
245
250
251
252
253
248
249
254
255

257
253

259
260
257
258
259
261

262
263
264
265
266
265

268
269
270
271

273
267
274
275
276
277
278
279
280
269
270

* |f a hook is renoved,
*/
static void
fsd_hook_pre_read(void *arg, void **instancep, vnode_t **vpp,
int *ioflagp, cred_t **crp, caller_context_t **ctp)
static int
fsd_hook_read(fsh_int_t *fshi,
(int ioflag, cred_t *cr,

it cannot be executing.

ui o_t **ui opp,

void *arg,
cal | er _context _t

vnode_t *vp,
*ct)

ui o_t *uiop,

_NOTE(ARGUNUSED(i of | agp)) ;
_NOTE(ARGUNUSED(cr p)) ;
_NOTE(ARGUNUSED(ct p)) ;

fsd_int_t *fsdi = (fsd_int_t *)arg;
uint64_t |ess_chance;
uint64_t count, less, |ess_chance;
/
It is used to keep an odd nunber of fsd_rand() calls in every
fsd_hook_pre_read() call. That is desired because when a range of
width 2 i's set as a paranmeter, we don't want to make it a constant.
fsd_hook_read() call. That is desired because when a range of width
2 is set as a paraneter, we don’t want to nake it a constant.

The pseudo-random number generator returns a nunber with different
parity with every call. If this function is called in every
fsd_hook_pre_read() execution even nunber of tinmes, it would al ways
be the sane % 2.

fsd_hook_read() execution even nunber of tines,
the same % 2.

* ok ok k% ok % ok kb F ok

it would al ways be
*/
(void) fsd_rand();

ASSERT((*vpp) ->v_vfsp == fsdi->fsdi
ASSERT(vp->v_vfsp == fsdi->fsdi

_vfsp);
_vfsp);

rw enter(&fsdi >f sdi _| ock, RW READER);
| ess chance = fsdi->fsdi _paramread_| Iess chance;
less = (uint64_t)fsd_rand() %
(fsdi->fsdi _paramread_less_r[1] + 1 -
fsdi->fsdi _paramread_less_r[0]) + fsdi-
rw_exit (& sdi ->f sdi _I ock);

>fsdi _paramread_l ess_r[0];

count = ui op->ui o_i ov->i ov_| en;

if ((uint64 t)fsd rand() % 100 < | ess_chance) {
extern size_t copyout_nax_cached;
uintéd t r[2];
uint64_t count,
int ret;

| ess;

nt = (*ui opp)->ui o_i ov->i ov_| en;
fsdi->fsdi _paramread_|l ess_r[0];
fsdi ->f sdi _param read_| ess r[l],
(uint64_t)fsd_rand() % (r[1] + 1 -

0 —
nnn

r[o]) + rf[oj;

count > less) {
count > | ess)
count -= | ess;
*instancep = kmem al | oc(sizeof (uint64_t),
((uint64_t **)instancep) = |ess;
} else {
*instancep =
return;

—
—~

KM _SLEEP) ;

NULL;

el se
|l ess = 0;

new usr/src/uts/comon/iolfsd/fsd.c

282 (*ui opp) ->ui o_i ov->i ov_l en = count;

283 (*ui opp)->uio_resid = count;

272 ui op->ui o_i ov->i ov_l en = count;

273 ui op->uio_resid = count;

284 if (count <= copyout_nmax cached)

285 (*uiopp)->uio_extflg = U O COPY_CACHED,
275 ui op->ui o_extflg = U O COPY_CACHED;

286 el se

287 (*ui opp)->uio_extflg = U O COPY_DEFAULT;
288 } else {

289 *instancep = NULL;

290 }

291 }

277 ui op->ui o_extflg = U O _COPY_DEFAULT;

293 static int
294 fsd_hook_post _read(int ret, void *arg, void *instance, vnode_t *vp,

295 uro_t *uiop, int oflag, cred_t *cr, caller_context_t *ct)
296 {

297 _NOTE(ARGUNUSED(ar g)) ;

298 _NOTE(ARGUNUSED(vp)) ;

299 _NOTE(ARGUNUSED(of | ag))

300 _NOTE(ARGUNUSED(cr)) ;

301 _NOTE(ARGUNUSED(ct)) ;

303 if (instance !'= NULL) {

304 uint64_t *lessp = inst ance;

305 ui op->ui o_resid += *l essp

306 kmem free(l essp, sizeof (| essp));

