
new/usr/src/cmd/egrep/egrep.y 1

**
 26110 Fri Sep 13 10:33:20 2013
new/usr/src/cmd/egrep/egrep.y
3737 grep does not support -H option
3759 egrep(1) and fgrep(1) -s flag does not hide -c output
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Andy Stormont <andyjstormont@gmail.com>
**

1 %{
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License, Version 1.0 only
7 * (the "License"). You may not use this file except in compliance
8 * with the License.
9 *

10 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11 * or http://www.opensolaris.org/os/licensing.
12 * See the License for the specific language governing permissions
13 * and limitations under the License.
14 *
15 * When distributing Covered Code, include this CDDL HEADER in each
16 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17 * If applicable, add the following below this CDDL HEADER, with the
18 * fields enclosed by brackets "[]" replaced with your own identifying
19 * information: Portions Copyright [yyyy] [name of copyright owner]
20 *
21 * CDDL HEADER END
22 */
23 %}
24 /*
25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 * Use is subject to license terms.
27 */

29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
30 /* All Rights Reserved */

32 /* Copyright (c) 1987, 1988 Microsoft Corporation */
33 /* All Rights Reserved */

35 /*
36 * Copyright 2013 Damian Bogel. All rights reserved.
37 */
35 %{
36 #pragma ident "%Z%%M% %I% %E% SMI"
37 %}

39 /*
40 * egrep -- print lines containing (or not containing) a regular expression
41 *
42 * status returns:
43 * 0 - ok, and some matches
44 * 1 - ok, but no matches
45 * 2 - some error; matches irrelevant
46 */
47 %token CHAR MCHAR DOT MDOT CCL NCCL MCCL NMCCL OR CAT STAR PLUS QUEST
48 %left OR
49 %left CHAR MCHAR DOT CCL NCCL MCCL NMCCL ’(’
50 %left CAT
51 %left STAR PLUS QUEST

53 %{
54 #include <stdio.h>
55 #include <ctype.h>

new/usr/src/cmd/egrep/egrep.y 2

56 #include <memory.h>
57 #include <wchar.h>
58 #include <wctype.h>
59 #include <widec.h>
60 #include <stdlib.h>
61 #include <limits.h>
62 #include <locale.h>

64 #define STDIN_FILENAME gettext("(standard input)")

66 #define BLKSIZE 512 /* size of reported disk blocks */
67 #define EBUFSIZ 8192
68 #define MAXLIN 350
69 #define NCHARS 256
70 #define MAXPOS 4000
71 #define NSTATES 64
72 #define FINAL -1
73 #define RIGHT ’\n’ /* serves as record separator and as $ */
74 #define LEFT ’\n’ /* beginning of line */
75 int gotofn[NSTATES][NCHARS];
76 int state[NSTATES];
77 int out[NSTATES];
78 int line = 1;
79 int *name;
80 int *left;
81 int *right;
82 int *parent;
83 int *foll;
84 int *positions;
85 char *chars;
86 wchar_t *lower;
87 wchar_t *upper;
88 int maxlin, maxclin, maxwclin, maxpos;
89 int nxtpos = 0;
90 int inxtpos;
91 int nxtchar = 0;
92 int *tmpstat;
93 int *initstat;
94 int istat;
95 int nstate = 1;
96 int xstate;
97 int count;
98 int icount;
99 char *input;

102 wchar_t lyylval;
103 wchar_t nextch();
104 wchar_t maxmin();
105 int compare();
106 void overflo();

108 char reinit = 0;

110 long long lnum;
111 int bflag;
112 int cflag;
113 int eflag;
114 int fflag;
115 int Hflag;
116 int hflag;
117 int iflag;
118 int lflag;
119 int nflag;
120 int qflag;
117 int sflag;

new/usr/src/cmd/egrep/egrep.y 3

121 int vflag;
122 int nfile;
123 long long blkno;
124 long long tln;
125 int nsucc;
126 int badbotch;
127 extern char *optarg;
128 extern int optind;

130 int f;
131 FILE *expfile;
132 %}

134 %%
135 s: t
136 {
137 unary(FINAL, $1);
138 line--;
139 }
140 ;
141 t: b r
142 { $$ = node(CAT, $1, $2); }
143 | OR b r OR
144 { $$ = node(CAT, $2, $3); }
145 | OR b r
146 { $$ = node(CAT, $2, $3); }
147 | b r OR
148 { $$ = node(CAT, $1, $2); }
149 ;
150 b:
151 { /* if(multibyte)
152 $$ = mdotenter();
153 else */
154 $$ = enter(DOT);
155 $$ = unary(STAR, $$);
156 }
157 ;
158 r: CHAR
159 { $$ = iflag && isalpha($1) ?
160 node(OR, enter(tolower($1)), enter(toupper($1))) : enter($1); }
161 | MCHAR
162 { $$ = (iflag && iswalpha(lyylval)) ?
163 node(OR, mchar(towlower(lyylval)), mchar(towupper(lyylval))) :
164 mchar(lyylval); }
165 | DOT
166 { if(multibyte)
167 $$ = mdotenter();
168 else
169 $$ = enter(DOT);
170 }
171 | CCL
172 { $$ = cclenter(CCL); }
173 | NCCL
174 { $$ = cclenter(NCCL); }
175 | MCCL
176 { $$ = ccl(CCL); }
177 | NMCCL
178 { $$ = ccl(NCCL); }
179 ;

181 r: r OR r
182 { $$ = node(OR, $1, $3); }
183 | r r %prec CAT
184 { $$ = node(CAT, $1, $2); }
185 | r STAR
186 { $$ = unary(STAR, $1); }

new/usr/src/cmd/egrep/egrep.y 4

187 | r PLUS
188 { $$ = unary(PLUS, $1); }
189 | r QUEST
190 { $$ = unary(QUEST, $1); }
191 | ’(’ r ’)’
192 { $$ = $2; }
193 | error
194 ;

196 %%
197 void add(int *, int);
198 void clearg(void);
199 void execute(char *);
200 void follow(int);
201 int mgetc(void);
202 void synerror(void);

205 void
206 yyerror(char *s)
207 {
208 fprintf(stderr, "egrep: %s\n", s);
209 exit(2);
210 }

______unchanged_portion_omitted_

650 #define USAGE "[-bchHilnsqv] [-e exp] [-f file] [strings] [file] ..."
647 #define USAGE "[-bchilnsv] [-e exp] [-f file] [strings] [file] ..."

652 int
653 main(int argc, char **argv)
654 {
655 char c;
656 char nl = ’\n’;
657 int errflag = 0;
658
659 (void)setlocale(LC_ALL, "");

661 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
662 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t. */
663 #endif
664 (void) textdomain(TEXT_DOMAIN);

666 while((c = getopt(argc, argv, "ybcie:f:Hhlnvsq")) != -1)
663 while((c = getopt(argc, argv, "ybcie:f:hlnvs")) != -1)
667 switch(c) {

669 case ’b’:
670 bflag++;
671 continue;

673 case ’c’:
674 cflag++;
675 continue;

677 case ’e’:
678 eflag++;
679 input = optarg;
680 continue;

682 case ’f’:
683 fflag++;
684 expfile = fopen(optarg, "r");
685 if(expfile == NULL) {
686 fprintf(stderr,
687 gettext("egrep: can’t open %s\n"), optarg);

new/usr/src/cmd/egrep/egrep.y 5

688 exit(2);
689 }
690 continue;

692 case ’H’:
693 if (!lflag) /* H is excluded by l as in GNU grep */
694 Hflag++;
695 hflag = 0; /* H excludes h */
696 continue;

698 case ’h’:
699 hflag++;
700 Hflag = 0; /* h excludes H */
701 continue;

703 case ’y’:
704 case ’i’:
705 iflag++;
706 continue;

708 case ’l’:
709 lflag++;
710 Hflag = 0; /* l excludes H */
711 continue;

713 case ’n’:
714 nflag++;
715 continue;

717 case ’q’:
718 case ’s’: /* Solaris: legacy option */
719 qflag++;
706 case ’s’:
707 sflag++;
720 continue;

722 case ’v’:
723 vflag++;
724 continue;

726 case ’?’:
727 errflag++;
728 }
729 if (errflag || ((argc <= 0) && !fflag && !eflag)) {
730 fprintf(stderr, gettext("usage: egrep %s\n"), gettext(USAGE));
731 exit(2);
732 }
733 if(!eflag && !fflag) {
734 input = argv[optind];
735 optind++;
736 }

738 argc -= optind;
739 argv = &argv[optind];
740
741 /* allocate initial space for arrays */
742 if((name = (int *)malloc(MAXLIN*sizeof(int))) == (int *)0)
743 overflo();
744 if((left = (int *)malloc(MAXLIN*sizeof(int))) == (int *)0)
745 overflo();
746 if((right = (int *)malloc(MAXLIN*sizeof(int))) == (int *)0)
747 overflo();
748 if((parent = (int *)malloc(MAXLIN*sizeof(int))) == (int *)0)
749 overflo();
750 if((foll = (int *)malloc(MAXLIN*sizeof(int))) == (int *)0)
751 overflo();

new/usr/src/cmd/egrep/egrep.y 6

752 if((tmpstat = (int *)malloc(MAXLIN*sizeof(int))) == (int *)0)
753 overflo();
754 if((initstat = (int *)malloc(MAXLIN*sizeof(int))) == (int *)0)
755 overflo();
756 if((chars = (char *)malloc(MAXLIN)) == (char *)0)
757 overflo();
758 if((lower = (wchar_t *)malloc(MAXLIN*sizeof(wchar_t))) == (wchar_t *)0)
759 overflo();
760 if((upper = (wchar_t *)malloc(MAXLIN*sizeof(wchar_t))) == (wchar_t *)0)
761 overflo();
762 if((positions = (int *)malloc(MAXPOS*sizeof(int))) == (int *)0)
763 overflo();
764 maxlin = MAXLIN;
765 maxclin = MAXLIN;
766 maxwclin = MAXLIN;
767 maxpos = MAXPOS;
768
769 yyparse();

771 cfoll(line-1);
772 cgotofn();
773 nfile = argc;
774 if (argc<=0) {
775 execute(0);
776 }
777 else while (--argc >= 0) {
778 if (reinit == 1) clearg();
779 execute(*argv++);
780 }
781 return (badbotch ? 2 : nsucc==0);
782 }

784 void
785 execute(char *file)
786 {
787 char *p;
788 int cstat;
789 wchar_t c;
790 int t;
791 long count;
792 long count1, count2;
793 long nchars;
794 int succ;
795 char *ptr, *ptrend, *lastptr;
796 char *buf;
797 long lBufSiz;
798 FILE *f;
799 int nlflag;

801 lBufSiz = EBUFSIZ;
802 if ((buf = malloc (lBufSiz + EBUFSIZ)) == NULL) {
803 exit (2); /* out of memory - BAIL */
804 }

806 if (file) {
807 if ((f = fopen(file, "r")) == NULL) {
808 fprintf(stderr,
809 gettext("egrep: can’t open %s\n"), file);
810 badbotch=1;
811 return;
812 }
813 } else {
802 file = "<stdin>";
814 f = stdin;
815 file = STDIN_FILENAME;
816 }

new/usr/src/cmd/egrep/egrep.y 7

817 lnum = 1;
818 tln = 0;
819 if((count = read(fileno(f), buf, EBUFSIZ)) <= 0) {
820 fclose(f);

822 if (cflag && !qflag) {
823 if (Hflag || (nfile > 1 && !hflag))
810 if (cflag) {
811 if (nfile>1 && !hflag)
824 fprintf(stdout, "%s:", file);
825 fprintf(stdout, "%lld\n", tln);
826 }
827 return;
828 }

830 blkno = count;
831 ptr = buf;
832 for(;;) {
833 if((ptrend = memchr(ptr, ’\n’, buf + count - ptr)) == NULL) {
834 /*
835 move the unused partial record to the head of th
836 */
837 if (ptr > buf) {
838 count = buf + count - ptr;
839 memmove (buf, ptr, count);
840 ptr = buf;
841 }

843 /*
844 Get a bigger buffer if this one is full
845 */
846 if(count > lBufSiz) {
847 /*
848 expand the buffer
849 */
850 lBufSiz += EBUFSIZ;
851 if ((buf = realloc (buf, lBufSiz + EBUFSIZ)) ==
852 exit (2); /* out of memory - BAIL */
853 }

