new usr/src/cnd/ egrep/ egrep.y 1 new usr/src/cnd/ egrep/ egrep.y

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 58 #l ncl ude <V\Ct ype h>
26107 Thu Sep 12 13:22:55 2013 59 #include <w dec. h>
new usr/src/cnd/ egrep/ egrep.y 60 #include <stdlib.h>
3737 grep does not support -H option 61 #include <limts.h>
Revi ewed by: Andy Stornont <andyjstornont @mail.conms 62 #include <l ocal e. h>
LR EEEEEEEEEEEEEEEEESEEEEEEEEEEEEREEEEREEEEEESEERERERERESRESESESESE]
1 %A 64 #define STDI N_FI LENAME gettext("(standard input)")
2 /*
3 * CDDL HEADER START 66 #define BLKSIZE 512 /* size of reported disk blocks */
4 * 67 #define EBUFSI Z 8192
5 * The contents of this file are subject to the ternms of the 68 #define MAXLIN 350
6 * Common Devel opnent and Distribution License, Version 1.0 only 69 #define NCHARS 256
7 * (the "License"). You may not use this file except in conpliance 70 #defi ne MAXPOS 4000
8 * with the License. 71 #define NSTATES 64
9 * 72 #define FINAL -1
10 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 73 #define RIGHT '\ n’ /* serves as record separator and as $ */
11 * or http://ww. opensol aris.org/os/licensing. 74 #define LEFT "\ n’ /* beginning of line */
12 * See the License for the specific |anguage governing perm ssions 75 int got of n[NSTATES] [NCHARS] ;
13 * and limtations under the License. 76 int state[NSTATES];
14 = 77 int out[NSTATES];
15 * Wen distributing Covered Code, include this CDDL HEADER i n each 78 int line = 1;
16 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE. 79 int *nane;
17 * If applicable, add the followi ng below this CDDL HEADER, wth the 80 int *left;
18 * fields enclosed by brackets "[]" replaced with your own identifying 81 int *right;
19 * information: Portions Copyright [yyyy] [nane of copyright owner] 82 int *parent;
20 * 83 int *foll;
21 * CDDL HEADER END 84 int *positions;
22 */ 85 char *chars;
23 % 86 wchar_t *| ower;
24 | * 87 wchar_t *upper;
25 * Copyright 2005 Sun Mcrosystens, Inc. Al rights reserved. 88 int maxlin, nmaxclin, maxwclin, nmaxpos;
26 * Use is subject to license terns. 89 int nxtpos = 0;
27 x| 90 int inxtpos;
91 int nxtchar = 0;
29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 92 int *tnpstat;
30 /* Al Rights Reserved */ 93 int *initstat;
94 int istat;
32 /* Copyright (c) 1987, 1988 M crosoft Corporation */ 95 int nstate = 1;
33 /* Al Rights Reserved */ 96 int xstate;
97 int count;
BSNAS 98 int icount;
36 * Copyright 2013 Damian Bogel. Al rights reserved. 99 char *input;
37 */
35 %
36 #pragma ident " %98 9B % %Y SM " 102 wchar _t lyylval;
37 % 103 wchar _t nextch();
104 wchar _t maxmnin();
39 /* 105 int conpare();
40 * egrep -- print lines containing (or not containing) a regular expression 106 void overflo();
41 *
42 * status returns: 108 char reinit = 0;
43 * 0 - ok, and sone natches
44 * 1 - ok, but no natches 110 long long | num
45 = 2 - sone error; nmatches irrel evant 111 int bf | ag;
46 =/ 112 int cflag;
47 % oken CHAR MCHAR DOT MDOT CCL NCCL MCCL NMCCL OR CAT STAR PLUS QUEST 113 int efl ag;
48 Beft OR 114 int fflag;
49 %eft CHAR MCHAR DOT CCL NCCL MCCL NMCCL ' (’ 115 int Hf | ag;
50 %eft CAT 116 int hfl ag;
51 %eft STAR PLUS QUEST 117 int iflag;
118 int 1flag;
53 % 119 int nfl ag;
54 #include <stdio. h> 120 int qf | ag;
55 #include <ctype. h> 117 int sfl ag;
56 #i nclude <nenory. h> 121 int vil ag;
57 #include <wchar. h> 122 int nfile;

new usr/src/cnd/ egrep/ egrep.y

123
124
125
126
127
128

130
131
132

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

181
182
183
184
185
186
187
188

| ong | ong bl kno;
long long tln;

}
}

B e

ent er (toupper ($1))) enter($1);

rréhar(towupper (l'yylval)))

int nsucc;
int badbot ch;
extern char *optarg;
extern int optind;
int f;
FI LE *expfile;
%
Wh
s: t
unary(FI NAL, $1);
line--;
t: b r
{ $$ = node(CAT, $1, $2);
| ORbr OR
{ $$ = node(CAT, $2, $3);
| ORbr
{ $$ = node(CAT, $2, $3);
| br OR
{ $$ = node(CAT, $1, $2);
b:
{ /* if(multibyte)
$$ = ndotenter();
el se */
$$ = enter (DOT);
) $$ = unary(STAR $3%);
r CHAR
{ $$ = iflag && isal pha($1) ?
node(OR, enter(tol ower($1)),
|
{ $$ = (iflag && iswal pha(lyylval)) ?
node(OR, nthar (tow ower (lyylval)),
nchar (lyylval); }
|
{ if(mltibyte)
$$ = ndotenter();
el se
$$ = enter (DOT);
}
| ccL
{ $$% = cclenter(CCL); }
| NccL
{ $$ = cclenter(NCCL); }
| MCcCL
{ $$% = ccl(CCL); }
| NMCCL
{ $8 = ccl(NcaL); }
r r ORr
{ $$ = node(OR, $1, $3);
| r r Y%rec CAT
{ $$ = node(CAT, $1, $2);
| r STAR
{ $$ = unary(STAR $1); }
| r PLUS

{ $$ =

unary(PLUS, $1); }

}

new

189
190
191
192
193
194

196
197
198
199
200
201
202

205
206

usr/src/cnd/ egrep/ egrep.y

| r QUEST
| {)$$ = unary(QUEST, $1); }
ooty
$2; }
| error

©“
©@
1

9o
voi d
voi d

add(int *, int);
clearg(void);
voi d execute(char *);
voi d follow(int);

int nget c(voi d);

voi d synerror(void);

voi d
yyerror(char *s)

207 {

208
209

fprintf(stderr, "egrep: %\n", s);
exit(2);

210 }

650

652
653

__unchanged_portion_onitted_

#define USAGE "[-bchilnsv] [-e exp] [

int

mai n(int argc, char **argv)

654 {

655
656
657
658
659

661
662
663
664

666
663
667

669
670
671

673
674
675

677
678
679
680

682
683
684
685
686
687
688
689
690

char c;
char nl ="'\n’;
int errflag = 0;

(voi d)setlocal e(LC_ ALL, "");

#if !defined(TEXT_DOVAI N)

#define TEXT_DOVAI N "SYS TEST"
#endi f

(voi d) textdomai n(TEXT_DOVAIN);

whi | e((c = getopt(argc,
whil e((c = getopt(argc,
switch(c) {

argv,
argv,

case 'b’:
bf | ag++;
conti nue;

case 'c':
cfl ag++;
continue;

case 'e’:
ef | ag++;
i nput = optarg;
conti nue;

case 'f’:
fflag++;

expfile = fopen(optarg,
if(expfile == NULL) {
fprintf(stderr,
gettext("egrep:

exit(2);

conti nue;

-f file] [strings]

"ybcie: f:Hhlnvs"))
"ybcie:f:hlnvs"))

1= -1)
1= -1)

can't open %\n"),

[file]

/* Shoul d be defined by cc -D */

/* Use this only if it werent. */

optarg);

new usr/src/cnd/ egrep/ egrep.y 5 new usr/src/cnd/ egrep/ egrep.y
755 overflo();
692 case 'H: 756 if((chars = (char *)mall oc(MAXLIN)) == (char *)O0)
693 if ('lIflag) /* His excluded by | as in GNU grep */ 757 overflo()
694 Hf | ag++; 758 if((lower = (wchar t *)mal | oc(MAXLI N*si zeof (wchar _t))) == (wchar_t *)0)
695 hflag = 0; /* H excludes h */ 759 overflo();
696 conti nue; 760 if((upper = (wchar_t *)mall oc(MAXLI N*si zeof (wchar _t))) == (wchar_t *)O0)
761 overflo();
698 case 'h': 762 if((positions = (int *)malloc(MAXPOS*sizeof (int))) == (int *)0)
699 hf | ag++; 763 overflo();
700 Hflag = 0; /* h excludes H */ 764 maxlin = MAXLIN;
701 cont i nue; 765 maxclin = MAXLIN;
766 maxwel in = MAXLIN;
703 case 'y': 767 maxpos = MAXPCS;
704 case '1’: 768
705 i flag++; 769 yyparse();
706 conti nue;
771 cfoll(line-1);
708 case '|’: 772 cgotofn();
709 | flag++; 773 nfile = argc;
710 Hflag = 0; /* | excludes H */ 774 if (argc< 0) {
711 conti nue; 775 execut e(0);
776 }
713 case 'n’: 777 else while (--argc >= 0) {
714 nfl ag++; 778 if (reinit == 1) clearg();
715 conti nue; 779 execut e(*argv++);
780 }
717 case '(q': 781 return (badbotch ? 2 : nsucc==0);
718 case 's’: /* Solaris: |egacy option */ 782 }
719 gf | ag++;
706 case 's’: 784 void
707 sfl ag++; 785 execute(char *file)
720 cont i nue; 786 {
787 char *p;
722 case 'V': 788 int cstat;
723 vfl ag++; 789 wchar _t c;
724 cont i nue; 790 int t;
791 I ong count;
726 case ' ?': 792 I ong countl, count?2;
727 errflag++; 793 I ong nchars;
728 1 794 int succ;
729 if (errflag || ((argc <= 0) &&lfflag&&'eflag)) 795 char *ptr, *ptrend, *lastptr;
730 fprintf(stderr, gettext("usage: egrep %\ n") gett ext (USAGE)) ; 796 char *buf;
731 exit(2); 797 long | Buf Si z;
732 } 798 FILE *f;
733 |f(|eflag&&'fflag) { 799 int nlflag;
734 input = argv[optind];
735 opti nd++; 801 | Buf Si z = EBUFSI Z;
736 1 802 if ((buf = malloc (1BufSiz + EBUFSI Z)) == NULL) {
803 exit (2); /* out of nmenory - BAIL */
738 argc -= optind; 804 }
739 argv = &argv[optind];
740 806 if (file) {
741 /* allocate initial space for arrays */ 807 i1f ((f = fopen(file, "r")) == NULL) {
742 if((name = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0) 808 fprintf(stderr,
743 overfl o(); 809 gettext("egrep: can’'t open %\n"), file);
744 if((left (|nt *)milloc(MAXLIN*snzeof(lnt))) == (int *)0) 810 badbot ch=1;
745 over lo(); 811 return;
746 if((right (int *)malIoc(l\/AXLlN*smeof(mt))) = (int *)0) 812 }
747 overfl o(); 813 } else {
748 if((parent = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0) 802 file="<std|n>
749 erflo(); 814 f = stdin
750 if((foll —(|nt *)mal | oc(MAXLI N*si zeof (int))) == (int *)0) 815 file :STDINFILENANE
751 overflo(); 816 }
752 if((tmpstat = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0) 817 I num = 1;
753 overflo(); 818 tln = 0;
754 if((initstat = (int *)mall oc(MAXLI N*si zeof (int))) == (int *)0) 819 if((count = read(fileno(f), buf, EBUFSIZ)) <= 0) {

new usr/src/cnd/ egrep/ egrep.y 7 new usr/src/cnd/ egrep/ egrep.y 8

820 fclose(f); 884 el se
885 p += length;
822 if (cflag & !qflag) { 886 }
823 iIf (Hlag || (nfile > 1 &k !hflag)) 887 1f(p == endptr) {
810 if (cflag) { 888 succ = !vflag;
811 if (nfile>1 && !'hfl ag) 889 br eak;
824 fprintf(stdout, "%:", file); 890 }
825 fprintf(stdout, "4 | d\n", thn); 891 cstat =
826 } 892 length = nbt owc(&char, lastptr, MB_LEN_
827 return; 893 if(length <= 1)
828 } 894 | ast ptr++;
895 el se
830 bl kno = count; 896 lastptr += length;
831 ptr = buf; 897 p = lastptr;
832 for(;;) { 898 conti nue;
833 if((ptrend = menchr(ptr, '\n’, buf + count - ptr)) == NULL) { 899 }
834 /* 900 succ = !vflag;
835 nmove the unused partial record to the head of th 901 break;
836 */ 902 }
837 if (ptr > buf) { 903 ¢ = (unsigned char) *p++;
838 count = buf + count - ptr; 904 if ((t = gotofn[cstat][c]) == 0)
839 memove (buf, ptr, count); 905 cstat = nxtst(cstat, c);
840 ptr = buf; 906 el se
841 } 907 cstat = t;
908 if(c == RGHT) {
843 /* 909 if(out[cstat]) {
844 Get a bigger buffer if this one is full 910 succ = lvflag;
845 */ 911 br eak;
846 if(count > | BufSiz) { 912 }
847 /* 913 succ = vflag;
848 expand the buffer 914 br eak;
849 */ 915 }
850 | Buf Si z += EBUFSI Z; 916 }
851 if ((buf =realloc (buf, IBufSiz + EBUFSI Z)) == 917 i1f (succ) {
852 exit (2); /* out of nmenory - BAIL */ 905 if(succ) {
853 } 918 nsucc =
919 if (Iflag || aflag) {
855 ptr = buf; 920 if (!gflag)
856 } 921 (void) printf("%\n", file);
907 if (cflag) tln++;
858 p = buf + count; 908 else if (sflag)
859 i f((countl = read(fl leno(f), p, EBUFSIZ)) > 0) { 909 ; /* ugh */
860 count += count1; 910 else if (Iflag) {
861 bl kno += count 1; 911 printf("9%\n", file);
862 conti nue; 922 fclose(f);
863 } 923 return;
864 ptrend = ptr + count; 924 }
865 nlflag = 0; 925 if (cflag) {
866 } else 926 tln++;
867 nlflag = 1; 927 } else {
868 *ptrend = '\n’; 928 if (Hlag || (nflle>1&&‘hflag))
869 p = ptr; 929 printf("%: file);
870 lastptr = ptr; 915 el se {
871 cstat = istat; 916 if (nfile >1 & !'hflag)
872 succ = O; 917 printf(gettext("%:"), file);
873 for(;;) { 930 if (bflag) {
874 |f(out[cst at]) { 931 nchars = blkno - (buf + count - ptrend)
875 f(nultibyte & p > ptr) { 932 if(nlflag)
876 wchar _t wchar; 933 nchar s++;
877 int |ength; 934 printf("%1d:", nchars/BLKSIZE);
878 char *endptr = p; 935 }
879 p = lastptr; 936 if (nflag)
880 while(p < endptr) { 937 printf("%Id:", Inum;
881 I ength = nbtowc(&nchar, p, MB_LE 938 if(nlflag)
882 if(length <= 1) 939 nchars = ptrend - ptr + 1;