307 }

279 ret = fsh_next_read(fshi, vp, uiop, ioflag, cr, ct);
280 ui op->uio_resid += | ess;

308 return (ret);

282 }

284 return (fsh_next_read(fshi, vp, uiop, ioflag, cr, ct));
309 }

311 static void
312 fsd_renove_cb(void *arg, fsh_handle_t handl e)

313 {

314 _NOTE(ARGUNUSED(handl e)) ;

316 fsd_int_t *fsdi = (fsd_int_t *)arg;
317 int fsd_context;

319 mut ex_ent er(&fsd rem thread Iock)

320 fsd_context = fsd_remthread == curthread
321 mut ex_exi t (& sd_rem t hread_| ock) ;

323 if (!fsd_context)

324 nmut ex_ent er (&f sd_| ock) ;

326 ASSERT(MUTEX_HELD(&f sd_| ock)) ;

328 if (!fsd_detaching)

329 list_remove(& sd_list, fsdi);
331 rw_destroy(&f sdi - >fsdi _| ock);

332 kmem free(fsdi, sizeof (*fsdi));

334 fsd_list_count--;

335 if (fsd_Tist count == 0)

336 cv_signal (& sd_cv_enpty);

new usr/src/uts/comon/iolfsd/fsd.c

338 if (!fsd_context)

339 mut ex_exi t (& sd_I ock);

340 }

342 | *

343 * Installs a set of hook with given paraneters on a vfs_t.
344 *

345 * It is expected that fsd_lock is being held.

346 *

347 * Returns 0 on success and non-zero if hook limt exceeded.
348 */

349 static int

350 fsd_disturber_install(vfs_t *vfsp, fsd_t *fsd)

327 fsd_install _disturber(vfs_t *vfsp, fsd_t *fsd)

351 {

352 fsd_int_t *fsdi;

354 ASSERT(MUTEX_HELD(&f sd_| ock)) ;

356 for (fsdi = list_head(& sd_list); fsdi != NULL;

357 fsdi = list_next(& sd_list, fsdi)) {

358 if (fsdi->fsdi_vfsp == vfsp)

359 break;

360 }

362 if (fsdi !'= NULL) {

363 /* Just change the existing fsd_int_t */
364 rw_enter (& sdi - >fsdi _| ock, RWWRI TER);

365 (voi d) nmencpy(&f sdi->fsdi _param fsd,

366 si zeof (fsdi->fsdi_paran));

367 rw_exit (& sdi->fsdi_Il ock);

368 } else {

369 fsh_t hook = { 0 };

371 fsdi = knem zal | oc(sizeof (*fsdi), KM SLEEP);
372 fsdi->fsdi _vfsp = vfsp;

373 (void) mencpy(&f sdi->fsdi _param fsd,

374 si zeof (fsdi->fsdi_param);

375 rw_init(& sdi->fsdi_lock, NULL, RWDRI VER, NULL);
377 hook.arg = fsdi;

378 hook. pre_read = fsd_hook_pre_read;

379 hook. post _read = fsd_hook_post _read;

355 hook.read = fsd_hook_read;

380 hook. renove_cb = fsd_renove_cb;

382 /*

383 * |t is safe to do so, because none of the hooks installed
384 * by fsd uses fsdi_handle nor the fsd_list.
385 */

386 fsdi ->f sdi _handl e = fsh_hook_i nstal | (vfsp, &hook);
387 if (fsdi->fsdi_handle == -1) {

388 kmem free(fsdi, sizeof (*fsdi));

389 rw_destroy(&f sdi->fsdi_| ock);

390 return (-1);

391 }

392 list_insert_head(& sd_list, fsdi);

393 fsd_list_count++;

394 }

395 return (0);

396 }

398 static int

399 fsd_disturber_renmove(vfs_t *vfsp)
375 fsd_renove_disturber(vfs_t *vfsp)
400 {

new usr/src/uts/comon/iolfsd/fsd.c

401
403

405
406
407
408
409
410
411

413

415
416
417

419

421
422
423

425
426

428
429
405
430
431

433

435
436
437
413
438

440
441

443
444
445
446
447
448

450
451
452
453
454
455
456
457
458
459
460

462
464

}

fsd_int_t *fsdi;
ASSERT(MUTEX_HELD(& sd_| ock)) ;

