new usr/src/ man/ man7d/ nv_sat a. 7d 1

R R R R

2008 Tue Jul 10 14:30:17 2012
new usr/src/ man/ man7d/ nv_sat a. 7d
% NO COMVENTS *

R R R R R

1'\" te

2 .\" Copyright (c) 2008, Sun Mcrosystens, Inc. Al Rights Reserved

3 .\" Copyright 2011 Nexenta Systens, Inc. Al rights reserved.

4 #endif /* | codereview */

5 .\" The contents of this file are subject to the terms of the Common Devel opnent
6 .\" You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE or http:
7 .\" Wen distributing Covered Code, include this CDDL HEADER in each file and in
8 .TH nv_sata 7D "25 Sep 2011"

3 . TH NV_SATA 7D "Jul 22, 2008"

9 . SH NAME

10 nv_sata \- NvI DI A CK804/ MCPO4/ MCP51/ MCP55/ MCP61 SATA control ler driver

5 nv_sata \- Nvidia ck804/ ncp55 SATA controller driver

11 . SH SYNOPSI S
12 . LP

. nf
14 \fBsat a@init-address\fR
i

17 . SH DESCRI PTI ON

18 .sp

19 . LP

20 The \fBnv_sata\fR driver is a SATA HBA driver that supports NVIDI A CK804/ MCPO4
21 and MCP51/ MCP55/ MCP61 SATA HBA controllers. Note that while these controllers
15 The \fBnv_sata\fR driver is a SATA HBA driver that supports Nvidia ck804 and
16 ntp55 SATA HBA controllers. Note that while these Nvidia controllers

22 support standard SATA features including SATA-11 drives, NCQ hotplug and ATAPI
23 drives, the driver currently does not support NCQ features.

24 . SH CONFI GURATI ON

25 .sp

26 . LP

27 The \fBnv_sata\fR nodul e contains no user configurable paraneters.

28 . SH FI LES

29 .sp

30 .ne 2

.na
32 \fB\fB/ kernel/drv/nv_sata\fR fR
.ad
34 .sp .6
. RS 4n
36 32-bit \fBELF\fR kernel nodule (x86).
.RE

39 .sp
40 .ne 2

.na

42 \fB\f B/ kernel /drv/ and64/ nv_sata\f R f R

43 . ad

44 .sp .6

45 . RS 4n

46 64-bit \fBELF\fR kernel nodule (x86).
. RE

49 . SH ATTRI BUTES

50 .sp

51 .LP

52 See \fBattributes\fR(5) for descriptions of the following attribute:
53 .sp

55 .sp
56 . TS
57 box;

new usr/src/ man/ man7d/ nv_sat a. 7d

58
59
60
61
62
63

65
66
67
68
69
70
71
72

c| c
N
ATTRI BUTE TYPE ATTRI BUTE VALUE

Architecture x86
.TE

. SH SEE ALSO

.sp
.LP

\fBcfgadm fR(1M), \fBcfgadmsata\fR(1M,

\fBsd\ f R(7D)

.sp
.LP
\fIWiting Device Drivers\fR

\fBprtconf\fR(1M,

\fBsata\fR(7D),

new usr/src/ pkg/ mani f ests/driver-storage-nv_sata. nf

R R R R

2374 Tue Jul 10 14:30:18 2012

new usr/src/ pkg/ mani f ests/driver-storage-nv_sata.nf

* ko

NO COMMENTS ***

R R R R R

CDDL HEADER START

The contents of this file are subject to the terms of the
Common Devel opnent and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific |anguage governi ng perm ssions

and limtations under the License.

When di stributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

I f applicable, add the follow ng below this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2010, Oracle and/or its affiliates. Al rights reserved.
Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
endif /* ! codereview */

| obal zone only. See the include file for greater detail, as well as
nformati on about overriding the defaults.

The default for payl oad-bearing actions in this package is to appear in the
g
i

HHFHH HHHHH HHHHBHHHBHFHHHFFH RS

<i ncl ude gl obal _zone_onl y_conponent >
set name=pkg. fnri val ue=pkg:/driver/storage/ nv_sat a@(PKGVERS)
set name=pkg. description \
val ue="NvI DI A CK804/ MCP04/ MCP51/ MCP55/ MCP61 SATA control |l er driver"
set nanme=pkg.sunmary \
val ue="NVI DI A CK804/ MCP04/ MCP51/ MCP55/ MCP61 SATA control | er driver"
val ue="Nvi di a ck804 pro / ncp55 pro conbo SATA driver"
set name=pkg. sunmary val ue="Nvi di a ck804 pro / ncp55 pro conbo SATA driver"
set name=i nfo.classification val ue=org. opensol ari s. category. 2008: Dri vers/ Ports
set name=vari ant.arch val ue=i 386
dir pat h=kernel group=sys
dir path=kernel /drv group=sys
di r pat h=kernel / drv/ $(ARCH64) group=sys
di r pat h=usr/share/ man
di r pat h=usr/shar e/ man/ nan7d
driver name=nv_sata cl ass=scsi-self-identifying perms="* 0644 root sys" \
al i as=pci 10de, 266 \
al i as=pci 10de, 267 \
al i as=pci 10de, 36 \
al i as=pci 10de, 37e \
#endif /* | codereview */
al i as=pci 10de, 37f \
al i as=pci 10de, 3e \
al i as=pci 10de, 3f6 \
al i as=pci 10de, 3f7 \
#endif /* | codereview */
al i as=pci 10de, 54 \
al i as=pci 10de, 55
file path=kernel/drv/$(ARCH64)/ nv_sata group=sys

new usr/src/ pkg/ mani f est s/ driver-storage-nv_sata.nf

60
61
62
63
64
65
66

e pat h=kernel /drv/nv_sata group=sys

e pat h=kernel /drv/ nv_sata.conf group=sys

e pat h=usr/share/ man/ man7d/ nv_sat a. 7d

acy pkg=SUNWhvsata desc="Nvidia ck804 pro / ncp55 pro conbo SATA driver" \
name="Nvi di a ck804 pro / nctp55 pro conmbo SATA driver"

|'icense cr_Sun |icense=cr_Sun

license lic_CDDL |icense=lic_CDDL

fil
fil
fil
I eg

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c 1 new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 60 * |S based on the port of the |egacy ata dereI’ not haVI ng any SUCh

