1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 28 /* 29 * University Copyright- Copyright (c) 1982, 1986, 1988 30 * The Regents of the University of California 31 * All Rights Reserved 32 * 33 * University Acknowledgment- Portions of this document are derived from 34 * software developed by the University of California, Berkeley, and its 35 * contributors. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/t_lock.h> 40 #include <sys/param.h> 41 #include <sys/errno.h> 42 #include <sys/user.h> 43 #include <sys/fstyp.h> 44 #include <sys/kmem.h> 45 #include <sys/systm.h> 46 #include <sys/proc.h> 47 #include <sys/mount.h> 48 #include <sys/vfs.h> 49 #include <sys/vfs_opreg.h> 50 #include <sys/fem.h> 51 #include <sys/mntent.h> 52 #include <sys/stat.h> 53 #include <sys/statvfs.h> 54 #include <sys/statfs.h> 55 #include <sys/cred.h> 56 #include <sys/vnode.h> 57 #include <sys/rwstlock.h> 58 #include <sys/dnlc.h> 59 #include <sys/file.h> 60 #include <sys/time.h> 61 #include <sys/atomic.h> 62 #include <sys/cmn_err.h> 63 #include <sys/buf.h> 64 #include <sys/swap.h> 65 #include <sys/debug.h> 66 #include <sys/vnode.h> 67 #include <sys/modctl.h> 68 #include <sys/ddi.h> 69 #include <sys/pathname.h> 70 #include <sys/bootconf.h> 71 #include <sys/dumphdr.h> 72 #include <sys/dc_ki.h> 73 #include <sys/poll.h> 74 #include <sys/sunddi.h> 75 #include <sys/sysmacros.h> 76 #include <sys/zone.h> 77 #include <sys/policy.h> 78 #include <sys/ctfs.h> 79 #include <sys/objfs.h> 80 #include <sys/console.h> 81 #include <sys/reboot.h> 82 #include <sys/attr.h> 83 #include <sys/zio.h> 84 #include <sys/spa.h> 85 #include <sys/lofi.h> 86 #include <sys/bootprops.h> 87 #include <sys/fsh.h> 88 #include <sys/fsh_impl.h> 89 90 #include <vm/page.h> 91 92 #include <fs/fs_subr.h> 93 /* Private interfaces to create vopstats-related data structures */ 94 extern void initialize_vopstats(vopstats_t *); 95 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 96 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 97 98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 99 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 100 const char *, int, int); 101 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 102 static void vfs_freemnttab(struct vfs *); 103 static void vfs_freeopt(mntopt_t *); 104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 107 static void vfs_createopttbl_extend(mntopts_t *, const char *, 108 const mntopts_t *); 109 static char **vfs_copycancelopt_extend(char **const, int); 110 static void vfs_freecancelopt(char **); 111 static void getrootfs(char **, char **); 112 static int getmacpath(dev_info_t *, void *); 113 static void vfs_mnttabvp_setup(void); 114 115 struct ipmnt { 116 struct ipmnt *mip_next; 117 dev_t mip_dev; 118 struct vfs *mip_vfsp; 119 }; 120 121 static kmutex_t vfs_miplist_mutex; 122 static struct ipmnt *vfs_miplist = NULL; 123 static struct ipmnt *vfs_miplist_end = NULL; 124 125 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 126 127 /* 128 * VFS global data. 129 */ 130 vnode_t *rootdir; /* pointer to root inode vnode. */ 131 vnode_t *devicesdir; /* pointer to inode of devices root */ 132 vnode_t *devdir; /* pointer to inode of dev root */ 133 134 char *server_rootpath; /* root path for diskless clients */ 135 char *server_hostname; /* hostname of diskless server */ 136 137 static struct vfs root; 138 static struct vfs devices; 139 static struct vfs dev; 140 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 141 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 142 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 143 /* must be power of 2! */ 144 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 145 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 146 char *vfs_dummyfstype = "\0"; 147 struct pollhead vfs_pollhd; /* for mnttab pollers */ 148 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 149 int mntfstype; /* will be set once mnt fs is mounted */ 150 151 /* 152 * Table for generic options recognized in the VFS layer and acted 153 * on at this level before parsing file system specific options. 154 * The nosuid option is stronger than any of the devices and setuid 155 * options, so those are canceled when nosuid is seen. 156 * 157 * All options which are added here need to be added to the 158 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 159 */ 160 /* 161 * VFS Mount options table 162 */ 163 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 164 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 165 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 166 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 167 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 168 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 169 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 170 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 171 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 172 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 173 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 174 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 175 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 176 177 static const mntopt_t mntopts[] = { 178 /* 179 * option name cancel options default arg flags 180 */ 181 { MNTOPT_REMOUNT, NULL, NULL, 182 MO_NODISPLAY, (void *)0 }, 183 { MNTOPT_RO, ro_cancel, NULL, 0, 184 (void *)0 }, 185 { MNTOPT_RW, rw_cancel, NULL, 0, 186 (void *)0 }, 187 { MNTOPT_SUID, suid_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_EXEC, exec_cancel, NULL, 0, 204 (void *)0 }, 205 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 206 (void *)0 }, 207 }; 208 209 const mntopts_t vfs_mntopts = { 210 sizeof (mntopts) / sizeof (mntopt_t), 211 (mntopt_t *)&mntopts[0] 212 }; 213 214 /* 215 * File system operation dispatch functions. 216 */ 217 218 int 219 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 220 { 221 return (fsh_mount(vfsp, mvp, uap, cr)); 222 } 223 224 int 225 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 226 { 227 return (fsh_unmount(vfsp, flag, cr)); 228 } 229 230 int 231 fsop_root(vfs_t *vfsp, vnode_t **vpp) 232 { 233 refstr_t *mntpt; 234 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 235 /* 236 * Make sure this root has a path. With lofs, it is possible to have 237 * a NULL mountpoint. 238 */ 239 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 240 mntpt = vfs_getmntpoint(vfsp); 241 vn_setpath_str(*vpp, refstr_value(mntpt), 242 strlen(refstr_value(mntpt))); 243 refstr_rele(mntpt); 244 } 245 246 return (ret); 247 } 248 249 int 250 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 251 { 252 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 253 } 254 255 int 256 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 257 { 258 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 259 } 260 261 int 262 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 263 { 264 /* 265 * In order to handle system attribute fids in a manner 266 * transparent to the underlying fs, we embed the fid for 267 * the sysattr parent object in the sysattr fid and tack on 268 * some extra bytes that only the sysattr layer knows about. 269 * 270 * This guarantees that sysattr fids are larger than other fids 271 * for this vfs. If the vfs supports the sysattr view interface 272 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 273 * collision with XATTR_FIDSZ. 274 */ 275 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 276 fidp->fid_len == XATTR_FIDSZ) 277 return (xattr_dir_vget(vfsp, vpp, fidp)); 278 279 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 280 } 281 282 int 283 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 284 { 285 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 286 } 287 288 void 289 fsop_freefs(vfs_t *vfsp) 290 { 291 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 292 } 293 294 int 295 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 296 { 297 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 298 } 299 300 int 301 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 302 { 303 ASSERT((fstype >= 0) && (fstype < nfstype)); 304 305 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 306 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 307 else 308 return (ENOTSUP); 309 } 310 311 /* 312 * File system initialization. vfs_setfsops() must be called from a file 313 * system's init routine. 314 */ 315 316 static int 317 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 318 int *unused_ops) 319 { 320 static const fs_operation_trans_def_t vfs_ops_table[] = { 321 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 322 fs_nosys, fs_nosys, 323 324 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 325 fs_nosys, fs_nosys, 326 327 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 328 fs_nosys, fs_nosys, 329 330 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 331 fs_nosys, fs_nosys, 332 333 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 334 (fs_generic_func_p) fs_sync, 335 (fs_generic_func_p) fs_sync, /* No errors allowed */ 336 337 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 338 fs_nosys, fs_nosys, 339 340 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 341 fs_nosys, fs_nosys, 342 343 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 344 (fs_generic_func_p)fs_freevfs, 345 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 346 347 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 348 (fs_generic_func_p)fs_nosys, 349 (fs_generic_func_p)fs_nosys, 350 351 NULL, 0, NULL, NULL 352 }; 353 354 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 355 } 356 357 void 358 zfs_boot_init() { 359 360 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 361 spa_boot_init(); 362 } 363 364 int 365 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 366 { 367 int error; 368 int unused_ops; 369 370 /* 371 * Verify that fstype refers to a valid fs. Note that 372 * 0 is valid since it's used to set "stray" ops. 373 */ 374 if ((fstype < 0) || (fstype >= nfstype)) 375 return (EINVAL); 376 377 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 378 return (EINVAL); 379 380 /* Set up the operations vector. */ 381 382 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 383 384 if (error != 0) 385 return (error); 386 387 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 388 389 if (actual != NULL) 390 *actual = &vfssw[fstype].vsw_vfsops; 391 392 #if DEBUG 393 if (unused_ops != 0) 394 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 395 "but not used", vfssw[fstype].vsw_name, unused_ops); 396 #endif 397 398 return (0); 399 } 400 401 int 402 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 403 { 404 int error; 405 int unused_ops; 406 407 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 408 409 error = fs_copyfsops(template, *actual, &unused_ops); 410 if (error != 0) { 411 kmem_free(*actual, sizeof (vfsops_t)); 412 *actual = NULL; 413 return (error); 414 } 415 416 return (0); 417 } 418 419 /* 420 * Free a vfsops structure created as a result of vfs_makefsops(). 421 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 422 * vfs_freevfsops_by_type(). 423 */ 424 void 425 vfs_freevfsops(vfsops_t *vfsops) 426 { 427 kmem_free(vfsops, sizeof (vfsops_t)); 428 } 429 430 /* 431 * Since the vfsops structure is part of the vfssw table and wasn't 432 * really allocated, we're not really freeing anything. We keep 433 * the name for consistency with vfs_freevfsops(). We do, however, 434 * need to take care of a little bookkeeping. 435 * NOTE: For a vfsops structure created by vfs_setfsops(), use 436 * vfs_freevfsops_by_type(). 437 */ 438 int 439 vfs_freevfsops_by_type(int fstype) 440 { 441 442 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 443 if ((fstype <= 0) || (fstype >= nfstype)) 444 return (EINVAL); 445 446 WLOCK_VFSSW(); 447 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 448 WUNLOCK_VFSSW(); 449 return (EINVAL); 450 } 451 452 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 453 WUNLOCK_VFSSW(); 454 455 return (0); 456 } 457 458 /* Support routines used to reference vfs_op */ 459 460 /* Set the operations vector for a vfs */ 461 void 462 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 463 { 464 vfsops_t *op; 465 466 ASSERT(vfsp != NULL); 467 ASSERT(vfsops != NULL); 468 469 op = vfsp->vfs_op; 470 membar_consumer(); 471 if (vfsp->vfs_femhead == NULL && 472 casptr(&vfsp->vfs_op, op, vfsops) == op) { 473 return; 474 } 475 fsem_setvfsops(vfsp, vfsops); 476 } 477 478 /* Retrieve the operations vector for a vfs */ 479 vfsops_t * 480 vfs_getops(vfs_t *vfsp) 481 { 482 vfsops_t *op; 483 484 ASSERT(vfsp != NULL); 485 486 op = vfsp->vfs_op; 487 membar_consumer(); 488 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 489 return (op); 490 } else { 491 return (fsem_getvfsops(vfsp)); 492 } 493 } 494 495 /* 496 * Returns non-zero (1) if the vfsops matches that of the vfs. 497 * Returns zero (0) if not. 498 */ 499 int 500 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 501 { 502 return (vfs_getops(vfsp) == vfsops); 503 } 504 505 /* 506 * Returns non-zero (1) if the file system has installed a non-default, 507 * non-error vfs_sync routine. Returns zero (0) otherwise. 508 */ 509 int 510 vfs_can_sync(vfs_t *vfsp) 511 { 512 /* vfs_sync() routine is not the default/error function */ 513 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 514 } 515 516 /* 517 * Initialize a vfs structure. 518 */ 519 void 520 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 521 { 522 /* Other initialization has been moved to vfs_alloc() */ 523 vfsp->vfs_count = 0; 524 vfsp->vfs_next = vfsp; 525 vfsp->vfs_prev = vfsp; 526 vfsp->vfs_zone_next = vfsp; 527 vfsp->vfs_zone_prev = vfsp; 528 vfsp->vfs_lofi_minor = 0; 529 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 530 vfsimpl_setup(vfsp); 531 vfsp->vfs_data = (data); 532 vfs_setops((vfsp), (op)); 533 } 534 535 /* 536 * Allocate and initialize the vfs implementation private data 537 * structure, vfs_impl_t. 538 */ 539 void 540 vfsimpl_setup(vfs_t *vfsp) 541 { 542 int i; 543 544 if (vfsp->vfs_implp != NULL) { 545 return; 546 } 547 548 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 549 /* Note that these are #define'd in vfs.h */ 550 vfsp->vfs_vskap = NULL; 551 vfsp->vfs_fstypevsp = NULL; 552 553 /* Set size of counted array, then zero the array */ 554 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 555 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 556 vfsp->vfs_featureset[i] = 0; 557 } 558 } 559 560 /* 561 * Release the vfs_impl_t structure, if it exists. Some unbundled 562 * filesystems may not use the newer version of vfs and thus 563 * would not contain this implementation private data structure. 564 */ 565 void 566 vfsimpl_teardown(vfs_t *vfsp) 567 { 568 vfs_impl_t *vip = vfsp->vfs_implp; 569 570 if (vip == NULL) 571 return; 572 573 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 574 vfsp->vfs_implp = NULL; 575 } 576 577 /* 578 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 579 * fstatvfs, and sysfs moved to common/syscall. 580 */ 581 582 /* 583 * Update every mounted file system. We call the vfs_sync operation of 584 * each file system type, passing it a NULL vfsp to indicate that all 585 * mounted file systems of that type should be updated. 586 */ 587 void 588 vfs_sync(int flag) 589 { 590 struct vfssw *vswp; 591 RLOCK_VFSSW(); 592 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 593 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 594 vfs_refvfssw(vswp); 595 RUNLOCK_VFSSW(); 596 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 597 CRED()); 598 vfs_unrefvfssw(vswp); 599 RLOCK_VFSSW(); 600 } 601 } 602 RUNLOCK_VFSSW(); 603 } 604 605 void 606 sync(void) 607 { 608 vfs_sync(0); 609 } 610 611 /* 612 * External routines. 