1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015, Joyent Inc. All rights reserved. 25 * Copyright (c) 2016 by Delphix. All rights reserved. 26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 27 */ 28 29 /* 30 * Zones 31 * 32 * A zone is a named collection of processes, namespace constraints, 33 * and other system resources which comprise a secure and manageable 34 * application containment facility. 35 * 36 * Zones (represented by the reference counted zone_t) are tracked in 37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs 38 * (zoneid_t) are used to track zone association. Zone IDs are 39 * dynamically generated when the zone is created; if a persistent 40 * identifier is needed (core files, accounting logs, audit trail, 41 * etc.), the zone name should be used. 42 * 43 * 44 * Global Zone: 45 * 46 * The global zone (zoneid 0) is automatically associated with all 47 * system resources that have not been bound to a user-created zone. 48 * This means that even systems where zones are not in active use 49 * have a global zone, and all processes, mounts, etc. are 50 * associated with that zone. The global zone is generally 51 * unconstrained in terms of privileges and access, though the usual 52 * credential and privilege based restrictions apply. 53 * 54 * 55 * Zone States: 56 * 57 * The states in which a zone may be in and the transitions are as 58 * follows: 59 * 60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially 61 * initialized zone is added to the list of active zones on the system but 62 * isn't accessible. 63 * 64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are 65 * not yet completed. Not possible to enter the zone, but attributes can 66 * be retrieved. 67 * 68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is 69 * ready. The zone is made visible after the ZSD constructor callbacks are 70 * executed. A zone remains in this state until it transitions into 71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot(). 72 * 73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start 74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN 75 * state. 76 * 77 * ZONE_IS_RUNNING: The zone is open for business: zsched has 78 * successfully started init. A zone remains in this state until 79 * zone_shutdown() is called. 80 * 81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is 82 * killing all processes running in the zone. The zone remains 83 * in this state until there are no more user processes running in the zone. 84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail. 85 * Since zone_shutdown() is restartable, it may be called successfully 86 * multiple times for the same zone_t. Setting of the zone's state to 87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check 88 * the zone's status without worrying about it being a moving target. 89 * 90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there 91 * are no more user processes in the zone. The zone remains in this 92 * state until there are no more kernel threads associated with the 93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will 94 * fail. 95 * 96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone 97 * have exited. zone_shutdown() returns. Henceforth it is not possible to 98 * join the zone or create kernel threads therein. 99 * 100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone 101 * remains in this state until zsched exits. Calls to zone_find_by_*() 102 * return NULL from now on. 103 * 104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no 105 * processes or threads doing work on behalf of the zone. The zone is 106 * removed from the list of active zones. zone_destroy() returns, and 107 * the zone can be recreated. 108 * 109 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor 110 * callbacks are executed, and all memory associated with the zone is 111 * freed. 112 * 113 * Threads can wait for the zone to enter a requested state by using 114 * zone_status_wait() or zone_status_timedwait() with the desired 115 * state passed in as an argument. Zone state transitions are 116 * uni-directional; it is not possible to move back to an earlier state. 117 * 118 * 119 * Zone-Specific Data: 120 * 121 * Subsystems needing to maintain zone-specific data can store that 122 * data using the ZSD mechanism. This provides a zone-specific data 123 * store, similar to thread-specific data (see pthread_getspecific(3C) 124 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used 125 * to register callbacks to be invoked when a zone is created, shut 126 * down, or destroyed. This can be used to initialize zone-specific 127 * data for new zones and to clean up when zones go away. 128 * 129 * 130 * Data Structures: 131 * 132 * The per-zone structure (zone_t) is reference counted, and freed 133 * when all references are released. zone_hold and zone_rele can be 134 * used to adjust the reference count. In addition, reference counts 135 * associated with the cred_t structure are tracked separately using 136 * zone_cred_hold and zone_cred_rele. 137 * 138 * Pointers to active zone_t's are stored in two hash tables; one 139 * for searching by id, the other for searching by name. Lookups 140 * can be performed on either basis, using zone_find_by_id and 141 * zone_find_by_name. Both return zone_t pointers with the zone 142 * held, so zone_rele should be called when the pointer is no longer 143 * needed. Zones can also be searched by path; zone_find_by_path 144 * returns the zone with which a path name is associated (global 145 * zone if the path is not within some other zone's file system 146 * hierarchy). This currently requires iterating through each zone, 147 * so it is slower than an id or name search via a hash table. 148 * 149 * 150 * Locking: 151 * 152 * zonehash_lock: This is a top-level global lock used to protect the 153 * zone hash tables and lists. Zones cannot be created or destroyed 154 * while this lock is held. 155 * zone_status_lock: This is a global lock protecting zone state. 156 * Zones cannot change state while this lock is held. It also 157 * protects the list of kernel threads associated with a zone. 158 * zone_lock: This is a per-zone lock used to protect several fields of 159 * the zone_t (see <sys/zone.h> for details). In addition, holding 160 * this lock means that the zone cannot go away. 161 * zone_nlwps_lock: This is a per-zone lock used to protect the fields 162 * related to the zone.max-lwps rctl. 163 * zone_mem_lock: This is a per-zone lock used to protect the fields 164 * related to the zone.max-locked-memory and zone.max-swap rctls. 165 * zone_rctl_lock: This is a per-zone lock used to protect other rctls, 166 * currently just max_lofi 167 * zsd_key_lock: This is a global lock protecting the key state for ZSD. 168 * zone_deathrow_lock: This is a global lock protecting the "deathrow" 169 * list (a list of zones in the ZONE_IS_DEAD state). 170 * 171 * Ordering requirements: 172 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock --> 173 * zone_lock --> zsd_key_lock --> pidlock --> p_lock 174 * 175 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is: 176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock 177 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock 178 * 179 * Blocking memory allocations are permitted while holding any of the 180 * zone locks. 181 * 182 * 183 * System Call Interface: 184 * 185 * The zone subsystem can be managed and queried from user level with 186 * the following system calls (all subcodes of the primary "zone" 187 * system call): 188 * - zone_create: creates a zone with selected attributes (name, 189 * root path, privileges, resource controls, ZFS datasets) 190 * - zone_enter: allows the current process to enter a zone 191 * - zone_getattr: reports attributes of a zone 192 * - zone_setattr: set attributes of a zone 193 * - zone_boot: set 'init' running for the zone 194 * - zone_list: lists all zones active in the system 195 * - zone_lookup: looks up zone id based on name 196 * - zone_shutdown: initiates shutdown process (see states above) 197 * - zone_destroy: completes shutdown process (see states above) 198 * 199 */ 200 201 #include <sys/priv_impl.h> 202 #include <sys/cred.h> 203 #include <c2/audit.h> 204 #include <sys/debug.h> 205 #include <sys/file.h> 206 #include <sys/kmem.h> 207 #include <sys/kstat.h> 208 #include <sys/mutex.h> 209 #include <sys/note.h> 210 #include <sys/pathname.h> 211 #include <sys/proc.h> 212 #include <sys/project.h> 213 #include <sys/sysevent.h> 214 #include <sys/task.h> 215 #include <sys/systm.h> 216 #include <sys/types.h> 217 #include <sys/utsname.h> 218 #include <sys/vnode.h> 219 #include <sys/vfs.h> 220 #include <sys/systeminfo.h> 221 #include <sys/policy.h> 222 #include <sys/cred_impl.h> 223 #include <sys/contract_impl.h> 224 #include <sys/contract/process_impl.h> 225 #include <sys/class.h> 226 #include <sys/pool.h> 227 #include <sys/pool_pset.h> 228 #include <sys/pset.h> 229 #include <sys/strlog.h> 230 #include <sys/sysmacros.h> 231 #include <sys/callb.h> 232 #include <sys/vmparam.h> 233 #include <sys/corectl.h> 234 #include <sys/ipc_impl.h> 235 #include <sys/klpd.h> 236 237 #include <sys/door.h> 238 #include <sys/cpuvar.h> 239 #include <sys/sdt.h> 240 241 #include <sys/uadmin.h> 242 #include <sys/session.h> 243 #include <sys/cmn_err.h> 244 #include <sys/modhash.h> 245 #include <sys/sunddi.h> 246 #include <sys/nvpair.h> 247 #include <sys/rctl.h> 248 #include <sys/fss.h> 249 #include <sys/brand.h> 250 #include <sys/zone.h> 251 #include <net/if.h> 252 #include <sys/cpucaps.h> 253 #include <vm/seg.h> 254 #include <sys/mac.h> 255 256 /* 257 * This constant specifies the number of seconds that threads waiting for 258 * subsystems to release a zone's general-purpose references will wait before 259 * they log the zone's reference counts. The constant's value shouldn't 260 * be so small that reference counts are unnecessarily reported for zones 261 * whose references are slowly released. On the other hand, it shouldn't be so 262 * large that users reboot their systems out of frustration over hung zones 263 * before the system logs the zones' reference counts. 264 */ 265 #define ZONE_DESTROY_TIMEOUT_SECS 60 266 267 /* List of data link IDs which are accessible from the zone */ 268 typedef struct zone_dl { 269 datalink_id_t zdl_id; 270 nvlist_t *zdl_net; 271 list_node_t zdl_linkage; 272 } zone_dl_t; 273 274 /* 275 * cv used to signal that all references to the zone have been released. This 276 * needs to be global since there may be multiple waiters, and the first to 277 * wake up will free the zone_t, hence we cannot use zone->zone_cv. 278 */ 279 static kcondvar_t zone_destroy_cv; 280 /* 281 * Lock used to serialize access to zone_cv. This could have been per-zone, 282 * but then we'd need another lock for zone_destroy_cv, and why bother? 283 */ 284 static kmutex_t zone_status_lock; 285 286 /* 287 * ZSD-related global variables. 288 */ 289 static kmutex_t zsd_key_lock; /* protects the following two */ 290 /* 291 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval. 292 */ 293 static zone_key_t zsd_keyval = 0; 294 /* 295 * Global list of registered keys. We use this when a new zone is created. 296 */ 297 static list_t zsd_registered_keys; 298 299 int zone_hash_size = 256; 300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel; 301 static kmutex_t zonehash_lock; 302 static uint_t zonecount; 303 static id_space_t *zoneid_space; 304 305 /* 306 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the 307 * kernel proper runs, and which manages all other zones. 308 * 309 * Although not declared as static, the variable "zone0" should not be used 310 * except for by code that needs to reference the global zone early on in boot, 311 * before it is fully initialized. All other consumers should use 312 * 'global_zone'. 313 */ 314 zone_t zone0; 315 zone_t *global_zone = NULL; /* Set when the global zone is initialized */ 316 317 /* 318 * List of active zones, protected by zonehash_lock. 319 */ 320 static list_t zone_active; 321 322 /* 323 * List of destroyed zones that still have outstanding cred references. 324 * Used for debugging. Uses a separate lock to avoid lock ordering 325 * problems in zone_free. 326 */ 327 static list_t zone_deathrow; 328 static kmutex_t zone_deathrow_lock; 329 330 /* number of zones is limited by virtual interface limit in IP */ 331 uint_t maxzones = 8192; 332 333 /* Event channel to sent zone state change notifications */ 334 evchan_t *zone_event_chan; 335 336 /* 337 * This table holds the mapping from kernel zone states to 338 * states visible in the state notification API. 339 * The idea is that we only expose "obvious" states and 340 * do not expose states which are just implementation details. 341 */ 342 const char *zone_status_table[] = { 343 ZONE_EVENT_UNINITIALIZED, /* uninitialized */ 344 ZONE_EVENT_INITIALIZED, /* initialized */ 345 ZONE_EVENT_READY, /* ready */ 346 ZONE_EVENT_READY, /* booting */ 347 ZONE_EVENT_RUNNING, /* running */ 348 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */ 349 ZONE_EVENT_SHUTTING_DOWN, /* empty */ 350 ZONE_EVENT_SHUTTING_DOWN, /* down */ 351 ZONE_EVENT_SHUTTING_DOWN, /* dying */ 352 ZONE_EVENT_UNINITIALIZED, /* dead */ 353 }; 354 355 /* 356 * This array contains the names of the subsystems listed in zone_ref_subsys_t 357 * (see sys/zone.h). 