180653 Tue Jul 10 14:30:19 2012 61 * functionality and based on conversations with the PMteam [If such a
new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c 62 * restoration is |ater deened necessary it can be incorporated into the
***x NO COMMENTS *** 63 * DDl _RESUME processing.
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE] 64 *

1/* 65 */

2 * CDDL HEADER START

3 * 67 #include <sys/scsi/scsi.h>

4 * The contents of this file are subject to the terms of the 68 #include <sys/pci.h>

5 * Common Devel opnent and Distribution License (the "License"). 69 #include <sys/byteorder. h>

6 * You may not use this file except in conpliance with the License. 70 #include <sys/sunddi.h>

7 * 71 #include <sys/satalsata_hba. h>

8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 72 #ifdef SGPI O_SUPPORT

9 * or http://ww. opensol aris.org/os/licensing. 73 #include <sys/satal/ adapters/nv_satal/ nv_sgpi o. h>

10 * See the License for the specific |anguage governi ng perm ssions 74 #include <sys/devctl.h>

11 * and limtations under the License. 75 #include <sys/sdt. h>

12 = 76 #endi f

13 * When distributing Covered Code, include this CDDL HEADER in each 77 #include <sys/sataladapters/nv_satal/nv_sata.h>

14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 78 #include <sys/disp. h>

15 * |If applicable, add the followi ng below this CDDL HEADER, wth the 79 #include <sys/note. h>

16 * fields enclosed by brackets "[]" replaced with your own identifying 80 #include <sys/prom f.h>

17 * information: Portions Copyright [yyyy]l [nane of copyright owner]

18 *

19 * CDDL HEADER END 83 /*

20 */ 84 */Function prototypes for driver entry points

85 *

22 | * 86 stati c int nv_attach(dev_info_t *dip, ddi_attach_cnd_t cnmd);

23 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. Al rights reserved. 87 static int nv_detach(dev_info_t *dip, ddi_detach_cnd_t cnd);

24 * Copyright 2011 Nexenta Systenms, Inc. Al rights reserved. 88 stati c |nt nv_qui esce(dev_i nfo_t *dip);

25 #endif /* ! codereview */ 89 static int nv_getinfo(dev_info_t *dip, ddi _info_cnd_t infocnd,

26 */ 90 void *arg, void **result);

28 /* 92 /*

29 = 93 * Function prototypes for entry points fromsata service nodul e

30 * nv_sata is a conbo SATA HBA driver for CK804/MCP04 (ck804) and 94 * These functions are distinguished fromother |ocal functions

31 * MCP55/ MCP51/ MCP61 (ntp5x) based chi psets. 95 * by the prefix "nv_sata_"

24 * nv_sata is a conbo SATA HBA driver for ck804/ncp5x (ncp5x = ncp55/ ncp51) 96 */

25 * based chi psets. 97 static int nv_sata_start(dev_info_t *dip, sata_pkt_t *spkt);

32 * 98 static int nv_sata_abort(dev_info_t *dip, sata_pkt_t *spkt, int);

33 * NCQ 99 static int nv_sata_reset(dev_info_t *dip, sata_device_t *sd);

34 * --- 100 static int nv_sata_activate(dev_info_t *dip, sata_device_t *sd)

35 * 101 static int nv_sata_deactivate(dev_info_t *dip, sata_device_t *sd);

36 * A portion of the NCQis in place, but is inconplete. NCQ is disabled

37 * and is likely to be revisited in the future. 103 /*

38 * 104 * Local function prototypes

39 * 105 */

40 * Power Managenent 106 static uint_t ncp5x_intr(caddr_t argl, caddr_t arg2);

41 F e 107 static uint_t ck804_intr(caddr_t argl, caddr_t arg2);

42 * 108 static int nv_add_l egacy_intrs(nv_ctl_t *nvc);

43 * Nornully power managenent woul d be responsible for ensuring the device 109 #ifdef NV_MSI_SUPPORTED

44 * is quiescent and then changi ng power states to the device, such as 110 static int nv_add_msi _intrs(nv_ctl_t *nvc);

45 * powering down parts or all of the device. nctp5x/ck804 is unique in 111 #endif

46 * that it is only available as part of a larger southbridge chipset, so 112 static void nv_remintrs(nv_ctl_t *nvc);

47 * renpving power to the device isn’t possible. Switches to control 113 static int nv_start_conmmon(nv_port_t *nvp, sata_pkt_t *spkt);

48 * power mmnagenent states DO/D3 in the PCl configuration space appear to 114 static int nv_start_nodata(nv_port_t *nvp, int slot)

49 * be supported but changes to these states are apparently are ignored. 115 static void nv_intr_nodata(nv_port_t *nvp, nv_slot_t *spkt);

50 * The only further PMthat the driver _could_ do is shut down the PHY, 116 static int nv_start_pio_in(nv_port_t *nvp, int slot);

51 * but in order to deliver the first rev of the driver sooner than |ater, 117 static int nv_start_pio_out(nv_port_t *nvp, int slot);

52 * that will be deferred until sone future phase. 118 static void nv_intr_pio_in(nv_port_t *nvp, nv_slot_t *spkt);

53 * 119 static void nv_intr_pio_out(nv_port_t *nvp, nv_slot_t *spkt);

54 * Since the driver currently will not directly change any power state to 120 static int nv_start_pkt_pio(nv_port_t *nvp, int slot);

55 * the device, no power() entry point will be required. However, it is 121 static void nv_intr_pkt_pio(nv_port_t *nvp, nv_slot_t *nv_slotp);

56 * possible that in ACPI power state S3, aka suspend to RAM that power 122 static int nv_start_dma(nv_port_t *nvp, int slot)

57 * can be renoved to the device, and the driver cannot rely on BIOS to 123 static void nv_intr_dma(nv_port_t *nvp, struct nv_slot *spkt);

58 * have reset any state. For the time being, there is no known 124 static void nv_uninit_ctl(nv_ctl_t *nvc);