613 */ 614 615 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 616 617 /* 618 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 619 * but otherwise should be accessed only via vfs_list_lock() and 620 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 621 */ 622 static krwlock_t vfslist; 623 624 /* 625 * Mount devfs on /devices. This is done right after root is mounted 626 * to provide device access support for the system 627 */ 628 static void 629 vfs_mountdevices(void) 630 { 631 struct vfssw *vsw; 632 struct vnode *mvp; 633 struct mounta mounta = { /* fake mounta for devfs_mount() */ 634 NULL, 635 NULL, 636 MS_SYSSPACE, 637 NULL, 638 NULL, 639 0, 640 NULL, 641 0 642 }; 643 644 /* 645 * _init devfs module to fill in the vfssw 646 */ 647 if (modload("fs", "devfs") == -1) 648 panic("Cannot _init devfs module"); 649 650 /* 651 * Hold vfs 652 */ 653 RLOCK_VFSSW(); 654 vsw = vfs_getvfsswbyname("devfs"); 655 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 656 VFS_HOLD(&devices); 657 658 /* 659 * Locate mount point 660 */ 661 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 662 panic("Cannot find /devices"); 663 664 /* 665 * Perform the mount of /devices 666 */ 667 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 668 panic("Cannot mount /devices"); 669 670 RUNLOCK_VFSSW(); 671 672 /* 673 * Set appropriate members and add to vfs list for mnttab display 674 */ 675 vfs_setresource(&devices, "/devices", 0); 676 vfs_setmntpoint(&devices, "/devices", 0); 677 678 /* 679 * Hold the root of /devices so it won't go away 680 */ 681 if (VFS_ROOT(&devices, &devicesdir)) 682 panic("vfs_mountdevices: not devices root"); 683 684 if (vfs_lock(&devices) != 0) { 685 VN_RELE(devicesdir); 686 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 687 return; 688 } 689 690 if (vn_vfswlock(mvp) != 0) { 691 vfs_unlock(&devices); 692 VN_RELE(devicesdir); 693 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 694 return; 695 } 696 697 vfs_add(mvp, &devices, 0); 698 vn_vfsunlock(mvp); 699 vfs_unlock(&devices); 700 VN_RELE(devicesdir); 701 } 702 703 /* 704 * mount the first instance of /dev to root and remain mounted 705 */ 706 static void 707 vfs_mountdev1(void) 708 { 709 struct vfssw *vsw; 710 struct vnode *mvp; 711 struct mounta mounta = { /* fake mounta for sdev_mount() */ 712 NULL, 713 NULL, 714 MS_SYSSPACE | MS_OVERLAY, 715 NULL, 716 NULL, 717 0, 718 NULL, 719 0 720 }; 721 722 /* 723 * _init dev module to fill in the vfssw 724 */ 725 if (modload("fs", "dev") == -1) 726 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 727 728 /* 729 * Hold vfs 730 */ 731 RLOCK_VFSSW(); 732 vsw = vfs_getvfsswbyname("dev"); 733 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 734 VFS_HOLD(&dev); 735 736 /* 737 * Locate mount point 738 */ 739 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 740 cmn_err(CE_PANIC, "Cannot find /dev\n"); 741 742 /* 743 * Perform the mount of /dev 744 */ 745 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 746 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 747 748 RUNLOCK_VFSSW(); 749 750 /* 751 * Set appropriate members and add to vfs list for mnttab display 752 */ 753 vfs_setresource(&dev, "/dev", 0); 754 vfs_setmntpoint(&dev, "/dev", 0); 755 756 /* 757 * Hold the root of /dev so it won't go away 758 */ 759 if (VFS_ROOT(&dev, &devdir)) 760 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 761 762 if (vfs_lock(&dev) != 0) { 763 VN_RELE(devdir); 764 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 765 return; 766 } 767 768 if (vn_vfswlock(mvp) != 0) { 769 vfs_unlock(&dev); 770 VN_RELE(devdir); 771 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 772 return; 773 } 774 775 vfs_add(mvp, &dev, 0); 776 vn_vfsunlock(mvp); 777 vfs_unlock(&dev); 778 VN_RELE(devdir); 779 } 780 781 /* 782 * Mount required filesystem. This is done right after root is mounted. 783 */ 784 static void 785 vfs_mountfs(char *module, char *spec, char *path) 786 { 787 struct vnode *mvp; 788 struct mounta mounta; 789 vfs_t *vfsp; 790 791 mounta.flags = MS_SYSSPACE | MS_DATA; 792 mounta.fstype = module; 793 mounta.spec = spec; 794 mounta.dir = path; 795 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 796 cmn_err(CE_WARN, "Cannot find %s", path); 797 return; 798 } 799 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 800 cmn_err(CE_WARN, "Cannot mount %s", path); 801 else 802 VFS_RELE(vfsp); 803 VN_RELE(mvp); 804 } 805 806 /* 807 * vfs_mountroot is called by main() to mount the root filesystem. 808 */ 809 void 810 vfs_mountroot(void) 811 { 812 struct vnode *rvp = NULL; 813 char *path; 814 size_t plen; 815 struct vfssw *vswp; 816 proc_t *p; 817 818 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 819 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 820 821 /* 822 * Alloc the vfs hash bucket array and locks 823 */ 824 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 825 826 /* 827 * Call machine-dependent routine "rootconf" to choose a root 828 * file system type. 829 */ 830 if (rootconf()) 831 panic("vfs_mountroot: cannot mount root"); 832 /* 833 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 834 * to point to it. These are used by lookuppn() so that it 835 * knows where to start from ('/' or '.'). 836 */ 837 vfs_setmntpoint(rootvfs, "/", 0); 838 if (VFS_ROOT(rootvfs, &rootdir)) 839 panic("vfs_mountroot: no root vnode"); 840 841 /* 842 * At this point, the process tree consists of p0 and possibly some 843 * direct children of p0. (i.e. there are no grandchildren) 844 * 845 * Walk through them all, setting their current directory. 846 */ 847 mutex_enter(&pidlock); 848 for (p = practive; p != NULL; p = p->p_next) { 849 ASSERT(p == &p0 || p->p_parent == &p0); 850 851 PTOU(p)->u_cdir = rootdir; 852 VN_HOLD(PTOU(p)->u_cdir); 853 PTOU(p)->u_rdir = NULL; 854 } 855 mutex_exit(&pidlock); 856 857 /* 858 * Setup the global zone's rootvp, now that it exists. 859 */ 860 global_zone->zone_rootvp = rootdir; 861 VN_HOLD(global_zone->zone_rootvp); 862 863 /* 864 * Notify the module code that it can begin using the 865 * root filesystem instead of the boot program's services. 866 */ 867 modrootloaded = 1; 868 869 /* 870 * Special handling for a ZFS root file system. 871 */ 872 zfs_boot_init(); 873 874 /* 875 * Set up mnttab information for root 876 */ 877 vfs_setresource(rootvfs, rootfs.bo_name, 0); 878 879 /* 880 * Notify cluster software that the root filesystem is available. 881 */ 882 clboot_mountroot(); 883 884 /* Now that we're all done with the root FS, set up its vopstats */ 885 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 886 /* Set flag for statistics collection */ 887 if (vswp->vsw_flag & VSW_STATS) { 888 initialize_vopstats(&rootvfs->vfs_vopstats); 889 rootvfs->vfs_flag |= VFS_STATS; 890 rootvfs->vfs_fstypevsp = 891 get_fstype_vopstats(rootvfs, vswp); 892 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 893 } 894 vfs_unrefvfssw(vswp); 895 } 896 897 /* 898 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 899 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 900 */ 901 vfs_mountdevices(); 902 vfs_mountdev1(); 903 904 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 905 vfs_mountfs("proc", "/proc", "/proc"); 906 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 907 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 908 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 909 910 if (getzoneid() == GLOBAL_ZONEID) { 911 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 912 } 913 914 #ifdef __sparc 915 /* 916 * This bit of magic can go away when we convert sparc to 917 * the new boot architecture based on ramdisk. 918 * 919 * Booting off a mirrored root volume: 920 * At this point, we have booted and mounted root on a 921 * single component of the mirror. Complete the boot 922 * by configuring SVM and converting the root to the 923 * dev_t of the mirrored root device. This dev_t conversion 924 * only works because the underlying device doesn't change. 925 */ 926 if (root_is_svm) { 927 if (svm_rootconf()) { 928 panic("vfs_mountroot: cannot remount root"); 929 } 930 931 /* 932 * mnttab should reflect the new root device 933 */ 934 vfs_lock_wait(rootvfs); 935 vfs_setresource(rootvfs, rootfs.bo_name, 0); 936 vfs_unlock(rootvfs); 937 } 938 #endif /* __sparc */ 939 940 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 941 /* 942 * Look up the root device via devfs so that a dv_node is 943 * created for it. The vnode is never VN_RELE()ed. 944 * We allocate more than MAXPATHLEN so that the 945 * buffer passed to i_ddi_prompath_to_devfspath() is 946 * exactly MAXPATHLEN (the function expects a buffer 947 * of that length). 948 */ 949 plen = strlen("/devices"); 950 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 951 (void) strcpy(path, "/devices"); 952 953 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 954 != DDI_SUCCESS || 955 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 956 957 /* NUL terminate in case "path" has garbage */ 958 path[plen + MAXPATHLEN - 1] = '\0'; 959 #ifdef DEBUG 960 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 961 path); 962 #endif 963 } 964 kmem_free(path, plen + MAXPATHLEN); 965 } 966 967 vfs_mnttabvp_setup(); 968 } 969 970 /* 971 * Check to see if our "block device" is actually a file. If so, 972 * automatically add a lofi device, and keep track of this fact. 973 */ 974 static int 975 lofi_add(const char *fsname, struct vfs *vfsp, 976 mntopts_t *mntopts, struct mounta *uap) 977 { 978 int fromspace = (uap->flags & MS_SYSSPACE) ? 979 UIO_SYSSPACE : UIO_USERSPACE; 980 struct lofi_ioctl *li = NULL; 981 struct vnode *vp = NULL; 982 struct pathname pn = { NULL }; 983 ldi_ident_t ldi_id; 984 ldi_handle_t ldi_hdl; 985 vfssw_t *vfssw; 986 int minor; 987 int err = 0; 988 989 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 990 return (0); 991 992 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 993 vfs_unrefvfssw(vfssw); 994 return (0); 995 } 996 997 vfs_unrefvfssw(vfssw); 998 vfssw = NULL; 999 1000 if (pn_get(uap->spec, fromspace, &pn) != 0) 1001 return (0); 1002 1003 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 1004 goto out; 1005 1006 if (vp->v_type != VREG) 1007 goto out; 1008 1009 /* OK, this is a lofi mount. */ 1010 1011 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 1012 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 1013 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 1014 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 1015 err = EINVAL; 1016 goto out; 1017 } 1018 1019 ldi_id = ldi_ident_from_anon(); 1020 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1021 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1022 1023 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1024 &ldi_hdl, ldi_id); 1025 1026 if (err) 1027 goto out2; 1028 1029 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1030 FREAD | FWRITE | FKIOCTL, kcred, &minor); 1031 1032 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1033 1034 if (!err) 1035 vfsp->vfs_lofi_minor = minor; 1036 1037 out2: 1038 ldi_ident_release(ldi_id); 1039 out: 1040 if (li != NULL) 1041 kmem_free(li, sizeof (*li)); 1042 if (vp != NULL) 1043 VN_RELE(vp); 1044 pn_free(&pn); 1045 return (err); 1046 } 1047 1048 static void 1049 lofi_remove(struct vfs *vfsp) 1050 { 1051 struct lofi_ioctl *li = NULL; 1052 ldi_ident_t ldi_id; 1053 ldi_handle_t ldi_hdl; 1054 int err; 1055 1056 if (vfsp->vfs_lofi_minor == 0) 1057 return; 1058 1059 ldi_id = ldi_ident_from_anon(); 1060 1061 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1062 li->li_minor = vfsp->vfs_lofi_minor; 1063 li->li_cleanup = B_TRUE; 1064 1065 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1066 &ldi_hdl, ldi_id); 1067 1068 if (err) 1069 goto out; 1070 1071 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1072 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1073 1074 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1075 1076 if (!err) 1077 vfsp->vfs_lofi_minor = 0; 1078 1079 out: 1080 ldi_ident_release(ldi_id); 1081 if (li != NULL) 1082 kmem_free(li, sizeof (*li)); 1083 } 1084 1085 /* 1086 * Common mount code. Called from the system call entry point, from autofs, 1087 * nfsv4 trigger mounts, and from pxfs. 1088 * 1089 * Takes the effective file system type, mount arguments, the mount point 1090 * vnode, flags specifying whether the mount is a remount and whether it 1091 * should be entered into the vfs list, and credentials. Fills in its vfspp 1092 * parameter with the mounted file system instance's vfs. 1093 * 1094 * Note that the effective file system type is specified as a string. It may 1095 * be null, in which case it's determined from the mount arguments, and may 1096 * differ from the type specified in the mount arguments; this is a hook to 1097 * allow interposition when instantiating file system instances. 1098 * 1099 * The caller is responsible for releasing its own hold on the mount point 1100 * vp (this routine does its own hold when necessary). 1101 * Also note that for remounts, the mount point vp should be the vnode for 1102 * the root of the file system rather than the vnode that the file system 1103 * is mounted on top of. 1104 */ 1105 int 1106 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1107 struct vfs **vfspp) 1108 { 1109 struct vfssw *vswp; 1110 vfsops_t *vfsops; 1111 struct vfs *vfsp; 1112 struct vnode *bvp; 1113 dev_t bdev = 0; 1114 mntopts_t mnt_mntopts; 1115 int error = 0; 1116 int copyout_error = 0; 1117 int ovflags; 1118 char *opts = uap->optptr; 1119 char *inargs = opts; 1120 int optlen = uap->optlen; 1121 int remount; 1122 int rdonly; 1123 int nbmand = 0; 1124 int delmip = 0; 1125 int addmip = 0; 1126 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1127 int fromspace = (uap->flags & MS_SYSSPACE) ? 1128 UIO_SYSSPACE : UIO_USERSPACE; 1129 char *resource = NULL, *mountpt = NULL; 1130 refstr_t *oldresource, *oldmntpt; 1131 struct pathname pn, rpn; 1132 vsk_anchor_t *vskap; 1133 char fstname[FSTYPSZ]; 1134 1135 /* 1136 * The v_flag value for the mount point vp is permanently set 1137 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1138 * for mount point locking. 1139 */ 1140 mutex_enter(&vp->v_lock); 1141 vp->v_flag |= VVFSLOCK; 1142 mutex_exit(&vp->v_lock); 1143 1144 mnt_mntopts.mo_count = 0; 1145 /* 1146 * Find the ops vector to use to invoke the file system-specific mount 1147 * method. If the fsname argument is non-NULL, use it directly. 1148 * Otherwise, dig the file system type information out of the mount 1149 * arguments. 1150 * 1151 * A side effect is to hold the vfssw entry. 1152 * 1153 * Mount arguments can be specified in several ways, which are 1154 * distinguished by flag bit settings. The preferred way is to set 1155 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1156 * type supplied as a character string and the last two arguments 1157 * being a pointer to a character buffer and the size of the buffer. 1158 * On entry, the buffer holds a null terminated list of options; on 1159 * return, the string is the list of options the file system 1160 * recognized. If MS_DATA is set arguments five and six point to a 1161 * block of binary data which the file system interprets. 1162 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1163 * consistently with these conventions. To handle them, we check to 1164 * see whether the pointer to the file system name has a numeric value 1165 * less than 256. If so, we treat it as an index. 1166 */ 1167 if (fsname != NULL) { 1168 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1169 return (EINVAL); 1170 } 1171 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1172 size_t n; 1173 uint_t fstype; 1174 1175 fsname = fstname; 1176 1177 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1178 RLOCK_VFSSW(); 1179 if (fstype == 0 || fstype >= nfstype || 1180 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1181 RUNLOCK_VFSSW(); 1182 return (EINVAL); 1183 } 1184 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1185 RUNLOCK_VFSSW(); 1186 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1187 return (EINVAL); 1188 } else { 1189 /* 1190 * Handle either kernel or user address space. 1191 */ 1192 if (uap->flags & MS_SYSSPACE) { 1193 error = copystr(uap->fstype, fsname, 1194 FSTYPSZ, &n); 1195 } else { 1196 error = copyinstr(uap->fstype, fsname, 1197 FSTYPSZ, &n); 1198 } 1199 if (error) { 1200 if (error == ENAMETOOLONG) 1201 return (EINVAL); 1202 return (error); 1203 } 1204 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1205 return (EINVAL); 1206 } 1207 } else { 1208 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1209 return (EINVAL); 1210 fsname = vswp->vsw_name; 1211 } 1212 if (!VFS_INSTALLED(vswp)) 1213 return (EINVAL); 1214 1215 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1216 vfs_unrefvfssw(vswp); 1217 return (error); 1218 } 1219 1220 vfsops = &vswp->vsw_vfsops; 1221 1222 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1223 /* 1224 * Fetch mount options and parse them for generic vfs options 1225 */ 1226 if (uap->flags & MS_OPTIONSTR) { 1227 /* 1228 * Limit the buffer size 1229 */ 1230 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1231 error = EINVAL; 1232 goto errout; 1233 } 1234 if ((uap->flags & MS_SYSSPACE) == 0) { 1235 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1236 inargs[0] = '\0'; 1237 if (optlen) { 1238 error = copyinstr(opts, inargs, (size_t)optlen, 1239 NULL); 1240 if (error) { 1241 goto errout; 1242 } 1243 } 1244 } 1245 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1246 } 1247 /* 1248 * Flag bits override the options string. 