new usr/src/cnd/ egrep/ egrep.y

R R R R

26110 Fri Sep 13 10: 33:20 2013
new usr/src/cnd/ egrep/ egrep.y
3737 grep does not support -H option
3759 egrep(1l) and fgrep(l) -s flag does not hide -c output
Revi ewed by: Al bert Lee <trisk@exenta.conr
Revi ewed by: Andy Stornont <andyj stornont @nsil . conr

hkkkkkkkkkkkkkkkkhkkhkkhkhkhkhkkkkkkkkkkkkkkhkkkkkkkkkkk ok k k%

CDDL HEADER START

21 CDDL HEADER END

22 */

23

24 | *

25 * Copyright 2005 Sun Mcrosystems, Inc. Al rights reserved.
26 * Use is subject to license terns.

27 */

29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
30 /* Al Rights Reser ved */

32 /* Copyright (c) 1987, 1988 Mcrosoft Corporation */
33 /* Al Rights Reser ved */

35 /*

36 * Copyright 2013 Danmi an Bogel. All rights reserved.

37 */

35 %

36 #pragma ident " 96 % % %Y SM "

37 %

39 /*

40 * egrep -- print lines containing (or not containing) a regular expression
41

42 = status returns:

43 = 0 - ok, and some natches

44 > 1 - ok, but no matches

45 * 2 - sone error; matches irrel evant

46 */

47 % oken CHAR MCHAR DOT MDOT CCL NCCL MCCL NMCCL OR CAT STAR PLUS QUEST
48 Meft OR

49 %eft CHAR MCHAR DOT CCL NCCL MCCL NMCCL ' (°

50 %eft CAT

51 %eft STAR PLUS QUEST

53 %

54 #include <stdio. h>

The contents of this file are subject to the terns of the
Common Devel opment and Distribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the |icense at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing pernissions

and limtations under the License.

*

*

*

*

*

*

*

*

*

*

*

*

* \When distributing Covered Code, include this CDDL HEADER i n each
* file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
* |f applicable, add the follow ng below this CDDL HEADER, with the
* fields enclosed by brackets "“[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]

*
*
*
%

#i ncl ude <ctype. h>

new usr/src/cnd/ egrep/ egrep.y

102
103
104
105
106

110
111
112
113
114
115
116
117
118
119
120
117

#i
#i
#i
#i
#i
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

#def i ne

#defi ne

<nmenory. h>
<wchar . h>

<wet ype. h>
<wi dec. h>

<stdlib. h>
<limts.h>
<l ocal e. h>

STDI N_FI LENAMVE gettext (" (standard input)")

BLKSI ZE 512

/* size of

reported di sk bl ocks */

#defi ne EBUFSI Z 8192
#defi ne MAXLI N 350
#def i ne NCHARS 256
#defi ne MAXPCS 4000
#def i ne NSTATES 64
#define FINAL -1
#define RIGHT '\n’
#define LEFT '\ n’

i nt got of n[NSTATES] [NCHARS] ;
i nt state[NSTATES] ;
i nt out[NSTATES] ;
int line =1;
int *naneg;
int *left;
int *right;

int *parent;
int *foll;

int *positions;
char *chars;
wchar _t *I ower;
wchar “t *upper ;

max!in, maxcl in, maxwclin,

in
|nt nxt pos = 0;
int inxtpos;
int nxtchar = O;
int *tnpstat;
int *initstat;
int istat;

int nstate = 1;
int xstate;

int count;

int icount;
char *input;

wchar _t Iyylval;
wchar _t nextch();
wchar _t maxmin();
int conpare();
void overflo();

char reinit = 0;

ong long | num

|

int bf | ag;
int cfl ag;
int ef | ag;
i nt fflag;
int Hf | ag;
int hfl ag;
int iflag;
i nt I flag;
int nfl ag;
i nt qf | ag;
int sfl ag;

/* serves as record separator and as $ */
/* begi nning of line */

maxpos;

new usr/src/cnd/ egrep/ egrep.y

121 int vfl ag;

122 int nfile;

123 long | ong bl kno;

124 long long tln;

125 int nsucc;

126 int badbot ch;

127 extern char *optarg;
128 extern int optind;

130 int f;
131 FILE *expfile;
132 %

134 %%

135 s: t

136 {

137 unary(FI NAL, $1);

138 line--;

139 }

140 |

141 t: br

142 { $$ = node(CAT, $1, $2);
143 | ORbr OR

144 { $$ = node(CAT, $2, $3);
145 | Rbr

146 { $$ = node(CAT, $2, $3);
147 | br OR

148 { $$ = node(CAT, $1, $2);
149 ;

150 b:

151 { /* if(multibyte)

152 $$ = ndotenter();
153 el se */

154 $$ = enter (DOT);
155 $$ = unary(STAR, $$);
156 }

157 ;

158 r: CHAR

159 { $$ = iflag && isal pha($1) ?

160 node(OR, enter(tolower($1)), enter(toupper($1)))
161 | MCHAR

162 { $$ = (iflag && iswal pha(lyylval)) ?

B e e e ol

enter($1);

163 node(OR, nchar (tow ower (lyylval)), nthar(towupper(lyylval)))

164 nchar (lyylval); }

165 | DOTr

166 { if(nultibyte)

167 $$ = ndotenter();

168 el se

169 $$ = enter (DOT);

170 }

171 | ccL

172 {

173 | NCcL

174 { $$% = cclenter(NCCL); }
{
{

@
©
1]

cclenter(CCL); }

175 | MoCL
176 $$ = ccl(CoL); }
177 | NMCCL
178 $$ = ccl (NCCL); }

179

181 r: r ORr

182 { $% = node(OR, $1, $3); }
183 | r r %rec CAT

184 { $$ = node(CAT, $1, $2); }
185 | r STAR

186 { $$ = unary(STAR $1); }

}

new usr/src/cnd/ egrep/ egrep.y

187 | r PLUS

188 { $$ = unary(PLUS, $1); }
189 | r QUEST

190 { $$ = unary(QUEST, $1); }
191 | "¢ or)

192 { $$ = 3%2; }

193 | error

194 ;

196 %%

197 void add(int *, int);

198 void clearg(void);

199 void execute(char *);

200 void follow(int);

201 int nget c(voi d);

202 void synerror(void);

205 void

206 yyerror(char *s)

207 {

208 fprintf(stderr, "egrep: %\n", s);
209 exit(2);

210 }

__unchanged_portion_omtted_

650 #define USAGE "[-bchHilnsqv] [-eexp] [-f file] [strings] [
647 #define USAGE "[-bchilnsv] [-eexp] [-f file] [strings] [fi
652 int

653 main(int argc, char **argv)

654 {

655 char c;

656 char nl ="\n";

657 int errflag = 0;

658

659 (voi d)setlocal e(LC_ALL, "");

661 #if !defined(TEXT_DOVAI

/* Shoul d be defined by cc -D */

662 #define TEXT_DOMAIN "SYS TEST" /* Use this only if it werent. */
663 #endi f

664 (voi d) textdomai n(TEXT_DOVAIN) ;

666 whil e((c = getopt(argc, argv, "ybcie:f:Hnhlnvsq")) !=-1)
663 while((c = getopt(argc, argv, "ybcie:f:hlnvs")) I=-1)
667 switch(c) {

669 case 'b’:

670 bf | ag++;

671 conti nue;

673 case 'c’:

674 cfl ag++;

675 conti nue;

677 case 'e’:

678 ef | ag++;

679 i nput = optarg;

680 conti nue;

682 case 'f’:

683 fflag++;

684 expfile = fopen(optarg, "r");

685 if(expfile == NULL) {

686 fprintf(stderr,

687 gettext("egrep: can't open %\n"),

optarg);

new usr/src/cnd/ egrep/ egrep.y 5 new usr/src/cnd/ egrep/ egrep.y
688 exit(2); 752 if((tmpstat = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0)
689 } 753 overflo();
690 conti nue; 754 if((initstat = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0)
755 overflo();
692 case 'H: 756 if((chars = (char *)nmalloc(MAXLIN)) == (char *)O0)
693 if (!lIflag) /* His excluded by | as in GNU grep */ 757 overflo();
694 Hf | ag++; 758 if((lower = (wchar_t *)malloc(MAXLI N*si zeof (wchar_t))) == (wchar_t *)O0)
695 hflag = 0; /* H excludes h */ 759 overflo();
696 conti nue; 760 if((upper = (wchar_t *)mal | oc(MAXLI N*si zeof (wchar _t))) == (wchar_t *)0)
761 overflo();
698 case 'h': 762 if((positions = (int *)mall oc(MAXPOS*si zeof (int))) == (int *)0)
699 hf | ag++; 763 overflo();
700 Hlag = 0; /* h excludes H */ 764 maxlin = MAXLI N,
701 cont i nue; 765 maxclin = MAXLIN;
766 maxwel in = MAXLIN;
703 case 'y': 767 maxpos = MAXPCS;
704 case '1': 768
705 i flag++; 769 yyparse();
706 cont i nue;
771 cfoll(line-1);
708 case '|’: 772 cgotofn();
709 | flag++; 773 nfile = argc;
710 Hflag = 0; /* | excludes H */ 774 if (argc<=0)
711 continue; 775 execute(0);
776 }
713 case 'n’: 777 else while (--argc >= 0) {
714 nfl ag++; 778 if (reinit == 1) clearg();
715 conti nue; 779 execut e(*argv++);
780 }
717 case 'q: 781 return (badbotch ? 2 : nsucc==0);
718 case 's’: /* Solaris: |egacy option */ 782 }
719 gf | ag++;
706 case 's’: 784 void
707 sfl ag++; 785 execute(char *file)
720 cont i nue; 786 {
787 char *p;
722 case 'V’ 788 int cstat;
723 vfl ag++; 789 wchar _t c;
724 conti nue; 790 int t;
791 I ong count;
726 case ' ?': 792 long countl, count?2;
727 errflag++; 793 I ong nchars;
728 1 794 int succ;
729 if (errflag || ((argc <= 0) && !fflag && !'eflag)) { 795 char *ptr, *ptrend, *lastptr;
730 fprintf(stderr, gettext("usage: egrep %\n"), gettext(USAGE)); 796 char *buf;
731 exit(2); 797 I ong | Buf Si z;
732 } 798 FI LE *f;
733 if(leflag & !fflag) { 799 int nlflag;
734 input = argv[optind];
735 opti nd++; 801 | Buf Si z = EBUFSI Z;
736 } 802 if ((buf = malloc (IBufSiz + EBUFSIZ)) == NULL) {
803 exit (2); /* out of nmenory - BAIL */
738 argc -= optind; 804 }
739 argv = &argv[optind];
740 806 if (file) {
741 /* allocate initial space for arrays */ 807 1f ((f = fopen(file, "r")) == NULL) {
742 if((name = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0) 808 fprintf(stderr,
743 overflo(); 809 gettext("egrep: can’'t open %\n"), file);
744 if((left = (int *)malloc(MAXLI N*si zeof (int))) == (int *)0) 810 badbot ch=1;
745 overflo(); 811 return;
746 if((right = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0) 812 }
747 overflo(); 813 } else {
748 if((parent = (int *)malloc(MAXLI N*sizeof (int))) == (int *)0) 802 file = "<stdin>";
749 overflo(); 814 f = stdin;
750 if((foll = (int *)mall oc(MAXLI N*sizeof (int))) == (int *)0) 815 file = STDI N_FI LENAMNE;
751 overflo(); 816 }

new usr/src/cnd/ egrep/ egrep.y 7

817
818
819
820

822
823
810

| num = 1;
tln =
if((co nt = read(fileno(f),
fclose(f);

buf, EBUFSIZ)) <= 0) {

if (cflag && !qgflag) {
if (Hlag || (nfile > 1 & !'hflag))
if (cflag)

811

824

825

826 }

827 return;
828 }

830 bl kno = count;
831 ptr = buf;

832 for(;;) {

833 if((ptre
834

835

836

837

838

839

840

841

843
844
845
846
847
848
849
850
851
852
853

855
856

858

859

860

861

862

863

864

865

866 } else
867

868 *ptrend
869 p = ptr;
870 lastptr
871 cstat =
872 succ = 0;
873 for(;;)
874

875

876

877

878

879

880

{
i f (nflIe>1 && ! hfl ag)
prlntf(stdout s,
fprintf(stdout, %Id\n, tin);

file);

nd = menchr(ptr, "\n’, buf + count - ptr)) == NULL) {
/*

nove the unused partial record to the head of th
*/
if (ptr > buf) {
count = buf + count - ptr;
nmenmmove (buf, ptr, count);
ptr = buf;
}
/*
Get a bigger buffer if this one is full
*/
if(count > | BufSiz) {
/*

expand the buffer
*/
| Buf Si z += EBUFSI Z;
if ((buf = realloc (buf,
exit (2); /* out of menory -
}

ptr = buf;

| Buf Siz + EBUFSIZ)) ==
BAIL */

= buf + count;
If((countl = read(fl leno(f), p,
count += count1;
bl kno += count 1;
conti nue;

EBUFSI 2)) > 0) {

ptr + count;
0;

=1

S o
“Q
|

|stat

|{f(out[cstat]|)

{
f(multi

tibyte & p > ptr) {
wchar _t wchar;

int length;

char *endptr = p;
p = lastptr;
while(p < endptr) {

new usr/src/cnd/ egrep/ egrep.y

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916 }
917 i
905 i
918
919
920
921
907
908
909
910
911
922
923
924
925
926
927
928
929
915
916
917
930
931
932
933
934
935
936
937

f (succ
f (succ)

| ength = nbt owc(&char,
if(length <= 1)
p++;
el se
p += length;
}
1f(p == endptr) {
succ = !vflag;
br eak;
cstat = 1;
I ength = nbt owc(&char, lastptr,
|f(|ength <= 1)
| ast ptr++;
el se
lastptr += length;
p = lastptr;
conti nue;
succ = !vflag;
) br eak;
¢ = (unsigned char) *p++;
if ((t = gotofn[cstat][c]) == 0)
cstat = nxtst(cstat, c);
el se
cstat = t;
if(c == RIGHT)
|f(out[cstat])
succ = lvflag;
br eak;
}
succ = vflag;
br eak;
}
) {
{
nsucc = 1;
if (Iflag | qflag) {
(!qf 1 ag) . .
(void) printf("%\n", file);
if (cflag) tln++;
else if (sflag)
/* ugh */

else if (Iflag)

printf("9%\n", file);
fclose(f);
return;
}
if (cflag) {
tln++;
} else {
if (Hlag ||

