
new/usr/src/man/man7d/nv_sata.7d 1

**********************************************************
    2008 Tue Jul 10 14:30:17 2012
new/usr/src/man/man7d/nv_sata.7d
*** NO COMMENTS ***
**********************************************************

1 ’\" te
2 .\" Copyright (c) 2008, Sun Microsystems, Inc.  All Rights Reserved
3 .\" Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
4 #endif /* ! codereview */
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
7 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
8 .TH nv_sata 7D "25 Sep 2011"
3 .TH NV_SATA 7D "Jul 22, 2008"
9 .SH NAME

10 nv_sata \- NVIDIA CK804/MCP04/MCP51/MCP55/MCP61 SATA controller driver
5 nv_sata \- Nvidia ck804/mcp55 SATA controller driver
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fBsata@unit-address\fR
15 .fi

17 .SH DESCRIPTION
18 .sp
19 .LP
20 The \fBnv_sata\fR driver is a SATA HBA driver that supports NVIDIA CK804/MCP04 
21 and MCP51/MCP55/MCP61 SATA HBA controllers. Note that while these controllers
15 The \fBnv_sata\fR driver is a SATA HBA driver that supports Nvidia ck804 and
16 mcp55 SATA HBA controllers.      Note that while these Nvidia controllers
22 support standard SATA features including SATA-II drives, NCQ, hotplug and ATAPI
23 drives, the driver currently does not support NCQ features.
24 .SH CONFIGURATION
25 .sp
26 .LP
27 The \fBnv_sata\fR module contains no user configurable parameters.
28 .SH FILES
29 .sp
30 .ne 2
31 .na
32 \fB\fB/kernel/drv/nv_sata\fR\fR
33 .ad
34 .sp .6
35 .RS 4n
36 32-bit \fBELF\fR kernel module (x86).
37 .RE

39 .sp
40 .ne 2
41 .na
42 \fB\fB/kernel/drv/amd64/nv_sata\fR\fR
43 .ad
44 .sp .6
45 .RS 4n
46 64-bit \fBELF\fR kernel module (x86).
47 .RE

49 .SH ATTRIBUTES
50 .sp
51 .LP
52 See \fBattributes\fR(5) for descriptions of the following attribute:
53 .sp

55 .sp
56 .TS
57 box;

new/usr/src/man/man7d/nv_sata.7d 2

58 c | c
59 l | l .
60 ATTRIBUTE TYPE ATTRIBUTE VALUE
61 _
62 Architecture x86
63 .TE

65 .SH SEE ALSO
66 .sp
67 .LP
68 \fBcfgadm\fR(1M), \fBcfgadm_sata\fR(1M), \fBprtconf\fR(1M), \fBsata\fR(7D),
69 \fBsd\fR(7D)
70 .sp
71 .LP
72 \fIWriting Device Drivers\fR



new/usr/src/pkg/manifests/driver-storage-nv_sata.mf 1

**********************************************************
    2374 Tue Jul 10 14:30:18 2012
new/usr/src/pkg/manifests/driver-storage-nv_sata.mf
*** NO COMMENTS ***
**********************************************************

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 #endif /* ! codereview */
26 #

28 #
29 # The default for payload-bearing actions in this package is to appear in the
30 # global zone only.  See the include file for greater detail, as well as
31 # information about overriding the defaults.
32 #
33 <include global_zone_only_component>
34 set name=pkg.fmri value=pkg:/driver/storage/nv_sata@$(PKGVERS)
35 set name=pkg.description \
36     value="NVIDIA CK804/MCP04/MCP51/MCP55/MCP61 SATA controller driver"
37 set name=pkg.summary \
38     value="NVIDIA CK804/MCP04/MCP51/MCP55/MCP61 SATA controller driver"
24     value="Nvidia ck804 pro / mcp55 pro combo SATA driver"
25 set name=pkg.summary value="Nvidia ck804 pro / mcp55 pro combo SATA driver"
39 set name=info.classification value=org.opensolaris.category.2008:Drivers/Ports
40 set name=variant.arch value=i386
41 dir path=kernel group=sys
42 dir path=kernel/drv group=sys
43 dir path=kernel/drv/$(ARCH64) group=sys
44 dir path=usr/share/man
45 dir path=usr/share/man/man7d
46 driver name=nv_sata class=scsi-self-identifying perms="* 0644 root sys" \
47     alias=pci10de,266 \
48     alias=pci10de,267 \
49     alias=pci10de,36 \
50     alias=pci10de,37e \
51 #endif /* ! codereview */
52     alias=pci10de,37f \
53     alias=pci10de,3e \
54     alias=pci10de,3f6 \
55     alias=pci10de,3f7 \
56 #endif /* ! codereview */
57     alias=pci10de,54 \
58     alias=pci10de,55
59 file path=kernel/drv/$(ARCH64)/nv_sata group=sys

new/usr/src/pkg/manifests/driver-storage-nv_sata.mf 2

60 file path=kernel/drv/nv_sata group=sys
61 file path=kernel/drv/nv_sata.conf group=sys
62 file path=usr/share/man/man7d/nv_sata.7d
63 legacy pkg=SUNWnvsata desc="Nvidia ck804 pro / mcp55 pro combo SATA driver" \
64     name="Nvidia ck804 pro / mcp55 pro combo SATA driver"
65 license cr_Sun license=cr_Sun
66 license lic_CDDL license=lic_CDDL



new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 1

**********************************************************
  180653 Tue Jul 10 14:30:19 2012
new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c
*** NO COMMENTS ***
**********************************************************

1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.