358 */ 359 static char *zone_ref_subsys_names[] = { 360 "NFS", /* ZONE_REF_NFS */ 361 "NFSv4", /* ZONE_REF_NFSV4 */ 362 "SMBFS", /* ZONE_REF_SMBFS */ 363 "MNTFS", /* ZONE_REF_MNTFS */ 364 "LOFI", /* ZONE_REF_LOFI */ 365 "VFS", /* ZONE_REF_VFS */ 366 "IPC" /* ZONE_REF_IPC */ 367 }; 368 369 /* 370 * This isn't static so lint doesn't complain. 371 */ 372 rctl_hndl_t rc_zone_cpu_shares; 373 rctl_hndl_t rc_zone_locked_mem; 374 rctl_hndl_t rc_zone_max_swap; 375 rctl_hndl_t rc_zone_max_lofi; 376 rctl_hndl_t rc_zone_cpu_cap; 377 rctl_hndl_t rc_zone_nlwps; 378 rctl_hndl_t rc_zone_nprocs; 379 rctl_hndl_t rc_zone_shmmax; 380 rctl_hndl_t rc_zone_shmmni; 381 rctl_hndl_t rc_zone_semmni; 382 rctl_hndl_t rc_zone_msgmni; 383 384 const char * const zone_default_initname = "/sbin/init"; 385 static char * const zone_prefix = "/zone/"; 386 static int zone_shutdown(zoneid_t zoneid); 387 static int zone_add_datalink(zoneid_t, datalink_id_t); 388 static int zone_remove_datalink(zoneid_t, datalink_id_t); 389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *); 390 static int zone_set_network(zoneid_t, zone_net_data_t *); 391 static int zone_get_network(zoneid_t, zone_net_data_t *); 392 393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t); 394 395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t); 396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *); 397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t); 398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *, 399 zone_key_t); 400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t); 401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *, 402 kmutex_t *); 403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *, 404 kmutex_t *); 405 406 /* 407 * Bump this number when you alter the zone syscall interfaces; this is 408 * because we need to have support for previous API versions in libc 409 * to support patching; libc calls into the kernel to determine this number. 410 * 411 * Version 1 of the API is the version originally shipped with Solaris 10 412 * Version 2 alters the zone_create system call in order to support more 413 * arguments by moving the args into a structure; and to do better 414 * error reporting when zone_create() fails. 415 * Version 3 alters the zone_create system call in order to support the 416 * import of ZFS datasets to zones. 417 * Version 4 alters the zone_create system call in order to support 418 * Trusted Extensions. 419 * Version 5 alters the zone_boot system call, and converts its old 420 * bootargs parameter to be set by the zone_setattr API instead. 421 * Version 6 adds the flag argument to zone_create. 422 * Version 7 adds the requested zone_did to zone_create. 423 */ 424 static const int ZONE_SYSCALL_API_VERSION = 7; 425 426 /* 427 * Certain filesystems (such as NFS and autofs) need to know which zone 428 * the mount is being placed in. Because of this, we need to be able to 429 * ensure that a zone isn't in the process of being created/destroyed such 430 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time 431 * it gets added the list of mounted zones, it ends up on the wrong zone's 432 * mount list. Since a zone can't reside on an NFS file system, we don't 433 * have to worry about the zonepath itself. 434 * 435 * The following functions: block_mounts()/resume_mounts() and 436 * mount_in_progress()/mount_completed() are used by zones and the VFS 437 * layer (respectively) to synchronize zone state transitions and new 438 * mounts within a zone. This syncronization is on a per-zone basis, so 439 * activity for one zone will not interfere with activity for another zone. 440 * 441 * The semantics are like a reader-reader lock such that there may 442 * either be multiple mounts (or zone state transitions, if that weren't 443 * serialized by zonehash_lock) in progress at the same time, but not 444 * both. 445 * 446 * We use cv's so the user can ctrl-C out of the operation if it's 447 * taking too long. 448 * 449 * The semantics are such that there is unfair bias towards the 450 * "current" operation. This means that zone halt may starve if 451 * there is a rapid succession of new mounts coming in to the zone. 452 */ 453 /* 454 * Prevent new mounts from progressing to the point of calling 455 * VFS_MOUNT(). If there are already mounts in this "region", wait for 456 * them to complete. 457 */ 458 static int 459 block_mounts(zone_t *zp) 460 { 461 int retval = 0; 462 463 /* 464 * Since it may block for a long time, block_mounts() shouldn't be 465 * called with zonehash_lock held. 466 */ 467 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 468 mutex_enter(&zp->zone_mount_lock); 469 while (zp->zone_mounts_in_progress > 0) { 470 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0) 471 goto signaled; 472 } 473 /* 474 * A negative value of mounts_in_progress indicates that mounts 475 * have been blocked by (-mounts_in_progress) different callers 476 * (remotely possible if two threads enter zone_shutdown at the same 477 * time). 478 */ 479 zp->zone_mounts_in_progress--; 480 retval = 1; 481 signaled: 482 mutex_exit(&zp->zone_mount_lock); 483 return (retval); 484 } 485 486 /* 487 * The VFS layer may progress with new mounts as far as we're concerned. 488 * Allow them to progress if we were the last obstacle. 489 */ 490 static void 491 resume_mounts(zone_t *zp) 492 { 493 mutex_enter(&zp->zone_mount_lock); 494 if (++zp->zone_mounts_in_progress == 0) 495 cv_broadcast(&zp->zone_mount_cv); 496 mutex_exit(&zp->zone_mount_lock); 497 } 498 499 /* 500 * The VFS layer is busy with a mount; this zone should wait until all 501 * of its mounts are completed to progress. 502 */ 503 void 504 mount_in_progress(zone_t *zp) 505 { 506 mutex_enter(&zp->zone_mount_lock); 507 while (zp->zone_mounts_in_progress < 0) 508 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock); 509 zp->zone_mounts_in_progress++; 510 mutex_exit(&zp->zone_mount_lock); 511 } 512 513 /* 514 * VFS is done with one mount; wake up any waiting block_mounts() 515 * callers if this is the last mount. 516 */ 517 void 518 mount_completed(zone_t *zp) 519 { 520 mutex_enter(&zp->zone_mount_lock); 521 if (--zp->zone_mounts_in_progress == 0) 522 cv_broadcast(&zp->zone_mount_cv); 523 mutex_exit(&zp->zone_mount_lock); 524 } 525 526 /* 527 * ZSD routines. 528 * 529 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as 530 * defined by the pthread_key_create() and related interfaces. 531 * 532 * Kernel subsystems may register one or more data items and/or 533 * callbacks to be executed when a zone is created, shutdown, or 534 * destroyed. 535 * 536 * Unlike the thread counterpart, destructor callbacks will be executed 537 * even if the data pointer is NULL and/or there are no constructor 538 * callbacks, so it is the responsibility of such callbacks to check for 539 * NULL data values if necessary. 540 * 541 * The locking strategy and overall picture is as follows: 542 * 543 * When someone calls zone_key_create(), a template ZSD entry is added to the 544 * global list "zsd_registered_keys", protected by zsd_key_lock. While 545 * holding that lock all the existing zones are marked as 546 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone 547 * zone_zsd list (protected by zone_lock). The global list is updated first 548 * (under zone_key_lock) to make sure that newly created zones use the 549 * most recent list of keys. Then under zonehash_lock we walk the zones 550 * and mark them. Similar locking is used in zone_key_delete(). 551 * 552 * The actual create, shutdown, and destroy callbacks are done without 553 * holding any lock. And zsd_flags are used to ensure that the operations 554 * completed so that when zone_key_create (and zone_create) is done, as well as 555 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks 556 * are completed. 557 * 558 * When new zones are created constructor callbacks for all registered ZSD 559 * entries will be called. That also uses the above two phases of marking 560 * what needs to be done, and then running the callbacks without holding 561 * any locks. 562 * 563 * The framework does not provide any locking around zone_getspecific() and 564 * zone_setspecific() apart from that needed for internal consistency, so 565 * callers interested in atomic "test-and-set" semantics will need to provide 566 * their own locking. 567 */ 568 569 /* 570 * Helper function to find the zsd_entry associated with the key in the 571 * given list. 572 */ 573 static struct zsd_entry * 574 zsd_find(list_t *l, zone_key_t key) 575 { 576 struct zsd_entry *zsd; 577 578 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 579 if (zsd->zsd_key == key) { 580 return (zsd); 581 } 582 } 583 return (NULL); 584 } 585 586 /* 587 * Helper function to find the zsd_entry associated with the key in the 588 * given list. Move it to the front of the list. 589 */ 590 static struct zsd_entry * 591 zsd_find_mru(list_t *l, zone_key_t key) 592 { 593 struct zsd_entry *zsd; 594 595 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) { 596 if (zsd->zsd_key == key) { 597 /* 598 * Move to head of list to keep list in MRU order. 599 */ 600 if (zsd != list_head(l)) { 601 list_remove(l, zsd); 602 list_insert_head(l, zsd); 603 } 604 return (zsd); 605 } 606 } 607 return (NULL); 608 } 609 610 void 611 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t), 612 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *)) 613 { 614 struct zsd_entry *zsdp; 615 struct zsd_entry *t; 616 struct zone *zone; 617 zone_key_t key; 618 619 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP); 620 zsdp->zsd_data = NULL; 621 zsdp->zsd_create = create; 622 zsdp->zsd_shutdown = shutdown; 623 zsdp->zsd_destroy = destroy; 624 625 /* 626 * Insert in global list of callbacks. Makes future zone creations 627 * see it. 628 */ 629 mutex_enter(&zsd_key_lock); 630 key = zsdp->zsd_key = ++zsd_keyval; 631 ASSERT(zsd_keyval != 0); 632 list_insert_tail(&zsd_registered_keys, zsdp); 633 mutex_exit(&zsd_key_lock); 634 635 /* 636 * Insert for all existing zones and mark them as needing 637 * a create callback. 638 */ 639 mutex_enter(&zonehash_lock); /* stop the world */ 640 for (zone = list_head(&zone_active); zone != NULL; 641 zone = list_next(&zone_active, zone)) { 642 zone_status_t status; 643 644 mutex_enter(&zone->zone_lock); 645 646 /* Skip zones that are on the way down or not yet up */ 647 status = zone_status_get(zone); 648 if (status >= ZONE_IS_DOWN || 649 status == ZONE_IS_UNINITIALIZED) { 650 mutex_exit(&zone->zone_lock); 651 continue; 652 } 653 654 t = zsd_find_mru(&zone->zone_zsd, key); 655 if (t != NULL) { 656 /* 657 * A zsd_configure already inserted it after 658 * we dropped zsd_key_lock above. 659 */ 660 mutex_exit(&zone->zone_lock); 661 continue; 662 } 663 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 664 t->zsd_key = key; 665 t->zsd_create = create; 666 t->zsd_shutdown = shutdown; 667 t->zsd_destroy = destroy; 668 if (create != NULL) { 669 t->zsd_flags = ZSD_CREATE_NEEDED; 670 DTRACE_PROBE2(zsd__create__needed, 671 zone_t *, zone, zone_key_t, key); 672 } 673 list_insert_tail(&zone->zone_zsd, t); 674 mutex_exit(&zone->zone_lock); 675 } 676 mutex_exit(&zonehash_lock); 677 678 if (create != NULL) { 679 /* Now call the create callback for this key */ 680 zsd_apply_all_zones(zsd_apply_create, key); 681 } 682 /* 683 * It is safe for consumers to use the key now, make it 684 * globally visible. Specifically zone_getspecific() will 685 * always successfully return the zone specific data associated 686 * with the key. 687 */ 688 *keyp = key; 689 690 } 691 692 /* 693 * Function called when a module is being unloaded, or otherwise wishes 694 * to unregister its ZSD key and callbacks. 695 * 696 * Remove from the global list and determine the functions that need to 697 * be called under a global lock. Then call the functions without 698 * holding any locks. Finally free up the zone_zsd entries. (The apply 699 * functions need to access the zone_zsd entries to find zsd_data etc.) 700 */ 701 int 702 zone_key_delete(zone_key_t key) 703 { 704 struct zsd_entry *zsdp = NULL; 705 zone_t *zone; 706 707 mutex_enter(&zsd_key_lock); 708 zsdp = zsd_find_mru(&zsd_registered_keys, key); 709 if (zsdp == NULL) { 710 mutex_exit(&zsd_key_lock); 711 return (-1); 712 } 713 list_remove(&zsd_registered_keys, zsdp); 714 mutex_exit(&zsd_key_lock); 715 716 mutex_enter(&zonehash_lock); 717 for (zone = list_head(&zone_active); zone != NULL; 718 zone = list_next(&zone_active, zone)) { 719 struct zsd_entry *del; 720 721 mutex_enter(&zone->zone_lock); 722 del = zsd_find_mru(&zone->zone_zsd, key); 723 if (del == NULL) { 724 /* 725 * Somebody else got here first e.g the zone going 726 * away. 727 */ 728 mutex_exit(&zone->zone_lock); 729 continue; 730 } 731 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown); 732 ASSERT(del->zsd_destroy == zsdp->zsd_destroy); 733 if (del->zsd_shutdown != NULL && 734 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 735 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 736 DTRACE_PROBE2(zsd__shutdown__needed, 737 zone_t *, zone, zone_key_t, key); 738 } 739 if (del->zsd_destroy != NULL && 740 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) { 741 del->zsd_flags |= ZSD_DESTROY_NEEDED; 742 DTRACE_PROBE2(zsd__destroy__needed, 743 zone_t *, zone, zone_key_t, key); 744 } 745 mutex_exit(&zone->zone_lock); 746 } 747 mutex_exit(&zonehash_lock); 748 kmem_free(zsdp, sizeof (*zsdp)); 749 750 /* Now call the shutdown and destroy callback for this key */ 751 zsd_apply_all_zones(zsd_apply_shutdown, key); 752 zsd_apply_all_zones(zsd_apply_destroy, key); 753 754 /* Now we can free up the zsdp structures in each zone */ 755 mutex_enter(&zonehash_lock); 756 for (zone = list_head(&zone_active); zone != NULL; 757 zone = list_next(&zone_active, zone)) { 758 struct zsd_entry *del; 759 760 mutex_enter(&zone->zone_lock); 761 del = zsd_find(&zone->zone_zsd, key); 762 if (del != NULL) { 763 list_remove(&zone->zone_zsd, del); 764 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS)); 765 kmem_free(del, sizeof (*del)); 766 } 767 mutex_exit(&zone->zone_lock); 768 } 769 mutex_exit(&zonehash_lock); 770 771 return (0); 772 } 773 774 /* 775 * ZSD counterpart of pthread_setspecific(). 