(nfile > 1 & !hflag))
printf("%:", file);
el se {

if (nfile > 1 & !'hfl ag)

printf(gettext("%:"), file);
if (bflag) {

nchars = blkno - (buf + count -

if(nlflag)

nchar s++;

printf("%I1d:", nchars/BLKSI ZE);
}
if (nflag)

printf("%Ild:", I num;

p, MB_LE

MB_LEN_

pt r end)

new usr/src/cnd/ egrep/ egrep.y

938 if(nlflag)

939 nchars = ptrend - ptr + 1;
940 el se

941 nchars = ptrend - ptr

942 fwite(ptr, (size_t)1, (size_f)nchars, stdout);

943 }

944 }

945 if(!nlflag)

946 br eak;

947 ptr = ptrend + 1;

948 1f(ptr >= buf + count) {
949 ptr = buf;

950 if((count'= read(fileno(f), buf, EBUFSIZ)) <= 0)
reak:

951 break;
952 bl kno += count;
953 }
954 | numt+;
955 if (reinit == 1)
956 clearg();
957 }
958 f
959 i
960
961
947 if (cflag
948 i nfile > 1 & !hfl ag)

949 printf(gettext("%:"), file);

962 printf("%Ild\n", tin);

963 }

964 }

__unchanged_portion_onitted_

Enfile > 1 & !'hflag))
f("%w:", file);

—_——

new usr

*ok ok ok ok ok Kk

/src/cnd/ fgrep/fgrep.c

R R R R

14491 Fri Sep 13 10:33:20 2013

new usr
3737 gr

/src/cnd/ fgrep/fgrep.c
ep does not support -H option

3759 egrep(1l) and fgrep(l) -s flag does not hide -c output
Revi ewed by: Al bert Lee <trisk@exenta.conr
Revi ewed by: Andy Stornont <andyj stornont @nsil . conr

*k ok ok ok kk

1/*

*

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

* ok ok Rk ok ok ok Ok b ok OF 3 ok Sk b 3k % o % 3k
~

Kk khkhkkhkkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk k *

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

CDDL HEADER END

21

22/

23 Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved.
24 Use is subject to license terns.

25 */

27 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /| * Al Rights Reserved *

30 / Copyright (c) 1987, 1988 M crosoft Corporation */
31 /* Al Rights Reser ved

33 /*

34 * Copyright 2013 Damian Bogel. Al rights reserved.

35 */

33 #pragne ident " %Y % % %E% SM "

37 /*

38 * fgrep -- print all lines containing any of a set of keywords
39 *

40 * status returns:

41 * 0 - ok, and sone matches

42 * 1 - ok, but no matches

43 = 2 - some error

44 =/

46 #include <stdio. h>

47 #include <ctype. h>

48 #incl ude <sys/types. h>

49 #include <stdlib. h>

50 #include <string.h>

51 #include <l ocal e. h>

52 #include <libintl.h>

53 #i ncl ude <euc. h>

54 #include <sys/stat.h>

55 #include <fcntl.h>

57 #include <getwi dth. h>

new usr/src/cnd/ fgrep/fgrep.c

121

eucw dth_t WA

nlp);\
\

——— — e ——

\

#define WDTHL WV _eucwl
#define WDTH2 WN _eucw?2
#define WDTH3 WV _eucw3
#define MILTI _BYTE WV _nul ti byte
#define GETONE(lc, p) \
cw = I SASCI I (I ¢ = (unsigned char) p++) ?2 1 : \
(I SSET2(lc) ? WDTH2 : \
(1 SSET3(lc) ? WD H3: W DTHL)) ; \
if (--cw> --ccount) { \
cw -= ccount; \
while (ccount--) \
lc = (lc << 7) | ((*pt+t+) & 0177); \
if (p >= &uf[fw [Bufsiz + BUFSIZ]) { \
if (nlp == buf) { \
/* Increase the buffer size */
fw_| Bufsiz += BUFSI Z;
if ((buf = realloc(buf,
fw | Bufsiz + BUFSI Z)) == NULL
) exit(2); /* out of menory */
nlp = buf;
p = &bu f[fW_I Buf si z] ;
} else {
/* shift the buffer contents down */ \
(void) memove(buf, nlp, \
&buf[fWIBufS|z + BUFSI 7] -
p -=nlp - buf;
nlp = buf;
} \
} \
if (p > &uf[fw_|Bufsiz]) \
if ((ccount = fread(p, sizeof (char), \
&uf [fw_ | Bufsiz + BUFSI Z] - p, fptr))\
<= 0) br eak;
} else if ((ccount fread(p, \
si zeof (char) BUFSI Z, fptr)) <= 0) \
break; \
bl kno += (long | ong)ccount; \
\
ccount -= cw, \
while (cw-) \
lc = (lc << 7) | ((*p++) & 0177)
/*
* The same() macro and letter() function were inserted to allow for
* the -i option work for the nmulti-byte environnent.
wchar _t letter();
#define same(a, b) \
(a==D>b|] |f|ag &&(INULTI _BYTE || ISASCII(a)) && (a ™ b)
letter(a) == letter(b))

#defi ne STDI N_FI LENAME gettext (" (standard input)")

#defi ne QSI ZE 400
struct words {

wchar _t inp;

char out ;

struct words *nst;

struct words *link;

struct words *fail;
} *w = NULL, *snmax, *q;
FILE *fptr;

&& '\

new usr/src/cnd/ fgrep/fgrep.c

124
125
126
122
123
127
128
129
130
131
132
133
134

136
137
138
139

141

143
144

long | ong I num

nt lag, ¢

int HfI ag, hf

i nt bf | ag, p;
i

flag, |flag,

lag, iflag;
lag, Iflag,
| ag;
0;

fflag, nflag, vflag, xflag, eflag, qflag;

fflag, nflag, vflag, xflag, eflag, sflag;
i nt hfl ag,
int retcode
int nfile;

| ong | ong bl kno;

i nt nsucc;

long long tln;

FI LE *wor df ;

char *argptr;
off _t input_size = 0;

voi d execute(char *);
voi d cgot of n(voi d);
voi d overflo(void);
voi d cfail (void);

static long fw |Bufsiz = 0;

int
mai n(int argc, char **argv)

145 {

146
147
148

150
151
152
153
154

156
153
157

159
160
161
156
157
162
163
164
165
166
167
168
169
170
171
172
173

175
176
177
178

180
181
182

int c;
int errflg = 0;
struct stat file_stat;

(void) setlocal e(LC_ALL, "");
#if !defined(TEXT DCNAN) /* Shoul d be defined by cc -D */
#define TEXT_DOVAIN "SYS TEST* /* Use this only if it weren't */
#endi f

(voi d) textdomai n(TEXT_DOVAIN) ;

while ((c = getopt(argc, argv,
while ((c = getopt(argc, argv,
switch (c) {

"Hhybci e: f: 1 nvxgs")) != ECF)
"hybcie: f:lnvxs")) 1= EOF)

case ' :
case 's’: /* Solaris: |egacy option */
gf | ag++;
case 's’:
sfl ag++;
cont i nue;
case 'H:
Hf | ag++;
hflag = 0O;
cont i nue;
case 'h':
hf | ag++;
Hf lag =
cont i nue;
case 'b’:
bf | ag++;
conti nue;

case i
case :
iflag++;

conti nue;
case :
cfl ag++;

cont i nue;

case

new usr/src/cnd/ fgrep/fgrep.c

185
186
187
188

190
191
192
193
194
195
196
197
198

200
201
202
203
204
205
206
207

209

211
212
213

215
216
217

219
220
221

223
224
225

227
228
229

231
232
233
224
234
235
236
237
238
239
240
241
242
243

245
246
247
248
249

* Ok Ok ok %

ef | ag++;
argptr = optarg;
i nput _size = strlen(argptr);

conti nue;
case 'f’:
fflag++
wor df fopen(optarg "r");
if (Wordf == NULL

(void) fprintf(stderr,
gettext("fgrep: can't open %\n"),
optarg);

exit(2);

}

if (fstat(f||en0(\l\ordf) & ile_stat) == 0) {
i nput _si ze = flle stat.st_size;

} else {

(void) fprintf(stderr,
gettext("fgrep: can't fstat ¥%\n"),
optarg);

exit(2);

}
conti nue;
case '|’:
| flag++;
conti nue;
case 'n’':
nfl ag++;
conti nue;
case 'v':
vfl ag++;
conti nue;
case 'Xx':
xfl ag++;
conti nue;
case '?':
errfl g++;
}
argc -= optind;
if (errflg || ((argc <= 0) && !fflag && 'eflag)) {
(void) printf(gettext("usage: fgrep [-bcHhil ngsvx
(vo |d) printf(gettext("usage: fgrep [-bchilnsvx] "
'[-eexp] [-f file] [strings] [file] ...\n"));
exit(2);

}

if (leflag & !fflag) {
argptr = argv[optind];
input_size = strlen(argptr);
i nput _si ze++;
opti nd++;
arge--;

Normal |y we need one struct words for each letter in the pattern

plus one terminating struct words with outp = 1, but when -x option

I's specified we require one nore struct words for ‘\n' character so we
calcul ate the input_size as below. W add extra 1 because

new usr/src/cnd/ fgrep/fgrep.c

250 * (input_size/2) rounds off odd nunbers

251 */

253 if (xflag) {

254 I nput _size = input_size + (input_size/2) + 1;
255 }

257 i nput _si ze++;

259 w = (struct words *)calloc(input_size, sizeof (struct words));
260 if (w== NULL)

261 (void) fprintf(stderr,

262 gettext("fgrep: could not allocate "
263 "menmory for wordlist\n"));

264 exit(2);

265 }

267 getw dt h(&W ;

268 if ((WDTHL == 0) && (WDTH2 == 0) &&

269 (WDTH3 == 0)) {

270 /*

271 * |f non EUC-based | ocal e,

272 * assume WDTHL is 1.

273 */

274 WDTHL = 1;

275 }

276 W DTH2++;

277 W DTH3++;

279 cgotofn();

280 cfail();

281 nfile = argc;

282 argv = &argv[optind];

283 if (argc <= 0)

284 execute((char *)NULL);

285 } else

286 while (--argc >= 0) {

287 execute(*argv);

288 ar gv++;

289 }

291 if (w!= NULL) {

292 free(w;

293

295 return (retcode != 0 ? retcode : nsucc == 0);
296 }

298 void

299 execute(char *file)

300 {

301 char *p;

302 struct words *c;

303 int ccount;

304 static char *buf = NULL;

305 int failed;

306 char *nlp;

307 wchar _t Ic;

308 int cw

310 if (buf == NULL)

311 fw_| Buf siz = BUFSI Z;

312 if ((buf = malloc(fw_|Bufsiz + BUFSIZ)) == NULL) {
313 exit(2); /* out of nenory */
314 }

315 }

new usr/src/cnd/ fgrep/fgrep.c

317
318
319
320
321
322
323
324
316
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

nst at e:

if (file) {

i1f ((fptr = fopen(file, "r")) == NULL) {
(void) fprintf(stderr,
gettext("fgrep: can’t open %\n"), file);
retcode = 2;

return;
}
} else {
file = "<stdi n>";
fptr = stdin;
file = STDI N_FI LENAMNE;
ccount = 0O;
failed = 0;
I num = 1;
tln = 0;
bl kno = 0;
p = buf;
nlp =p;
c=w
for (55) {
if (c ==0)
br eak;
if (ccount <= 0) {
if (p >= &uf[fw |Bufsiz + BUFSI Z]) {
if (nlp == buf) {
/* increase the buffer size */
fw_| Buf siz += BUFSI Z;
if ((buf = realloc(buf,
fw I Bufsiz + BUFSIZ)) == NULL) {
exit(2); /* out of nenory */
}
nlp = buf;
p = &uf[fw_| Bufsiz];
} else {
/* shift the buffer down */
(voi d) menmmove(buf, nlp,
&ouf [fw_| Buf si z + BUFSI Z]
- nip);
p -=nlp - buf;
nlp = buf;
}
} .
if (p > &uf[fw_ |Bufsiz]) {
if ((ccount = fread(p, sizeof (char),
&uf [fw | Bufsiz + BUFSIZ] - p, fptr))
<= 0)
break;
} else if ((ccount = fread(p, sizeof (char),
BUFSI Z, fptr)) <= 0)
br eak;
) bl kno += (1 ong | ong)ccount;
GETONE(l ¢, p);

if (same(c->inp, lc)) {
C = c->nst;

} elseif (c->link '=0) {
c = c->link;
goto nstate;

} else {

new usr/src/cnd/ fgrep/fgrep.c 7 new usr/src/cnd/ fgrep/fgrep.c

381 c=w 450 }

382 istate: 451 while (nlp < p)

383 if (sarre(c >i np, Ic)) { 452 (voi d) put char (*nl p++) ;

384 C = c->ns 453 }

385 } elseif (c >I|nk 1=0) { 454 nomat ch:

386 c = c->link; 455 | numt+;

387 goto istate; 456 nlp = p;

388 } 457 c=w

389 } else 458 failed = 0;

390 goto nstate; 459 conti nue;

391 } 460 }
461 if (lc =="\n")

393 if (c ==0) 462 if (vflag)

394 break; 463 got o succeed;
464 el se {

396 if (c->out) { 465 I numt++;

397 while (lc !'="\n") { 466 nIp=p

398 if (ccount <= 0) { 467 c=w

399 if (p == &buf[fw |Bufsiz + BUFSIZ]) { 468 failed = 0;

400 if (nlp == buf) { 469 }

401 /* increase buffer size */ 470 }

402 fw_| Buf siz += BUFSI Z; 471 (void) fclose(fptr);

403 if ((buf =realloc(buf, fwlBufsiz + BUFSIZ)) == NULL) { 472 if (cflag & !qgflag) {

404 exit(2); /* out of menory */ 473 if (Hlag || (nfile > 1 & !hflag))

405 } 461 if (cflag) {

406 nlp = buf; 462 if ((nfile > 1) && !'hflag)