1249 */ 1250 if (uap->flags & MS_REMOUNT) 1251 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1252 if (uap->flags & MS_RDONLY) 1253 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1254 if (uap->flags & MS_NOSUID) 1255 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1256 1257 /* 1258 * Check if this is a remount; must be set in the option string and 1259 * the file system must support a remount option. 1260 */ 1261 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1262 MNTOPT_REMOUNT, NULL)) { 1263 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1264 error = ENOTSUP; 1265 goto errout; 1266 } 1267 uap->flags |= MS_REMOUNT; 1268 } 1269 1270 /* 1271 * uap->flags and vfs_optionisset() should agree. 1272 */ 1273 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1274 uap->flags |= MS_RDONLY; 1275 } 1276 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1277 uap->flags |= MS_NOSUID; 1278 } 1279 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1280 ASSERT(splice || !remount); 1281 /* 1282 * If we are splicing the fs into the namespace, 1283 * perform mount point checks. 1284 * 1285 * We want to resolve the path for the mount point to eliminate 1286 * '.' and ".." and symlinks in mount points; we can't do the 1287 * same for the resource string, since it would turn 1288 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1289 * this before grabbing vn_vfswlock(), because otherwise we 1290 * would deadlock with lookuppn(). 1291 */ 1292 if (splice) { 1293 ASSERT(vp->v_count > 0); 1294 1295 /* 1296 * Pick up mount point and device from appropriate space. 1297 */ 1298 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1299 resource = kmem_alloc(pn.pn_pathlen + 1, 1300 KM_SLEEP); 1301 (void) strcpy(resource, pn.pn_path); 1302 pn_free(&pn); 1303 } 1304 /* 1305 * Do a lookupname prior to taking the 1306 * writelock. Mark this as completed if 1307 * successful for later cleanup and addition to 1308 * the mount in progress table. 1309 */ 1310 if ((uap->flags & MS_GLOBAL) == 0 && 1311 lookupname(uap->spec, fromspace, 1312 FOLLOW, NULL, &bvp) == 0) { 1313 addmip = 1; 1314 } 1315 1316 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1317 pathname_t *pnp; 1318 1319 if (*pn.pn_path != '/') { 1320 error = EINVAL; 1321 pn_free(&pn); 1322 goto errout; 1323 } 1324 pn_alloc(&rpn); 1325 /* 1326 * Kludge to prevent autofs from deadlocking with 1327 * itself when it calls domount(). 1328 * 1329 * If autofs is calling, it is because it is doing 1330 * (autofs) mounts in the process of an NFS mount. A 1331 * lookuppn() here would cause us to block waiting for 1332 * said NFS mount to complete, which can't since this 1333 * is the thread that was supposed to doing it. 1334 */ 1335 if (fromspace == UIO_USERSPACE) { 1336 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1337 NULL)) == 0) { 1338 pnp = &rpn; 1339 } else { 1340 /* 1341 * The file disappeared or otherwise 1342 * became inaccessible since we opened 1343 * it; might as well fail the mount 1344 * since the mount point is no longer 1345 * accessible. 1346 */ 1347 pn_free(&rpn); 1348 pn_free(&pn); 1349 goto errout; 1350 } 1351 } else { 1352 pnp = &pn; 1353 } 1354 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1355 (void) strcpy(mountpt, pnp->pn_path); 1356 1357 /* 1358 * If the addition of the zone's rootpath 1359 * would push us over a total path length 1360 * of MAXPATHLEN, we fail the mount with 1361 * ENAMETOOLONG, which is what we would have 1362 * gotten if we were trying to perform the same 1363 * mount in the global zone. 1364 * 1365 * strlen() doesn't count the trailing 1366 * '\0', but zone_rootpathlen counts both a 1367 * trailing '/' and the terminating '\0'. 1368 */ 1369 if ((curproc->p_zone->zone_rootpathlen - 1 + 1370 strlen(mountpt)) > MAXPATHLEN || 1371 (resource != NULL && 1372 (curproc->p_zone->zone_rootpathlen - 1 + 1373 strlen(resource)) > MAXPATHLEN)) { 1374 error = ENAMETOOLONG; 1375 } 1376 1377 pn_free(&rpn); 1378 pn_free(&pn); 1379 } 1380 1381 if (error) 1382 goto errout; 1383 1384 /* 1385 * Prevent path name resolution from proceeding past 1386 * the mount point. 1387 */ 1388 if (vn_vfswlock(vp) != 0) { 1389 error = EBUSY; 1390 goto errout; 1391 } 1392 1393 /* 1394 * Verify that it's legitimate to establish a mount on 1395 * the prospective mount point. 1396 */ 1397 if (vn_mountedvfs(vp) != NULL) { 1398 /* 1399 * The mount point lock was obtained after some 1400 * other thread raced through and established a mount. 1401 */ 1402 vn_vfsunlock(vp); 1403 error = EBUSY; 1404 goto errout; 1405 } 1406 if (vp->v_flag & VNOMOUNT) { 1407 vn_vfsunlock(vp); 1408 error = EINVAL; 1409 goto errout; 1410 } 1411 } 1412 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1413 uap->dataptr = NULL; 1414 uap->datalen = 0; 1415 } 1416 1417 /* 1418 * If this is a remount, we don't want to create a new VFS. 1419 * Instead, we pass the existing one with a remount flag. 1420 */ 1421 if (remount) { 1422 /* 1423 * Confirm that the mount point is the root vnode of the 1424 * file system that is being remounted. 1425 * This can happen if the user specifies a different 1426 * mount point directory pathname in the (re)mount command. 1427 * 1428 * Code below can only be reached if splice is true, so it's 1429 * safe to do vn_vfsunlock() here. 1430 */ 1431 if ((vp->v_flag & VROOT) == 0) { 1432 vn_vfsunlock(vp); 1433 error = ENOENT; 1434 goto errout; 1435 } 1436 /* 1437 * Disallow making file systems read-only unless file system 1438 * explicitly allows it in its vfssw. Ignore other flags. 1439 */ 1440 if (rdonly && vn_is_readonly(vp) == 0 && 1441 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1442 vn_vfsunlock(vp); 1443 error = EINVAL; 1444 goto errout; 1445 } 1446 /* 1447 * Disallow changing the NBMAND disposition of the file 1448 * system on remounts. 1449 */ 1450 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1451 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1452 vn_vfsunlock(vp); 1453 error = EINVAL; 1454 goto errout; 1455 } 1456 vfsp = vp->v_vfsp; 1457 ovflags = vfsp->vfs_flag; 1458 vfsp->vfs_flag |= VFS_REMOUNT; 1459 vfsp->vfs_flag &= ~VFS_RDONLY; 1460 } else { 1461 vfsp = vfs_alloc(KM_SLEEP); 1462 VFS_INIT(vfsp, vfsops, NULL); 1463 } 1464 1465 VFS_HOLD(vfsp); 1466 1467 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1468 if (!remount) { 1469 if (splice) 1470 vn_vfsunlock(vp); 1471 vfs_free(vfsp); 1472 } else { 1473 vn_vfsunlock(vp); 1474 VFS_RELE(vfsp); 1475 } 1476 goto errout; 1477 } 1478 1479 /* 1480 * PRIV_SYS_MOUNT doesn't mean you can become root. 1481 */ 1482 if (vfsp->vfs_lofi_minor != 0) { 1483 uap->flags |= MS_NOSUID; 1484 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1485 } 1486 1487 /* 1488 * The vfs_reflock is not used anymore the code below explicitly 1489 * holds it preventing others accesing it directly. 1490 */ 1491 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1492 !(vfsp->vfs_flag & VFS_REMOUNT)) 1493 cmn_err(CE_WARN, 1494 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1495 1496 /* 1497 * Lock the vfs. If this is a remount we want to avoid spurious umount 1498 * failures that happen as a side-effect of fsflush() and other mount 1499 * and unmount operations that might be going on simultaneously and 1500 * may have locked the vfs currently. To not return EBUSY immediately 1501 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1502 */ 1503 if (!remount) { 1504 if (error = vfs_lock(vfsp)) { 1505 vfsp->vfs_flag = ovflags; 1506 1507 lofi_remove(vfsp); 1508 1509 if (splice) 1510 vn_vfsunlock(vp); 1511 vfs_free(vfsp); 1512 goto errout; 1513 } 1514 } else { 1515 vfs_lock_wait(vfsp); 1516 } 1517 1518 /* 1519 * Add device to mount in progress table, global mounts require special 1520 * handling. It is possible that we have already done the lookupname 1521 * on a spliced, non-global fs. If so, we don't want to do it again 1522 * since we cannot do a lookupname after taking the 1523 * wlock above. This case is for a non-spliced, non-global filesystem. 1524 */ 1525 if (!addmip) { 1526 if ((uap->flags & MS_GLOBAL) == 0 && 1527 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1528 addmip = 1; 1529 } 1530 } 1531 1532 if (addmip) { 1533 vnode_t *lvp = NULL; 1534 1535 error = vfs_get_lofi(vfsp, &lvp); 1536 if (error > 0) { 1537 lofi_remove(vfsp); 1538 1539 if (splice) 1540 vn_vfsunlock(vp); 1541 vfs_unlock(vfsp); 1542 1543 if (remount) { 1544 VFS_RELE(vfsp); 1545 } else { 1546 vfs_free(vfsp); 1547 } 1548 1549 goto errout; 1550 } else if (error == -1) { 1551 bdev = bvp->v_rdev; 1552 VN_RELE(bvp); 1553 } else { 1554 bdev = lvp->v_rdev; 1555 VN_RELE(lvp); 1556 VN_RELE(bvp); 1557 } 1558 1559 vfs_addmip(bdev, vfsp); 1560 addmip = 0; 1561 delmip = 1; 1562 } 1563 /* 1564 * Invalidate cached entry for the mount point. 1565 */ 1566 if (splice) 1567 dnlc_purge_vp(vp); 1568 1569 /* 1570 * If have an option string but the filesystem doesn't supply a 1571 * prototype options table, create a table with the global 1572 * options and sufficient room to accept all the options in the 1573 * string. Then parse the passed in option string 1574 * accepting all the options in the string. This gives us an 1575 * option table with all the proper cancel properties for the 1576 * global options. 1577 * 1578 * Filesystems that supply a prototype options table are handled 1579 * earlier in this function. 1580 */ 1581 if (uap->flags & MS_OPTIONSTR) { 1582 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1583 mntopts_t tmp_mntopts; 1584 1585 tmp_mntopts.mo_count = 0; 1586 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1587 &mnt_mntopts); 1588 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1589 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1590 vfs_freeopttbl(&tmp_mntopts); 1591 } 1592 } 1593 1594 /* 1595 * Serialize with zone creations. 1596 */ 1597 mount_in_progress(); 1598 /* 1599 * Instantiate (or reinstantiate) the file system. If appropriate, 1600 * splice it into the file system name space. 1601 * 1602 * We want VFS_MOUNT() to be able to override the vfs_resource 1603 * string if necessary (ie, mntfs), and also for a remount to 1604 * change the same (necessary when remounting '/' during boot). 1605 * So we set up vfs_mntpt and vfs_resource to what we think they 1606 * should be, then hand off control to VFS_MOUNT() which can 1607 * override this. 1608 * 1609 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1610 * a vfs which is on the vfs list (i.e. during a remount), we must 1611 * never set those fields to NULL. Several bits of code make 1612 * assumptions that the fields are always valid. 1613 */ 1614 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1615 if (remount) { 1616 if ((oldresource = vfsp->vfs_resource) != NULL) 1617 refstr_hold(oldresource); 1618 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1619 refstr_hold(oldmntpt); 1620 } 1621 vfs_setresource(vfsp, resource, 0); 1622 vfs_setmntpoint(vfsp, mountpt, 0); 1623 1624 /* 1625 * going to mount on this vnode, so notify. 1626 */ 1627 vnevent_mountedover(vp, NULL); 1628 error = VFS_MOUNT(vfsp, vp, uap, credp); 1629 1630 if (uap->flags & MS_RDONLY) 1631 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1632 if (uap->flags & MS_NOSUID) 1633 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1634 if (uap->flags & MS_GLOBAL) 1635 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1636 1637 if (error) { 1638 lofi_remove(vfsp); 1639 1640 if (remount) { 1641 /* put back pre-remount options */ 1642 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1643 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1644 VFSSP_VERBATIM); 1645 if (oldmntpt) 1646 refstr_rele(oldmntpt); 1647 vfs_setresource(vfsp, refstr_value(oldresource), 1648 VFSSP_VERBATIM); 1649 if (oldresource) 1650 refstr_rele(oldresource); 1651 vfsp->vfs_flag = ovflags; 1652 vfs_unlock(vfsp); 1653 VFS_RELE(vfsp); 1654 } else { 1655 vfs_unlock(vfsp); 1656 vfs_freemnttab(vfsp); 1657 vfs_free(vfsp); 1658 } 1659 } else { 1660 /* 1661 * Set the mount time to now 1662 */ 1663 vfsp->vfs_mtime = ddi_get_time(); 1664 if (remount) { 1665 vfsp->vfs_flag &= ~VFS_REMOUNT; 1666 if (oldresource) 1667 refstr_rele(oldresource); 1668 if (oldmntpt) 1669 refstr_rele(oldmntpt); 1670 } else if (splice) { 1671 /* 1672 * Link vfsp into the name space at the mount 1673 * point. Vfs_add() is responsible for 1674 * holding the mount point which will be 1675 * released when vfs_remove() is called. 1676 */ 1677 vfs_add(vp, vfsp, uap->flags); 1678 } else { 1679 /* 1680 * Hold the reference to file system which is 1681 * not linked into the name space. 1682 */ 1683 vfsp->vfs_zone = NULL; 1684 VFS_HOLD(vfsp); 1685 vfsp->vfs_vnodecovered = NULL; 1686 } 1687 /* 1688 * Set flags for global options encountered 1689 */ 1690 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1691 vfsp->vfs_flag |= VFS_RDONLY; 1692 else 1693 vfsp->vfs_flag &= ~VFS_RDONLY; 1694 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1695 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1696 } else { 1697 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1698 vfsp->vfs_flag |= VFS_NODEVICES; 1699 else 1700 vfsp->vfs_flag &= ~VFS_NODEVICES; 1701 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1702 vfsp->vfs_flag |= VFS_NOSETUID; 1703 else 1704 vfsp->vfs_flag &= ~VFS_NOSETUID; 1705 } 1706 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1707 vfsp->vfs_flag |= VFS_NBMAND; 1708 else 1709 vfsp->vfs_flag &= ~VFS_NBMAND; 1710 1711 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1712 vfsp->vfs_flag |= VFS_XATTR; 1713 else 1714 vfsp->vfs_flag &= ~VFS_XATTR; 1715 1716 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1717 vfsp->vfs_flag |= VFS_NOEXEC; 1718 else 1719 vfsp->vfs_flag &= ~VFS_NOEXEC; 1720 1721 /* 1722 * Now construct the output option string of options 1723 * we recognized. 1724 */ 1725 if (uap->flags & MS_OPTIONSTR) { 1726 vfs_list_read_lock(); 1727 copyout_error = vfs_buildoptionstr( 1728 &vfsp->vfs_mntopts, inargs, optlen); 1729 vfs_list_unlock(); 1730 if (copyout_error == 0 && 1731 (uap->flags & MS_SYSSPACE) == 0) { 1732 copyout_error = copyoutstr(inargs, opts, 1733 optlen, NULL); 1734 } 1735 } 1736 1737 /* 1738 * If this isn't a remount, set up the vopstats before 1739 * anyone can touch this. We only allow spliced file 1740 * systems (file systems which are in the namespace) to 1741 * have the VFS_STATS flag set. 1742 * NOTE: PxFS mounts the underlying file system with 1743 * MS_NOSPLICE set and copies those vfs_flags to its private 1744 * vfs structure. As a result, PxFS should never have 1745 * the VFS_STATS flag or else we might access the vfs 1746 * statistics-related fields prior to them being 1747 * properly initialized. 1748 */ 1749 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1750 initialize_vopstats(&vfsp->vfs_vopstats); 1751 /* 1752 * We need to set vfs_vskap to NULL because there's 1753 * a chance it won't be set below. This is checked 1754 * in teardown_vopstats() so we can't have garbage. 1755 */ 1756 vfsp->vfs_vskap = NULL; 1757 vfsp->vfs_flag |= VFS_STATS; 1758 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1759 } 1760 1761 if (vswp->vsw_flag & VSW_XID) 1762 vfsp->vfs_flag |= VFS_XID; 1763 1764 vfs_unlock(vfsp); 1765 } 1766 mount_completed(); 1767 if (splice) 1768 vn_vfsunlock(vp); 1769 1770 if ((error == 0) && (copyout_error == 0)) { 1771 if (!remount) { 1772 /* 1773 * Don't call get_vskstat_anchor() while holding 1774 * locks since it allocates memory and calls 1775 * VFS_STATVFS(). For NFS, the latter can generate 1776 * an over-the-wire call. 1777 */ 1778 vskap = get_vskstat_anchor(vfsp); 1779 /* Only take the lock if we have something to do */ 1780 if (vskap != NULL) { 1781 vfs_lock_wait(vfsp); 1782 if (vfsp->vfs_flag & VFS_STATS) { 1783 vfsp->vfs_vskap = vskap; 1784 } 1785 vfs_unlock(vfsp); 1786 } 1787 } 1788 /* Return vfsp to caller. */ 1789 *vfspp = vfsp; 1790 fsh_exec_mount_callbacks(vfsp); 1791 } 1792 errout: 1793 vfs_freeopttbl(&mnt_mntopts); 1794 if (resource != NULL) 1795 kmem_free(resource, strlen(resource) + 1); 1796 if (mountpt != NULL) 1797 kmem_free(mountpt, strlen(mountpt) + 1); 1798 /* 1799 * It is possible we errored prior to adding to mount in progress 1800 * table. Must free vnode we acquired with successful lookupname. 