(fsdi = list_head(& sd_list); fsdi != NULL;
fsdi = Ilst_next(&fsd_l ist, fsdi)) {
if (fsdi->fsdi_vfsp == vfsp)
br eak;
}
if (fsdi == NULL || fsdi->fsdi_dooned)

return (ENCENT);
fsdi - >f sdi _dooned = 1;
mut ex_enter (& sd_rem t hread_I ock) ;
fsd_remthread = curthread;
mut ex_exi t (& sd_rem t hread_| ock) ;
ASSERT(f sh_hook_r enove(fsdi ->fsdi _handl e) == 0);
mut ex_ent er (& sd_rem t hread_| ock) ;
fsd_remthread = NULL;
mut ex_exi t (& sd_| remthread _l ock);

return (0);

static void
fsd_nount _cal | back(vfs_t *vfsp, void *arg)
fsd_cal | back_rount (vfs_t *vfsp, void *arg)

{

Al though, we might delete the fsd_free_callback(),
proces less clear. There's a tinme w ndow between firing free call backs and
freeing the vfs_t in fsd_disturber_renpve() could be called. fsh can

_ NOTE(ARGUNUSED(ar g)) ;
int error = 0;

mut ex_ent er (&f sd_I ock) ;
if (fsd_omi paramI NULL)
error = fsd_disturber_install(vfsp, fsd_omi_param;
error = fsd_install _disturber(vfsp, fsd_omi _param;
mut ex_exi t (&f sd_I ock);

if (error 1= 0)

refstr_t *mtref;

mtref = vfs_getmtpoint(vfsp);

(void) cnmm_err(CE_NOTE, "Installing disturber for % failed. \n",

refstr_value(mtref));
refstr_rele(mtref);

it would nmake the whole

wth invalid handles (until there is no collision), but we'd like to

have a nice assertion instead.

tic void
_free_cal | back(vfs_t *vfsp, void *arg)

_NOTE(ARGUNUSED(ar g)) ;
fsd_int_t *fsdi;

mut ex_ent er (&f sd_I ock) ;

new usr/src/uts/comon/iolfsd/fsd.c

465
466
467
468
469

471
472
473
474
475
476
477
478
479
480

482

484
485
486

488
489
490
491
492
493
494
495
496
497
498
499
500
501 }

(fsdi = list_head(& sd_list); fsdi != NULL;
fsdi = Ilst_next(&fsd_l ist, fsdi)) {
if (fsdi->fsdi_vfsp == vfsp) {
if (fsdi->fsdi_dooned)
conti nue;
f sdi - >f sdi _dooned =
/*
* We nmeke such assertion, because fsd_lock is held
* and that means that neither fsd_disturber _remove()
* nor fsd_renove_cb() has renmpved this hook in
* different thread.
*/
mut ex_ent er (& sd_rem t hread_| ock) ;
fsd_remthread = curthread;
mut ex_exi t (& sd_rem t hread_l| ock) ;
ASSERT(f sh_hook_r enove(fsdi ->fsdi _handle) == 0);
nut ex enter(&fsd remthread_| ock);
fsd_remthread = NULL;
mut ex_exi t (& sd_rem thread_| ock) ;
/*
* Since there is at nost one hook installed by fsd,
* we break.
*/
br eak;
}
}
/*
* W can't wite ASSERT(fsdi != NULL) because it is possible that
* there was a concurrent call to fsd_disturber_renove() or
* fsd_detach().
*
/

mut ex_exi t (& sd_I ock);

503 static void
504 fsd_enabl e()

505 {
506
507
508
509 }

mut ex_ent er (& sd_| ock) ;
fsd_enabled = 1;
mut ex_exi t (& sd_I ock);

__unchanged_portion_omtted_

520 /* Entry points */
521 static int
522 fsd_attach(dev_info_t *dip, ddi_attach_cnd_t cnd)

523 {
524
525

527
528

530
531

533
534
535
536
537

m nor_t instance;
fsh_call back_t cb = { 0 };

if (cmd !'= DDl _ATTACH)
return (DDl _FAILURE);

if (fsd_devi != NULL)
return (DDl _FAI LURE);

instance = ddi _get_instance(dip);
if (ddi _create_m nor_node(dip, "fsd", S |FCHR instance,
DDI _PSEUDC, 0) == DDI _FAI LURE)
return (DDl _FAI LURE);
fsd_devi = dip;

new usr/src/uts/comon/iolfsd/fsd.c

538

540
541
464

543

545
546
547

549
550
472
551
552
553
554
555
556
557
558
559
560
561
562

564
565

567
568
569
570
571
572 f
573
574

576
577

579

581
582
583
584
585
586

588
589

591
592
593
594
595
596
597
598
599
600
601

}
!