407 p = &uf[fw_| Bufsiz]; 474 (void) printf("%:", file);

408 } else { 475 (void) printf("%Id\n", tin);

409 /* shift buffer down */ 476 }

410 (void) memmove(buf, nlp, &uf[fw |Bufsiz + BUFSIZ] - nlp); 477 }

411 p -=nlp - buf; ____unchanged_portion_onitted_

412 nlp = buf;

413 }

414 }

_____unchanged_portion_onmtted

424 if ((vflag&&(falled == 0 || xflag == 0)) ||

425 (vf O&&xflag&&falled))

426 goto norratch

427 succeed:

428 nsucc =

429 if (Iflag|| gflag) {

430 if (!gflag)

420 if (cflag)

421 tln++;

422 else if (Iflag & !sflag) {

431 (void) printf("%\n", file);

432 (void) fclose(fptr);

433 return;

434 }

435 if (cflag) {

436 tln++;

437 } else {

438 if (Hlag || (nfile > 1 & !'hflag))

426 } else if (!sflag) {

427 if (nfile >1 & !'hflag)

439 (void) printf("%:", file);

440 if (bflag)

441 (void) printf("%1d:",

442 (bl'kno - (long long)(ccount-1))

443 / BUFSI Z);

444 if (nflag)

445 (void) printf("%ld:", Inum;

446 if (p<=nlp) {

447 \Ahile(np<&buf[fWIBufS|z + BUFSI Z])

|
448 (voi d) putchar(*nl p++);
449 nlp = buf;

new usr/src/cnd/ grep/ grep.c 1

R R R R

10567 Fri Sep 13 10:33:21 2013

new usr/src/cnd/ grep/ grep.c

3737 grep does not support -H option

3759 egrep(1l) and fgrep(l) -s flag does not hide -c output

Revi ewed by: Al bert Lee <trisk@exenta.conr

Revi ewed by: Andy Stornont <andyj stornont @nsil . conr

IR R R R R R R RS R R R S RS RS E R E R RS R R R R R ERREREREEEEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License, Version 1.0 only
(the "License"). You may not use this file except in conpliance
with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [name of copyright owner]

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

CDDL HEADER END

I T O N N
-~

21

22/

23 Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved.
24 Use is subject to license terns.

25 */

27 [* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

28 /| * Al Rights Reserved *

30 /* Copyright (c) 1987, 1988 M crosoft Corporation */

31 /* Al Rights Reserved

33 /* Copyright 2012 Nexenta Systens, Inc. Al rights reserved. */

35 /*

36 * Copyright 2013 Danmi an Bogel. All rights reserved.
37 */

39 /*

40 * grep -- print lines matching (or not matching) a pattern
41 *

42 * status returns:

43 = 0 - ok, and sonme natches

44 * 1 - ok, but no matches

45 * 2 - sonme error

46 */

48 #i

ncl ude <sys/types. h>

50 #include <ctype. h>
51 #include <fcntl.h>
52 #include <l ocal e. h>
53 #include <nenory. h>
54 #incl ude <regexpr.h>
55 #incl ude <stdio. h>
56 #include <stdlib. h>
57 #include <string. h>
58 #i ncl ude <unistd. h>

new usr/src/cnd/ grep/ grep.c
59 #include <ftw h>
60 #include <limts.h>
61 #i nclude <sys/param h>

63 static const char *errstr[] = {

64 "Range endpoint too large.",

65 "Bad nunber.",

66 "t*\\digit'’ out of range.",

67 "No renmenbered search string.",

68 "\\'(\\) inbal ance.",

69 "Too many \\(.",

70 "More than 2 nunbers given in \\{ \\}.",
71 "} expected after \\.",

72 "First nunber exceeds second in \\{ \\}.",
73 "[1 inbalance."”,

74 "Regul ar expression overflow ",

75 "Il egal byte sequence.",

76 "Unknown regexp error code!!",

77 NULL

78 1

80 #define STDI N_FI LENAME gettext("(standard input)")

82 #define errmsg(nsg, arg) (void) fprintf(stderr,
83 #define BLKSI ZE 512
84 #define GBUFSIZ 8192

85 #define MAX_DEPTH 1000

87 static int t enp;

88 static long |ong | num

89 static char *1i nebuf;

90 static char *prnt buf = NULL;

91 static |ong fw_| PrntBuflLen = O;
92 static int nfl ag;

93 static int bf | ag;

94 static int 1flag;

95 static int cfl ag;

96 static int rflag;

97 static int Rf | ag;

98 static int vfl ag;

99 static int sfl ag;

100 static int iflag;

101 static int w | ag;

102 static int hfl ag;

103 static int Hf | ag;

104 static int gf l ag;

105 static int errflg;

106 static int nfile;

107 static long |ong thn;

108 static int nsucc;

109 static int outfn = 0;

110 static int nl flag;

111 static char *ptr, *ptrend;

112 static char *expbuf ;

114 static void execute(const char *, int);
115 static void regerr(int);

116 static void prepare(const char *);
117 static int recursive(const char *, const struct stat
118 static int succeed(const char *);
120 int

121 mai n(int argc, char **argv)

122 {

123 int c;

124 char * ér g;

gettext(nsg),

arg)

struct

new usr/src/cnd/ grep/ grep.c 3 new usr/src/cnd/ grep/ grep.c

125 extern int optind; 189 }

127 (void) setlocal e(LC_ALL, ""); 191 argv = &argv[optind];

128 #if !defined(TEXT_DOVAI N) /* Shoul d be defined by cc -D */ 192 argc -= optind;

129 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it weren't */ 193 nfile = argc - 1;

130 #endi f

131 (voi d) textdomai n(TEXT_DOVAIN) ; 195 if (strrchr(*argv, "\n’) !'= NULL)
196 regerr(41);

133 while ((c = getopt(argc, argv, "hHgblcnRrsviyw')) != -1)

126 while ((c = getopt(argc, argv, "hgblcnRrsviyw')) != -1) 198 if (iflag) {

134 switch (c) { 199 for (arg = *argv; *arg != NULL; ++arg)

135 /* based on options order h or His set as in GNU grep */ 200 *arg = (char)tol ower((int)((unsigned char)*arg));

136 case 'h': 201 }

137 hf | ag++;

138 Hflag = 0; /* h excludes H */ 203 if (wWMlag) {

139 br eak; 204 unsi gned i nt wor dl en;

140 case 'H: 205 char *wor dbuf ;

141 if ('lIflag) /* His excluded by | */

142 Hf | ag++; 207 wordlen = strlen(*argv) + 5; /* "\\" "< *argv "\\' "> "\0 */

143 hflag = 0; /* H excludes h */ 208 if ((wordbuf = malloc(wordlen)) == NULL) {

144 br eak; 209 errnmsg("grep: Qut of nmenory for word\n", (char *)NULL);

145 case 'q': /* PCSIX: quiet: status only */ 210 exit(2);

146 qf | ag++; 211 }

147 br eak;

148 case 'V’ 213 (void) strcpy(wordbuf, "\\<");

149 vfl ag++; 214 (void) strcat(wordbuf, *argv);

150 br eak; 215 (void) strcat(wordbuf, "\\>");

151 case '¢’': 216 *argv = wor dbuf;

152 cfl ag++; 217 }

153 br eak;

154 case 'n’: 219 expbuf = conpile(*argv, (char *)0, (char *)0);

155 nfl ag++; 220 if (regerrno)

156 br eak; 221 regerr(regerrno);

157 case 'R :

158 Rf | ag++; 223 if (--argc == 0)

159 /* FALLTHROUGH */ 224 execut e(NULL, 0);

160 case 'r’: 225 el se

161 rflag++; 226 while (argc-- > 0)

162 br eak; 227 prepare(*++argv);

163 case 'b’:

164 bf | ag++; 229 return (nsucc == 2 ? 2 : (nsucc == 0?1 : 0));

165 br eak; 230 }

166 case 's’: __unchanged_portion_onitted_

167 sfl ag++;

168 br eak; 296 static void

169 case '|’: 297 execute(const char *file, int base)

170 I flag++; 298 {

171 Hflag = 0; /* | excludes H */ 299 char *| buf, *p;

172 br eak; 300 | ong count ;

173 case 'y’ : 301 | ong of fset = 0;

174 case '1': 302 char *next _ptr = NULL;

175 i flag++; 303 | ong next_count = 0;

176 br eak;

177 case 'W: 305 tln = 0;

178 wf | ag++;

179 br eak; 307 if (prntbuf == NULL)

180 case '?': 308 fw_ | PrntBuf Len = GBUFSI Z + 1;

181 errflg++; 309 if ((prntbuf = malloc(fw_|PrntBuflen)) == NULL) {

182 } 310 exit(2); /* out of menory - BAIL */
311 }

184 if (errflg || (optind >= argc)) { 312 1f ((linebuf = malloc(fw_|PrntBuflLen)) == NULL) {

185 errnmsg("Usage: grep [-c|-1]|-q] [-r|-R -hHbnsviw " 313 exit(2); /* out of nmenory - BAIL */

170 errnmsg("Usage: grep [-c|-1|-q] [-r|-R -hbnsviw" 314 }

186 "pattern file . . .\n", 315 }

187 (char *)NULL);

188 exit(2); 317 if (file == NULL) {

new usr/src/cnd/ grep/ grep.c 5

302
318
319
320
304
321
322
323
324
325

327
328
329

331
332
316
333
334
335
336
337
338

340
341
342
343
344
345

347
348
349
350
351
352
353

355
356
357
358
359
360
361
362
363
364
365
366

368
369
370
371
372
373
374
375

377
378

380

if (file

} else i
else if

}

/* read
if ((cou

}

== NULL)
temp = 0;
fi
f
((
if

0;

| e = STDI N_FI LENAME;
((temp = open(file + base, O RDONLY)) == -1) {
tenp -open(file+base, ORDO\ILY)) == -1) {
('Sf ag)

errnsg("grep: can't open %\n", file);
nsucc = 2;
return;

in first block of bytes */
nt = read(tenp, prntbuf, GBUFSIZ)) <= 0) {
(void) close(tenp);

if (cflag &&qulag) {
if (Hlag || (nfil
if (nfile >1 &&!
(void) fopri
if (!rflag)
(voi d) fprlntf(stdout

"% Ild\n", tln);

return;

| num = 0;

ptr = pr
for (;3)

nt buf ;

{

/* 1 ook for next newine */

if ((ptrend = nenchr(ptr + offset,
of fset += count;

\n’, count)) == NULL) {

/*
* shift unused data to the beginning of the buffer
*/
if (ptr > prntbuf) {
(void) memmove(prntbuf, ptr,
ptr = prntbuf;

of fset);

}

/*
* re-allocate a larger buffer if this one is full
*/
if (offset + GBUFSIZ > fw_| PrntBufLen) {
*

* allocate a new buffer and preserve the
* contents. ..

| Prnt Buf Len += GBUFSI Z;
“((prntbuf = realloc(prntbuf,
fw_| PrntBufLen)) == NULL)

exit(2);

fW
if

/*

* set up a bigger linebuffer (this is only used
* for case insensitive operations). Contents do
* not have to be preserved.

*/

free(linebuf);

if ((linebuf = malloc(fw_| PrntBuflLen)) == NULL)

exit(2);

ptr = prntbuf;

-

p = prntbuf + offset;

new usr/src/cnd/ grep/ grep.c

381 if ((count = read(tenp, p, GBUFSIZ)) > 0)
382 conti nue;

384 if (offset == 0)

385 /* end of file already reached */
386 br eak;

388 /* last line of file has no newine */
389 ptrend = ptr + offset;

390 nlflag = 0;

391 } else {

392 next_ptr = ptrend + 1;

393 next _count = offset + count - (next_ptr - ptr);
394 nlflag = 1;

395

396 | numt+;

397 *ptrend = '\0";

399 if (iflag) {

400 [*

401 * Make a | ower case copy of the record
402 */

403 p = ptr;

404 for (Ibuf = linebuf; p < ptrend;)
405 *Ibuf++:(char)tolower((lnt)
406 (unsi gned char) *p++);

407 *| buf ='\0";

408 I buf = Iinebuf;

409 } else

410 /*

411 * Use record as is

412 */

413 | buf = ptr;

415 /* Iflag only once */

416 if ((step(lbuf, expbuf) ~ vflag) && succeed(file)
417 break;

419 if (!nlflag)

420 break;

422 ptr = next_ptr;

423 count = next_count;

424 of fset = 0;

425 }

426 (void) close(tenp);

428 if (cflag&&'qflag) {

429 (Hflag || (!hflag && ((nfile > 1) ||

430 (rflag && outf))))

413 if (!hflag & file & & (nfile > 1 ||

414 (rflag & outfn)))

431 (void) fprintf(stdout, "%:", file);
432 (void) fprintf(stdout, "%Id\n", thn);

433 }

434 }

436 static int

437 succeed(const char *f)

438 {

439 int nchars;

440 nsucc = (nsucc == 2) ? 2 : 1;

426 if (f == NULL)

427 f = "<stdin>"

new usr/src/cnd/ grep/ grep.c

442 if (qflag) {

443 /* no need to continue */

444 return (1);

445 }

447 if (cflag) {

448 tl n++;

449 return (0);

450 }

452 if (Iflag) {

453 (void) fprintf(stdout, "%\n", f);
454 return (1);

455 }

457 if (HHlag || (!hflag & (nfile > 1 || (rfl
444 if (!hflag & (nfile > 1 || (rflag & outfn))) {
458 /* print filenane */

459 (voird) fprintf(stdout, "%:", f);

460 }

462 if (bflag)

463 /* print block nunber */

464 (void) fprintf(stdout, "%1d:", (offset_t)
465 ((Iseek(tenp, (off_t)0, SEEK_CUR) - 1) / BLKSIZE));
467 if (nflag)

468 /* print line nunber */

469 (void) fprintf(stdout, "%I1d:", Inum;
471 if (nlflag) {

472 /* newine at end of line */

473 *ptrend = '\n’;

474 nchars = ptrend - ptr + 1;

475 } else {

476 /* don’t wite sentinel \0 */

477 nchars = ptrend - ptr;

478 }

480 (void) fwite(ptr, 1, nchars, stdout);

481 return (0);

482 }

__unchanged_portion_onitted_

ag &% outfn)))) {
n)

new usr/src/ cnd/ grep_xpg4/ grep.c

R R R R

28372 Fri Sep 13 10:33:21 2013

new usr/src/ cnd/ grep_xpg4/ grep.c

3737 grep does not support -H option

3759 egrep(1l) and fgrep(l) -s flag does not hide -c output

Revi ewed by: Al bert Lee <trisk@exenta.conr

Revi ewed by: Andy Stornont <andyj stornont @nsil . conr

IR R R R R R R RS R R R S RS RS E R E R RS R R R R R ERREREREEEEEEEEE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
(the "License").
with the License.
or http://ww. opensol aris.org/os/licensing.

and limtations under the License.

fields enclosed by brackets "[]" replaced with

NRERRRERRRER R
COONOUITARWNROOO~NOUTDSWN

CDDL HEADER END
/

21

22/

23 Copyright 2004 Sun Mcrosystens, Inc. Al rights reserved.

24 Use is subject to license terns.

25 */

27 | *

28 * grep - pattern nmatching program - conbined grep, egrep, and fgrep.
29 * Based on MKS grep command, with XCU & Sol ari s nods.