776 * 777 * Since all zsd callbacks, including those with no create function, 778 * have an entry in zone_zsd, if the key is registered it is part of 779 * the zone_zsd list. 780 * Return an error if the key wasn't registerd. 781 */ 782 int 783 zone_setspecific(zone_key_t key, zone_t *zone, const void *data) 784 { 785 struct zsd_entry *t; 786 787 mutex_enter(&zone->zone_lock); 788 t = zsd_find_mru(&zone->zone_zsd, key); 789 if (t != NULL) { 790 /* 791 * Replace old value with new 792 */ 793 t->zsd_data = (void *)data; 794 mutex_exit(&zone->zone_lock); 795 return (0); 796 } 797 mutex_exit(&zone->zone_lock); 798 return (-1); 799 } 800 801 /* 802 * ZSD counterpart of pthread_getspecific(). 803 */ 804 void * 805 zone_getspecific(zone_key_t key, zone_t *zone) 806 { 807 struct zsd_entry *t; 808 void *data; 809 810 mutex_enter(&zone->zone_lock); 811 t = zsd_find_mru(&zone->zone_zsd, key); 812 data = (t == NULL ? NULL : t->zsd_data); 813 mutex_exit(&zone->zone_lock); 814 return (data); 815 } 816 817 /* 818 * Function used to initialize a zone's list of ZSD callbacks and data 819 * when the zone is being created. The callbacks are initialized from 820 * the template list (zsd_registered_keys). The constructor callback is 821 * executed later (once the zone exists and with locks dropped). 822 */ 823 static void 824 zone_zsd_configure(zone_t *zone) 825 { 826 struct zsd_entry *zsdp; 827 struct zsd_entry *t; 828 829 ASSERT(MUTEX_HELD(&zonehash_lock)); 830 ASSERT(list_head(&zone->zone_zsd) == NULL); 831 mutex_enter(&zone->zone_lock); 832 mutex_enter(&zsd_key_lock); 833 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL; 834 zsdp = list_next(&zsd_registered_keys, zsdp)) { 835 /* 836 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create 837 * should not have added anything to it. 838 */ 839 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL); 840 841 t = kmem_zalloc(sizeof (*t), KM_SLEEP); 842 t->zsd_key = zsdp->zsd_key; 843 t->zsd_create = zsdp->zsd_create; 844 t->zsd_shutdown = zsdp->zsd_shutdown; 845 t->zsd_destroy = zsdp->zsd_destroy; 846 if (zsdp->zsd_create != NULL) { 847 t->zsd_flags = ZSD_CREATE_NEEDED; 848 DTRACE_PROBE2(zsd__create__needed, 849 zone_t *, zone, zone_key_t, zsdp->zsd_key); 850 } 851 list_insert_tail(&zone->zone_zsd, t); 852 } 853 mutex_exit(&zsd_key_lock); 854 mutex_exit(&zone->zone_lock); 855 } 856 857 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY }; 858 859 /* 860 * Helper function to execute shutdown or destructor callbacks. 861 */ 862 static void 863 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct) 864 { 865 struct zsd_entry *t; 866 867 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY); 868 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY); 869 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN); 870 871 /* 872 * Run the callback solely based on what is registered for the zone 873 * in zone_zsd. The global list can change independently of this 874 * as keys are registered and unregistered and we don't register new 875 * callbacks for a zone that is in the process of going away. 876 */ 877 mutex_enter(&zone->zone_lock); 878 for (t = list_head(&zone->zone_zsd); t != NULL; 879 t = list_next(&zone->zone_zsd, t)) { 880 zone_key_t key = t->zsd_key; 881 882 /* Skip if no callbacks registered */ 883 884 if (ct == ZSD_SHUTDOWN) { 885 if (t->zsd_shutdown != NULL && 886 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) { 887 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED; 888 DTRACE_PROBE2(zsd__shutdown__needed, 889 zone_t *, zone, zone_key_t, key); 890 } 891 } else { 892 if (t->zsd_destroy != NULL && 893 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) { 894 t->zsd_flags |= ZSD_DESTROY_NEEDED; 895 DTRACE_PROBE2(zsd__destroy__needed, 896 zone_t *, zone, zone_key_t, key); 897 } 898 } 899 } 900 mutex_exit(&zone->zone_lock); 901 902 /* Now call the shutdown and destroy callback for this key */ 903 zsd_apply_all_keys(zsd_apply_shutdown, zone); 904 zsd_apply_all_keys(zsd_apply_destroy, zone); 905 906 } 907 908 /* 909 * Called when the zone is going away; free ZSD-related memory, and 910 * destroy the zone_zsd list. 911 */ 912 static void 913 zone_free_zsd(zone_t *zone) 914 { 915 struct zsd_entry *t, *next; 916 917 /* 918 * Free all the zsd_entry's we had on this zone. 919 */ 920 mutex_enter(&zone->zone_lock); 921 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) { 922 next = list_next(&zone->zone_zsd, t); 923 list_remove(&zone->zone_zsd, t); 924 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS)); 925 kmem_free(t, sizeof (*t)); 926 } 927 list_destroy(&zone->zone_zsd); 928 mutex_exit(&zone->zone_lock); 929 930 } 931 932 /* 933 * Apply a function to all zones for particular key value. 934 * 935 * The applyfn has to drop zonehash_lock if it does some work, and 936 * then reacquire it before it returns. 937 * When the lock is dropped we don't follow list_next even 938 * if it is possible to do so without any hazards. This is 939 * because we want the design to allow for the list of zones 940 * to change in any arbitrary way during the time the 941 * lock was dropped. 942 * 943 * It is safe to restart the loop at list_head since the applyfn 944 * changes the zsd_flags as it does work, so a subsequent 945 * pass through will have no effect in applyfn, hence the loop will terminate 946 * in at worst O(N^2). 947 */ 948 static void 949 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key) 950 { 951 zone_t *zone; 952 953 mutex_enter(&zonehash_lock); 954 zone = list_head(&zone_active); 955 while (zone != NULL) { 956 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) { 957 /* Lock dropped - restart at head */ 958 zone = list_head(&zone_active); 959 } else { 960 zone = list_next(&zone_active, zone); 961 } 962 } 963 mutex_exit(&zonehash_lock); 964 } 965 966 /* 967 * Apply a function to all keys for a particular zone. 968 * 969 * The applyfn has to drop zonehash_lock if it does some work, and 970 * then reacquire it before it returns. 971 * When the lock is dropped we don't follow list_next even 972 * if it is possible to do so without any hazards. This is 973 * because we want the design to allow for the list of zsd callbacks 974 * to change in any arbitrary way during the time the 975 * lock was dropped. 976 * 977 * It is safe to restart the loop at list_head since the applyfn 978 * changes the zsd_flags as it does work, so a subsequent 979 * pass through will have no effect in applyfn, hence the loop will terminate 980 * in at worst O(N^2). 981 */ 982 static void 983 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone) 984 { 985 struct zsd_entry *t; 986 987 mutex_enter(&zone->zone_lock); 988 t = list_head(&zone->zone_zsd); 989 while (t != NULL) { 990 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) { 991 /* Lock dropped - restart at head */ 992 t = list_head(&zone->zone_zsd); 993 } else { 994 t = list_next(&zone->zone_zsd, t); 995 } 996 } 997 mutex_exit(&zone->zone_lock); 998 } 999 1000 /* 1001 * Call the create function for the zone and key if CREATE_NEEDED 1002 * is set. 1003 * If some other thread gets here first and sets CREATE_INPROGRESS, then 1004 * we wait for that thread to complete so that we can ensure that 1005 * all the callbacks are done when we've looped over all zones/keys. 1006 * 1007 * When we call the create function, we drop the global held by the 1008 * caller, and return true to tell the caller it needs to re-evalute the 1009 * state. 1010 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1011 * remains held on exit. 1012 */ 1013 static boolean_t 1014 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held, 1015 zone_t *zone, zone_key_t key) 1016 { 1017 void *result; 1018 struct zsd_entry *t; 1019 boolean_t dropped; 1020 1021 if (lockp != NULL) { 1022 ASSERT(MUTEX_HELD(lockp)); 1023 } 1024 if (zone_lock_held) { 1025 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1026 } else { 1027 mutex_enter(&zone->zone_lock); 1028 } 1029 1030 t = zsd_find(&zone->zone_zsd, key); 1031 if (t == NULL) { 1032 /* 1033 * Somebody else got here first e.g the zone going 1034 * away. 1035 */ 1036 if (!zone_lock_held) 1037 mutex_exit(&zone->zone_lock); 1038 return (B_FALSE); 1039 } 1040 dropped = B_FALSE; 1041 if (zsd_wait_for_inprogress(zone, t, lockp)) 1042 dropped = B_TRUE; 1043 1044 if (t->zsd_flags & ZSD_CREATE_NEEDED) { 1045 t->zsd_flags &= ~ZSD_CREATE_NEEDED; 1046 t->zsd_flags |= ZSD_CREATE_INPROGRESS; 1047 DTRACE_PROBE2(zsd__create__inprogress, 1048 zone_t *, zone, zone_key_t, key); 1049 mutex_exit(&zone->zone_lock); 1050 if (lockp != NULL) 1051 mutex_exit(lockp); 1052 1053 dropped = B_TRUE; 1054 ASSERT(t->zsd_create != NULL); 1055 DTRACE_PROBE2(zsd__create__start, 1056 zone_t *, zone, zone_key_t, key); 1057 1058 result = (*t->zsd_create)(zone->zone_id); 1059 1060 DTRACE_PROBE2(zsd__create__end, 1061 zone_t *, zone, voidn *, result); 1062 1063 ASSERT(result != NULL); 1064 if (lockp != NULL) 1065 mutex_enter(lockp); 1066 mutex_enter(&zone->zone_lock); 1067 t->zsd_data = result; 1068 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS; 1069 t->zsd_flags |= ZSD_CREATE_COMPLETED; 1070 cv_broadcast(&t->zsd_cv); 1071 DTRACE_PROBE2(zsd__create__completed, 1072 zone_t *, zone, zone_key_t, key); 1073 } 1074 if (!zone_lock_held) 1075 mutex_exit(&zone->zone_lock); 1076 return (dropped); 1077 } 1078 1079 /* 1080 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED 1081 * is set. 1082 * If some other thread gets here first and sets *_INPROGRESS, then 1083 * we wait for that thread to complete so that we can ensure that 1084 * all the callbacks are done when we've looped over all zones/keys. 1085 * 1086 * When we call the shutdown function, we drop the global held by the 1087 * caller, and return true to tell the caller it needs to re-evalute the 1088 * state. 1089 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1090 * remains held on exit. 1091 */ 1092 static boolean_t 1093 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held, 1094 zone_t *zone, zone_key_t key) 1095 { 1096 struct zsd_entry *t; 1097 void *data; 1098 boolean_t dropped; 1099 1100 if (lockp != NULL) { 1101 ASSERT(MUTEX_HELD(lockp)); 1102 } 1103 if (zone_lock_held) { 1104 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1105 } else { 1106 mutex_enter(&zone->zone_lock); 1107 } 1108 1109 t = zsd_find(&zone->zone_zsd, key); 1110 if (t == NULL) { 1111 /* 1112 * Somebody else got here first e.g the zone going 1113 * away. 1114 */ 1115 if (!zone_lock_held) 1116 mutex_exit(&zone->zone_lock); 1117 return (B_FALSE); 1118 } 1119 dropped = B_FALSE; 1120 if (zsd_wait_for_creator(zone, t, lockp)) 1121 dropped = B_TRUE; 1122 1123 if (zsd_wait_for_inprogress(zone, t, lockp)) 1124 dropped = B_TRUE; 1125 1126 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) { 1127 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED; 1128 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS; 1129 DTRACE_PROBE2(zsd__shutdown__inprogress, 1130 zone_t *, zone, zone_key_t, key); 1131 mutex_exit(&zone->zone_lock); 1132 if (lockp != NULL) 1133 mutex_exit(lockp); 1134 dropped = B_TRUE; 1135 1136 ASSERT(t->zsd_shutdown != NULL); 1137 data = t->zsd_data; 1138 1139 DTRACE_PROBE2(zsd__shutdown__start, 1140 zone_t *, zone, zone_key_t, key); 1141 1142 (t->zsd_shutdown)(zone->zone_id, data); 1143 DTRACE_PROBE2(zsd__shutdown__end, 1144 zone_t *, zone, zone_key_t, key); 1145 1146 if (lockp != NULL) 1147 mutex_enter(lockp); 1148 mutex_enter(&zone->zone_lock); 1149 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS; 1150 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED; 1151 cv_broadcast(&t->zsd_cv); 1152 DTRACE_PROBE2(zsd__shutdown__completed, 1153 zone_t *, zone, zone_key_t, key); 1154 } 1155 if (!zone_lock_held) 1156 mutex_exit(&zone->zone_lock); 1157 return (dropped); 1158 } 1159 1160 /* 1161 * Call the destroy function for the zone and key if DESTROY_NEEDED 1162 * is set. 1163 * If some other thread gets here first and sets *_INPROGRESS, then 1164 * we wait for that thread to complete so that we can ensure that 1165 * all the callbacks are done when we've looped over all zones/keys. 1166 * 1167 * When we call the destroy function, we drop the global held by the 1168 * caller, and return true to tell the caller it needs to re-evalute the 1169 * state. 