59 * non-default configurations that need to be programmed. This judgenent 125 static void mcp5x_reg_init(nv_ctT_t *nvc, ddi _acc_handl e_t pci_conf_handle);

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c 3 new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

126 static void ck804_reg_init(nv_ctl_t *nvc, ddi_acc_handl e_t pci_conf_handle); 192 /*
127 static void nv_uninit_port(nv_port_t *nvp); 193 * DMA attributes for the data buffer for x86. dna_attr_burstsizes is unused.
128 static void nv_init_port(nv_port_t *nvp); 194 * Verify if needed if ported to other |SA
129 static int nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handl e_t pci_conf_handle); 195 */
130 static int ncp5x_packet_conplete_intr(nv_ctl_t *nvc, nv_port_t *nvp); 196 static ddi _dma_attr_t buffer_dma_attr = {
131 #i fdef NCQ 197 DVA_ATTR_VO, /* dma_attr_version */
132 static int ncp5x_dma_setup_intr(nv_ctl_t *nvc, nv_port_t *nvp); 198 0, /* dma_attr_addr_l o: | owest bus address */
133 #endi f 199 oxffffffffull, /* dma_attr_addr_hi: */
134 static void nv_start_dnma_engi ne(nv_port_t *nvp, int slot); 200 NV_BM 64K_BOUNDARY - 1, /* dma_attr_count_nex i.e for one cookie */
135 static void nv_port_state_change(nv_port_t *nvp, int event, uint8_t addr_type, 201 4, /* dma_attr_align */
136 int state); 202 1, /* dma_attr_burstsizes. */
137 static void nv_common_reg_init(nv_ctl_t *nvc); 203 1, /* dma_attr_mnxfer */
138 static void ck804_intr_process(nv_ctl_t *nvc, uint8_t intr_status); 204 oxffffffffull, /* dma_attr_maxxfer including all cookies */
139 static void nv_reset(nv_port_t *nvp, char *reason); 205 Oxffffffffull, /* dma_attr_seg */
140 static void nv_conplete_io(nv_port_t *nvp, sata_pkt_t *spkt, int slot); 206 NV_DMA_NSEGS, /* dma_attr_sgllen */
141 static void nv_tineout(void *); 207 512, /* dma_attr_granular */
142 static int nv_poll_wait(nv_port_t *nvp, sata_pkt_t *spkt); 208 0, /* dma_attr_flags */
143 static void nv_cmm_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fnt, ...); 209 };
144 static void nv_read_signature(nv_port_t *nvp); __unchanged_portion_onitted_
145 static void ncp5x_set_intr(nv_port_t *nvp, int flag);
146 static void ck804_set_intr(nv_port_t *nvp, int flag);
147 static void nv_resunme(nv_port_t *nvp); 311 static sata_tran_hotplug_ops_t nv_hotpl ug_ops;
148 static void nv_suspend(nv_port_t *nvp);
149 static int nv_start_sync(nv_port_t *nvp, sata_pkt_t *spkt); 313 extern struct nod_ops nod_driverops;
150 static int nv_abort_active(nv_port_t *nvp, sata_pkt_t *spkt, int abort_reason,
151 bool ean_t reset); 315 static struct nodldrv nmodldrv = {
152 static void nv_copy_registers(nv_port_t *nvp, sata_device_t *sd, 316 &rod_driverops, /* driverops */
153 sata_pkt_t *spkt); 317 "NVI DI A CK804/ MCP04/ MCP51/ MCP55/ MCP61 HBA",
154 static void nv_link_event(nv_port_t *nvp, int flags); 311 "Nvi di a ck804/ ncp51/ ncp55 HBA",
155 static int nv_start_async(nv_port_t *nvp, sata_pkt_t *spkt); 318 &nv_dev_ops, /* driver ops */
156 static int nv_wait3(nv_port_t *nvp, uchar_t onbitsl, uchar_t offbitsl, 319 };
157 uchar_t failure_onbits2, uchar_t failure_offbits2, __unchanged_portion_onitted_
158 uchar_t failure_onbits3, uchar_t failure_offbits3,
159 uint_t tinmeout_usec, int type_wait); 554 #el se
160 static int nv_wait(nv_port_t *nvp, uchar_t onbits, uchar_t offbits,
161 uint_t timeout_usec, int type_wait); 556 #define nv_put8 ddi_put8
162 static int nv_start_rqgsense_pio(nv_port_t *nvp, nv_slot_t *nv_slotp); 557 #define nv_put32 ddi _put 32
163 static void nv_setup_tinmeout(nv_port_t *nvp, clock_t mcroseconds); 558 #define nv_get32 ddi _get 32
164 static clock_t nv_nonitor_reset(nv_port_t *nvp); 559 #define nv_put16 ddi_put16
165 static int nv_bmstatus_clear(nv_port_t *nvp); 560 #define nv_get16 ddi_get 16
166 static void nv_log(nv_ctl_t *nvc, nv_port_t *nvp, const char *fnt, ...); 561 #define nv_get8 ddi_get8
168 #ifdef SGPI O SUPPORT 563 #endi f
169 static int nv_open(dev_t *devp, int flag, int otyp, cred_t *credp);
170 static int nv_close(dev_t dev, int flag, int otyp, cred_t *credp);
171 static int nv_ioctl(dev_t dev, int cnd, intptr_t arg, int node, 566 /*
172 cred_t *credp, int *rvalp); 567 * Driver attach