30 */

32 /*

35 */
37 /* Copyright 2012 Nexenta Systems, Inc. Al rights reserved. */

39 /*

40 * Copyright 2013 Dani an Bogel. All rights reserved.
*
/

43 #include <string. h>
44 #include <stdlib. h>
45 #include <ctype. h>

46 #include <stdarg. h>
47 #incl ude <regex. h>

48 #include <linits. h>
49 #incl ude <sys/types. h>
50 #include <sys/stat.h>
51 #include <fcntl.h>

52 #include <stdio.h>

53 #include <l ocal e. h>
54 #incl ude <wchar. h>

55 #incl ude <errno. h>

56 #i nclude <unistd. h>
57 #include <wctype. h>
58 #include <ftw h>

Common Devel opnent and Distribution License, Version 1.0 only
You may not use this file except in conpliance

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE

See the License for the specific |anguage governing perm ssions

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
I f applicable, add the follow ng bel ow this CDDL HEADER, with the
your own identifying

*

*

*

*

*

*

*

*

*

*

*

* WWen distributing Covered Code, include this CDDL HEADER i n each
*

*

*

* information: Portions Copyright [yyyy] [name of copyright owner]
*
*
*
*
*
*
*

33 * Copyright 1985, 1992 by Mrtice Kern Systems Inc. Al rights reserved.
*

new usr/src/ cnd/ grep_xpg4/ grep.c

59

120

122
123
124

#i ncl ude <sys/param h>

EIE

* ok %k

* ok

* ok % ok ok b ok ok 3k b ok b ok ok % ok % ok % b F ok

Size of block for -b */
I nput buffer size */
how deep to recurse */

singl ebyte chars */
length of BMG pattern */
BMG pattern */

BMG del tal table */

original pattern */
wi de, |owercased pattern */

conpi l ed pattern */

regerror string buffer */

regconp options */

return of the grep() */

count of errors */

I nvoked as fgrep */

I nvoked as egrep */

Print matching lines */

Count of matches */

Case insensitve matching */
Precede lines by file name */
Supress printing of filename */
Print file names of matches */
Precede lines by |ine nunmber */
Search directories recursively */
Preccede matches by bl ock number */
Suppress file error nessages */
Suppr ess standard output */
Search for expression as a word */
Anchoring */

Egrep or -E flag */

Fgrep or -F flag */

Like rflag, but follow syminks */
Put out file nane */

const struct stat *, int, struct FTW*);

int);

#def i ne STDI N_FI LENAME gettext (" (standard input)")
#defi ne BSI ZE 512 /
#defi ne BUFSI ZE 8192 /
#def i ne MAX_DEPTH 1000 /
#defi ne M _CSETSI ZE 256 /
static int brygl en; /
static char *bngpat ; /
static int bngt ab[M_CSETSI ZE] ; /
typedef struct _PATTERN {
char *pattern; /
wchar _t *wpattern; /
struct _PATTERN *next ;
regex_t re;
} PATTERN;
static PATTERN *patterns;
static char errstr[128]; /
static int regflags = 0; /
static int mat ched = 0; /
static int errors = 0; /
static uchar_t fgrep = O; /
static uchar_t egrep = O; /
static uchar_t nvflag = 1; /
static uchar_t cflag; /
static uchar_t iflag; /
static uchar_t Hflag; /
static uchar_t hflag; /
static uchar_t |Iflag; /
static uchar_t nflag; /
static uchar_t rflag; /
static uchar_t bflag; /
static uchar_t sflag; /
static uchar_t qflag; /
static uchar_t wlag; /
static uchar_t xflag; /
static uchar_t Eflag; /
static uchar_t Fflag; /
static uchar_t Rflag; /
static uchar_t outfn; /
static char *cmdnane;
static int use_wchar, use_bng, nblocal e;
static size_t out bufl en, prntbuflen;
static char *prnt buf ;
static wchar_t *outline;
static void addfil e(const char *fn);
static void addpat tern(char *s);
static void fixpatterns(void);
static void usage(voi d);
static int grep(int, const char *);
static void bngconmp(char *, int);
static char *bnmgexec(char *, char *)
static int recursive(const char *,
static void process_path(const char *);
static void process_file(const char *,
/*
* mainline for grep
*/

new usr/src/ cnd/ grep_xpg4/ grep.c

125 int

126 mai n(int

127 {
128
129
130
131
132
133

135

136 #if !defined(TEXT_DOVAI N)
137 #define TEXT_DOVATN "SYS_TEST"

138 #endi f
139

141
142
143
144
145
146
147
148
149
150

152
153
154
155
156
157
158
159
160
161
162
163

165
158
166
167
168
169

171
172
173

175
176
177
178

180
181
182

184
185
186

188
189

argc, char **argv)

char *ap,

int

int ffl ag = 0;

int i, n_pattern:O, n_file = 0O;

char **pattern_|list = NULL;
char **file_list = NULL;

(void) setlocal e(LC_ALL,);
/* Shoul d be defined by cc -D */
/* Use this only if it weren't */

(voi d) textdomai n(TEXT_DOVAIN);

/*

* true if this is running on the nultibyte |ocale
*/

nbl ocale = (MB_CUR_MAX > 1);

/*

* Skip | eading slashes
*/

cmdnanme = argv[O0];
if (ap—strrchr(crrdnane 1))
cndnanme = ap + 1;

ap = cndnane;

/*

* Detect egrep/fgrep via command nane, map to -E and -F options.
*/

if (ap =='e’ || *ap == "E') {
regflags | = REG_EXTENDED;
egrep++;
} else {
if (rap =="1' || *ap =="F) {
fgrep++;
}
}
while ((c = getopt(argc, argv, "vwchHilnrbse:f:gxEFIR")) != EOF) {
while ((c = getopt(argc, argv, "vwchilnrbse:f:gxEFIR")) != EOF) {
switch (c) {
case 'Vv': /* PCSI X: negate matches */
nvflag = 0;
br eak;
case 'c’: /* PCSIX: write count */
cfl ag++;
br eak;
case 'i’: /* PCSI X: ignore case */
i flag++;
regflags | = REG | CASE;
br eak;
case '|’: /* POSIX: Wite filenanmes only */
| flag++;
br eak;
case 'n’: /* PCSIX: Wite line nunbers */
nfl ag++;
br eak;
case 'r’: /* Sol aris: search recursively */

rflag++;

new usr/src/ cnd/ grep_xpg4/ grep.c

190

192
193
194

196
197
198

200
201
202
203
204
205
206
207
208
209
210
211

213
214
215
216
217
218
219
220
221
222
223
224
225

227
228
229
230
231
232
233
234
235
236

238
239
240

242
243
244

246
247
248
249

251
252
253
254

br eak;

case 'b’: /* Solaris: Wite file block nunbers */
bf | ag++;
br eak;

case 's’: /* PCSIX: No error nsgs for files */
sfl ag++;
br eak;

case 'e’: /* POSIX: pattern list */

n_pattern++;
pattern_list = realloc(pattern_list,
si zeof (char *) * n_pattern);
if (pattern_list == NULL) {
(void) fprintf(stderr,
gettext("%: out of menory\n"),

cmdnane) ;
exit(2);
}
*(pattern_list + n_pattern - 1) = optarg;
br eak;
case 'f’: /* PCSIX: pattern file */
fflag = 1;
n_file++;
file_list :realloc(fl list,
sizeof (char *) * n_| |Ie)
if (file_list == NULL)
(void) fprintf(stderr,

gettext("%: out of nenory\n"),

cmdnane) ;
exit(2);

}

*(file_list + n_file - 1) = optarg;

break;
/* based on options order h or His set as in GNU grep */
case 'h': /* Solaris: supress printing of file name */

hflag = 1;

Hflag = 0;

br eak;

/* Solaris: precede every matching with file nane */
case 'H:

Hflag = 1;
hflag = O;
br eak;

case 'q': /* POSIX: quiet: status only */
gf | ag++;
br eak;

case 'W: /* Solaris: treat pattern as word */
wf | ag++;
br eak;

case 'x': /* PCSIX: full line matches */
xfl ag++;
regflags | = REG_ANCHOR;
break;

case 'E: /* PCSI X: Extended RE's */
regfl ags | = REG_EXTENDED;
Ef | ag++;
break;

new usr/src/ cnd/ grep_xpg4/ grep.c

256
257
258

260
261
262
263

265
266
267
268
269
270
271

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

298
299
300
301
302
303

305
306
307
308
309

311
312
313
314
315

317
318
319
320
321

case 'F': /* PCSIX: strings, not RE's */
Ffl ag++;
br eak;

case 'R : /* Solaris: like rflag, but follow syminks */
Rf | ag++;
rflag++;
br eak;

defaul t:
usage();
}

}*

* |If we're invoked as egrep or fgrep we need to do some checks
*

/

if (EQTEP*H farep) {
* Use of -E or -F with egrep or fgrep is illegal
*

if (Eflag || Fflag)
usage();
/*
*/Don’t allow use of wilag with egrep / fgrep

if (wflag)
usage()

* For Solaris the -s flag is equivalent to XCU -q
*
/
if (sflag)
gf | ag++;
/*
* done with above checks - set the appropriate flags
*

if (egrep)
Ef | ag++;

el se /* Else fgrep */
Ffl ag++;

}
if (wfla? && (Eflag || Fflag)) {

* -w cannot be specified with grep -F
*

/
usage();

}

/*
* -E and -F flags are mutual ly exclusive - check for this

*

if (Eflag && Fflag)

usage();
/*
* -1 overrides -Hlike in G\U grep
*
/
if (Iflag)
Hflag = 0;
/*
* -c, -l and -q flags are nutually exclusive
* We have -c override -1 like in Solaris.
* -q overrides -1 & -c programmatically in grep() function.
*

/

new usr/src/ cnd/ grep_xpg4/ grep.c

322
323

325
326

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

344
345
346
347
348
349
350
351
352
353

355
356
357
358
359
360
361

363
364
365
366

368
369
370
349
371
372
351
373
374
375
376
377
378
379
380

382

384
385

if (cflag && | fl ag)
Iflag = 0;
argv += optind - 1;
argc -= optind - 1;
/*
* Now handling -e and -f option
*
if (pattern_list) {
for (i =0; i < n_pattern; i++) {
addpattern(pattern_list[i]);

free(pattern_list);

b .
if (file_list) {

for (1 =0; i <n_file; i++) {
addfile(file_list[i]);
%ree(file_list);
}
/*

*/No -e or -f? Make sure there is one nore arg, use it as the pattern.
*
if (patterns == NULL && !fflag) {

if (argc < 2)

usage();

addpattern(argv[1]);

arge--;

ar gv++;

*
* If -x flag is not specified or -i flag is specified
* with fgrep in a nultibyte |locale, need to use
* the wide character APIs. Oherw se, byte-oriented
* process will be done.
*

/

use_wchar = Fflag & nblocale && (!xflag || iflag);

/*
* Conpile Patterns and al so decide if BMG can be used
*

fixpatterns();

/* Process all files: stdin, or rest of arg list */
if (argc < 2) {
mat ched = grep(0, STDI N_FI LENAME) ;
mat ched = grep(0, gettext("(standard input)"));

} else {
if (Hlag || (argc > 2 && hflag == 0))
if (argc > 2 && hflag == 0)
outfn = 1; /* Print filename on match line */
for (argv++; *argv != NULL; argv++) {
process_pat h(*argv);
}
}
/*

* Return() here is used instead of exit
*/

(void) fflush(stdout);

if (errors)
return (2);

new usr/src/ cnd/ grep_xpg4/ grep.c

386 return (matched ? 0 : 1);
387 }
__unchanged_portion_onitted_
788 [*
789 * Do grep on a single file.
790 * Return true in any lines matched.
791 *
792 * W have two strategies:
793 * The fast one is used when we have a single pattern with
794 * a string known to occur in the pattern. W can then
795 * do a BMG natch on the whole buffer.
796 * This is an order of magnitude faster.
797 * Otherwise we split the buffer into lines,
798 * and check for a nmatch on each line.
799 */
800 static int
801 grep(int fd, const char *fn)
802
803 PATTERN *pp;
804 of f _t data_l en; /* length of the data chunk */
805 of f _t line_len; /* length of the current line */
806 of f _t line_offset; /* current line's offset fromthe begi nning */
807 long | ong I'i neno;
808 long | ong nmat ches = 0; /* Nunber of matching |ines */
809 int new i nep; /* 0if the last line of file has no newine */
810 char *ptr, *ptrend,
813 if (patterns == NULL)
814 return (0); /* no patterns to match -- just return */
816 pp = patterns;
818 if (use_bng) {
819 brgconp(pp- >pattern, strlen(pp->pattern));
820
822 if (use_wchar && outline == NULL) {
823 out bufl en = BUFSI ZE + 1;
824 outline = malloc(sizeof (wchar_t) * outbuflen);
825 if (outline == NULL) {
826 (void) fprintf(stderr, gettext("%: out of nenory\n"),
827 crmdnane) ;
828 exit(2);
829 }
830 }
832 if (prntbuf == NULL) {
833 prnt bufl en = BUFSI ZE;
834 if ((prntbuf = malloc(prntbuflen + 1)) == NULL) {
835 (void) fprintf(stderr, gettext("%: out of nenory\n"),
836 cmdnane) ;
837 exit(2);
838 }
839 }
841 l'ine_offset = 0;
842 lineno = 0;
843 new inep = 1;
844 data_len = O;
845 for (5 ;)
846 | ong count;
847 of f _t offset = 0;
849 if (data_len == 0) {

new usr/src/ cnd/ grep_xpg4/ grep.c

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

/*
* If no data in the buffer, reset ptr
*
/
ptr = prntbuf;

}
1f (ptr == prntbuf) {
/*
* The current data chunk starts from prntbuf.
* This nmeans either the buffer has no data
* or the buffer has no newine.
* So, read nore data frominput.
*
/
count = read(fd, ptr + data_len, prntbuflen - data_len);
if (count < 0) {
/* read error */
if (cflag) {
if (outfn && !rflag) {
(void) fprintf(stdout,
"Us:", fn);

}
if (!gflag && !'rflag) {
(void) fprintf(stdout, "%Id\n",
mat ches) ;

}

return (0);
} else if (count == 0)
/* no new data */
if (data_len == 0) {
/* end of file already reached */
br eak;

}

/* last line of file has no newine */
ptrend = ptr + data_len;

new inep = 0;

goto L_start_process;

of fset = data_len;
data_l en += count;

}

/*

* Look for newine in the chunk

* between ptr + offset and ptr + data_len - offset.
*/

ptrend = find_nl (ptr + offset, data_len - offset);
1f (ptrend == NULL) {
/* no newine found in this chunk */
if (ptr > prntbuf)
/*

* Move remai ning data to the beginning
* of the buffer.