1801 */ 1802 if (addmip) 1803 VN_RELE(bvp); 1804 if (delmip) 1805 vfs_delmip(vfsp); 1806 ASSERT(vswp != NULL); 1807 vfs_unrefvfssw(vswp); 1808 if (inargs != opts) 1809 kmem_free(inargs, MAX_MNTOPT_STR); 1810 if (copyout_error) { 1811 lofi_remove(vfsp); 1812 VFS_RELE(vfsp); 1813 error = copyout_error; 1814 } 1815 return (error); 1816 } 1817 1818 static void 1819 vfs_setpath( 1820 struct vfs *vfsp, /* vfs being updated */ 1821 refstr_t **refp, /* Ref-count string to contain the new path */ 1822 const char *newpath, /* Path to add to refp (above) */ 1823 uint32_t flag) /* flag */ 1824 { 1825 size_t len; 1826 refstr_t *ref; 1827 zone_t *zone = curproc->p_zone; 1828 char *sp; 1829 int have_list_lock = 0; 1830 1831 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1832 1833 /* 1834 * New path must be less than MAXPATHLEN because mntfs 1835 * will only display up to MAXPATHLEN bytes. This is currently 1836 * safe, because domount() uses pn_get(), and other callers 1837 * similarly cap the size to fewer than MAXPATHLEN bytes. 1838 */ 1839 1840 ASSERT(strlen(newpath) < MAXPATHLEN); 1841 1842 /* mntfs requires consistency while vfs list lock is held */ 1843 1844 if (VFS_ON_LIST(vfsp)) { 1845 have_list_lock = 1; 1846 vfs_list_lock(); 1847 } 1848 1849 if (*refp != NULL) 1850 refstr_rele(*refp); 1851 1852 /* 1853 * If we are in a non-global zone then we prefix the supplied path, 1854 * newpath, with the zone's root path, with two exceptions. The first 1855 * is where we have been explicitly directed to avoid doing so; this 1856 * will be the case following a failed remount, where the path supplied 1857 * will be a saved version which must now be restored. The second 1858 * exception is where newpath is not a pathname but a descriptive name, 1859 * e.g. "procfs". 1860 */ 1861 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1862 ref = refstr_alloc(newpath); 1863 goto out; 1864 } 1865 1866 /* 1867 * Truncate the trailing '/' in the zoneroot, and merge 1868 * in the zone's rootpath with the "newpath" (resource 1869 * or mountpoint) passed in. 1870 * 1871 * The size of the required buffer is thus the size of 1872 * the buffer required for the passed-in newpath 1873 * (strlen(newpath) + 1), plus the size of the buffer 1874 * required to hold zone_rootpath (zone_rootpathlen) 1875 * minus one for one of the now-superfluous NUL 1876 * terminations, minus one for the trailing '/'. 1877 * 1878 * That gives us: 1879 * 1880 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1881 * 1882 * Which is what we have below. 1883 */ 1884 1885 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1886 sp = kmem_alloc(len, KM_SLEEP); 1887 1888 /* 1889 * Copy everything including the trailing slash, which 1890 * we then overwrite with the NUL character. 1891 */ 1892 1893 (void) strcpy(sp, zone->zone_rootpath); 1894 sp[zone->zone_rootpathlen - 2] = '\0'; 1895 (void) strcat(sp, newpath); 1896 1897 ref = refstr_alloc(sp); 1898 kmem_free(sp, len); 1899 out: 1900 *refp = ref; 1901 1902 if (have_list_lock) { 1903 vfs_mnttab_modtimeupd(); 1904 vfs_list_unlock(); 1905 } 1906 } 1907 1908 /* 1909 * Record a mounted resource name in a vfs structure. 1910 * If vfsp is already mounted, caller must hold the vfs lock. 1911 */ 1912 void 1913 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1914 { 1915 if (resource == NULL || resource[0] == '\0') 1916 resource = VFS_NORESOURCE; 1917 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1918 } 1919 1920 /* 1921 * Record a mount point name in a vfs structure. 1922 * If vfsp is already mounted, caller must hold the vfs lock. 1923 */ 1924 void 1925 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1926 { 1927 if (mntpt == NULL || mntpt[0] == '\0') 1928 mntpt = VFS_NOMNTPT; 1929 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1930 } 1931 1932 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1933 1934 refstr_t * 1935 vfs_getresource(const struct vfs *vfsp) 1936 { 1937 refstr_t *resource; 1938 1939 vfs_list_read_lock(); 1940 resource = vfsp->vfs_resource; 1941 refstr_hold(resource); 1942 vfs_list_unlock(); 1943 1944 return (resource); 1945 } 1946 1947 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1948 1949 refstr_t * 1950 vfs_getmntpoint(const struct vfs *vfsp) 1951 { 1952 refstr_t *mntpt; 1953 1954 vfs_list_read_lock(); 1955 mntpt = vfsp->vfs_mntpt; 1956 refstr_hold(mntpt); 1957 vfs_list_unlock(); 1958 1959 return (mntpt); 1960 } 1961 1962 /* 1963 * Create an empty options table with enough empty slots to hold all 1964 * The options in the options string passed as an argument. 1965 * Potentially prepend another options table. 1966 * 1967 * Note: caller is responsible for locking the vfs list, if needed, 1968 * to protect mops. 1969 */ 1970 static void 1971 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1972 const mntopts_t *mtmpl) 1973 { 1974 const char *s = opts; 1975 uint_t count; 1976 1977 if (opts == NULL || *opts == '\0') { 1978 count = 0; 1979 } else { 1980 count = 1; 1981 1982 /* 1983 * Count number of options in the string 1984 */ 1985 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1986 count++; 1987 s++; 1988 } 1989 } 1990 vfs_copyopttbl_extend(mtmpl, mops, count); 1991 } 1992 1993 /* 1994 * Create an empty options table with enough empty slots to hold all 1995 * The options in the options string passed as an argument. 1996 * 1997 * This function is *not* for general use by filesystems. 1998 * 1999 * Note: caller is responsible for locking the vfs list, if needed, 2000 * to protect mops. 2001 */ 2002 void 2003 vfs_createopttbl(mntopts_t *mops, const char *opts) 2004 { 2005 vfs_createopttbl_extend(mops, opts, NULL); 2006 } 2007 2008 2009 /* 2010 * Swap two mount options tables 2011 */ 2012 static void 2013 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2014 { 2015 uint_t tmpcnt; 2016 mntopt_t *tmplist; 2017 2018 tmpcnt = optbl2->mo_count; 2019 tmplist = optbl2->mo_list; 2020 optbl2->mo_count = optbl1->mo_count; 2021 optbl2->mo_list = optbl1->mo_list; 2022 optbl1->mo_count = tmpcnt; 2023 optbl1->mo_list = tmplist; 2024 } 2025 2026 static void 2027 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2028 { 2029 vfs_list_lock(); 2030 vfs_swapopttbl_nolock(optbl1, optbl2); 2031 vfs_mnttab_modtimeupd(); 2032 vfs_list_unlock(); 2033 } 2034 2035 static char ** 2036 vfs_copycancelopt_extend(char **const moc, int extend) 2037 { 2038 int i = 0; 2039 int j; 2040 char **result; 2041 2042 if (moc != NULL) { 2043 for (; moc[i] != NULL; i++) 2044 /* count number of options to cancel */; 2045 } 2046 2047 if (i + extend == 0) 2048 return (NULL); 2049 2050 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2051 2052 for (j = 0; j < i; j++) { 2053 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2054 (void) strcpy(result[j], moc[j]); 2055 } 2056 for (; j <= i + extend; j++) 2057 result[j] = NULL; 2058 2059 return (result); 2060 } 2061 2062 static void 2063 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2064 { 2065 char *sp, *dp; 2066 2067 d->mo_flags = s->mo_flags; 2068 d->mo_data = s->mo_data; 2069 sp = s->mo_name; 2070 if (sp != NULL) { 2071 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2072 (void) strcpy(dp, sp); 2073 d->mo_name = dp; 2074 } else { 2075 d->mo_name = NULL; /* should never happen */ 2076 } 2077 2078 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2079 2080 sp = s->mo_arg; 2081 if (sp != NULL) { 2082 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2083 (void) strcpy(dp, sp); 2084 d->mo_arg = dp; 2085 } else { 2086 d->mo_arg = NULL; 2087 } 2088 } 2089 2090 /* 2091 * Copy a mount options table, possibly allocating some spare 2092 * slots at the end. It is permissible to copy_extend the NULL table. 2093 */ 2094 static void 2095 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2096 { 2097 uint_t i, count; 2098 mntopt_t *motbl; 2099 2100 /* 2101 * Clear out any existing stuff in the options table being initialized 2102 */ 2103 vfs_freeopttbl(dmo); 2104 count = (smo == NULL) ? 0 : smo->mo_count; 2105 if ((count + extra) == 0) /* nothing to do */ 2106 return; 2107 dmo->mo_count = count + extra; 2108 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2109 dmo->mo_list = motbl; 2110 for (i = 0; i < count; i++) { 2111 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2112 } 2113 for (i = count; i < count + extra; i++) { 2114 motbl[i].mo_flags = MO_EMPTY; 2115 } 2116 } 2117 2118 /* 2119 * Copy a mount options table. 2120 * 2121 * This function is *not* for general use by filesystems. 2122 * 2123 * Note: caller is responsible for locking the vfs list, if needed, 2124 * to protect smo and dmo. 2125 */ 2126 void 2127 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2128 { 2129 vfs_copyopttbl_extend(smo, dmo, 0); 2130 } 2131 2132 static char ** 2133 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2134 { 2135 int c1 = 0; 2136 int c2 = 0; 2137 char **result; 2138 char **sp1, **sp2, **dp; 2139 2140 /* 2141 * First we count both lists of cancel options. 2142 * If either is NULL or has no elements, we return a copy of 2143 * the other. 2144 */ 2145 if (mop1->mo_cancel != NULL) { 2146 for (; mop1->mo_cancel[c1] != NULL; c1++) 2147 /* count cancel options in mop1 */; 2148 } 2149 2150 if (c1 == 0) 2151 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2152 2153 if (mop2->mo_cancel != NULL) { 2154 for (; mop2->mo_cancel[c2] != NULL; c2++) 2155 /* count cancel options in mop2 */; 2156 } 2157 2158 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2159 2160 if (c2 == 0) 2161 return (result); 2162 2163 /* 2164 * When we get here, we've got two sets of cancel options; 2165 * we need to merge the two sets. We know that the result 2166 * array has "c1+c2+1" entries and in the end we might shrink 2167 * it. 2168 * Result now has a copy of the c1 entries from mop1; we'll 2169 * now lookup all the entries of mop2 in mop1 and copy it if 2170 * it is unique. 2171 * This operation is O(n^2) but it's only called once per 2172 * filesystem per duplicate option. This is a situation 2173 * which doesn't arise with the filesystems in ON and 2174 * n is generally 1. 2175 */ 2176 2177 dp = &result[c1]; 2178 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2179 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2180 if (strcmp(*sp1, *sp2) == 0) 2181 break; 2182 } 2183 if (*sp1 == NULL) { 2184 /* 2185 * Option *sp2 not found in mop1, so copy it. 2186 * The calls to vfs_copycancelopt_extend() 2187 * guarantee that there's enough room. 2188 */ 2189 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2190 (void) strcpy(*dp++, *sp2); 2191 } 2192 } 2193 if (dp != &result[c1+c2]) { 2194 size_t bytes = (dp - result + 1) * sizeof (char *); 2195 char **nres = kmem_alloc(bytes, KM_SLEEP); 2196 2197 bcopy(result, nres, bytes); 2198 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2199 result = nres; 2200 } 2201 return (result); 2202 } 2203 2204 /* 2205 * Merge two mount option tables (outer and inner) into one. This is very 2206 * similar to "merging" global variables and automatic variables in C. 2207 * 2208 * This isn't (and doesn't have to be) fast. 2209 * 2210 * This function is *not* for general use by filesystems. 2211 * 2212 * Note: caller is responsible for locking the vfs list, if needed, 2213 * to protect omo, imo & dmo. 2214 */ 2215 void 2216 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2217 { 2218 uint_t i, count; 2219 mntopt_t *mop, *motbl; 2220 uint_t freeidx; 2221 2222 /* 2223 * First determine how much space we need to allocate. 2224 */ 2225 count = omo->mo_count; 2226 for (i = 0; i < imo->mo_count; i++) { 2227 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2228 continue; 2229 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2230 count++; 2231 } 2232 ASSERT(count >= omo->mo_count && 2233 count <= omo->mo_count + imo->mo_count); 2234 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2235 for (i = 0; i < omo->mo_count; i++) 2236 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2237 freeidx = omo->mo_count; 2238 for (i = 0; i < imo->mo_count; i++) { 2239 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2240 continue; 2241 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2242 char **newcanp; 2243 uint_t index = mop - omo->mo_list; 2244 2245 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2246 2247 vfs_freeopt(&motbl[index]); 2248 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2249 2250 vfs_freecancelopt(motbl[index].mo_cancel); 2251 motbl[index].mo_cancel = newcanp; 2252 } else { 2253 /* 2254 * If it's a new option, just copy it over to the first 2255 * free location. 2256 */ 2257 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2258 } 2259 } 2260 dmo->mo_count = count; 2261 dmo->mo_list = motbl; 2262 } 2263 2264 /* 2265 * Functions to set and clear mount options in a mount options table. 2266 */ 2267 2268 /* 2269 * Clear a mount option, if it exists. 2270 * 2271 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2272 * the vfs list. 2273 */ 2274 static void 2275 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2276 { 2277 struct mntopt *mop; 2278 uint_t i, count; 2279 2280 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2281 2282 count = mops->mo_count; 2283 for (i = 0; i < count; i++) { 2284 mop = &mops->mo_list[i]; 2285 2286 if (mop->mo_flags & MO_EMPTY) 2287 continue; 2288 if (strcmp(opt, mop->mo_name)) 2289 continue; 2290 mop->mo_flags &= ~MO_SET; 2291 if (mop->mo_arg != NULL) { 2292 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2293 } 2294 mop->mo_arg = NULL; 2295 if (update_mnttab) 2296 vfs_mnttab_modtimeupd(); 2297 break; 2298 } 2299 } 2300 2301 void 2302 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2303 { 2304 int gotlock = 0; 2305 2306 if (VFS_ON_LIST(vfsp)) { 2307 gotlock = 1; 2308 vfs_list_lock(); 2309 } 2310 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2311 if (gotlock) 2312 vfs_list_unlock(); 2313 } 2314 2315 2316 /* 2317 * Set a mount option on. If it's not found in the table, it's silently 2318 * ignored. If the option has MO_IGNORE set, it is still set unless the 2319 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2320 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2321 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2322 * MO_EMPTY set is created as the option passed in. 2323 * 2324 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2325 * the vfs list. 2326 */ 2327 static void 2328 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2329 const char *arg, int flags, int update_mnttab) 2330 { 2331 mntopt_t *mop; 2332 uint_t i, count; 2333 char *sp; 2334 2335 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2336 2337 if (flags & VFS_CREATEOPT) { 2338 if (vfs_hasopt(mops, opt) != NULL) { 2339 flags &= ~VFS_CREATEOPT; 2340 } 2341 } 2342 count = mops->mo_count; 2343 for (i = 0; i < count; i++) { 2344 mop = &mops->mo_list[i]; 2345 2346 if (mop->mo_flags & MO_EMPTY) { 2347 if ((flags & VFS_CREATEOPT) == 0) 2348 continue; 2349 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2350 (void) strcpy(sp, opt); 2351 mop->mo_name = sp; 2352 if (arg != NULL) 2353 mop->mo_flags = MO_HASVALUE; 2354 else 2355 mop->mo_flags = 0; 2356 } else if (strcmp(opt, mop->mo_name)) { 2357 continue; 2358 } 2359 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2360 break; 2361 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2362 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2363 (void) strcpy(sp, arg); 2364 } else { 2365 sp = NULL; 2366 } 2367 if (mop->mo_arg != NULL) 2368 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2369 mop->mo_arg = sp; 2370 if (flags & VFS_DISPLAY) 2371 mop->mo_flags &= ~MO_NODISPLAY; 2372 if (flags & VFS_NODISPLAY) 2373 mop->mo_flags |= MO_NODISPLAY; 2374 mop->mo_flags |= MO_SET; 2375 if (mop->mo_cancel != NULL) { 2376 char **cp; 2377 2378 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2379 vfs_clearmntopt_nolock(mops, *cp, 0); 2380 } 2381 if (update_mnttab) 2382 vfs_mnttab_modtimeupd(); 2383 break; 2384 } 2385 } 2386 2387 void 2388 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2389 { 2390 int gotlock = 0; 2391 2392 if (VFS_ON_LIST(vfsp)) { 2393 gotlock = 1; 2394 vfs_list_lock(); 2395 } 2396 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2397 if (gotlock) 2398 vfs_list_unlock(); 2399 } 2400 2401 2402 /* 2403 * Add a "tag" option to a mounted file system's options list. 2404 * 2405 * Note: caller is responsible for locking the vfs list, if needed, 2406 * to protect mops. 2407 */ 2408 static mntopt_t * 2409 vfs_addtag(mntopts_t *mops, const char *tag) 2410 { 2411 uint_t count; 2412 mntopt_t *mop, *motbl; 2413 2414 count = mops->mo_count + 1; 2415 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2416 if (mops->mo_count) { 2417 size_t len = (count - 1) * sizeof (mntopt_t); 2418 2419 bcopy(mops->mo_list, motbl, len); 2420 kmem_free(mops->mo_list, len); 2421 } 2422 mops->mo_count = count; 2423 mops->mo_list = motbl; 2424 mop = &motbl[count - 1]; 2425 mop->mo_flags = MO_TAG; 2426 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2427 (void) strcpy(mop->mo_name, tag); 2428 return (mop); 2429 } 2430 2431 /* 2432 * Allow users to set arbitrary "tags" in a vfs's mount options. 