10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */

22 /*
23  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25 #endif /* ! codereview */
26  */

28 /*
29  *
30  * nv_sata is a combo SATA HBA driver for CK804/MCP04 (ck804) and
31  * MCP55/MCP51/MCP61 (mcp5x) based chipsets.
24  * nv_sata is a combo SATA HBA driver for ck804/mcp5x (mcp5x = mcp55/mcp51)
25  * based chipsets.
32  *
33  * NCQ
34  * ---
35  *
36  * A portion of the NCQ is in place, but is incomplete.  NCQ is disabled
37  * and is likely to be revisited in the future.
38  *
39  *
40  * Power Management
41  * ----------------
42  *
43  * Normally power management would be responsible for ensuring the device
44  * is quiescent and then changing power states to the device, such as
45  * powering down parts or all of the device.  mcp5x/ck804 is unique in
46  * that it is only available as part of a larger southbridge chipset, so
47  * removing power to the device isn’t possible.  Switches to control
48  * power management states D0/D3 in the PCI configuration space appear to
49  * be supported but changes to these states are apparently are ignored.
50  * The only further PM that the driver _could_ do is shut down the PHY,
51  * but in order to deliver the first rev of the driver sooner than later,
52  * that will be deferred until some future phase.
53  *
54  * Since the driver currently will not directly change any power state to
55  * the device, no power() entry point will be required.  However, it is
56  * possible that in ACPI power state S3, aka suspend to RAM, that power
57  * can be removed to the device, and the driver cannot rely on BIOS to
58  * have reset any state.  For the time being, there is no known
59  * non-default configurations that need to be programmed.  This judgement

new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 2

60  * is based on the port of the legacy ata driver not having any such
61  * functionality and based on conversations with the PM team.  If such a
62  * restoration is later deemed necessary it can be incorporated into the
63  * DDI_RESUME processing.
64  *
65  */

67 #include <sys/scsi/scsi.h>
68 #include <sys/pci.h>
69 #include <sys/byteorder.h>
70 #include <sys/sunddi.h>
71 #include <sys/sata/sata_hba.h>
72 #ifdef SGPIO_SUPPORT
73 #include <sys/sata/adapters/nv_sata/nv_sgpio.h>
74 #include <sys/devctl.h>
75 #include <sys/sdt.h>
76 #endif
77 #include <sys/sata/adapters/nv_sata/nv_sata.h>
78 #include <sys/disp.h>
79 #include <sys/note.h>
80 #include <sys/promif.h>

83 /*
84  * Function prototypes for driver entry points
85  */
86 static int nv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd);
87 static int nv_detach(dev_info_t *dip, ddi_detach_cmd_t cmd);
88 static int nv_quiesce(dev_info_t *dip);
89 static int nv_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd,
90     void *arg, void **result);

92 /*
93  * Function prototypes for entry points from sata service module
94  * These functions are distinguished from other local functions
95  * by the prefix "nv_sata_"
96  */
97 static int nv_sata_start(dev_info_t *dip, sata_pkt_t *spkt);
98 static int nv_sata_abort(dev_info_t *dip, sata_pkt_t *spkt, int);
99 static int nv_sata_reset(dev_info_t *dip, sata_device_t *sd);
100 static int nv_sata_activate(dev_info_t *dip, sata_device_t *sd);
101 static int nv_sata_deactivate(dev_info_t *dip, sata_device_t *sd);

103 /*
104  * Local function prototypes
105  */
106 static uint_t mcp5x_intr(caddr_t arg1, caddr_t arg2);
107 static uint_t ck804_intr(caddr_t arg1, caddr_t arg2);
108 static int nv_add_legacy_intrs(nv_ctl_t *nvc);
109 #ifdef NV_MSI_SUPPORTED
110 static int nv_add_msi_intrs(nv_ctl_t *nvc);
111 #endif
112 static void nv_rem_intrs(nv_ctl_t *nvc);
113 static int nv_start_common(nv_port_t *nvp, sata_pkt_t *spkt);
114 static int nv_start_nodata(nv_port_t *nvp, int slot);
115 static void nv_intr_nodata(nv_port_t *nvp, nv_slot_t *spkt);
116 static int nv_start_pio_in(nv_port_t *nvp, int slot);
117 static int nv_start_pio_out(nv_port_t *nvp, int slot);
118 static void nv_intr_pio_in(nv_port_t *nvp, nv_slot_t *spkt);
119 static void nv_intr_pio_out(nv_port_t *nvp, nv_slot_t *spkt);
120 static int nv_start_pkt_pio(nv_port_t *nvp, int slot);
121 static void nv_intr_pkt_pio(nv_port_t *nvp, nv_slot_t *nv_slotp);
122 static int nv_start_dma(nv_port_t *nvp, int slot);
123 static void nv_intr_dma(nv_port_t *nvp, struct nv_slot *spkt);
124 static void nv_uninit_ctl(nv_ctl_t *nvc);
125 static void mcp5x_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);