855 ptr = buf;
856 }

858 p = buf + count;
859 if((count1 = read(fileno(f), p, EBUFSIZ)) > 0) {
860 count += count1;
861 blkno += count1;
862 continue;
863 }
864 ptrend = ptr + count;
865 nlflag = 0;
866 } else
867 nlflag = 1;
868 *ptrend = ’\n’;
869 p = ptr;
870 lastptr = ptr;
871 cstat = istat;
872 succ = 0;
873 for(;;) {
874 if(out[cstat]) {
875 if(multibyte && p > ptr) {
876 wchar_t wchar;
877 int length;
878 char *endptr = p;
879 p = lastptr;
880 while(p < endptr) {

new/usr/src/cmd/egrep/egrep.y 8

881 length = mbtowc(&wchar, p, MB_LE
882 if(length <= 1)
883 p++;
884 else
885 p += length;
886 }
887 if(p == endptr) {
888 succ = !vflag;
889 break;
890 }
891 cstat = 1;
892 length = mbtowc(&wchar, lastptr, MB_LEN_
893 if(length <= 1)
894 lastptr++;
895 else
896 lastptr += length;
897 p = lastptr;
898 continue;
899 }
900 succ = !vflag;
901 break;
902 }
903 c = (unsigned char)*p++;
904 if ((t = gotofn[cstat][c]) == 0)
905 cstat = nxtst(cstat, c);
906 else
907 cstat = t;
908 if(c == RIGHT) {
909 if(out[cstat]) {
910 succ = !vflag;
911 break;
912 }
913 succ = vflag;
914 break;
915 }
916 }
917 if (succ) {
905 if(succ) {
918 nsucc = 1;
919 if (lflag || qflag) {
920 if (!qflag)
921 (void) printf("%s\n", file);
907 if (cflag) tln++;
908 else if (sflag)
909 ; /* ugh */
910 else if (lflag) {
911 printf("%s\n", file);
922 fclose(f);
923 return;
924 }
925 if (cflag) {
926 tln++;
927 } else {
928 if (Hflag || (nfile > 1 && !hflag))
929 printf("%s:", file);
915 else {
916 if (nfile > 1 && !hflag)
917 printf(gettext("%s:"), file);
930 if (bflag) {
931 nchars = blkno - (buf + count - ptrend)
932 if(nlflag)
933 nchars++;
934 printf("%lld:", nchars/BLKSIZE);
935 }
936 if (nflag)
937 printf("%lld:", lnum);

new/usr/src/cmd/egrep/egrep.y 9

938 if(nlflag)
939 nchars = ptrend - ptr + 1;
940 else
941 nchars = ptrend - ptr;
942 fwrite(ptr, (size_t)1, (size_t)nchars, stdout);
943 }
944 }
945 if(!nlflag)
946 break;
947 ptr = ptrend + 1;
948 if(ptr >= buf + count) {
949 ptr = buf;
950 if((count = read(fileno(f), buf, EBUFSIZ)) <= 0)
951 break;
952 blkno += count;
953 }
954 lnum++;
955 if (reinit == 1)
956 clearg();
957 }
958 fclose(f);
959 if (cflag && !qflag) {
960 if (Hflag || (nfile > 1 && !hflag))
961 printf("%s:", file);
947 if (cflag) {
948 if (nfile > 1 && !hflag)
949 printf(gettext("%s:"), file);
962 printf("%lld\n", tln);
963 }
964 }

______unchanged_portion_omitted_

new/usr/src/cmd/fgrep/fgrep.c 1

**
 14491 Fri Sep 13 10:33:20 2013
new/usr/src/cmd/fgrep/fgrep.c
3737 grep does not support -H option
3759 egrep(1) and fgrep(1) -s flag does not hide -c output
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Andy Stormont <andyjstormont@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */

30 /* Copyright (c) 1987, 1988 Microsoft Corporation */
31 /* All Rights Reserved */

33 /*
34 * Copyright 2013 Damian Bogel. All rights reserved.
35 */
33 #pragma ident "%Z%%M% %I% %E% SMI"

37 /*
38 * fgrep -- print all lines containing any of a set of keywords
39 *
40 * status returns:
41 * 0 - ok, and some matches
42 * 1 - ok, but no matches
43 * 2 - some error
44 */

46 #include <stdio.h>
47 #include <ctype.h>
48 #include <sys/types.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <locale.h>
52 #include <libintl.h>
53 #include <euc.h>
54 #include <sys/stat.h>
55 #include <fcntl.h>

57 #include <getwidth.h>

new/usr/src/cmd/fgrep/fgrep.c 2

59 eucwidth_t WW;
60 #define WIDTH1 WW._eucw1
61 #define WIDTH2 WW._eucw2
62 #define WIDTH3 WW._eucw3
63 #define MULTI_BYTE WW._multibyte
64 #define GETONE(lc, p) \
65 cw = ISASCII(lc = (unsigned char)*p++) ? 1 : \
66 (ISSET2(lc) ? WIDTH2 : \
67 (ISSET3(lc) ? WIDTH3 : WIDTH1)); \
68 if (--cw > --ccount) { \
69 cw -= ccount; \
70 while (ccount--) \
71 lc = (lc << 7) | ((*p++) & 0177); \
72 if (p >= &buf[fw_lBufsiz + BUFSIZ]) { \
73 if (nlp == buf) { \
74 /* Increase the buffer size */ \
75 fw_lBufsiz += BUFSIZ; \
76 if ((buf = realloc(buf, \
77 fw_lBufsiz + BUFSIZ)) == NULL) { \
78 exit(2); /* out of memory */ \
79 } \
80 nlp = buf; \
81 p = &buf[fw_lBufsiz]; \
82 } else { \
83 /* shift the buffer contents down */ \
84 (void) memmove(buf, nlp, \
85 &buf[fw_lBufsiz + BUFSIZ] - nlp);\
86 p -= nlp - buf; \
87 nlp = buf; \
88 } \
89 } \
90 if (p > &buf[fw_lBufsiz]) { \
91 if ((ccount = fread(p, sizeof (char), \
92 &buf[fw_lBufsiz + BUFSIZ] - p, fptr))\
93 <= 0) break; \
94 } else if ((ccount = fread(p, \
95 sizeof (char), BUFSIZ, fptr)) <= 0) \
96 break; \
97 blkno += (long long)ccount; \
98 } \
99 ccount -= cw; \
100 while (cw--) \
101 lc = (lc << 7) | ((*p++) & 0177)

103 /*
104 * The same() macro and letter() function were inserted to allow for
105 * the -i option work for the multi-byte environment.
106 */
107 wchar_t letter();
108 #define same(a, b) \
109 (a == b || iflag && (!MULTI_BYTE || ISASCII(a)) && (a ^ b) == ’ ’ && \
110 letter(a) == letter(b))

112 #define STDIN_FILENAME gettext("(standard input)")

114 #define QSIZE 400
115 struct words {
116 wchar_t inp;
117 char out;
118 struct words *nst;
119 struct words *link;
120 struct words *fail;
121 } *w = NULL, *smax, *q;

123 FILE *fptr;

new/usr/src/cmd/fgrep/fgrep.c 3

124 long long lnum;
125 int bflag, cflag, lflag, fflag, nflag, vflag, xflag, eflag, qflag;
126 int Hflag, hflag, iflag;
122 int bflag, cflag, lflag, fflag, nflag, vflag, xflag, eflag, sflag;
123 int hflag, iflag;
127 int retcode = 0;
128 int nfile;
129 long long blkno;
130 int nsucc;
131 long long tln;
132 FILE *wordf;
133 char *argptr;
134 off_t input_size = 0;

136 void execute(char *);
137 void cgotofn(void);
138 void overflo(void);
139 void cfail(void);

141 static long fw_lBufsiz = 0;

143 int
144 main(int argc, char **argv)
145 {
146 int c;
147 int errflg = 0;
148 struct stat file_stat;

150 (void) setlocale(LC_ALL, "");
151 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
152 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t */
153 #endif
154 (void) textdomain(TEXT_DOMAIN);

156 while ((c = getopt(argc, argv, "Hhybcie:f:lnvxqs")) != EOF)
153 while ((c = getopt(argc, argv, "hybcie:f:lnvxs")) != EOF)
157 switch (c) {

159 case ’q’:
160 case ’s’: /* Solaris: legacy option */
161 qflag++;
156 case ’s’:
157 sflag++;
162 continue;
163 case ’H’:
164 Hflag++;
165 hflag = 0;
166 continue;
167 case ’h’:
168 hflag++;
169 Hflag = 0;
170 continue;
171 case ’b’:
172 bflag++;
173 continue;

175 case ’i’:
176 case ’y’:
177 iflag++;
178 continue;

180 case ’c’:
181 cflag++;
182 continue;

184 case ’e’:

new/usr/src/cmd/fgrep/fgrep.c 4

185 eflag++;
186 argptr = optarg;
187 input_size = strlen(argptr);
188 continue;

190 case ’f’:
191 fflag++;
192 wordf = fopen(optarg, "r");
193 if (wordf == NULL) {
194 (void) fprintf(stderr,
195 gettext("fgrep: can’t open %s\n"),
196 optarg);
197 exit(2);
198 }

200 if (fstat(fileno(wordf), &file_stat) == 0) {
201 input_size = file_stat.st_size;
202 } else {
203 (void) fprintf(stderr,
204 gettext("fgrep: can’t fstat %s\n"),
205 optarg);
206 exit(2);
207 }

209 continue;

211 case ’l’:
212 lflag++;
213 continue;

215 case ’n’:
216 nflag++;
217 continue;

219 case ’v’:
220 vflag++;
221 continue;

223 case ’x’:
224 xflag++;
225 continue;

227 case ’?’:
228 errflg++;
229 }

231 argc -= optind;
232 if (errflg || ((argc <= 0) && !fflag && !eflag)) {
233 (void) printf(gettext("usage: fgrep [-bcHhilnqsvx] "
224 (void) printf(gettext("usage: fgrep [-bchilnsvx] "
234 "[-e exp] [-f file] [strings] [file] ...\n"));
235 exit(2);
236 }
237 if (!eflag && !fflag) {
238 argptr = argv[optind];
239 input_size = strlen(argptr);
240 input_size++;
241 optind++;
242 argc--;
243 }

245 /*
246 * Normally we need one struct words for each letter in the pattern
247 * plus one terminating struct words with outp = 1, but when -x option
248 * is specified we require one more struct words for ‘\n‘ character so we
249 * calculate the input_size as below. We add extra 1 because

new/usr/src/cmd/fgrep/fgrep.c 5

250 * (input_size/2) rounds off odd numbers
251 */

253 if (xflag) {
254 input_size = input_size + (input_size/2) + 1;
255 }

257 input_size++;

259 w = (struct words *)calloc(input_size, sizeof (struct words));
260 if (w == NULL) {
261 (void) fprintf(stderr,
262 gettext("fgrep: could not allocate "
263 "memory for wordlist\n"));
264 exit(2);
265 }

267 getwidth(&WW);
268 if ((WIDTH1 == 0) && (WIDTH2 == 0) &&
269 (WIDTH3 == 0)) {
270 /*
271 * If non EUC-based locale,
272 * assume WIDTH1 is 1.
273 */
274 WIDTH1 = 1;
275 }
276 WIDTH2++;
277 WIDTH3++;

279 cgotofn();
280 cfail();
281 nfile = argc;
282 argv = &argv[optind];
283 if (argc <= 0) {
284 execute((char *)NULL);
285 } else
286 while (--argc >= 0) {
287 execute(*argv);
288 argv++;
289 }

291 if (w != NULL) {
292 free(w);
293 }

295 return (retcode != 0 ? retcode : nsucc == 0);
296 }

298 void
299 execute(char *file)
300 {
301 char *p;
302 struct words *c;
303 int ccount;
304 static char *buf = NULL;
305 int failed;
306 char *nlp;
307 wchar_t lc;
308 int cw;

310 if (buf == NULL) {
311 fw_lBufsiz = BUFSIZ;
312 if ((buf = malloc(fw_lBufsiz + BUFSIZ)) == NULL) {
313 exit(2); /* out of memory */
314 }
315 }

new/usr/src/cmd/fgrep/fgrep.c 6

317 if (file) {
318 if ((fptr = fopen(file, "r")) == NULL) {
319 (void) fprintf(stderr,
320 gettext("fgrep: can’t open %s\n"), file);
321 retcode = 2;
322 return;
323 }
324 } else {
316 file = "<stdin>";
325 fptr = stdin;
326 file = STDIN_FILENAME;
327 }
328 ccount = 0;
329 failed = 0;
330 lnum = 1;
331 tln = 0;
332 blkno = 0;
333 p = buf;
334 nlp = p;
335 c = w;
336 for (;;) {
337 if (c == 0)
338 break;
339 if (ccount <= 0) {
340 if (p >= &buf[fw_lBufsiz + BUFSIZ]) {
341 if (nlp == buf) {
342 /* increase the buffer size */
343 fw_lBufsiz += BUFSIZ;
344 if ((buf = realloc(buf,
345 fw_lBufsiz + BUFSIZ)) == NULL) {
346 exit(2); /* out of memory */
347 }
348 nlp = buf;
349 p = &buf[fw_lBufsiz];
350 } else {
351 /* shift the buffer down */
352 (void) memmove(buf, nlp,
353 &buf[fw_lBufsiz + BUFSIZ]
354 - nlp);
355 p -= nlp - buf;
356 nlp = buf;
357 }

359 }
360 if (p > &buf[fw_lBufsiz]) {
361 if ((ccount = fread(p, sizeof (char),
362 &buf[fw_lBufsiz + BUFSIZ] - p, fptr))
363 <= 0)
364 break;
365 } else if ((ccount = fread(p, sizeof (char),
366 BUFSIZ, fptr)) <= 0)
367 break;
368 blkno += (long long)ccount;
369 }
370 GETONE(lc, p);
371 nstate:
372 if (same(c->inp, lc)) {
373 c = c->nst;
374 } else if (c->link != 0) {
375 c = c->link;
376 goto nstate;
377 } else {
378 c = c->fail;
379 failed = 1;
380 if (c == 0) {

new/usr/src/cmd/fgrep/fgrep.c 7

381 c = w;
382 istate:
383 if (same(c->inp, lc)) {
384 c = c->nst;
385 } else if (c->link != 0) {
386 c = c->link;
387 goto istate;
388 }
389 } else
390 goto nstate;
391 }

393 if (c == 0)
394 break;

396 if (c->out) {
397 while (lc != ’\n’) {
398 if (ccount <= 0) {
399 if (p == &buf[fw_lBufsiz + BUFSIZ]) {
400 if (nlp == buf) {
401 /* increase buffer size */
402 fw_lBufsiz += BUFSIZ;
403 if ((buf = realloc(buf, fw_lBufsiz + BUFSIZ)) == NULL) {
404 exit(2); /* out of memory */
405 }
406 nlp = buf;
407 p = &buf[fw_lBufsiz];
408 } else {
409 /* shift buffer down */
410 (void) memmove(buf, nlp, &buf[fw_lBufsiz + BUFSIZ] - nlp);
411 p -= nlp - buf;
412 nlp = buf;
413 }
414 }