883 p++; 940 el se

new usr/src/cnd/ egrep/ egrep.y
941 nchars = ptrend - ptr;

942 fwite(ptr, (size_t)1, (size_t)nchars, stdout);

943 }
944 }
945 i1f(!nlflag)

946 break;

947 ptr = ptrend + 1,

948 1f(ptr >= buf + count) {

949 ptr = buf;

950 1 f((count = read(fileno(f), buf, EBUFSIZ)) <= 0)
951 break;

952 bl kno += count;

953

954 | numt+;

955 if (reinit == 1)

956 clearg();

957 }

958 fclose(f);

959 if (cflag & !qgfl ag)
960 if (Hilag ||
961 prin
947 if (cflag) {

948 if (nfile > 1 && ! hfl ag)

949 printf(gettext("%:"), file);
962 printf("%Ild\n", tln);

963 }

964 }

____unchanged_portion_onitted_

E file > 1 & !'hflag))

n
tf("%:", file);

new usr/src/cnd/ fgrep/fgrep.c 1

R R R R

14491 Thu Sep 12 13:22:55 2013

new usr/src/cnd/ fgrep/fgrep.c

3737 grep does not support -H option

Revi ewed by: Andy Stornont <andyjstornont @mail.conms

LR EEEEEEEEEEEEEEEEESEEEEEEEEEEEEREEEEREEEEEESEERERERERESRESESESESE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Di stribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwmv opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRRRRRRRR R
COONOUITAWNROW©O~NOUTSWN

CDDL HEADER END

I T

21 */

22/

23 Copyright 2005 Sun Mcrosystenms, Inc. Al rights reserved.
24 Use is subject to license terms.

25 */

27 | * Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 [* Al Rights Reser ved */

30 /* Copyright (c) 1987, 1988 Mcrosoft Corporation */
31 /* Al Rights Reser ved */

33 /*

34 * Copyright 2013 Dami an Bogel. All rights reserved.

35 */

33 #pragma i dent " %98V % % %E% SM "

37/
fgrep -- print all lines containing any of a set of keywords

status returns:

0 - ok, and sone nmatches
- ok, but no matches
- some error

1
2

N
o
R I

/

46 #incl ude <stdio. h>

47 #include <ctype. h>

48 #incl ude <sys/types. h>
49 #include <stdlib. h>

50 #include <string. h>

51 #include <l ocal e. h>

52 #include <libintl.h>
53 #i nclude <euc. h>

54 #include <sys/stat.h>
55 #include <fcntl. h>

57 #include <getw dth. h>
59 eucwidth_t WA

new usr/src/cnd/ fgrep/fgrep.c

60 #define WDTHL WV _eucwl
61 #define WDTH2 WN _eucw?2
62 #define WDTH3 WV _eucwd
63 #define MIULTI_BYTE WN _nul tibyte
64 #define GETONE(lc, p) \
65

cw = | SASCI I (I ¢ = (unsigned char) pt++) ? 1 : \
66 (1'SSET2(1¢c) ? WDTH? : \
67 (1'SSET3(lc) ? WDTH3 : WDTHL)); \
68 if (--cw > --ccount) { \
69 cw -= ccount; \
70 while (ccount--) \
71 lc = (lc << 7) | ((*p++) & 0177); \
72 if (p >= &uf[fw_[Bufsiz + BUFSIZ]) { \
73 if (nlp == buf) { \
74 /* Increase the buffer size */ \
75 fw_ | Bufsiz += BUFSI Z; \
76 if ((buf = realloc(buf, \
77 fw | Bufsiz + BUFSI Z)) == NULL) { \
78 exit(2); /* out of menory */ \
79 } \
80 nlp = buf \
81 pz&buf[waBufS|z] \
82 } else { \
83 /* shift the buffer contents down */ \
84 (voi d) nenmove(buf, nlp,
85 &buf[fWIBufS|z + BUFSI Z] - nlp);\
86 p -=nlp - buf; \
87 nlp = buf; \
88 } \
89 } \
90 1f (p > &uf[fw_|Bufsiz]) { \
91 if ((ccount = fread(p, sizeof (char),
92 &uf[fw | Bufsiz + BUFSIZ] - p, fptr))\
93 <= 0) break;
94 } else if ((ccount = fread(p, \
95 sizeof (char), BUFSIZ, fptr)) <= 0) \
96 br eak; \
97 bl kno += (long | ong)ccount; \
98 \
99 ccount -= cw, \
100 while (cw-) \
101 lc = (lc << 7) | ((*p++) & 0177)
103 /*
104 * The same() nmacro and letter() function were inserted to allow for
105 * the -i option work for the nulti-byte environnent.
106 */
107 wchar_t letter();
108 #define same(a b) \
109 (a==Db || iflag & (! MULTI_BYTE || ISASClI(a)) && (a » b) ==""
110 letter(a) == letter(b))

112 #define STDI N_FI LENAVE gettext (" (standard input)")

114 #define QSI ZE 400
115 struct words {

116 wchar _t inp;

117 char out;

118 struct words *nst;
119 struct words *link;
120 struct words *fail;

121 } *w = NULL, *smax, *qQ;

123 FILE *fptr;
124 1ong long | num
125 int bflag, cflag, Iflag, fflag, nflag, vflag, xflag, eflag,

gf | ag;

&& \

new usr/src/cnd/ fgrep/fgrep.c

126 int Hflag, hflag, iflag;

122 int bflag, cflag, Iflag, fflag, nflag, vflag, xflag, eflag, sflag;
123 int hflag, iflag;

127 int retcode = O;

128 int nfile;

129 1 ong | ong bl kno;

130 int nsucc;

131 long long tln;

132 FILE *wor df ;

133 char *argptr;

134 off_t input_size = 0;

136 void execut e(char *);

137 void cgot of n(voi d);

138 void overflo(void);

139 void cfail(void);

141 static long fw |Bufsiz = 0;

143 int

144 main(int argc, char **argv)

145 {

146 int c;

147 int errflg = 0;

148 struct stat file_stat;

150 (void) setlocal e(LC_ALL,)

151 #if !defined(TEXT_DOVAI N) /* Shoul d be defined by cc -D */
152 #define TEXT_DOVAIN "SYS_TEST" /* Use this only if it weren't */
153 #endi f

154 (voi d) textdomai n(TEXT_DOVAIN);

156 while ((c = getopt(argc, argv, "Hhybcie:f:lInvxgs")) != ECF)
153 while ((c = getopt(argc, argv, "hybcie:f:lnvxs")) != EOF)
157 switch (c) {

159 case ' :

160 case 's’: /* Solaris: |egacy option */
161 gf | ag++;

156 case 's’:

157 sfl ag++;

162 conti nue;

163 case 'H:

164 Hf | ag++;

165 hflag = 0;

166 conti nue;

167 case 'h':

168 hf | ag++;

169 Hflag = 0;

170 conti nue;

171 case 'b’:

172 bf | ag++;

173 conti nue;

175 case 'i’:

176 case 'y':

177 i flag++;

178 conti nue;

180 case 'c’':

181 cfl ag++;

182 conti nue;

184 case 'e’:

185 ef | ag++;

186 argptr = optarg;

new usr/src/cnd/ fgrep/fgrep.c

187 i nput _size = strlen(argptr);

188 cont i nue;

190 case 'f’:

191 fflag++;

192 wor df = fopen(optarg, "r");

193 if (wordf == NULL)

194 (void) fprintf(stderr,

195 gettext("fgrep: can't open %\n"),
196 ~optarg);

197 exit(2);

198 }

200 if (fstat(fileno(wordf), & ile_stat) == 0) {
201 input_size = file_stat.st_size;

202 } else {))

203 (void) fprintf(stderr,

204 gettext("fgrep: can't fstat 9%\n"),
205 ~optarg);

206 exit(2);

207 }

209 cont i nue;

211 case '|’:

212 | flag++;

213 cont i nue;

215 case 'n’:

216 nfl ag++;

217 cont i nue;

219 case 'V’

220 vfl ag++;

221 cont i nue;

223 case 'Xx':

224 xfl ag++;

225 conti nue;

227 case ' ?':

228 errflg++;

229 }

231 argc -= optind;

232 if (errflg || ((argc <= 0) && !fflag && !eflag)) {

233 (void) printf(gettext("usage: fgrep [-bcHhilngsvx] "
224 (void) printf(gettext("usage: fgrep [-bchilnsvx] "
234 "[-eexp] [-f file] [strings] [file] ...\n"));
235 exit(2);

236 }

237 if (leflag & !fflag) {

238 argptr = argv[optind];

239 input_size = strlen(argptr);

240 i nput _si ze++;

241 opti nd++;

242 arge--;

243 }

245 | *

246 * Normally we need one struct words for each letter in the pattern
247 * plus one termnating struct words with outp = 1, but when -x option
248 * |s specified we require one nore struct words for ‘\n‘ character so we
249 * calculate the input_size as below. W add extra 1 because

250 * (input_size/2) rounds off odd nunbers

251 *

new usr/src/cnd/ fgrep/fgrep.c 5 new usr/src/cnd/ fgrep/fgrep.c
318 if ((fptr = fopen(file, "r")) == NULL) {
253 if (xflag) { 319 (void) fprintf(stderr
254 input _size = input_size + (input_size/2) + 1; 320 gettext("fgrep: can' t open %\n"), file);
255 } 321 retcode = 2;
322 return;
257 i nput _si ze++; 323 }
324 } else {
259 w = (struct words *)calloc(input_size, sizeof (struct words)); 316 file = "<stdin>";
260 if (w== NULL) { 325 fptr = stdin;
261 (void) fprintf(stderr, 326 file = STDI N_FI LENAMNE;
262 gettext("fgrep: could not allocate " 327 }
263 "menory for wordlist\n")); 328 ccount = O;
264 exit(2); 329 failed = 0;
265 } 330 | num = 1;
331 tln = 0;
267 get wi dt h(&W ; 332 bl kno = 0;
268 if ((WDTHL == O) && (WDTH2 == 0) && 333 p = buf;
269 (WDTH3 == 334 nlp = p;
270 /* 335 cC =W
271 * |f non EUC based | ocal e, 336 for (;;) {
272 * assume WDTHL is 1. 337 if (c ==0)
273 */ 338 break;
274 W DTHL = 1; 339 if (ccount <= 0) {
275 } 340 if (p >= &buf[fwlBufsm + BUFSI Z]) {
276 W DTH2++; 341 if (nlp == buf
277 W DTH3++; 342 /* increase the buffer size */
343 fw_| Buf siz += BUFSI Z;
279 cgotofn(); 344 if ((buf = realloc(buf,
280 cfail(); 345 fw_ | Bufsiz + BUFSIZ)) == NULL) {
281 nfile = argc; 346 exit(2); /* out of nmenory
282 argv = &argv[optind]; 347 }
283 if (argc <= 0) { 348 nlp = buf;
284 execut e((char *)NULL); 349 p = &buf [fw | Buf si z] ;
285 } else 350 } else {
286 while (--argc >= 0) { 351 /* shift the buffer down */
287 execute(*argv); 352 (voi d) memmove(buf, nlp,
288 ar gv++; 353 &buf [fw_| Buf si z + BUFSI Z]
289 } 354 - nlp);
355 p -=nlp - buf;
291 if (w!= NULL) { 356 nlp = buf;
292 free(w; 357 }
293 }
359 }
295 return (retcode != 0 ? retcode : nsucc == 0); 360 if (p > &uf[fw_|Bufsiz]) {
296 } 361 if ((ccount = fread(p, sizeof (char),
362 &uf[fw_ | Bufsiz + BUFSI Z] - p, fptr))
298 void 363 <= 0)
299 execute(char *file) 364 br eak;
300 { 365 } else if ((ccount = fread(p, sizeof (char),
301 char *p; 366 BUFSI Z, fptr)) <= 0)
302 struct words *c; 367 br eak;
303 int ccount; 368 bl kno += (long | ong)ccount;
304 static char *buf = NULL; 369 }
305 int failed; 370 GETONE(l c, p);
306 char *nl p; 371 nstate:
307 wchar _t Ic; 372 if (sama(c >i np, Ic)) {
308 int cw 373 c = c->nst
374 }elself(c>llnk| 0) {
310 if (buf == NULL) { 375 ¢ = c->link;
311 fw_| Buf siz = BUFSI Z; 376 goto nstate;
312 if ((buf = rm Ioc(fw | Bufsiz + BUFSI Z)) == NULL) { 377 } else {
313 exit(2); /* out of nenory */ 378 c = c->fail;
314 } 379 failed = 1;
315 } 380 if (c == 0) {
381 =W
317 if (file) { 382 istate:

new usr/src/cnd/ fgrep/fgrep.c 7 new usr/src/cnd/ fgrep/fgrep.c

383 if (sane(c >i np, Ic)) { 452 (voi d) putchar (*nl p++);