*
*
*
*/
st

S

ddi _report_dev(fsd_devi);

list_create(& sd_list, sizeof (fsd_int_t),
of fsetof (fsd_int_t, fsdi_node));
of fsetof (fsd_int_t, fsdi_next));
fsd_rand_seed = gethrtime();
mut ex_i ni t (& sd_l ock, NULL, MJTEX DRI VER, NULL);
mutex_init(&f sd_| remthread I ock, NULL, MUTEX_ DRI VER, NULL);
cv_init(& sd_cv_enpty, NULL, CV DRI VER NULLY;

cb. fshc_nmount = fsd_nount _cal | back;
chb.fshc_free = fsd_free_cal | back;
ch. fshc rmunt = fsd_call back nount ;
cb. fshc_arg fsd omi _par a
fsd_cbh_handle = fsh_cal I back instal | (&cb);
if (fsd_cb_handle == -1) {
/*7C eanup */
list_destroy(& sd_list);
cv_destroy(& sd_cv_enpt y)
mut ex_dest roy(&f sd_| rem t hread _l ock);
mut ex_dest roy(&f sd_ I ock);
ddi _renove_m nor node(fsd devi, NULL);
fsd_devi = NULL;
return (DDl _FAI LURE);

}
return (DDl _SUCCESS);
If fsd_enable() was called and there was no subsequent fsd_disable() call,
detach will fail.
at| cint
d_detach(dev_info_t *dip, ddi_detach_cnd_t cnd)

fsd_int_t *fsdi;

if (cmd !'= DDl _DETACH)
return (DDl _FAI LURE);

ASSERT(di p == fsd_devi);

/*

* No need to hold fsd_|l ock here. Since only the hooks and cal | backs

* mght be running at this point.

*

if (fsd_enabl ed)
return (DDl _FAI LURE);

ddi _renove_ mnor _node(di p, NULL);
fsd_devi = NULL

/
1. Renpve the hooks.
2. Remove the call backs.

This order has to be preserved, because of the fact that
fsd _free_callback() is the |last stop before a vfs_t is destroyed.
Wthout it, this mght happen:
vis_free() fsd_detach()
1. Handl e for the hook is
i nval i dat ed.
2. Fired fsd_renove_ch().

* Ok ok ok k ok k ok F ok 3k

new usr/src/uts/comon/iol/fsd/fsd.c 10
602 * 3. fsd_renmove_cb() hasn’'t yet fsd_lock is acquired.

603 * acquired the fsd_| ock.

604 * 4 Waiting for fsd_lock. That ASSERT(f sh_hook_renove(..) == 0);
605 * neans that the hook hasn’t failed, because the handle is
606 * been renpved from fsd_hooks al ready invalid.

607 * fsd_hooks yet.

608 *

609 * The ASSERT() here is nice and without a good reason, we don’t want
610 * to get rid of it.

611 */

612 mut ex_ent er (&f sd_I ock) ;

613 /*

614 * After we set fsd_detaching to 1, hook renpve call back (fsd_renpve_ch)
615 * won't try to renpve entries fromfsd_list.

616 */

617 fsd_detaching = 1;

618 while ((fsdi = list_renove_head(& sd_list)) !'= NULL) {

515 while ((fsdi = list_renmove_head(& sd_list)) !'= NULL)

619 if (fsdi->fsdi_doomed == 0) {

620 f sdi - >f sdi _dooned =

622 nmut ex_ent er (& sd_rem t hread_| ock);

623 fsd_remthread = curthread;

624 nut ex_exi t (& sd_rem t hread_| ock) ;

626 /*

627 * fsd_lock is held, so no other thread coul d have
628 * renoved this hook.