______unchanged_portion_omitted_
424 if ((vflag && (failed == 0 || xflag == 0)) ||
425 (vflag == 0 && xflag && failed))
426 goto nomatch;
427 succeed:
428 nsucc = 1;
429 if (lflag || qflag) {
430 if (!qflag)
420 if (cflag)
421 tln++;
422 else if (lflag && !sflag) {
431 (void) printf("%s\n", file);
432 (void) fclose(fptr);
433 return;
434 }
435 if (cflag) {
436 tln++;
437 } else {
438 if (Hflag || (nfile > 1 && !hflag))
426 } else if (!sflag) {
427 if (nfile > 1 && !hflag)
439 (void) printf("%s:", file);
440 if (bflag)
441 (void) printf("%lld:",
442 (blkno - (long long)(ccount-1))
443 / BUFSIZ);
444 if (nflag)
445 (void) printf("%lld:", lnum);
446 if (p <= nlp) {
447 while (nlp < &buf[fw_lBufsiz + BUFSIZ])
448 (void) putchar(*nlp++);
449 nlp = buf;

new/usr/src/cmd/fgrep/fgrep.c 8

450 }
451 while (nlp < p)
452 (void) putchar(*nlp++);
453 }
454 nomatch:
455 lnum++;
456 nlp = p;
457 c = w;
458 failed = 0;
459 continue;
460 }
461 if (lc == ’\n’)
462 if (vflag)
463 goto succeed;
464 else {
465 lnum++;
466 nlp = p;
467 c = w;
468 failed = 0;
469 }
470 }
471 (void) fclose(fptr);
472 if (cflag && !qflag) {
473 if (Hflag || (nfile > 1 && !hflag))
461 if (cflag) {
462 if ((nfile > 1) && !hflag)
474 (void) printf("%s:", file);
475 (void) printf("%lld\n", tln);
476 }
477 }

______unchanged_portion_omitted_

new/usr/src/cmd/grep/grep.c 1

**
 10567 Fri Sep 13 10:33:21 2013
new/usr/src/cmd/grep/grep.c
3737 grep does not support -H option
3759 egrep(1) and fgrep(1) -s flag does not hide -c output
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Andy Stormont <andyjstormont@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */

30 /* Copyright (c) 1987, 1988 Microsoft Corporation */
31 /* All Rights Reserved */

33 /* Copyright 2012 Nexenta Systems, Inc. All rights reserved. */

35 /*
36 * Copyright 2013 Damian Bogel. All rights reserved.
37 */

39 /*
40 * grep -- print lines matching (or not matching) a pattern
41 *
42 * status returns:
43 * 0 - ok, and some matches
44 * 1 - ok, but no matches
45 * 2 - some error
46 */

48 #include <sys/types.h>

50 #include <ctype.h>
51 #include <fcntl.h>
52 #include <locale.h>
53 #include <memory.h>
54 #include <regexpr.h>
55 #include <stdio.h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd.h>

new/usr/src/cmd/grep/grep.c 2

59 #include <ftw.h>
60 #include <limits.h>
61 #include <sys/param.h>

63 static const char *errstr[] = {
64 "Range endpoint too large.",
65 "Bad number.",
66 "‘‘\\digit’’ out of range.",
67 "No remembered search string.",
68 "\\(\\) imbalance.",
69 "Too many \\(.",
70 "More than 2 numbers given in \\{ \\}.",
71 "} expected after \\.",
72 "First number exceeds second in \\{ \\}.",
73 "[] imbalance.",
74 "Regular expression overflow.",
75 "Illegal byte sequence.",
76 "Unknown regexp error code!!",
77 NULL
78 };

80 #define STDIN_FILENAME gettext("(standard input)")

82 #define errmsg(msg, arg) (void) fprintf(stderr, gettext(msg), arg)
83 #define BLKSIZE 512
84 #define GBUFSIZ 8192
85 #define MAX_DEPTH 1000

87 static int temp;
88 static long long lnum;
89 static char *linebuf;
90 static char *prntbuf = NULL;
91 static long fw_lPrntBufLen = 0;
92 static int nflag;
93 static int bflag;
94 static int lflag;
95 static int cflag;
96 static int rflag;
97 static int Rflag;
98 static int vflag;
99 static int sflag;
100 static int iflag;
101 static int wflag;
102 static int hflag;
103 static int Hflag;
104 static int qflag;
105 static int errflg;
106 static int nfile;
107 static long long tln;
108 static int nsucc;
109 static int outfn = 0;
110 static int nlflag;
111 static char *ptr, *ptrend;
112 static char *expbuf;

114 static void execute(const char *, int);
115 static void regerr(int);
116 static void prepare(const char *);
117 static int recursive(const char *, const struct stat *, int, struct FTW *);
118 static int succeed(const char *);

120 int
121 main(int argc, char **argv)
122 {
123 int c;
124 char *arg;

new/usr/src/cmd/grep/grep.c 3

125 extern int optind;

127 (void) setlocale(LC_ALL, "");
128 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
129 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t */
130 #endif
131 (void) textdomain(TEXT_DOMAIN);

133 while ((c = getopt(argc, argv, "hHqblcnRrsviyw")) != -1)
126 while ((c = getopt(argc, argv, "hqblcnRrsviyw")) != -1)
134 switch (c) {
135 /* based on options order h or H is set as in GNU grep */
136 case ’h’:
137 hflag++;
138 Hflag = 0; /* h excludes H */
139 break;
140 case ’H’:
141 if (!lflag) /* H is excluded by l */
142 Hflag++;
143 hflag = 0; /* H excludes h */
144 break;
145 case ’q’: /* POSIX: quiet: status only */
146 qflag++;
147 break;
148 case ’v’:
149 vflag++;
150 break;
151 case ’c’:
152 cflag++;
153 break;
154 case ’n’:
155 nflag++;
156 break;
157 case ’R’:
158 Rflag++;
159 /* FALLTHROUGH */
160 case ’r’:
161 rflag++;
162 break;
163 case ’b’:
164 bflag++;
165 break;
166 case ’s’:
167 sflag++;
168 break;
169 case ’l’:
170 lflag++;
171 Hflag = 0; /* l excludes H */
172 break;
173 case ’y’:
174 case ’i’:
175 iflag++;
176 break;
177 case ’w’:
178 wflag++;
179 break;
180 case ’?’:
181 errflg++;
182 }

184 if (errflg || (optind >= argc)) {
185 errmsg("Usage: grep [-c|-l|-q] [-r|-R] -hHbnsviw "
170 errmsg("Usage: grep [-c|-l|-q] [-r|-R] -hbnsviw "
186 "pattern file . . .\n",
187 (char *)NULL);
188 exit(2);

new/usr/src/cmd/grep/grep.c 4

189 }

191 argv = &argv[optind];
192 argc -= optind;
193 nfile = argc - 1;

195 if (strrchr(*argv, ’\n’) != NULL)
196 regerr(41);

198 if (iflag) {
199 for (arg = *argv; *arg != NULL; ++arg)
200 *arg = (char)tolower((int)((unsigned char)*arg));
201 }

203 if (wflag) {
204 unsigned int wordlen;
205 char *wordbuf;

207 wordlen = strlen(*argv) + 5; /* ’\\’ ’<’ *argv ’\\’ ’>’ ’\0’ */
208 if ((wordbuf = malloc(wordlen)) == NULL) {
209 errmsg("grep: Out of memory for word\n", (char *)NULL);
210 exit(2);
211 }

213 (void) strcpy(wordbuf, "\\<");
214 (void) strcat(wordbuf, *argv);
215 (void) strcat(wordbuf, "\\>");
216 *argv = wordbuf;
217 }

219 expbuf = compile(*argv, (char *)0, (char *)0);
220 if (regerrno)
221 regerr(regerrno);

223 if (--argc == 0)
224 execute(NULL, 0);
225 else
226 while (argc-- > 0)
227 prepare(*++argv);

229 return (nsucc == 2 ? 2 : (nsucc == 0 ? 1 : 0));
230 }

______unchanged_portion_omitted_

296 static void
297 execute(const char *file, int base)
298 {
299 char *lbuf, *p;
300 long count;
301 long offset = 0;
302 char *next_ptr = NULL;
303 long next_count = 0;

305 tln = 0;

307 if (prntbuf == NULL) {
308 fw_lPrntBufLen = GBUFSIZ + 1;
309 if ((prntbuf = malloc(fw_lPrntBufLen)) == NULL) {
310 exit(2); /* out of memory - BAIL */
311 }
312 if ((linebuf = malloc(fw_lPrntBufLen)) == NULL) {
313 exit(2); /* out of memory - BAIL */
314 }
315 }

317 if (file == NULL) {

new/usr/src/cmd/grep/grep.c 5

302 if (file == NULL)
318 temp = 0;
319 file = STDIN_FILENAME;
320 } else if ((temp = open(file + base, O_RDONLY)) == -1) {
304 else if ((temp = open(file + base, O_RDONLY)) == -1) {
321 if (!sflag)
322 errmsg("grep: can’t open %s\n", file);
323 nsucc = 2;
324 return;
325 }

327 /* read in first block of bytes */
328 if ((count = read(temp, prntbuf, GBUFSIZ)) <= 0) {
329 (void) close(temp);

331 if (cflag && !qflag) {
332 if (Hflag || (nfile > 1 && !hflag))
316 if (nfile > 1 && !hflag && file)
333 (void) fprintf(stdout, "%s:", file);
334 if (!rflag)
335 (void) fprintf(stdout, "%lld\n", tln);
336 }
337 return;
338 }

340 lnum = 0;
341 ptr = prntbuf;
342 for (;;) {
343 /* look for next newline */
344 if ((ptrend = memchr(ptr + offset, ’\n’, count)) == NULL) {
345 offset += count;

347 /*
348 * shift unused data to the beginning of the buffer
349 */
350 if (ptr > prntbuf) {
351 (void) memmove(prntbuf, ptr, offset);
352 ptr = prntbuf;
353 }

355 /*
356 * re-allocate a larger buffer if this one is full
357 */
358 if (offset + GBUFSIZ > fw_lPrntBufLen) {
359 /*
360 * allocate a new buffer and preserve the
361 * contents...
362 */
363 fw_lPrntBufLen += GBUFSIZ;
364 if ((prntbuf = realloc(prntbuf,
365 fw_lPrntBufLen)) == NULL)
366 exit(2);

368 /*
369 * set up a bigger linebuffer (this is only used
370 * for case insensitive operations). Contents do
371 * not have to be preserved.
372 */
373 free(linebuf);
374 if ((linebuf = malloc(fw_lPrntBufLen)) == NULL)
375 exit(2);

377 ptr = prntbuf;
378 }

380 p = prntbuf + offset;

new/usr/src/cmd/grep/grep.c 6

381 if ((count = read(temp, p, GBUFSIZ)) > 0)
382 continue;

384 if (offset == 0)
385 /* end of file already reached */
386 break;

388 /* last line of file has no newline */
389 ptrend = ptr + offset;
390 nlflag = 0;
391 } else {
392 next_ptr = ptrend + 1;
393 next_count = offset + count - (next_ptr - ptr);
394 nlflag = 1;
395 }
396 lnum++;
397 *ptrend = ’\0’;

399 if (iflag) {
400 /*
401 * Make a lower case copy of the record
402 */
403 p = ptr;
404 for (lbuf = linebuf; p < ptrend;)
405 *lbuf++ = (char)tolower((int)
406 (unsigned char)*p++);
407 *lbuf = ’\0’;
408 lbuf = linebuf;
409 } else
410 /*
411 * Use record as is
412 */
413 lbuf = ptr;

415 /* lflag only once */
416 if ((step(lbuf, expbuf) ^ vflag) && succeed(file) == 1)
417 break;

419 if (!nlflag)
420 break;

422 ptr = next_ptr;
423 count = next_count;
424 offset = 0;
425 }
426 (void) close(temp);

428 if (cflag && !qflag) {
429 if (Hflag || (!hflag && ((nfile > 1) ||
430 (rflag && outfn))))
413 if (!hflag && file && (nfile > 1 ||
414 (rflag && outfn)))
431 (void) fprintf(stdout, "%s:", file);
432 (void) fprintf(stdout, "%lld\n", tln);
433 }
434 }

436 static int
437 succeed(const char *f)
438 {
439 int nchars;
440 nsucc = (nsucc == 2) ? 2 : 1;

426 if (f == NULL)
427 f = "<stdin>";

new/usr/src/cmd/grep/grep.c 7

442 if (qflag) {
443 /* no need to continue */
444 return (1);
445 }

447 if (cflag) {
448 tln++;
449 return (0);
450 }

452 if (lflag) {
453 (void) fprintf(stdout, "%s\n", f);
454 return (1);
455 }

457 if (Hflag || (!hflag && (nfile > 1 || (rflag && outfn)))) {
444 if (!hflag && (nfile > 1 || (rflag && outfn))) {
458 /* print filename */
459 (void) fprintf(stdout, "%s:", f);
460 }

462 if (bflag)
463 /* print block number */
464 (void) fprintf(stdout, "%lld:", (offset_t)
465 ((lseek(temp, (off_t)0, SEEK_CUR) - 1) / BLKSIZE));

467 if (nflag)
468 /* print line number */
469 (void) fprintf(stdout, "%lld:", lnum);

471 if (nlflag) {
472 /* newline at end of line */
473 *ptrend = ’\n’;
474 nchars = ptrend - ptr + 1;
475 } else {
476 /* don’t write sentinel \0 */
477 nchars = ptrend - ptr;
478 }

480 (void) fwrite(ptr, 1, nchars, stdout);
481 return (0);
482 }

______unchanged_portion_omitted_

new/usr/src/cmd/grep_xpg4/grep.c 1

**
 28372 Fri Sep 13 10:33:21 2013
new/usr/src/cmd/grep_xpg4/grep.c
3737 grep does not support -H option
3759 egrep(1) and fgrep(1) -s flag does not hide -c output
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Andy Stormont <andyjstormont@gmail.com>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * grep - pattern matching program - combined grep, egrep, and fgrep.
29 * Based on MKS grep command, with XCU & Solaris mods.
30 */