2433 * Broader use within the kernel is discouraged. 2434 */ 2435 int 2436 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2437 cred_t *cr) 2438 { 2439 vfs_t *vfsp; 2440 mntopts_t *mops; 2441 mntopt_t *mop; 2442 int found = 0; 2443 dev_t dev = makedevice(major, minor); 2444 int err = 0; 2445 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2446 2447 /* 2448 * Find the desired mounted file system 2449 */ 2450 vfs_list_lock(); 2451 vfsp = rootvfs; 2452 do { 2453 if (vfsp->vfs_dev == dev && 2454 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2455 found = 1; 2456 break; 2457 } 2458 vfsp = vfsp->vfs_next; 2459 } while (vfsp != rootvfs); 2460 2461 if (!found) { 2462 err = EINVAL; 2463 goto out; 2464 } 2465 err = secpolicy_fs_config(cr, vfsp); 2466 if (err != 0) 2467 goto out; 2468 2469 mops = &vfsp->vfs_mntopts; 2470 /* 2471 * Add tag if it doesn't already exist 2472 */ 2473 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2474 int len; 2475 2476 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2477 len = strlen(buf); 2478 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2479 err = ENAMETOOLONG; 2480 goto out; 2481 } 2482 mop = vfs_addtag(mops, tag); 2483 } 2484 if ((mop->mo_flags & MO_TAG) == 0) { 2485 err = EINVAL; 2486 goto out; 2487 } 2488 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2489 out: 2490 vfs_list_unlock(); 2491 kmem_free(buf, MAX_MNTOPT_STR); 2492 return (err); 2493 } 2494 2495 /* 2496 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2497 * Broader use within the kernel is discouraged. 2498 */ 2499 int 2500 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2501 cred_t *cr) 2502 { 2503 vfs_t *vfsp; 2504 mntopt_t *mop; 2505 int found = 0; 2506 dev_t dev = makedevice(major, minor); 2507 int err = 0; 2508 2509 /* 2510 * Find the desired mounted file system 2511 */ 2512 vfs_list_lock(); 2513 vfsp = rootvfs; 2514 do { 2515 if (vfsp->vfs_dev == dev && 2516 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2517 found = 1; 2518 break; 2519 } 2520 vfsp = vfsp->vfs_next; 2521 } while (vfsp != rootvfs); 2522 2523 if (!found) { 2524 err = EINVAL; 2525 goto out; 2526 } 2527 err = secpolicy_fs_config(cr, vfsp); 2528 if (err != 0) 2529 goto out; 2530 2531 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2532 err = EINVAL; 2533 goto out; 2534 } 2535 if ((mop->mo_flags & MO_TAG) == 0) { 2536 err = EINVAL; 2537 goto out; 2538 } 2539 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2540 out: 2541 vfs_list_unlock(); 2542 return (err); 2543 } 2544 2545 /* 2546 * Function to parse an option string and fill in a mount options table. 2547 * Unknown options are silently ignored. The input option string is modified 2548 * by replacing separators with nulls. If the create flag is set, options 2549 * not found in the table are just added on the fly. The table must have 2550 * an option slot marked MO_EMPTY to add an option on the fly. 2551 * 2552 * This function is *not* for general use by filesystems. 2553 * 2554 * Note: caller is responsible for locking the vfs list, if needed, 2555 * to protect mops.. 2556 */ 2557 void 2558 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2559 { 2560 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2561 int setflg = VFS_NOFORCEOPT; 2562 2563 if (osp == NULL) 2564 return; 2565 while (*s != '\0') { 2566 p = strchr(s, ','); /* find next option */ 2567 if (p == NULL) { 2568 cp = NULL; 2569 p = s + strlen(s); 2570 } else { 2571 cp = p; /* save location of comma */ 2572 *p++ = '\0'; /* mark end and point to next option */ 2573 } 2574 nextop = p; 2575 p = strchr(s, '='); /* look for value */ 2576 if (p == NULL) { 2577 valp = NULL; /* no value supplied */ 2578 } else { 2579 ep = p; /* save location of equals */ 2580 *p++ = '\0'; /* end option and point to value */ 2581 valp = p; 2582 } 2583 /* 2584 * set option into options table 2585 */ 2586 if (create) 2587 setflg |= VFS_CREATEOPT; 2588 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2589 if (cp != NULL) 2590 *cp = ','; /* restore the comma */ 2591 if (valp != NULL) 2592 *ep = '='; /* restore the equals */ 2593 s = nextop; 2594 } 2595 } 2596 2597 /* 2598 * Function to inquire if an option exists in a mount options table. 2599 * Returns a pointer to the option if it exists, else NULL. 2600 * 2601 * This function is *not* for general use by filesystems. 2602 * 2603 * Note: caller is responsible for locking the vfs list, if needed, 2604 * to protect mops. 2605 */ 2606 struct mntopt * 2607 vfs_hasopt(const mntopts_t *mops, const char *opt) 2608 { 2609 struct mntopt *mop; 2610 uint_t i, count; 2611 2612 count = mops->mo_count; 2613 for (i = 0; i < count; i++) { 2614 mop = &mops->mo_list[i]; 2615 2616 if (mop->mo_flags & MO_EMPTY) 2617 continue; 2618 if (strcmp(opt, mop->mo_name) == 0) 2619 return (mop); 2620 } 2621 return (NULL); 2622 } 2623 2624 /* 2625 * Function to inquire if an option is set in a mount options table. 2626 * Returns non-zero if set and fills in the arg pointer with a pointer to 2627 * the argument string or NULL if there is no argument string. 2628 */ 2629 static int 2630 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2631 { 2632 struct mntopt *mop; 2633 uint_t i, count; 2634 2635 count = mops->mo_count; 2636 for (i = 0; i < count; i++) { 2637 mop = &mops->mo_list[i]; 2638 2639 if (mop->mo_flags & MO_EMPTY) 2640 continue; 2641 if (strcmp(opt, mop->mo_name)) 2642 continue; 2643 if ((mop->mo_flags & MO_SET) == 0) 2644 return (0); 2645 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2646 *argp = mop->mo_arg; 2647 return (1); 2648 } 2649 return (0); 2650 } 2651 2652 2653 int 2654 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2655 { 2656 int ret; 2657 2658 vfs_list_read_lock(); 2659 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2660 vfs_list_unlock(); 2661 return (ret); 2662 } 2663 2664 2665 /* 2666 * Construct a comma separated string of the options set in the given 2667 * mount table, return the string in the given buffer. Return non-zero if 2668 * the buffer would overflow. 2669 * 2670 * This function is *not* for general use by filesystems. 2671 * 2672 * Note: caller is responsible for locking the vfs list, if needed, 2673 * to protect mp. 2674 */ 2675 int 2676 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2677 { 2678 char *cp; 2679 uint_t i; 2680 2681 buf[0] = '\0'; 2682 cp = buf; 2683 for (i = 0; i < mp->mo_count; i++) { 2684 struct mntopt *mop; 2685 2686 mop = &mp->mo_list[i]; 2687 if (mop->mo_flags & MO_SET) { 2688 int optlen, comma = 0; 2689 2690 if (buf[0] != '\0') 2691 comma = 1; 2692 optlen = strlen(mop->mo_name); 2693 if (strlen(buf) + comma + optlen + 1 > len) 2694 goto err; 2695 if (comma) 2696 *cp++ = ','; 2697 (void) strcpy(cp, mop->mo_name); 2698 cp += optlen; 2699 /* 2700 * Append option value if there is one 2701 */ 2702 if (mop->mo_arg != NULL) { 2703 int arglen; 2704 2705 arglen = strlen(mop->mo_arg); 2706 if (strlen(buf) + arglen + 2 > len) 2707 goto err; 2708 *cp++ = '='; 2709 (void) strcpy(cp, mop->mo_arg); 2710 cp += arglen; 2711 } 2712 } 2713 } 2714 return (0); 2715 err: 2716 return (EOVERFLOW); 2717 } 2718 2719 static void 2720 vfs_freecancelopt(char **moc) 2721 { 2722 if (moc != NULL) { 2723 int ccnt = 0; 2724 char **cp; 2725 2726 for (cp = moc; *cp != NULL; cp++) { 2727 kmem_free(*cp, strlen(*cp) + 1); 2728 ccnt++; 2729 } 2730 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2731 } 2732 } 2733 2734 static void 2735 vfs_freeopt(mntopt_t *mop) 2736 { 2737 if (mop->mo_name != NULL) 2738 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2739 2740 vfs_freecancelopt(mop->mo_cancel); 2741 2742 if (mop->mo_arg != NULL) 2743 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2744 } 2745 2746 /* 2747 * Free a mount options table 2748 * 2749 * This function is *not* for general use by filesystems. 2750 * 2751 * Note: caller is responsible for locking the vfs list, if needed, 2752 * to protect mp. 2753 */ 2754 void 2755 vfs_freeopttbl(mntopts_t *mp) 2756 { 2757 uint_t i, count; 2758 2759 count = mp->mo_count; 2760 for (i = 0; i < count; i++) { 2761 vfs_freeopt(&mp->mo_list[i]); 2762 } 2763 if (count) { 2764 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2765 mp->mo_count = 0; 2766 mp->mo_list = NULL; 2767 } 2768 } 2769 2770 2771 /* ARGSUSED */ 2772 static int 2773 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2774 caller_context_t *ct) 2775 { 2776 return (0); 2777 } 2778 2779 /* ARGSUSED */ 2780 static int 2781 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2782 caller_context_t *ct) 2783 { 2784 return (0); 2785 } 2786 2787 /* 2788 * The dummy vnode is currently used only by file events notification 2789 * module which is just interested in the timestamps. 2790 */ 2791 /* ARGSUSED */ 2792 static int 2793 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2794 caller_context_t *ct) 2795 { 2796 bzero(vap, sizeof (vattr_t)); 2797 vap->va_type = VREG; 2798 vap->va_nlink = 1; 2799 vap->va_ctime = vfs_mnttab_ctime; 2800 /* 2801 * it is ok to just copy mtime as the time will be monotonically 2802 * increasing. 2803 */ 2804 vap->va_mtime = vfs_mnttab_mtime; 2805 vap->va_atime = vap->va_mtime; 2806 return (0); 2807 } 2808 2809 static void 2810 vfs_mnttabvp_setup(void) 2811 { 2812 vnode_t *tvp; 2813 vnodeops_t *vfs_mntdummyvnops; 2814 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2815 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2816 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2817 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2818 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2819 NULL, NULL 2820 }; 2821 2822 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2823 &vfs_mntdummyvnops) != 0) { 2824 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2825 /* Shouldn't happen, but not bad enough to panic */ 2826 return; 2827 } 2828 2829 /* 2830 * A global dummy vnode is allocated to represent mntfs files. 2831 * The mntfs file (/etc/mnttab) can be monitored for file events 2832 * and receive an event when mnttab changes. Dummy VOP calls 2833 * will be made on this vnode. The file events notification module 2834 * intercepts this vnode and delivers relevant events. 2835 */ 2836 tvp = vn_alloc(KM_SLEEP); 2837 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2838 vn_setops(tvp, vfs_mntdummyvnops); 2839 tvp->v_type = VREG; 2840 /* 2841 * The mnt dummy ops do not reference v_data. 2842 * No other module intercepting this vnode should either. 2843 * Just set it to point to itself. 2844 */ 2845 tvp->v_data = (caddr_t)tvp; 2846 tvp->v_vfsp = rootvfs; 2847 vfs_mntdummyvp = tvp; 2848 } 2849 2850 /* 2851 * performs fake read/write ops 2852 */ 2853 static void 2854 vfs_mnttab_rwop(int rw) 2855 { 2856 struct uio uio; 2857 struct iovec iov; 2858 char buf[1]; 2859 2860 if (vfs_mntdummyvp == NULL) 2861 return; 2862 2863 bzero(&uio, sizeof (uio)); 2864 bzero(&iov, sizeof (iov)); 2865 iov.iov_base = buf; 2866 iov.iov_len = 0; 2867 uio.uio_iov = &iov; 2868 uio.uio_iovcnt = 1; 2869 uio.uio_loffset = 0; 2870 uio.uio_segflg = UIO_SYSSPACE; 2871 uio.uio_resid = 0; 2872 if (rw) { 2873 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2874 } else { 2875 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2876 } 2877 } 2878 2879 /* 2880 * Generate a write operation. 2881 */ 2882 void 2883 vfs_mnttab_writeop(void) 2884 { 2885 vfs_mnttab_rwop(1); 2886 } 2887 2888 /* 2889 * Generate a read operation. 2890 */ 2891 void 2892 vfs_mnttab_readop(void) 2893 { 2894 vfs_mnttab_rwop(0); 2895 } 2896 2897 /* 2898 * Free any mnttab information recorded in the vfs struct. 2899 * The vfs must not be on the vfs list. 2900 */ 2901 static void 2902 vfs_freemnttab(struct vfs *vfsp) 2903 { 2904 ASSERT(!VFS_ON_LIST(vfsp)); 2905 2906 /* 2907 * Free device and mount point information 2908 */ 2909 if (vfsp->vfs_mntpt != NULL) { 2910 refstr_rele(vfsp->vfs_mntpt); 2911 vfsp->vfs_mntpt = NULL; 2912 } 2913 if (vfsp->vfs_resource != NULL) { 2914 refstr_rele(vfsp->vfs_resource); 2915 vfsp->vfs_resource = NULL; 2916 } 2917 /* 2918 * Now free mount options information 2919 */ 2920 vfs_freeopttbl(&vfsp->vfs_mntopts); 2921 } 2922 2923 /* 2924 * Return the last mnttab modification time 2925 */ 2926 void 2927 vfs_mnttab_modtime(timespec_t *ts) 2928 { 2929 ASSERT(RW_LOCK_HELD(&vfslist)); 2930 *ts = vfs_mnttab_mtime; 2931 } 2932 2933 /* 2934 * See if mnttab is changed 2935 */ 2936 void 2937 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2938 { 2939 int changed; 2940 2941 *phpp = (struct pollhead *)NULL; 2942 2943 /* 2944 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2945 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2946 * to not grab the vfs list lock because tv_sec is monotonically 2947 * increasing. 2948 */ 2949 2950 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2951 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2952 if (!changed) { 2953 *phpp = &vfs_pollhd; 2954 } 2955 } 2956 2957 /* Provide a unique and monotonically-increasing timestamp. */ 2958 void 2959 vfs_mono_time(timespec_t *ts) 2960 { 2961 static volatile hrtime_t hrt; /* The saved time. */ 2962 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2963 timespec_t newts; 2964 2965 /* 2966 * Try gethrestime() first, but be prepared to fabricate a sensible 2967 * answer at the first sign of any trouble. 2968 */ 2969 gethrestime(&newts); 2970 newhrt = ts2hrt(&newts); 2971 for (;;) { 2972 oldhrt = hrt; 2973 if (newhrt <= hrt) 2974 newhrt = hrt + 1; 2975 if (cas64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2976 break; 2977 } 2978 hrt2ts(newhrt, ts); 2979 } 2980 2981 /* 2982 * Update the mnttab modification time and wake up any waiters for 2983 * mnttab changes 2984 */ 2985 void 2986 vfs_mnttab_modtimeupd() 2987 { 2988 hrtime_t oldhrt, newhrt; 2989 2990 ASSERT(RW_WRITE_HELD(&vfslist)); 2991 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2992 gethrestime(&vfs_mnttab_mtime); 2993 newhrt = ts2hrt(&vfs_mnttab_mtime); 2994 if (oldhrt == (hrtime_t)0) 2995 vfs_mnttab_ctime = vfs_mnttab_mtime; 2996 /* 2997 * Attempt to provide unique mtime (like uniqtime but not). 2998 */ 2999 if (newhrt == oldhrt) { 3000 newhrt++; 3001 hrt2ts(newhrt, &vfs_mnttab_mtime); 3002 } 3003 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3004 vfs_mnttab_writeop(); 3005 } 3006 3007 int 3008 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3009 { 3010 vnode_t *coveredvp; 3011 int error; 3012 extern void teardown_vopstats(vfs_t *); 3013 3014 /* 3015 * Get covered vnode. This will be NULL if the vfs is not linked 3016 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3017 */ 3018 coveredvp = vfsp->vfs_vnodecovered; 3019 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3020 3021 /* 3022 * Purge all dnlc entries for this vfs. 3023 */ 3024 (void) dnlc_purge_vfsp(vfsp, 0); 3025 3026 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3027 if ((flag & MS_FORCE) == 0) 3028 (void) VFS_SYNC(vfsp, 0, cr); 3029 3030 /* 3031 * Lock the vfs to maintain fs status quo during unmount. This 3032 * has to be done after the sync because ufs_update tries to acquire 3033 * the vfs_reflock. 3034 */ 3035 vfs_lock_wait(vfsp); 3036 3037 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3038 vfs_unlock(vfsp); 3039 if (coveredvp != NULL) 3040 vn_vfsunlock(coveredvp); 3041 } else if (coveredvp != NULL) { 3042 teardown_vopstats(vfsp); 3043 /* 3044 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3045 * when it frees vfsp so we do a VN_HOLD() so we can 3046 * continue to use coveredvp afterwards. 