568 */
174 static void nv_sgp_led_init(nv_ctl_t *nvc, ddi_acc_handl e_t pci_conf_handle); 569 static int
175 static int nv_sgp_detect(ddi _acc_handl e_t pci_conf_handl e, uintl6_t *csrpp, 570 nv_attach(dev_info_t *dip, ddi_attach_cnd_t cnd)
176 uint32_t *chpp); 571 {
177 static int nv_sgp_init(nv_ctl_t *nvc); 572 int status, attach_state, intr_types, bar, i, j, comand,
178 static int nv_sgp_check_set_cm(nv_ctl _t *nvc); 573 int inst = ddi _get_instance(dip);
179 static int nv_sgp_csr_read(nv_ctl_t *nvc); 574 ddi _acc_handl e_t pci _conf_handl e;
180 static void nv_sgp_csr_wite(nv_ctl_t *nvc, uint32_t val); 575 nv_ctl_t *nvc;
181 static int nv_sgp_wite_data(nv_ctl_t *nvc); 576 uint8_t subcl ass;
182 static void nv_sgp_activity_ led_ctl(void *arg); 577 uint32_t reg32;
183 static void nv_sgp_drive_connect(nv_ctl_t *nvc, int drive); 578 #ifdef SGPI O_SUPPORT
184 static void nv_sgp_drive_di sconnect(nv_ctl_t *nvc, int drive); 579 pci _regspec_t *regs;
185 static void nv_sgp_drive_active(nv_ctl_t *nvc, int drive); 580 Int rlen;
186 static void nv_sgp_locate(nv_ctl_t *nvc, int drive, int value); 581 #endif
187 static void nv_sgp_error(nv_ctl_t *nvc, int drive, int value);
188 static void nv_sgp_cleanup(nv_ctl_t *nvc); 583 switch (cnd) {
189 #endi f

585 case DDl _ATTACH:

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

587 attach_state = ATTACH PROGRESS_NONE;

589 status = ddi _soft_state_zall oc(nv_statep, inst);

591 if (status != DDl _SUCCESS) {

592 break;

593 }

595 nvc = ddi _get_soft_state(nv_statep, inst);

597 nvc->nve_dip = dip;

599 NVLOG(NVDBG_I NI T, nvc, NULL, "nv_attach(): DDl _ATTACH', NULL);
601 attach _state | = ATTACH PROGRESS STATEP ALLCC,

603 if (pci_config_setup(di P, &pci _conf _handl e) == DDl _SUCCESS) {
604 nvc->nvc_devid = pci_config_get16(pci _ conf _handl e,
605 PCI _CONF_DEVI D) ;

606 #endif /* | codereview */

607 nvc->nvc_revid = pci_config_get8(pci_conf_handl e,
608 PCI _CONF_REVI D) ;

609 NVLCXB(NVDBG TNI T, nve, NULL,

610 "inst 9@ devid is % silicon revid is 9"

611 " nv_debug_flags=%", inst, nvc->nvc_devid,

612 nvc->nvc_revid, nv_debug_flags);

598 "inst %l: silicon revid is % nv_debug_fl ags=%",
599 inst, nvc->nvc_revid, nv_debug_flags);

613 } else {

614 br eak;

615 }

617 attach_state | = ATTACH_PROGRESS_CONF_HANDLE;

619 /*

620 * Set the PCI command register: enable | Q MEM Master.

621 */

622 conmand = pci_config_get16(pci _conf_handl e, PCl _CONF_COW ;
623 pci _config_put 16(pci _conf _handl e, PCl _CONF_COW

624 conmand| PCI_COVM_| O PCI_COVM MAE| PCI_COMM ME) ;

626 subcl ass = pci_config_get8(pci_conf_handl e, PCl _CONF_SUBCLASS);
628 if (subclass & PCI_MASS RAID) {

629 cmm_er r (CE_WARN,

630 "attach failed: RAID nbde not supported");

632 break;

633 }

635 I*

636 * the 6 bars of the controller are:

637 * 0: port O task file

638 * 1: port O status

639 * 2 port 1 task file

640 * 3: port 1 status

641 * 4: bus master for both ports

642 * 5: extended registers for SATA features

643 */

644 for (bar = O; bar < 6; bar++) {

645 status = ddi _regs_map_setup(dip, bar + 1,

646 (caddr_t *)&nvc->nvc_bar_addr[bar], 0, O, &accattr,
647 &nvc->nvc_bar _hdl [bar]);

649 if (status !'= DDl _SUCCESS)

{
650 NVLOG(NVDBG_ I NI T, nvc, NULL,

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

651
652
653
654
655

657

659
660
661
662

664
665
666

668
669

671

673
674
675
676
677

679

681
682
683
684
685
686
687

689
690

692
693
694

696 #ifdef NV_MSI

697
698
699

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716 #endi f

"ddi _regs_map_setup failure for bar"
%l status = %", bar, status);
br eak;

}
attach_state | = ATTACH PROGRESS_BARS;

/*
* initialize controller structures
*/

status = nv_init_ctl(nvc, pci_conf_handle);

if (status == NV_FAI LURE)
NVLOG(NVDBG I NI T, nvc, NULL, "nv_init_ctl failed",
NULL) ;

break;

}
attach_state |= ATTACH PROGRESS CTL_SETUP;

/*
* initialize nutexes
*/

mut ex_i ni t (&wvc->nve_nutex, NULL, MJUTEX DRI VER,
DDl _I NTR_PRI (nvc->nvc |ntr prl))

attach_state |= ATTACH PROGRESS MUTEX_ I NI T;

/*

* get supported interrupt types
*

/

if (ddi_intr_get_supported_types(dip, & ntr_types) !=
DDl _SUCCESS)
nv_cmm_err (CE_WARN, nvc, NULL,
"ddi _i ntr_get supported types failed");

break;

}

NVLOG(NVDBG_I NI T, nvc, NULL,
"ddi _intr_get_supported_types() returned: Ox%",
intr_types);

_SUPPORTED

if (intr_types & DDl _INTR_TYPE_MSI) {
NVLOG(NVDBG TNI T, “nvc, NULL,
"using NS int errupt type", NULL) ;

/*
* Try MBI first, but fall back to legacy if Ml
* attach fails
*
/

if (nv_add_nsi _intrs(nvc) == DDl _SUCCESS)
nvc->nvc_intr_type = DDl _I NTR_TYPE_MSI ;
attach_state [= ATTACH PROGRESS | NTR._ ADDED
NVLOG(NVDBG | NI T, nvc, NULL,
" MBI interrupt setup done“, NULL) ;
} else {
nv_cm_err (CE_CONT, nvc, NULL,
"MSl registration failed "
"will try Legacy interrupts");

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

718
719
720
721
722
723

725
726

728
729
730
731
732
733
734
735
736
737
738
739
740

742
743
744
745
746

748
749
750
751
752
753
754
755

757
758
759
760
761

763
764
765
766
767
768
769

771
772
773

775
776

778
779
780
781

/*

* Either the MSI interrupt setup has failed or only

* the fixed interrupts are available on the system

*

if (!(attach_state & ATTACH PROGRESS | NTR ADDED) &&
(intr_types & DDI_I NTR_TYPE_FI XED)) {