384 ¢ = c->nst 453 }

385 } elseif (c- Slink != 0) { 454 nonat ch:

386 ¢ = c->link; 455 | numt+;

387 goto istate; 456 nlp = p;

388 } 457 c=w

389 } else 458 failed = 0;

390 goto nstate; 459 continue;

391 } 460 }
461 if (lc =="\n")

393 if (c ==0) 462 if (vflag)

394 br eak; 463 got o succeed;
464 el se {

396 if (c->out) { 465 I numt+;

397 while (lc !'="\n") { 466 nlp = p;

398 if (ccount <= 0) { 467 c=w

399 if (p—— &buf[waBuf5|z + BUFSI Z]) { 468 failed =

400 (nlp == buf) { 469 }

401 /* increase buffer size */ 470 }

402 fw_ | Buf siz += BUFSI Z; 471 (void) fclose(fptr);

403 if ((buf =realloc(buf, fw|Bufsiz + BUFSIZ)) == NULL) { 472 if (cflag && !qgflag) {

404 exit(2); /* out of nenory */ 473 if (Hlag || (nfile > 1 && !'hflag))

405 } 461 if (cflag) {

406 nlp = buf; 462 if ((nfile > 1) && !hflag)

407 p=&buf[waBuf5|z] 474 (void) pr|ntf("°/s ", file);

408 } else { 475 (void) printf("%Ild\n", tln);

409 /* shift buffer down */ 476 }

410 (voi d) memmove(buf, nlp, &uf[fw.|Bufsiz + BUFSIZ] - nlp); 477 }

411 p -=nlp - buf; ______unchanged_portion_omtted_

412 nlp = buf;

413 }

414 }

______unchanged_portion_omtted_

424 if ((vflag&&(falled =0 || xflag == 0)) ||

425 (vflag = O&&xflag&&failed))

426 goto nomatch;

427 succeed:

428 nsucc = 1;

429 if (Iflag || aoflag) {

430 if (!'qgflag)

420 if (cflag)

421 tln++;

422 else if (Iflag && !sflag) {

431 (void) printf("%\n", file);

432 (void) fclose(fptr);

433 return;

434 }

435 if (cflag) {

436 t1n++;

437 } else {

438 if (Hlag || (nfile > 1 & !'hflag))

426 } else if (!sflag) {

427 if (nfile > 1 && !hfl ag)

439 (void) printf("%:", file);

440 if (bflag)

441 (voi d) prlntf(%I1d

442 (bl kno - (Iong I ong) (ccount-1))

443 /" BUFSI Z) ;

444 if (nflag)

445 (void) printf("%Ild:", |num;

446 if (p <=nlp) {

447 while (nlp < &uf[fw_|Bufsiz + BUFSI Z])

448 (voi d) putchar(*nl p++);

449 nlp = buf;

450

451 while (nlp < p)

new usr/src/cnd/ grep/ grep.c 1

R R R R

10567 Thu Sep 12 13:22:55 2013

new usr/src/cnd/ grep/ grep.c

3737 grep does not support -H option

Revi ewed by: Andy Stornont <andyjstornont @mail.conms

LR EEEEEEEEEEEEEEEEESEEEEEEEEEEEEREEEEREEEEEESEERERERERESRESESESESE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Di stribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwmv opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER i n each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRRRRRRRR R
COONOUITAWNROW©O~NOUTSWN

CDDL HEADER END

I T

21 */

22/

23 Copyri ght 2005 Sun Mcrosystens, Inc. Al rights reserved.
24 Use is subject to license terms.

25 */

27 | * Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */

28 [* Al Rights Reserved */

30 /* Copyright (c) 1987, 1988 Mcrosoft Corporation */

31 /* Al Rights Reserved */

33 /* Copyright 2012 Nexenta Systems, Inc. Al rights reserved. */

35 /*

g? :/Oopyright 2013 Dani an Bogel. Al rights reserved.

39 /*

40 * grep -- print lines matching (or not nmatching) a pattern
41 *

42 = status returns:

43 = 0 - ok, and sone nmatches

44 > 1 - ok, but no matches

45 = 2 - some error

46 */

48 #i

ncl ude <sys/types. h>

50 #include <ctype. h>
51 #include <fcntl.h>
52 #include <l ocal e. h>
53 #include <menory. h>
54 #include <regexpr.h>
55 #include <stdio. h>
56 #include <stdlib.h>
57 #include <string.h>
58 #include <unistd. h>
59 #include <ftw h>

60 #include <limts.h>

new usr/src/cnd/ grep/ grep.c
61 #include <sys/param h>

63 static const char *errstr[] = {

64 "Range endpoint too |large.",

65 "Bad nunber.",

66 "t*\\digit'' out of range.",

67 "No renenbered search string.",

68 "\\(\\) inbalance.",

69 "Too many \\(.",

70 "Mre than 2 nunbers given in \\{ \\}.",
71 "} expected after \\.",

72 "First nunber exceeds second in \\{ \\}.",
73 "[1 inbalance.",

74 "Regul ar expression overflow ",

75 "Il l egal byte sequence.",

76 "Unknown regexp error code!!",

77 NULL

78 };

80 #define STDI N_FI LENAME gettext("(standard input)")

82 #define errnsg(nsg, arg) (void) fprintf(stderr, gettext(msg), arg)
83 #define BLKSI ZE 512
84 #define GBUFSIZ 8192

85 #define MAX_DEPTH 1000

87 static int t enp;

88 static long | ong I num

89 static char *| i nebuf ;

90 static char *prnt buf = NULL;

91 static |long fw_| Prnt Buf Len = O;
92 static int nfl ag;

93 static int bf | ag;

94 static int 1flag

95 static int cfl ag;

96 static int rflag;

97 static int Rf | ag;

98 static int vfl ag;

99 static int sfl ag;

100 static int iflag;

101 static int wf | ag;

102 static int hfl ag

103 static int Hf | ag;

104 static int gf | ag;

105 static int errflg;

106 static int nfile;

107 static long |ong thn;

108 static int nsucc;

109 static int outfn = 0;

110 static int nl flag;

111 static char *ptr, *ptrend;

112 static char *expbuf ;

114 static void execut e(const char *, int);
115 static void regerr(int);

116 static void prepare(const char *);
117 static int recursive(const char *, const struct stat *, int, struct
118 static int succeed(const char *);
120 int

121 main(int argc, char **argv)

122 {

123 int c;

124 char *arg;

125 extern int optind;

FTW*);

new usr/src/cnd/ grep/ grep.c 3 new usr/src/cnd/ grep/ grep.c
127 (void) setlocal e(LC_ALL, ""); 191 argv = &argv[optind];
128 #if !defined(TEXT_| DOVA N) /* Shoul d be defined by cc -D */ 192 argc -= optind;
129 #define TEXT_DOVAIN "SYS_TEST" /* Use this only if it weren't */ 193 nfile = argc - 1;
130 #endi f
131 (voi d) textdomai n(TEXT_DOVAIN) ; 195 if (strrchr(*argv, "\n") !'= NULL)
196 regerr(41);
133 while ((c = getopt(argc, argv, "hHgblcnRrsviyw')) != -1)
126 while ((c = getopt(argc, argv, "hgblcnRrsviyw')) = -1) 198 if (iflag) {
134 switch (c) { 199 for (arg = *argv; *arg != NULL; ++arg)
135 /* based on options order h or His set as in GNU grep */ 200 *arg = (char)tol ower((int)((unsigned char)*arg));
136 case 'h': 201 }
137 hf | ag++;
138 Hlag = 0; /* h excludes H */ 203 if (wmMlag) {
139 break; 204 unsi gned i nt wor dl en;
140 case 'H: 205 char *wor dbuf ;
141 if (!'1flag) *His excluded by | */
142 Hf | ag+ 207 wordlen = strlen(*argv) + 5; /* "\\' "< *argv "\\' '> '\0Q0 */
143 hflag = 0; /* H excludes h */ 208 if ((wordbuf = malloc(wordlen)) == NULL) {
144 br eak; 209 errmsg("grep: Qut of nenory for word\n", (char *)NULL);
145 case 'q': /* POSIX: quiet: status only */ 210 exit(2);
146 gf | ag++; 211 }
147 break;
148 case 'V': 213 (void) strcpy(wordbuf, "\\<");
149 vfl ag++; 214 (void) strcat(wordbuf, *argv);
150 br eak; 215 (void) strcat(wordbuf, "\\>");
151 case 'c¢': 216 *argv = wordbuf;
152 cfl ag++; 217 }
153 br eak;
154 case 'n’: 219 expbuf = conpile(*argv, (char *)0, (char *)0);
155 nf |l ag++; 220 if (regerrno)
156 br eak; 221 regerr(regerrno);
157 case 'R :
158 Rf | ag++; 223 if (--argc == 0)
159 /* FALLTHROUGH */ 224 execut e(NULL, 0);
160 case 'r’: 225 el se
161 rflag++; 226 while (argc-- > 0)
162 br eak; 227 prepare(*++argv);
163 case 'b’:
164 bf | ag++; 229 return (nsucc == 2 ? 2 : (nsucc == 0?1 : 0));
165 break; 230 }
166 case 's’: __unchanged_portion_onitted_
167 sfl ag++;
168 break; 296 static void
169 case '|’: 297 execute(const char *file, int base)
170 I f1ag++; 298 {
171 Hlag = 0; /* | excludes H */ 299 char *| buf, *p;
172 br eak; 300 | ong count ;
173 case 'y': 301 I ong offset = 0;
174 case "1’ : 302 char *next _ptr = NULL;
175 i flag++; 303 | ong next _count = 0;
176 br eak;
177 case 'W: 305 tln = 0;
178 wf | ag++;
179 br eak; 307 if (prntbuf == NULL)
180 case '?': 308 fw_| Prnt Buf Len = GBUFSI Z + 1;
181 errfl g++; 309 if ((prntbuf = mal l oc(fw_| PrntBuf Len)) == NULL) {
182 } 310 exit(2); /* out of nmenory - BAIL */
311 }
184 if (errflg || (optind >= argc)) { 312 if ((linebuf = malloc(fw_|PrntBuflLen)) == NULL) {
185 errmsg("Usage: grep [- c|— |-q] [-r]-R -hHonsviw " 313 eX|t(2); /* out of nenory - BAIL */
170 errmsg("Usage: grep [-c|-I]|-q] [-r]|-R -hbnsviw" 314 }
186 "pattern file . . .\n", 315 }
187 (char *)NULL);
188 exit(2); 317 if (file == NULL) {
189 1 302 if (file == NULL)
318 tenp = O;

new usr/src/cnd/ grep/ grep.c 5

319
320
304
321
322
323
324
325

327
328
329

331
332
316
333
334
335
336
337
338

340
341
342
343
344
345

347
348
349
350
351
352
353

355
356
357
358
359
360
361
362
363
364
365
366

368
369
370
371
372
373
374
375

377
378

380
381
382

file = STDI N_FI LENAME;

} else if ((tenp = open(file + base, O RDONLY)) == -1) {
else if ((tenp = open(file + base, O RDONLY)) == -1) {
if (!sflag)
errmsg("grep: can't open %\n", file);
nsucc = 2;
return;
}

/* read in first block of bytes */
if ((count = read(tenp, prntbuf, GBUFSIZ)) <= 0) {

}

(void) close(tenp);
if (cflag && !qfl ag) E

if (Hlag || (nfile > 1 & !'hflag))
if (nfile >1 & !'hflag && file)
(void) fprintf(stdout, "%:", file);
if (!'rflag)
(void) fprintf(stdout, "%Ild\n", tln);
return;

I num = 0;
ptr = prntbuf;

for

/* look for next newline */
if ((ptrend = nmenchr(ptr + offset, "\n’, count)) == NULL) {
of fset += count;

/*
* shift unused data to the beginning of the buffer
*

if (ptr > prntbuf) {
(void) memmove(prntbuf, ptr, offset);
ptr = prntbuf;

}

/*
* re-allocate a larger buffer if this one is full
*

if (offset + GBUFSIZ > fw_| PrntBufLen) {
/*

* allocate a new buffer and preserve the
* contents...
*/

| Prnt Buf Len += GBUFSI Z;
((prntbuf = realloc(prntbuf,
fw_| PrntBuf Len)) == NULL)

exit(2);

fw_
if

/*

* set up a bigger linebuffer (this is only used
* for case insensitive operations). Contents do
* not have to be preserved.