629 *

630 ASSERT(f sh_hook_r enpve(fsdi->fsdi _handl e) == 0);

632 mut ex_ent er(&fsd rem t hread_| ock) ;

633 fsd_remthread = NULL

634 mut ex_exi t (& sd_ remthread _| ock);

635 }

636 1

638 while (fsd_list_count > 0)

639 cv_wait (& sd_cv_enpty, &f sd_lock);

640 mut ex_exi t (& sd_| ock);

641 cv_destroy(& sd_cv_enpty);

643 ASSERT(f sh_cal | back_r enmove(fsd_cb_handl e) == 0);

644 if (fsd_omi_param!= NULL)

645 kmem free(fsd_omi _param sizeof (*fsd_omi _paran));

646 fsd_omi _param = NULL;

647 }

649 /* After renoving the callback and hooks, it is safe to renove these */
650 list_destroy(& sd_list);

651 mut ex_destroy(& sd_rem thread_| ock);

652 mut ex_dest roy(&f sd_I ock) ;

654 return (DDl _SUCCESS);

655 }

__unchanged_portion_onitted_

716 static int
717 fsd_ioctl_disturb(fsd_ioc_t *ioc, int node, int *rvalp)

718 {
719
720
721

723
724

file_t *file;
fsd_dis_t dis;
int rv;

if (ddi _copyin(& oc->fsdioc_dis, &dIis, sizeof (dis), node))
return (EFAULT);

new usr/src/uts/comon/iolfsd/fsd.c

726 if ((rv = fsd_check_paran(&dis.fsdd_paranm)) != 0) {
727 *rvalp = rv;

728 return (0);

729 }

731 if ((file = getf((int)dis.fsdd_mt)) == NULL) {

732 *rval p = EBADFD;

733 return (0);

734 }

736 mut ex_ent er (&f sd_I ock) ;

737 rv = fsd_disturber_install (file->f_vnode->v_vfsp, &dis.fsdd_paran);
633 rv = fsd_install _disturber(file->f_vnode->v_vfsp, &dis.fsdd_param;
738 mut ex_exi t (&f sd_I ock);

740 rel easef ((int)dis.fsdd_mt);

742 if (rv 1=0)

743 *rval p = EAGAI N,

744 el se

745 *rvalp = 0;

747 return (0);

748 }

____unchanged_portion_onitted_

875 static int

876 fsd_ioctl_disturb_off(fsd_ioc_t *ioc, int nmode, int *rvalp)
877 {

878 file_t *file;

879 int64d t fd;

881 if (ddi _copyin(& oc->fsdioc_mt, &fd, sizeof (fd), node))
882 return (EFAULT);

884 if ((file = getf((int)fd)) == NULL) {

885 *rval p = EBADFD;

886 return (0);

887 1

889 mut ex_ent er (& sd_| ock) ;

890 *rval p = fsd_disturber_renove(file->f_vnode->v_vfsp);
786 *rval p = fsd_renove_di sturber(file->f_vnode->v_vfsp);
891 rel easef ((int)fd);

892 mut ex_exi t (& sd_I ock);

894 return (0);

895 }

____unchanged_portion_onmitted_

923 static int

924 fsd_ioctl(dev_t dev, int cnd, intptr_t arg, int node,
925 int *rval p)

926 {

927 _ NOTE(ARGUNUSED(dev)) ;

928 _NOTE(ARGUNUSED(cr edp)) ;

930 int enabl ed;

932 mut ex_ent er (&f sd_I ock) ;

933 enabl ed = fsd_enabl ed;

934 mut ex_exi t (&f sd_| ock) ;

936 if (!enabled & cnd ! = FSD_ENABLE) {

cred_t *credp,

11

new usr/src/uts/comon/iol/fsd/fsd.c
826 if (!fsd_enabled & cnd != FSD _ENABLE) {
937 *rval p = ENOTACTI VE;
938 return (0);
939 }
941 switch (cnd) {
942 case FSD_ENABLE:
943 fsd_enabl e();
944 *rvalp = 0;
945 return (0);
947 case FSD_DI SABLE:
948 fsd_disabl e();
949 *rvalp = O;
950 return (0);
952 case FSD_GET_PARAM
953 return (fsd_ioctl_get_paran((fsd_ioc_t *)arg, node, rvalp));
955 case FSD_DI STURB:
956 return (fsd_ioctl_disturb((fsd_ioc_t *)arg, node, rvalp));
958 case FSD DI STURB_OFF:
959 return (fsd_ioctl_disturb_off((fsd_ioc_t *)arg, node, rvalp));
961 case FSD_DI STURB_OW :
962 return (fsd_ioctl_disturb_omi((fsd_ioc_t *)arg, node, rvalp))
964 case FSD_DI STURB_OWNI _OFF:
965 nmut ex_ent er (&f sd_| ock);
966 if (fsd_omi_param ! = NULL)
967 kmem free(fsd_omi_param sizeof (*fsd_omi_param);
968 fsd_omi _param = NULL;
969 mut ex_exi t (& sd_I ock);
971 *rvalp = 0;
972 return (0);
974 case FSD_CET_LI ST:
975 return (fsd_ioctl_get_list((fsd_ioc_t *)arg, node, rvalp));
977 case FSD_GET_I NFO
978 return (fsd_ioctl_get_info((fsd_ioc_t *)arg, node, rvalp));
980 defaul t:
981 return (ENOTTY);
982 }
983 }