new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 3

126 static void ck804_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
127 static void nv_uninit_port(nv_port_t *nvp);
128 static void nv_init_port(nv_port_t *nvp);
129 static int nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
130 static int mcp5x_packet_complete_intr(nv_ctl_t *nvc, nv_port_t *nvp);
131 #ifdef NCQ
132 static int mcp5x_dma_setup_intr(nv_ctl_t *nvc, nv_port_t *nvp);
133 #endif
134 static void nv_start_dma_engine(nv_port_t *nvp, int slot);
135 static void nv_port_state_change(nv_port_t *nvp, int event, uint8_t addr_type,
136     int state);
137 static void nv_common_reg_init(nv_ctl_t *nvc);
138 static void ck804_intr_process(nv_ctl_t *nvc, uint8_t intr_status);
139 static void nv_reset(nv_port_t *nvp, char *reason);
140 static void nv_complete_io(nv_port_t *nvp,  sata_pkt_t *spkt, int slot);
141 static void nv_timeout(void *);
142 static int nv_poll_wait(nv_port_t *nvp, sata_pkt_t *spkt);
143 static void nv_cmn_err(int ce, nv_ctl_t *nvc, nv_port_t *nvp, char *fmt, ...);
144 static void nv_read_signature(nv_port_t *nvp);
145 static void mcp5x_set_intr(nv_port_t *nvp, int flag);
146 static void ck804_set_intr(nv_port_t *nvp, int flag);
147 static void nv_resume(nv_port_t *nvp);
148 static void nv_suspend(nv_port_t *nvp);
149 static int nv_start_sync(nv_port_t *nvp, sata_pkt_t *spkt);
150 static int nv_abort_active(nv_port_t *nvp, sata_pkt_t *spkt, int abort_reason,
151     boolean_t reset);
152 static void nv_copy_registers(nv_port_t *nvp, sata_device_t *sd,
153     sata_pkt_t *spkt);
154 static void nv_link_event(nv_port_t *nvp, int flags);
155 static int nv_start_async(nv_port_t *nvp, sata_pkt_t *spkt);
156 static int nv_wait3(nv_port_t *nvp, uchar_t onbits1, uchar_t offbits1,
157     uchar_t failure_onbits2, uchar_t failure_offbits2,
158     uchar_t failure_onbits3, uchar_t failure_offbits3,
159     uint_t timeout_usec, int type_wait);
160 static int nv_wait(nv_port_t *nvp, uchar_t onbits, uchar_t offbits,
161     uint_t timeout_usec, int type_wait);
162 static int nv_start_rqsense_pio(nv_port_t *nvp, nv_slot_t *nv_slotp);
163 static void nv_setup_timeout(nv_port_t *nvp, clock_t microseconds);
164 static clock_t nv_monitor_reset(nv_port_t *nvp);
165 static int nv_bm_status_clear(nv_port_t *nvp);
166 static void nv_log(nv_ctl_t *nvc, nv_port_t *nvp, const char *fmt, ...);

168 #ifdef SGPIO_SUPPORT
169 static int nv_open(dev_t *devp, int flag, int otyp, cred_t *credp);
170 static int nv_close(dev_t dev, int flag, int otyp, cred_t *credp);
171 static int nv_ioctl(dev_t dev, int cmd, intptr_t arg, int mode,
172     cred_t *credp, int *rvalp);

174 static void nv_sgp_led_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle);
175 static int nv_sgp_detect(ddi_acc_handle_t pci_conf_handle, uint16_t *csrpp,
176     uint32_t *cbpp);
177 static int nv_sgp_init(nv_ctl_t *nvc);
178 static int nv_sgp_check_set_cmn(nv_ctl_t *nvc);
179 static int nv_sgp_csr_read(nv_ctl_t *nvc);
180 static void nv_sgp_csr_write(nv_ctl_t *nvc, uint32_t val);
181 static int nv_sgp_write_data(nv_ctl_t *nvc);
182 static void nv_sgp_activity_led_ctl(void *arg);
183 static void nv_sgp_drive_connect(nv_ctl_t *nvc, int drive);
184 static void nv_sgp_drive_disconnect(nv_ctl_t *nvc, int drive);
185 static void nv_sgp_drive_active(nv_ctl_t *nvc, int drive);
186 static void nv_sgp_locate(nv_ctl_t *nvc, int drive, int value);
187 static void nv_sgp_error(nv_ctl_t *nvc, int drive, int value);
188 static void nv_sgp_cleanup(nv_ctl_t *nvc);
189 #endif

new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 4

192 /*
193  * DMA attributes for the data buffer for x86.  dma_attr_burstsizes is unused.
194  * Verify if needed if ported to other ISA.
195  */
196 static ddi_dma_attr_t buffer_dma_attr = {
197 DMA_ATTR_V0, /* dma_attr_version */
198 0, /* dma_attr_addr_lo: lowest bus address */
199 0xffffffffull, /* dma_attr_addr_hi: */
200 NV_BM_64K_BOUNDARY - 1, /* dma_attr_count_max i.e for one cookie */
201 4, /* dma_attr_align */
202 1, /* dma_attr_burstsizes. */
203 1, /* dma_attr_minxfer */
204 0xffffffffull, /* dma_attr_maxxfer including all cookies */
205 0xffffffffull, /* dma_attr_seg */
206 NV_DMA_NSEGS, /* dma_attr_sgllen */
207 512, /* dma_attr_granular */
208 0, /* dma_attr_flags */
209 };

______unchanged_portion_omitted_

311 static sata_tran_hotplug_ops_t nv_hotplug_ops;

313 extern struct mod_ops mod_driverops;

315 static  struct modldrv modldrv = {
316 &mod_driverops, /* driverops */
317 "NVIDIA CK804/MCP04/MCP51/MCP55/MCP61 HBA",
311 "Nvidia ck804/mcp51/mcp55 HBA",
318 &nv_dev_ops, /* driver ops */
319 };

______unchanged_portion_omitted_

554 #else

556 #define nv_put8 ddi_put8
557 #define nv_put32 ddi_put32
558 #define nv_get32 ddi_get32
559 #define nv_put16 ddi_put16
560 #define nv_get16 ddi_get16
561 #define nv_get8 ddi_get8

563 #endif

566 /*
567  * Driver attach
568  */
569 static int
570 nv_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
571 {
572 int status, attach_state, intr_types, bar, i, j, command;
573 int inst = ddi_get_instance(dip);
574 ddi_acc_handle_t pci_conf_handle;
575 nv_ctl_t *nvc;
576 uint8_t subclass;
577 uint32_t reg32;
578 #ifdef SGPIO_SUPPORT
579 pci_regspec_t *regs;
580 int rlen;
581 #endif