1170 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock 1171 * remains held on exit. 1172 */ 1173 static boolean_t 1174 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held, 1175 zone_t *zone, zone_key_t key) 1176 { 1177 struct zsd_entry *t; 1178 void *data; 1179 boolean_t dropped; 1180 1181 if (lockp != NULL) { 1182 ASSERT(MUTEX_HELD(lockp)); 1183 } 1184 if (zone_lock_held) { 1185 ASSERT(MUTEX_HELD(&zone->zone_lock)); 1186 } else { 1187 mutex_enter(&zone->zone_lock); 1188 } 1189 1190 t = zsd_find(&zone->zone_zsd, key); 1191 if (t == NULL) { 1192 /* 1193 * Somebody else got here first e.g the zone going 1194 * away. 1195 */ 1196 if (!zone_lock_held) 1197 mutex_exit(&zone->zone_lock); 1198 return (B_FALSE); 1199 } 1200 dropped = B_FALSE; 1201 if (zsd_wait_for_creator(zone, t, lockp)) 1202 dropped = B_TRUE; 1203 1204 if (zsd_wait_for_inprogress(zone, t, lockp)) 1205 dropped = B_TRUE; 1206 1207 if (t->zsd_flags & ZSD_DESTROY_NEEDED) { 1208 t->zsd_flags &= ~ZSD_DESTROY_NEEDED; 1209 t->zsd_flags |= ZSD_DESTROY_INPROGRESS; 1210 DTRACE_PROBE2(zsd__destroy__inprogress, 1211 zone_t *, zone, zone_key_t, key); 1212 mutex_exit(&zone->zone_lock); 1213 if (lockp != NULL) 1214 mutex_exit(lockp); 1215 dropped = B_TRUE; 1216 1217 ASSERT(t->zsd_destroy != NULL); 1218 data = t->zsd_data; 1219 DTRACE_PROBE2(zsd__destroy__start, 1220 zone_t *, zone, zone_key_t, key); 1221 1222 (t->zsd_destroy)(zone->zone_id, data); 1223 DTRACE_PROBE2(zsd__destroy__end, 1224 zone_t *, zone, zone_key_t, key); 1225 1226 if (lockp != NULL) 1227 mutex_enter(lockp); 1228 mutex_enter(&zone->zone_lock); 1229 t->zsd_data = NULL; 1230 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS; 1231 t->zsd_flags |= ZSD_DESTROY_COMPLETED; 1232 cv_broadcast(&t->zsd_cv); 1233 DTRACE_PROBE2(zsd__destroy__completed, 1234 zone_t *, zone, zone_key_t, key); 1235 } 1236 if (!zone_lock_held) 1237 mutex_exit(&zone->zone_lock); 1238 return (dropped); 1239 } 1240 1241 /* 1242 * Wait for any CREATE_NEEDED flag to be cleared. 1243 * Returns true if lockp was temporarily dropped while waiting. 1244 */ 1245 static boolean_t 1246 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1247 { 1248 boolean_t dropped = B_FALSE; 1249 1250 while (t->zsd_flags & ZSD_CREATE_NEEDED) { 1251 DTRACE_PROBE2(zsd__wait__for__creator, 1252 zone_t *, zone, struct zsd_entry *, t); 1253 if (lockp != NULL) { 1254 dropped = B_TRUE; 1255 mutex_exit(lockp); 1256 } 1257 cv_wait(&t->zsd_cv, &zone->zone_lock); 1258 if (lockp != NULL) { 1259 /* First drop zone_lock to preserve order */ 1260 mutex_exit(&zone->zone_lock); 1261 mutex_enter(lockp); 1262 mutex_enter(&zone->zone_lock); 1263 } 1264 } 1265 return (dropped); 1266 } 1267 1268 /* 1269 * Wait for any INPROGRESS flag to be cleared. 1270 * Returns true if lockp was temporarily dropped while waiting. 1271 */ 1272 static boolean_t 1273 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp) 1274 { 1275 boolean_t dropped = B_FALSE; 1276 1277 while (t->zsd_flags & ZSD_ALL_INPROGRESS) { 1278 DTRACE_PROBE2(zsd__wait__for__inprogress, 1279 zone_t *, zone, struct zsd_entry *, t); 1280 if (lockp != NULL) { 1281 dropped = B_TRUE; 1282 mutex_exit(lockp); 1283 } 1284 cv_wait(&t->zsd_cv, &zone->zone_lock); 1285 if (lockp != NULL) { 1286 /* First drop zone_lock to preserve order */ 1287 mutex_exit(&zone->zone_lock); 1288 mutex_enter(lockp); 1289 mutex_enter(&zone->zone_lock); 1290 } 1291 } 1292 return (dropped); 1293 } 1294 1295 /* 1296 * Frees memory associated with the zone dataset list. 1297 */ 1298 static void 1299 zone_free_datasets(zone_t *zone) 1300 { 1301 zone_dataset_t *t, *next; 1302 1303 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) { 1304 next = list_next(&zone->zone_datasets, t); 1305 list_remove(&zone->zone_datasets, t); 1306 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1); 1307 kmem_free(t, sizeof (*t)); 1308 } 1309 list_destroy(&zone->zone_datasets); 1310 } 1311 1312 /* 1313 * zone.cpu-shares resource control support. 1314 */ 1315 /*ARGSUSED*/ 1316 static rctl_qty_t 1317 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p) 1318 { 1319 ASSERT(MUTEX_HELD(&p->p_lock)); 1320 return (p->p_zone->zone_shares); 1321 } 1322 1323 /*ARGSUSED*/ 1324 static int 1325 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1326 rctl_qty_t nv) 1327 { 1328 ASSERT(MUTEX_HELD(&p->p_lock)); 1329 ASSERT(e->rcep_t == RCENTITY_ZONE); 1330 if (e->rcep_p.zone == NULL) 1331 return (0); 1332 1333 e->rcep_p.zone->zone_shares = nv; 1334 return (0); 1335 } 1336 1337 static rctl_ops_t zone_cpu_shares_ops = { 1338 rcop_no_action, 1339 zone_cpu_shares_usage, 1340 zone_cpu_shares_set, 1341 rcop_no_test 1342 }; 1343 1344 /* 1345 * zone.cpu-cap resource control support. 1346 */ 1347 /*ARGSUSED*/ 1348 static rctl_qty_t 1349 zone_cpu_cap_get(rctl_t *rctl, struct proc *p) 1350 { 1351 ASSERT(MUTEX_HELD(&p->p_lock)); 1352 return (cpucaps_zone_get(p->p_zone)); 1353 } 1354 1355 /*ARGSUSED*/ 1356 static int 1357 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1358 rctl_qty_t nv) 1359 { 1360 zone_t *zone = e->rcep_p.zone; 1361 1362 ASSERT(MUTEX_HELD(&p->p_lock)); 1363 ASSERT(e->rcep_t == RCENTITY_ZONE); 1364 1365 if (zone == NULL) 1366 return (0); 1367 1368 /* 1369 * set cap to the new value. 1370 */ 1371 return (cpucaps_zone_set(zone, nv)); 1372 } 1373 1374 static rctl_ops_t zone_cpu_cap_ops = { 1375 rcop_no_action, 1376 zone_cpu_cap_get, 1377 zone_cpu_cap_set, 1378 rcop_no_test 1379 }; 1380 1381 /*ARGSUSED*/ 1382 static rctl_qty_t 1383 zone_lwps_usage(rctl_t *r, proc_t *p) 1384 { 1385 rctl_qty_t nlwps; 1386 zone_t *zone = p->p_zone; 1387 1388 ASSERT(MUTEX_HELD(&p->p_lock)); 1389 1390 mutex_enter(&zone->zone_nlwps_lock); 1391 nlwps = zone->zone_nlwps; 1392 mutex_exit(&zone->zone_nlwps_lock); 1393 1394 return (nlwps); 1395 } 1396 1397 /*ARGSUSED*/ 1398 static int 1399 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1400 rctl_qty_t incr, uint_t flags) 1401 { 1402 rctl_qty_t nlwps; 1403 1404 ASSERT(MUTEX_HELD(&p->p_lock)); 1405 ASSERT(e->rcep_t == RCENTITY_ZONE); 1406 if (e->rcep_p.zone == NULL) 1407 return (0); 1408 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1409 nlwps = e->rcep_p.zone->zone_nlwps; 1410 1411 if (nlwps + incr > rcntl->rcv_value) 1412 return (1); 1413 1414 return (0); 1415 } 1416 1417 /*ARGSUSED*/ 1418 static int 1419 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1420 { 1421 ASSERT(MUTEX_HELD(&p->p_lock)); 1422 ASSERT(e->rcep_t == RCENTITY_ZONE); 1423 if (e->rcep_p.zone == NULL) 1424 return (0); 1425 e->rcep_p.zone->zone_nlwps_ctl = nv; 1426 return (0); 1427 } 1428 1429 static rctl_ops_t zone_lwps_ops = { 1430 rcop_no_action, 1431 zone_lwps_usage, 1432 zone_lwps_set, 1433 zone_lwps_test, 1434 }; 1435 1436 /*ARGSUSED*/ 1437 static rctl_qty_t 1438 zone_procs_usage(rctl_t *r, proc_t *p) 1439 { 1440 rctl_qty_t nprocs; 1441 zone_t *zone = p->p_zone; 1442 1443 ASSERT(MUTEX_HELD(&p->p_lock)); 1444 1445 mutex_enter(&zone->zone_nlwps_lock); 1446 nprocs = zone->zone_nprocs; 1447 mutex_exit(&zone->zone_nlwps_lock); 1448 1449 return (nprocs); 1450 } 1451 1452 /*ARGSUSED*/ 1453 static int 1454 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl, 1455 rctl_qty_t incr, uint_t flags) 1456 { 1457 rctl_qty_t nprocs; 1458 1459 ASSERT(MUTEX_HELD(&p->p_lock)); 1460 ASSERT(e->rcep_t == RCENTITY_ZONE); 1461 if (e->rcep_p.zone == NULL) 1462 return (0); 1463 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock))); 1464 nprocs = e->rcep_p.zone->zone_nprocs; 1465 1466 if (nprocs + incr > rcntl->rcv_value) 1467 return (1); 1468 1469 return (0); 1470 } 1471 1472 /*ARGSUSED*/ 1473 static int 1474 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv) 1475 { 1476 ASSERT(MUTEX_HELD(&p->p_lock)); 1477 ASSERT(e->rcep_t == RCENTITY_ZONE); 1478 if (e->rcep_p.zone == NULL) 1479 return (0); 1480 e->rcep_p.zone->zone_nprocs_ctl = nv; 1481 return (0); 1482 } 1483 1484 static rctl_ops_t zone_procs_ops = { 1485 rcop_no_action, 1486 zone_procs_usage, 1487 zone_procs_set, 1488 zone_procs_test, 1489 }; 1490 1491 /*ARGSUSED*/ 1492 static rctl_qty_t 1493 zone_shmmax_usage(rctl_t *rctl, struct proc *p) 1494 { 1495 ASSERT(MUTEX_HELD(&p->p_lock)); 1496 return (p->p_zone->zone_shmmax); 1497 } 1498 1499 /*ARGSUSED*/ 1500 static int 1501 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1502 rctl_qty_t incr, uint_t flags) 1503 { 1504 rctl_qty_t v; 1505 ASSERT(MUTEX_HELD(&p->p_lock)); 1506 ASSERT(e->rcep_t == RCENTITY_ZONE); 1507 v = e->rcep_p.zone->zone_shmmax + incr; 1508 if (v > rval->rcv_value) 1509 return (1); 1510 return (0); 1511 } 1512 1513 static rctl_ops_t zone_shmmax_ops = { 1514 rcop_no_action, 1515 zone_shmmax_usage, 1516 rcop_no_set, 1517 zone_shmmax_test 1518 }; 1519 1520 /*ARGSUSED*/ 1521 static rctl_qty_t 1522 zone_shmmni_usage(rctl_t *rctl, struct proc *p) 1523 { 1524 ASSERT(MUTEX_HELD(&p->p_lock)); 1525 return (p->p_zone->zone_ipc.ipcq_shmmni); 1526 } 1527 1528 /*ARGSUSED*/ 1529 static int 1530 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1531 rctl_qty_t incr, uint_t flags) 1532 { 1533 rctl_qty_t v; 1534 ASSERT(MUTEX_HELD(&p->p_lock)); 1535 ASSERT(e->rcep_t == RCENTITY_ZONE); 1536 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr; 1537 if (v > rval->rcv_value) 1538 return (1); 1539 return (0); 1540 } 1541 1542 static rctl_ops_t zone_shmmni_ops = { 1543 rcop_no_action, 1544 zone_shmmni_usage, 1545 rcop_no_set, 1546 zone_shmmni_test 1547 }; 1548 1549 /*ARGSUSED*/ 1550 static rctl_qty_t 1551 zone_semmni_usage(rctl_t *rctl, struct proc *p) 1552 { 1553 ASSERT(MUTEX_HELD(&p->p_lock)); 1554 return (p->p_zone->zone_ipc.ipcq_semmni); 1555 } 1556 1557 /*ARGSUSED*/ 1558 static int 1559 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1560 rctl_qty_t incr, uint_t flags) 1561 { 1562 rctl_qty_t v; 1563 ASSERT(MUTEX_HELD(&p->p_lock)); 1564 ASSERT(e->rcep_t == RCENTITY_ZONE); 1565 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr; 1566 if (v > rval->rcv_value) 1567 return (1); 1568 return (0); 1569 } 1570 1571 static rctl_ops_t zone_semmni_ops = { 1572 rcop_no_action, 1573 zone_semmni_usage, 1574 rcop_no_set, 1575 zone_semmni_test 1576 }; 1577 1578 /*ARGSUSED*/ 1579 static rctl_qty_t 1580 zone_msgmni_usage(rctl_t *rctl, struct proc *p) 1581 { 1582 ASSERT(MUTEX_HELD(&p->p_lock)); 1583 return (p->p_zone->zone_ipc.ipcq_msgmni); 1584 } 1585 1586 /*ARGSUSED*/ 1587 static int 1588 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval, 1589 rctl_qty_t incr, uint_t flags) 1590 { 1591 rctl_qty_t v; 1592 ASSERT(MUTEX_HELD(&p->p_lock)); 1593 ASSERT(e->rcep_t == RCENTITY_ZONE); 1594 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr; 1595 if (v > rval->rcv_value) 1596 return (1); 1597 return (0); 1598 } 1599 1600 static rctl_ops_t zone_msgmni_ops = { 1601 rcop_no_action, 1602 zone_msgmni_usage, 1603 rcop_no_set, 1604 zone_msgmni_test 1605 }; 1606 1607 /*ARGSUSED*/ 1608 static rctl_qty_t 1609 zone_locked_mem_usage(rctl_t *rctl, struct proc *p) 1610 { 1611 rctl_qty_t q; 1612 ASSERT(MUTEX_HELD(&p->p_lock)); 1613 mutex_enter(&p->p_zone->zone_mem_lock); 1614 q = p->p_zone->zone_locked_mem; 1615 mutex_exit(&p->p_zone->zone_mem_lock); 1616 return (q); 1617 } 1618 1619 /*ARGSUSED*/ 1620 static int 1621 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1622 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1623 { 1624 rctl_qty_t q; 1625 zone_t *z; 1626 1627 z = e->rcep_p.zone; 1628 ASSERT(MUTEX_HELD(&p->p_lock)); 1629 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1630 q = z->zone_locked_mem; 1631 if (q + incr > rcntl->rcv_value) 1632 return (1); 1633 return (0); 1634 } 1635 1636 /*ARGSUSED*/ 1637 static int 1638 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1639 rctl_qty_t nv) 1640 { 1641 ASSERT(MUTEX_HELD(&p->p_lock)); 1642 ASSERT(e->rcep_t == RCENTITY_ZONE); 1643 if (e->rcep_p.zone == NULL) 1644 return (0); 1645 e->rcep_p.zone->zone_locked_mem_ctl = nv; 1646 return (0); 1647 } 1648 1649 static rctl_ops_t zone_locked_mem_ops = { 1650 rcop_no_action, 1651 zone_locked_mem_usage, 1652 zone_locked_mem_set, 1653 zone_locked_mem_test 1654 }; 1655 1656 /*ARGSUSED*/ 1657 static rctl_qty_t 1658 zone_max_swap_usage(rctl_t *rctl, struct proc *p) 1659 { 1660 rctl_qty_t q; 1661 zone_t *z = p->p_zone; 1662 1663 ASSERT(MUTEX_HELD(&p->p_lock)); 1664 mutex_enter(&z->zone_mem_lock); 1665 q = z->zone_max_swap; 1666 mutex_exit(&z->zone_mem_lock); 1667 return (q); 1668 } 1669 1670 /*ARGSUSED*/ 1671 static int 1672 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1673 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1674 { 1675 rctl_qty_t q; 1676 zone_t *z; 1677 1678 z = e->rcep_p.zone; 1679 ASSERT(MUTEX_HELD(&p->p_lock)); 1680 ASSERT(MUTEX_HELD(&z->zone_mem_lock)); 1681 q = z->zone_max_swap; 1682 if (q + incr > rcntl->rcv_value) 1683 return (1); 1684 return (0); 1685 } 1686 1687 /*ARGSUSED*/ 1688 static int 1689 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1690 rctl_qty_t nv) 1691 { 1692 ASSERT(MUTEX_HELD(&p->p_lock)); 1693 ASSERT(e->rcep_t == RCENTITY_ZONE); 1694 if (e->rcep_p.zone == NULL) 1695 return (0); 1696 e->rcep_p.zone->zone_max_swap_ctl = nv; 1697 return (0); 1698 } 1699 1700 static rctl_ops_t zone_max_swap_ops = { 1701 rcop_no_action, 1702 zone_max_swap_usage, 1703 zone_max_swap_set, 1704 zone_max_swap_test 1705 }; 1706 1707 /*ARGSUSED*/ 1708 static rctl_qty_t 1709 zone_max_lofi_usage(rctl_t *rctl, struct proc *p) 1710 { 1711 rctl_qty_t q; 1712 zone_t *z = p->p_zone; 1713 1714 ASSERT(MUTEX_HELD(&p->p_lock)); 1715 mutex_enter(&z->zone_rctl_lock); 1716 q = z->zone_max_lofi; 1717 mutex_exit(&z->zone_rctl_lock); 1718 return (q); 1719 } 1720 1721 /*ARGSUSED*/ 1722 static int 1723 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, 1724 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags) 1725 { 1726 rctl_qty_t q; 1727 zone_t *z; 1728 1729 z = e->rcep_p.zone; 1730 ASSERT(MUTEX_HELD(&p->p_lock)); 1731 ASSERT(MUTEX_HELD(&z->zone_rctl_lock)); 