3047 */ 3048 VN_HOLD(coveredvp); 3049 vfs_remove(vfsp); 3050 vn_vfsunlock(coveredvp); 3051 VN_RELE(coveredvp); 3052 } else { 3053 teardown_vopstats(vfsp); 3054 /* 3055 * Release the reference to vfs that is not linked 3056 * into the name space. 3057 */ 3058 vfs_unlock(vfsp); 3059 VFS_RELE(vfsp); 3060 } 3061 return (error); 3062 } 3063 3064 3065 /* 3066 * Vfs_unmountall() is called by uadmin() to unmount all 3067 * mounted file systems (except the root file system) during shutdown. 3068 * It follows the existing locking protocol when traversing the vfs list 3069 * to sync and unmount vfses. Even though there should be no 3070 * other thread running while the system is shutting down, it is prudent 3071 * to still follow the locking protocol. 3072 */ 3073 void 3074 vfs_unmountall(void) 3075 { 3076 struct vfs *vfsp; 3077 struct vfs *prev_vfsp = NULL; 3078 int error; 3079 3080 /* 3081 * Toss all dnlc entries now so that the per-vfs sync 3082 * and unmount operations don't have to slog through 3083 * a bunch of uninteresting vnodes over and over again. 3084 */ 3085 dnlc_purge(); 3086 3087 vfs_list_lock(); 3088 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3089 prev_vfsp = vfsp->vfs_prev; 3090 3091 if (vfs_lock(vfsp) != 0) 3092 continue; 3093 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3094 vfs_unlock(vfsp); 3095 if (error) 3096 continue; 3097 3098 vfs_list_unlock(); 3099 3100 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3101 (void) dounmount(vfsp, 0, CRED()); 3102 3103 /* 3104 * Since we dropped the vfslist lock above we must 3105 * verify that next_vfsp still exists, else start over. 3106 */ 3107 vfs_list_lock(); 3108 for (vfsp = rootvfs->vfs_prev; 3109 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3110 if (vfsp == prev_vfsp) 3111 break; 3112 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3113 prev_vfsp = rootvfs->vfs_prev; 3114 } 3115 vfs_list_unlock(); 3116 } 3117 3118 /* 3119 * Called to add an entry to the end of the vfs mount in progress list 3120 */ 3121 void 3122 vfs_addmip(dev_t dev, struct vfs *vfsp) 3123 { 3124 struct ipmnt *mipp; 3125 3126 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3127 mipp->mip_next = NULL; 3128 mipp->mip_dev = dev; 3129 mipp->mip_vfsp = vfsp; 3130 mutex_enter(&vfs_miplist_mutex); 3131 if (vfs_miplist_end != NULL) 3132 vfs_miplist_end->mip_next = mipp; 3133 else 3134 vfs_miplist = mipp; 3135 vfs_miplist_end = mipp; 3136 mutex_exit(&vfs_miplist_mutex); 3137 } 3138 3139 /* 3140 * Called to remove an entry from the mount in progress list 3141 * Either because the mount completed or it failed. 3142 */ 3143 void 3144 vfs_delmip(struct vfs *vfsp) 3145 { 3146 struct ipmnt *mipp, *mipprev; 3147 3148 mutex_enter(&vfs_miplist_mutex); 3149 mipprev = NULL; 3150 for (mipp = vfs_miplist; 3151 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3152 mipprev = mipp; 3153 } 3154 if (mipp == NULL) 3155 return; /* shouldn't happen */ 3156 if (mipp == vfs_miplist_end) 3157 vfs_miplist_end = mipprev; 3158 if (mipprev == NULL) 3159 vfs_miplist = mipp->mip_next; 3160 else 3161 mipprev->mip_next = mipp->mip_next; 3162 mutex_exit(&vfs_miplist_mutex); 3163 kmem_free(mipp, sizeof (struct ipmnt)); 3164 } 3165 3166 /* 3167 * vfs_add is called by a specific filesystem's mount routine to add 3168 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3169 * The vfs should already have been locked by the caller. 3170 * 3171 * coveredvp is NULL if this is the root. 3172 */ 3173 void 3174 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3175 { 3176 int newflag; 3177 3178 ASSERT(vfs_lock_held(vfsp)); 3179 VFS_HOLD(vfsp); 3180 newflag = vfsp->vfs_flag; 3181 if (mflag & MS_RDONLY) 3182 newflag |= VFS_RDONLY; 3183 else 3184 newflag &= ~VFS_RDONLY; 3185 if (mflag & MS_NOSUID) 3186 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3187 else 3188 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3189 if (mflag & MS_NOMNTTAB) 3190 newflag |= VFS_NOMNTTAB; 3191 else 3192 newflag &= ~VFS_NOMNTTAB; 3193 3194 if (coveredvp != NULL) { 3195 ASSERT(vn_vfswlock_held(coveredvp)); 3196 coveredvp->v_vfsmountedhere = vfsp; 3197 VN_HOLD(coveredvp); 3198 } 3199 vfsp->vfs_vnodecovered = coveredvp; 3200 vfsp->vfs_flag = newflag; 3201 3202 vfs_list_add(vfsp); 3203 } 3204 3205 /* 3206 * Remove a vfs from the vfs list, null out the pointer from the 3207 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3208 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3209 * reference to the vfs and to the covered vnode. 3210 * 3211 * Called from dounmount after it's confirmed with the file system 3212 * that the unmount is legal. 3213 */ 3214 void 3215 vfs_remove(struct vfs *vfsp) 3216 { 3217 vnode_t *vp; 3218 3219 ASSERT(vfs_lock_held(vfsp)); 3220 3221 /* 3222 * Can't unmount root. Should never happen because fs will 3223 * be busy. 3224 */ 3225 if (vfsp == rootvfs) 3226 panic("vfs_remove: unmounting root"); 3227 3228 vfs_list_remove(vfsp); 3229 3230 /* 3231 * Unhook from the file system name space. 3232 */ 3233 vp = vfsp->vfs_vnodecovered; 3234 ASSERT(vn_vfswlock_held(vp)); 3235 vp->v_vfsmountedhere = NULL; 3236 vfsp->vfs_vnodecovered = NULL; 3237 VN_RELE(vp); 3238 3239 /* 3240 * Release lock and wakeup anybody waiting. 3241 */ 3242 vfs_unlock(vfsp); 3243 VFS_RELE(vfsp); 3244 } 3245 3246 /* 3247 * Lock a filesystem to prevent access to it while mounting, 3248 * unmounting and syncing. Return EBUSY immediately if lock 3249 * can't be acquired. 3250 */ 3251 int 3252 vfs_lock(vfs_t *vfsp) 3253 { 3254 vn_vfslocks_entry_t *vpvfsentry; 3255 3256 vpvfsentry = vn_vfslocks_getlock(vfsp); 3257 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3258 return (0); 3259 3260 vn_vfslocks_rele(vpvfsentry); 3261 return (EBUSY); 3262 } 3263 3264 int 3265 vfs_rlock(vfs_t *vfsp) 3266 { 3267 vn_vfslocks_entry_t *vpvfsentry; 3268 3269 vpvfsentry = vn_vfslocks_getlock(vfsp); 3270 3271 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3272 return (0); 3273 3274 vn_vfslocks_rele(vpvfsentry); 3275 return (EBUSY); 3276 } 3277 3278 void 3279 vfs_lock_wait(vfs_t *vfsp) 3280 { 3281 vn_vfslocks_entry_t *vpvfsentry; 3282 3283 vpvfsentry = vn_vfslocks_getlock(vfsp); 3284 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3285 } 3286 3287 void 3288 vfs_rlock_wait(vfs_t *vfsp) 3289 { 3290 vn_vfslocks_entry_t *vpvfsentry; 3291 3292 vpvfsentry = vn_vfslocks_getlock(vfsp); 3293 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3294 } 3295 3296 /* 3297 * Unlock a locked filesystem. 3298 */ 3299 void 3300 vfs_unlock(vfs_t *vfsp) 3301 { 3302 vn_vfslocks_entry_t *vpvfsentry; 3303 3304 /* 3305 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3306 * And these changes should remain for the patch changes as it is. 3307 */ 3308 if (panicstr) 3309 return; 3310 3311 /* 3312 * ve_refcount needs to be dropped twice here. 3313 * 1. To release refernce after a call to vfs_locks_getlock() 3314 * 2. To release the reference from the locking routines like 3315 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3316 */ 3317 3318 vpvfsentry = vn_vfslocks_getlock(vfsp); 3319 vn_vfslocks_rele(vpvfsentry); 3320 3321 rwst_exit(&vpvfsentry->ve_lock); 3322 vn_vfslocks_rele(vpvfsentry); 3323 } 3324 3325 /* 3326 * Utility routine that allows a filesystem to construct its 3327 * fsid in "the usual way" - by munging some underlying dev_t and 3328 * the filesystem type number into the 64-bit fsid. Note that 3329 * this implicitly relies on dev_t persistence to make filesystem 3330 * id's persistent. 3331 * 3332 * There's nothing to prevent an individual fs from constructing its 3333 * fsid in a different way, and indeed they should. 3334 * 3335 * Since we want fsids to be 32-bit quantities (so that they can be 3336 * exported identically by either 32-bit or 64-bit APIs, as well as 3337 * the fact that fsid's are "known" to NFS), we compress the device 3338 * number given down to 32-bits, and panic if that isn't possible. 3339 */ 3340 void 3341 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3342 { 3343 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3344 panic("device number too big for fsid!"); 3345 fsi->val[1] = val; 3346 } 3347 3348 int 3349 vfs_lock_held(vfs_t *vfsp) 3350 { 3351 int held; 3352 vn_vfslocks_entry_t *vpvfsentry; 3353 3354 /* 3355 * vfs_lock_held will mimic sema_held behaviour 3356 * if panicstr is set. And these changes should remain 3357 * for the patch changes as it is. 3358 */ 3359 if (panicstr) 3360 return (1); 3361 3362 vpvfsentry = vn_vfslocks_getlock(vfsp); 3363 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3364 3365 vn_vfslocks_rele(vpvfsentry); 3366 return (held); 3367 } 3368 3369 struct _kthread * 3370 vfs_lock_owner(vfs_t *vfsp) 3371 { 3372 struct _kthread *owner; 3373 vn_vfslocks_entry_t *vpvfsentry; 3374 3375 /* 3376 * vfs_wlock_held will mimic sema_held behaviour 3377 * if panicstr is set. And these changes should remain 3378 * for the patch changes as it is. 3379 */ 3380 if (panicstr) 3381 return (NULL); 3382 3383 vpvfsentry = vn_vfslocks_getlock(vfsp); 3384 owner = rwst_owner(&vpvfsentry->ve_lock); 3385 3386 vn_vfslocks_rele(vpvfsentry); 3387 return (owner); 3388 } 3389 3390 /* 3391 * vfs list locking. 3392 * 3393 * Rather than manipulate the vfslist lock directly, we abstract into lock 3394 * and unlock routines to allow the locking implementation to be changed for 3395 * clustering. 3396 * 3397 * Whenever the vfs list is modified through its hash links, the overall list 3398 * lock must be obtained before locking the relevant hash bucket. But to see 3399 * whether a given vfs is on the list, it suffices to obtain the lock for the 3400 * hash bucket without getting the overall list lock. (See getvfs() below.) 3401 */ 3402 3403 void 3404 vfs_list_lock() 3405 { 3406 rw_enter(&vfslist, RW_WRITER); 3407 } 3408 3409 void 3410 vfs_list_read_lock() 3411 { 3412 rw_enter(&vfslist, RW_READER); 3413 } 3414 3415 void 3416 vfs_list_unlock() 3417 { 3418 rw_exit(&vfslist); 3419 } 3420 3421 /* 3422 * Low level worker routines for adding entries to and removing entries from 3423 * the vfs list. 3424 */ 3425 3426 static void 3427 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3428 { 3429 int vhno; 3430 struct vfs **hp; 3431 dev_t dev; 3432 3433 ASSERT(RW_WRITE_HELD(&vfslist)); 3434 3435 dev = expldev(vfsp->vfs_fsid.val[0]); 3436 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3437 3438 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3439 3440 /* 3441 * Link into the hash table, inserting it at the end, so that LOFS 3442 * with the same fsid as UFS (or other) file systems will not hide the 3443 * UFS. 3444 */ 3445 if (insert_at_head) { 3446 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3447 rvfs_list[vhno].rvfs_head = vfsp; 3448 } else { 3449 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3450 hp = &(*hp)->vfs_hash) 3451 continue; 3452 /* 3453 * hp now contains the address of the pointer to update 3454 * to effect the insertion. 3455 */ 3456 vfsp->vfs_hash = NULL; 3457 *hp = vfsp; 3458 } 3459 3460 rvfs_list[vhno].rvfs_len++; 3461 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3462 } 3463 3464 3465 static void 3466 vfs_hash_remove(struct vfs *vfsp) 3467 { 3468 int vhno; 3469 struct vfs *tvfsp; 3470 dev_t dev; 3471 3472 ASSERT(RW_WRITE_HELD(&vfslist)); 3473 3474 dev = expldev(vfsp->vfs_fsid.val[0]); 3475 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3476 3477 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3478 3479 /* 3480 * Remove from hash. 3481 */ 3482 if (rvfs_list[vhno].rvfs_head == vfsp) { 3483 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3484 rvfs_list[vhno].rvfs_len--; 3485 goto foundit; 3486 } 3487 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3488 tvfsp = tvfsp->vfs_hash) { 3489 if (tvfsp->vfs_hash == vfsp) { 3490 tvfsp->vfs_hash = vfsp->vfs_hash; 3491 rvfs_list[vhno].rvfs_len--; 3492 goto foundit; 3493 } 3494 } 3495 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3496 3497 foundit: 3498 3499 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3500 } 3501 3502 3503 void 3504 vfs_list_add(struct vfs *vfsp) 3505 { 3506 zone_t *zone; 3507 3508 /* 3509 * Typically, the vfs_t will have been created on behalf of the file 3510 * system in vfs_init, where it will have been provided with a 3511 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3512 * by an unbundled file system. We therefore check for such an example 3513 * before stamping the vfs_t with its creation time for the benefit of 3514 * mntfs. 3515 */ 3516 if (vfsp->vfs_implp == NULL) 3517 vfsimpl_setup(vfsp); 3518 vfs_mono_time(&vfsp->vfs_hrctime); 3519 3520 /* 3521 * The zone that owns the mount is the one that performed the mount. 3522 * Note that this isn't necessarily the same as the zone mounted into. 3523 * The corresponding zone_rele_ref() will be done when the vfs_t 3524 * is being free'd. 3525 */ 3526 vfsp->vfs_zone = curproc->p_zone; 3527 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3528 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3529 ZONE_REF_VFS); 3530 3531 /* 3532 * Find the zone mounted into, and put this mount on its vfs list. 3533 */ 3534 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3535 ASSERT(zone != NULL); 3536 /* 3537 * Special casing for the root vfs. This structure is allocated 3538 * statically and hooked onto rootvfs at link time. During the 3539 * vfs_mountroot call at system startup time, the root file system's 3540 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3541 * as argument. The code below must detect and handle this special 3542 * case. The only apparent justification for this special casing is 3543 * to ensure that the root file system appears at the head of the 3544 * list. 3545 * 3546 * XXX: I'm assuming that it's ok to do normal list locking when 3547 * adding the entry for the root file system (this used to be 3548 * done with no locks held). 3549 */ 3550 vfs_list_lock(); 3551 /* 3552 * Link into the vfs list proper. 3553 */ 3554 if (vfsp == &root) { 3555 /* 3556 * Assert: This vfs is already on the list as its first entry. 3557 * Thus, there's nothing to do. 3558 */ 3559 ASSERT(rootvfs == vfsp); 3560 /* 3561 * Add it to the head of the global zone's vfslist. 3562 */ 3563 ASSERT(zone == global_zone); 3564 ASSERT(zone->zone_vfslist == NULL); 3565 zone->zone_vfslist = vfsp; 3566 } else { 3567 /* 3568 * Link to end of list using vfs_prev (as rootvfs is now a 3569 * doubly linked circular list) so list is in mount order for 3570 * mnttab use. 3571 */ 3572 rootvfs->vfs_prev->vfs_next = vfsp; 3573 vfsp->vfs_prev = rootvfs->vfs_prev; 3574 rootvfs->vfs_prev = vfsp; 3575 vfsp->vfs_next = rootvfs; 3576 3577 /* 3578 * Do it again for the zone-private list (which may be NULL). 3579 */ 3580 if (zone->zone_vfslist == NULL) { 3581 ASSERT(zone != global_zone); 3582 zone->zone_vfslist = vfsp; 3583 } else { 3584 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3585 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3586 zone->zone_vfslist->vfs_zone_prev = vfsp; 3587 vfsp->vfs_zone_next = zone->zone_vfslist; 3588 } 3589 } 3590 3591 /* 3592 * Link into the hash table, inserting it at the end, so that LOFS 3593 * with the same fsid as UFS (or other) file systems will not hide 3594 * the UFS. 3595 */ 3596 vfs_hash_add(vfsp, 0); 3597 3598 /* 3599 * update the mnttab modification time 3600 */ 3601 vfs_mnttab_modtimeupd(); 3602 vfs_list_unlock(); 3603 zone_rele(zone); 3604 } 3605 3606 void 3607 vfs_list_remove(struct vfs *vfsp) 3608 { 3609 zone_t *zone; 3610 3611 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3612 ASSERT(zone != NULL); 3613 /* 3614 * Callers are responsible for preventing attempts to unmount the 3615 * root. 3616 */ 3617 ASSERT(vfsp != rootvfs); 3618 3619 vfs_list_lock(); 3620 3621 /* 3622 * Remove from hash. 3623 */ 3624 vfs_hash_remove(vfsp); 3625 3626 /* 3627 * Remove from vfs list. 3628 */ 3629 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3630 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3631 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3632 3633 /* 3634 * Remove from zone-specific vfs list. 3635 */ 3636 if (zone->zone_vfslist == vfsp) 3637 zone->zone_vfslist = vfsp->vfs_zone_next; 3638 3639 if (vfsp->vfs_zone_next == vfsp) { 3640 ASSERT(vfsp->vfs_zone_prev == vfsp); 3641 ASSERT(zone->zone_vfslist == vfsp); 3642 zone->zone_vfslist = NULL; 3643 } 3644 3645 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3646 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3647 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3648 3649 /* 3650 * update the mnttab modification time 3651 */ 3652 vfs_mnttab_modtimeupd(); 3653 vfs_list_unlock(); 3654 zone_rele(zone); 3655 } 3656 3657 struct vfs * 3658 getvfs(fsid_t *fsid) 3659 { 3660 struct vfs *vfsp; 3661 int val0 = fsid->val[0]; 3662 int val1 = fsid->val[1]; 3663 dev_t dev = expldev(val0); 3664 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3665 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3666 3667 mutex_enter(hmp); 3668 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3669 if (vfsp->vfs_fsid.val[0] == val0 && 3670 vfsp->vfs_fsid.val[1] == val1) { 3671 VFS_HOLD(vfsp); 3672 mutex_exit(hmp); 3673 return (vfsp); 3674 } 3675 } 3676 mutex_exit(hmp); 3677 return (NULL); 3678 } 3679 3680 /* 3681 * Search the vfs mount in progress list for a specified device/vfs entry. 