*

(l'inebuf);
(l'inebuf = malloc(fw_| PrntBuflLen)) == NULL)
exit(2);

ptr = prntbuf;
}
p = prntbuf + offset;
i

f ((count = read(tenp, p, GBUFSIZ)) > 0)
conti nue;

new usr/src/cnd/ grep/ grep.c

384
385
386

388
389
390
391
392
393
394
395
396
397

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

415
416
417

419
420

422
423
424
425
426

428
429
430
413
414
431
432
433
434

436
437

if (offset == 0)
/* end of file already reached */
br eak;

ne of file has no newine */
tr + offset;

next _ptr
next _coun

= ptrend + 1;
t =
nlflag = 1;

of fset + count - (next_ptr -

if (iflag) {
/*

* Make a | ower case copy of the record
*

r;
buf = linebuf; p < ptrend;)
*| buf ++ = (char)tol ower ((int)
(unsi gned char) *p++);

*|buf ='\0;
| buf = linebuf;

} else
/*

* Use record as is
*
I buf = ptr;

/* I1flag only once */
if ((step(lbuf, expbuf) ~ vflag) && succeed(file)

break;

if (!Inlflag)
br eak;

ptr = next_ptr;
count = next_count;
of fset = 0;

}

(void) close(tenp);

if (cflag & !qgflag) {

if (Hlag [(ag & ((nfile > 1) ||

"é&%nme > 1]
(

stdout, "¥%:"

, file);
"%1d\n", tln);

}

static int
succeed(const char *f)

438 {

439
440

426
427

442
443

int nchars;
nsucc = (nsucc == 2) ? 2 : 1;

if (f == NULL)
f = "<stdin>";

if (gflag) {
/* no need to continue */

ptr);

new usr/src/cnd/ grep/ grep.c

444
445

447
448
449
450

452
453
454
455

457
444
458
459
460

462
463
464
465

467
468
469

471
472
473
474
475
476
477
478

480
481

482 }

return (1);
}
if (cflag) {
tln++;
return (0);
}
if (Iflag) {
(void) fprintf(stdout, "%\n", f);
return (1);
}
if (Hflag || (!hflag & (nfile > 1 || (rflag & outfn)))) {
if ('hflag & (nfile > 1 || (rflag & outfn))) {
[* print filename */
(void) fprintf(stdout, "%:", f)
}
if (bflag)
[* print block nunber */
(void) fprintf(stdout, "%Ild:", (offset_t)
((lseek(tenp, (off_t)0, SEEK CUR) - 1) / BLKSIZE));
if (nflag)
[* print |line nunmber */
(voird) fprintf(stdout, "%I1d:", I num;

if (nlflag) {
/* new ine at end of line */
*ptrend = '\n’;
nchars = ptrend - ptr + 1;

} else {
/* don't wite sentinel \0 */
nchars = ptrend - ptr;

}

(void) fwite(ptr, 1, nchars, stdout);
return (0);

__unchanged_portion_onitted_

new usr/src/ cnd/ grep_xpg4/ grep.c

R R R R

28372 Thu Sep 12 13:22:55 2013

new usr/src/ cnd/ grep_xpg4/ grep.c

3737 grep does not support -H option

Revi ewed by: Andy Stornont <andyjstornont @mail.conms

LR EEEEEEEEEEEEEEEEESEEEEEEEEEEEEREEEEREEEEEESEERERERERESRESESESESE]
1/*

* CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opment and Di stribution License, Version 1.0 only
(the "License"). You nay not use this file except in conpliance
with the License.

You can obtain a copy of the Ilicense at usr/src/ OPENSOLARI S. LI CENSE
or http://wwmv opensol aris.org/os/licensing.

See the License for the specific |anguage governing perm ssions

and limtations under the License.

file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy] [nane of copyright owner]

NRRRRRRRR R
COONOUITAWNROW©O~NOUTSWN

*
*
*
*
*
*
*
*
*
*
*
* \When distributing Covered Code, include this CDDL HEADER i n each
*
*
*
*
*
* CDDL HEADER END

*

*

*

*

*

21 */

22/

23 Copyri ght 2004 Sun Mcrosystens, Inc. Al rights reserved.

24 Use is subject to license terms.

25 */

27 | *

28 * grep - pattern matching program- conbined grep, egrep, and fgrep.
29 * Based on MKS grep command, with XCU & Sol ari s nods.

30 */

32 /*

33 * Copyright 1985, 1992 by Mrtice Kern Systems Inc. Al rights reserved.
*

35 */

37 /* Copyright 2012 Nexenta Systems, Inc. Al rights reserved. */

39 /*
40 * Copyright 2013 Damian Bogel. All rights reserved.
41 =/

43 #include <string. h>

44 #include <stdlib.h>

45 #incl ude <ctype. h>

46 #include <stdarg. h>

47 #incl ude <regex. h>

48 #include <limts.h>

49 #incl ude <sys/types. h>
50 #include <sys/stat.h>
51 #include <fcntl. h>

52 #include <stdio. h>

53 #include <l ocal e. h>

54 #include <wchar. h>

55 #include <errno. h>

56 #i nclude <unistd. h>

57 #include <wctype. h>

58 #include <ftw h>

59 #incl ude <sys/param h>

new usr/src/ cnd/ grep_xpg4/ grep.c

61 #define STDI N_FI LENAME gettext("(standard input)")

63 #define BSI ZE 512
64 #define BUFSI ZE 8192
65 #define MAX_DEPTH 1000
67 #define M CSETSI ZE 256
68 static int bnyl en;
69 static char *bngpat ;
70 static int brgt ab[M_CSETSI ZE] ;
72 typedef struct _PATTERN {
73 char *pattern;
74 wchar _t *wpattern;
75 struct _PATTERN *next ;
76 regex_t re,;
77 } PATTERN
79 static PATTERN *patterns;
80 static char errstr[128];
81 static int regflags = O;
82 static int mat ched = 0O;
83 static int errors = 0;
84 static uchar_t fgrep = 0;
85 static uchar_t egrep = 0;
86 static uchar_t nvflag = 1;
87 static uchar_t cflag;
88 static uchar_t iflag;
89 static uchar_t Hflag;
90 static uchar_t hflag;
91 static uchar_t |Iflag;
92 static uchar_t nflag;
93 static uchar_t rflag;
94 static uchar_t bflag;
95 static uchar_t sflag;
96 static uchar_t qflag;
97 static uchar_t wlag;
98 static uchar_t xflag;
99 static uchar_t Eflag;

100 static uchar_t Fflag;

101 static uchar_t Rflag;

102 static uchar_t outfn;

103 static char *cmdnane;

105 static int

107 static size_t out bufl en, prntbuflen;

/
/
/

~———

* ok Ok ok

~—

* ok

e N .

R

I O

Size of block for -b */
I nput buffer size */
how deep to recurse */

singl ebyte chars */
length of BMG pattern */
BMG pattern */

BMG deltal table */

original pattern */
wi de, |owercased pattern */

conpi l ed pattern */

regerror string buffer */

regconp options */

return of the grep() */

count of errors */

I nvoked as fgrep */

I nvoked as egrep */

Print matching lines */

Count of matches */

Case insensitve matching */
Precede lines by file name */
Supress printing of filename */
Print file names of matches */
Precede lines by line nunber */
Search directories recursively */
Preccede nmatches by bl ock nunber */
Suppress file error nmessages */
Suppress standard out put */
Search for expression as a word */
Anchoring */

Egrep or -E flag */

Fgrep or -F flag */

Like rflag, but follow syminks */
Put out file name */

use_wchar, use_bng, nblocal e;

const struct stat *, int, struct FTW*);

108 static char *prnt buf ;

109 static whar_t *outline;

111 static void addfil e(const char *fn);
112 static void addpattern(char *s);

113 static void fixpatterns(void);

114 static void usage(void);

115 static int grep(int, const char *);
116 static void brgconp(char *, int);

117 static char *bngexec(char *, char *);
118 static int recursive(const char *,
119 static void process_pat h(const char *)
120 static void process_file(const char *,
122 /*

123 * mminline for grep

124 */

125 int

126 mai n(int argc, char **argv)

'int);

new usr/src/ cnd/ grep_xpg4/ grep.c

127
128
129
130
131
132
133

135
136
137
138
139

141
142
143
144
145
146
147
148
149
150

152
153
154
155
156
157
158
159
160
161
162
163

165
158
166
167
168
169

171
172
173

175
176
177
178

180
181
182

184
185
186

188
189
190

{

#i f !defined(TEXT_
#def i ne TEXT_DOVAI N " SYS_TEST"

#endi f

char *ap;

int c;

int fflag =

int i, n_pattern =0, n_file = 0;
char **pattern_list = NULL;

char **file_list = NULL;
(void) setlocal e(LC_ALL, "");
DOMAI /* Shoul d be defined by cc -D */

/* Use this only if it weren't */
(voi d) textdomai n(TEXT_DOVAIN) ;
/*

* true if this is running on the nultibyte |ocale

*/
nmbl ocal e = (MB_CUR_MAX > 1);
/*

* Skip | eading slashes

*

/
cmdname = argv[O0];
if (ap = strrchr(cndnane, '/’))

cmdnanme = ap + 1;
ap = cndnang;
~k

* Detect egrep/fgrep via command nanme, map to -E and -F options.

If (*ap =="'e' || *ap == "E') {
regfl ags | = REG_EXTENDED;
egrep++;
} else {
if (rap =='f' || *ap =="F) {
fgrep++;
}
}
while ((c = getopt(argc, argv, "vwhH I nrbse:f: gxEFIR")) != ECF) {
while ((c = getopt(argc, argv, "vwhilnrbse:f:gxEFIR")) != EOF) {
switch (c) {
case 'V’ /* PCSI X: negate matches */
nvflag = 0;
break;
case 'c’: /* PCSIX: write count */
cfl ag++;
break;
case 'i’: /* PCSI X: ignore case */
iflag++;
regflags | = REG_ | CASE;
br eak;
case '|’: /* PCSIX: Wite filenanmes only */
| flag++;
break;
case 'n’: /* PCSIX: Wite |line nunbers */
nfl ag++;
break;
case 'r’: /* Solaris: search recursively */
rflag++;
break;

new usr/src/ cnd/ grep_xpg4/ grep.c

192
193
194

196
197
198

200
201
202
203
204
205
206
207
208
209
210
211

213
214
215
216
217
218
219
220
221
222
223
224
225

227
228
229
230
231
232
233
234
235
236

238
239
240

242
243
244

246
247
248
249

251
252
253
254

256
257

case 'b’: /* Solaris: Wite file block nunbers */
bf | ag++;
br eak;

case 's’: /* PCSIX: No error nmsgs for files */
sfl ag++;
br eak;

case 'e': /* PCSIX: pattern list */

n_pattern++;
pattern_list = realloc(pattern_list,
sizeof (char *) * n_pattern);
if (pattern_list == NULL)
(void) fprintf(stderr,
gettext("%: out of nenory\n"),

cnmdnane) ;
exit(2);
}
*(pattern_list + n_pattern - 1) = optarg;
br eak;
case 'f': /* PCSIX: pattern file */
fflag = 1,
n_file++;
file_list =realloc(file_list,
sizeof (char *) * n_file);
if (file_list == NULL
(void) fprintf(stderr,

gettext("%: out of menory\n"),
cnmdnane) ;
exit(2);

}
*(file_list + n_file - 1) = optarg;
br eak;

/* based on options order h or His set as in GNU grep */
case 'h': /* Sol aris: supress printing of file name */
hfl ag
Hf | ag
br eak;
/* Solaris: precede every matching with file nane */
case 'H:

Hflag = 1;
hflag = 0;
br eak;

case ' : /* POSIX: quiet: status only */
qf | ag++;
br eak;

case 'W: /* Solaris: treat pattern as word */
wf | ag++;
br eak;

case 'x': /* PCSIX: full line matches */
xfl ag++;
regflags | = REG_ANCHOR;
br eak;

case 'E': /* PCSI X: Extended RE' s */
regfl ags | = REG_EXTENDED;
Ef | ag++;
br eak;

case 'F': /* PCSIX: strings, not RE's */

Ffl ag++;

new usr/src/ cnd/ grep_xpg4/ grep.c

258

260
261
262
263

265
266
267
268
269
270
271

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

298
299
300
301
302
303

305
306
307
308
309

311
312
313
314
315

317
318
319
320
321
322
323

br eak;

case 'R : /* Solaris: like rflag, but follow syminks */
Rf | ag++;
rflag++;
break;

defaul t:
usage();
}
}
/*

* |f we're invoked as egrep or fgrep we need to do some checks
*/

if (egre;a*|| fagrep) {

* Use of -E or -F with egrep or fgrep is illegal
*
/
if (Eflag || Fflag)
usage();
/*
* Don't allow use of wilag with egrep / fgrep
*

/
if (wlag)

usage();
/*

* For Solaris the -s flag is equivalent to XCU -q
*

if (sflag)
af I ag++;
/*
* done with above checks - set the appropriate flags
*/

if (egrep)
Ef | ag++;

el se /* Else fgrep */
Ffl ag++;

}
if (wfla/g*&&(EfIag || Fflag)) {

* -w cannot be specified with grep -F
*

/
usage();

}

/*
* -E and -F flags are nmutual ly exclusive - check for this

*/

if (Eflag && Ffl ag)

usage() ;
/*
* -] overrides -Hlike in G\NU grep
*
if (Iflag)
Hf l ag = O;
/*
* -c, -l and -q flags are nutual ly exclusive
* We have -c override -1 like in Solaris.
* -q overrides -1 & -c programmatically in grep() function.
*

if (cflag & |Iflag)
Iflag = 0;

new usr/src/ cnd/ grep_xpg4/ grep.c

325
326

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

344
345
346
347
348
349
350
351
352
353

355
356
357
358
359
360
361

363
364
365
366

368
369
370
349
371
372
351
373
374
375
376
377
378
379
380

382
384

385
386

387 }
__unchanged_portion_omtted_

argv += optind - 1;
argc -= optind - 1;

/*

* Now handling -e and -f option
*

/

if (pattern_list) {
for (i =0; i < n_pattern; i++) {
addpattern(pattern_list[i]);

}
free(pattern_list);

if (file_list) {
for (1 =0; i <n_
addfile(fi

%ree(file_list);

/*

* No -e or -f? Make sure there is one nore arg, use it as the pattern.
*/

if (patterns == NULL && !fflag) {

if (argc < 2)
usage();
addpattern(argv[1]);
argc--;
ar gv++;
}
/*
* If -x flag is not specified or -i flag is specified
* with fgrep in a nultibyte |locale, need to use
* the wide character APIs. Oherw se, byte-oriented
* process will be done.
*
/
use_wchar = Fflag & nblocale & (!xflag || iflag);
/*

* Conpile Patterns and al so decide if BMG can be used
*/

fixpatterns();

/* Process all files: stdin, or rest of arg list */

if (argc < 2) {
mat ched = grep(0, STDI N_FI LENAME);

mat ched grep(0, gettext("(standard input)"));
} else {
if (Hlag || (argc > 2 && hflag == 0))
if (argc > 2 & & hflag == 0)
outfn = 1; /* Print filename on match line */
for (argv++; *argv != NULL; argv++) {
process_pat h(*argv);
}
}
/*

* Return() here is used instead of exit
*/

(voi d) fflush(stdout);

if (errors)
return (2);
return (matched ? 0 : 1);

new usr/src/ cnd/ grep_xpg4/ grep.c

788 /
789
790
791
792
793
794
795
796
797
798
799

*
*
*
*
*
*
*
*
*
*
*

*/

Do grep on a single file.
Return true in any |lines natched.