1732 q = z->zone_max_lofi; 1733 if (q + incr > rcntl->rcv_value) 1734 return (1); 1735 return (0); 1736 } 1737 1738 /*ARGSUSED*/ 1739 static int 1740 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, 1741 rctl_qty_t nv) 1742 { 1743 ASSERT(MUTEX_HELD(&p->p_lock)); 1744 ASSERT(e->rcep_t == RCENTITY_ZONE); 1745 if (e->rcep_p.zone == NULL) 1746 return (0); 1747 e->rcep_p.zone->zone_max_lofi_ctl = nv; 1748 return (0); 1749 } 1750 1751 static rctl_ops_t zone_max_lofi_ops = { 1752 rcop_no_action, 1753 zone_max_lofi_usage, 1754 zone_max_lofi_set, 1755 zone_max_lofi_test 1756 }; 1757 1758 /* 1759 * Helper function to brand the zone with a unique ID. 1760 */ 1761 static void 1762 zone_uniqid(zone_t *zone) 1763 { 1764 static uint64_t uniqid = 0; 1765 1766 ASSERT(MUTEX_HELD(&zonehash_lock)); 1767 zone->zone_uniqid = uniqid++; 1768 } 1769 1770 /* 1771 * Returns a held pointer to the "kcred" for the specified zone. 1772 */ 1773 struct cred * 1774 zone_get_kcred(zoneid_t zoneid) 1775 { 1776 zone_t *zone; 1777 cred_t *cr; 1778 1779 if ((zone = zone_find_by_id(zoneid)) == NULL) 1780 return (NULL); 1781 cr = zone->zone_kcred; 1782 crhold(cr); 1783 zone_rele(zone); 1784 return (cr); 1785 } 1786 1787 static int 1788 zone_lockedmem_kstat_update(kstat_t *ksp, int rw) 1789 { 1790 zone_t *zone = ksp->ks_private; 1791 zone_kstat_t *zk = ksp->ks_data; 1792 1793 if (rw == KSTAT_WRITE) 1794 return (EACCES); 1795 1796 zk->zk_usage.value.ui64 = zone->zone_locked_mem; 1797 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl; 1798 return (0); 1799 } 1800 1801 static int 1802 zone_nprocs_kstat_update(kstat_t *ksp, int rw) 1803 { 1804 zone_t *zone = ksp->ks_private; 1805 zone_kstat_t *zk = ksp->ks_data; 1806 1807 if (rw == KSTAT_WRITE) 1808 return (EACCES); 1809 1810 zk->zk_usage.value.ui64 = zone->zone_nprocs; 1811 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl; 1812 return (0); 1813 } 1814 1815 static int 1816 zone_swapresv_kstat_update(kstat_t *ksp, int rw) 1817 { 1818 zone_t *zone = ksp->ks_private; 1819 zone_kstat_t *zk = ksp->ks_data; 1820 1821 if (rw == KSTAT_WRITE) 1822 return (EACCES); 1823 1824 zk->zk_usage.value.ui64 = zone->zone_max_swap; 1825 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl; 1826 return (0); 1827 } 1828 1829 static kstat_t * 1830 zone_kstat_create_common(zone_t *zone, char *name, 1831 int (*updatefunc) (kstat_t *, int)) 1832 { 1833 kstat_t *ksp; 1834 zone_kstat_t *zk; 1835 1836 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED, 1837 sizeof (zone_kstat_t) / sizeof (kstat_named_t), 1838 KSTAT_FLAG_VIRTUAL); 1839 1840 if (ksp == NULL) 1841 return (NULL); 1842 1843 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP); 1844 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1845 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING); 1846 kstat_named_setstr(&zk->zk_zonename, zone->zone_name); 1847 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64); 1848 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64); 1849 ksp->ks_update = updatefunc; 1850 ksp->ks_private = zone; 1851 kstat_install(ksp); 1852 return (ksp); 1853 } 1854 1855 1856 static int 1857 zone_mcap_kstat_update(kstat_t *ksp, int rw) 1858 { 1859 zone_t *zone = ksp->ks_private; 1860 zone_mcap_kstat_t *zmp = ksp->ks_data; 1861 1862 if (rw == KSTAT_WRITE) 1863 return (EACCES); 1864 1865 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin; 1866 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin; 1867 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin; 1868 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin; 1869 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail; 1870 1871 return (0); 1872 } 1873 1874 static kstat_t * 1875 zone_mcap_kstat_create(zone_t *zone) 1876 { 1877 kstat_t *ksp; 1878 zone_mcap_kstat_t *zmp; 1879 1880 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id, 1881 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED, 1882 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t), 1883 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1884 return (NULL); 1885 1886 if (zone->zone_id != GLOBAL_ZONEID) 1887 kstat_zone_add(ksp, GLOBAL_ZONEID); 1888 1889 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP); 1890 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1891 ksp->ks_lock = &zone->zone_mcap_lock; 1892 zone->zone_mcap_stats = zmp; 1893 1894 /* The kstat "name" field is not large enough for a full zonename */ 1895 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1896 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1897 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64); 1898 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64); 1899 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64); 1900 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64); 1901 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail", 1902 KSTAT_DATA_UINT64); 1903 1904 ksp->ks_update = zone_mcap_kstat_update; 1905 ksp->ks_private = zone; 1906 1907 kstat_install(ksp); 1908 return (ksp); 1909 } 1910 1911 static int 1912 zone_misc_kstat_update(kstat_t *ksp, int rw) 1913 { 1914 zone_t *zone = ksp->ks_private; 1915 zone_misc_kstat_t *zmp = ksp->ks_data; 1916 hrtime_t hrtime; 1917 uint64_t tmp; 1918 1919 if (rw == KSTAT_WRITE) 1920 return (EACCES); 1921 1922 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME); 1923 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1924 scalehrtime(&hrtime); 1925 zmp->zm_stime.value.ui64 = hrtime; 1926 1927 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME); 1928 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1929 scalehrtime(&hrtime); 1930 zmp->zm_utime.value.ui64 = hrtime; 1931 1932 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME); 1933 hrtime = UINT64_OVERFLOW_TO_INT64(tmp); 1934 scalehrtime(&hrtime); 1935 zmp->zm_wtime.value.ui64 = hrtime; 1936 1937 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0]; 1938 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1]; 1939 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2]; 1940 1941 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap; 1942 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc; 1943 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem; 1944 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc; 1945 1946 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp; 1947 1948 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid; 1949 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time; 1950 1951 return (0); 1952 } 1953 1954 static kstat_t * 1955 zone_misc_kstat_create(zone_t *zone) 1956 { 1957 kstat_t *ksp; 1958 zone_misc_kstat_t *zmp; 1959 1960 if ((ksp = kstat_create_zone("zones", zone->zone_id, 1961 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED, 1962 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t), 1963 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL) 1964 return (NULL); 1965 1966 if (zone->zone_id != GLOBAL_ZONEID) 1967 kstat_zone_add(ksp, GLOBAL_ZONEID); 1968 1969 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP); 1970 ksp->ks_data_size += strlen(zone->zone_name) + 1; 1971 ksp->ks_lock = &zone->zone_misc_lock; 1972 zone->zone_misc_stats = zmp; 1973 1974 /* The kstat "name" field is not large enough for a full zonename */ 1975 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING); 1976 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name); 1977 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64); 1978 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64); 1979 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64); 1980 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32); 1981 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32); 1982 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min", 1983 KSTAT_DATA_UINT32); 1984 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32); 1985 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc", 1986 KSTAT_DATA_UINT32); 1987 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32); 1988 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32); 1989 kstat_named_init(&zmp->zm_nested_intp, "nested_interp", 1990 KSTAT_DATA_UINT32); 1991 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32); 1992 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64); 1993 1994 ksp->ks_update = zone_misc_kstat_update; 1995 ksp->ks_private = zone; 1996 1997 kstat_install(ksp); 1998 return (ksp); 1999 } 2000 2001 static void 2002 zone_kstat_create(zone_t *zone) 2003 { 2004 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone, 2005 "lockedmem", zone_lockedmem_kstat_update); 2006 zone->zone_swapresv_kstat = zone_kstat_create_common(zone, 2007 "swapresv", zone_swapresv_kstat_update); 2008 zone->zone_nprocs_kstat = zone_kstat_create_common(zone, 2009 "nprocs", zone_nprocs_kstat_update); 2010 2011 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) { 2012 zone->zone_mcap_stats = kmem_zalloc( 2013 sizeof (zone_mcap_kstat_t), KM_SLEEP); 2014 } 2015 2016 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) { 2017 zone->zone_misc_stats = kmem_zalloc( 2018 sizeof (zone_misc_kstat_t), KM_SLEEP); 2019 } 2020 } 2021 2022 static void 2023 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz) 2024 { 2025 void *data; 2026 2027 if (*pkstat != NULL) { 2028 data = (*pkstat)->ks_data; 2029 kstat_delete(*pkstat); 2030 kmem_free(data, datasz); 2031 *pkstat = NULL; 2032 } 2033 } 2034 2035 static void 2036 zone_kstat_delete(zone_t *zone) 2037 { 2038 zone_kstat_delete_common(&zone->zone_lockedmem_kstat, 2039 sizeof (zone_kstat_t)); 2040 zone_kstat_delete_common(&zone->zone_swapresv_kstat, 2041 sizeof (zone_kstat_t)); 2042 zone_kstat_delete_common(&zone->zone_nprocs_kstat, 2043 sizeof (zone_kstat_t)); 2044 zone_kstat_delete_common(&zone->zone_mcap_ksp, 2045 sizeof (zone_mcap_kstat_t)); 2046 zone_kstat_delete_common(&zone->zone_misc_ksp, 2047 sizeof (zone_misc_kstat_t)); 2048 } 2049 2050 /* 2051 * Called very early on in boot to initialize the ZSD list so that 2052 * zone_key_create() can be called before zone_init(). It also initializes 2053 * portions of zone0 which may be used before zone_init() is called. The 2054 * variable "global_zone" will be set when zone0 is fully initialized by 2055 * zone_init(). 2056 */ 2057 void 2058 zone_zsd_init(void) 2059 { 2060 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL); 2061 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL); 2062 list_create(&zsd_registered_keys, sizeof (struct zsd_entry), 2063 offsetof(struct zsd_entry, zsd_linkage)); 2064 list_create(&zone_active, sizeof (zone_t), 2065 offsetof(zone_t, zone_linkage)); 2066 list_create(&zone_deathrow, sizeof (zone_t), 2067 offsetof(zone_t, zone_linkage)); 2068 2069 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL); 2070 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 2071 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 2072 zone0.zone_shares = 1; 2073 zone0.zone_nlwps = 0; 2074 zone0.zone_nlwps_ctl = INT_MAX; 2075 zone0.zone_nprocs = 0; 2076 zone0.zone_nprocs_ctl = INT_MAX; 2077 zone0.zone_locked_mem = 0; 2078 zone0.zone_locked_mem_ctl = UINT64_MAX; 2079 ASSERT(zone0.zone_max_swap == 0); 2080 zone0.zone_max_swap_ctl = UINT64_MAX; 2081 zone0.zone_max_lofi = 0; 2082 zone0.zone_max_lofi_ctl = UINT64_MAX; 2083 zone0.zone_shmmax = 0; 2084 zone0.zone_ipc.ipcq_shmmni = 0; 2085 zone0.zone_ipc.ipcq_semmni = 0; 2086 zone0.zone_ipc.ipcq_msgmni = 0; 2087 zone0.zone_name = GLOBAL_ZONENAME; 2088 zone0.zone_nodename = utsname.nodename; 2089 zone0.zone_domain = srpc_domain; 2090 zone0.zone_hostid = HW_INVALID_HOSTID; 2091 zone0.zone_fs_allowed = NULL; 2092 psecflags_default(&zone0.zone_secflags); 2093 zone0.zone_ref = 1; 2094 zone0.zone_id = GLOBAL_ZONEID; 2095 zone0.zone_status = ZONE_IS_RUNNING; 2096 zone0.zone_rootpath = "/"; 2097 zone0.zone_rootpathlen = 2; 2098 zone0.zone_psetid = ZONE_PS_INVAL; 2099 zone0.zone_ncpus = 0; 2100 zone0.zone_ncpus_online = 0; 2101 zone0.zone_proc_initpid = 1; 2102 zone0.zone_initname = initname; 2103 zone0.zone_lockedmem_kstat = NULL; 2104 zone0.zone_swapresv_kstat = NULL; 2105 zone0.zone_nprocs_kstat = NULL; 2106 2107 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t), 2108 offsetof(zone_ref_t, zref_linkage)); 2109 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry), 2110 offsetof(struct zsd_entry, zsd_linkage)); 2111 list_insert_head(&zone_active, &zone0); 2112 2113 /* 2114 * The root filesystem is not mounted yet, so zone_rootvp cannot be set 2115 * to anything meaningful. It is assigned to be 'rootdir' in 2116 * vfs_mountroot(). 2117 */ 2118 zone0.zone_rootvp = NULL; 2119 zone0.zone_vfslist = NULL; 2120 zone0.zone_bootargs = initargs; 2121 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 2122 /* 2123 * The global zone has all privileges 2124 */ 2125 priv_fillset(zone0.zone_privset); 2126 /* 2127 * Add p0 to the global zone 2128 */ 2129 zone0.zone_zsched = &p0; 2130 p0.p_zone = &zone0; 2131 } 2132 2133 /* 2134 * Compute a hash value based on the contents of the label and the DOI. The 2135 * hash algorithm is somewhat arbitrary, but is based on the observation that 2136 * humans will likely pick labels that differ by amounts that work out to be 2137 * multiples of the number of hash chains, and thus stirring in some primes 2138 * should help. 2139 */ 2140 static uint_t 2141 hash_bylabel(void *hdata, mod_hash_key_t key) 2142 { 2143 const ts_label_t *lab = (ts_label_t *)key; 2144 const uint32_t *up, *ue; 2145 uint_t hash; 2146 int i; 2147 2148 _NOTE(ARGUNUSED(hdata)); 2149 2150 hash = lab->tsl_doi + (lab->tsl_doi << 1); 2151 /* we depend on alignment of label, but not representation */ 2152 up = (const uint32_t *)&lab->tsl_label; 2153 ue = up + sizeof (lab->tsl_label) / sizeof (*up); 2154 i = 1; 2155 while (up < ue) { 2156 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */ 2157 hash += *up + (*up << ((i % 16) + 1)); 2158 up++; 2159 i++; 2160 } 2161 return (hash); 2162 } 2163 2164 /* 2165 * All that mod_hash cares about here is zero (equal) versus non-zero (not 2166 * equal). This may need to be changed if less than / greater than is ever 2167 * needed. 