* Renmmining data lie fromptr for

* data_l en bytes.

*/

(void) memmove(prntbuf, ptr, data_len);

if (data_len == prntbuflen) {
/*
* No enough roomin the buffer
*
/

prntbufl en += BUFSI ZE;
prntbuf = realloc(prntbuf, prntbuflen + 1);
1 f (prntbuf == NULL)
(void) fprintf(stderr,
gettext("%: out of menory\n"),

new usr/src/ cnd/ grep_xpg4/ grep.c

916 cndnane) ;

917 exit(2);

918 }

919 }

920 ptr = prntbuf;

921 /* read the next input */

922 cont i nue;

923

924 L_start_process:

926 /*

927 * Begi nning of the chunk: ptr

928 * End of the chunk: ptr + data_len

929 * Begi nning of the line: ptr

930 * End of the line: ptrend

931 */

933 if (use_bmg) {

934 /*

935 * Use Boyer - More-Gosper algorithmto find out if
936 * this chunk (not this line) contains the specified
937 * pattern. If not, restart fromthe last |ine
938 * of this chunk.

939 */

940 char *bl i ne;

941 bline = bngexec(ptr ptr + data_len);

942 if (bline == NULL) {

943 /*

944 * No pattern found in this chunk.

945 * Need to find the last line

946 * in this chunk.

947 *

948 ptrend = rfind_nl(ptr, data_len);

950 /*

951 * When this chunk does not contain newine,
952 * ptrend becones NULL, which should happen
953 * when the last line of file does not end
954 * with a newine. At such a point,

955 * new i nep shoul d have been set to 0.
956 * Therefore, just after junping to

957 * L_skip_line, the main for-loop quits,
958 * and the line_|len value won't be

959 * used.

960 */

961 line_len = ptrend - ptr;

962 goto L_skip_line;

963 }

964 if (bline > ptrend) {

965 I

966 * Pattern found not in the first line
967 * of this chunk.

968 * Discard the first line.

969 */

970 line_len = ptrend - ptr;

971 goto L_skip_line;

972 }

973 /*

974 * Pattern found in the first line of this chunk.
975 * Using this result.

976 /

977 *ptrend = '\0";

978 line_len = ptrend - ptr;

980 /*

981 * before junping to L_next_Iline,

new usr/src/ cnd/ grep_xpg4/ grep.c

982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1001
1002
1003
1004
1005
1006

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

1020
1021
1022
1023
1024
1025
1026
1027
1028

1030
1031
1032
1033
1034
1035

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

"Us:

* need to handle xflag if specified
*
/

if (xflag & (line_len !'= bnglen ||
ﬁrmm(?mpm mr)‘7 0)) {
*

dn’t match
= NULL;
} else{
pp = patterns; /* to neke it
goto L_next_line;
}
i neno++;
/*
* Line starts fromptr and ends at ptrend.
* line_len will be the length of the line.
*/

*ptrend = "\0";
line_len = ptrend - ptr;

/*
* From now, the process will be perfornmed ba
* on the line fromptr to ptrend.
*/
if (use_wchar) {
size_t len;

if (line_len >= outbuflen) {
outbuflen = line_len + 1;
outline = realloc(outline,
si zeof (wchar_t) * outbuf
if (outline == NULL)

happen */

sed

len);

(void) fprintf(stderr,

gettext (" ¥%:

cndnane) ;
exit(2);
}
}
len = n‘ostowcs(outline, ptr, line_len);
if (len == (size_t)-1) {
(void) fprintf(stderr, gettext(

line %1d:
cmdnane, fn,

input file \"o%\":
i neno);

/* never match a line wth invalid sequence */

goto L_skip_line;
}
outline[len] = L"\0";
if (iflag) {

wchar _t *cp;
for (cp = outline;

*cp 1= "\0";

cp++) |

*cp = towl ower ((wint_t)*cp);

}
}
if (xflag) {
for (pp = patterns; pp; pp = pp->next) {
if (outline[0] == pp->wpattern[O0]
wescnp(outline,
pp- >wpatter n) == 0) {
mat ched */
break
}
} else {
for (pp = patterns; pp; pp = pp->next) {

out of menory\n"),

invalid multi byte character\n"),

&&

10

new usr/src/ cnd/ grep_xpg4/ grep.c 11

1048 if (wecswes(outline, pp->wpattern)
1049 1= NULL) {

1050 /* matched */

1051 br eak;

1052 }

1053 }

1054 }

1055 } else if (Fflag) {

1056 /* fgrep in byte-oriented handling */

1057 char *fptr;

1058 if (iflag) {

1059 fptr = istrdup(ptr);

1060 } else {

1061 fptr = ptr;

1062 }

1063 if (xflag) {

1064 /* fgrep -x */

1065 for (pp = patterns; pp; pp = pp->next) {
1066 if (fptr[0] == pp->pattern[0] &&
1067 strcnp(fptr, pp->pattern) == 0) {
1068 /* matched */

1069 break;

1070 }

1071 }

1072 } else {

1073 for (pp = patterns; pp; pp = pp->next) {
1074 if (strstr(fptr, pp->pattern) != NULL) {
1075 /* matched */

1076 br eak;

1077 }

1078 }

1079 }

1080 } else {

1081 /* grep or egrep */

1082 for (pp = patterns; pp; pp = pp->next) {

1083 int rv;

1085 rv = regexec(&pp->re, ptr, 0, NULL, 0);
1086 if (rv == REG. OK) {

1087 /* matched */

1088 br eak;

1089 }

1091 switch (rv) {

1092 case REG_NOVATCH:

1093 br eak;

1094 case REG ECHAR:

1095 (void) fprintf(stderr, gettext(
1096 "Us: input file \"9%\": line %I1d: invalid nultibyte character\n"),
1097 cndnare, fn, |ineno);

1098 br eak;

1099 defaul t:

1100 (void) regerror(rv, &pp->re, errstr,
1101 si zeof (errstr));

1102 (void) fprintf(stderr, gettext(
1103 "Os: input file \"9%\": line %1d: %\n"),

1104 cmdnane, fn, lineno, errstr);
1105 exit(2);

1106 }

1107 }

1108 }

1110 L_next_line:

1111 /*

1112 * Here, if pp points to non-NULL, sonething has been matched

1113 * to the pattern.

new usr/src/ cnd/ grep_xpg4/ grep.c 12

1114 */
1115 if (nvflag == (pp !'= NULL)) {

1116 mat ches++;

1117 *

1118 * Handle g, |, and c flags.

1119 */

1120 if (gflag) {

1121 /* no need to continue */

1122 /*

1123 * End of this line is ptrend.

1124 * W have read up to ptr + data_len.
1125 */

1126 of f _t pos;

1127 pos = ptr + data_len - (ptrend + 1);
1128 (void) |seek(fd, -pos, SEEK CUR);
1129 exit(0);

1130 }

1131 if (Iflag) {

1132 (void) printf("%\n", fn);

1133 br eak;
1134 }

1135 if (cflag) {
1136 if (HfI
1115 if (out

g outfn) {
n
1137 (
g
(

——

)
=

d) printf("%:", fn);
1138 }

1139 if (bfla
1140

1141

1142 }

1143 if (nflag) {

1144 (void) printf("%Ild:", lineno);

1145 }

1146 *ptrend = '\n’;

1147 (void) fwite(ptr, 1, line_len + 1, stdout);
1148 }

1149 if (ferror(stdout)) {

1150 return (0);

1151 }

1152 }

1153 L_skip_line:

1154 if (!'newinep)

1155 break;

d) printf("%l1d:", (offset_t)
(line_offset / BSIZE));

1157 data_len -=line_len + 1;
1158 line_offset += line_len + 1;
1159 ptr = ptrend + 1;

1160 1

1162 if (cflag) {

1163 if (Hlag || outfn) {

1142 if (outfn) {

1164 (void) printf("%:", fn);
1165 }

1166 if (!gflag) {

1167 (void) printf("%1d\n", matches);
1168 }

1169 }

1170 return (matches != 0);

1171 }

1173 /*

1174 * usage nessage for grep
1175 */

1176 static void

1177 usage(voi d)

new usr/src/ cnd/ grep_xpg4/ grep.c

1178 {
1179
1180
1181
1182
1161
1183

1185
1186
1187
1166
1188
1189
1190
1191
1192
1193
1172
1194

1196
1197
1198
1177
1199
1200

1202
1203
1204
1183
1205

1207
1208
1209
1188
1210
1211

1213
1214
1215
1194
1216

1218
1219
1220
1199
1221
1222
1223
1224
1225 }

if (egrep || farep) {
(void) fprintf(stderr,
(void) fprintf(stderr,

gettext(“ [-c|-1
gettext([-c]-1
"pattern_list [f
(void) fprintf(stderr
(void) fprintf(stderr
gettext(" [-c|-I
gettext(" [-c|-I
"[—e pattern_lis
"[-f pattern_file
} else {
(void) fprintf(stderr
(void) fprintf(stderr
gettext(‘ [-c|-]I
gettext([-c]-1
"pattern_list [f
(void) fprintf(stderr
(void) fprintf(stderr
gettext(" [-c|-I
gettext(" [-c|-1
"[-e pattern_lis
"[-f pattern_file
(void) fprintf(stderr,
(void) fprintf (tderr
gettext(" - [—c
gettext(-C
"pattern_| Ilst [f
(void) fprintf(stderr
(void) fprintf(stderr
gettext(" - -C
gettext(E[-c
‘[-e pattern lis
"[-f pattern_file]...
(void) fprintf(stderr
(voi d) fprintf(stderr
gettext(" -F [-c
gettext(" -F[-c
"pattern_list [f
(void) fprintf(stderr,
(void) fprintf(stderr,
gettext(" -F [-c|-I]-
gettext(" -F [-c|-I]
"[-f pattern_file
}
exit(2);
/* NOTREACHED */

__unchanged_portion_onitted_

’

’

1...

I...
]

13

gettext("Usage:\t%"), cndnane);
1 [-r|-R [-bhH nsvx] "
] [-r]-R [-bhinsvx] "
1\n"));
"\t%", cndnane);
] [-r|-R [-bhH nsvx]
] [I-_r|-R] [-bhinsvx] "

S Ifile...]\n")
gettext("Usage:\t%"), cndnane);
] [-r]|-R [-bhH nsvwx]

] [-r]-R [-bhinsvwx]

. 1\n"));

"\t%", cndnane);

] [-r]-Rl [-bhH nsvwx]
] [;f|-R] [- bhi nsvwx] "
S [file...1vn"))
"\t%", cndnane);

|-a] [-r]|-R [-bhH nsvx]
|-a] [-r]|-R] [-bhinsvx]

oo\,

"\t%", cndnane);

|-q] [-r|-R [-bhH nsvx] "

I|—ql]' [-r]-R [-bhinsvx] "
[file...]\n"));

"\t%", cndnane);

|-a] [-r]|-R [-bhH nsvx]

|-a] [-r|-Rl [-bhinsvx] "

o 1\n"));

"\t%", cndnane);
q] [-bhHinsvx] [-e pattern_list]... "

-q)] [—bhlnsvx] [-e pattern_list]...