NVLOG(NVDBG_ | NI T, nvc, NULL,
"using Legacy interrupt type", NULL);

if (nv_add_l egacy_intrs(nvc) == DDl _SUCCESS)
nvc->nvc_intr_type = DDI _| NTR_TYPE_FI XED,
attach_state | = ATTACH PROGRESS_| NTR_ADDED;
NVLOG(NVDBG_ | NI T, nvc, NULL,
"Legacy interrupt setup done", NULL);
} else {
nv_cm_err (CE_WARN, nvc, NULL,
"l egacy interrupt setup failed");
NVLOG(NVDBG_ | NI T, nvc, NULL,
"l egacy interrupt setup failed", NULL);
br eak;

}

if (!(attach_state & ATTACH PROGRESS_| NTR_ADDED)) {
NVLOG(NVDBG_ | NI T, nvc, NULL,
"no interrupts registered", NULL);
br eak;

}

#i f def SGPI O_SUPPORT
/ *

* save off the controller nunber
*/

(voi d) ddi_getl ongprop(DDI _DEV_T_NONE, dip, DDl _PROP_DONTPASS,
"reg", (caddr_t)®s, &len);

nvc->nvc_ctlr_num = PCl _REG FUNC_G(r egs- >pci _phys_hi);

kmem free(regs, rlen);

/*

* initialize SGPIO
*

/

nv_sgp_l ed_i nit(nvec, pci_conf_handl e);

/* SGPI O SUPPCRT *7

/*
* Do initial reset so that signature can be gathered
*

for (j =0; j < NV_NUMPORTS; j++) {
ddi _acc_handl e_t bar5_hdl;
uint32_t sstatus;
nv_port_t *nvp;

nvp = &(nvc->nvc_port[j]);
bar5_hdl = nvp->nvp_ctl p->nvc_bar_hdl [5];
sstatus = ddi _get32(bar5_hdl, nvp->nvp_sstatus);

i f (SSTATUS GET_DET(sstatus) ==
SSTATUS_DET_DEVPRE_PHYCOM {

nvp->nvp_state | = NV_ATTACH
nvp->nvp_type = SATA_ DTYPE_UNKNOM;
mut ex_ent er (&vp- >nvp_nut ex) ;
nv_reset(nvp, "attach");

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

783
784
785
786

788
789
790

792
793
794
795
796
797
798

800
801

803
805
807
809
811

813
814

816
817
818

820
821
822
823
824
825

827
828
829
830
831

833
834
835
836
838
840
841
842
844
846

848

case DDI

defaul t:

while (nvp->nvp_state & NV_RESET) {
cv_wai t (&vp->nvp_reset _cv,
&nvp- >nvp_nut ex) ;

}

mut ex_exi t (&vp- >nvp_nut ex) ;

}

/ *
* attach to sata nodul e
*
if (sata_hba_attach(nvc->nvc_dip,
&nvc->nvce_sat a_hba_tran,
DDl _ATTACH) != DDl _SUCCESS)
attach_state | = ATTACH PROGRESS_SATA MODULE;

break;

}

pci _confi g_t eardown(&pci _conf_handl e);

NVLOG(NVDBG | NI T, nvc, NULL, "nv_attach DDl _SUCCESS", NULL);
return (DDl _SUCCESS);

_RESUME:

nvc = ddi _get_soft_state(nv_statep, inst);

NVLOG(NVDBG_I| NI T, nvc, NULL,
"nv_attach(): DDI_RESUME inst %", inst);

if (pci_config_setup(dip, &pci_conf_handle) != DD _SUCCESS) {
return (DDl _FAI LURE);
}

/*
* Set the PClI command register: enable | MEM Master.
*/

command = pci _config_get 16(pci _conf_handl e, PCl _CONF_COW ;
pci _config_put 16(pci _conf _handl e, PCl _CONF_COW
comand| PCl _COMM_| Q PClI _COVM MAE| PCI _COVMM ME) ;

*

* Need to set bit 2 to 1 at config offset 0x50

* to enabl e access to the bar5 registers.

*

/
reg32 = pci_config_get32(pci_conf_handl e, NV_SATA CFG 20);
if ((reg32 & NV_BAR5_SPACE EN) != NV_BAR5_SPACE_EN) {
pci _config_put 32(pci _conf_handl e, NV_SATA CFG 20,
reg32 | NV_BAR5_SPACE_EN);

}

nvc- >nvc_state & ~NV_CTRL_SUSPEND;

for (i = 0; i < NV_MAX_PORTS(nvc); i
nv_resune(& nvc->nvc_port[i]
}

pci _confi g_t eardown(&pci _conf _handl e);

++) {
))

return (DDl _SUCCESS);

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

849
850

853
854
855

857
858
859

861
862
863
864
865
866

868
869
870
871
872
873
874

876
877
878

880
881
882

884
885
886
887
888

890
891
892

894
895
896
898

900
901 }

return (DDl _FAI LURE);

/*
* DDI _ATTACH failure path starts here
*/

if (attach_state & ATTACH PROGRESS_| NTR_ADDED) {
nv_rem.intrs(nvc);
}

if (attach_state & ATTACH PROGRESS SATA MODULE) {
/ *

* Renove tiners
*/

int port = 0;
nv_port_t *nvp;

for (; port < NV_MAX_PORTS(nvc); port++) {
nvp = &nvc->nvc_port[port]);
if (nvp->nvp_timeout_id != 0)
(voi d) untimeout (nvp->nvp_timeout
}

}

if (attach_state & ATTACH PROGRESS MUTEX_INIT) {
nmut ex_destroy(&nvc- >nvc_nut ex) ;

}

if (attach_state & ATTACH PROGRESS CTL_SETUP) {
nv_uninit_ctl(nvc);
}

if (attach_: st ate & ATTACH PROGRESS BARS) {
while (--bar >= 0) {

ddi _regs_nmap_free(&vc->nvc_bar_hdl [bar]);

}

if (attach_state & ATTACH PROGRESS_STATEP_ALLOC) {
ddi _soft_state_free(nv_statep, inst);