3682 * Returns 0 if the first entry in the list that the device matches has the 3683 * given vfs pointer as well. If the device matches but a different vfs 3684 * pointer is encountered in the list before the given vfs pointer then 3685 * a 1 is returned. 3686 */ 3687 3688 int 3689 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3690 { 3691 int retval = 0; 3692 struct ipmnt *mipp; 3693 3694 mutex_enter(&vfs_miplist_mutex); 3695 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3696 if (mipp->mip_dev == dev) { 3697 if (mipp->mip_vfsp != vfsp) 3698 retval = 1; 3699 break; 3700 } 3701 } 3702 mutex_exit(&vfs_miplist_mutex); 3703 return (retval); 3704 } 3705 3706 /* 3707 * Search the vfs list for a specified device. Returns 1, if entry is found 3708 * or 0 if no suitable entry is found. 3709 */ 3710 3711 int 3712 vfs_devismounted(dev_t dev) 3713 { 3714 struct vfs *vfsp; 3715 int found; 3716 3717 vfs_list_read_lock(); 3718 vfsp = rootvfs; 3719 found = 0; 3720 do { 3721 if (vfsp->vfs_dev == dev) { 3722 found = 1; 3723 break; 3724 } 3725 vfsp = vfsp->vfs_next; 3726 } while (vfsp != rootvfs); 3727 3728 vfs_list_unlock(); 3729 return (found); 3730 } 3731 3732 /* 3733 * Search the vfs list for a specified device. Returns a pointer to it 3734 * or NULL if no suitable entry is found. The caller of this routine 3735 * is responsible for releasing the returned vfs pointer. 3736 */ 3737 struct vfs * 3738 vfs_dev2vfsp(dev_t dev) 3739 { 3740 struct vfs *vfsp; 3741 int found; 3742 3743 vfs_list_read_lock(); 3744 vfsp = rootvfs; 3745 found = 0; 3746 do { 3747 /* 3748 * The following could be made more efficient by making 3749 * the entire loop use vfs_zone_next if the call is from 3750 * a zone. The only callers, however, ustat(2) and 3751 * umount2(2), don't seem to justify the added 3752 * complexity at present. 3753 */ 3754 if (vfsp->vfs_dev == dev && 3755 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3756 curproc->p_zone)) { 3757 VFS_HOLD(vfsp); 3758 found = 1; 3759 break; 3760 } 3761 vfsp = vfsp->vfs_next; 3762 } while (vfsp != rootvfs); 3763 vfs_list_unlock(); 3764 return (found ? vfsp: NULL); 3765 } 3766 3767 /* 3768 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3769 * or NULL if no suitable entry is found. The caller of this routine 3770 * is responsible for releasing the returned vfs pointer. 3771 * 3772 * Note that if multiple mntpoints match, the last one matching is 3773 * returned in an attempt to return the "top" mount when overlay 3774 * mounts are covering the same mount point. This is accomplished by starting 3775 * at the end of the list and working our way backwards, stopping at the first 3776 * matching mount. 3777 */ 3778 struct vfs * 3779 vfs_mntpoint2vfsp(const char *mp) 3780 { 3781 struct vfs *vfsp; 3782 struct vfs *retvfsp = NULL; 3783 zone_t *zone = curproc->p_zone; 3784 struct vfs *list; 3785 3786 vfs_list_read_lock(); 3787 if (getzoneid() == GLOBAL_ZONEID) { 3788 /* 3789 * The global zone may see filesystems in any zone. 3790 */ 3791 vfsp = rootvfs->vfs_prev; 3792 do { 3793 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3794 retvfsp = vfsp; 3795 break; 3796 } 3797 vfsp = vfsp->vfs_prev; 3798 } while (vfsp != rootvfs->vfs_prev); 3799 } else if ((list = zone->zone_vfslist) != NULL) { 3800 const char *mntpt; 3801 3802 vfsp = list->vfs_zone_prev; 3803 do { 3804 mntpt = refstr_value(vfsp->vfs_mntpt); 3805 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3806 if (strcmp(mntpt, mp) == 0) { 3807 retvfsp = vfsp; 3808 break; 3809 } 3810 vfsp = vfsp->vfs_zone_prev; 3811 } while (vfsp != list->vfs_zone_prev); 3812 } 3813 if (retvfsp) 3814 VFS_HOLD(retvfsp); 3815 vfs_list_unlock(); 3816 return (retvfsp); 3817 } 3818 3819 /* 3820 * Search the vfs list for a specified vfsops. 3821 * if vfs entry is found then return 1, else 0. 3822 */ 3823 int 3824 vfs_opsinuse(vfsops_t *ops) 3825 { 3826 struct vfs *vfsp; 3827 int found; 3828 3829 vfs_list_read_lock(); 3830 vfsp = rootvfs; 3831 found = 0; 3832 do { 3833 if (vfs_getops(vfsp) == ops) { 3834 found = 1; 3835 break; 3836 } 3837 vfsp = vfsp->vfs_next; 3838 } while (vfsp != rootvfs); 3839 vfs_list_unlock(); 3840 return (found); 3841 } 3842 3843 /* 3844 * Allocate an entry in vfssw for a file system type 3845 */ 3846 struct vfssw * 3847 allocate_vfssw(const char *type) 3848 { 3849 struct vfssw *vswp; 3850 3851 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3852 /* 3853 * The vfssw table uses the empty string to identify an 3854 * available entry; we cannot add any type which has 3855 * a leading NUL. The string length is limited to 3856 * the size of the st_fstype array in struct stat. 3857 */ 3858 return (NULL); 3859 } 3860 3861 ASSERT(VFSSW_WRITE_LOCKED()); 3862 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3863 if (!ALLOCATED_VFSSW(vswp)) { 3864 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3865 (void) strcpy(vswp->vsw_name, type); 3866 ASSERT(vswp->vsw_count == 0); 3867 vswp->vsw_count = 1; 3868 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3869 return (vswp); 3870 } 3871 return (NULL); 3872 } 3873 3874 /* 3875 * Impose additional layer of translation between vfstype names 3876 * and module names in the filesystem. 3877 */ 3878 static const char * 3879 vfs_to_modname(const char *vfstype) 3880 { 3881 if (strcmp(vfstype, "proc") == 0) { 3882 vfstype = "procfs"; 3883 } else if (strcmp(vfstype, "fd") == 0) { 3884 vfstype = "fdfs"; 3885 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3886 vfstype = "nfs"; 3887 } 3888 3889 return (vfstype); 3890 } 3891 3892 /* 3893 * Find a vfssw entry given a file system type name. 3894 * Try to autoload the filesystem if it's not found. 3895 * If it's installed, return the vfssw locked to prevent unloading. 3896 */ 3897 struct vfssw * 3898 vfs_getvfssw(const char *type) 3899 { 3900 struct vfssw *vswp; 3901 const char *modname; 3902 3903 RLOCK_VFSSW(); 3904 vswp = vfs_getvfsswbyname(type); 3905 modname = vfs_to_modname(type); 3906 3907 if (rootdir == NULL) { 3908 /* 3909 * If we haven't yet loaded the root file system, then our 3910 * _init won't be called until later. Allocate vfssw entry, 3911 * because mod_installfs won't be called. 3912 */ 3913 if (vswp == NULL) { 3914 RUNLOCK_VFSSW(); 3915 WLOCK_VFSSW(); 3916 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3917 if ((vswp = allocate_vfssw(type)) == NULL) { 3918 WUNLOCK_VFSSW(); 3919 return (NULL); 3920 } 3921 } 3922 WUNLOCK_VFSSW(); 3923 RLOCK_VFSSW(); 3924 } 3925 if (!VFS_INSTALLED(vswp)) { 3926 RUNLOCK_VFSSW(); 3927 (void) modloadonly("fs", modname); 3928 } else 3929 RUNLOCK_VFSSW(); 3930 return (vswp); 3931 } 3932 3933 /* 3934 * Try to load the filesystem. Before calling modload(), we drop 3935 * our lock on the VFS switch table, and pick it up after the 3936 * module is loaded. However, there is a potential race: the 3937 * module could be unloaded after the call to modload() completes 3938 * but before we pick up the lock and drive on. Therefore, 3939 * we keep reloading the module until we've loaded the module 3940 * _and_ we have the lock on the VFS switch table. 3941 */ 3942 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3943 RUNLOCK_VFSSW(); 3944 if (modload("fs", modname) == -1) 3945 return (NULL); 3946 RLOCK_VFSSW(); 3947 if (vswp == NULL) 3948 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3949 break; 3950 } 3951 RUNLOCK_VFSSW(); 3952 3953 return (vswp); 3954 } 3955 3956 /* 3957 * Find a vfssw entry given a file system type name. 3958 */ 3959 struct vfssw * 3960 vfs_getvfsswbyname(const char *type) 3961 { 3962 struct vfssw *vswp; 3963 3964 ASSERT(VFSSW_LOCKED()); 3965 if (type == NULL || *type == '\0') 3966 return (NULL); 3967 3968 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3969 if (strcmp(type, vswp->vsw_name) == 0) { 3970 vfs_refvfssw(vswp); 3971 return (vswp); 3972 } 3973 } 3974 3975 return (NULL); 3976 } 3977 3978 /* 3979 * Find a vfssw entry given a set of vfsops. 3980 */ 3981 struct vfssw * 3982 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3983 { 3984 struct vfssw *vswp; 3985 3986 RLOCK_VFSSW(); 3987 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3988 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3989 vfs_refvfssw(vswp); 3990 RUNLOCK_VFSSW(); 3991 return (vswp); 3992 } 3993 } 3994 RUNLOCK_VFSSW(); 3995 3996 return (NULL); 3997 } 3998 3999 /* 4000 * Reference a vfssw entry. 4001 */ 4002 void 4003 vfs_refvfssw(struct vfssw *vswp) 4004 { 4005 4006 mutex_enter(&vswp->vsw_lock); 4007 vswp->vsw_count++; 4008 mutex_exit(&vswp->vsw_lock); 4009 } 4010 4011 /* 4012 * Unreference a vfssw entry. 4013 */ 4014 void 4015 vfs_unrefvfssw(struct vfssw *vswp) 4016 { 4017 4018 mutex_enter(&vswp->vsw_lock); 4019 vswp->vsw_count--; 4020 mutex_exit(&vswp->vsw_lock); 4021 } 4022 4023 int sync_timeout = 30; /* timeout for syncing a page during panic */ 4024 int sync_timeleft; /* portion of sync_timeout remaining */ 4025 4026 static int sync_retries = 20; /* number of retries when not making progress */ 4027 static int sync_triesleft; /* portion of sync_retries remaining */ 4028 4029 static pgcnt_t old_pgcnt, new_pgcnt; 4030 static int new_bufcnt, old_bufcnt; 4031 4032 /* 4033 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4034 * complete. We wait by counting the number of dirty pages and buffers, 4035 * pushing them out using bio_busy() and page_busy(), and then counting again. 4036 * This routine is used during both the uadmin A_SHUTDOWN code as well as 4037 * the SYNC phase of the panic code (see comments in panic.c). It should only 4038 * be used after some higher-level mechanism has quiesced the system so that 4039 * new writes are not being initiated while we are waiting for completion. 4040 * 4041 * To ensure finite running time, our algorithm uses two timeout mechanisms: 4042 * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and 4043 * sync_triesleft (a progress counter used by the vfs_syncall() loop below). 4044 * Together these ensure that syncing completes if our i/o paths are stuck. 4045 * The counters are declared above so they can be found easily in the debugger. 4046 * 4047 * The sync_timeleft counter is reset by bio_busy() and page_busy() using the 4048 * vfs_syncprogress() subroutine whenever we make progress through the lists of 4049 * pages and buffers. It is decremented and expired by the deadman() cyclic. 4050 * When vfs_syncall() decides it is done, we disable the deadman() counter by 4051 * setting sync_timeleft to zero. This timer guards against vfs_syncall() 4052 * deadlocking or hanging inside of a broken filesystem or driver routine. 4053 * 4054 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4055 * sync_retries consecutive calls to bio_busy() and page_busy() without 4056 * decreasing either the number of dirty buffers or dirty pages below the 4057 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4058 * 4059 * Each loop iteration ends with a call to delay() one second to allow time for 4060 * i/o completion and to permit the user time to read our progress messages. 4061 */ 4062 void 4063 vfs_syncall(void) 4064 { 4065 if (rootdir == NULL && !modrootloaded) 4066 return; /* panic during boot - no filesystems yet */ 4067 4068 printf("syncing file systems..."); 4069 vfs_syncprogress(); 4070 sync(); 4071 4072 vfs_syncprogress(); 4073 sync_triesleft = sync_retries; 4074 4075 old_bufcnt = new_bufcnt = INT_MAX; 4076 old_pgcnt = new_pgcnt = ULONG_MAX; 4077 4078 while (sync_triesleft > 0) { 4079 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4080 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4081 4082 new_bufcnt = bio_busy(B_TRUE); 4083 new_pgcnt = page_busy(B_TRUE); 4084 vfs_syncprogress(); 4085 4086 if (new_bufcnt == 0 && new_pgcnt == 0) 4087 break; 4088 4089 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4090 sync_triesleft = sync_retries; 4091 else 4092 sync_triesleft--; 4093 4094 if (new_bufcnt) 4095 printf(" [%d]", new_bufcnt); 4096 if (new_pgcnt) 4097 printf(" %lu", new_pgcnt); 4098 4099 delay(hz); 4100 } 4101 4102 if (new_bufcnt != 0 || new_pgcnt != 0) 4103 printf(" done (not all i/o completed)\n"); 4104 else 4105 printf(" done\n"); 4106 4107 sync_timeleft = 0; 4108 delay(hz); 4109 } 4110 4111 /* 4112 * If we are in the middle of the sync phase of panic, reset sync_timeleft to 4113 * sync_timeout to indicate that we are making progress and the deadman() 4114 * omnipresent cyclic should not yet time us out. Note that it is safe to 4115 * store to sync_timeleft here since the deadman() is firing at high-level 4116 * on top of us. If we are racing with the deadman(), either the deadman() 4117 * will decrement the old value and then we will reset it, or we will 4118 * reset it and then the deadman() will immediately decrement it. In either 4119 * case, correct behavior results. 4120 */ 4121 void 4122 vfs_syncprogress(void) 4123 { 4124 if (panicstr) 4125 sync_timeleft = sync_timeout; 4126 } 4127 4128 /* 4129 * Map VFS flags to statvfs flags. These shouldn't really be separate 4130 * flags at all. 4131 */ 4132 uint_t 4133 vf_to_stf(uint_t vf) 4134 { 4135 uint_t stf = 0; 4136 4137 if (vf & VFS_RDONLY) 4138 stf |= ST_RDONLY; 4139 if (vf & VFS_NOSETUID) 4140 stf |= ST_NOSUID; 4141 if (vf & VFS_NOTRUNC) 4142 stf |= ST_NOTRUNC; 4143 4144 return (stf); 4145 } 4146 4147 /* 4148 * Entries for (illegal) fstype 0. 4149 */ 4150 /* ARGSUSED */ 4151 int 4152 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4153 { 4154 cmn_err(CE_PANIC, "stray vfs operation"); 4155 return (0); 4156 } 4157 4158 /* 4159 * Entries for (illegal) fstype 0. 4160 */ 4161 int 4162 vfsstray(void) 4163 { 4164 cmn_err(CE_PANIC, "stray vfs operation"); 4165 return (0); 4166 } 4167 4168 /* 4169 * Support for dealing with forced UFS unmount and its interaction with 4170 * LOFS. Could be used by any filesystem. 4171 * See bug 1203132. 4172 */ 4173 int 4174 vfs_EIO(void) 4175 { 4176 return (EIO); 4177 } 4178 4179 /* 4180 * We've gotta define the op for sync separately, since the compiler gets 4181 * confused if we mix and match ANSI and normal style prototypes when 4182 * a "short" argument is present and spits out a warning. 4183 */ 4184 /*ARGSUSED*/ 4185 int 4186 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4187 { 4188 return (EIO); 4189 } 4190 4191 vfs_t EIO_vfs; 4192 vfsops_t *EIO_vfsops; 4193 4194 /* 4195 * Called from startup() to initialize all loaded vfs's 4196 */ 4197 void 4198 vfsinit(void) 4199 { 4200 struct vfssw *vswp; 4201 int error; 4202 extern int vopstats_enabled; 4203 extern void vopstats_startup(); 4204 4205 static const fs_operation_def_t EIO_vfsops_template[] = { 4206 VFSNAME_MOUNT, { .error = vfs_EIO }, 4207 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4208 VFSNAME_ROOT, { .error = vfs_EIO }, 4209 VFSNAME_STATVFS, { .error = vfs_EIO }, 4210 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4211 VFSNAME_VGET, { .error = vfs_EIO }, 4212 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4213 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4214 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4215 NULL, NULL 4216 }; 4217 4218 static const fs_operation_def_t stray_vfsops_template[] = { 4219 VFSNAME_MOUNT, { .error = vfsstray }, 4220 VFSNAME_UNMOUNT, { .error = vfsstray }, 4221 VFSNAME_ROOT, { .error = vfsstray }, 4222 VFSNAME_STATVFS, { .error = vfsstray }, 4223 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4224 VFSNAME_VGET, { .error = vfsstray }, 4225 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4226 VFSNAME_FREEVFS, { .error = vfsstray }, 4227 VFSNAME_VNSTATE, { .error = vfsstray }, 4228 NULL, NULL 4229 }; 4230 4231 /* Create vfs cache */ 4232 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4233 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4234 4235 /* Initialize the vnode cache (file systems may use it during init). */ 4236 vn_create_cache(); 4237 4238 /* Setup event monitor framework */ 4239 fem_init(); 4240 4241 /* Setup filesystem hook framework */ 4242 fsh_init(); 4243 4244 /* Initialize the dummy stray file system type. */ 4245 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4246 4247 /* Initialize the dummy EIO file system. */ 4248 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4249 if (error != 0) { 4250 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4251 /* Shouldn't happen, but not bad enough to panic */ 4252 } 4253 4254 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4255 4256 /* 4257 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4258 * on this vfs can immediately notice it's invalid. 