[file...]\n"));

new usr/src/ man/ manl/ egrep. 1 1

R R R R

9118 Fri Sep 13 10:33:21 2013

new usr/src/ man/ manl/ egrep. 1

3737 grep does not support -H option
3759 egrep(1l) and fgrep(l) -s flag does not hide -c output
Revi ewed by: Al bert Lee <trisk@exenta.conr
Revi ewed by: Andy Stornont <andyj stornont @nsil . conr
IR R R R R R R RS R R R S RS RS E R E R RS R R R R R ERREREREEEEEEEEE]
1'\" te
2 .\" Copyright 1989 AT&T
3 .\" Copyright (c) 2006, Sun Mcrosystens, Inc. Al Rights Reserved
4 .\" Portions Copyright (c) 1992, X/ Open Conpany Limted All Rights Reserved
5 .\" Sun Mcrosystens, Inc. gratefully acknow edges The Open G oup for permssion
6 .\" http://ww. opengroup. or g/ bookst ore/ .
7 .\" The Institute of Electrical and El ectronics Engi neers and The Open Group, ha
8 .\" This notice shall appear on any product containing this material.
9 .\" The contents of this file are subject to the terns of the Common Devel opnent
10 .\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:
11 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
12 . TH EGREP 1 "May 3, 2013"
12 . TH EGREP 1 "Mar 24, 2006"
13 . SH NAME
14 egrep \- search a file for a pattern using full regul ar expressions
15 . SH SYNOPSI S
16 .LP
17 . nf
18 \fB/usr/bin/egrep\fR [\fB-bcHhil nqgsv\fR] \fB-e\fR \flpattern_|list\fR [\flfile...
18 \fB/usr/bin/egrep\fR [\fB-bchilnsv\fR \fB-e\fR \flpattern_list\fR[\flfile...\f
19 . fi
21 . LP
22 .nf
23 \fB/usr/bin/egrep\fR [\fB-bcHhilngsv\fR] \fB-f\fR\fIfile\fR [\fIfile...\fR]
23 \fB/usr/bin/egrep\fR [\fB-bchilnsv\fR] \fB-f\fR\fIfile\fR[\fIfile...\fR]
24 . fi
26 .LP
27 .nf
28 \fB/usr/bin/egrep\fR [\fB-bcHhil ngsv\fR] \flpattern\fR [\flfile...\fR]
28 \fB/usr/bin/egrep\fR [\fB-bchilnsv\fR] \flpattern\fR [\flIfile \fR]
29 . fi
31 .LP
32 .nf
33 \fB/usr/xpg4/bin/egrep\fR [\fB-bcHhil ngsvx\fR] \fB-e\fR \flpattern_list\fR [\fB-
33 \fB/usr/xpg4/bin/egrep\fR [\fB-bchilngsvx\fR] \fB-e\fR \flpattern_list\fR [\fB-
34 [\fifile...\fR]
35 .fi
37 .LP
38 .nf
39 \fB/usr/xpg4/ bin/egrep\fR [\fB-bcHhilngsvx\fRl [\ BefR flpattern_list\fR \fB
39 \fB/usr/xpg4/ bin/egrep\fR [\fB-bchilngsvx\fR] [\fB-e\fR \flpattern_list\fR] \fB-
40 [\fifile...\fR]
41 . fi
43 . LP
44 | nf
45 \f B/ usr/ xpg4/ bin/egrep\fR [\fB-bcHhil ngsvx\fR] \flpattern\fR [\flfile...\fR]
45 \f B/ usr/ xpg4/ bi n/egrep\fR [\fB-bchil ngsvx\fR] \flpattern\fR [\fIfile...\fR]
46 . fi
48 . SH DESCRI PTI ON
49 .sp
50 .LP
51 The \fBegrep\fR (\flexpression grep\fR) utility searches files for a pattern of

new usr/src/ man/ manl/ egrep. 1

52 characters and prints all lines that contain that pattern. \fBegrep\fR uses

53 full regular expressions (expressions that have string values that use the full

54 set of al phanuneric and special characters) to match the patterns. It uses a
55 fast determnistic algorithmthat sometines needs exponential space.

56 .sp

57 .LP

58 If no files are specified, \fBegrep\fR assumes standard input. Nornally, each
59 line found is copied to the standard output. The file name is printed before
60 each line found if there is nore than one input file.

61 . SS "/usr/bin/egrep"

62 .sp

.LP
64 The \fB/usr/bin/eg
65 on the \fBregexp\f
66 \fB\e(\fR and \fB\e
67 \fBlen\fR, and with
68 . RS +4
69 . TP
70 1.
71 A full regular expression followed by \fB+\fR that natches one or nore
72 occurrences of the full regul ar expression.

RE

rep
R(5) manual page, except for \fB\e(\fR and \fB\e)\fR
)\ f

t

he addi tion of:

74 RS +4
75 TP

2.
77 A full regular expression followed by \fB?\fR that matches 0 or 1
78 occurrences of the full regular expression.

RE

80 .RS +4
81 . TP
82 3.
83 Full regular expressions separated by | or by a \fBNEW.I NE\fR that natch
84 strings that are matched by any of the expressions.
RE

86 . RS +4
87 . TP

4.
89 A full regular expression that can be enclosed in parentheses \fB()\fRfor
90 groupi ng.

. RE

91

92 .sp

93 . LP

94 Be careful using the characters \fB$\fR \fB*\fR \fB[\fR \fB"\fR |, \fB(\fR
95 \fB)\fR, and \fB\e\fR in \flfull regular expression\fR because they are also
96 neaningful to the shell. It is safest to enclose the entire \flfull regular

97 expression\fR in single quotes (\fBa\"\fR fBa\'"\fR).

98 .sp

.LP
100 The order of precedence of operators is \fB[\|]\fR then \fB*\|?\|+\fR then
101 concatenation, then | and NEW.I NE.

102 . SS "/ usr/xpg4/ bi n/ egrep”

103 .sp

104 .LP

105 The \f B/ usr/xpg4/ bin/egrep\fR utility uses the regul ar expressions described in

106 the \fBEXTENDED REGULAR EXPRESSI ONS\f R section of the \fBregex\fR(5) nmanual
page.

108 . SH OPTI ONS

109 .sp

110 . LP

111 The followi ng options are supported for both \fB/usr/bin/egrep\fR and

112 \f B/ usr/xpg4/ bin/egrep\fR

113 .sp

114 .ne 2

. ha
116 \fB\fB-b\fR fR
117 . ad

\fR utility accepts full regul ar expressions as described

\fBle{\fR and \fB\e}\fR \fB\e<\fR and \fB\e>\fR, and

new usr/src/ man/ manl/ egrep. 1

118
119
120

. RS 19n
Precede each line by the bl ock number on which it was found. This can be useful
in locating block nunbers by context (first block is 0).

121 . RE

123
124
125
126
127
128
129
130

132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148
149

151
152
153
154
155
156
157
158

160
161
162
163
164
165
166
167

169
170
171
172
173
174
175
176

178
179
180
181
182
183

.sp
.ne 2

. na
\fB\fB-c\fRfR

.ad

. RS 19n

Print only a count of the lines that contain the pattern.
. RE

.sp
.ne 2

.na
\fB\fB-e\fR \flpattern_|list\fRfR

.ad

. RS 19n

Search for a \flpattern_list\fR (\flfull regular expression\fR that begins with
a \fB\(mM\fR).

. RE

.sp
.ne 2

. ha
\fB\fB-fA\fR\fIfile\fRfR

. al
.RS 19n

Take the list of \flfull\fR\flregular\fR \flexpressions\fR from\flfile\fR
.RE

.sp
.ne 2

.ha
\fB\fB-HfR fR

.ad

. RS 19n

Precedes each line by the name of the file containing the matching Iine.
.RE

.sp
.ne 2

. na

\fB\fB-h\fRfR

.ad

.RS 19n

Suppress printing of filenanes when searching nultiple files.
. RE

.sp
.ne 2

.na
\fB\fB-i\fRfR

.ad

. RS 19n

I gnore upper/|ower case distinction during conparisons.
.RE

.sp
.ne 2

.na
\fB\fB-I\fRfR
.ad

. RS 19n

new usr/src/ man/ manl/ egrep. 1

184
185
186

188
189
190
191
192
193
194

Print the names of files with matching Iines once, separated by NEW.I NEs. Does
not repeat the names of files when the pattern is found nore than once.
. RE

.sp
.ne 2

.na
\fB\fB-n\fRfR

.ad

. RS 19n

Precede each line by its line nunber in the file (first line is 1).

195 . RE

197
198
199
200
201
202
203
204
205

207
208
209
210
211
212
213
194
195

.sp
.ne 2

.na
\fB\fB-g\fRfR
.ad

. RS 19n

Quiet. Does not wite anything to the standard out put, regardl ess of matching
lines. Exits with zero status if an input line is selected.

. RE

.sp
.ne 2

.ha
\fB\fB-s\fRfR

.ad

.RS 19n

Legacy equival ent of \fB-gq\fR

Work silently, that is, display nothing except error nmessages. This is useful
for checking the error status.

214 . RE

216
217
218
219
220
221
222

.sp
.ne 2

. na
\fB\fB-vV\fRfR

.ad

.RS 19n

Print all lines except those that contain the pattern.

223 .RE

225
226
227
228
229
230
213
214

215 .

216
217
218
219

221
222
231
232
233
234
235
236

. SS "/ usr/xpg4/ bin/ egrep"”

.Sp

.LP

The foll owing options are supported for \fB/usr/xpg4/bin/egrep\fR only:
.sp

.ne 2

.na
\fB\fB-q\fRfR
ad

. RS 6n

Quiet. Does not wite anything to the standard output, regardl ess of natching
lines. Exits with zero status if an input line is selected.

. RE

.sp
.ne 2

.na
\fB\fB-x\fRfR

.ad

.RS 6n

Consider only input lines that use all characters in the line to match an
entire fixed string or regular expression to be matching |ines.

237 . RE

new usr/src/ man/ manl/ egrep. 1

239
240
241
242
243
244
245
246
247
248
249
250

. SH OPERANDS

.sp

.LP

The fol |l owi ng operands are supported:

.sp
.ne 2

.na
\fB\fIfile\fRfR

.ad

. RS 8n

A path name of a file to be searched for the patterns.
operands are specified, the standard input is used.

If no \fifile\fR

251 . RE

253
254
255
256
257
258
259
260

. SS "/usr/bin/egrep"

.sp

.ne 2

\fB\prattern\fR\fR
ad

RS 11n
Spemfy a pattern to be used during the search for input.

261 . RE

263 . SS

264
265
266
267
268
269
270
271

"/ usr/ xpg4/ bi n/ egrep”

.sp
.ne 2

.na
\fB\flpattern\fRfR

.ad

.RS 11n

Specify one or nore patterns to be used during the search for input. This
operand is treated as if it were specified as \fB-e\fR flpattern_list.\fR

272 .RE

274 .
275 .

276
277
278
279
280
281
282
283
284
285
286

See \fBI argefile\fR(5) for the description of the behavior of \fBegrep\fR when
encountering files greater than or equal to 2 Ghyte (2731 bytes).
. SH ENVI RONVENT VARI ABLES
.sp
.LP
See \fBenviron\fR(5) for descriptions of the follow ng environnment variabl es
that affect the execution of \fBegrep\fR \fBLC COLLATE\fR, \fBLC CTYPE\fR,
\ f BLC_MESSAGES\f R, and \fBNLSPATH\ f R
.SH EXIT STATUS

.sp

287 .LP

288
289
290

The following exit values are returned:

.sp
.ne 2

291 .na

292
293
294
295

\fB\fBO\fRfR

.ad

. RS 5n

If any nmatches are found.

296 . RE

298
299

.sp
.ne 2

300 .na

301
302
303

\fB\fBI\fRfR
.ad
. RS 5n

new usr/src/ man/ manl/ egrep. 1

304
305

307
308

If no matches are found.
. RE

.sp
.ne 2

309 .na

310
311
312
313

\fB\fB2\fRfR

.ad

.RS 5n

For syntax errors or inaccessible files (even if natches were found).

314 . RE

316 .

317
318
319
320
321

323
324
325
326
327
328
329
330
331

333
334

336
337
338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354
355
356
357
358
359

360 . SS

361
362
363
364
365

SH ATTRI BUTES

.sp

.LP

See \fBattributes\fR(5) for descriptions of the followi ng attributes:
. SS "/usr/bin/egrep"

.sp

.Sp
. TS
box;
c| c
[

ATTRI BUTE TYPE ATTRI BUTE VALUE

Csl Not Enabl ed
. TE

. SS "/ usr/ xpg4/ bi n/ egrep”
.sp

.sp

box
c| c
.

ATTRI BUTE TYPE ATTRI BUTE VALUE

Csl Enabl ed
.TE

. SH SEE ALSO
.sp

LP
\fogrep\fR(l) \fBgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1), \fBattributes\fR(5),
\fBenviron\fR(5), \f Iargeflle\fR(S), \fBregex\fR(5), \fBregexp\fR(5),
\ f BXPA\ f R(5)
. SH NOTES
.sp
.LP
Ideal ly there should be only one \fBgrep\fR command, but there is not a single
al gorithmthat spans a wide enough range of space-tinme trade-offs.
.sp
.LP
Lines are limted only by the size of the available virtual nenory.
"/ usr/ xpg4/ bi n/ egrep”
.sp
.LP
The \f B/ usr/xpg4/ bi n/ egre
\fB-E\NfR See \fBgrep\fR(
\ f B/ usr/ xpg4/ bi n/ grep\fR

p\fR utili y
1). Portable
\fB-E\fR

is identical to \fB/usr/xpg4/bin/grep\fR
applications should use

new usr/src/ man/ manl/fgrep. 1 1

R R R R

7742 Fri Sep 13 10:33:21 2013

new usr/src/ man/ manl/fgrep. 1

3737 grep does not support -H option
3759 egrep(1l) and fgrep(l) -s flag does not hide -c output
Revi ewed by: Al bert Lee <trisk@exenta.conr
Revi ewed by: Andy Stornont <andyj stornont @nsil . conr
IR R R R R R R RS R R R S RS RS E R E R RS R R R R R ERREREREEEEEEEEE]
1'\" te
2 .\" Copyright 1989 AT&T
3 .\" Copyright (c) 2006, Sun Mcrosystens, Inc. Al Rights Reserved
4 .\" Portions Copyright (c) 1992, X/ Open Conpany Limted Al Rights Reserved
5 .\" Sun Mcrosystens, Inc. gratefully acknow edges The Open G oup for perm ssion
6 .\" http://ww. opengroup. or g/ bookst ore/ .
7 .\" The Institute of Electrical and El ectronics Engi neers and The Open Group, ha
8 .\" This notice shall appear on any product containing this material.
9 .\" The contents of this file are subject to the terns of the Common Devel opnent
10 .\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:
11 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
12 . TH FGREP 1 "May 3, 2013"
12 .TH FGREP 1 "Mar 24, 2006"
13 . SH NAME
14 fgrep \- search a file for a fixed-character string
15 . SH SYNOPSI S
16 .LP
17 . nf
18 \fB/usr/bin/fgrep\fR [\fB-bcHhil nqgsvx\fRl \fB-e\fR \flpattern_|list\fR [\flfile..
18 \fB/usr/bin/fgrep\fR [\fB-bchilnsvx\fR \fB-e\fR \flpattern_list\fR[\flfile...\
19 . fi
21 . LP
22 .nf
23 \fB/usr/bin/fgrep\fR [\fB-bcHhil ngsvx\fR \fB-f\fR\fIfile\fR[\flfile...\fR]
23 \fB/usr/bin/fgrep\fR [\fB-bchilnsvx\fR] \fB-f\fR\fIfile\fR[\fIfile...\fR]
24 . fi
26 .LP
27 .nf
28 \fB/usr/bin/fgrep\fR [\fB-bcHhil ngsvx\fR] \flpattern\fR [\flfile...\f
28 \fB/usr/bin/fgrep\fR [\fB-bchilnsvxX\fR] \flpattern\fR [\flIfile...\fR]
29 . fi
31 .LP
32 .nf
33 \fB/usr/xpg4/bin/fgrep\fR [\fB-bcHhil ngsvx\fR] \fB-e\fR \flpattern_list\fR [\fB-
33 \fB/usr/xpg4/bin/fgrep\fR [\fB-bchilngsvx\fR] \fB-e\fR \flpattern_list\fR [\fB-
34 [\fifile...\fR]
35 .fi
37 .LP
38 .nf
39 \fB/usr/xpg4/bin/fgrep\fR [\fB-bcHhilngsvx\fRl [\ BefR flpattern_list\fR \fB
39 \fB/usr/xpg4/bin/fgrep\fR [\fB-bchilngsvx\fR] [\fB-e\fR \flpattern_list\fR \fB-
40 [\fifile...\fR]
41 . fi
43 . LP
44 | nf
45 \f B/ usr/ xpg4/ bin/fgrep\fR [\fB-bcHhil ngsvx\fR] \flpattern\fR [\flfile...\fR]
45 \f B/ usr/ xpg4/ bin/fgrep\fR [\fB-bchilngsvxX\fR] \flpattern\fR [\fIfile...\fR]
46 . fi
48 . SH DESCRI PTI ON
49 .sp
50 .LP
51 The \fBfgrep\fR (fast \fBgrep\fR) utility searches files for a character string

new usr/src/ man/ manl/fgrep. 1

117

and prints all lines that contain that string. \fBfgrep\fRis different from
\fBgrep\fR(1) and from\fBegrep\fR(1) because it searches for a string, instead
of searching for a pattern that nmatches an expression. \fBfgrep\fR uses a fast
and conpact al gorithm