}

if (attach_state & ATTACH_PROGRESS_CONF_HANDLE) {
pci _config_t eardown(&pci _conf _handl e);
}

crm_err (CE_WARN, "nv_sata%l attach failed", inst);

return (DDl _FAI LURE);

__unchanged_portion_omtted_

2502 /
2503
2490
2504
2505 /

*

* |Initialize register handling specific to ncp51/ ncp55/ ncp6l
* |Initialize register handling specific to ncp51/ ntp55
*
/
* ARGSUSED */

2506 static void
2507 ncp5x_reg_init(nv_ctl_t *nvc, ddi_acc_handl e_t pci_conf_handl e)

2508 {
2509
2510

nv_port_t *nvp;
uchar _t *bar5 = nvc->nvc_bar_addr[5];

_id);

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

2511

2513
2514

2516
2517
2518
2519
2520
2521

2523
2524
2525
2526
2527

2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540

2542
2543
2544
2545
2546
2547
2548
2549
2550
2551

2553
2554
2555
2556
2557
2558
2559
2545
2560
2561
2562
2563
2564
2565
2549
2550
2566

2568
2569
2570
2571

2573

#i f def

#endi f

10
uint8_t off, port;

nvc->nve_ncp5x_ctl = (uint32_t *)(bar5 + MCP5X _CTL);
nvc->nve_ncp5x_ncq = (uint32_t *)(bar5 + MCP5X_NCQ ;

for (port =0, off = 0; port < NV_MAX PORTS(nvc);
nvp = & nvc->nvc port[port])
nvp- >nvp_ncp5x_i nt _status =
(uint16_t *)(bar5 + MCP5X_I NT_STATUS + of f);
nvp- >nvp_ntp5x_int _ctl =
(uint16_t *)(bar5 + MCP5X_INT_CTL + off);

port++, off += 2) {

/*
* clear any previous interrupts asserted
*/

nv_put 16(nvc- >nvc_bar _hdl [5],
MCP5X_| NT_CLEAR) ;

nvp- >nvp_ntp5x_i nt _stat us,

These are the interrupts to accept for now. The spec
says these are enable bits, but nvidia has indicated
these are masking bits. Even though they may be masked
out to prevent asserting the main interrupt, they can
still be asserted while reading the interrupt status
register, so that needs to be considered in the interrupt
* handl er.

*/

nv_put 16(nvc- >nvc_bar _hdl [5],
~(MCP5X_I NT_I GNORE)) ;

A

nvp- >nvp_ncp5x_int_ctl,

Al low the driver to programthe BMon the first command instead
of waiting for an interrupt.

* ok ko
~

NCQ
fllags = MCP_SATA AE_NCQ PDEV_FI RST_CMD | MCP_SATA AE_NCQ SDEV_FI RST_CMD,

nv_put 32(nvc->nvc_bar _hdl [5], nvc->nvc_ntp5x_ncq, flags);
flags = MCP_SATA AE_CTL_PRI SV\NCQ| MCP_SATA_AE_CTL_SEC SV\NCQ

nv_put 32(nvc->nvc_bar _hdl [5], nvc->nvc_ntp5x_ctl, flags);

/*

* ncp55 rev A03 and above supports 40-bit physical addressing.
* Enable DVA to take advantage of that.

*

*/

if ((nvec->nvc_devid > 0x37f) |
((nvec->nvc_devid == 0x37f) && (nvc->nvc_revid >= 0xa3))) {
if (nvc->nvc_revid >= 0xa3)
if (nv_sata_40bit_dma == B_TRUE) {
uint32_t reg32;
NVLOG(NVDBG_I NI T, nvp->nvp_ctlp, nvp,
"devid is % revid is %X 40-bit DVA"
" addressing enabl ed", nvc->nvc_devid,
nve->nve _revid);
"rev idis 9%. 40-bit DVA addressing"
enabl ed", nvc->nvc_revid);
nvc->dma_40bit = B_TRUE;

reg32 = pci_config_get32(pci_conf_handl e,
NV_SATA_CFG_20) ;

pci _confi g_put32(pci _conf_handl e, NV_SATA CFG 20,
reg32 | NV_40BI T_PRD);

| *

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c 11
2574 * CFG 23 bits 0-7 contain the top 8 bits (of 40

2575 * bits) for the prinmary PRD table, and bits 8-15
2576 * contain the top 8 bits for the secondary. Set

2577 * to zero because the DVA attribute table for PRD
2578 * allocation forces it into 32 bit address space
2579 * anyway.

2580 */

2581 reg32 = pci_config_get32(pci_conf_handl e,

2582 Nv SATA_CFG 23);

2583 pci _config_| put 32(pCI _conf_handl e, NV_SATA CFG 23,
2584 reg32 & Oxffff0000);

2585 } else {

2586 LOG(NVDBG_ | NI T, nvp->nvp_ctlp, nvp,

2587 "40-bit DMA disabled by nv_sata_40bit_dma", NULL);
2588 }

2589 } else {

2590 nv_cm _err (CE_NOTE, nvp->nvp_ctlp, nvp, "devid is % revid is"
2591 %<. Not capable of 40-bit DVA addressing",

2592 nvc->nvc_devi d, nvc->nvc_revid);

2575 nv_cm _err (CE_NOTE, nvp->nvp_ctlp, nvp, "rev id is % and is "
2576 "not capable of 40-bit DMA addressing", nvc->nvc_revid);
2593 }

2594 }

__unchanged_portion_onitted_

2645 [*

2646 * Initialize the controller and set up driver data structures.
2647 * determne if ck804 or ntp5x class.

2648 */

2649 static int

2650 nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handl e_t pci_conf_handl e)

2651 {

2652 struct sata_hba_tran stran;

2653 nv_port_t *nvp;

2654 int j;

2638 int j, ck804;

2655 uchar _t *cnd_addr, *ctl_addr, *bm addr;

2656 ddi _acc_handl e_t bar5_hdl = nvc->nvc_bar_hdl [5];

2657 uchar_t *bar5 = nvc->nvc_bar_addr[5];

2658 uint32_t reg32;

2659 uint8_t reg8, reg8_save;

2661 NVLOG(NVDBG | NI T, nvec, NULL, "nv_init_ctl entered", NULL);

2647 ck804 = B_TRUE;

2648 #ifdef SGPI O _SUPPORT

2663 nvc- >nve_ncp5x_flag = B_FALSE;

2650 #endi f

2665 /*

2666 * Need to set bit 2 to 1 at config offset 0x50

2667 * to enable access to the bar5 registers.