32 /*
33 * Copyright 1985, 1992 by Mortice Kern Systems Inc. All rights reserved.
34 *
35 */

37 /* Copyright 2012 Nexenta Systems, Inc. All rights reserved. */

39 /*
40 * Copyright 2013 Damian Bogel. All rights reserved.
41 */

43 #include <string.h>
44 #include <stdlib.h>
45 #include <ctype.h>
46 #include <stdarg.h>
47 #include <regex.h>
48 #include <limits.h>
49 #include <sys/types.h>
50 #include <sys/stat.h>
51 #include <fcntl.h>
52 #include <stdio.h>
53 #include <locale.h>
54 #include <wchar.h>
55 #include <errno.h>
56 #include <unistd.h>
57 #include <wctype.h>
58 #include <ftw.h>

new/usr/src/cmd/grep_xpg4/grep.c 2

59 #include <sys/param.h>

61 #define STDIN_FILENAME gettext("(standard input)")

63 #define BSIZE 512 /* Size of block for -b */
64 #define BUFSIZE 8192 /* Input buffer size */
65 #define MAX_DEPTH 1000 /* how deep to recurse */

67 #define M_CSETSIZE 256 /* singlebyte chars */
68 static int bmglen; /* length of BMG pattern */
69 static char *bmgpat; /* BMG pattern */
70 static int bmgtab[M_CSETSIZE]; /* BMG delta1 table */

72 typedef struct _PATTERN {
73 char *pattern; /* original pattern */
74 wchar_t *wpattern; /* wide, lowercased pattern */
75 struct _PATTERN *next;
76 regex_t re; /* compiled pattern */
77 } PATTERN;

79 static PATTERN *patterns;
80 static char errstr[128]; /* regerror string buffer */
81 static int regflags = 0; /* regcomp options */
82 static int matched = 0; /* return of the grep() */
83 static int errors = 0; /* count of errors */
84 static uchar_t fgrep = 0; /* Invoked as fgrep */
85 static uchar_t egrep = 0; /* Invoked as egrep */
86 static uchar_t nvflag = 1; /* Print matching lines */
87 static uchar_t cflag; /* Count of matches */
88 static uchar_t iflag; /* Case insensitve matching */
89 static uchar_t Hflag; /* Precede lines by file name */
90 static uchar_t hflag; /* Supress printing of filename */
91 static uchar_t lflag; /* Print file names of matches */
92 static uchar_t nflag; /* Precede lines by line number */
93 static uchar_t rflag; /* Search directories recursively */
94 static uchar_t bflag; /* Preccede matches by block number */
95 static uchar_t sflag; /* Suppress file error messages */
96 static uchar_t qflag; /* Suppress standard output */
97 static uchar_t wflag; /* Search for expression as a word */
98 static uchar_t xflag; /* Anchoring */
99 static uchar_t Eflag; /* Egrep or -E flag */
100 static uchar_t Fflag; /* Fgrep or -F flag */
101 static uchar_t Rflag; /* Like rflag, but follow symlinks */
102 static uchar_t outfn; /* Put out file name */
103 static char *cmdname;

105 static int use_wchar, use_bmg, mblocale;

107 static size_t outbuflen, prntbuflen;
108 static char *prntbuf;
109 static wchar_t *outline;

111 static void addfile(const char *fn);
112 static void addpattern(char *s);
113 static void fixpatterns(void);
114 static void usage(void);
115 static int grep(int, const char *);
116 static void bmgcomp(char *, int);
117 static char *bmgexec(char *, char *);
118 static int recursive(const char *, const struct stat *, int, struct FTW *);
119 static void process_path(const char *);
120 static void process_file(const char *, int);

122 /*
123 * mainline for grep
124 */

new/usr/src/cmd/grep_xpg4/grep.c 3

125 int
126 main(int argc, char **argv)
127 {
128 char *ap;
129 int c;
130 int fflag = 0;
131 int i, n_pattern = 0, n_file = 0;
132 char **pattern_list = NULL;
133 char **file_list = NULL;

135 (void) setlocale(LC_ALL, "");
136 #if !defined(TEXT_DOMAIN) /* Should be defined by cc -D */
137 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren’t */
138 #endif
139 (void) textdomain(TEXT_DOMAIN);

141 /*
142 * true if this is running on the multibyte locale
143 */
144 mblocale = (MB_CUR_MAX > 1);
145 /*
146 * Skip leading slashes
147 */
148 cmdname = argv[0];
149 if (ap = strrchr(cmdname, ’/’))
150 cmdname = ap + 1;

152 ap = cmdname;
153 /*
154 * Detect egrep/fgrep via command name, map to -E and -F options.
155 */
156 if (*ap == ’e’ || *ap == ’E’) {
157 regflags |= REG_EXTENDED;
158 egrep++;
159 } else {
160 if (*ap == ’f’ || *ap == ’F’) {
161 fgrep++;
162 }
163 }

165 while ((c = getopt(argc, argv, "vwchHilnrbse:f:qxEFIR")) != EOF) {
158 while ((c = getopt(argc, argv, "vwchilnrbse:f:qxEFIR")) != EOF) {
166 switch (c) {
167 case ’v’: /* POSIX: negate matches */
168 nvflag = 0;
169 break;

171 case ’c’: /* POSIX: write count */
172 cflag++;
173 break;

175 case ’i’: /* POSIX: ignore case */
176 iflag++;
177 regflags |= REG_ICASE;
178 break;

180 case ’l’: /* POSIX: Write filenames only */
181 lflag++;
182 break;

184 case ’n’: /* POSIX: Write line numbers */
185 nflag++;
186 break;

188 case ’r’: /* Solaris: search recursively */
189 rflag++;

new/usr/src/cmd/grep_xpg4/grep.c 4

190 break;

192 case ’b’: /* Solaris: Write file block numbers */
193 bflag++;
194 break;

196 case ’s’: /* POSIX: No error msgs for files */
197 sflag++;
198 break;

200 case ’e’: /* POSIX: pattern list */
201 n_pattern++;
202 pattern_list = realloc(pattern_list,
203 sizeof (char *) * n_pattern);
204 if (pattern_list == NULL) {
205 (void) fprintf(stderr,
206 gettext("%s: out of memory\n"),
207 cmdname);
208 exit(2);
209 }
210 *(pattern_list + n_pattern - 1) = optarg;
211 break;

213 case ’f’: /* POSIX: pattern file */
214 fflag = 1;
215 n_file++;
216 file_list = realloc(file_list,
217 sizeof (char *) * n_file);
218 if (file_list == NULL) {
219 (void) fprintf(stderr,
220 gettext("%s: out of memory\n"),
221 cmdname);
222 exit(2);
223 }
224 *(file_list + n_file - 1) = optarg;
225 break;

227 /* based on options order h or H is set as in GNU grep */
228 case ’h’: /* Solaris: supress printing of file name */
229 hflag = 1;
230 Hflag = 0;
231 break;
232 /* Solaris: precede every matching with file name */
233 case ’H’:
234 Hflag = 1;
235 hflag = 0;
236 break;

238 case ’q’: /* POSIX: quiet: status only */
239 qflag++;
240 break;

242 case ’w’: /* Solaris: treat pattern as word */
243 wflag++;
244 break;

246 case ’x’: /* POSIX: full line matches */
247 xflag++;
248 regflags |= REG_ANCHOR;
249 break;

251 case ’E’: /* POSIX: Extended RE’s */
252 regflags |= REG_EXTENDED;
253 Eflag++;
254 break;

new/usr/src/cmd/grep_xpg4/grep.c 5

256 case ’F’: /* POSIX: strings, not RE’s */
257 Fflag++;
258 break;

260 case ’R’: /* Solaris: like rflag, but follow symlinks */
261 Rflag++;
262 rflag++;
263 break;

265 default:
266 usage();
267 }
268 }
269 /*
270 * If we’re invoked as egrep or fgrep we need to do some checks
271 */

273 if (egrep || fgrep) {
274 /*
275 * Use of -E or -F with egrep or fgrep is illegal
276 */
277 if (Eflag || Fflag)
278 usage();
279 /*
280 * Don’t allow use of wflag with egrep / fgrep
281 */
282 if (wflag)
283 usage();
284 /*
285 * For Solaris the -s flag is equivalent to XCU -q
286 */
287 if (sflag)
288 qflag++;
289 /*
290 * done with above checks - set the appropriate flags
291 */
292 if (egrep)
293 Eflag++;
294 else /* Else fgrep */
295 Fflag++;
296 }

298 if (wflag && (Eflag || Fflag)) {
299 /*
300 * -w cannot be specified with grep -F
301 */
302 usage();
303 }

305 /*
306 * -E and -F flags are mutually exclusive - check for this
307 */
308 if (Eflag && Fflag)
309 usage();

311 /*
312 * -l overrides -H like in GNU grep
313 */
314 if (lflag)
315 Hflag = 0;

317 /*
318 * -c, -l and -q flags are mutually exclusive
319 * We have -c override -l like in Solaris.
320 * -q overrides -l & -c programmatically in grep() function.
321 */

new/usr/src/cmd/grep_xpg4/grep.c 6

322 if (cflag && lflag)
323 lflag = 0;

325 argv += optind - 1;
326 argc -= optind - 1;

328 /*
329 * Now handling -e and -f option
330 */
331 if (pattern_list) {
332 for (i = 0; i < n_pattern; i++) {
333 addpattern(pattern_list[i]);
334 }
335 free(pattern_list);
336 }
337 if (file_list) {
338 for (i = 0; i < n_file; i++) {
339 addfile(file_list[i]);
340 }
341 free(file_list);
342 }

344 /*
345 * No -e or -f? Make sure there is one more arg, use it as the pattern.
346 */
347 if (patterns == NULL && !fflag) {
348 if (argc < 2)
349 usage();
350 addpattern(argv[1]);
351 argc--;
352 argv++;
353 }

355 /*
356 * If -x flag is not specified or -i flag is specified
357 * with fgrep in a multibyte locale, need to use
358 * the wide character APIs. Otherwise, byte-oriented
359 * process will be done.
360 */
361 use_wchar = Fflag && mblocale && (!xflag || iflag);

363 /*
364 * Compile Patterns and also decide if BMG can be used
365 */
366 fixpatterns();

368 /* Process all files: stdin, or rest of arg list */
369 if (argc < 2) {
370 matched = grep(0, STDIN_FILENAME);
349 matched = grep(0, gettext("(standard input)"));
371 } else {
372 if (Hflag || (argc > 2 && hflag == 0))
351 if (argc > 2 && hflag == 0)
373 outfn = 1; /* Print filename on match line */
374 for (argv++; *argv != NULL; argv++) {
375 process_path(*argv);
376 }
377 }
378 /*
379 * Return() here is used instead of exit
380 */

382 (void) fflush(stdout);

384 if (errors)
385 return (2);

new/usr/src/cmd/grep_xpg4/grep.c 7

386 return (matched ? 0 : 1);
387 }

______unchanged_portion_omitted_

788 /*
789 * Do grep on a single file.
790 * Return true in any lines matched.
791 *
792 * We have two strategies:
793 * The fast one is used when we have a single pattern with
794 * a string known to occur in the pattern. We can then
795 * do a BMG match on the whole buffer.
796 * This is an order of magnitude faster.
797 * Otherwise we split the buffer into lines,
798 * and check for a match on each line.
799 */
800 static int
801 grep(int fd, const char *fn)
802 {
803 PATTERN *pp;
804 off_t data_len; /* length of the data chunk */
805 off_t line_len; /* length of the current line */
806 off_t line_offset; /* current line’s offset from the beginning */
807 long long lineno;
808 long long matches = 0; /* Number of matching lines */
809 int newlinep; /* 0 if the last line of file has no newline */
810 char *ptr, *ptrend;

813 if (patterns == NULL)
814 return (0); /* no patterns to match -- just return */

816 pp = patterns;

818 if (use_bmg) {
819 bmgcomp(pp->pattern, strlen(pp->pattern));
820 }

822 if (use_wchar && outline == NULL) {
823 outbuflen = BUFSIZE + 1;
824 outline = malloc(sizeof (wchar_t) * outbuflen);
825 if (outline == NULL) {
826 (void) fprintf(stderr, gettext("%s: out of memory\n"),
827 cmdname);
828 exit(2);
829 }
830 }

832 if (prntbuf == NULL) {
833 prntbuflen = BUFSIZE;
834 if ((prntbuf = malloc(prntbuflen + 1)) == NULL) {
835 (void) fprintf(stderr, gettext("%s: out of memory\n"),
836 cmdname);
837 exit(2);
838 }
839 }

841 line_offset = 0;
842 lineno = 0;
843 newlinep = 1;
844 data_len = 0;
845 for (; ;) {
846 long count;
847 off_t offset = 0;

849 if (data_len == 0) {

new/usr/src/cmd/grep_xpg4/grep.c 8

850 /*
851 * If no data in the buffer, reset ptr
852 */
853 ptr = prntbuf;
854 }
855 if (ptr == prntbuf) {
856 /*
857 * The current data chunk starts from prntbuf.
858 * This means either the buffer has no data
859 * or the buffer has no newline.
860 * So, read more data from input.
861 */
862 count = read(fd, ptr + data_len, prntbuflen - data_len);
863 if (count < 0) {
864 /* read error */
865 if (cflag) {
866 if (outfn && !rflag) {
867 (void) fprintf(stdout,
868 "%s:", fn);
869 }
870 if (!qflag && !rflag) {
871 (void) fprintf(stdout, "%lld\n",
872 matches);
873 }
874 }
875 return (0);
876 } else if (count == 0) {
877 /* no new data */
878 if (data_len == 0) {
879 /* end of file already reached */
880 break;
881 }
882 /* last line of file has no newline */
883 ptrend = ptr + data_len;
884 newlinep = 0;
885 goto L_start_process;
886 }
887 offset = data_len;
888 data_len += count;
889 }