4259 */ 4260 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4261 4262 /* 4263 * Call the init routines of non-loadable filesystems only. 4264 * Filesystems which are loaded as separate modules will be 4265 * initialized by the module loading code instead. 4266 */ 4267 4268 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4269 RLOCK_VFSSW(); 4270 if (vswp->vsw_init != NULL) 4271 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4272 RUNLOCK_VFSSW(); 4273 } 4274 4275 vopstats_startup(); 4276 4277 if (vopstats_enabled) { 4278 /* EIO_vfs can collect stats, but we don't retrieve them */ 4279 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4280 EIO_vfs.vfs_fstypevsp = NULL; 4281 EIO_vfs.vfs_vskap = NULL; 4282 EIO_vfs.vfs_flag |= VFS_STATS; 4283 } 4284 4285 xattr_init(); 4286 4287 reparse_point_init(); 4288 } 4289 4290 vfs_t * 4291 vfs_alloc(int kmflag) 4292 { 4293 vfs_t *vfsp; 4294 4295 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4296 4297 /* 4298 * Do the simplest initialization here. 4299 * Everything else gets done in vfs_init() 4300 */ 4301 bzero(vfsp, sizeof (vfs_t)); 4302 return (vfsp); 4303 } 4304 4305 void 4306 vfs_free(vfs_t *vfsp) 4307 { 4308 /* 4309 * One would be tempted to assert that "vfsp->vfs_count == 0". 4310 * The problem is that this gets called out of domount() with 4311 * a partially initialized vfs and a vfs_count of 1. This is 4312 * also called from vfs_rele() with a vfs_count of 0. We can't 4313 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4314 * returned. This is because VFS_MOUNT() fully initializes the 4315 * vfs structure and its associated data. VFS_RELE() will call 4316 * VFS_FREEVFS() which may panic the system if the data structures 4317 * aren't fully initialized from a successful VFS_MOUNT()). 4318 */ 4319 4320 /* If FEM was in use, make sure everything gets cleaned up */ 4321 if (vfsp->vfs_femhead) { 4322 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4323 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4324 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4325 vfsp->vfs_femhead = NULL; 4326 } 4327 4328 /* 4329 * FSH cleanup 4330 * There's no need here to use atomic operations on vfs_fshrecord. 4331 */ 4332 fsh_fsrec_destroy(vfsp->vfs_fshrecord); 4333 vfsp->vfs_fshrecord = NULL; 4334 4335 if (vfsp->vfs_implp) 4336 vfsimpl_teardown(vfsp); 4337 sema_destroy(&vfsp->vfs_reflock); 4338 kmem_cache_free(vfs_cache, vfsp); 4339 } 4340 4341 /* 4342 * Increments the vfs reference count by one atomically. 4343 */ 4344 void 4345 vfs_hold(vfs_t *vfsp) 4346 { 4347 atomic_add_32(&vfsp->vfs_count, 1); 4348 ASSERT(vfsp->vfs_count != 0); 4349 } 4350 4351 /* 4352 * Decrements the vfs reference count by one atomically. When 4353 * vfs reference count becomes zero, it calls the file system 4354 * specific vfs_freevfs() to free up the resources. 4355 */ 4356 void 4357 vfs_rele(vfs_t *vfsp) 4358 { 4359 ASSERT(vfsp->vfs_count != 0); 4360 if (atomic_add_32_nv(&vfsp->vfs_count, -1) == 0) { 4361 fsh_exec_free_callbacks(vfsp); 4362 VFS_FREEVFS(vfsp); 4363 lofi_remove(vfsp); 4364 if (vfsp->vfs_zone) 4365 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4366 ZONE_REF_VFS); 4367 vfs_freemnttab(vfsp); 4368 vfs_free(vfsp); 4369 } 4370 } 4371 4372 /* 4373 * Generic operations vector support. 4374 * 4375 * This is used to build operations vectors for both the vfs and vnode. 4376 * It's normally called only when a file system is loaded. 4377 * 4378 * There are many possible algorithms for this, including the following: 4379 * 4380 * (1) scan the list of known operations; for each, see if the file system 4381 * includes an entry for it, and fill it in as appropriate. 4382 * 4383 * (2) set up defaults for all known operations. scan the list of ops 4384 * supplied by the file system; for each which is both supplied and 4385 * known, fill it in. 4386 * 4387 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4388 * in entries as we go. 4389 * 4390 * we choose (1) for simplicity, and because performance isn't critical here. 4391 * note that (2) could be sped up using a precomputed hash table on known ops. 4392 * (3) could be faster than either, but only if the lists were very large or 4393 * supplied in sorted order. 4394 * 4395 */ 4396 4397 int 4398 fs_build_vector(void *vector, int *unused_ops, 4399 const fs_operation_trans_def_t *translation, 4400 const fs_operation_def_t *operations) 4401 { 4402 int i, num_trans, num_ops, used; 4403 4404 /* 4405 * Count the number of translations and the number of supplied 4406 * operations. 4407 */ 4408 4409 { 4410 const fs_operation_trans_def_t *p; 4411 4412 for (num_trans = 0, p = translation; 4413 p->name != NULL; 4414 num_trans++, p++) 4415 ; 4416 } 4417 4418 { 4419 const fs_operation_def_t *p; 4420 4421 for (num_ops = 0, p = operations; 4422 p->name != NULL; 4423 num_ops++, p++) 4424 ; 4425 } 4426 4427 /* Walk through each operation known to our caller. There will be */ 4428 /* one entry in the supplied "translation table" for each. */ 4429 4430 used = 0; 4431 4432 for (i = 0; i < num_trans; i++) { 4433 int j, found; 4434 char *curname; 4435 fs_generic_func_p result; 4436 fs_generic_func_p *location; 4437 4438 curname = translation[i].name; 4439 4440 /* Look for a matching operation in the list supplied by the */ 4441 /* file system. */ 4442 4443 found = 0; 4444 4445 for (j = 0; j < num_ops; j++) { 4446 if (strcmp(operations[j].name, curname) == 0) { 4447 used++; 4448 found = 1; 4449 break; 4450 } 4451 } 4452 4453 /* 4454 * If the file system is using a "placeholder" for default 4455 * or error functions, grab the appropriate function out of 4456 * the translation table. If the file system didn't supply 4457 * this operation at all, use the default function. 4458 */ 4459 4460 if (found) { 4461 result = operations[j].func.fs_generic; 4462 if (result == fs_default) { 4463 result = translation[i].defaultFunc; 4464 } else if (result == fs_error) { 4465 result = translation[i].errorFunc; 4466 } else if (result == NULL) { 4467 /* Null values are PROHIBITED */ 4468 return (EINVAL); 4469 } 4470 } else { 4471 result = translation[i].defaultFunc; 4472 } 4473 4474 /* Now store the function into the operations vector. */ 4475 4476 location = (fs_generic_func_p *) 4477 (((char *)vector) + translation[i].offset); 4478 4479 *location = result; 4480 } 4481 4482 *unused_ops = num_ops - used; 4483 4484 return (0); 4485 } 4486 4487 /* Placeholder functions, should never be called. */ 4488 4489 int 4490 fs_error(void) 4491 { 4492 cmn_err(CE_PANIC, "fs_error called"); 4493 return (0); 4494 } 4495 4496 int 4497 fs_default(void) 4498 { 4499 cmn_err(CE_PANIC, "fs_default called"); 4500 return (0); 4501 } 4502 4503 #ifdef __sparc 4504 4505 /* 4506 * Part of the implementation of booting off a mirrored root 4507 * involves a change of dev_t for the root device. To 4508 * accomplish this, first remove the existing hash table 4509 * entry for the root device, convert to the new dev_t, 4510 * then re-insert in the hash table at the head of the list. 4511 */ 4512 void 4513 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4514 { 4515 vfs_list_lock(); 4516 4517 vfs_hash_remove(vfsp); 4518 4519 vfsp->vfs_dev = ndev; 4520 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4521 4522 vfs_hash_add(vfsp, 1); 4523 4524 vfs_list_unlock(); 4525 } 4526 4527 #else /* x86 NEWBOOT */ 4528 4529 #if defined(__x86) 4530 extern int hvmboot_rootconf(); 4531 #endif /* __x86 */ 4532 4533 extern ib_boot_prop_t *iscsiboot_prop; 4534 4535 int 4536 rootconf() 4537 { 4538 int error; 4539 struct vfssw *vsw; 4540 extern void pm_init(); 4541 char *fstyp, *fsmod; 4542 int ret = -1; 4543 4544 getrootfs(&fstyp, &fsmod); 4545 4546 #if defined(__x86) 4547 /* 4548 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4549 * which lives in /platform/i86hvm, and hence is only available when 4550 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4551 * is not available then the modstub for this function will return 0. 4552 * If the hvm_bootstrap misc module is available it will be loaded 4553 * and hvmboot_rootconf() will be invoked. 4554 */ 4555 if (error = hvmboot_rootconf()) 4556 return (error); 4557 #endif /* __x86 */ 4558 4559 if (error = clboot_rootconf()) 4560 return (error); 4561 4562 if (modload("fs", fsmod) == -1) 4563 panic("Cannot _init %s module", fsmod); 4564 4565 RLOCK_VFSSW(); 4566 vsw = vfs_getvfsswbyname(fstyp); 4567 RUNLOCK_VFSSW(); 4568 if (vsw == NULL) { 4569 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4570 return (ENXIO); 4571 } 4572 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4573 VFS_HOLD(rootvfs); 4574 4575 /* always mount readonly first */ 4576 rootvfs->vfs_flag |= VFS_RDONLY; 4577 4578 pm_init(); 4579 4580 if (netboot && iscsiboot_prop) { 4581 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4582 " shouldn't happen in the same time"); 4583 return (EINVAL); 4584 } 4585 4586 if (netboot || iscsiboot_prop) { 4587 ret = strplumb(); 4588 if (ret != 0) { 4589 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4590 return (EFAULT); 4591 } 4592 } 4593 4594 if ((ret == 0) && iscsiboot_prop) { 4595 ret = modload("drv", "iscsi"); 4596 /* -1 indicates fail */ 4597 if (ret == -1) { 4598 cmn_err(CE_WARN, "Failed to load iscsi module"); 4599 iscsi_boot_prop_free(); 4600 return (EINVAL); 4601 } else { 4602 if (!i_ddi_attach_pseudo_node("iscsi")) { 4603 cmn_err(CE_WARN, 4604 "Failed to attach iscsi driver"); 4605 iscsi_boot_prop_free(); 4606 return (ENODEV); 4607 } 4608 } 4609 } 4610 4611 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4612 vfs_unrefvfssw(vsw); 4613 rootdev = rootvfs->vfs_dev; 4614 4615 if (error) 4616 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4617 rootfs.bo_name, fstyp); 4618 else 4619 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4620 rootfs.bo_name, fstyp); 4621 return (error); 4622 } 4623 4624 /* 4625 * XXX this is called by nfs only and should probably be removed 4626 * If booted with ASKNAME, prompt on the console for a filesystem 4627 * name and return it. 4628 */ 4629 void 4630 getfsname(char *askfor, char *name, size_t namelen) 4631 { 4632 if (boothowto & RB_ASKNAME) { 4633 printf("%s name: ", askfor); 4634 console_gets(name, namelen); 4635 } 4636 } 4637 4638 /* 4639 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4640 * property. 4641 * 4642 * Filesystem types starting with the prefix "nfs" are diskless clients; 4643 * init the root filename name (rootfs.bo_name), too. 4644 * 4645 * If we are booting via NFS we currently have these options: 4646 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4647 * nfs2 - force NFS V2 4648 * nfs3 - force NFS V3 4649 * nfs4 - force NFS V4 4650 * Because we need to maintain backward compatibility with the naming 4651 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4652 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4653 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4654 * This is only for root filesystems, all other uses such as cachefs 4655 * will expect that "nfs" == NFS V2. 4656 */ 4657 static void 4658 getrootfs(char **fstypp, char **fsmodp) 4659 { 4660 extern char *strplumb_get_netdev_path(void); 4661 char *propstr = NULL; 4662 4663 /* 4664 * Check fstype property; for diskless it should be one of "nfs", 4665 * "nfs2", "nfs3" or "nfs4". 4666 */ 4667 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4668 DDI_PROP_DONTPASS, "fstype", &propstr) 4669 == DDI_SUCCESS) { 4670 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4671 ddi_prop_free(propstr); 4672 4673 /* 4674 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4675 * assume the type of this root filesystem is 'zfs'. 4676 */ 4677 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4678 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4679 == DDI_SUCCESS) { 4680 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4681 ddi_prop_free(propstr); 4682 } 4683 4684 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4685 *fstypp = *fsmodp = rootfs.bo_fstype; 4686 return; 4687 } 4688 4689 ++netboot; 4690 4691 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4692 (void) strcpy(rootfs.bo_fstype, "nfs"); 4693 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4694 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4695 4696 /* 4697 * check if path to network interface is specified in bootpath 4698 * or by a hypervisor domain configuration file. 4699 * XXPV - enable strlumb_get_netdev_path() 4700 */ 4701 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4702 "xpv-nfsroot")) { 4703 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4704 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4705 DDI_PROP_DONTPASS, "bootpath", &propstr) 4706 == DDI_SUCCESS) { 4707 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4708 ddi_prop_free(propstr); 4709 } else { 4710 /* attempt to determine netdev_path via boot_mac address */ 4711 netdev_path = strplumb_get_netdev_path(); 4712 if (netdev_path == NULL) 4713 panic("cannot find boot network interface"); 4714 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME); 4715 } 4716 *fstypp = rootfs.bo_fstype; 4717 *fsmodp = "nfs"; 4718 } 4719 #endif 4720 4721 /* 4722 * VFS feature routines 4723 */ 4724 4725 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4726 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4727 4728 /* Register a feature in the vfs */ 4729 void 4730 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4731 { 4732 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4733 if (vfsp->vfs_implp == NULL) 4734 return; 4735 4736 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4737 } 4738 4739 void 4740 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4741 { 4742 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4743 if (vfsp->vfs_implp == NULL) 4744 return; 4745 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4746 } 4747 4748 /* 4749 * Query a vfs for a feature. 4750 * Returns 1 if feature is present, 0 if not 4751 */ 4752 int 4753 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4754 { 4755 int ret = 0; 4756 4757 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4758 if (vfsp->vfs_implp == NULL) 4759 return (ret); 4760 4761 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4762 ret = 1; 4763 4764 return (ret); 4765 } 4766 4767 /* 4768 * Propagate feature set from one vfs to another 4769 */ 4770 void 4771 vfs_propagate_features(vfs_t *from, vfs_t *to) 4772 { 4773 int i; 4774 4775 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4776 return; 4777 4778 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4779 to->vfs_featureset[i] = from->vfs_featureset[i]; 4780 } 4781 } 4782 4783 #define LOFINODE_PATH "/dev/lofi/%d" 4784 4785 /* 4786 * Return the vnode for the lofi node if there's a lofi mount in place. 4787 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4788 * failure. 4789 */ 4790 int 4791 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4792 { 4793 char *path = NULL; 4794 int strsize; 4795 int err; 4796 4797 if (vfsp->vfs_lofi_minor == 0) { 4798 *vpp = NULL; 4799 return (-1); 4800 } 4801 4802 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4803 path = kmem_alloc(strsize + 1, KM_SLEEP); 4804 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor); 4805 4806 /* 4807 * We may be inside a zone, so we need to use the /dev path, but 4808 * it's created asynchronously, so we wait here. 4809 */ 4810 for (;;) { 4811 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4812 4813 if (err != ENOENT) 4814 break; 4815 4816 if ((err = delay_sig(hz / 8)) == EINTR) 4817 break; 4818 } 4819 4820 if (err) 4821 *vpp = NULL; 4822 4823 kmem_free(path, strsize + 1); 4824 return (err); 4825 }