2668 */

2669 reg32 = pci_config_get32(pci _conf_handl e, NV_SATA CFG 20);

2670 if (!(reg32 & NV_BAR5_SPACE_EN))

2671 pci _config_put32(pci_conf_handl e, NV_SATA CFG 20,

2672 reg32 [NV_BAR5_SPACE EN);

2673 }

2675 /*

2676 * Determine if this is ck804 or ntp5x. c¢k804 will nmap in the
2677 * task file registers into bar5 while ncp5x won’t. The offset of
2678 * the task file registers in ncp5x’s space is unused, so it will
2679 * return zero. So check one of the task file registers to see if it is
2680 * writable and reads back what was witten. If it’s nmepbx it will

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c 12

2681
2682
2683
2684

2687

2689
2690
2691

2693
2681
2694
2695
2696
2697

2699

2701
2702
2703
2689
2690
2704
2705
2706
2707
2708
2709
2695
2710
2711
2712
2713

2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730

2732
2733

2735
2736
2737
2738

2740
2741

* return back Oxff whereas ck804 will return the value witten.
*/

reg8_save = nv_get 8(bar5_hdl,
(uint8_t *)(bar5 + NV_BAR5_TRAN_LEN CH X));

for (j

}

nv_put 8(bar5_hdl,

=1) <3 j+) |

nv_put 8(bar5_hdl, (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN CH X), j);
reg8 = nv_get8(bar5_hdl,
(uint8't *)(bar5 + NV_BAR5S_TRAN LEN CH X));

if (regB '=j) {

k804 = B _FALSE;

nvc >nve_nep5x_flag =
br eak;

B_TRUE;

(uint8_t *)(bar5 + NV_BAR5_TRAN LEN CH X), reg8_save);

if (nvc->nvc_ncp5x_flag == B_FALSE)

NVLOG(NVDBG | NI'T, nvc, NULL, “"controller is CK804/ MCP04",

NULL) ;

if (ck804 == B_TRUE)

_ {
NVLOG(NVDBG_ | NI T, nvc, NULL, "controller is CK804", NULL);
nvc->nvce_interrupt = ck804_intr;
nvc->nve_reg_init = ck804_reg_init;
nvc->nvc_set _intr = ck804_set_intr;

} else {

stran.
stran.
stran.
stran.

NVLOG(NVDBG | NI T, nvc, NULL, "controller is MCP51/ MCP55/ MCP61",
NULL) ;

NVLOG(NVDBG_ I NI T, nvc, NULL, "controller is MCP51/ MCP55", NULL);

nvc->nvc_i nterrupt = ncp5x_intr;

nvc->nve_reg_init = nmcp5x_reg_init;

nvc->nvc_set _intr = ncp5x_set_intr;

sata_tran_hba_rev = SATA TRAN HBA REV,
sata_tran_hba_di p = nvc->nvc_dip;
sata_tran_hba_numcports = NV_NUM PORTS;
sata_tran_hba_features_support =

SATA_CTLF_HOTPLUG | SATA_CTLF_ASN | SATA CTLF_ATAPI ;

stran.
stran.
stran.
stran.
stran.
stran.
stran.
stran.
stran.

sata_tran_hba_qdepth = NV_QUEUE_SLOTS;
sata_tran_probe_port = nv_sata_probe;
sata_tran_start = nv_sata_start;
sata_tran_abort = nv_sata_abort;
sata_tran_reset_dport = nv_sata_reset;
sata_tran_sel ftest = NULL;

sata_tran_hot pl ug_ops = &nv_hot pl ug_ops;
sata_tran pwrrrgt_ops = NULL;
sata_tran_ioctl = NULL;

nvc->nvc_sata_hba_tran = stran;

nvc->nvc_port = kmem zal | oc(si zeof (nv_port_t)

NV_MAX_PORTS(nvc),

KM _SLEEP) ;

/*
*ini
*/

tialize registers coomon to all chipsets

nv_common_reg_i nit(nvc);

for (j

= 0; j < NV_MAX_PORTS(nvc); j++) {
nvp = &(nvc->nvc_port[j]),

new usr/src/uts/comon/i o/ sat a/ adapt ers/ nv_sata/nv_sata.c

2743
2744
2745

2747
2748

2750
2751

2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764

2766
2767
2768

2770

2772
2773
2774
2775
2776
2777

2779
2780
2781
2782

2784
2785
2786
2787
2788
2789
2790

2792

2793 }

cnd_addr = nvp->nvp_cnd_addr;
ctl_addr = nvp->nvp_ctl _addr;
bm addr = nvp->nvp_bm addr;

mut ex_i ni t (&vp->nvp_nutex, NULL, MJUTEX DRI VER,
DDl _I NTR_PRI (nvc->nvc_intr_pri));

cv_init(&wp->nvp_sync_cv, NULL, CV_DRIVER, NULL);
cv_init(&vp->nvp_reset_cv, NULL, CV_DRIVER, NULL);

nvp- >nvp_dat a = cnd_addr + NV_DATA;
nvp->nvp_error = cnmd_addr + NV_ERROR;
nvp->nvp_feature = cnd_addr + NV_FEATURE;

nvp->nvp_count = cnd_addr + NV_COUNT;
nvp- >nvp_sect = cnd_addr + NV_SECT;
nvp->nvp_| cyl = cnd_addr + NV_LCYL;
nvp->nvp_hcyl = cnd_addr + NV_HCYL;
nvp->nvp_drvhd = cnd_addr + NV_DRVHD;
nvp->nvp_status = cmd_addr + NV_STATUS;

nvp->nvp_cnd crd_addr + NV_CMD;
nvp->nvp_al tstatus = ctl_addr + NV_ALTSTATUS;
nvp- >nvp_devct| = ctl_addr + NV_DEVCTL;

nvp->nvp_bm cx = bmaddr + BM CX_REG
nvp->nvp_bm sx = bmaddr + BM SX REG
nvp->nvp_bm dtpx = (uint32_t *)(bm.addr + BM DTPX_REG;

nvp->nvp_state = O;