583 switch (cmd) {

585 case DDI_ATTACH:



new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 5

587 attach_state = ATTACH_PROGRESS_NONE;

589 status = ddi_soft_state_zalloc(nv_statep, inst);

591 if (status != DDI_SUCCESS) {
592 break;
593 }

595 nvc = ddi_get_soft_state(nv_statep, inst);

597 nvc->nvc_dip = dip;

599 NVLOG(NVDBG_INIT, nvc, NULL, "nv_attach(): DDI_ATTACH", NULL);

601 attach_state |= ATTACH_PROGRESS_STATEP_ALLOC;

603 if (pci_config_setup(dip, &pci_conf_handle) == DDI_SUCCESS) {
604 nvc->nvc_devid = pci_config_get16(pci_conf_handle,
605     PCI_CONF_DEVID);
606 #endif /* ! codereview */
607 nvc->nvc_revid = pci_config_get8(pci_conf_handle,
608     PCI_CONF_REVID);
609 NVLOG(NVDBG_INIT, nvc, NULL,
610     "inst %d: devid is %x silicon revid is %x"
611     " nv_debug_flags=%x", inst, nvc->nvc_devid,
612     nvc->nvc_revid, nv_debug_flags);
598     "inst %d: silicon revid is %x nv_debug_flags=%x",
599     inst, nvc->nvc_revid, nv_debug_flags);
613 } else {
614 break;
615 }

617 attach_state |= ATTACH_PROGRESS_CONF_HANDLE;

619 /*
620  * Set the PCI command register: enable IO/MEM/Master.
621  */
622 command = pci_config_get16(pci_conf_handle, PCI_CONF_COMM);
623 pci_config_put16(pci_conf_handle, PCI_CONF_COMM,
624     command|PCI_COMM_IO|PCI_COMM_MAE|PCI_COMM_ME);

626 subclass = pci_config_get8(pci_conf_handle, PCI_CONF_SUBCLASS);

628 if (subclass & PCI_MASS_RAID) {
629 cmn_err(CE_WARN,
630     "attach failed: RAID mode not supported");

632 break;
633 }

635 /*
636  * the 6 bars of the controller are:
637  * 0: port 0 task file
638  * 1: port 0 status
639  * 2: port 1 task file
640  * 3: port 1 status
641  * 4: bus master for both ports
642  * 5: extended registers for SATA features
643  */
644 for (bar = 0; bar < 6; bar++) {
645 status = ddi_regs_map_setup(dip, bar + 1,
646     (caddr_t *)&nvc->nvc_bar_addr[bar], 0, 0, &accattr,
647     &nvc->nvc_bar_hdl[bar]);

649 if (status != DDI_SUCCESS) {
650 NVLOG(NVDBG_INIT, nvc, NULL,

new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 6

651     "ddi_regs_map_setup failure for bar"
652     " %d status = %d", bar, status);
653 break;
654 }
655 }

657 attach_state |= ATTACH_PROGRESS_BARS;

659 /*
660  * initialize controller structures
661  */
662 status = nv_init_ctl(nvc, pci_conf_handle);

664 if (status == NV_FAILURE) {
665 NVLOG(NVDBG_INIT, nvc, NULL, "nv_init_ctl failed",
666     NULL);

668 break;
669 }

671 attach_state |= ATTACH_PROGRESS_CTL_SETUP;

673 /*
674  * initialize mutexes
675  */
676 mutex_init(&nvc->nvc_mutex, NULL, MUTEX_DRIVER,
677     DDI_INTR_PRI(nvc->nvc_intr_pri));

679 attach_state |= ATTACH_PROGRESS_MUTEX_INIT;

681 /*
682  * get supported interrupt types
683  */
684 if (ddi_intr_get_supported_types(dip, &intr_types) !=
685     DDI_SUCCESS) {
686 nv_cmn_err(CE_WARN, nvc, NULL,
687     "ddi_intr_get_supported_types failed");

689 break;
690 }

692 NVLOG(NVDBG_INIT, nvc, NULL,
693     "ddi_intr_get_supported_types() returned: 0x%x",
694     intr_types);

696 #ifdef NV_MSI_SUPPORTED
697 if (intr_types & DDI_INTR_TYPE_MSI) {
698 NVLOG(NVDBG_INIT, nvc, NULL,
699     "using MSI interrupt type", NULL);

701 /*
702  * Try MSI first, but fall back to legacy if MSI
703  * attach fails
704  */
705 if (nv_add_msi_intrs(nvc) == DDI_SUCCESS) {
706 nvc->nvc_intr_type = DDI_INTR_TYPE_MSI;
707 attach_state |= ATTACH_PROGRESS_INTR_ADDED;
708 NVLOG(NVDBG_INIT, nvc, NULL,
709     "MSI interrupt setup done", NULL);
710 } else {
711 nv_cmn_err(CE_CONT, nvc, NULL,
712     "MSI registration failed "
713     "will try Legacy interrupts");
714 }
715 }
716 #endif



new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 7

718 /*
719  * Either the MSI interrupt setup has failed or only
720  * the fixed interrupts are available on the system.
721  */
722 if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED) &&
723     (intr_types & DDI_INTR_TYPE_FIXED)) {

725 NVLOG(NVDBG_INIT, nvc, NULL,
726     "using Legacy interrupt type", NULL);

728 if (nv_add_legacy_intrs(nvc) == DDI_SUCCESS) {
729 nvc->nvc_intr_type = DDI_INTR_TYPE_FIXED;
730 attach_state |= ATTACH_PROGRESS_INTR_ADDED;
731 NVLOG(NVDBG_INIT, nvc, NULL,
732     "Legacy interrupt setup done", NULL);
733 } else {
734 nv_cmn_err(CE_WARN, nvc, NULL,
735     "legacy interrupt setup failed");
736 NVLOG(NVDBG_INIT, nvc, NULL,
737     "legacy interrupt setup failed", NULL);
738 break;
739 }
740 }