891 /*
892 * Look for newline in the chunk
893 * between ptr + offset and ptr + data_len - offset.
894 */
895 ptrend = find_nl(ptr + offset, data_len - offset);
896 if (ptrend == NULL) {
897 /* no newline found in this chunk */
898 if (ptr > prntbuf) {
899 /*
900 * Move remaining data to the beginning
901 * of the buffer.
902 * Remaining data lie from ptr for
903 * data_len bytes.
904 */
905 (void) memmove(prntbuf, ptr, data_len);
906 }
907 if (data_len == prntbuflen) {
908 /*
909 * No enough room in the buffer
910 */
911 prntbuflen += BUFSIZE;
912 prntbuf = realloc(prntbuf, prntbuflen + 1);
913 if (prntbuf == NULL) {
914 (void) fprintf(stderr,
915 gettext("%s: out of memory\n"),

new/usr/src/cmd/grep_xpg4/grep.c 9

916 cmdname);
917 exit(2);
918 }
919 }
920 ptr = prntbuf;
921 /* read the next input */
922 continue;
923 }
924 L_start_process:

926 /*
927 * Beginning of the chunk: ptr
928 * End of the chunk: ptr + data_len
929 * Beginning of the line: ptr
930 * End of the line: ptrend
931 */

933 if (use_bmg) {
934 /*
935 * Use Boyer-Moore-Gosper algorithm to find out if
936 * this chunk (not this line) contains the specified
937 * pattern. If not, restart from the last line
938 * of this chunk.
939 */
940 char *bline;
941 bline = bmgexec(ptr, ptr + data_len);
942 if (bline == NULL) {
943 /*
944 * No pattern found in this chunk.
945 * Need to find the last line
946 * in this chunk.
947 */
948 ptrend = rfind_nl(ptr, data_len);

950 /*
951 * When this chunk does not contain newline,
952 * ptrend becomes NULL, which should happen
953 * when the last line of file does not end
954 * with a newline. At such a point,
955 * newlinep should have been set to 0.
956 * Therefore, just after jumping to
957 * L_skip_line, the main for-loop quits,
958 * and the line_len value won’t be
959 * used.
960 */
961 line_len = ptrend - ptr;
962 goto L_skip_line;
963 }
964 if (bline > ptrend) {
965 /*
966 * Pattern found not in the first line
967 * of this chunk.
968 * Discard the first line.
969 */
970 line_len = ptrend - ptr;
971 goto L_skip_line;
972 }
973 /*
974 * Pattern found in the first line of this chunk.
975 * Using this result.
976 */
977 *ptrend = ’\0’;
978 line_len = ptrend - ptr;

980 /*
981 * before jumping to L_next_line,

new/usr/src/cmd/grep_xpg4/grep.c 10

982 * need to handle xflag if specified
983 */
984 if (xflag && (line_len != bmglen ||
985 strcmp(bmgpat, ptr) != 0)) {
986 /* didn’t match */
987 pp = NULL;
988 } else {
989 pp = patterns; /* to make it happen */
990 }
991 goto L_next_line;
992 }
993 lineno++;
994 /*
995 * Line starts from ptr and ends at ptrend.
996 * line_len will be the length of the line.
997 */
998 *ptrend = ’\0’;
999 line_len = ptrend - ptr;

1001 /*
1002 * From now, the process will be performed based
1003 * on the line from ptr to ptrend.
1004 */
1005 if (use_wchar) {
1006 size_t len;

1008 if (line_len >= outbuflen) {
1009 outbuflen = line_len + 1;
1010 outline = realloc(outline,
1011 sizeof (wchar_t) * outbuflen);
1012 if (outline == NULL) {
1013 (void) fprintf(stderr,
1014 gettext("%s: out of memory\n"),
1015 cmdname);
1016 exit(2);
1017 }
1018 }

1020 len = mbstowcs(outline, ptr, line_len);
1021 if (len == (size_t)-1) {
1022 (void) fprintf(stderr, gettext(
1023 "%s: input file \"%s\": line %lld: invalid multibyte character\n"),
1024 cmdname, fn, lineno);
1025 /* never match a line with invalid sequence */
1026 goto L_skip_line;
1027 }
1028 outline[len] = L’\0’;

1030 if (iflag) {
1031 wchar_t *cp;
1032 for (cp = outline; *cp != ’\0’; cp++) {
1033 *cp = towlower((wint_t)*cp);
1034 }
1035 }

1037 if (xflag) {
1038 for (pp = patterns; pp; pp = pp->next) {
1039 if (outline[0] == pp->wpattern[0] &&
1040 wcscmp(outline,
1041 pp->wpattern) == 0) {
1042 /* matched */
1043 break;
1044 }
1045 }
1046 } else {
1047 for (pp = patterns; pp; pp = pp->next) {

new/usr/src/cmd/grep_xpg4/grep.c 11

1048 if (wcswcs(outline, pp->wpattern)
1049 != NULL) {
1050 /* matched */
1051 break;
1052 }
1053 }
1054 }
1055 } else if (Fflag) {
1056 /* fgrep in byte-oriented handling */
1057 char *fptr;
1058 if (iflag) {
1059 fptr = istrdup(ptr);
1060 } else {
1061 fptr = ptr;
1062 }
1063 if (xflag) {
1064 /* fgrep -x */
1065 for (pp = patterns; pp; pp = pp->next) {
1066 if (fptr[0] == pp->pattern[0] &&
1067 strcmp(fptr, pp->pattern) == 0) {
1068 /* matched */
1069 break;
1070 }
1071 }
1072 } else {
1073 for (pp = patterns; pp; pp = pp->next) {
1074 if (strstr(fptr, pp->pattern) != NULL) {
1075 /* matched */
1076 break;
1077 }
1078 }
1079 }
1080 } else {
1081 /* grep or egrep */
1082 for (pp = patterns; pp; pp = pp->next) {
1083 int rv;

1085 rv = regexec(&pp->re, ptr, 0, NULL, 0);
1086 if (rv == REG_OK) {
1087 /* matched */
1088 break;
1089 }

1091 switch (rv) {
1092 case REG_NOMATCH:
1093 break;
1094 case REG_ECHAR:
1095 (void) fprintf(stderr, gettext(
1096 "%s: input file \"%s\": line %lld: invalid multibyte character\n"),
1097 cmdname, fn, lineno);
1098 break;
1099 default:
1100 (void) regerror(rv, &pp->re, errstr,
1101 sizeof (errstr));
1102 (void) fprintf(stderr, gettext(
1103 "%s: input file \"%s\": line %lld: %s\n"),
1104 cmdname, fn, lineno, errstr);
1105 exit(2);
1106 }
1107 }
1108 }

1110 L_next_line:
1111 /*
1112 * Here, if pp points to non-NULL, something has been matched
1113 * to the pattern.

new/usr/src/cmd/grep_xpg4/grep.c 12

1114 */
1115 if (nvflag == (pp != NULL)) {
1116 matches++;
1117 /*
1118 * Handle q, l, and c flags.
1119 */
1120 if (qflag) {
1121 /* no need to continue */
1122 /*
1123 * End of this line is ptrend.
1124 * We have read up to ptr + data_len.
1125 */
1126 off_t pos;
1127 pos = ptr + data_len - (ptrend + 1);
1128 (void) lseek(fd, -pos, SEEK_CUR);
1129 exit(0);
1130 }
1131 if (lflag) {
1132 (void) printf("%s\n", fn);
1133 break;
1134 }
1135 if (!cflag) {
1136 if (Hflag || outfn) {
1115 if (outfn) {
1137 (void) printf("%s:", fn);
1138 }
1139 if (bflag) {
1140 (void) printf("%lld:", (offset_t)
1141 (line_offset / BSIZE));
1142 }
1143 if (nflag) {
1144 (void) printf("%lld:", lineno);
1145 }
1146 *ptrend = ’\n’;
1147 (void) fwrite(ptr, 1, line_len + 1, stdout);
1148 }
1149 if (ferror(stdout)) {
1150 return (0);
1151 }
1152 }
1153 L_skip_line:
1154 if (!newlinep)
1155 break;

1157 data_len -= line_len + 1;
1158 line_offset += line_len + 1;
1159 ptr = ptrend + 1;
1160 }

1162 if (cflag) {
1163 if (Hflag || outfn) {
1142 if (outfn) {
1164 (void) printf("%s:", fn);
1165 }
1166 if (!qflag) {
1167 (void) printf("%lld\n", matches);
1168 }
1169 }
1170 return (matches != 0);
1171 }

1173 /*
1174 * usage message for grep
1175 */
1176 static void
1177 usage(void)

new/usr/src/cmd/grep_xpg4/grep.c 13

1178 {
1179 if (egrep || fgrep) {
1180 (void) fprintf(stderr, gettext("Usage:\t%s"), cmdname);
1181 (void) fprintf(stderr,
1182 gettext(" [-c|-l|-q] [-r|-R] [-bhHinsvx] "
1161 gettext(" [-c|-l|-q] [-r|-R] [-bhinsvx] "
1183 "pattern_list [file ...]\n"));

1185 (void) fprintf(stderr, "\t%s", cmdname);
1186 (void) fprintf(stderr,
1187 gettext(" [-c|-l|-q] [-r|-R] [-bhHinsvx] "
1166 gettext(" [-c|-l|-q] [-r|-R] [-bhinsvx] "
1188 "[-e pattern_list]... "
1189 "[-f pattern_file]... [file...]\n"));
1190 } else {
1191 (void) fprintf(stderr, gettext("Usage:\t%s"), cmdname);
1192 (void) fprintf(stderr,
1193 gettext(" [-c|-l|-q] [-r|-R] [-bhHinsvwx] "
1172 gettext(" [-c|-l|-q] [-r|-R] [-bhinsvwx] "
1194 "pattern_list [file ...]\n"));

1196 (void) fprintf(stderr, "\t%s", cmdname);
1197 (void) fprintf(stderr,
1198 gettext(" [-c|-l|-q] [-r|-R] [-bhHinsvwx] "
1177 gettext(" [-c|-l|-q] [-r|-R] [-bhinsvwx] "
1199 "[-e pattern_list]... "
1200 "[-f pattern_file]... [file...]\n"));

1202 (void) fprintf(stderr, "\t%s", cmdname);
1203 (void) fprintf(stderr,
1204 gettext(" -E [-c|-l|-q] [-r|-R] [-bhHinsvx] "
1183 gettext(" -E [-c|-l|-q] [-r|-R] [-bhinsvx] "
1205 "pattern_list [file ...]\n"));

1207 (void) fprintf(stderr, "\t%s", cmdname);
1208 (void) fprintf(stderr,
1209 gettext(" -E [-c|-l|-q] [-r|-R] [-bhHinsvx] "
1188 gettext(" -E [-c|-l|-q] [-r|-R] [-bhinsvx] "
1210 "[-e pattern_list]... "
1211 "[-f pattern_file]... [file...]\n"));

1213 (void) fprintf(stderr, "\t%s", cmdname);
1214 (void) fprintf(stderr,
1215 gettext(" -F [-c|-l|-q] [-r|-R] [-bhHinsvx] "
1194 gettext(" -F [-c|-l|-q] [-r|-R] [-bhinsvx] "
1216 "pattern_list [file ...]\n"));

1218 (void) fprintf(stderr, "\t%s", cmdname);
1219 (void) fprintf(stderr,
1220 gettext(" -F [-c|-l|-q] [-bhHinsvx] [-e pattern_list]... "
1199 gettext(" -F [-c|-l|-q] [-bhinsvx] [-e pattern_list]... "
1221 "[-f pattern_file]... [file...]\n"));
1222 }
1223 exit(2);
1224 /* NOTREACHED */
1225 }
______unchanged_portion_omitted_

new/usr/src/man/man1/egrep.1 1

**
 9118 Fri Sep 13 10:33:21 2013
new/usr/src/man/man1/egrep.1
3737 grep does not support -H option
3759 egrep(1) and fgrep(1) -s flag does not hide -c output
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Andy Stormont <andyjstormont@gmail.com>
**

1 ’\" te
2 .\" Copyright 1989 AT&T
3 .\" Copyright (c) 2006, Sun Microsystems, Inc. All Rights Reserved
4 .\" Portions Copyright (c) 1992, X/Open Company Limited All Rights Reserved
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" http://www.opengroup.org/bookstore/.
7 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
8 .\" This notice shall appear on any product containing this material.
9 .\" The contents of this file are subject to the terms of the Common Development

10 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
11 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
12 .TH EGREP 1 "May 3, 2013"
12 .TH EGREP 1 "Mar 24, 2006"
13 .SH NAME
14 egrep \- search a file for a pattern using full regular expressions
15 .SH SYNOPSIS
16 .LP
17 .nf
18 \fB/usr/bin/egrep\fR [\fB-bcHhilnqsv\fR] \fB-e\fR \fIpattern_list\fR [\fIfile...
18 \fB/usr/bin/egrep\fR [\fB-bchilnsv\fR] \fB-e\fR \fIpattern_list\fR [\fIfile...\f
19 .fi

21 .LP
22 .nf
23 \fB/usr/bin/egrep\fR [\fB-bcHhilnqsv\fR] \fB-f\fR \fIfile\fR [\fIfile...\fR]
23 \fB/usr/bin/egrep\fR [\fB-bchilnsv\fR] \fB-f\fR \fIfile\fR [\fIfile...\fR]
24 .fi

26 .LP
27 .nf
28 \fB/usr/bin/egrep\fR [\fB-bcHhilnqsv\fR] \fIpattern\fR [\fIfile...\fR]
28 \fB/usr/bin/egrep\fR [\fB-bchilnsv\fR] \fIpattern\fR [\fIfile...\fR]
29 .fi