/*
* Initialize dnma handl es, etc.
* If it fails, the port is in inactive state.
*/
nv_init_port(nvp);
}
/*

* initialize register by calling chip specific reg initialization
*

/
(*(nvec->nvc_reg_init))(nve, pci_conf_handle);

/* initialize the hba dma attribute */
if (nvc->dma_40bit == B_TRUE)
nvc->nvc_sata_hba_tran. sata_tran_hba_dma_attr
&uf fer_dma_40bit_attr;

el se
nvc->nvc_sata_hba_tran. sata_tran_hba_dma_attr =
&buffer_dma_attr;

return (NV_SUCCESS);

__unchanged_portion_onitted_

new usr/src/uts/comon/ sys/ sat a/ adapt ers/ nv_sata/nv_sata. h 1 new usr/src/uts/common/ sys/ sat a/ adapt ers/ nv_sata/nv_sata. h

LR R R R EEEEEREREREREEEEEEEEEEEEEEEEREEEREREREEEEEEEEEESES] 62 VOId (*nvc reg Inlt)(struct nv Ctl *nvc‘
20356 Tue Jul 10 14:30:20 2012 63 ddi _acc_handl e_t pci _conf_handl e);
new usr/src/uts/common/ sys/ sat a/ adapt ers/ nv_sata/nv_sata. h
*** NO COMMENTS *** 65 dev_info_t *nvc_dip; /* devinfo pointer of controller */
LEEE R R R EE SRR EEEEEEEEEEE R EREEEEEEEEEEEEEEEEEEREEEEEEEEEESEE]
1/* 67 struct nv_port *nvc_port; /* array of pointers to port struct */
2 * CDDL HEADER START
3 * 69 /*
4 * The contents of this file are subject to the terms of the 70 * handl e and base address to register space.
5 * Common Devel opnent and Distribution License (the "License"). 71 *
6 * You may not use this file except in conpliance with the License. 72 * 0: port O task file
7 * 73 * 1: port O status
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE 74 * 2: port 1 task file
9 * or http://ww. opensol aris.org/os/licensing. 75 * 3. port 1 status
10 * See the License for the specific |anguage governi ng perm ssions 76 * 4: bus nmaster for both ports
11 * and limtations under the License. 77 */5: extended registers for SATA features
12 = 78 *
13 * When distributing Covered Code, include this CDDL HEADER in each 79 ddi _acc_handl e_t nvc_bar_hdl [6];
14 * file and include the License file at usr/src/OPENSOLARI S. LI CENSE. 80 uchar _t *nvc_bar _addr[6];
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying 82 /*
17 * information: Portions Copyright [yyyy] [name of copyright owner] 83 * sata registers in bar 5 which are shared on all devices
18 * 84 * on the channel.
19 * CDDL HEADER END 85 */
20 */ 86 ui nt32_t *nvc_ncp5x_ctl;
87 ui nt 32_t *nvc_ntp5x_ncq; /* NCQ status control bits */
22 /*
23 * Copyright (c) 2007, 2010, Oacle and/or its affiliates. Al rights reserved. 89 kmut ex_t nvc_mutex; /* ctrl level lock */
24 */
91 ddi _intr_handl e_t *nvc_htable; /* For array of interrupts */
26 #ifndef _NV_SATA H 92 int nvc_intr_type; /* What type of interrupt */
27 #define _NV_SATA H 93 int nvc_intr_cnt; /* # of intrs count returned */
94 size_t nvc_intr_size; /* Size of intr array to */
95 ui nt _t nvc_intr_pri; /* Interrupt priority */
30 #ifdef __cplusplus 96 int nvc_intr_cap; /* Interrupt capabilities */
31 extern "C' { 97 uint8_t *nvc_ck804_int_status; /* interrupt status ck804 */
32 #endif
99 sata_hba_tran_t nvc_sata_hba_tran; /* sata_hba_tran for ctrl */
35 /* 101 /*
36 * SGPI O Support 102 * enabl e/disable interrupts, controller specific
37 * Enable SGPI O support only on x86/x64, because it is inplenented using 103 */
38 * functions that are only avail abl e on x86/x64. 104 voi d (*nvc_set_intr)(nv_port_t *nvp, int flag);
39 */ 105 int nvc_state; /* state flags of ctrl see bel ow */
106 uint16_t nvc_devi d; /* PCl devid of device */
41 #define NV_MAX_PORTS(nvc) nvc->nvc_sata_hba_tran. sata_tran_hba_numcports 107 #endif /* | codereview */
108 uint8_t nvc_revid; /* PCl revid of device */
43 typedef struct nv_port nv_port_t; 109 bool ean_t drma_40bi t ; /* 40bit DMA support */
110 bool ean_t nvc_ncp5x_flag; /* is the controller MCP51/ MCP55 */
45 #ifdef SGPI O_SUPPORT 111 #endif /* ! codereview */
46 typedef struct nv_sgp_cmm nv_sgp_cm_t;
47 #endi f 113 #i fdef SGPI O_SUPPORT
106 int nvc_ncp5x_flag; /* is the controller MCP51/ MCP55 */
49 [* 114 uint8_t nvc_ctlr_num /* controller nunber within the part */
50 * sizes of strings to allocate 115 ui nt32_t nvc_sgp_csr; /* SGPIO CSR i/ o address */
51 */ 116 vol atile nv_sgp_cb_t *nvc_sgp_chp; /* SGPIO Control Block */
52 #define NV_STR LEN 10 117 nv_sgp_cmm_t *nvc_sgp_cm,; /* SGPI O shared data */
53 #define NV_LOGBUF_LEN 512 118 #endi f
54 #define NV_REASON LEN 30 119 } nv_ctl _t;

__unchanged_portion_onitted_
57 typedef struct nv_ctl {
/*
59 * Each of these are specific to the chipset in use.
*/

61 uint_t (*nvc_interrupt)(caddr_t argl, caddr_t arg2);