2168 */ 2169 static int 2170 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2) 2171 { 2172 ts_label_t *lab1 = (ts_label_t *)key1; 2173 ts_label_t *lab2 = (ts_label_t *)key2; 2174 2175 return (label_equal(lab1, lab2) ? 0 : 1); 2176 } 2177 2178 /* 2179 * Called by main() to initialize the zones framework. 2180 */ 2181 void 2182 zone_init(void) 2183 { 2184 rctl_dict_entry_t *rde; 2185 rctl_val_t *dval; 2186 rctl_set_t *set; 2187 rctl_alloc_gp_t *gp; 2188 rctl_entity_p_t e; 2189 int res; 2190 2191 ASSERT(curproc == &p0); 2192 2193 /* 2194 * Create ID space for zone IDs. ID 0 is reserved for the 2195 * global zone. 2196 */ 2197 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID); 2198 2199 /* 2200 * Initialize generic zone resource controls, if any. 2201 */ 2202 rc_zone_cpu_shares = rctl_register("zone.cpu-shares", 2203 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER | 2204 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER, 2205 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops); 2206 2207 rc_zone_cpu_cap = rctl_register("zone.cpu-cap", 2208 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS | 2209 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER | 2210 RCTL_GLOBAL_INFINITE, 2211 MAXCAP, MAXCAP, &zone_cpu_cap_ops); 2212 2213 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE, 2214 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2215 INT_MAX, INT_MAX, &zone_lwps_ops); 2216 2217 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE, 2218 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT, 2219 INT_MAX, INT_MAX, &zone_procs_ops); 2220 2221 /* 2222 * System V IPC resource controls 2223 */ 2224 rc_zone_msgmni = rctl_register("zone.max-msg-ids", 2225 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2226 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops); 2227 2228 rc_zone_semmni = rctl_register("zone.max-sem-ids", 2229 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2230 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops); 2231 2232 rc_zone_shmmni = rctl_register("zone.max-shm-ids", 2233 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2234 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops); 2235 2236 rc_zone_shmmax = rctl_register("zone.max-shm-memory", 2237 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC | 2238 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops); 2239 2240 /* 2241 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach 2242 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''. 2243 */ 2244 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 2245 bzero(dval, sizeof (rctl_val_t)); 2246 dval->rcv_value = 1; 2247 dval->rcv_privilege = RCPRIV_PRIVILEGED; 2248 dval->rcv_flagaction = RCTL_LOCAL_NOACTION; 2249 dval->rcv_action_recip_pid = -1; 2250 2251 rde = rctl_dict_lookup("zone.cpu-shares"); 2252 (void) rctl_val_list_insert(&rde->rcd_default_value, dval); 2253 2254 rc_zone_locked_mem = rctl_register("zone.max-locked-memory", 2255 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2256 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2257 &zone_locked_mem_ops); 2258 2259 rc_zone_max_swap = rctl_register("zone.max-swap", 2260 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES | 2261 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2262 &zone_max_swap_ops); 2263 2264 rc_zone_max_lofi = rctl_register("zone.max-lofi", 2265 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | 2266 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX, 2267 &zone_max_lofi_ops); 2268 2269 /* 2270 * Initialize the ``global zone''. 2271 */ 2272 set = rctl_set_create(); 2273 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 2274 mutex_enter(&p0.p_lock); 2275 e.rcep_p.zone = &zone0; 2276 e.rcep_t = RCENTITY_ZONE; 2277 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set, 2278 gp); 2279 2280 zone0.zone_nlwps = p0.p_lwpcnt; 2281 zone0.zone_nprocs = 1; 2282 zone0.zone_ntasks = 1; 2283 mutex_exit(&p0.p_lock); 2284 zone0.zone_restart_init = B_TRUE; 2285 zone0.zone_brand = &native_brand; 2286 rctl_prealloc_destroy(gp); 2287 /* 2288 * pool_default hasn't been initialized yet, so we let pool_init() 2289 * take care of making sure the global zone is in the default pool. 2290 */ 2291 2292 /* 2293 * Initialize global zone kstats 2294 */ 2295 zone_kstat_create(&zone0); 2296 2297 /* 2298 * Initialize zone label. 2299 * mlp are initialized when tnzonecfg is loaded. 2300 */ 2301 zone0.zone_slabel = l_admin_low; 2302 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 2303 label_hold(l_admin_low); 2304 2305 /* 2306 * Initialise the lock for the database structure used by mntfs. 2307 */ 2308 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 2309 2310 zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP); 2311 2312 mutex_enter(&zonehash_lock); 2313 zone_uniqid(&zone0); 2314 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID); 2315 2316 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size, 2317 mod_hash_null_valdtor); 2318 zonehashbyname = mod_hash_create_strhash("zone_by_name", 2319 zone_hash_size, mod_hash_null_valdtor); 2320 /* 2321 * maintain zonehashbylabel only for labeled systems 2322 */ 2323 if (is_system_labeled()) 2324 zonehashbylabel = mod_hash_create_extended("zone_by_label", 2325 zone_hash_size, mod_hash_null_keydtor, 2326 mod_hash_null_valdtor, hash_bylabel, NULL, 2327 hash_labelkey_cmp, KM_SLEEP); 2328 zonecount = 1; 2329 2330 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID, 2331 (mod_hash_val_t)&zone0); 2332 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name, 2333 (mod_hash_val_t)&zone0); 2334 if (is_system_labeled()) { 2335 zone0.zone_flags |= ZF_HASHED_LABEL; 2336 (void) mod_hash_insert(zonehashbylabel, 2337 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0); 2338 } 2339 mutex_exit(&zonehash_lock); 2340 2341 /* 2342 * We avoid setting zone_kcred until now, since kcred is initialized 2343 * sometime after zone_zsd_init() and before zone_init(). 2344 */ 2345 zone0.zone_kcred = kcred; 2346 /* 2347 * The global zone is fully initialized (except for zone_rootvp which 2348 * will be set when the root filesystem is mounted). 2349 */ 2350 global_zone = &zone0; 2351 2352 /* 2353 * Setup an event channel to send zone status change notifications on 2354 */ 2355 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan, 2356 EVCH_CREAT); 2357 2358 if (res) 2359 panic("Sysevent_evc_bind failed during zone setup.\n"); 2360 2361 } 2362 2363 static void 2364 zone_free(zone_t *zone) 2365 { 2366 ASSERT(zone != global_zone); 2367 ASSERT(zone->zone_ntasks == 0); 2368 ASSERT(zone->zone_nlwps == 0); 2369 ASSERT(zone->zone_nprocs == 0); 2370 ASSERT(zone->zone_cred_ref == 0); 2371 ASSERT(zone->zone_kcred == NULL); 2372 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD || 2373 zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 2374 ASSERT(list_is_empty(&zone->zone_ref_list)); 2375 2376 /* 2377 * Remove any zone caps. 2378 */ 2379 cpucaps_zone_remove(zone); 2380 2381 ASSERT(zone->zone_cpucap == NULL); 2382 2383 /* remove from deathrow list */ 2384 if (zone_status_get(zone) == ZONE_IS_DEAD) { 2385 ASSERT(zone->zone_ref == 0); 2386 mutex_enter(&zone_deathrow_lock); 2387 list_remove(&zone_deathrow, zone); 2388 mutex_exit(&zone_deathrow_lock); 2389 } 2390 2391 list_destroy(&zone->zone_ref_list); 2392 zone_free_zsd(zone); 2393 zone_free_datasets(zone); 2394 list_destroy(&zone->zone_dl_list); 2395 2396 cpu_uarray_free(zone->zone_ustate); 2397 2398 if (zone->zone_rootvp != NULL) 2399 VN_RELE(zone->zone_rootvp); 2400 if (zone->zone_rootpath) 2401 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen); 2402 if (zone->zone_name != NULL) 2403 kmem_free(zone->zone_name, ZONENAME_MAX); 2404 if (zone->zone_slabel != NULL) 2405 label_rele(zone->zone_slabel); 2406 if (zone->zone_nodename != NULL) 2407 kmem_free(zone->zone_nodename, _SYS_NMLN); 2408 if (zone->zone_domain != NULL) 2409 kmem_free(zone->zone_domain, _SYS_NMLN); 2410 if (zone->zone_privset != NULL) 2411 kmem_free(zone->zone_privset, sizeof (priv_set_t)); 2412 if (zone->zone_rctls != NULL) 2413 rctl_set_free(zone->zone_rctls); 2414 if (zone->zone_bootargs != NULL) 2415 strfree(zone->zone_bootargs); 2416 if (zone->zone_initname != NULL) 2417 strfree(zone->zone_initname); 2418 if (zone->zone_fs_allowed != NULL) 2419 strfree(zone->zone_fs_allowed); 2420 if (zone->zone_pfexecd != NULL) 2421 klpd_freelist(&zone->zone_pfexecd); 2422 id_free(zoneid_space, zone->zone_id); 2423 mutex_destroy(&zone->zone_lock); 2424 cv_destroy(&zone->zone_cv); 2425 rw_destroy(&zone->zone_mlps.mlpl_rwlock); 2426 rw_destroy(&zone->zone_mntfs_db_lock); 2427 kmem_free(zone, sizeof (zone_t)); 2428 } 2429 2430 /* 2431 * See block comment at the top of this file for information about zone 2432 * status values. 2433 */ 2434 /* 2435 * Convenience function for setting zone status. 2436 */ 2437 static void 2438 zone_status_set(zone_t *zone, zone_status_t status) 2439 { 2440 2441 nvlist_t *nvl = NULL; 2442 ASSERT(MUTEX_HELD(&zone_status_lock)); 2443 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE && 2444 status >= zone_status_get(zone)); 2445 2446 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) || 2447 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) || 2448 nvlist_add_string(nvl, ZONE_CB_NEWSTATE, 2449 zone_status_table[status]) || 2450 nvlist_add_string(nvl, ZONE_CB_OLDSTATE, 2451 zone_status_table[zone->zone_status]) || 2452 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) || 2453 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) || 2454 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS, 2455 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) { 2456 #ifdef DEBUG 2457 (void) printf( 2458 "Failed to allocate and send zone state change event.\n"); 2459 #endif 2460 } 2461 nvlist_free(nvl); 2462 2463 zone->zone_status = status; 2464 2465 cv_broadcast(&zone->zone_cv); 2466 } 2467 2468 /* 2469 * Public function to retrieve the zone status. The zone status may 2470 * change after it is retrieved. 2471 */ 2472 zone_status_t 2473 zone_status_get(zone_t *zone) 2474 { 2475 return (zone->zone_status); 2476 } 2477 2478 static int 2479 zone_set_bootargs(zone_t *zone, const char *zone_bootargs) 2480 { 2481 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP); 2482 int err = 0; 2483 2484 ASSERT(zone != global_zone); 2485 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0) 2486 goto done; /* EFAULT or ENAMETOOLONG */ 2487 2488 if (zone->zone_bootargs != NULL) 2489 strfree(zone->zone_bootargs); 2490 2491 zone->zone_bootargs = strdup(buf); 2492 2493 done: 2494 kmem_free(buf, BOOTARGS_MAX); 2495 return (err); 2496 } 2497 2498 static int 2499 zone_set_brand(zone_t *zone, const char *brand) 2500 { 2501 struct brand_attr *attrp; 2502 brand_t *bp; 2503 2504 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP); 2505 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) { 2506 kmem_free(attrp, sizeof (struct brand_attr)); 2507 return (EFAULT); 2508 } 2509 2510 bp = brand_register_zone(attrp); 2511 kmem_free(attrp, sizeof (struct brand_attr)); 2512 if (bp == NULL) 2513 return (EINVAL); 2514 2515 /* 2516 * This is the only place where a zone can change it's brand. 