742 if (!(attach_state & ATTACH_PROGRESS_INTR_ADDED)) {
743 NVLOG(NVDBG_INIT, nvc, NULL,
744     "no interrupts registered", NULL);
745 break;
746 }

748 #ifdef SGPIO_SUPPORT
749 /*
750  * save off the controller number
751  */
752 (void) ddi_getlongprop(DDI_DEV_T_NONE, dip, DDI_PROP_DONTPASS,
753     "reg", (caddr_t)&regs, &rlen);
754 nvc->nvc_ctlr_num = PCI_REG_FUNC_G(regs->pci_phys_hi);
755 kmem_free(regs, rlen);

757 /*
758  * initialize SGPIO
759  */
760 nv_sgp_led_init(nvc, pci_conf_handle);
761 #endif /* SGPIO_SUPPORT */

763 /*
764  * Do initial reset so that signature can be gathered
765  */
766 for (j = 0; j < NV_NUM_PORTS; j++) {
767 ddi_acc_handle_t bar5_hdl;
768 uint32_t sstatus;
769 nv_port_t *nvp;

771 nvp = &(nvc->nvc_port[j]);
772 bar5_hdl = nvp->nvp_ctlp->nvc_bar_hdl[5];
773 sstatus = ddi_get32(bar5_hdl, nvp->nvp_sstatus);

775 if (SSTATUS_GET_DET(sstatus) ==
776     SSTATUS_DET_DEVPRE_PHYCOM) {

778 nvp->nvp_state |= NV_ATTACH;
779 nvp->nvp_type = SATA_DTYPE_UNKNOWN;
780 mutex_enter(&nvp->nvp_mutex);
781 nv_reset(nvp, "attach");

new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 8

783 while (nvp->nvp_state & NV_RESET) {
784 cv_wait(&nvp->nvp_reset_cv,
785     &nvp->nvp_mutex);
786 }

788 mutex_exit(&nvp->nvp_mutex);
789 }
790 }

792 /*
793  * attach to sata module
794  */
795 if (sata_hba_attach(nvc->nvc_dip,
796     &nvc->nvc_sata_hba_tran,
797     DDI_ATTACH) != DDI_SUCCESS) {
798 attach_state |= ATTACH_PROGRESS_SATA_MODULE;

800 break;
801 }

803 pci_config_teardown(&pci_conf_handle);

805 NVLOG(NVDBG_INIT, nvc, NULL, "nv_attach DDI_SUCCESS", NULL);

807 return (DDI_SUCCESS);

809 case DDI_RESUME:

811 nvc = ddi_get_soft_state(nv_statep, inst);

813 NVLOG(NVDBG_INIT, nvc, NULL,
814     "nv_attach(): DDI_RESUME inst %d", inst);

816 if (pci_config_setup(dip, &pci_conf_handle) != DDI_SUCCESS) {
817 return (DDI_FAILURE);
818 }

820 /*
821  * Set the PCI command register: enable IO/MEM/Master.
822  */
823 command = pci_config_get16(pci_conf_handle, PCI_CONF_COMM);
824 pci_config_put16(pci_conf_handle, PCI_CONF_COMM,
825     command|PCI_COMM_IO|PCI_COMM_MAE|PCI_COMM_ME);

827 /*
828  * Need to set bit 2 to 1 at config offset 0x50
829  * to enable access to the bar5 registers.
830  */
831 reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_20);

833 if ((reg32 & NV_BAR5_SPACE_EN) != NV_BAR5_SPACE_EN) {
834 pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
835     reg32 | NV_BAR5_SPACE_EN);
836 }

838 nvc->nvc_state &= ~NV_CTRL_SUSPEND;

840 for (i = 0; i < NV_MAX_PORTS(nvc); i++) {
841 nv_resume(&(nvc->nvc_port[i]));
842 }

844 pci_config_teardown(&pci_conf_handle);

846 return (DDI_SUCCESS);

848 default:



new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 9

849 return (DDI_FAILURE);
850 }

853 /*
854  * DDI_ATTACH failure path starts here
855  */

857 if (attach_state & ATTACH_PROGRESS_INTR_ADDED) {
858 nv_rem_intrs(nvc);
859 }

861 if (attach_state & ATTACH_PROGRESS_SATA_MODULE) {
862 /*
863  * Remove timers
864  */
865 int port = 0;
866 nv_port_t *nvp;

868 for (; port < NV_MAX_PORTS(nvc); port++) {
869 nvp = &(nvc->nvc_port[port]);
870 if (nvp->nvp_timeout_id != 0) {
871 (void) untimeout(nvp->nvp_timeout_id);
872 }
873 }
874 }

876 if (attach_state & ATTACH_PROGRESS_MUTEX_INIT) {
877 mutex_destroy(&nvc->nvc_mutex);
878 }

880 if (attach_state & ATTACH_PROGRESS_CTL_SETUP) {
881 nv_uninit_ctl(nvc);
882 }

884 if (attach_state & ATTACH_PROGRESS_BARS) {
885 while (--bar >= 0) {
886 ddi_regs_map_free(&nvc->nvc_bar_hdl[bar]);
887 }
888 }

890 if (attach_state & ATTACH_PROGRESS_STATEP_ALLOC) {
891 ddi_soft_state_free(nv_statep, inst);
892 }

894 if (attach_state & ATTACH_PROGRESS_CONF_HANDLE) {
895 pci_config_teardown(&pci_conf_handle);
896 }