W have two strategies:

The fast one is used when we have a single pattern with
a string known to occur in the pattern. W can then

do a BMG match on the whole buffer.

This is an order of nagnitude faster.

O herwise we split the buffer into lines,

and check for a match on each line.

800 static int

802
803
804
805
806
807
808
809
810

813
814

816

818
819
820

822
823
824
825
826
827
828
829
830

832
833
834
835
836
837
838
839

841
842
843
844
845
846
847

849
850
851
852

801 grep(int fd, const char *fn)
{

PATTERN * pp;

of f _t data_l en; /* length of the data chunk */

of f _t line_len; /* length of the current line */
/'k

of f _t line_of fset; current line's offset fromthe beginning */
I ong | ong I'i neno;

I ong | ong mat ches = 0; /* Nunber of matching lines */

int new i nep; /* 0if the last line of file has no newine */
char *ptr, *ptrend;

if (patterns == NULL)
return (0); /* no patterns to match -- just return */

pp = patterns;

if (use_bng) {
) bngconp(pp->pattern, strlen(pp->pattern));

if (use_wchar && outline == NULL) {
out bufl en = BUFSI ZE + 1;
outline = malloc(sizeof (wchar_t) * outbuflen);
if (outline == NULL)
(voi d) fprintf(stderr, gettext("%: out of menmory\n"),

nmdnane) ;
exi t(2)
}
}
if (prntbuf == NULL) {
prntbufl en = BUFSI ZE;
1f ((prntbuf = malloc(prntbuflen + 1)) == NULL) {
(void) fprintf(stderr, gettext("%: out of menory\n"),
cndnane) ;
exit(2);
}
}
l'ine_offset = 0;
lineno = 0;
new inep = 1;
data_len = O;
for (;) {
| ong count;
of f _t offset = 0;

if (data_len == 0) {
/*

* If no data in the buffer, reset ptr
*/

new usr/src/ cnd/ grep_xpg4/ grep.c

853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918

ptr = prntbuf;
}
1f (ptr == prntbuf) {

/*
* The current data chunk starts from prntbuf.
* This neans either the buffer has no data
* or the buffer has no newine.
* So, read nore data frominput.
*/
count = read(fd, ptr + data_len, prntbuflen - data_len);
if (count < 0) {
/* read error */
if (cflag) {
if (outfn && !'rflag)
(v0|d) fprintf(stdout,
"U%s: ", fn);
}
1f (lgflag && !'rflag)
(void) fprintf(stdout, "%Id\n",
mat ches) ;
}
return (0);
} else if (count == 0)

{
/* no new data */
if (data_len == 0)
/* end of file already reached */
br eak;

}

/* last line of file has no newine */
ptrend = ptr + data_len;

new inep = 0;

goto L_start_process;

of fset = data_l en;
data_l en += count;

}

/*

* Look for newline in the chunk

* between ptr + offset and ptr + data_len - offset.
*/

ptrend = find_nl (ptr + offset, data_len - offset);
1f (ptrend == NULL)
/* no newine found in this chunk */
if (ptr > prntbuf) {
/*

* Move renmining data to the beginning
* of the buffer.

* Renmining data lie fromptr for

* data_l en bytes.
*
v

(void) memmove(prntbuf, ptr, data_len);
}
if (data_len == prntbuflen) {

/~k

* No enough roomin the buffer

*/

prntbufl en += BUFSI ZE;
prntbuf = realloc(prntbuf, prntbuflen + 1);
1 f (prntbuf == NULL) {
(void) fprintf(stderr,
gettext("%: out of menory\n"),
cndnane) ;
exit(2);

new usr/src/ cnd/ grep_xpg4/ grep.c

919
920
921
922
923
924

926
927
928
929
930
931

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

980
981
982
983
984

L_start_process:

* Ok ok k% ok

/

Begi nning of the chunk:
End of the chunk:

Begi nning of the line: ptr
End of the line:

}

ptr = prntbuf;

/* read the next input */
conti nue;

ptr
ptr + data_len

ptrend

if (use_;)rrg) {

* Use Boyer-More-Cosper algorithmto find out if

* this chunk (not this line) contains the specified
* pattern. If not, restart fromthe last |ine

* of this chunk.

*

char *bline;
bl ine = brmgexec(ptr, ptr + data_len);
if (bline == NULL) {
/*
* No pattern found in this chunk.
* Need to find the last line
* in this chunk.
*
t

ptrend = rfind_nl (ptr, data_len);

/*

* When this chunk does not contain newine,
* ptrend becomes NULL, which shoul d happen
* when the last line of file does not end

* with a newine. At such a point,

* newl i nep should have been set to 0.

* Therefore, just after junping to

* L_skip_line, the main for-loop quits,

* and the line_|len value won't be

*/used.

*

line_len = ptrend - ptr;
goto L_skip_line;

if (bline > ptrend) {
/*

* Pattern found not in the first line
* of this chunk.
* Discard the first line.
*/
line_len = ptrend - ptr;
goto L_skip_line;
}
/*
* Pattern found in the first Iline of this chunk.
* Using this result.
*/

*ptrend = "\0";
line_len = ptrend - ptr;
/*
* before junping to L_next_line,
* need to handle xflag if specified
*
/

if (xflag & (line_len !'= bnglen ||

new usr/src/ cnd/ grep_xpg4/ grep.c

985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1001
1002
1003
1004
1005
1006

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

1020
1021
1022
1023
1024
1025
1026
1027
1028

1030
1031
1032
1033
1034
1035

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

"Us:

strcnp(bmgpat, ptr) !'=0)) {
/* didn't match */
pp = NULL;

} else {

pp = patterns; /* to nake it happen */

goto L_next_line;

neno++;

}
|
!

ine_len will

*ptrend = '\0";

be the |

line_len = ptrend - ptr;

| *

i

*

* Line starts fromptr and ends at ptrend.
* |

*

ength of the line.

* From now, the process will be performed based
* on the line fromptr to ptrend.

*/
if (use_wchar) {
size_t

| en;

if (line_len >= outbuflen) {
outbuflen = line_len + 1;
outline = realloc(outline,
sizeof (wchar_t) * outbuflen);

if (outli

ne == NULL) {

)
(void) fprintf(stderr,

gettext("%: out of menory\n"),

cnmdnane) ;
exit(2);
}
}
len = nbstowcs(outline, ptr, line_len);
if (len == (size_t)-1) {

input file \"%\":

(void) fprintf(stderr, gettext(
line %1d: invalid multibyte character\n"),
cmdnane, fn, lineno);

/* never

match a line wth invalid sequence */

goto L_skip_line;

}
outline[len] = L"\0";
if (iflag) {
wchar _t *cp;
for (cp = outline; *cp !'="\0"; cp++) {
) *cp = towl ower ((wint_t)*cp);
}
if (xflag) {
for (pp = patterns; pp; pp = pp->next) {
if (outline[0] == pp->wpattern[0] &&
wescnp(outli ne,
pp->wpattern) == 0) {
/* matched */
br eak;
}
} else {
for (pp = patterns; pp; = pp->next) {

if

pp
(weswes(outline, pp->wattern)
1= NULL) {

/* matched */

10

new usr/src/ cnd/ grep_xpg4/ grep.c 11

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083

1085
1086
1087
1088
1089

1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

1110
1111
1112
1113
1114
1115
1116

L_next

_line:

"s:

"Us:

br eak;

} else |% (FfIa)

fgrep in byte-oriented handling */

char *fptr;
if (iflag) {
fptr = istrdup(ptr);
} else {
fptr = ptr;
}
if (xflag) {
[* fgrep -x */
for (pp = patterns; pp; pp = pp->next) {
if (fptr[0] == pp->pattern[0] &&
strcenp(fptr, pp->pattern) == 0) {
/* matched */
break;
}
} else {
for (pp = patterns; pp; pp = pp->next) {
if (strstr(fptr, pp->pattern) != NULL) {
/* matched */
br eak;
}
}
} else {

/* grep or egrep */

for (pp = patterns; pp; pp = pp->next) {
int rv;
rv = regexec(&p->re, ptr, 0, NULL, 0);
if (rv == REG_
/* matched */
br eak;
}

switch (rv) {

case REG_NOVATCH:
br eak;

case REG ECHAR

(void) fprintf(stderr, gettext(

input file \"%\": line %1d: invalid rmltlbyte character\n"),
crmdnane, fn, |ineno);
br eak;
defaul t:
(void) regerror(rv, &pp->re, errstr,
si zeof (errstr));
(void) fprintf(stderr, gettext(
input file \"%\": line %1d: %\n"),
cndnare, fn, lineno, errstr);
exit(2);

*
*
*
*
f

if pp points to non-NULL
he pattern.

sonet hi ng has been nat ched

(nvflag == (pp != NULL)) {

mat ches++;

new usr/src/ cnd/ grep_xpg4/ grep.c

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1115
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

1157
1158
1159
1160

1162
1163
1142
1164
1165
1166
1167
1168
1169
1170
1171

1173
1174
1175
1176
1177
1178
1179
1180

L_skip_line:

}

/*
* Handle q, |, and c flags.
*/
if (qflag) {
no need to continue */
/~k
* End of this line is ptrend.
*/V\é have read up to ptr + data_len.
*
of f _t pos;
pos = ptr + data_len - (ptrend + 1);
(void) |seek(fd, -pos, SEEK CUR);
exit(0);
}
if (Iflag) {
(void) printf("9%s\n", fn);
br eak;
}
if (lcflag) {
if (Hilag || outfn) {
if (outfn) {
(void) printf("%:", fn);
}
if (bflag) {
(v0|d) printf("9%ld:", (offset_t)
(line_offset / BSIZE));
}
if (nflag)

{
(void) printf("%Ild:", lineno);

*ptrend = '\n’;
(void) fwite(ptr, 1,

i}f (ferror(stdout)) {
) return (0);

line_len + 1,

if (!'newinep)
break;

data_len -=line_len + 1;
line_offset += line_len + 1;
ptr = ptrend + 1;

if (cflag) {

i1f (Hlag ||
if (outfn) {
(void) printf("%:", fn);

outfn) {

i}f ('agflag) {

} (void) printf("%1d\n", matches);

}
return (matches != 0);

}
/*

* usage nessage for grep
*
/

static void
usage(voi d)

if (egrep ||

fgrep) {

(void) fprintf(stderr, gettext("Usage:\t%"), cndnane);

stdout);

new usr/src/ cnd/ grep_xpg4/ grep.c 13

1181 (void) fprintf(stderr,

1182 gettext(" [-c|-1]-q] [-r|-R [-bhH nsvx]
1161 gettext(" [-c|-1]-q] [-r]|- [- bhi nsvx]

1183 "pattern_list [file ...]\n"));

1185 (void) fprintf(stderr, "\t%", cndnane);

1186 (void) fprintf(stderr,

1187 gettext(" [-c|-1|-q] [-r|-R [-bhHi nsvx] "
1166 gettext(“ [-c|-1]-q] [-r|-R [-bhinsvx] "
1188 "[-e pattern_list]... "

1189 "[-f pattern_file] [file...]1\n"));

1190 } else {

1191 (void) fprintf(stderr, gettext("Usage:\t%"), cndnane);
1192 (void) fprintf(stderr,

1193 gettext(" [-c|-1]-q] [-r|-R [-bhH nsvwx]
1172 gettext(" [-c|l-1]-q] [-r| Rl [-bhi nsvw] "
1194 "pattern_list [file 1\n"));

1196 (void) fprintf(stderr, "\t%", cndnane);

1197 (voi d) fpr|ntf(stderr,

1198 gettext(" [-c -q] [-r|-R [-bhH nsvw] "
1177 gettext(" [- c|—| -q] [-r|-Rl [-bhinsvw] "
1199 "[-e pattern_list]... "

1200 "[-f pattern_file] [file...]1\n"));

1202 (void) fprintf(stderr, "\t%", cnmdnane);

1203 (void) fprintf (stderr,

1204 gettext (" -E[c|l-1]-q] [-r|-R [-bhH nsvx]
1183 gettext(" -E [-c|-1|-q] [-r]|-R [-bhinsvx] "
1205 "pattern_list [file ...]1\n"));

1207 (void) fprintf(stderr, "\t%", cndnane);

1208 (void) fprintf(stderr,

1209 gettext(“ —E[—c -1]-q] [-r|-R [-bhH nsvx] "
1188 gettext(E[-c|-1]-q] [-r|-Rl [-bhinsvx] "
1210 [epatternlls]... "

1211 "[-f pattern_file]. [file...]1\n"));

1213 (void) fprintf(stderr, "\t%", cndnane);

1214 (void) fprintf(stderr,

1215 gettext(" -F [-c|-1|-q] [-r]|-R [-bhHi nsvx] "
1194 gettext(" -F [-c|-1|-qg] [-r]|-R [-bhinsvx] "
1216 "pattern_list [file ...]1\n"));

1218 (void) fprintf(stderr, "\t%", cndnane);

1219 (void) fprintf(stderr,

1220 gettext(" -F [-c|-1|-qg] [-bhH nsvx] [-e pattern_list]...
1199 gettext(" -F [-c|-1]|-q] [—bhl nsvx] [-e pattern_list]...
1221 "[-f pattern_file]... [file...]\n"));

1222 }

1223 exit(2);

1224 /* NOTREACHED */

1225 }

__unchanged_portion_omtted_

new usr/src/ man/ manl/ egrep. 1 1

R R R R

9118 Thu Sep 12 13:22:55 2013

new usr/src/ man/ manl/ egrep. 1

3737

grep does not support -H option

Revi ewed by: Andy Stornont <andyjstornont @mail.conms

LR

"\" te

.\" Copyright 1989 AT&T

.\" Copyright (c) 2006, Sun M crosystens, Inc. All Rights Reserved

\" Portions Copyright (c) 1992, X/ Open Conpany Linmited All Rights Reserved

.\" Sun Mcrosystens, Inc. gratefully acknow edges The Open G oup for permnission

\" http://ww. opengroup. or g/ bookstore/.

.\" The Institute of Electrical and El ectronics Engineers and The Open G oup, ha
" This notice shall appear on any product containing this material.