31 .LP
32 .nf
33 \fB/usr/xpg4/bin/egrep\fR [\fB-bcHhilnqsvx\fR] \fB-e\fR \fIpattern_list\fR [\fB-
33 \fB/usr/xpg4/bin/egrep\fR [\fB-bchilnqsvx\fR] \fB-e\fR \fIpattern_list\fR [\fB-f
34 [\fIfile...\fR]
35 .fi

37 .LP
38 .nf
39 \fB/usr/xpg4/bin/egrep\fR [\fB-bcHhilnqsvx\fR] [\fB-e\fR \fIpattern_list\fR] \fB
39 \fB/usr/xpg4/bin/egrep\fR [\fB-bchilnqsvx\fR] [\fB-e\fR \fIpattern_list\fR] \fB-
40 [\fIfile...\fR]
41 .fi

43 .LP
44 .nf
45 \fB/usr/xpg4/bin/egrep\fR [\fB-bcHhilnqsvx\fR] \fIpattern\fR [\fIfile...\fR]
45 \fB/usr/xpg4/bin/egrep\fR [\fB-bchilnqsvx\fR] \fIpattern\fR [\fIfile...\fR]
46 .fi

48 .SH DESCRIPTION
49 .sp
50 .LP
51 The \fBegrep\fR (\fIexpression grep\fR) utility searches files for a pattern of

new/usr/src/man/man1/egrep.1 2

52 characters and prints all lines that contain that pattern. \fBegrep\fR uses
53 full regular expressions (expressions that have string values that use the full
54 set of alphanumeric and special characters) to match the patterns. It uses a
55 fast deterministic algorithm that sometimes needs exponential space.
56 .sp
57 .LP
58 If no files are specified, \fBegrep\fR assumes standard input. Normally, each
59 line found is copied to the standard output. The file name is printed before
60 each line found if there is more than one input file.
61 .SS "/usr/bin/egrep"
62 .sp
63 .LP
64 The \fB/usr/bin/egrep\fR utility accepts full regular expressions as described
65 on the \fBregexp\fR(5) manual page, except for \fB\e(\fR and \fB\e)\fR,
66 \fB\e(\fR and \fB\e)\fR, \fB\e{\fR and \fB\e}\fR, \fB\e<\fR and \fB\e>\fR, and
67 \fB\en\fR, and with the addition of:
68 .RS +4
69 .TP
70 1.
71 A full regular expression followed by \fB+\fR that matches one or more
72 occurrences of the full regular expression.
73 .RE
74 .RS +4
75 .TP
76 2.
77 A full regular expression followed by \fB?\fR that matches 0 or 1
78 occurrences of the full regular expression.
79 .RE
80 .RS +4
81 .TP
82 3.
83 Full regular expressions separated by | or by a \fBNEWLINE\fR that match
84 strings that are matched by any of the expressions.
85 .RE
86 .RS +4
87 .TP
88 4.
89 A full regular expression that can be enclosed in parentheses \fB()\fRfor
90 grouping.
91 .RE
92 .sp
93 .LP
94 Be careful using the characters \fB$\fR, \fB*\fR, \fB[\fR, \fB^\fR, |, \fB(\fR,
95 \fB)\fR, and \fB\e\fR in \fIfull regular expression\fR, because they are also
96 meaningful to the shell. It is safest to enclose the entire \fIfull regular
97 expression\fR in single quotes (\fBa\’\fR\fBa\’\fR).
98 .sp
99 .LP
100 The order of precedence of operators is \fB[\|]\fR, then \fB*\|?\|+\fR, then
101 concatenation, then | and NEWLINE.
102 .SS "/usr/xpg4/bin/egrep"
103 .sp
104 .LP
105 The \fB/usr/xpg4/bin/egrep\fR utility uses the regular expressions described in
106 the \fBEXTENDED REGULAR EXPRESSIONS\fR section of the \fBregex\fR(5) manual
107 page.
108 .SH OPTIONS
109 .sp
110 .LP
111 The following options are supported for both \fB/usr/bin/egrep\fR and
112 \fB/usr/xpg4/bin/egrep\fR:
113 .sp
114 .ne 2
115 .na
116 \fB\fB-b\fR\fR
117 .ad

new/usr/src/man/man1/egrep.1 3

118 .RS 19n
119 Precede each line by the block number on which it was found. This can be useful
120 in locating block numbers by context (first block is 0).
121 .RE

123 .sp
124 .ne 2
125 .na
126 \fB\fB-c\fR\fR
127 .ad
128 .RS 19n
129 Print only a count of the lines that contain the pattern.
130 .RE

132 .sp
133 .ne 2
134 .na
135 \fB\fB-e\fR \fIpattern_list\fR\fR
136 .ad
137 .RS 19n
138 Search for a \fIpattern_list\fR (\fIfull regular expression\fR that begins with
139 a \fB\(mi\fR).
140 .RE

142 .sp
143 .ne 2
144 .na
145 \fB\fB-f\fR \fIfile\fR\fR
146 .ad
147 .RS 19n
148 Take the list of \fIfull\fR \fIregular\fR \fIexpressions\fR from \fIfile\fR.
149 .RE

151 .sp
152 .ne 2
153 .na
154 \fB\fB-H\fR\fR
155 .ad
156 .RS 19n
157 Precedes each line by the name of the file containing the matching line.
158 .RE

160 .sp
161 .ne 2
162 .na
163 \fB\fB-h\fR\fR
164 .ad
165 .RS 19n
166 Suppress printing of filenames when searching multiple files.
167 .RE

169 .sp
170 .ne 2
171 .na
172 \fB\fB-i\fR\fR
173 .ad
174 .RS 19n
175 Ignore upper/lower case distinction during comparisons.
176 .RE

178 .sp
179 .ne 2
180 .na
181 \fB\fB-l\fR\fR
182 .ad
183 .RS 19n

new/usr/src/man/man1/egrep.1 4

184 Print the names of files with matching lines once, separated by NEWLINEs. Does
185 not repeat the names of files when the pattern is found more than once.
186 .RE

188 .sp
189 .ne 2
190 .na
191 \fB\fB-n\fR\fR
192 .ad
193 .RS 19n
194 Precede each line by its line number in the file (first line is 1).
195 .RE

197 .sp
198 .ne 2
199 .na
200 \fB\fB-q\fR\fR
201 .ad
202 .RS 19n
203 Quiet. Does not write anything to the standard output, regardless of matching
204 lines. Exits with zero status if an input line is selected.
205 .RE

207 .sp
208 .ne 2
209 .na
210 \fB\fB-s\fR\fR
211 .ad
212 .RS 19n
213 Legacy equivalent of \fB-q\fR.
194 Work silently, that is, display nothing except error messages. This is useful
195 for checking the error status.
214 .RE

216 .sp
217 .ne 2
218 .na
219 \fB\fB-v\fR\fR
220 .ad
221 .RS 19n
222 Print all lines except those that contain the pattern.
223 .RE

225 .SS "/usr/xpg4/bin/egrep"
226 .sp
227 .LP
228 The following options are supported for \fB/usr/xpg4/bin/egrep\fR only:
229 .sp
230 .ne 2
213 .na
214 \fB\fB-q\fR\fR
215 .ad
216 .RS 6n
217 Quiet. Does not write anything to the standard output, regardless of matching
218 lines. Exits with zero status if an input line is selected.
219 .RE

221 .sp
222 .ne 2
231 .na
232 \fB\fB-x\fR\fR
233 .ad
234 .RS 6n
235 Consider only input lines that use all characters in the line to match an
236 entire fixed string or regular expression to be matching lines.
237 .RE

new/usr/src/man/man1/egrep.1 5

239 .SH OPERANDS
240 .sp
241 .LP
242 The following operands are supported:
243 .sp
244 .ne 2
245 .na
246 \fB\fIfile\fR\fR
247 .ad
248 .RS 8n
249 A path name of a file to be searched for the patterns. If no \fIfile\fR
250 operands are specified, the standard input is used.
251 .RE

253 .SS "/usr/bin/egrep"
254 .sp
255 .ne 2
256 .na
257 \fB\fIpattern\fR\fR
258 .ad
259 .RS 11n
260 Specify a pattern to be used during the search for input.
261 .RE

263 .SS "/usr/xpg4/bin/egrep"
264 .sp
265 .ne 2
266 .na
267 \fB\fIpattern\fR\fR
268 .ad
269 .RS 11n
270 Specify one or more patterns to be used during the search for input. This
271 operand is treated as if it were specified as \fB-e\fR\fIpattern_list.\fR.
272 .RE

274 .SH USAGE
275 .sp
276 .LP
277 See \fBlargefile\fR(5) for the description of the behavior of \fBegrep\fR when
278 encountering files greater than or equal to 2 Gbyte (2^31 bytes).
279 .SH ENVIRONMENT VARIABLES
280 .sp
281 .LP
282 See \fBenviron\fR(5) for descriptions of the following environment variables
283 that affect the execution of \fBegrep\fR: \fBLC_COLLATE\fR, \fBLC_CTYPE\fR,
284 \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
285 .SH EXIT STATUS
286 .sp
287 .LP
288 The following exit values are returned:
289 .sp
290 .ne 2
291 .na
292 \fB\fB0\fR\fR
293 .ad
294 .RS 5n
295 If any matches are found.
296 .RE

298 .sp
299 .ne 2
300 .na
301 \fB\fB1\fR\fR
302 .ad
303 .RS 5n

new/usr/src/man/man1/egrep.1 6

304 If no matches are found.
305 .RE

307 .sp
308 .ne 2
309 .na
310 \fB\fB2\fR\fR
311 .ad
312 .RS 5n
313 For syntax errors or inaccessible files (even if matches were found).
314 .RE

316 .SH ATTRIBUTES
317 .sp
318 .LP
319 See \fBattributes\fR(5) for descriptions of the following attributes:
320 .SS "/usr/bin/egrep"
321 .sp

323 .sp
324 .TS
325 box;
326 c | c
327 l | l .
328 ATTRIBUTE TYPE ATTRIBUTE VALUE
329 _
330 CSI Not Enabled
331 .TE

333 .SS "/usr/xpg4/bin/egrep"
334 .sp

336 .sp
337 .TS
338 box;
339 c | c
340 l | l .
341 ATTRIBUTE TYPE ATTRIBUTE VALUE
342 _
343 CSI Enabled
344 .TE

346 .SH SEE ALSO
347 .sp
348 .LP
349 \fBfgrep\fR(1), \fBgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1), \fBattributes\fR(5),
350 \fBenviron\fR(5), \fBlargefile\fR(5), \fBregex\fR(5), \fBregexp\fR(5),
351 \fBXPG4\fR(5)
352 .SH NOTES
353 .sp
354 .LP
355 Ideally there should be only one \fBgrep\fR command, but there is not a single
356 algorithm that spans a wide enough range of space-time trade-offs.
357 .sp
358 .LP
359 Lines are limited only by the size of the available virtual memory.
360 .SS "/usr/xpg4/bin/egrep"
361 .sp
362 .LP
363 The \fB/usr/xpg4/bin/egrep\fR utility is identical to \fB/usr/xpg4/bin/grep\fR
364 \fB-E\fR. See \fBgrep\fR(1). Portable applications should use
365 \fB/usr/xpg4/bin/grep\fR \fB-E\fR.

new/usr/src/man/man1/fgrep.1 1

**
 7742 Fri Sep 13 10:33:21 2013
new/usr/src/man/man1/fgrep.1
3737 grep does not support -H option
3759 egrep(1) and fgrep(1) -s flag does not hide -c output
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Andy Stormont <andyjstormont@gmail.com>
**

1 ’\" te
2 .\" Copyright 1989 AT&T
3 .\" Copyright (c) 2006, Sun Microsystems, Inc. All Rights Reserved
4 .\" Portions Copyright (c) 1992, X/Open Company Limited All Rights Reserved
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" http://www.opengroup.org/bookstore/.
7 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
8 .\" This notice shall appear on any product containing this material.
9 .\" The contents of this file are subject to the terms of the Common Development

10 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
11 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
12 .TH FGREP 1 "May 3, 2013"
12 .TH FGREP 1 "Mar 24, 2006"
13 .SH NAME
14 fgrep \- search a file for a fixed-character string
15 .SH SYNOPSIS
16 .LP
17 .nf
18 \fB/usr/bin/fgrep\fR [\fB-bcHhilnqsvx\fR] \fB-e\fR \fIpattern_list\fR [\fIfile..
18 \fB/usr/bin/fgrep\fR [\fB-bchilnsvx\fR] \fB-e\fR \fIpattern_list\fR [\fIfile...\
19 .fi

21 .LP
22 .nf
23 \fB/usr/bin/fgrep\fR [\fB-bcHhilnqsvx\fR] \fB-f\fR \fIfile\fR [\fIfile...\fR]
23 \fB/usr/bin/fgrep\fR [\fB-bchilnsvx\fR] \fB-f\fR \fIfile\fR [\fIfile...\fR]
24 .fi

26 .LP
27 .nf
28 \fB/usr/bin/fgrep\fR [\fB-bcHhilnqsvx\fR] \fIpattern\fR [\fIfile...\fR]
28 \fB/usr/bin/fgrep\fR [\fB-bchilnsvx\fR] \fIpattern\fR [\fIfile...\fR]
29 .fi

31 .LP
32 .nf
33 \fB/usr/xpg4/bin/fgrep\fR [\fB-bcHhilnqsvx\fR] \fB-e\fR \fIpattern_list\fR [\fB-
33 \fB/usr/xpg4/bin/fgrep\fR [\fB-bchilnqsvx\fR] \fB-e\fR \fIpattern_list\fR [\fB-f
34 [\fIfile...\fR]
35 .fi

37 .LP
38 .nf
39 \fB/usr/xpg4/bin/fgrep\fR [\fB-bcHhilnqsvx\fR] [\fB-e\fR \fIpattern_list\fR] \fB
39 \fB/usr/xpg4/bin/fgrep\fR [\fB-bchilnqsvx\fR] [\fB-e\fR \fIpattern_list\fR] \fB-
40 [\fIfile...\fR]
41 .fi