898 cmn_err(CE_WARN, "nv_sata%d attach failed", inst);

900 return (DDI_FAILURE);
901 }

______unchanged_portion_omitted_

2502 /*
2503  * Initialize register handling specific to mcp51/mcp55/mcp61
2490  * Initialize register handling specific to mcp51/mcp55
2504  */
2505 /* ARGSUSED */
2506 static void
2507 mcp5x_reg_init(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2508 {
2509 nv_port_t *nvp;
2510 uchar_t *bar5  = nvc->nvc_bar_addr[5];

new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 10

2511 uint8_t off, port;

2513 nvc->nvc_mcp5x_ctl = (uint32_t *)(bar5 + MCP5X_CTL);
2514 nvc->nvc_mcp5x_ncq = (uint32_t *)(bar5 + MCP5X_NCQ);

2516 for (port = 0, off = 0; port < NV_MAX_PORTS(nvc); port++, off += 2) {
2517 nvp = &(nvc->nvc_port[port]);
2518 nvp->nvp_mcp5x_int_status =
2519     (uint16_t *)(bar5 + MCP5X_INT_STATUS + off);
2520 nvp->nvp_mcp5x_int_ctl =
2521     (uint16_t *)(bar5 + MCP5X_INT_CTL + off);

2523 /*
2524  * clear any previous interrupts asserted
2525  */
2526 nv_put16(nvc->nvc_bar_hdl[5], nvp->nvp_mcp5x_int_status,
2527     MCP5X_INT_CLEAR);

2529 /*
2530  * These are the interrupts to accept for now.  The spec
2531  * says these are enable bits, but nvidia has indicated
2532  * these are masking bits.  Even though they may be masked
2533  * out to prevent asserting the main interrupt, they can
2534  * still be asserted while reading the interrupt status
2535  * register, so that needs to be considered in the interrupt
2536  * handler.
2537  */
2538 nv_put16(nvc->nvc_bar_hdl[5], nvp->nvp_mcp5x_int_ctl,
2539     ~(MCP5X_INT_IGNORE));
2540 }

2542 /*
2543  * Allow the driver to program the BM on the first command instead
2544  * of waiting for an interrupt.
2545  */
2546 #ifdef NCQ
2547 flags = MCP_SATA_AE_NCQ_PDEV_FIRST_CMD | MCP_SATA_AE_NCQ_SDEV_FIRST_CMD;
2548 nv_put32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ncq, flags);
2549 flags = MCP_SATA_AE_CTL_PRI_SWNCQ | MCP_SATA_AE_CTL_SEC_SWNCQ;
2550 nv_put32(nvc->nvc_bar_hdl[5], nvc->nvc_mcp5x_ctl, flags);
2551 #endif

2553 /*
2554  * mcp55 rev A03 and above supports 40-bit physical addressing.
2555  * Enable DMA to take advantage of that.
2556  *
2557  */
2558 if ((nvc->nvc_devid > 0x37f) ||
2559     ((nvc->nvc_devid == 0x37f) && (nvc->nvc_revid >= 0xa3))) {
2545 if (nvc->nvc_revid >= 0xa3) {
2560 if (nv_sata_40bit_dma == B_TRUE) {
2561 uint32_t reg32;
2562 NVLOG(NVDBG_INIT, nvp->nvp_ctlp, nvp,
2563     "devid is %X revid is %X. 40-bit DMA"
2564     " addressing enabled", nvc->nvc_devid,
2565     nvc->nvc_revid);
2549     "rev id is %X.  40-bit DMA addressing"
2550     " enabled", nvc->nvc_revid);
2566 nvc->dma_40bit = B_TRUE;

2568 reg32 = pci_config_get32(pci_conf_handle,
2569     NV_SATA_CFG_20);
2570 pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
2571     reg32 | NV_40BIT_PRD);

2573 /*



new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 11

2574  * CFG_23 bits 0-7 contain the top 8 bits (of 40
2575  * bits) for the primary PRD table, and bits 8-15
2576  * contain the top 8 bits for the secondary.  Set
2577  * to zero because the DMA attribute table for PRD
2578  * allocation forces it into 32 bit address space
2579  * anyway.
2580  */
2581 reg32 = pci_config_get32(pci_conf_handle,
2582     NV_SATA_CFG_23);
2583 pci_config_put32(pci_conf_handle, NV_SATA_CFG_23,
2584     reg32 & 0xffff0000);
2585 } else {
2586 NVLOG(NVDBG_INIT, nvp->nvp_ctlp, nvp,
2587     "40-bit DMA disabled by nv_sata_40bit_dma", NULL);
2588 }
2589 } else {
2590 nv_cmn_err(CE_NOTE, nvp->nvp_ctlp, nvp, "devid is %X revid is"
2591             " %X. Not capable of 40-bit DMA addressing",
2592     nvc->nvc_devid, nvc->nvc_revid);
2575 nv_cmn_err(CE_NOTE, nvp->nvp_ctlp, nvp, "rev id is %X and is "
2576     "not capable of 40-bit DMA addressing", nvc->nvc_revid);
2593 }
2594 }
______unchanged_portion_omitted_

2645 /*
2646  * Initialize the controller and set up driver data structures.
2647  * determine if ck804 or mcp5x class.
2648  */
2649 static int
2650 nv_init_ctl(nv_ctl_t *nvc, ddi_acc_handle_t pci_conf_handle)
2651 {
2652 struct sata_hba_tran stran;
2653 nv_port_t *nvp;
2654 int j;
2638 int j, ck804;
2655 uchar_t *cmd_addr, *ctl_addr, *bm_addr;
2656 ddi_acc_handle_t bar5_hdl = nvc->nvc_bar_hdl[5];
2657 uchar_t *bar5  = nvc->nvc_bar_addr[5];
2658 uint32_t reg32;
2659 uint8_t reg8, reg8_save;