.\" The contents of this file are subject to the terns of the Common Devel opnent

.\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:

A" When di strlbutlng Covered Code, include this CDDL HEADER in each file and in

.TH EGREP 1 "May 3, 2013"

. TH EGREP 1 " Mar 24 2006"

. SH NAME
egrep \- search a file for a pattern using full regul ar expressions
. SH SYNOPSI S
.LP
. nf
\fB/usr/bin/egrep\fR [\fB-bcHhilngsv\fR] \fB-e\fR \flpattern_list\fR [\flfile...
\fB/usr/bin/egrep\fR [\fB-bchilnsv\fR \fB-e\fR \flpattern_list\fR[\flIfile... \f
fi
.LP
. nf
\fB/usr/bin/egrep\fR [\fB-bcHhilngsv\fR] \fB-f\fR\fIfile\fR [\flfile...\fR]
\fB/usr/bin/egrep\fR [\fB-bchilnsv\fR \fB-f\fR\fIfile\fR[\flfile...\fR]
i
.LP
. nf
\fBlusr/bin/egrep\fR [\ bcHhil ngsv\fR] \flpattern\fR [\flfile...\fR]
\ fB/ usr/bin/egrep\f [bchilnsv\fR] \flpattern\fR [\flIfile...\fR]
fi
.LP
. nf
\ f B/ usr/ xpg4/ bi n/ egrep\fR [\fB-bcHhil ngsvx\fR] \fB-e\fR \flpattern_list\fR [\fB-
\fBlusr/xpg4/b|n/egrep\f [\fB-bchilngsvx\fR] \fB-e\fR \flpattern_list\fR [\fB-f
[\fifile.. . \fR]
Cfi
.LP
. nf
\f B/ usr/ xpg4/ bin/egrep\fR [\fB-bcHhilngsvx\fR [\f Be\fR\prattern_Iist\fR] \fB
\f B/ usr/ xpg4/ bin/egrep\fR [\fB-bchilngsvx\fR [\fB-e\fR \flpattern_list\fR \fB-
[\fifile...\fR]
fi
.LP
. nf
\ f B/ usr/ xpg4/ bi n/ egrep\fR [\f cHh|Inqsvx\fR] \flpattern\ fR e \fR]

[
\I.B/usr/xng bi n/egrep\fR [\fB-bchilngsvx\fR] \flpattern\fR [\
i

. SH DESCRI PTI ON

.sp

.LP

The \fBegrep\fR (\flexpression grep\fR) utility searches files for a pattern of
characters and prints all lines that contain that pattern. \fBegrep\fR uses
full regular expressions (expressions that have string values that use the full

new usr/src/ man/ manl/ egrep. 1

set of al phanureric and special characters) to match the patterns. It uses a
fast deterministic algorithmthat sonmeti mes needs exponential space.

.sp

.LP

If no files are specified, \fBegrep\fR assunmes standard input. Nornmally, each
line found is copied to the standard output. The file nane is printed before
each line found if there is nore than one input file.

. SS "/usr/bin/egrep"

.sp

LP

The \fB/ usr/ bin/ egrep\fR utility accepts full regular expressions as described
on the \fBregexp \fR(S) manual page, except for \fB\e(\fR and \fB\e)\fR
\fB\e(\fR and \fB\e)\ \fBle{\fR and \fB\e}\fR, \fBle<\fR and \fB\e>\fR and
\fBlen\fR, and with the addi tion of:

.RS +4

TP

1.

A full regul ar expression followed by \fB+\fR that matches one or nore
occurrences of the full regular expression.

RE

.RS +4

TP

2.

A full regular expression followed by \fB?\fR that natches 0 or 1
occurrences of the full regular expression.

RE

RS +4
TP

3.

Ful' | regul ar expressions separated by | or by a \fBNEW.INE\fR that nmatch
strings that are matched by any of the expressions.

RE

.RS +4

. TP

4.

A full regul ar expression that can be enclosed in parentheses \fB()\fRfor

gr oupi ng.

.RE

.sp

.LP

Be careful using the characters \fB$\fR \fB*\fR \fB[\fR \fB"\fR |, \fB(\fR
\fB)\fR and \fB\e\fRin \flfull regular expression\fR because they are al so
meani ngful to the shell. It is safest to enclose the entire \flfull regular
expression\fR in single quotes (\fBa\'"\fRfBa\'"\fR).

.sp

.LP

The order of precedence of operators is \fB[\|]\fR then \fB*\|?\| +\fR, then

concatenation, then | and NEW.I NE.
S "/ usr/xpg4/ bi n/ egrep”
.sp
LP
The \ f B/ usr/xpg4/ bin/egrep\fR utility uses the regul ar expressions described in
t he \ f BEXTENDED REGULAR EXPRESSI ONS\ f R section of the \fBregex\fR(5) nmanual

The fol | ow ng options are supported for both \fB/usr/bin/egrep\fR and
\ f B/ usr/ xpg4/ bi n/ egrep\f R

.sp
.ne 2

.na
\fB\fB-b\fRfR

.ad

. RS 19n

Precede each line by the block nunber on which it was found. This can be useful

new usr/src/ man/ manl/ egrep. 1

120
121

123
124
125
126
127
128
129
130

132
133
134
135
136
137
138
139
140

142
143
144
145
146
147
148
149

151
152
153
154
155
156
157

in locating block nunbers by context (first block is 0).
. RE

.sp
.ne 2

.na
\fB\fB-c\fRfR

.ad

.RS 19n

Print only a count of the lines that contain the pattern.
.RE

.sp
.ne 2

.na
\fB\fB-e\fR \flpattern_list\fRfR

.ad

. RS 19n

Search for a \flpattern_list\fR (\flfull regular expression\fR that begins with
a \fB\(mM\fR).

.RE

.sp
.ne 2

.na
\fB\fB-fA\fR\fIfile\fRfR

.ad

. RS 19n

Take the list of \fIfull\fR\flregular\fR \flexpressions\fR from\fifile\fR
.RE

.sp
.ne 2

.na
\fB\fB-HfRfR

.ad

. RS 19n

Precedes each line by the nane of the file containing the matching line.

158 . RE

160
161
162
163
164
165
166
167

169
170
171
172
173
174
175
176

178
179
180
181
182
183
184
185

.sp
.ne 2

. ha
\fB\fB-h\fRfR

. al

.RS 19n

Suppress printing of filenanes when searching nultiple files.
.RE

.sp
.ne 2

.na
\fB\fB-i\fRfR

.ad

.RS 19n

I gnore upper/|l ower case distinction during conparisons.
.RE

.sp
.ne 2

. ha
\fB\fB-I\fRfR

.ad

. RS 19n

Print the names of files with matching |ines once, separated by NEW.I NEs. Does
not repeat the names of files when the pattern is found nore than once.

new usr/src/ man/ manl/ egrep. 1

186

188
189
190
191
192
193
194
195

197
198
199
200
201
202
203
204

205 .

207
208
209
210
211
212
213
194
195

. RE

.sp
.ne 2

.na
\fB\fB-n\fRfR

.ad

. RS 19n

Precede each line by its line nunber in the file (first line is 1).
. RE

.sp
.ne 2

.na
\fB\fB-q\fRfR

.ad

.RS 19n

Quiet. Does not wite anything to the standard output, regardl ess of matching
lines. Exits with zero status if an input line is selected.

RE

.sp
.ne 2

.na

\fB\fB-s\fRfR

.ad

.RS 19n

Legacy equivalent of \fB-gq\fR

Work silently, that is, display nothing except error nessages.
for checking the error status.

This is useful

214 . RE

216
217
218
219
220
221
222

.sp
.ne 2

. ha
\fB\fB-VAfRfR

. al
.RS 19n
Print all lines except those that contain the pattern.

223 . RE

225
226
227
228
229
230
213
214
215
216
217
218

. SS "/ usr/ xpg4/ bi n/ egrep”
.sp

.LP
The following options are supported for \fB/usr/xpg4/bin/egrep\fR only:

.sp
.ne 2

. na
\fB\fB-q\fRfR
.ad

. RS 6n

Quiet. Does not wite anything to the standard output, regardl ess of matching
lines. Exits with zero status if an input line is selected.

219 . RE

221
222
231
232
233
234
235
236

.sp
.ne 2

.na
\fB\fB-xX\fRfR

.ad

. RS 6n

Consi der only input lines that use all characters in the line to match an
entire fixed string or regular expression to be matching |ines.

237 .RE

239

. SH OPERANDS

new usr/src/ man/ manl/ egrep. 1

240
241
242
243
244
245
246
247
248
249
250

.sp
.LP

The foll owi ng operands are supported:
.sp

.ne 2

.na
\fB\fIfile\fRfR

.ad

.RS 8n

A path nane of a file to be searched for the patterns. If no \flfile\fR
operands are specified, the standard input is used.

251 . RE

253
254
255
256
257
258
259
260
261

263
264
265
266
267
268
269
270
271
272

274 .
275 .

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

298
299
300
301
302
303
304

. SS "/usr/bin/egrep"

.sp
.ne 2

.na
\fB\flpattern\fRfR

.ad

.RS 11n

Specify a pattern to be used during the search for input.
. RE

. SS "/ usr/xpg4/ bin/ egrep"”

.sp
.ne 2

.na
\fB\flpattern\fRfR
d

. al
.RS 11n

Specify one or nore patterns to be used during the search for input. This
operand is treated as if it were specified as \fB-e\fRflpattern_list.\fR
.RE

See \fBlargefile\fR(5) for the description of the behavior of \fBegrep\fR when
encountering files greater than or equal to 2 Ghyte (2731 bytes).

. SH ENVI RONVENT VARI ABLES

.sp

.LP

See \fBenviron\fR(5) for descriptions of the follow ng environment variabl es
that affect the execution of \fBegrep\fR \fBLC COLLATE\fR, \fBLC CTYPE\fR,

\ f BLC_MESSAGES\ f R, and \fBNLSPATH\ f R.

.SH EXIT STATUS

.sp

.LP

The followi ng exit values are returned:

.sp

.ne 2

.nha
\fB\fBO\fRfR

.ad

.RS 5n

I f any matches are found.
.RE

.sp
.ne 2

. ha
\fB\fBI\fRfR

.ad

. RS 5n

If no matches are found.

305 . RE

new usr/src/ man/ manl/ egrep. 1

307
308
309
310
311
312
313
314

316
317
318
319
320
321

323
324
325
326
327
328
329
330
331

333
334

336
337
338
339
340
341
342
343
344

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

.sp
.ne 2

. na
\fB\fB2\fR fR
.ad

. RS 5n

For syntax errors or inaccessible files (even if matches were found).
.RE

. SH ATTRI BUTES

.sp

.LP

See \fBattributes\fR(5) for descriptions of the follow ng attributes:
. SS "/usr/bin/egrep"

.sp

.sp
. TS

box;

c| c

.

ATTRI BUTE TYPE ATTRI BUTE VALUE

Csl Not Enabl ed
. TE

. SS "/ usr/xpg4/ bi n/ egrep"”
.sp

.sp
. TS

box;

c| c

.

ATTRI BUTE TYPE ATTRI BUTE VALUE

Csl Enabl ed
. TE

. SH SEE ALSO
.sp

.LP

\fBfgrep\fR(1), \fBgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1), \fBattributes\fR(5),
\fBenviron\fR(5), \fBlargefile\fR(5), \fBregex\fR(5), \fBregexp\fR(5),

\ f BXPHA\ f R(5)

. SH NOTES

.sp

.LP

Ideal |y there should be only one \fBgrep\fR conmand, but there is not a single
al gorithmthat spans a wi de enough range of space-tine trade-offs.

.sp

. LP

Lines are limted only by the size of the available virtual nenory.

. SS "/ usr/ xpg4/ bi n/ egrep”

.sp
.LP

The \fB/usr/xpg4/bin/egrep\fR utility is identical to \fB/usr/xpg4/bin/grep\fR
\fB-E\fR See \fBgrep\fR(1). Portable applications should use

\ f B/ usr/ xpg4/ bin/grep\fR\fB-E\fR

new usr/src/ man/ manl/fgrep. 1 1

R R R R

7742 Thu Sep 12 13:22:55 2013

new usr/src/ man/ manl/fgrep. 1

3737

grep does not support -H option

Revi ewed by: Andy Stornont <andyjstornont @mail.conms

LR

1

"\" te

.\" Copyright 1989 AT&T

.\" Copyright (c) 2006, Sun Mcrosystens, Inc. Al Rights Reserved

\" Portions Copyright (c) 1992, X/ Open Conpany Linmited Al Rights Reserved

.\" Sun Mcrosystens, Inc. grat eful | y acknow edges The Open G oup for permission
\" http://ww. opengroup. or g/ bookstore/.

.\" The Institute of Electrical and El ectronics Engineers and The Open G oup, ha
.\" This notice shall appear on any product containing this material.

.\" The contents of this file are subject to the terns of the Common Devel opnent
.\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:
A\ When di strlbutlng Covered Code, include this CDDL HEADER in each file and in
.TH FGREP 1 "May 3, 2013"

. TH FGREP 1 " Mar 24 2006"

. SH NAME

fgrep \- search a file for a fixed-character string

. SH SYNOPSI S

.LP

. nf

\fB/usr/bin/fgrep\fR [\fB-bcHhilngsvx\fR \fB-e\fR \flpattern_list\fR [\fIfile..