43 .LP
44 .nf
45 \fB/usr/xpg4/bin/fgrep\fR [\fB-bcHhilnqsvx\fR] \fIpattern\fR [\fIfile...\fR]
45 \fB/usr/xpg4/bin/fgrep\fR [\fB-bchilnqsvx\fR] \fIpattern\fR [\fIfile...\fR]
46 .fi

48 .SH DESCRIPTION
49 .sp
50 .LP
51 The \fBfgrep\fR (fast \fBgrep\fR) utility searches files for a character string

new/usr/src/man/man1/fgrep.1 2

52 and prints all lines that contain that string. \fBfgrep\fR is different from
53 \fBgrep\fR(1) and from \fBegrep\fR(1) because it searches for a string, instead
54 of searching for a pattern that matches an expression. \fBfgrep\fR uses a fast
55 and compact algorithm.
56 .sp
57 .LP
58 The characters \fB$\fR, \fB*\fR, \fB[\fR, \fB^\fR, |, \fB(\fR, \fB)\fR, and
59 \fB\e\fR are interpreted literally by \fBfgrep\fR, that is, \fBfgrep\fR does
60 not recognize full regular expressions as does \fBegrep\fR. These characters
61 have special meaning to the shell. Therefore, to be safe, enclose the entire
62 \fIstring\fR within single quotes (\fBa\’\fR).
63 .sp
64 .LP
65 If no files are specified, \fBfgrep\fR assumes standard input. Normally, each
66 line that is found is copied to the standard output. The file name is printed
67 before each line that is found if there is more than one input file.
68 .SH OPTIONS
69 .sp
70 .LP
71 The following options are supported for both \fB/usr/bin/fgrep\fR and
72 \fB/usr/xpg4/bin/fgrep\fR:
73 .sp
74 .ne 2
75 .na
76 \fB\fB-b\fR\fR
77 .ad
78 .RS 19n
79 Precedes each line by the block number on which the line was found. This can be
80 useful in locating block numbers by context. The first block is 0.
81 .RE

83 .sp
84 .ne 2
85 .na
86 \fB\fB-c\fR\fR
87 .ad
88 .RS 19n
89 Prints only a count of the lines that contain the pattern.
90 .RE

92 .sp
93 .ne 2
94 .na
95 \fB\fB-e\fR \fIpattern_list\fR\fR
96 .ad
97 .RS 19n
98 Searches for a \fIstring\fR in \fIpattern-list\fR. This is useful when the
99 \fIstring\fR begins with a \fB\(mi\fR\&.
100 .RE

102 .sp
103 .ne 2
104 .na
105 \fB\fB-f\fR \fIpattern-file\fR\fR
106 .ad
107 .RS 19n
108 Takes the list of patterns from \fIpattern-file\fR.
109 .RE

111 .sp
112 .ne 2
113 .na
114 \fB\fB-H\fR\fR
115 .ad
116 .RS 19n
117 Precedes each line by the name of the file containing the matching line.

new/usr/src/man/man1/fgrep.1 3

118 .RE

120 .sp
121 .ne 2
122 .na
123 \fB\fB-h\fR\fR
124 .ad
125 .RS 19n
126 Suppresses printing of files when searching multiple files.
127 .RE

129 .sp
130 .ne 2
131 .na
132 \fB\fB-i\fR\fR
133 .ad
134 .RS 19n
135 Ignores upper/lower case distinction during comparisons.
136 .RE

138 .sp
139 .ne 2
140 .na
141 \fB\fB-l\fR\fR
142 .ad
143 .RS 19n
144 Prints the names of files with matching lines once, separated by new-lines.
145 Does not repeat the names of files when the pattern is found more than once.
146 .RE

148 .sp
149 .ne 2
150 .na
151 \fB\fB-n\fR\fR
152 .ad
153 .RS 19n
154 Precedes each line by its line number in the file. The first line is 1.
155 .RE

157 .sp
158 .ne 2
159 .na
160 \fB\fB-q\fR\fR
151 \fB\fB-s\fR\fR
161 .ad
162 .RS 19n
163 Quiet. Does not write anything to the standard output, regardless of matching
164 lines. Exits with zero status if an input line is selected.
154 Works silently, that is, displays nothing except error messages. This is useful
155 for checking the error status.
165 .RE

167 .sp
168 .ne 2
169 .na
170 \fB\fB-s\fR\fR
161 \fB\fB-v\fR\fR
171 .ad
172 .RS 19n
173 Legacy equivalent of \fB-q\fR.
164 Prints all lines except those that contain the pattern.
174 .RE

176 .sp
177 .ne 2
178 .na

new/usr/src/man/man1/fgrep.1 4

179 \fB\fB-v\fR\fR
170 \fB\fB-x\fR\fR
180 .ad
181 .RS 19n
182 Prints all lines except those that contain the pattern.
173 Prints only lines that are matched entirely.
183 .RE

176 .SS "/usr/xpg4/bin/fgrep"
185 .sp
178 .LP
179 The following options are supported for \fB/usr/xpg4/bin/fgrep\fR only:
180 .sp
186 .ne 2
187 .na
188 \fB\fB-x\fR\fR
183 \fB\fB-q\fR\fR
189 .ad
190 .RS 19n
191 Prints only lines that are matched entirely.
185 .RS 6n
186 Quiet. Does not write anything to the standard output, regardless of matching
187 lines. Exits with zero status if an input line is selected.
192 .RE

194 .SH OPERANDS
195 .sp
196 .LP
197 The following operands are supported:
198 .sp
199 .ne 2
200 .na
201 \fB\fIfile\fR\fR
202 .ad
203 .RS 8n
204 Specifies a path name of a file to be searched for the patterns. If no
205 \fIfile\fR operands are specified, the standard input will be used.
206 .RE

208 .SS "/usr/bin/fgrep"
209 .sp
210 .ne 2
211 .na
212 \fB\fIpattern\fR\fR
213 .ad
214 .RS 11n
215 Specifies a pattern to be used during the search for input.
216 .RE

218 .SS "/usr/xpg4/bin/fgrep"
219 .sp
220 .ne 2
221 .na
222 \fB\fIpattern\fR\fR
223 .ad
224 .RS 11n
225 Specifies one or more patterns to be used during the search for input. This
226 operand is treated as if it were specified as \fB-e\fR \fIpattern_list\fR.
227 .RE

229 .SH USAGE
230 .sp
231 .LP
232 See \fBlargefile\fR(5) for the description of the behavior of \fBfgrep\fR when
233 encountering files greater than or equal to 2 Gbyte (2^31 bytes).
234 .SH ENVIRONMENT VARIABLES

new/usr/src/man/man1/fgrep.1 5

235 .sp
236 .LP
237 See \fBenviron\fR(5) for descriptions of the following environment variables
238 that affect the execution of \fBfgrep\fR: \fBLC_COLLATE\fR, \fBLC_CTYPE\fR,
239 \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
240 .SH EXIT STATUS
241 .sp
242 .LP
243 The following exit values are returned:
244 .sp
245 .ne 2
246 .na
247 \fB\fB0\fR\fR
248 .ad
249 .RS 5n
250 If any matches are found
251 .RE

253 .sp
254 .ne 2
255 .na
256 \fB\fB1\fR\fR
257 .ad
258 .RS 5n
259 If no matches are found
260 .RE

262 .sp
263 .ne 2
264 .na
265 \fB\fB2\fR\fR
266 .ad
267 .RS 5n
268 For syntax errors or inaccessible files, even if matches were found.
269 .RE

271 .SS "/usr/xpg4/bin/fgrep"
272 .sp

274 .SH ATTRIBUTES
275 .sp
276 .LP
277 See \fBattributes\fR(5) for descriptions of the following attributes:
278 .sp
279 .TS
280 box;
281 c | c
282 l | l .
283 ATTRIBUTE TYPE ATTRIBUTE VALUE
284 _
285 CSI Enabled
286 .TE

288 .SH SEE ALSO
289 .sp
290 .LP
291 \fBed\fR(1), \fBegrep\fR(1), \fBgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1),
292 \fBattributes\fR(5), \fBenviron\fR(5), \fBlargefile\fR(5), \fBXPG4\fR(5)
293 .SH NOTES
294 .sp
295 .LP
296 Ideally, there should be only one \fBgrep\fR command, but there is not a single
297 algorithm that spans a wide enough range of space-time tradeoffs.
298 .sp
299 .LP
300 Lines are limited only by the size of the available virtual memory.

new/usr/src/man/man1/fgrep.1 6

301 .SS "/usr/xpg4/bin/fgrep"
302 .sp
303 .LP
304 The \fB/usr/xpg4/bin/fgrep\fR utility is identical to \fB/usr/xpg4/bin/grep\fR
305 \fB-F\fR (see \fBgrep\fR(1)). Portable applications should use
306 \fB/usr/xpg4/bin/grep\fR \fB-F\fR.

new/usr/src/man/man1/grep.1 1

**
 14031 Fri Sep 13 10:33:21 2013
new/usr/src/man/man1/grep.1
3737 grep does not support -H option
3759 egrep(1) and fgrep(1) -s flag does not hide -c output
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Andy Stormont <andyjstormont@gmail.com>
**

1 ’\" te
2 .\" Copyright 2012 Nexenta Systems, Inc. All rights reserved.
3 .\" Copyright 1989 AT&T
4 .\" Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved
5 .\" Portions Copyright (c) 1992, X/Open Company Limited All Rights Reserved
6 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
7 .\" http://www.opengroup.org/bookstore/.
8 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
9 .\" This notice shall appear on any product containing this material.

10 .\" The contents of this file are subject to the terms of the Common Development
11 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
12 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
13 .TH GREP 1 "May 3, 2013"
13 .TH GREP 1 "Feb 26, 2008"
14 .SH NAME
15 grep \- search a file for a pattern
16 .SH SYNOPSIS
17 .LP
18 .nf
19 \fB/usr/bin/grep\fR [\fB-c\fR | \fB-l\fR |\fB-q\fR] [\fB-r\fR | \fB-R\fR] [\fB-b
19 \fB/usr/bin/grep\fR [\fB-c\fR | \fB-l\fR |\fB-q\fR] [\fB-r\fR | \fB-R\fR] [\fB-b
20 \fIlimited-regular-expression\fR [\fIfilename\fR]...
21 .fi

23 .LP
24 .nf
25 \fB/usr/xpg4/bin/grep\fR [\fB-E\fR | \fB-F\fR] [\fB-c\fR | \fB-l\fR | \fB-q\fR]
26 [\fB-bHhinsvwx\fR] \fB-e\fR \fIpattern_list\fR... [\fB-f\fR \fIpattern_file\
26 [\fB-bhinsvwx\fR] \fB-e\fR \fIpattern_list\fR... [\fB-f\fR \fIpattern_file\f
27 [\fIfile\fR]...
28 .fi

30 .LP
31 .nf
32 \fB/usr/xpg4/bin/grep\fR [\fB-E\fR | \fB-F\fR] [\fB-c\fR | \fB-l\fR | \fB-q\fR]
33 [\fB-bHhinsvwx\fR] [\fB-e\fR \fIpattern_list\fR]... \fB-f\fR \fIpattern_file
33 [\fB-bhinsvwx\fR] [\fB-e\fR \fIpattern_list\fR]... \fB-f\fR \fIpattern_file\
34 [\fIfile\fR]...
35 .fi

37 .LP
38 .nf
39 \fB/usr/xpg4/bin/grep\fR [\fB-E\fR | \fB-F\fR] [\fB-c\fR | \fB-l\fR | \fB-q\fR]
40 [\fB-bHhinsvwx\fR] \fIpattern\fR [\fIfile\fR]...
40 [\fB-bhinsvwx\fR] \fIpattern\fR [\fIfile\fR]...
41 .fi

43 .SH DESCRIPTION
44 .sp
45 .LP
46 The \fBgrep\fR utility searches text files for a pattern and prints all lines
47 that contain that pattern. It uses a compact non-deterministic algorithm.
48 .sp
49 .LP
50 Be careful using the characters \fB$\fR, \fB*\fR, \fB[\fR, \fB^\fR, \fB|\fR,
51 \fB(\fR, \fB)\fR, and \fB\e\fR in the \fIpattern_list\fR because they are also
52 meaningful to the shell. It is safest to enclose the entire \fIpattern_list\fR
53 in single quotes \fBa\’\fR\&...\fBa\’\fR\&.

new/usr/src/man/man1/grep.1 2

54 .sp
55 .LP
56 If no files are specified, \fBgrep\fR assumes standard input. Normally, each
57 line found is copied to standard output. The file name is printed before each
58 line found if there is more than one input file.
59 .SS "/usr/bin/grep"
60 .sp
61 .LP
62 The \fB/usr/bin/grep\fR utility uses limited regular expressions like those
63 described on the \fBregexp\fR(5) manual page to match the patterns.
64 .SS "/usr/xpg4/bin/grep"
65 .sp
66 .LP
67 The options \fB-E\fR and \fB-F\fR affect the way \fB/usr/xpg4/bin/grep\fR
68 interprets \fIpattern_list\fR. If \fB-E\fR is specified,
69 \fB/usr/xpg4/bin/grep\fR interprets \fIpattern_list\fR as a full regular
70 expression (see \fB-E\fR for description). If \fB-F\fR is specified,
71 \fBgrep\fR interprets \fIpattern_list\fR as a fixed string. If neither are
72 specified, \fBgrep\fR interprets \fIpattern_list\fR as a basic regular
73 expression as described on \fBregex\fR(5) manual page.
74 .SH OPTIONS
75 .sp
76 .LP
77 The following options are supported for both \fB/usr/bin/grep\fR and
78 \fB/usr/xpg4/bin/grep\fR:
79 .sp
80 .ne 2
81 .na
82 \fB\fB-b\fR\fR
83 .ad
84 .RS 6n
85 Precedes each line by the block number on which it was found. This can be
86 useful in locating block numbers by context (first block is 0).
87 .RE