2661 NVLOG(NVDBG_INIT, nvc, NULL, "nv_init_ctl entered", NULL);

2647 ck804 = B_TRUE;
2648 #ifdef SGPIO_SUPPORT
2663 nvc->nvc_mcp5x_flag = B_FALSE;
2650 #endif

2665 /*
2666  * Need to set bit 2 to 1 at config offset 0x50
2667  * to enable access to the bar5 registers.
2668  */
2669 reg32 = pci_config_get32(pci_conf_handle, NV_SATA_CFG_20);
2670 if (!(reg32 & NV_BAR5_SPACE_EN)) {
2671 pci_config_put32(pci_conf_handle, NV_SATA_CFG_20,
2672     reg32 | NV_BAR5_SPACE_EN);
2673 }

2675 /*
2676  * Determine if this is ck804 or mcp5x.  ck804 will map in the
2677  * task file registers into bar5 while mcp5x won’t.  The offset of
2678  * the task file registers in mcp5x’s space is unused, so it will
2679  * return zero.  So check one of the task file registers to see if it is
2680  * writable and reads back what was written.  If it’s mcp5x it will

new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 12

2681  * return back 0xff whereas ck804 will return the value written.
2682  */
2683 reg8_save = nv_get8(bar5_hdl,
2684     (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X));

2687 for (j = 1; j < 3; j++) {

2689 nv_put8(bar5_hdl, (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X), j);
2690 reg8 = nv_get8(bar5_hdl,
2691     (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X));

2693 if (reg8 != j) {
2681 ck804 = B_FALSE;
2694 nvc->nvc_mcp5x_flag = B_TRUE;
2695 break;
2696 }
2697 }

2699 nv_put8(bar5_hdl, (uint8_t *)(bar5 + NV_BAR5_TRAN_LEN_CH_X), reg8_save);

2701 if (nvc->nvc_mcp5x_flag == B_FALSE) {
2702 NVLOG(NVDBG_INIT, nvc, NULL, "controller is CK804/MCP04",
2703     NULL);
2689 if (ck804 == B_TRUE) {
2690 NVLOG(NVDBG_INIT, nvc, NULL, "controller is CK804", NULL);
2704 nvc->nvc_interrupt = ck804_intr;
2705 nvc->nvc_reg_init = ck804_reg_init;
2706 nvc->nvc_set_intr = ck804_set_intr;
2707 } else {
2708 NVLOG(NVDBG_INIT, nvc, NULL, "controller is MCP51/MCP55/MCP61",
2709     NULL);
2695 NVLOG(NVDBG_INIT, nvc, NULL, "controller is MCP51/MCP55", NULL);
2710 nvc->nvc_interrupt = mcp5x_intr;
2711 nvc->nvc_reg_init = mcp5x_reg_init;
2712 nvc->nvc_set_intr = mcp5x_set_intr;
2713 }

2716 stran.sata_tran_hba_rev = SATA_TRAN_HBA_REV;
2717 stran.sata_tran_hba_dip = nvc->nvc_dip;
2718 stran.sata_tran_hba_num_cports = NV_NUM_PORTS;
2719 stran.sata_tran_hba_features_support =
2720     SATA_CTLF_HOTPLUG | SATA_CTLF_ASN | SATA_CTLF_ATAPI;
2721 stran.sata_tran_hba_qdepth = NV_QUEUE_SLOTS;
2722 stran.sata_tran_probe_port = nv_sata_probe;
2723 stran.sata_tran_start = nv_sata_start;
2724 stran.sata_tran_abort = nv_sata_abort;
2725 stran.sata_tran_reset_dport = nv_sata_reset;
2726 stran.sata_tran_selftest = NULL;
2727 stran.sata_tran_hotplug_ops = &nv_hotplug_ops;
2728 stran.sata_tran_pwrmgt_ops = NULL;
2729 stran.sata_tran_ioctl = NULL;
2730 nvc->nvc_sata_hba_tran = stran;

2732 nvc->nvc_port = kmem_zalloc(sizeof (nv_port_t) * NV_MAX_PORTS(nvc),
2733     KM_SLEEP);

2735 /*
2736  * initialize registers common to all chipsets
2737  */
2738 nv_common_reg_init(nvc);

2740 for (j = 0; j < NV_MAX_PORTS(nvc); j++) {
2741 nvp = &(nvc->nvc_port[j]);



new/usr/src/uts/common/io/sata/adapters/nv_sata/nv_sata.c 13

2743 cmd_addr = nvp->nvp_cmd_addr;
2744 ctl_addr = nvp->nvp_ctl_addr;
2745 bm_addr = nvp->nvp_bm_addr;

2747 mutex_init(&nvp->nvp_mutex, NULL, MUTEX_DRIVER,
2748     DDI_INTR_PRI(nvc->nvc_intr_pri));

2750 cv_init(&nvp->nvp_sync_cv, NULL, CV_DRIVER, NULL);
2751 cv_init(&nvp->nvp_reset_cv, NULL, CV_DRIVER, NULL);

2753 nvp->nvp_data = cmd_addr + NV_DATA;
2754 nvp->nvp_error = cmd_addr + NV_ERROR;
2755 nvp->nvp_feature = cmd_addr + NV_FEATURE;
2756 nvp->nvp_count = cmd_addr + NV_COUNT;
2757 nvp->nvp_sect = cmd_addr + NV_SECT;
2758 nvp->nvp_lcyl = cmd_addr + NV_LCYL;
2759 nvp->nvp_hcyl = cmd_addr + NV_HCYL;
2760 nvp->nvp_drvhd = cmd_addr + NV_DRVHD;
2761 nvp->nvp_status = cmd_addr + NV_STATUS;
2762 nvp->nvp_cmd = cmd_addr + NV_CMD;
2763 nvp->nvp_altstatus = ctl_addr + NV_ALTSTATUS;
2764 nvp->nvp_devctl = ctl_addr + NV_DEVCTL;