2517 * We already need to hold zone_status_lock to check the zone 2518 * status, so we'll just use that lock to serialize zone 2519 * branding requests as well. 2520 */ 2521 mutex_enter(&zone_status_lock); 2522 2523 /* Re-Branding is not allowed and the zone can't be booted yet */ 2524 if ((ZONE_IS_BRANDED(zone)) || 2525 (zone_status_get(zone) >= ZONE_IS_BOOTING)) { 2526 mutex_exit(&zone_status_lock); 2527 brand_unregister_zone(bp); 2528 return (EINVAL); 2529 } 2530 2531 /* set up the brand specific data */ 2532 zone->zone_brand = bp; 2533 ZBROP(zone)->b_init_brand_data(zone); 2534 2535 mutex_exit(&zone_status_lock); 2536 return (0); 2537 } 2538 2539 static int 2540 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags) 2541 { 2542 int err = 0; 2543 psecflags_t psf; 2544 2545 ASSERT(zone != global_zone); 2546 2547 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0) 2548 return (err); 2549 2550 if (zone_status_get(zone) > ZONE_IS_READY) 2551 return (EINVAL); 2552 2553 if (!psecflags_validate(&psf)) 2554 return (EINVAL); 2555 2556 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf)); 2557 2558 /* Set security flags on the zone's zsched */ 2559 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags, 2560 sizeof (zone->zone_zsched->p_secflags)); 2561 2562 return (0); 2563 } 2564 2565 static int 2566 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed) 2567 { 2568 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP); 2569 int err = 0; 2570 2571 ASSERT(zone != global_zone); 2572 if ((err = copyinstr(zone_fs_allowed, buf, 2573 ZONE_FS_ALLOWED_MAX, NULL)) != 0) 2574 goto done; 2575 2576 if (zone->zone_fs_allowed != NULL) 2577 strfree(zone->zone_fs_allowed); 2578 2579 zone->zone_fs_allowed = strdup(buf); 2580 2581 done: 2582 kmem_free(buf, ZONE_FS_ALLOWED_MAX); 2583 return (err); 2584 } 2585 2586 static int 2587 zone_set_initname(zone_t *zone, const char *zone_initname) 2588 { 2589 char initname[INITNAME_SZ]; 2590 size_t len; 2591 int err = 0; 2592 2593 ASSERT(zone != global_zone); 2594 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0) 2595 return (err); /* EFAULT or ENAMETOOLONG */ 2596 2597 if (zone->zone_initname != NULL) 2598 strfree(zone->zone_initname); 2599 2600 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP); 2601 (void) strcpy(zone->zone_initname, initname); 2602 return (0); 2603 } 2604 2605 static int 2606 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap) 2607 { 2608 uint64_t mcap; 2609 int err = 0; 2610 2611 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0) 2612 zone->zone_phys_mcap = mcap; 2613 2614 return (err); 2615 } 2616 2617 static int 2618 zone_set_sched_class(zone_t *zone, const char *new_class) 2619 { 2620 char sched_class[PC_CLNMSZ]; 2621 id_t classid; 2622 int err; 2623 2624 ASSERT(zone != global_zone); 2625 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0) 2626 return (err); /* EFAULT or ENAMETOOLONG */ 2627 2628 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid)) 2629 return (set_errno(EINVAL)); 2630 zone->zone_defaultcid = classid; 2631 ASSERT(zone->zone_defaultcid > 0 && 2632 zone->zone_defaultcid < loaded_classes); 2633 2634 return (0); 2635 } 2636 2637 /* 2638 * Block indefinitely waiting for (zone_status >= status) 2639 */ 2640 void 2641 zone_status_wait(zone_t *zone, zone_status_t status) 2642 { 2643 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2644 2645 mutex_enter(&zone_status_lock); 2646 while (zone->zone_status < status) { 2647 cv_wait(&zone->zone_cv, &zone_status_lock); 2648 } 2649 mutex_exit(&zone_status_lock); 2650 } 2651 2652 /* 2653 * Private CPR-safe version of zone_status_wait(). 2654 */ 2655 static void 2656 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str) 2657 { 2658 callb_cpr_t cprinfo; 2659 2660 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2661 2662 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr, 2663 str); 2664 mutex_enter(&zone_status_lock); 2665 while (zone->zone_status < status) { 2666 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2667 cv_wait(&zone->zone_cv, &zone_status_lock); 2668 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock); 2669 } 2670 /* 2671 * zone_status_lock is implicitly released by the following. 2672 */ 2673 CALLB_CPR_EXIT(&cprinfo); 2674 } 2675 2676 /* 2677 * Block until zone enters requested state or signal is received. Return (0) 2678 * if signaled, non-zero otherwise. 2679 */ 2680 int 2681 zone_status_wait_sig(zone_t *zone, zone_status_t status) 2682 { 2683 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2684 2685 mutex_enter(&zone_status_lock); 2686 while (zone->zone_status < status) { 2687 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) { 2688 mutex_exit(&zone_status_lock); 2689 return (0); 2690 } 2691 } 2692 mutex_exit(&zone_status_lock); 2693 return (1); 2694 } 2695 2696 /* 2697 * Block until the zone enters the requested state or the timeout expires, 2698 * whichever happens first. Return (-1) if operation timed out, time remaining 2699 * otherwise. 2700 */ 2701 clock_t 2702 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status) 2703 { 2704 clock_t timeleft = 0; 2705 2706 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2707 2708 mutex_enter(&zone_status_lock); 2709 while (zone->zone_status < status && timeleft != -1) { 2710 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim); 2711 } 2712 mutex_exit(&zone_status_lock); 2713 return (timeleft); 2714 } 2715 2716 /* 2717 * Block until the zone enters the requested state, the current process is 2718 * signaled, or the timeout expires, whichever happens first. Return (-1) if 2719 * operation timed out, 0 if signaled, time remaining otherwise. 2720 */ 2721 clock_t 2722 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status) 2723 { 2724 clock_t timeleft = tim - ddi_get_lbolt(); 2725 2726 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE); 2727 2728 mutex_enter(&zone_status_lock); 2729 while (zone->zone_status < status) { 2730 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock, 2731 tim); 2732 if (timeleft <= 0) 2733 break; 2734 } 2735 mutex_exit(&zone_status_lock); 2736 return (timeleft); 2737 } 2738 2739 /* 2740 * Zones have two reference counts: one for references from credential 2741 * structures (zone_cred_ref), and one (zone_ref) for everything else. 2742 * This is so we can allow a zone to be rebooted while there are still 2743 * outstanding cred references, since certain drivers cache dblks (which 2744 * implicitly results in cached creds). We wait for zone_ref to drop to 2745 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is 2746 * later freed when the zone_cred_ref drops to 0, though nothing other 2747 * than the zone id and privilege set should be accessed once the zone 2748 * is "dead". 2749 * 2750 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value 2751 * to force halt/reboot to block waiting for the zone_cred_ref to drop 2752 * to 0. This can be useful to flush out other sources of cached creds 2753 * that may be less innocuous than the driver case. 2754 * 2755 * Zones also provide a tracked reference counting mechanism in which zone 2756 * references are represented by "crumbs" (zone_ref structures). Crumbs help 2757 * debuggers determine the sources of leaked zone references. See 2758 * zone_hold_ref() and zone_rele_ref() below for more information. 2759 */ 2760 2761 int zone_wait_for_cred = 0; 2762 2763 static void 2764 zone_hold_locked(zone_t *z) 2765 { 2766 ASSERT(MUTEX_HELD(&z->zone_lock)); 2767 z->zone_ref++; 2768 ASSERT(z->zone_ref != 0); 2769 } 2770 2771 /* 2772 * Increment the specified zone's reference count. The zone's zone_t structure 2773 * will not be freed as long as the zone's reference count is nonzero. 2774 * Decrement the zone's reference count via zone_rele(). 2775 * 2776 * NOTE: This function should only be used to hold zones for short periods of 2777 * time. Use zone_hold_ref() if the zone must be held for a long time. 2778 */ 2779 void 2780 zone_hold(zone_t *z) 2781 { 2782 mutex_enter(&z->zone_lock); 2783 zone_hold_locked(z); 2784 mutex_exit(&z->zone_lock); 2785 } 2786 2787 /* 2788 * If the non-cred ref count drops to 1 and either the cred ref count 2789 * is 0 or we aren't waiting for cred references, the zone is ready to 2790 * be destroyed. 2791 */ 2792 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \ 2793 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0)) 2794 2795 /* 2796 * Common zone reference release function invoked by zone_rele() and 2797 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified 2798 * zone's subsystem-specific reference counters are not affected by the 2799 * release. If ref is not NULL, then the zone_ref_t to which it refers is 2800 * removed from the specified zone's reference list. ref must be non-NULL iff 2801 * subsys is not ZONE_REF_NUM_SUBSYS. 2802 */ 2803 static void 2804 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2805 { 2806 boolean_t wakeup; 2807 2808 mutex_enter(&z->zone_lock); 2809 ASSERT(z->zone_ref != 0); 2810 z->zone_ref--; 2811 if (subsys != ZONE_REF_NUM_SUBSYS) { 2812 ASSERT(z->zone_subsys_ref[subsys] != 0); 2813 z->zone_subsys_ref[subsys]--; 2814 list_remove(&z->zone_ref_list, ref); 2815 } 2816 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2817 /* no more refs, free the structure */ 2818 mutex_exit(&z->zone_lock); 2819 zone_free(z); 2820 return; 2821 } 2822 /* signal zone_destroy so the zone can finish halting */ 2823 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD); 2824 mutex_exit(&z->zone_lock); 2825 2826 if (wakeup) { 2827 /* 2828 * Grabbing zonehash_lock here effectively synchronizes with 2829 * zone_destroy() to avoid missed signals. 2830 */ 2831 mutex_enter(&zonehash_lock); 2832 cv_broadcast(&zone_destroy_cv); 2833 mutex_exit(&zonehash_lock); 2834 } 2835 } 2836 2837 /* 2838 * Decrement the specified zone's reference count. The specified zone will 2839 * cease to exist after this function returns if the reference count drops to 2840 * zero. This function should be paired with zone_hold(). 2841 */ 2842 void 2843 zone_rele(zone_t *z) 2844 { 2845 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS); 2846 } 2847 2848 /* 2849 * Initialize a zone reference structure. This function must be invoked for 2850 * a reference structure before the structure is passed to zone_hold_ref(). 2851 */ 2852 void 2853 zone_init_ref(zone_ref_t *ref) 2854 { 2855 ref->zref_zone = NULL; 2856 list_link_init(&ref->zref_linkage); 2857 } 2858 2859 /* 2860 * Acquire a reference to zone z. The caller must specify the 2861 * zone_ref_subsys_t constant associated with its subsystem. The specified 2862 * zone_ref_t structure will represent a reference to the specified zone. Use 2863 * zone_rele_ref() to release the reference. 2864 * 2865 * The referenced zone_t structure will not be freed as long as the zone_t's 2866 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding 2867 * references. 2868 * 2869 * NOTE: The zone_ref_t structure must be initialized before it is used. 2870 * See zone_init_ref() above. 2871 */ 2872 void 2873 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys) 2874 { 2875 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS); 2876 2877 /* 2878 * Prevent consumers from reusing a reference structure before 2879 * releasing it. 2880 */ 2881 VERIFY(ref->zref_zone == NULL); 2882 2883 ref->zref_zone = z; 2884 mutex_enter(&z->zone_lock); 2885 zone_hold_locked(z); 2886 z->zone_subsys_ref[subsys]++; 2887 ASSERT(z->zone_subsys_ref[subsys] != 0); 2888 list_insert_head(&z->zone_ref_list, ref); 2889 mutex_exit(&z->zone_lock); 2890 } 2891 2892 /* 2893 * Release the zone reference represented by the specified zone_ref_t. 2894 * The reference is invalid after it's released; however, the zone_ref_t 2895 * structure can be reused without having to invoke zone_init_ref(). 2896 * subsys should be the same value that was passed to zone_hold_ref() 2897 * when the reference was acquired. 2898 */ 2899 void 2900 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys) 2901 { 2902 zone_rele_common(ref->zref_zone, ref, subsys); 2903 2904 /* 2905 * Set the zone_ref_t's zref_zone field to NULL to generate panics 2906 * when consumers dereference the reference. This helps us catch 2907 * consumers who use released references. Furthermore, this lets 2908 * consumers reuse the zone_ref_t structure without having to 2909 * invoke zone_init_ref(). 2910 */ 2911 ref->zref_zone = NULL; 2912 } 2913 2914 void 2915 zone_cred_hold(zone_t *z) 2916 { 2917 mutex_enter(&z->zone_lock); 2918 z->zone_cred_ref++; 2919 ASSERT(z->zone_cred_ref != 0); 2920 mutex_exit(&z->zone_lock); 2921 } 2922 2923 void 2924 zone_cred_rele(zone_t *z) 2925 { 2926 boolean_t wakeup; 2927 2928 mutex_enter(&z->zone_lock); 2929 ASSERT(z->zone_cred_ref != 0); 2930 z->zone_cred_ref--; 2931 if (z->zone_ref == 0 && z->zone_cred_ref == 0) { 2932 /* no more refs, free the structure */ 2933 mutex_exit(&z->zone_lock); 2934 zone_free(z); 2935 return; 2936 } 2937 /* 2938 * If zone_destroy is waiting for the cred references to drain 2939 * out, and they have, signal it. 2940 */ 2941 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) && 2942 zone_status_get(z) >= ZONE_IS_DEAD); 2943 mutex_exit(&z->zone_lock); 2944 2945 if (wakeup) { 2946 /* 2947 * Grabbing zonehash_lock here effectively synchronizes with 2948 * zone_destroy() to avoid missed signals. 2949 */ 2950 mutex_enter(&zonehash_lock); 2951 cv_broadcast(&zone_destroy_cv); 2952 mutex_exit(&zonehash_lock); 2953 } 2954 } 2955 2956 void 2957 zone_task_hold(zone_t *z) 2958 { 2959 mutex_enter(&z->zone_lock); 2960 z->zone_ntasks++; 2961 ASSERT(z->zone_ntasks != 0); 2962 mutex_exit(&z->zone_lock); 2963 } 2964 2965 void 2966 zone_task_rele(zone_t *zone) 2967 { 2968 uint_t refcnt; 2969 2970 mutex_enter(&zone->zone_lock); 2971 ASSERT(zone->zone_ntasks != 0); 2972 refcnt = --zone->zone_ntasks; 2973 if (refcnt > 1) { /* Common case */ 2974 mutex_exit(&zone->zone_lock); 2975 return; 2976 } 2977 zone_hold_locked(zone); /* so we can use the zone_t later */ 2978 mutex_exit(&zone->zone_lock); 2979 if (refcnt == 1) { 2980 /* 2981 * See if the zone is shutting down. 2982 */ 2983 mutex_enter(&zone_status_lock); 2984 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) { 2985 goto out; 2986 } 2987 2988 /* 2989 * Make sure the ntasks didn't change since we 2990 * dropped zone_lock. 2991 */ 2992 mutex_enter(&zone->zone_lock); 2993 if (refcnt != zone->zone_ntasks) { 2994 mutex_exit(&zone->zone_lock); 2995 goto out; 2996 } 2997 mutex_exit(&zone->zone_lock); 2998 2999 /* 3000 * No more user processes in the zone. The zone is empty. 3001 */ 3002 zone_status_set(zone, ZONE_IS_EMPTY); 3003 goto out; 3004 } 3005 3006 ASSERT(refcnt == 0); 3007 /* 3008 * zsched has exited; the zone is dead. 3009 */ 3010 zone->zone_zsched = NULL; /* paranoia */ 3011 mutex_enter(&zone_status_lock); 3012 zone_status_set(zone, ZONE_IS_DEAD); 3013 out: 3014 mutex_exit(&zone_status_lock); 3015 zone_rele(zone); 3016 } 3017 3018 zoneid_t 3019 getzoneid(void) 3020 { 3021 return (curproc->p_zone->zone_id); 3022 } 3023 3024 zoneid_t 3025 getzonedid(void) 3026 { 3027 return (curproc->p_zone->zone_did); 3028 } 3029 3030 /* 3031 * Internal versions of zone_find_by_*(). These don't zone_hold() or 3032 * check the validity of a zone's state. 