89 .sp
90 .ne 2
91 .na
92 \fB\fB-c\fR\fR
93 .ad
94 .RS 6n
95 Prints only a count of the lines that contain the pattern.
96 .RE

98 .sp
99 .ne 2
100 .na
101 \fB\fB-H\fR\fR
102 .ad
103 .RS 6n
104 Precedes each line by the name of the file containing the matching line.
105 .RE

107 .sp
108 .ne 2
109 .na
110 \fB\fB-h\fR\fR
111 .ad
112 .RS 6n
113 Prevents the name of the file containing the matching line from being prepended
114 to that line. Used when searching multiple files.
115 .RE

117 .sp
118 .ne 2
119 .na

new/usr/src/man/man1/grep.1 3

120 \fB\fB-i\fR\fR
121 .ad
122 .RS 6n
123 Ignores upper/lower case distinction during comparisons.
124 .RE

126 .sp
127 .ne 2
128 .na
129 \fB\fB-l\fR\fR
130 .ad
131 .RS 6n
132 Prints only the names of files with matching lines, separated by NEWLINE
133 characters. Does not repeat the names of files when the pattern is found more
134 than once.
135 .RE

137 .sp
138 .ne 2
139 .na
140 \fB\fB-n\fR\fR
141 .ad
142 .RS 6n
143 Precedes each line by its line number in the file (first line is 1).
144 .RE

146 .sp
147 .ne 2
148 .na
149 \fB\fB-r\fR\fR
150 .ad
151 .RS 6n
152 Read all files under each directory, recursively. Follow symbolic links on
153 the command line, but skip symlinks that are encountered recursively. If file
154 is a device, FIFO, or socket, skip it.
155 .RE

157 .sp
158 .ne 2
159 .na
160 \fB\fB-R\fR\fR
161 .ad
162 .RS 6n
163 Read all files under each directory, recursively, following all symbolic links.
164 .RE

166 .sp
167 .ne 2
168 .na
169 \fB\fB-q\fR\fR
170 .ad
171 .RS 6n
172 Quiet. Does not write anything to the standard output, regardless of matching
173 lines. Exits with zero status if an input line is selected.
174 .RE

176 .sp
177 .ne 2
178 .na
179 \fB\fB-s\fR\fR
180 .ad
181 .RS 6n
182 Suppresses error messages about nonexistent or unreadable files.
183 .RE

185 .sp

new/usr/src/man/man1/grep.1 4

186 .ne 2
187 .na
188 \fB\fB-v\fR\fR
189 .ad
190 .RS 6n
191 Prints all lines except those that contain the pattern.
192 .RE

194 .sp
195 .ne 2
196 .na
197 \fB\fB-w\fR\fR
198 .ad
199 .RS 6n
200 Searches for the expression as a word as if surrounded by \fB\e<\fR and
201 \fB\e>\fR\&.
202 .RE

204 .SS "/usr/xpg4/bin/grep"
205 .sp
206 .LP
207 The following options are supported for \fB/usr/xpg4/bin/grep\fR only:
208 .sp
209 .ne 2
210 .na
211 \fB\fB-e\fR \fIpattern_list\fR\fR
212 .ad
213 .RS 19n
214 Specifies one or more patterns to be used during the search for input. Patterns
215 in \fIpattern_list\fR must be separated by a NEWLINE character. A null pattern
216 can be specified by two adjacent newline characters in \fIpattern_list\fR.
217 Unless the \fB-E\fR or \fB-F\fR option is also specified, each pattern is
218 treated as a basic regular expression. Multiple \fB-e\fR and \fB-f\fR options
219 are accepted by \fBgrep\fR. All of the specified patterns are used when
220 matching lines, but the order of evaluation is unspecified.
221 .RE

223 .sp
224 .ne 2
225 .na
226 \fB\fB-E\fR\fR
227 .ad
228 .RS 19n
229 Matches using full regular expressions. Treats each pattern specified as a full
230 regular expression. If any entire full regular expression pattern matches an
231 input line, the line is matched. A null full regular expression matches every
232 line. Each pattern is interpreted as a full regular expression as described on
233 the \fBregex\fR(5) manual page, except for \fB\e(\fR and \fB\e)\fR, and
234 including:
235 .RS +4
236 .TP
237 1.
238 A full regular expression followed by \fB+\fR that matches one or more
239 occurrences of the full regular expression.
240 .RE
241 .RS +4
242 .TP
243 2.
244 A full regular expression followed by \fB?\fR that matches 0 or 1
245 occurrences of the full regular expression.
246 .RE
247 .RS +4
248 .TP
249 3.
250 Full regular expressions separated by | or by a new-line that match strings
251 that are matched by any of the expressions.

new/usr/src/man/man1/grep.1 5

252 .RE
253 .RS +4
254 .TP
255 4.
256 A full regular expression that is enclosed in parentheses \fB()\fR for
257 grouping.
258 .RE
259 The order of precedence of operators is \fB[\|]\fR, then \fB*\|?\|+\fR, then
260 concatenation, then | and new-line.
261 .RE

263 .sp
264 .ne 2
265 .na
266 \fB\fB-f\fR \fIpattern_file\fR\fR
267 .ad
268 .RS 19n
269 Reads one or more patterns from the file named by the path name
270 \fIpattern_file\fR. Patterns in \fIpattern_file\fR are terminated by a NEWLINE
271 character. A null pattern can be specified by an empty line in
272 \fIpattern_file\fR. Unless the \fB-E\fR or \fB-F\fR option is also specified,
273 each pattern is treated as a basic regular expression.
274 .RE

276 .sp
277 .ne 2
278 .na
279 \fB\fB-F\fR\fR
280 .ad
281 .RS 19n
282 Matches using fixed strings. Treats each pattern specified as a string instead
283 of a regular expression. If an input line contains any of the patterns as a
284 contiguous sequence of bytes, the line is matched. A null string matches every
285 line. See \fBfgrep\fR(1) for more information.
286 .RE

288 .sp
289 .ne 2
290 .na
291 \fB\fB-x\fR\fR
292 .ad
293 .RS 19n
294 Considers only input lines that use all characters in the line to match an
295 entire fixed string or regular expression to be matching lines.
296 .RE

298 .SH OPERANDS
299 .sp
300 .LP
301 The following operands are supported:
302 .sp
303 .ne 2
304 .na
305 \fB\fIfile\fR\fR
306 .ad
307 .RS 8n
308 A path name of a file to be searched for the patterns. If no \fIfile\fR
309 operands are specified, the standard input is used.
310 .RE

312 .SS "/usr/bin/grep"
313 .sp
314 .ne 2
315 .na
316 \fB\fIpattern\fR\fR
317 .ad

new/usr/src/man/man1/grep.1 6

318 .RS 11n
319 Specifies a pattern to be used during the search for input.
320 .RE

322 .SS "/usr/xpg4/bin/grep"
323 .sp
324 .ne 2
325 .na
326 \fB\fIpattern\fR\fR
327 .ad
328 .RS 11n
329 Specifies one or more patterns to be used during the search for input. This
330 operand is treated as if it were specified as \fB-e\fR \fIpattern_list\fR.
331 .RE

333 .SH USAGE
334 .sp
335 .LP
336 The \fB-e\fR \fIpattern_list\fR option has the same effect as the
337 \fIpattern_list\fR operand, but is useful when \fIpattern_list\fR begins with
338 the hyphen delimiter. It is also useful when it is more convenient to provide
339 multiple patterns as separate arguments.
340 .sp
341 .LP
342 Multiple \fB-e\fR and \fB-f\fR options are accepted and \fBgrep\fR uses all of
343 the patterns it is given while matching input text lines. Notice that the order
344 of evaluation is not specified. If an implementation finds a null string as a
345 pattern, it is allowed to use that pattern first, matching every line, and
346 effectively ignore any other patterns.
347 .sp
348 .LP
349 The \fB-q\fR option provides a means of easily determining whether or not a
350 pattern (or string) exists in a group of files. When searching several files,
351 it provides a performance improvement (because it can quit as soon as it finds
352 the first match) and requires less care by the user in choosing the set of
353 files to supply as arguments (because it exits zero if it finds a match even if
354 \fBgrep\fR detected an access or read error on earlier file operands).
355 .SS "Large File Behavior"
356 .sp
357 .LP
358 See \fBlargefile\fR(5) for the description of the behavior of \fBgrep\fR when
359 encountering files greater than or equal to 2 Gbyte (2^31 bytes).
360 .SH EXAMPLES
361 .LP
362 \fBExample 1 \fRFinding All Uses of a Word
363 .sp
364 .LP
365 To find all uses of the word "\fBPosix\fR" (in any case) in the file
366 \fBtext.mm\fR, and write with line numbers:

368 .sp
369 .in +2
370 .nf
371 example% \fB/usr/bin/grep -i -n posix text.mm\fR
372 .fi
373 .in -2
374 .sp

376 .LP
377 \fBExample 2 \fRFinding All Empty Lines
378 .sp
379 .LP
380 To find all empty lines in the standard input:

382 .sp
383 .in +2

new/usr/src/man/man1/grep.1 7

384 .nf
385 example% \fB/usr/bin/grep ^$\fR
386 .fi
387 .in -2
388 .sp

390 .sp
391 .LP
392 or

394 .sp
395 .in +2
396 .nf
397 example% \fB/usr/bin/grep -v .\fR
398 .fi
399 .in -2
400 .sp

402 .LP
403 \fBExample 3 \fRFinding Lines Containing Strings
404 .sp
405 .LP
406 All of the following commands print all lines containing strings \fBabc\fR or
407 \fBdef\fR or both:

409 .sp
410 .in +2
411 .nf
412 example% \fB/usr/xpg4/bin/grep ’abc
413 def’\fR
414 example% \fB/usr/xpg4/bin/grep -e ’abc
415 def’\fR
416 example% \fB/usr/xpg4/bin/grep -e ’abc’ -e ’def’\fR
417 example% \fB/usr/xpg4/bin/grep -E ’abc|def’\fR
418 example% \fB/usr/xpg4/bin/grep -E -e ’abc|def’\fR
419 example% \fB/usr/xpg4/bin/grep -E -e ’abc’ -e ’def’\fR
420 example% \fB/usr/xpg4/bin/grep -E ’abc
421 def’\fR
422 example% \fB/usr/xpg4/bin/grep -E -e ’abc
423 def’\fR
424 example% \fB/usr/xpg4/bin/grep -F -e ’abc’ -e ’def’\fR
425 example% \fB/usr/xpg4/bin/grep -F ’abc
426 def’\fR
427 example% \fB/usr/xpg4/bin/grep -F -e ’abc
428 def’\fR
429 .fi
430 .in -2
431 .sp

433 .LP
434 \fBExample 4 \fRFinding Lines with Matching Strings
435 .sp
436 .LP
437 Both of the following commands print all lines matching exactly \fBabc\fR or
438 \fBdef\fR:

440 .sp
441 .in +2
442 .nf
443 example% \fB/usr/xpg4/bin/grep -E ’^abc$ ^def$’\fR
444 example% \fB/usr/xpg4/bin/grep -F -x ’abc def’\fR
445 .fi
446 .in -2
447 .sp

449 .SH ENVIRONMENT VARIABLES

new/usr/src/man/man1/grep.1 8

450 .sp
451 .LP
452 See \fBenviron\fR(5) for descriptions of the following environment variables
453 that affect the execution of \fBgrep\fR: \fBLANG\fR, \fBLC_ALL\fR,
454 \fBLC_COLLATE\fR, \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
455 .SH EXIT STATUS
456 .sp
457 .LP
458 The following exit values are returned:
459 .sp
460 .ne 2
461 .na
462 \fB\fB0\fR\fR
463 .ad
464 .RS 5n
465 One or more matches were found.
466 .RE

468 .sp
469 .ne 2
470 .na
471 \fB\fB1\fR\fR
472 .ad
473 .RS 5n
474 No matches were found.
475 .RE

477 .sp
478 .ne 2
479 .na
480 \fB\fB2\fR\fR
481 .ad
482 .RS 5n
483 Syntax errors or inaccessible files (even if matches were found).
484 .RE

486 .SH ATTRIBUTES
487 .sp
488 .LP
489 See \fBattributes\fR(5) for descriptions of the following attributes:
490 .SS "/usr/bin/grep"
491 .sp

493 .sp
494 .TS
495 box;
496 c | c
497 l | l .
498 ATTRIBUTE TYPE ATTRIBUTE VALUE
499 _
500 CSI Not Enabled
501 .TE

503 .SS "/usr/xpg4/bin/grep"
504 .sp

506 .sp
507 .TS
508 box;
509 c | c
510 l | l .
511 ATTRIBUTE TYPE ATTRIBUTE VALUE
512 _
513 CSI Enabled
514 _
515 Interface Stability Committed

new/usr/src/man/man1/grep.1 9

516 _
517 Standard See \fBstandards\fR(5).
518 .TE

520 .SH SEE ALSO
521 .sp
522 .LP
523 \fBegrep\fR(1), \fBfgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1), \fBattributes\fR(5),
524 \fBenviron\fR(5), \fBlargefile\fR(5), \fBregex\fR(5), \fBregexp\fR(5),
525 \fBstandards\fR(5)
526 .SH NOTES
527 .SS "/usr/bin/grep"
528 .sp
529 .LP
530 Lines are limited only by the size of the available virtual memory. If there is
531 a line with embedded nulls, \fBgrep\fR only matches up to the first null. If
532 the line matches, the entire line is printed.
533 .SS "/usr/xpg4/bin/grep"
534 .sp
535 .LP
536 The results are unspecified if input files contain lines longer than
537 \fBLINE_MAX\fR bytes or contain binary data. \fBLINE_MAX\fR is defined in
538 \fB/usr/include/limits.h\fR.