2766 nvp->nvp_bmicx = bm_addr + BMICX_REG;
2767 nvp->nvp_bmisx = bm_addr + BMISX_REG;
2768 nvp->nvp_bmidtpx = (uint32_t *)(bm_addr + BMIDTPX_REG);

2770 nvp->nvp_state = 0;

2772 /*
2773  * Initialize dma handles, etc.
2774  * If it fails, the port is in inactive state.
2775  */
2776 nv_init_port(nvp);
2777 }

2779 /*
2780  * initialize register by calling chip specific reg initialization
2781  */
2782 (*(nvc->nvc_reg_init))(nvc, pci_conf_handle);

2784 /* initialize the hba dma attribute */
2785 if (nvc->dma_40bit == B_TRUE)
2786 nvc->nvc_sata_hba_tran.sata_tran_hba_dma_attr =
2787     &buffer_dma_40bit_attr;
2788 else
2789 nvc->nvc_sata_hba_tran.sata_tran_hba_dma_attr =
2790     &buffer_dma_attr;

2792 return (NV_SUCCESS);
2793 }
______unchanged_portion_omitted_



new/usr/src/uts/common/sys/sata/adapters/nv_sata/nv_sata.h 1

**********************************************************
   20356 Tue Jul 10 14:30:20 2012
new/usr/src/uts/common/sys/sata/adapters/nv_sata/nv_sata.h
*** NO COMMENTS ***
**********************************************************

1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.

10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */

22 /*
23  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
24  */

26 #ifndef _NV_SATA_H
27 #define _NV_SATA_H

30 #ifdef __cplusplus
31 extern "C" {
32 #endif

35 /*
36  * SGPIO Support
37  * Enable SGPIO support only on x86/x64, because it is implemented using
38  * functions that are only available on x86/x64.
39  */

41 #define NV_MAX_PORTS(nvc) nvc->nvc_sata_hba_tran.sata_tran_hba_num_cports

43 typedef struct nv_port nv_port_t;

45 #ifdef SGPIO_SUPPORT
46 typedef struct nv_sgp_cmn nv_sgp_cmn_t;
47 #endif

49 /*
50  * sizes of strings to allocate
51  */
52 #define NV_STR_LEN 10
53 #define NV_LOGBUF_LEN 512
54 #define NV_REASON_LEN 30

57 typedef struct nv_ctl {
58 /*
59  * Each of these are specific to the chipset in use.
60  */
61 uint_t (*nvc_interrupt)(caddr_t arg1, caddr_t arg2);

new/usr/src/uts/common/sys/sata/adapters/nv_sata/nv_sata.h 2

62 void (*nvc_reg_init)(struct nv_ctl *nvc,
63     ddi_acc_handle_t pci_conf_handle);

65 dev_info_t *nvc_dip; /* devinfo pointer of controller */

67 struct nv_port *nvc_port; /* array of pointers to port struct */

69 /*
70  * handle and base address to register space.
71  *
72  * 0: port 0 task file
73  * 1: port 0 status
74  * 2: port 1 task file
75  * 3: port 1 status
76  * 4: bus master for both ports
77  * 5: extended registers for SATA features
78  */
79 ddi_acc_handle_t nvc_bar_hdl[6];
80 uchar_t *nvc_bar_addr[6];

82 /*
83  * sata registers in bar 5 which are shared on all devices
84  * on the channel.
85  */
86 uint32_t *nvc_mcp5x_ctl;
87 uint32_t *nvc_mcp5x_ncq; /* NCQ status control bits */

89 kmutex_t nvc_mutex; /* ctrl level lock */

91 ddi_intr_handle_t *nvc_htable; /* For array of interrupts */
92 int  nvc_intr_type; /* What type of interrupt */
93 int nvc_intr_cnt; /* # of intrs count returned */
94 size_t nvc_intr_size; /* Size of intr array to */
95 uint_t nvc_intr_pri;   /* Interrupt priority */
96 int nvc_intr_cap; /* Interrupt capabilities */
97 uint8_t *nvc_ck804_int_status; /* interrupt status ck804 */

99 sata_hba_tran_t nvc_sata_hba_tran; /* sata_hba_tran for ctrl */

101 /*
102  * enable/disable interrupts, controller specific
103  */
104 void (*nvc_set_intr)(nv_port_t *nvp, int flag);
105 int nvc_state; /* state flags of ctrl see below */
106 uint16_t nvc_devid; /* PCI devid of device */
107 #endif /* ! codereview */
108 uint8_t nvc_revid; /* PCI revid of device */
109 boolean_t dma_40bit; /* 40bit DMA support */
110 boolean_t nvc_mcp5x_flag; /* is the controller MCP51/MCP55 */
111 #endif /* ! codereview */

113 #ifdef SGPIO_SUPPORT
106 int nvc_mcp5x_flag; /* is the controller MCP51/MCP55 */
114 uint8_t nvc_ctlr_num; /* controller number within the part */
115 uint32_t nvc_sgp_csr; /* SGPIO CSR i/o address */
116 volatile nv_sgp_cb_t *nvc_sgp_cbp; /* SGPIO Control Block */
117 nv_sgp_cmn_t *nvc_sgp_cmn; /* SGPIO shared data */
118 #endif
119 } nv_ctl_t;

______unchanged_portion_omitted_