\fBlusr/bin/fgrep\fR [\fB-bchilnsvx\fR \fB-e\fR \flpattern_list\fR[\flIfile...\

fi

.LP

. nf

\fB/usr/bin/fgrep\fR [\fB-bcHhilngsvx\fR] \fB-f\fR\flfile\fR[\fIfile...\fR]

\fB/usr/bin/fgrep\fR [\fB-bchilnsvx\fR \fB-f\fR\fIfile\fR[\flfile...\fR]

i

.LP

. nf

\fBlusr/bin/fgrep\fR [\fB-bcHhil nqgsvx\fR] \flpattern\ fR[fl Ie...\fR]

\fBlusr/bin/fgrep\fR [\fB-bchilnsvx\fR \flpattern\fR [\flIfi \fR

fi

.LP

. nf

\ f B/ usr/xpg4/ bin/fgrep\fR [\fB-bcHhil ngsvx\fR] \fB-e\fR \flpattern_list\fR [\fB-

\ f B/ usr/ xpg4/ bin/fgrep\fR [\fB-bchilngsvxX\fR] \fB-e\fR \flpattern_list\fR [\fB-f
[\fifile.. . \fR]

Cfi

.LP

. nf

\f Bl usr/ xpg4/ bin/fgrep\fR [\fB-bcHhilngsvx\fR [\f Be\fR\prattern_Iist\fR] \fB

\fB/usr/ xpg4/ bin/fgrep\fR [\fB-bchilngsvx\fR [\fB-e\fR \flpattern_list\fR \fB-
[\fifile...\fR]

i

.LP

. nf

\ f B/ usr/ xpg4/ bin/fgrep\fR [\fB-bcHhil ngsvx\fR] \flpattern\fR [\flfile...\fR]

\I.B/usr/xngbln/fgrep R [\fB-bchilngsvx\fR \flpattern\fR [\flfile...\fR]

fi

. SH DESCRI PTI ON

.sp

.LP

The \fBfgrep\fR (fast \fBgrep\fR) utility searches files for a character string

and prints all lines that contain that string. \fBfgrep\fR is different from

\fBgrep\fR(1) and from\fBegrep\fR(1) because it searches for a string, instead

new usr/src/ man/ manl/fgrep. 1

54 of searching for a pattern that matches an expression. \fBfgrep\fR uses a fast
55 and conpact al gorithm

56 .sp

57 .LP

58 The characters \fB$\fR \fB*\fR \fB[\fR \fB"\fR |, \fB(\fR \fB)\fR and
59 \fB\e\fR are interpreted literally by \fBfgrep\fR, that is, \fBfgrep\fR does
60 not recognize full regular expressions as does \fBegrep\fR These characters
61 have special neaning to the shell. Therefore, to be safe, enclose the entire
62 \flstring\fR within single quotes (\fBa\'\fR).

63 .sp

64 .LP

65 If no files are specified, \fBfgrep\fR assumes standard input. Nornally, each
66 line that is found is copied to the standard output. The file name is printed
67 before each line that is found if there is nore than one input file.

68 . SH OPTI ONS

69 .sp

70 . LP

71 The follow ng options are supported for both \fB/usr/bin/fgrep\fR and

72 \fBlusr/xpg4/bin/fgrep\fR

73 .sp

74 .ne 2

. ha
76 \fB\fB-b\fR fR
77 .ad
78 . RS 19n

79 Precedes each line by the bl ock number on which the line was found. This can be

80 useful in locating block nunbers by context. The first block is 0.
.RE

83 .sp
84 .ne 2

.na

86 \fB\fB-c\fRfR

87 .ad

88 . RS 19n

89 Prints only a count of the lines that contain the pattern.
.RE

92 .sp
93 .ne 2

.na
95 \fB\fB-e\fR \flpattern_list\fRfR
96 . ad

97 . RS 19n

98 Searches for a \flstring\fR in

\flpattern-list\fR This is useful when the
99 \flstring\fR begins with a \fB\(.
. RE

Ip
mifR &

102 .sp
103 .ne 2

.na
105 \fB\fB-f\fR \flpattern-file\fRfR

.a

107 . RS 19n

108 Takes the list of patterns from\flpattern-file\fR
. RE

111 .sp
112 .ne 2

.ha
114 \fB\fB-H\fR fR

115 . ad

116 . RS 19n

117 Precedes each line by the name of the file containing the matching Iine.
118 . RE

new usr/src/ man/ manl/fgrep. 1

120
121
122
123
124
125
126
127

129
130
131
132
133
134
135
136

138
139
140
141
142
143
144
145

.sp
.ne 2

. na
\fg:\fB-h\fR\fR

. al
. RS 19n

Suppresses printing of files when searching nultiple files.
.RE

.sp
.ne 2

.na
\fB\fB-i\fRfR

.ad

. RS 19n

I gnores upper/|l ower case distinction during conparisons.
.RE

.sp
.ne 2

.na
\fB\fB-I\fRfR

.ad

. RS 19n

Prints the nanes of files with matching |ines once, separated by newlines.
Does not repeat the names of files when the pattern is found nore than once.

146 . RE

148
149
150
151
152
153
154

.sp
.ne 2

. ha
\fB\fB-m\fRfR

. al
.RS 19n
Precedes each line by its line nunber in the file. The first line is 1.

155 . RE

157
158
159
160
151
161
162
163
164
154
155
165

167
168
169
170
161
171
172
173
164
174

176
177
178
179
170

.sp
.ne 2

.na

\fB\fB-q\fRfR

\fB\fB-s\fRfR

.ad

. RS 19n

Quiet. Does not wite anything to the standard out put, regardl ess of matching
lines. Exits with zero status if an input line is selected.

Works silently, that is, displays nothing except error nessages. This is useful
for checking the error status.

. RE

.sp
.ne 2

.na

\fB\fB-s\fRfR

\fB\fB-VAfRfR

.ad

. RS 19n

Legacy equivalent of \fB-gq\fR

Prints all lines except those that contain the pattern.
. RE

.sp
.ne 2

. na
\fB\fB-V\fRfR
\fB\fB-x\fR fR

new usr/src/ man/ manl/fgrep. 1

180
181
182
173

.ad

. RS 19n

Prints all lines except those that contain the pattern.
Prints only lines that are natched entirely.

183 . RE

176
185
178
179
180
186
187
188
183
189
190
191
185
186
187

192 .

194 .
195 .

196
197
198
199
200
201
202
203
204
205

. SS "/ usr/xpg4/ bin/fgrep"

.sp

.LP

The followi ng options are supported for \fB/usr/xpg4/bin/fgrep\fR only:
.sp

.ne 2
.na
\fB\fB-x
\fB\fB-q
.ad

.RS 19n
Prints only lines that are matched entirely.

. RS 6n

Quiet. Does not wite anything to the standard out put, regardl ess of matching
lines. Exits with zero status if an input line is selected.

\fRfR
\fRfR

The fol | ow ng operands are supported:

.sp
.ne 2

.na
\fB\fIfile\fRfR

.ad

. RS 8n

Specifies a path name of a file to be searched for the patterns. If no
\fIfile\fR operands are specified, the standard input w ||l be used.

206 . RE

208
209
210
211
212
213
214
215
216

218
219
220
221
222
223
224
225
226
227

229 .
230 .

231
232
233
234
235
236

.SS "/usr/bin/fgrep"

.sp
.ne 2

. na
\fB\flpattern\fRfR

.ad

.RS 11n

Specifies a pattern to be used during the search for input.
. RE

. SS "/usr/xpg4/ bin/fgrep"

.sp
.ne 2

.na
\fB\flpattern\fRfR
d

. al

.RS 11n

Specifies one or nore patterns to be used during the search for input. This
operand is treated as If it were specified as \fB-e\fR \flpattern_list\fR
. RE

See \fBI argefile\fR(5) for the description of the behavior of \fBfgrep\fR when
encountering files greater than or equal to 2 Gohyte (2731 bytes).
. SH ENVI RONVENT VARI ABLES

.sp
. LP

new usr/src/ man/ manl/fgrep. 1

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

253
254
255
256
257
258
259

See \fBenviron\fR(5) for descriptions of the follow ng environnent variables
that affect the execution of \fBfgrep\fR \fBLC COLLATE\fR, \fBLC CTYPE\fR,
\f BLC_ MESSAGES\fR, and \fBNLSPATH\f R

.SH EXIT STATUS

.sp

.LP

The followi ng exit values are returned:

.sp

.ne 2

.na
\fB\fBO\fRfR

.ad

.RS 5n

If any matches are found
.RE

.sp
.ne 2

. na
\fB\fBI\fRfR

.ad

. RS 5n

If no matches are found

260 . RE

262
263
264
265
266
267
268
269

271
272

274
275
276
277
278
279
280
281
282
283
284
285
286

288

289 .

290
291
292
293
294
295
296
297
298
299
300
301
302

.sp
.ne 2

. na

\fB\fB2\fRfR

.ad

.RS 5n

For syntax errors or inaccessible files, even if matches were found.
. RE

. SS "/ usr/xpg4/ bin/fgrep"
.sp

. SH ATTRI BUTES
.sp

.LP

See \fBattributes\fR(5) for descriptions of the follow ng attributes:
.sp

. TS

box;

c| c

(I

ATTRI BUTE TYPE ATTRI BUTE VALUE

[es]] Enabl ed

.TE

. SH SEE ALSO

sp

.LP

\fBed\fR(1), \fBegrep\fR(1), \fBgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1),
\fBattributes\fR(5), \fBenviron\fR(5), \fBlargefile\fR(5), \fBXPX\fR(5)
. SH NOTES

.sp

.LP

I deal ly, there should be only one \fBgrep\fR command, but there is not a single
al gorithmthat spans a wide enough range of space-tine tradeoffs.

.sp

.LP

Lines are limted only by the size of the available virtual nenory.

. SS "/usr/xpg4/ bin/fgrep"

.sp

new usr/src/ man/ manl/ f grep.

303 . LP

304 The \fB/usr/xpg4/ bin/f
305 \fB-F\fR (see \fBgrep\
306 \f B/ usr/xpg4/ bin/grep\

1

g
f
f

re

R(
R

p\f
1))
\fB

R
-

utility is identical to \fB/usr/xpg4/bin/grep\fR
Portabl e applications should use
\fR

new usr/src/ man/ manl/ grep. 1 1

R R R R

14031 Thu Sep 12 13:22:56 2013
new usr/src/ man/ manl/ grep. 1

3737

grep does not support -H option

Revi ewed by: Andy Stornont <andyjstornont @mail.conms

LR

"\" te

.\" Copyright 2012 Nexenta Systens, Inc. Al rights reserved.

.\" Copyright 1989 AT&T

\" Copyright (c) 2008, Sun Mcrosystems, Inc. Al R ghts Reserved

.\" Portions Copyright (c) 1992, X/ Open Conpany Linmted Al Rights Reserved

.\" Sun Mcrosystens, Inc. gratefully acknow edges The Open G oup for pernission
\" http://ww. opengroup. or g/ bookstore/.

\" The Institute of Electrical and El ectronics Engineers and The Open G oup, ha
. This notice shall appear on any product containing this material.

.\" The contents of this file are subject to the terns of the Conmon Devel opnent
.\" You can obtain a copy of the license at usr/src/OPENSOLARI S. LI CENSE or http:
.\" When distributing Covered Code, include this CDDL HEADER in each file and In
.TH GREP 1 "May 3, 2013"

.TH GREP 1 "Feb 26, 2008"

. SH NAME

grep \- search a file for a pattern

. SH SYNOPSI S

.LP

. nf

\fB/usr/bin/grep\fR [\fB-c\fR | \fB-I\fR|\fB-q\fR] [\fB-r\fR| \fB-RfR [\fB-b

\fB/usr/bin/grep\fR[\fB-c\fR| \fB-I\fR [\fB-gq\fR] [\fB-r\fR| \fB-RfR [\fB-b
\fllimted-regul ar-expression\fR [\flIfilenanme\fR]

Cfi

.LP

. nf

\fBlusr/ xpg4/bin/grep\fR [\fB-E\fR | \fB-F\fR] [\fB-c\fR| \fB-I\fR| \fB-gq\fR]
[\fB-bHhi nsvwx\ fR] \fB-e\ R\flpattern_list\fR.. [\fB-f\fR \flpattern_file\
[\fBbhlnsvm\fR] \fB-e\fR \flpattern_list\fR .. [\fB-f\fR \flpattern_file\f
[\fIfile\fR].

i

.LP

. nf

\fB/usr/xpg4/bin/grep\fR [\fB-E\fR | \fB-RF\fR [\fB-c\fR| \fB-I\fR| \fB-q\fR]
[\fB-bHhinsvwx\fR] [\fB-e\fR \flpattern_|ist\fR ... \fB-f\fR \flpattern_file
[\fBbhlnsvm\fR] [\fB-e\fR \flpattern_list\fR]. \fB-f\fR \flpattern_file\
[\fIfile\fR].

i

. LP

. nf

\fB/usr/xpg4/bin/grep\fR [\fB-E\fR | \fB-RfR [\fB-c\fR| \fB-I\fR| \fB-q\fR]
[\fB-bHhinsvwx\fR] \flpattern\fR [\fIfile\fR]...
[\fB-bhinsvwx\fR] \flpattern\fR [\fIfile\fR].

. SH DESCRI PTI ON

.sp
.LP

The \fBgrep\fR utility searches text files for a pattern and prints all lines
that contain that pattern. It uses a conpact non-deterministic algorithm

.sp

.LP

Be careful using the characters \fB$\fR \fB*\fR \fB[\fR \fB"\fR \fB|\fR
\fB(\fR, \fB)\fR, and \fB\e\fR in the \flpattern_list\fR because they are al so
neani ngful to the shell. It is safest to enclose the entire \flpattern_list\fR
in single quotes \fBa\"\fR & ..\fBa\"\fR\ &

.sp

.LP

new usr/src/ man/ manl/ grep. 1

115

117
118
119
120
121

If no files are specified, \fBgrep\fR assumes standard input. Normally, each
line found is copied to standard output. The file nane is printed before each
line found if there is nore than one input file.

.SS "/usr/bin/grep"

.sp

LP

The \fB/ usr/ bi n/grep\fR utility uses limted regular expressions |ike those
described on the \fBregexp\fR(5) manual page to match the patterns.

. SS "/ usr/ xpg4/ bi n/ grep"

.sp

LP

The options \fB-E\fR and \fB-F\fR affect the way \fB/usr/xpg4/b| n/grep\fR
interprets \flpattern_list\fR If \fB-E\fR is specifie
\fB/usr/xpg4/bin/grep\fR interprets \flpattern_|list\fR as a full regul ar
expression (see \fB-E\fR for description). If \fB-F\fR is specified,
\fBgrep\fR interprets \flpattern_list\fR as a fixed string. If neither are

specified, \fBgrep\fR interprets \flpattern_list\fR as a basic regul ar
expression as described on \fBregex\fR(5) manual page.