.sp

.LP

The characters \fB$\fR \fB*\fR \fB[\fR \fB"\fR |, \fB(\fR \fB)\fR and
\fB\e\fR are interpreted literally by \fBfgrep\fR, that is, \fBfgrep\fR does
not recogni ze full regul ar expressions as does \fBegrep\fR These characters
have special nmeaning to the shell. Therefore, to be safe, enclose the entire
\flstring\fR within single quotes (\fBa\"\fR).

.sp

.LP

If no files are specified, \fBfgrep\fR assunes standard input. Normally, each
line that is found is copied to the standard output. The file name is printed
before each line that is found if there is nore than one input file.

. SH OPTI ONS

.sp

.LP

The followi ng options are supported for both \fB/usr/bin/fgrep\fR and

\f B/ usr/ xpg4/bin/fgrep\fR

.sp

.ne 2

.na
\fB\fB-b\fRfR

.ad

. RS 19n

Precedes each line by the bl ock nunber on which the Iine was found. This can be
useful in locating block nunbers by context. The first block is 0.

.RE

.sp
.ne 2

.na
\fB\fB-c\fRfR

.ad

. RS 19n

Prints only a count of the lines that contain the pattern.
. RE

.sp
.ne 2

.na
\fB\fB-e\fR \flpattern_list\fRfR

. al
.RS 19n

Searches for a \flstring\fRin \flpattern-list\fR This is useful when the
\flstring\fR begins with a \fB\(m\fR &

.RE

.sp
.ne 2

. na

\fB\fB-f\fR \flpattern-file\fRfR

.ad

. RS 19n

Takes the list of patterns from\flpattern-file\fR

.sp
.ne 2

.na
\fB\fB-HfRfR

.ad

. RS 19n

Precedes each line by the nane of the file containing the matching line.

new usr/src/ man/ manl/fgrep. 1

118

120
121
122
123
124
125
126
127

129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145

. RE

.sp
.ne 2

.na
\fB\fB-h\fRfR

.ad

. RS 19n

Suppresses printing of files when searching nultiple files.
. RE

.sp
.ne 2

.na
\fB\fB-i\fRfR

.ad

.RS 19n

I gnores upper/|l ower case distinction during conparisons.
.RE

.sp
.ne 2

. ha
\fB\fB-I\fRfR
.a

. RS 19n

Prints the names of files with matching |lines once, separated by newlines.
Does not repeat the names of files when the pattern is found nore than once.

146 .RE

148
149
150
151
152
153
154
155

157
158
159
160
151

161 .

162
163
164
154
155

.sp
.ne 2

. na
\fB\fB-n\fRfR

.ad

.RS 19n

Precedes each line by its line nunber in the file. The first line is 1.
. RE

.sp
.ne 2
.na
\fB\fB-q\fRfR

\fB\fB-s\fRfR

Does not wite anything to the standard output, regardl ess of matching

. Exits with zero status if an input line is selected.

Works silently, that is, displays nothing except error messages. This is useful
for checking the error status.

165 . RE

167
168
169
170
161
171
172
173
164
174

176
177
178

.sSp

.ne 2

. na
\fB\fB-s
\fB\fB-v
.ad

. RS 19n
Legacy equivalent of \fB-gq\fR

Prints all lines except those that contain the pattern.
. RE

\fRfR
\fRfR

.sp
.ne 2
.na

new usr/src/ man/ manl/fgrep. 1

179
170
180
181
182
173

\f B\ f B- v\
\ f B\ f B- x\
.ad

.RS 19n
Prints all lines except those that contain the pattern.
Prints only lines that are matched entirely.

fRfR
fRfR

183 . RE

176
185
178
179
180
186
187
188
183

189 .

190
191
185
186
187

192 .

194
195
196
197
198
199
200
201
202
203
204
205

. SS "/ usr/ xpg4/ bin/fgrep"

.sp

.LP

The following options are supported for \fB/usr/xpg4/bin/fgrep\fR only:
.sp

.ne 2

.na

\fB\fB-x\fRfR

\fB\fB-q\fRfR

ad

. RS 19n

Prints only lines that are matched entirely.

.RS 6n

Quiet. Does not wite anything to the standard output, regardl ess of matching
lines. Exits with zero status if an input line is selected.

RE

. SH OPERANDS

.sp

.LP

The fol |l owi ng operands are supported:

.sp
.ne 2

.na
\fB\fIfile\fRfR

.ad

.RS 8n

Specifies a path nane of a file to be searched for the patterns. If no
\fIfile\fR operands are specified, the standard input w || be used.

206 . RE

208
209
210
211
212
213
214
215

.SS "/usr/bin/fgrep"

.sp

.ne 2

.na

\fB\flpattern\fRfR
d

. al
.RS 11n
Specifies a pattern to be used during the search for input.

216 . RE

218
219
220
221
222
223
224
225
226

. SS "/ usr/ xpg4/ bin/fgrep"

.sp
.ne 2

. na

\fB\flpattern\fRfR

.ad

.RS 11n

Specifies one or nore patterns to be used during the search for input. This
operand is treated as If it were specified as \fB-e\fR \flpattern_list\fR

227 .RE

229
230
231
232
233
234

. SH USAGE

.sp

.LP

See \fBlargefile\fR(5) for the description of the behavior of \fBfgrep\fR when
encountering files greater than or equal to 2 Ghyte (2731 bytes).

. SH ENVI RONVENT VARI ABLES

new usr/src/ man/ manl/fgrep. 1

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

253
254
255
256
257
258
259
260

262
263
264
265
266
267
268

.sp
.LP

See \fBenviron\fR(5) for descriptions of the follow ng environnent variables
that affect the execution of \fBfgrep\fR \fBLC_COLLATE\fR, \fBLC CTYPE\fR,
\f BLC_ MESSAGES\fR, and \fBNLSPATH\fR.

.SH EXI T STATUS

.sp

.LP

The following exit values are returned:

.sp

.ne 2

.na
\fB\fBO\fRfR

.ad

. RS 5n

If any nmatches are found
.RE

.sp
.ne 2

. na
\fB\fBI\fRfR

.ad

. RS 5n

If no matches are found
. RE

.sp
.ne 2

. na
\fB\fB2\fRfR

.ad

. RS 5n

For syntax errors or

inaccessible files, even if matches were found.

269 . RE

271
272

274

275 .

276
277

278 .
279 .

280
281
282
283
284
285
286

288
289
290
291
292
293
294
295
296
297
298
299
300

. SS "/ usr/xpg4/ bin/fgrep"
.sp

. SH ATTRI BUTES

.LP
See \fBattributes\fR(5) for descriptions of the follow ng attributes:

|
ATTRI BUTE TYPE ATTRI BUTE VALUE

Csl
.TE

Enabl ed

. SH SEE ALSO
.sp

.LP
\fBed\fR(1), \
\fBattributes\
. SH NOTES

.sp

.LP

Ideal ly, there should be only one \fBgrep\fR command, but there is not a single
al gorithmthat spans a wi de enough range of space-tine tradeoffs.

.sp

.LP

Lines are limted only by the size of the available virtual

Begrep\fR(1),

e \fBsh\fR(1),
R(5),

\ f BXPGA\ f R(5)

— =

\fBgrep\fR(1), \fBsed\fR(1),
\fBenviron\fR(5), \fBlargefile\fR(5),

menory.

new usr/src/ man/ manl/ f grep.

301
302
303 . LP

304 The \fB/usr/xpg4/ bin/f
305 \fB-F\fR (see \fBgrep\
306 \f B/ usr/xpg4/ bin/grep\

.sp

1

. SS "/ usr/ xpg4/ bin/fgrep”

re

R(
R

p\f
1)
\fB

R
- F

u

S -

dentical to \fB/usr/xpg4/bin/grep\fR
lications should use

new usr/src/ man/ manl/ grep. 1 1

R R R R

14031 Fri Sep 13 10:33:21 2013
new usr/src/ man/ manl/ grep. 1

3737 grep does not support -H option

3759 egrep(1l) and fgrep(l) -s flag does not hide -c output

Revi ewed by: Al bert Lee <trisk@exenta.conr

Revi ewed by: Andy Stornont <andyj stornont @nsil . conr

IR R R R R R R RS R R R S RS RS E R E R RS R R R R R ERREREREEEEEEEEE]
1'\" te
2 .\" Copyright 2012 Nexenta Systens, Inc. Al rights reserved.
3 .\" Copyright 1989 AT&T
4 .\" Copyright (c) 2008, Sun Mcrosystens, Inc. Al R ghts Reserved
5 .\" Portions Copyright (c) 1992, X/ Open Conpany Limted Al R ghts Reserved
6 .\" Sun Mcrosystens, Inc. gratefully acknow edges The Open G oup for perm ssion
7 . http://ww. opengr oup. or g/ bookst ore/.
8 .\" The Institute of Electrical and El ectronics Engi neers and The Open Group, ha
9 .\" This notice shall appear on any product containing this material.
10 .\" The contents of this file are subject to the terms of the Common Devel opnent
11 .\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:
12 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
13 .TH GREP 1 "May 3, 2013"
13 .TH GREP 1 "Feb 26, 2008"
14 . SH NAME
15 grep \- search a file for a pattern
16 . SH SYNOPSI S
17 . LP
18 . nf
19 \fB/usr/bin/grep\fR [\fB-c\fR | \fB-I\fR [\fB-q\fR] [\fB-r\fR| \fB-RfR [\fB-b
19 \fB/usr/bin/grep\fR [\fB-c\fR | \fB-I\fR [\fB-q\fR] [\fB-r\fR| \fB-RfR] [\fB-b
20 \fllimted-regul ar-expression\fR [\flfilename\fR]
21 . fi
23 .LP
24 . nf
25 \fB/usr/xpg4/bin/grep\fR[\fB-E\fR | \fB-F\fR] [\fB-c\fR| \fB-I\fR| \fB-q\fR]
26 \ f B-bHhi nsvwx\ fR] \fB-e\fR \flpattern_list\fR .. [\fB-f\fR \flpattern_file\
26 \fB-bh|nsvvm(\fR] \fB-e\fR \flpattern_list\fR .. [\fB-f\fR \flpattern_file\f
27 \fifile\fR].
28 . fi
30 .LP
31 .nf
32 \fBlusr/xpg4/b|n/grep\f [\fB-E\fR | \fB-F\fR] [\fB-c\fR| \fB-I\fR| \fB-q\fR]
33 \ f B- bHhi nsvwx\ fR] [\fB-e\fR \flpattern_list\fR]... \fB-f\fR \flpattern_file
33 \fB- thnSVV\D(\fR] [\fB-e\fR \flpattern_list\fR]. \fB-f\fR \flpattern_file\
34 \fifile\fR].
35 .fi
37 . LP
38 .nf
39 \fB/usr/xpg4/bin/grep\fR [\fB-E\fR | \fB-F\fR] [\fB-c\fR| \fB-1\fR | \fB-q\fR]
40 [\fB-bHhinsvwx\fR] \flpattern\fR [\fI flle\fR]
40 [\fB-bhinsvwx\fR] \flpattern\fR [\fIfile\fR].
41 . fi
43 . SH DESCRI PTI ON
44 . sp
45 | LP
46 The \fBgrep\fR utility searches text files for a pattern and prints all lines
47 that contain that pattern. |t uses a conpact non-determnistic algorithm
48 .sp
49 LP
50 Be careful using the characters \fB$\fR \fB*\fR \fB[\fR \fB"\fR \fB[\fR,
51 \fB(\fR, \fB)\fR and \fB\e\fR in the \flpattern_list\fR because they are al so
52 meaningful to the shell. It is safest to enclose the entire \flpattern_list\fR
53 in single quotes \fBa\’'\fR & ..\fBa\"\fR &

new usr/src/ man/ manl/ grep. 1

115

117
118
119

.sp
.LP

If no files are specified, \fBgrep\fR assunmes standard input. Nornmally, each
line found is copied to standard output. The file nane is printed before each
line found if there is nore than one input file.

. SS "/usr/bin/grep"

SP

The \fB/usr/bin/grep\fR utility uses limted regular expressions |ike those
described on the \fBregexp\fR(5) nmanual page to match the patterns.