____unchanged_portion_onitted_

12

new usr/src/uts/comon/sys/fsh.h

R R R R

2022 Mon Sep 9 17:14:59 2013
new usr/src/uts/comon/sys/fsh.h
Update from fsd_sep3 webrev to fsd_sep9

L R R R R

This file and its contents are supplied under the terms of the
Common Devel opnent and Distribution License ("CDDL"), version 1.0.
You may only use this file in accordance with the terns of version
1.0 of the CDDL.

A full copy of the text of the CDDL shoul d have acconpanied this
source. A copy of the CDDL is also available via the Internet at
http://ww.illunos.org/license/ CDDL.
/
12 /*
13 * Copyright 2013 Damian Bogel. Al rights reserved.
14 */
16 #ifndef _FSH H
17 #define _FSH H
19 #include <sys/id_space. h>
20 #include <sys/types. h>
21 #include <sys/vfs.h>
22 #include <sys/vnode. h>
24 #ifdef __cplusplus
25 extern "C' {
26 #endif
28 typedef id_t fsh_handle_t;
29 typedef id_t fsh_call back_handle_t;
31 struct fsh_int;
32 typedef struct fsh_int fsh_int_t;
31 typedef struct fsh {
32 void *a
33 voi d (*rem)ve cb)(void *, fsh_handle_t);
35 /* vnode */
36 void (*pre_read)(void *, void **, vnode_t **, uio_t **, int *,
37 cred_t **, caller_context_t **);
38 int (*post_read)(int, void *, void *, vnode_t *, uio_t *, int, cred_t
39 int (*read)(fsh_int_t *, void *, vnode t *, uio_t *,int, cred_t *,
39 caller_context_t *);
40 void (*pre_wite)(void *, void **, vnode_t **, uio_t **, int *,
41 cred_t **, caller_context_t **);
42 int (*post_wite)(int, void *, void *, vnode_t *, uio_t *, int,
43 cred t *, caller context_t *);
41 int (*wite)(fsh_int_t *7 void *, vnode_t *, uio_t *, int, cred_t *,
42 cal l er_context_t *);
45 /* vfs */
46 void (*pre_nmount)(void *, void **, vfs_t ** vnode_t **,
47 struct mounta **, cred_t **);
48 int (*post_mount)(int, void *, void *, vfs_t *, vnode_t *,
49 struct nmounta *, cred t *);
50 voi d (*pre_unnount)(void *, void **, vis_t ** int *, cred_t **);
51 int (*post_unmount)(int, void *, void *, vfs_t *, int, cred_t *);
45 int (*mount)(fsh_int_t *, void *, vfs_t *, vnode_t *, struct nounta *,
46 cred_t *);
a7 int (*unmount) (fsh_int_t *, void *, vfs_t *, int, cred_t *);
52 } fsh_t;

__unchanged_portion_omtted_

*
’

new usr/ src/ uts/ comon/sys/fsh. h

60 /* APl */

61 extern fsh_handl e_t fsh_hook_install(vfs_t *, fsh_t *);

62 extern int fsh_hook_renmove(fsh_handle_t);

64 extern fsh_call back_handl e_t fsh_call back_install (fsh_callback_t *);
65 extern int fsh_cal | back_renove(fsh_cal | back_handl e_t);

67 extern void fsh_fs_enable(vfs_t *);

68 extern void fsh_fs_disable(vfs_t *);

66 /* fsh control passing */

67 extern int fsh_next_read(fsh_int_t *, vnode_t *, uio_t *, int, cred_t
68 caller_context_t *);

69 extern int fsh_next wite(fsh_int_t *, vnode_t *, uio_t *, int, cred_t
70 caller_context_t *);

72 extern int fsh_next_nount(fsh_int_t *, vfs_t *, vnode_t *,

73 cred_t *);

74 extern int fsh_next unm)unt(fsh int_t *, vfs_t *, int, cred_t *);

70 #ifdef __cplusplus

71

__unchanged_portion_onitted_

*
,

*
f

struct nounta *uap,