. SH OPTI ONS

.sp

.LP
The foll owi ng options are supported for both \fB/usr/bin/grep\fR and
\ f B/ usr/ xpg4/ bi n/ grep\fR

.sp
.ne 2

.na
\fB\fB-b\fRfR

.ad

.RS 6n

Precedes each line by the block nunber on which it was found. This can be
useful in locating block nunbers by context (first block is 0).

. RE

.sp
.ne 2

.na
\fB\fB-c\fRfR

.ad

. RS 6n

Prints only a count of the lines that contain the pattern.
.RE

.sp
.ne 2

.na
\fB\fB-H\fRfR

.ad

. RS 6n

Precedes each line by the nane of the file containing the matching line.
.RE

.sp
.ne 2

.na
\fB\fB-h\fRfR

.ad

. RS 6n

Prevents the nane of the file containing the matching line from being prepended
to that line. Used when searching multiple files.

. RE

.sp
.ne 2

. na
\fB\fB-i\fRfR
.ad

new usr/src/ man/ manl/ grep. 1

122 . RS 6n

123 lgnores upper/lower case distinction during conparisons

124 . RE

126 .sp

127 .ne 2

128 .na

129 \fB\fB-I\fRfR

130 . ad

131 . RS 6n

132 Prints only the names of files with matching lines, separated by NEW.I NE
133 characters. Does not repeat the nanes of files when the pattern is found nore
134 than once

135 . RE

137 .sp

138 .ne 2

139 .na

140 \fB\fB-n\fR fR

141 . ad

142 . RS 6n

143 Precedes each line by its line number in the file (first line is 1)

144 . RE

146 .sp

147 .ne 2

148 .na

149 \fB\fB-r\fRfR

150 . a

151 . RS 6n

152 Read all files under each directory, recursively. Follow synbolic Iinks on
153 the command line, but skip syminks that are encountered recursively. If file
154 is a device, FIFO or socket, skipit.

155 . RE

157 .sp

158 .ne 2

159 .na

160 \fB\fB-RfRfR

161 . ad

162 . RS 6n

163 Read all files under each directory, recursively, followi ng all synmbolic |inks
164 .RE

166 .sp

167 .ne 2

168 .na

169 \fB\fB-q\fRfR

170 . ad

171 . RS 6n

172 Quiet. Does not wite anything to the standard output, regardless of matching
173 lines. Exits with zero status if an input line is selected

174 . RE

176 .sp

177 .ne 2

178 .na

179 \fB\fB-s\fRfR

180 . ad

181 . RS 6n

182 Suppresses error nessages about nonexistent or unreadable files

183 . RE

185 .sp

186 .ne 2

187 .na

new usr/src/ man/ manl/ grep. 1

188 \fB\fB-VAIfR fR

189 . ad

190 . RS 6n

191 Prints all lines except those that contain the pattern

192 . RE

194 .sp

195 .ne 2

196 .na

197 \fB\fB-WfRfR

198 . ad

199 . RS 6n

200 Searches for the expression as a word as if surrounded by \fB\e<\fR and

201 \fB\e>\fR &

202 . RE

204 . SS "/usr/xpg4/ bin/grep"

205 .sp

206 .LP

207 The followi ng options are supported for \fB/usr/xpg4/bin/grep\fR only

208 .sp

209 .ne 2

210 .na

211 \fB\fB-e\fR \flpattern_list\fRfR

212 . ad

213 . RS 19n

214 Specifies one or nore patterns to be used during the search for input. Patterns
215 in \flpattern_list\fR nmust be separated by a NEW.I NE character. A null pattern
216 can be specified by two adjacent new ine characters in \flpattern_list\fR

217 Unless the \fB-E\fR or \fB-F\fR option is also specified, each pattern is

218 treated as a basic regular expression. Mltiple \fB-e\fR and \fB-f\fR options

219
220
221

223
224
225
226
227
228
229

are accepted by \fBgrep\fR Al of the specified patterns are used when
matching lines, but the order of evaluation is unspecified
.RE

.sp
.ne 2

.na

\fB\fB-E\fRfR

.ad

. RS 19n

Mat ches using full regul ar expressions. Treats each pattern specified as a ful

230 regul ar expression. If any entire full regul ar expression pattern matches an
231 input line, the line is nmatched. A null full regular expression matches every
232 line. Each pattern is interpreted as a full regul ar expression as described on
233 the \fBregex\fR(5) manual page, except for \fBle(\fR and \fB\e)\fR and

234 incl uding

235 . RS +4

236 . TP

237 1.

238 A full regular expression followed by \fB+\fR that natches one or nore

239 occurrences of the full regular expression

240 . RE

241 .RS +4

242 . TP

243 2

244
245
246
247
248
249
250
251
252
253

Afull regul ar expression followed by \fB?2\fR that natches 0 or 1
occurrences of the full regular expression.
RE

.RS +4

TP

3

Ful | regul ar expressions separated by | or by a newline that match strings
that are matched by any of the expressions

. RE
.RS +4

new usr/src/ man/ manl/ grep. 1

254 . TP

255 4.

256 A full regular expression that is enclosed in parentheses \fB()\fR for

257 groupl ng.

258

259 The order of precedence of operators is \fB[\|]\fR then \fB*\|?\| +\fR, then
260 concatenation, then | and newline.

261 . RE

263 .sp

264 .ne 2

265 .na

266 \fB\fB-f\fR \flpattern_file\fRfR

267 . ad

268 . RS 19n

269 Reads one or nore patterns fromthe file named by the path name

270 \flpattern_file\fR Patterns in \flpattern_file\fR are term nated by a NEW.I NE
271 character. A null pattern can be specified by an enpty line in

272 \flpattern_file\fR Unless the \fB-ENfR or \fB-F\fR option is also specified,
273 each pattern is treated as a basic regul ar expression.

274 .RE

276 .sp

277 .ne 2

278 .na

279 \fB\fB-F\ fRfR

280 . ad

281 . RS 19n

282 Matches using fixed strings. Treats each pattern specified as a string instead
283 of a regular expression. If an input |ine contains any of the patterns as a
284 contiguous sequence of bytes, the line is matched. A null string matches every
285 line. See \fBfgrep\fR(1) for nore information.

286 . RE

288 .sp

289 .ne 2

290 .na

291 \fB\fB-x\fRfR

292 . ad

293 . RS 19n

294 Considers only input lines that use all characters in the line to match an
295 entire fixed string or regul ar expression to be matching |ines.

296 . RE

298 . SH OPERANDS

299 .sp

300 .LP

301 The fol | ow ng operands are supported:

302 .sp

303 .ne 2

304 .na

305 \fB\fIfile\fRfR

306 . ad

307 . RS 8n

308 A path nanme of a file to be searched for the patterns. If no \flfile\fR
309 operands are specified, the standard input is used.

310 . RE

312 . SS "/usr/bin/grep"

313 .sp

314 .ne 2

315

316 \fB\prattern\fR\fR

317

318 RS 11n

319 Spemfles a pattern to be used during the search for input.

new usr/src/ man/ manl/ grep. 1

320 .RE

322 . SS "/usr/xpg4/ bin/grep"

323 .sp

324 .ne 2

325 .na

326 \fB\flpattern\fRfR

327 .ad

328 . RS 1li1n

329 Specifies one or nore patterns to be used during the search for input. This

330 operand is treated as if it were specified as \fB-e\fR \flpattern_list\fR
331 . RE

333 . SH USAGE

334 sp

335

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

368
369

LP
The \fB-e\fR \flpattern_list\fR option has the same effect as the
\flpattern_|list\fR operand, but is useful when \flpattern_list\fR begins wth
the hyphen delimter. It is also useful when it is nore convenient to provide
multiple patterns as separate argunents.

.sp

.LP

Miltiple \fB-e\fR and \fB-f\fR options are accepted and \fBgrep\fR uses all of
the patterns it is given while nmatching input text lines. Notice that the order
of evaluation is not specified. If an inplenentation finds a null string as a
pattern, it is allowed to use that pattern first, matching every line, and
effectively ignore any other patterns.

.sp

.LP

The \fB-g\fR option provides a neans of easily determ ning whether or not a
pattern (or string) exists in a group of files. Wien searching several files,
it provides a performance inprovenent (because it can quit as soon as it finds
the first match) and requires |less care by the user in choosing the set of
files to supply as argunents (because it exits zero if it finds a match even if
\fBgrep\fR detected an access or read error on earlier file operands).

.SS "Large File Behavior"

.sp

.LP

See \fBl argefile\fR(5) for the description of the behavior of \fBgrep\fR when
encountering files greater than or equal to 2 Ghyte (2731 bytes).

. SH EXAMPLES

LP

\fBExanple 1 \fRFinding All Uses of a Wrd

.sp

.LP

To find all uses of the word "\fBPosix\fR' (in any case) in the file

\fBtext. mMifR, and wite with |line nunbers:

.sp
Lin +2

370 .n

371

f
exanpl e% \fB/usr/bin/grep -i -n posix text.m fR

372 . fi

373
374

376
377
378
379
380

382
383

.in -2

.sp

.LP

\fBExanple 2 \fRFinding All Enpty Lines
.sp

.LP
To find all enpty lines in the standard input:

.sp
Lin 42

384 .nf

385

exanpl e% \ f B/ usr/bin/grep "$\fR

new usr/src/ man/ manl/ grep. 1

386
387
388

390
391
392

394
395
396
397
398
399
400

402
403
404
405
406
407

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

433
434
435
436
437
438

440
441
442
443
444
445
446
447

449
450
451

fi
.in -2
.sp

.sp
.LP
or

.sp
.in +2

. nf

e;(lanpl e%\fB/usr/bin/grep -v .\fR
i

.in -2

.sp

.LP
\ f BExanpl e 3 \fRFi ndi ng Lines Containing Strings
.sp

.LP
Al of the follow ng conmands print all |ines containing strings \fBabc\fR or
\fBdef\fR or both:

.sp

.in +2

. nf

exanpl e% \ f B/ usr/ xpg4/ bi n/ grep ' abc
def’\fR

exanpl e% \ f B/ usr/ xpg4/ bin/grep -e
def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
def '\ fR

exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
def’\fR

exanpl e% \ f B/ usr/ xpg4/ bi n/ grep
def '\ fR

i

.in -2

.sp

"abc’ -e 'def’\fR
"abc| def '\ fR

-e 'abc|def’\fR

-e "abc’ -e 'def’\fR
" abc

abc

-e

-e "abc’ -e 'def’'\fR
" abc

m MM m mmmm®o

abc

-e

.LP

\fBExanpl e 4 \fRFinding Lines with Matching Strings

.sp

.LP

Both of the follow ng commands print all lines natching exactly \fBabc\fR or
\fBdef\fR:

.sp
.in +2

. nf

exanpl e% \ f B/ usr/ xpg4/ bin/grep -E ' ~abc$ ~def $ \fR
exanpl e% \ f B/ usr/ xpg4/ bin/grep -F -x "abc def’\fR
fi

.in -2
.sp

. SH ENVI RONVENT VARI ABLES

.sp
.LP

new usr/src/ man/ manl/ grep. 1

wi ng environnent vari abl es
R, \fBLC ALL\fR,
R, and \fBNLSPATH\ f R

452 See \fBenviron\fR(5) for descriptions of
453 that affect the execution of \fBg \
454 \f BLC _COLLATE\fR, \fBLC_CTYPE\fR
455 . SH EXIT STATUS

456 . sp

457 . LP

458 The follow ng exit values are returned:
459 .sp

460 .ne 2

461 . na

462 \fB\fBO\fRfR

463 . ad

464 . RS 5n

465 One or nore matches were found.

466 . RE

468 .sp

469 .ne 2

470 . na

471 \fB\fBI\fR fR

472 . ad

473 . RS 5n

474 No mat ches were found.
475 . RE

477 . sp

478 .ne 2

479 . na

480 \fB\fB2\fR fR

481 . ad

482 . RS 5n

483 Syntax errors or inaccessible files (even if matches were found).
484 . RE

486 . SH ATTRI BUTES

487 .sp

488 . LP

489 See \fBattributes\fR(5) for descriptions of the followi ng attributes:
490 . SS "/usr/bin/grep"

491 .sp

493 .sp

494 | TS

495 box;

496 ¢ | ¢

497 1 | | .

498 ATTRI BUTE TYPE ATTRI BUTE VALUE
499

500 CSl Not Enabl ed

501 . TE

503 . SS "/usr/xpg4/ bin/grep"
504 .sp

506 .sp
507 . TS
508 box;
509 c | ¢
510 | .
511 ATTRIBUTE TYPE ATTRI BUTE VALUE
512

513 Csl Enabl ed

514 _

515 Interface Stability
516 _

517 Standard

Conmi tt ed
See \fBstandards\fR(5).

new usr/src/ man/ manl/ grep. 1
518 . TE

520 . SH SEE ALSO

521 .sp

522 .LP

523 \fBegrep\fR(1), \fBfgrep\fR(1), \fBsed\fR(1), \fBsh\fR(1), \fBattributes\fR(5),
524 \fBenviron\fR(5), \fBlargefile\fR(5), \fBregex\fR(5), \fBregexp\fR(5),

525 \ fBst andar ds\ f R(5)

526 . SH NOTES

527 . SS "/usr/bin/grep"

528 .sp

529 . LP

530 Lines are limted only by the size of the available virtual menory. If there is
531 a line with enbedded nulls, \fBgrep\fR only matches up to the first null. If

532 the line matches, the entire line is printed.

533 . SS "/usr/xpg4/ bin/grep"

534 .sp

535 . LP

536 The results are unspecified if input files contain |lines |onger than

537 \fBLINE_MAX\fR bytes or contain binary data. \fBLINE_MAX\fR i s defined in
538 \fB/usr/include/limts. h\fR