S "/ usr/xpg4/ bin/grep"
.sp
.LP
The options \fB-E\fR and \fB-F\fR affect the way \fB/usr/xpg4/bin/grep\fR

interprets \flpattern_list\fR If \fB-E\fR is specified,
\fB/usr/xpg4/bin/grep\fR interprets \flpattern_list\fR as a full regular
expression (see \fB-E\fR for description). If \fB-F\fR is specified,
\fBgrep\fR interprets \flpattern_list\fR as a fixed string. If neither are

specified, \fBgrep\fR interprets \flpattern_|list\fR as a basic regul ar
expression as described on \fBregex\fR(5) manual page.

. SH OPTI ONS

.sp

.LP

The following options are supported for both \fB/usr/bin/grep\fR and

\f B/ usr/ xpg4/ bin/ grep\fR
.sp
.ne 2

.na

\fB\fB-b\fRfR

.ad

. RS 6n

Precedes each line by the block nunber on which it was found. This can be
useful in locating bl ock numbers by context (first block is 0).

.RE

.sp
.ne 2

.na
\fB\fB-c\fRfR

.ad

. RS 6n

Prints only a count of the lines that contain the pattern.
. RE

.sp
.ne 2

. ha
\fB\fB-H\fR fR

.a

.RS 6n

Precedes each line by the nanme of the file containing the matching line.
. RE

.sp
.ne 2

.na
\fB\fB-h\fRfR

.ad

.RS 6n

Prevents the nanme of the file containing the nmatching Iine from being prepended
to that line. Used when searching nultiple files.

.RE

.sp
.ne 2
.na

new usr/src/ man/ manl/ grep. 1

120 \fB\fB-i\fRfR

121 . ad

122 . RS 6n

123 I gnores upper/lower case distinction during conparisons.

124 .RE

126 .sp

127 .ne 2

128 .na

129 \fB\fB-I\fRfR

130 . ad

131 . RS 6n

132 Prints only the names of files with matching |ines, separated by NEW.I NE
133 characters. Does not repeat the names of files when the pattern is found nore
134 than once.

135 . RE

137 .sp

138 .ne 2

139 .na

140 \fB\fB-n\fRfR

141 . ad

142 . RS 6n

143 Precedes each line by its line nunber in the file (first lineis 1).

144 .RE

146 .sp

147 .ne 2

148 .na

149 \fB\fB-r\fRfR

150 . ad

151 . RS 6n

152 Read all files under each directory, recursively. Follow synmbolic |inks on
153 the command |ine, but skip symlinks that are encountered recursively. If file
154 is a device, FIFO or socket, skip it.

155 . RE

157 .sp

158 .ne 2

159 .na

160 \fB\fB-RfRfR

161 . ad

162 . RS 6n

163 Read all files under each directory, recursively, following all synbolic Iinks.
164 .RE

166 .sp

167 .ne 2

168 .na

169 \fB\fB-q\fRfR

170 . ad

171 . RS 6n

172 Quiet. Does not wite anything to the standard output, regardless of natching
173 lines. Exits with zero status if an input line is selected.

174 .RE

176 .sp

177 .ne 2

178 .na

179 \fB\fB-s\fRfR

180 . ad

181 . RS 6n

182 Suppresses error nessages about nonexistent or unreadable files.

183 . RE

185 .sp

new usr/src/ man/ manl/ grep. 1

186 .ne 2

187 .na

188 \fB\fB-v\IfR fR

189 . ad

190 . RS 6n

191 Prints all lines except those that contain the pattern.

192 . RE

194 .sp

195 .ne 2

196 . na

197 \fB\fB-WfRfR

198 . a

199 . RS 6n

200 Searches for the expression as a word as if surrounded by \fB\e<\fR and
201 \fB\e>\fR &

202 .RE

204 .SS "/usr/xpg4/ bin/grep"

205 .sp

206 .LP

207 The followi ng options are supported for \fB/usr/xpg4/bin/grep\fR only:

208 .sp

209 .ne 2

210 .na

211 \fB\fB-e\fR \flpattern_list\fRfR

212 . ad

213 . RS 19n

214 Specifies one or nore patterns to be used during the search for input. Patterns
215 in \flpattern_list\fR nmust be separated by a NEW.I NE character. A null pattern
216 can be specified by two adjacent new ine characters in \flpattern_list\fR

217
218
219

Unless the \fB-E\fR or \fB-F\fR option is also specified, each pattern is
treated as a basic regular expression. Miltiple \fB-e\fR and \fB-f\fR options
are accepted by \fBgrep\fR Al of the specified patterns are used when

220 matching lines, but the order of evaluation is unspecified.

221 . RE

223 .sp

224 .ne 2

225 .na

226 \fB\fB-E\fR fR

227 .ad

228 . RS 19n

229 Matches using full regular expressions. Treats each pattern specified as a full
230 regul ar expression. If any entire full regular expression pattern matches an
231 input line, the line is matched. A null full regular expression natches every
232 line. Each pattern is interpreted as a full regular expression as described on
233 the \fBregex\fR(5) nanual page, except for \fB\e(\fR and \fB\e)\fR, and

234 including:

235 . RS +4

236 . TP

237 1.

238 A full regular expression followed by \fB+\fR that natches one or nore

239 occurrences of the full regul ar expression.

240 . RE

241 . RS +4

242 . TP

243 2.

244 A full regular expression followed by \fB?\fR that matches 0 or 1

245 occurrences of the full regular expression.

246 . RE

247 . RS +4

248 . TP

249 3.

250 Full regul ar expressions separated by | or by a newline that match strings

251

that are matched by any of the expressions.

new usr/src/ man/ manl/ grep. 1

252
253
254

. RE
.RS +4
. TP

255 4

256
257
258
259
260

Afull regul ar expression that is enclosed in parentheses \fB()\fR for
groupi ng.
RE

The order of precedence of operators is \fB[\|]\fR then \fB*\|?2\|+\fR, then
concatenation, then | and newline.

261 .RE

263
264
265
266
267
268
269
270
271
272
273

.sp
.ne 2

.na
\fB\fB-f\fR \flpattern_file\fRfR

.ad

.RS 19n

Reads one or nore patterns fromthe file naned by the path name
\flpattern_file\fR Patterns in \flpattern_file\fR are term nated by a NEW.I NE
character. A null pattern can be specified by an enpty line in
\flpattern_file\fR Unless the \fB-E\fR or \fB-F\fR option is also specified,
each pattern is treated as a basic regul ar expression.

274 . RE

276
277
278
279
280
281
282
283
284
285

.sp
.ne 2

. ha
\fB\fB-RfRfR

. al
.RS 19n

Mat ches using fixed strings. Treats each pattern specified as a string instead
of a regular expression. If an input line contains any of the patterns as a
conti guous sequence of bytes, the line is matched. A null string matches every
line. See \fBfgrep\fR(1) for nore infornation.

286 . RE

288
289
290
291
292
293
294
295

.sp
.ne 2

. ha
\fB\fB-xX\fRfR
. a

.RS 19n

Considers only input lines that use all characters in the line to match an
entire fixed string or regular expression to be matching |ines.

296 . RE

298 .
299 .

300
301
302
303
304
305
306
307
308
309
310

312
313
314
315
316
317

The fol l ow ng operands are supported:

.sp
.ne 2

.na

\fB\fIfile\fRfR

.ad

.RS 8n

A path nane of a file to be searched for the patterns. If no \flfile\fR
operands are specified, the standard input is used.

.RE

.SS "/usr/bin/grep"

.sp
.ne 2

.na
\fB\flpattern\fRfR
.ad

new usr/src/ man/ manl/ grep. 1

318 . RS 11n

319 Specifies a pattern to be used during the search for input.

320 . RE

322 . SS "/usr/xpg4/bin/grep"

323 .sp

324 .ne 2

325 .na

326 \fB\flpattern\fRfR

327 . ad

328 . RS 11n

329 Specifies one or nore patterns to be used during the search for input. This
330 operand is treated as iIf it were specified as \fB-e\fR \flpattern_list\fR
331 .RE

333 . SH USAGE

334 .sp

335 . LP

336 The \fB-e\fR \flpattern_list\fR option has the same effect as the

337 \flpattern_|list\fR operand, but is useful when \flpattern_list\fR begins with
338 the hyphen delimter. It is also useful when it is nore convenient to provide
339 nultiple patterns as separate argunents.

340 .sp

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

368
369
370
371
372
373
374

376
377
378
379
380

382 .
383 .i

.LP

Miltiple \fB-e\fR and \fB-f\fR options are accepted and \fBgrep\fR uses all of
the patterns it is given while nmatching input text lines. Notice that the order
of evaluation is not specified. If an inplementation finds a null string as a
pattern, it is allowed to use that pattern first, matching every line, and
effectively ignore any other patterns.

.sp

.LP

The \fB-q\fR option provides a neans of easily determ ning whether or not a
pattern (or string) exists in a group of files. When searching several files,
It provides a performance inprovenent (because it can quit as soon as it finds
the first match) and requires |less care by the user in choosing the set of
files to supply as argunments (because it exits zero if it finds a match even if
\fBgrep\fR detected an access or read error on earlier file operands).

.SS "Large File Behavior"

.sp

.LP

See \fBlargefile\fR(5) for the description of the behavior of \fBgrep\fR when
encountering files greater than or equal to 2 Gohyte (2731 bytes).

. SH EXAMPLES

.LP

\fBExanple 1 \fRFinding All Uses of a Wrd

.sp

.LP

To find all uses of the word "\fBPosi x\fR' (in any case) in the file
\fBtext. M fR and wite with |ine nunbers:

.sp
.in +2

. nf

exanpl e% \fB/usr/bin/grep -i -n posix text.mfR
fi

.in -2

.sp

.LP

\fBExanple 2 \fRFinding All Enpty Lines

.sp

.LP

To find all enpty lines in the standard input:
sp

in +2

new usr/src/ man/ manl/ grep. 1

384
385
386
387
388

390 .

391
392

394 .

395
396
397
398
399
400

402
403
404
405
406
407

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

433
434
435
436
437
438

440
441
442
443
444
445
446
447

449

. nf
exanpl e% \ f B/ usr/bin/grep "$\fR
Cfi

.in -2
.sp

Lin +2

. nf

exanpl e% \fB/usr/bin/grep -v .\fR
i

.in -2
.sp

.LP

\ f BExanpl e 3 \fRFi nding Lines Containing Strings

.sp

.LP

Al of the followi ng commands print all lines containing strings \fBabc\fR or
\fBdef\fR or both:

.sp
in 42

. nf

exanpl e% \ f B/ usr/ xpg4/ bi n/ grep ' abc

def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bin/grep -e 'abc

def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bin/grep -e "abc’ -e 'def’ \fR
exanpl e% \ f B/ usr/ xpg4/ bin/grep -E "abc|def’\fR
exanpl e% \ f B/ usr/ xpg4/ bin/grep -E -e 'abc|def’'\fR
exanpl e% \ f B/ usr/ xpg4/ bin/grep -E -e "abc’ -e 'def’'\fR
exanpl e% \ f B/ usr/ xpg4/ bin/grep -E ’abc

def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bin/grep -E -e 'abc

def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bin/grep -F -e "abc’ -e 'def'\fR
exanpl e% \ f B/ usr/ xpg4/ bin/grep -F ’"abc

def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bin/grep -F -e 'abc

def '\ fR

fi

.in -2

.sp

.LP

\f BExanpl e 4 \f RFinding Lines with Matching Strings

.sp

.LP

Both of the follow ng commands print all lines matching exactly \fBabc\fR or
\fBdef\fR:

.sp
Lin +2

. nf

exanpl e% \ f B/ usr/ xpg4/ bin/grep -E ' ~abc$ ~def $' \fR
exanpl e% \ f B/ usr/ xpg4/ bin/grep -F -x 'abc def’\fR
i

.in -2

.sp

. SH ENVI RONVENT VARI ABLES

new usr/src/ man/ manl/ grep. 1

450 . sp

451 . LP

452 See \fBenviron\fR(5) for descripti
453 that affect the execution of \fBgr
454 \f BLC_COLLATE\fR, \fBLC CTYPE\fR,
455 . SH EXIT STATUS

456 . sp

457 . LP

458 The follow ng exit values are returned:
459 .sp

460 .ne 2

461 . na

462 \fB\fBO\fRfR

463 . ad

464 . RS 5n

465 One or nore matches were found.

466 . RE

wi ng envi ronnent vari abl es
R \fBLC ALL\fR,
R and \fBNLSPATH f R

468 .sp
469 .ne 2

470 . na

471 \fB\fBI\fRfR

472 . ad

473 . RS 5n

474 No matches were found.
475 . RE

477 .sp

478 .ne 2

479 . na

480 \fB\fB2\fRfR

481 . ad

482 . RS 5n

483 Syntax errors or inaccessible files (even if matches were found).
484 . RE

486 . SH ATTRI BUTES

487 .sp

488 . LP

489 See \fBattributes\fR(5) for descriptions of the follow ng attributes:
490 . SS "/usr/bin/grep"

491 .sp

493 .sp
494 | TS

495 box;

496 c | ¢

497 1 | | .

498 ATTRI BUTE TYPE ATTRI BUTE VALUE
499

500 CSlI Not Enabl ed

501 . TE

503 . SS "/usr/xpg4/ bin/grep"
504 .sp

506 .sp
507 . TS

508 box;

509 c | ¢

510 | .

511 ATTRI BUTE TYPE ATTRI BUTE VALUE
512

513 Csl Enabl ed

514

515 Tnterface Stability Conmi tted

new usr/src/ man/ manl/ grep. 1

516
517 Standard See \fBstandards\fR(5).
518 . TE

520 . SH SEE ALSO
521 .sp

522 . LP

523 \fBegrep\fR(1), \
524 \fBenviron\fR(5),
525 \ f Bst andar ds\ f R(5)
526 . SH NOTES

527 .SS "/usr/bin/grep"

fBfgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1), \fBat}ributes\fR(S)
R(5),

f g
\fBlargefile\fR(5), \fBregex\fR(5), \fBregexp\

528 .sp

529 . LP

530 Lines are limted only by the size of the available virtual menmory. If there is
531 a line with enbedded nulls, \fBgrep\fR only natches up to the first null. If

532 the line matches, the entire line is printed.

533 . SS "/usr/xpg4/ bin/grep"

534 .sp

535 . LP

536 The results are unspecified if input files contain lines |onger than

537 \fBLINE_MAX\fR bytes or contain binary data. \fBLINE MMAX\fR is defined in
538 \fB/usr/include/limts.h\fR