3033 */ 3034 static zone_t * 3035 zone_find_all_by_id(zoneid_t zoneid) 3036 { 3037 mod_hash_val_t hv; 3038 zone_t *zone = NULL; 3039 3040 ASSERT(MUTEX_HELD(&zonehash_lock)); 3041 3042 if (mod_hash_find(zonehashbyid, 3043 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0) 3044 zone = (zone_t *)hv; 3045 return (zone); 3046 } 3047 3048 static zone_t * 3049 zone_find_all_by_label(const ts_label_t *label) 3050 { 3051 mod_hash_val_t hv; 3052 zone_t *zone = NULL; 3053 3054 ASSERT(MUTEX_HELD(&zonehash_lock)); 3055 3056 /* 3057 * zonehashbylabel is not maintained for unlabeled systems 3058 */ 3059 if (!is_system_labeled()) 3060 return (NULL); 3061 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0) 3062 zone = (zone_t *)hv; 3063 return (zone); 3064 } 3065 3066 static zone_t * 3067 zone_find_all_by_name(char *name) 3068 { 3069 mod_hash_val_t hv; 3070 zone_t *zone = NULL; 3071 3072 ASSERT(MUTEX_HELD(&zonehash_lock)); 3073 3074 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0) 3075 zone = (zone_t *)hv; 3076 return (zone); 3077 } 3078 3079 /* 3080 * Public interface for looking up a zone by zoneid. Only returns the zone if 3081 * it is fully initialized, and has not yet begun the zone_destroy() sequence. 3082 * Caller must call zone_rele() once it is done with the zone. 3083 * 3084 * The zone may begin the zone_destroy() sequence immediately after this 3085 * function returns, but may be safely used until zone_rele() is called. 3086 */ 3087 zone_t * 3088 zone_find_by_id(zoneid_t zoneid) 3089 { 3090 zone_t *zone; 3091 zone_status_t status; 3092 3093 mutex_enter(&zonehash_lock); 3094 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 3095 mutex_exit(&zonehash_lock); 3096 return (NULL); 3097 } 3098 status = zone_status_get(zone); 3099 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3100 /* 3101 * For all practical purposes the zone doesn't exist. 3102 */ 3103 mutex_exit(&zonehash_lock); 3104 return (NULL); 3105 } 3106 zone_hold(zone); 3107 mutex_exit(&zonehash_lock); 3108 return (zone); 3109 } 3110 3111 /* 3112 * Similar to zone_find_by_id, but using zone label as the key. 3113 */ 3114 zone_t * 3115 zone_find_by_label(const ts_label_t *label) 3116 { 3117 zone_t *zone; 3118 zone_status_t status; 3119 3120 mutex_enter(&zonehash_lock); 3121 if ((zone = zone_find_all_by_label(label)) == NULL) { 3122 mutex_exit(&zonehash_lock); 3123 return (NULL); 3124 } 3125 3126 status = zone_status_get(zone); 3127 if (status > ZONE_IS_DOWN) { 3128 /* 3129 * For all practical purposes the zone doesn't exist. 3130 */ 3131 mutex_exit(&zonehash_lock); 3132 return (NULL); 3133 } 3134 zone_hold(zone); 3135 mutex_exit(&zonehash_lock); 3136 return (zone); 3137 } 3138 3139 /* 3140 * Similar to zone_find_by_id, but using zone name as the key. 3141 */ 3142 zone_t * 3143 zone_find_by_name(char *name) 3144 { 3145 zone_t *zone; 3146 zone_status_t status; 3147 3148 mutex_enter(&zonehash_lock); 3149 if ((zone = zone_find_all_by_name(name)) == NULL) { 3150 mutex_exit(&zonehash_lock); 3151 return (NULL); 3152 } 3153 status = zone_status_get(zone); 3154 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3155 /* 3156 * For all practical purposes the zone doesn't exist. 3157 */ 3158 mutex_exit(&zonehash_lock); 3159 return (NULL); 3160 } 3161 zone_hold(zone); 3162 mutex_exit(&zonehash_lock); 3163 return (zone); 3164 } 3165 3166 /* 3167 * Similar to zone_find_by_id(), using the path as a key. For instance, 3168 * if there is a zone "foo" rooted at /foo/root, and the path argument 3169 * is "/foo/root/proc", it will return the held zone_t corresponding to 3170 * zone "foo". 3171 * 3172 * zone_find_by_path() always returns a non-NULL value, since at the 3173 * very least every path will be contained in the global zone. 3174 * 3175 * As with the other zone_find_by_*() functions, the caller is 3176 * responsible for zone_rele()ing the return value of this function. 3177 */ 3178 zone_t * 3179 zone_find_by_path(const char *path) 3180 { 3181 zone_t *zone; 3182 zone_t *zret = NULL; 3183 zone_status_t status; 3184 3185 if (path == NULL) { 3186 /* 3187 * Call from rootconf(). 3188 */ 3189 zone_hold(global_zone); 3190 return (global_zone); 3191 } 3192 ASSERT(*path == '/'); 3193 mutex_enter(&zonehash_lock); 3194 for (zone = list_head(&zone_active); zone != NULL; 3195 zone = list_next(&zone_active, zone)) { 3196 if (ZONE_PATH_VISIBLE(path, zone)) 3197 zret = zone; 3198 } 3199 ASSERT(zret != NULL); 3200 status = zone_status_get(zret); 3201 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) { 3202 /* 3203 * Zone practically doesn't exist. 3204 */ 3205 zret = global_zone; 3206 } 3207 zone_hold(zret); 3208 mutex_exit(&zonehash_lock); 3209 return (zret); 3210 } 3211 3212 /* 3213 * Public interface for updating per-zone load averages. Called once per 3214 * second. 3215 * 3216 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c. 3217 */ 3218 void 3219 zone_loadavg_update(void) 3220 { 3221 zone_t *zp; 3222 zone_status_t status; 3223 struct loadavg_s *lavg; 3224 hrtime_t zone_total; 3225 uint64_t tmp; 3226 int i; 3227 hrtime_t hr_avg; 3228 int nrun; 3229 static int64_t f[3] = { 135, 27, 9 }; 3230 int64_t q, r; 3231 3232 mutex_enter(&zonehash_lock); 3233 for (zp = list_head(&zone_active); zp != NULL; 3234 zp = list_next(&zone_active, zp)) { 3235 mutex_enter(&zp->zone_lock); 3236 3237 /* Skip zones that are on the way down or not yet up */ 3238 status = zone_status_get(zp); 3239 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) { 3240 /* For all practical purposes the zone doesn't exist. */ 3241 mutex_exit(&zp->zone_lock); 3242 continue; 3243 } 3244 3245 /* 3246 * Update the 10 second moving average data in zone_loadavg. 3247 */ 3248 lavg = &zp->zone_loadavg; 3249 3250 tmp = cpu_uarray_sum_all(zp->zone_ustate); 3251 zone_total = UINT64_OVERFLOW_TO_INT64(tmp); 3252 3253 scalehrtime(&zone_total); 3254 3255 /* The zone_total should always be increasing. */ 3256 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ? 3257 zone_total - lavg->lg_total : 0; 3258 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ; 3259 /* lg_total holds the prev. 1 sec. total */ 3260 lavg->lg_total = zone_total; 3261 3262 /* 3263 * To simplify the calculation, we don't calculate the load avg. 3264 * until the zone has been up for at least 10 seconds and our 3265 * moving average is thus full. 3266 */ 3267 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) { 3268 lavg->lg_len++; 3269 mutex_exit(&zp->zone_lock); 3270 continue; 3271 } 3272 3273 /* Now calculate the 1min, 5min, 15 min load avg. */ 3274 hr_avg = 0; 3275 for (i = 0; i < S_LOADAVG_SZ; i++) 3276 hr_avg += lavg->lg_loads[i]; 3277 hr_avg = hr_avg / S_LOADAVG_SZ; 3278 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX); 3279 3280 /* Compute load avg. See comment in calcloadavg() */ 3281 for (i = 0; i < 3; i++) { 3282 q = (zp->zone_hp_avenrun[i] >> 16) << 7; 3283 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7; 3284 zp->zone_hp_avenrun[i] += 3285 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4; 3286 3287 /* avenrun[] can only hold 31 bits of load avg. */ 3288 if (zp->zone_hp_avenrun[i] < 3289 ((uint64_t)1<<(31+16-FSHIFT))) 3290 zp->zone_avenrun[i] = (int32_t) 3291 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT)); 3292 else 3293 zp->zone_avenrun[i] = 0x7fffffff; 3294 } 3295 3296 mutex_exit(&zp->zone_lock); 3297 } 3298 mutex_exit(&zonehash_lock); 3299 } 3300 3301 /* 3302 * Get the number of cpus visible to this zone. The system-wide global 3303 * 'ncpus' is returned if pools are disabled, the caller is in the 3304 * global zone, or a NULL zone argument is passed in. 3305 */ 3306 int 3307 zone_ncpus_get(zone_t *zone) 3308 { 3309 int myncpus = zone == NULL ? 0 : zone->zone_ncpus; 3310 3311 return (myncpus != 0 ? myncpus : ncpus); 3312 } 3313 3314 /* 3315 * Get the number of online cpus visible to this zone. The system-wide 3316 * global 'ncpus_online' is returned if pools are disabled, the caller 3317 * is in the global zone, or a NULL zone argument is passed in. 3318 */ 3319 int 3320 zone_ncpus_online_get(zone_t *zone) 3321 { 3322 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online; 3323 3324 return (myncpus_online != 0 ? myncpus_online : ncpus_online); 3325 } 3326 3327 /* 3328 * Return the pool to which the zone is currently bound. 3329 */ 3330 pool_t * 3331 zone_pool_get(zone_t *zone) 3332 { 3333 ASSERT(pool_lock_held()); 3334 3335 return (zone->zone_pool); 3336 } 3337 3338 /* 3339 * Set the zone's pool pointer and update the zone's visibility to match 3340 * the resources in the new pool. 3341 */ 3342 void 3343 zone_pool_set(zone_t *zone, pool_t *pool) 3344 { 3345 ASSERT(pool_lock_held()); 3346 ASSERT(MUTEX_HELD(&cpu_lock)); 3347 3348 zone->zone_pool = pool; 3349 zone_pset_set(zone, pool->pool_pset->pset_id); 3350 } 3351 3352 /* 3353 * Return the cached value of the id of the processor set to which the 3354 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools 3355 * facility is disabled. 3356 */ 3357 psetid_t 3358 zone_pset_get(zone_t *zone) 3359 { 3360 ASSERT(MUTEX_HELD(&cpu_lock)); 3361 3362 return (zone->zone_psetid); 3363 } 3364 3365 /* 3366 * Set the cached value of the id of the processor set to which the zone 3367 * is currently bound. Also update the zone's visibility to match the 3368 * resources in the new processor set. 3369 */ 3370 void 3371 zone_pset_set(zone_t *zone, psetid_t newpsetid) 3372 { 3373 psetid_t oldpsetid; 3374 3375 ASSERT(MUTEX_HELD(&cpu_lock)); 3376 oldpsetid = zone_pset_get(zone); 3377 3378 if (oldpsetid == newpsetid) 3379 return; 3380 /* 3381 * Global zone sees all. 3382 */ 3383 if (zone != global_zone) { 3384 zone->zone_psetid = newpsetid; 3385 if (newpsetid != ZONE_PS_INVAL) 3386 pool_pset_visibility_add(newpsetid, zone); 3387 if (oldpsetid != ZONE_PS_INVAL) 3388 pool_pset_visibility_remove(oldpsetid, zone); 3389 } 3390 /* 3391 * Disabling pools, so we should start using the global values 3392 * for ncpus and ncpus_online. 3393 */ 3394 if (newpsetid == ZONE_PS_INVAL) { 3395 zone->zone_ncpus = 0; 3396 zone->zone_ncpus_online = 0; 3397 } 3398 } 3399 3400 /* 3401 * Walk the list of active zones and issue the provided callback for 3402 * each of them. 3403 * 3404 * Caller must not be holding any locks that may be acquired under 3405 * zonehash_lock. See comment at the beginning of the file for a list of 3406 * common locks and their interactions with zones. 3407 */ 3408 int 3409 zone_walk(int (*cb)(zone_t *, void *), void *data) 3410 { 3411 zone_t *zone; 3412 int ret = 0; 3413 zone_status_t status; 3414 3415 mutex_enter(&zonehash_lock); 3416 for (zone = list_head(&zone_active); zone != NULL; 3417 zone = list_next(&zone_active, zone)) { 3418 /* 3419 * Skip zones that shouldn't be externally visible. 3420 */ 3421 status = zone_status_get(zone); 3422 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) 3423 continue; 3424 /* 3425 * Bail immediately if any callback invocation returns a 3426 * non-zero value. 3427 */ 3428 ret = (*cb)(zone, data); 3429 if (ret != 0) 3430 break; 3431 } 3432 mutex_exit(&zonehash_lock); 3433 return (ret); 3434 } 3435 3436 static int 3437 zone_set_root(zone_t *zone, const char *upath) 3438 { 3439 vnode_t *vp; 3440 int trycount; 3441 int error = 0; 3442 char *path; 3443 struct pathname upn, pn; 3444 size_t pathlen; 3445 3446 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0) 3447 return (error); 3448 3449 pn_alloc(&pn); 3450 3451 /* prevent infinite loop */ 3452 trycount = 10; 3453 for (;;) { 3454 if (--trycount <= 0) { 3455 error = ESTALE; 3456 goto out; 3457 } 3458 3459 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) { 3460 /* 3461 * VOP_ACCESS() may cover 'vp' with a new 3462 * filesystem, if 'vp' is an autoFS vnode. 3463 * Get the new 'vp' if so. 3464 */ 3465 if ((error = 3466 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 && 3467 (!vn_ismntpt(vp) || 3468 (error = traverse(&vp)) == 0)) { 3469 pathlen = pn.pn_pathlen + 2; 3470 path = kmem_alloc(pathlen, KM_SLEEP); 3471 (void) strncpy(path, pn.pn_path, 3472 pn.pn_pathlen + 1); 3473 path[pathlen - 2] = '/'; 3474 path[pathlen - 1] = '\0'; 3475 pn_free(&pn); 3476 pn_free(&upn); 3477 3478 /* Success! */ 3479 break; 3480 } 3481 VN_RELE(vp); 3482 } 3483 if (error != ESTALE) 3484 goto out; 3485 } 3486 3487 ASSERT(error == 0); 3488 zone->zone_rootvp = vp; /* we hold a reference to vp */ 3489 zone->zone_rootpath = path; 3490 zone->zone_rootpathlen = pathlen; 3491 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0) 3492 zone->zone_flags |= ZF_IS_SCRATCH; 3493 return (0); 3494 3495 out: 3496 pn_free(&pn); 3497 pn_free(&upn); 3498 return (error); 3499 } 3500 3501 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \ 3502 ((c) >= 'a' && (c) <= 'z') || \ 3503 ((c) >= 'A' && (c) <= 'Z')) 3504 3505 static int 3506 zone_set_name(zone_t *zone, const char *uname) 3507 { 3508 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 3509 size_t len; 3510 int i, err; 3511 3512 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) { 3513 kmem_free(kname, ZONENAME_MAX); 3514 return (err); /* EFAULT or ENAMETOOLONG */ 3515 } 3516 3517 /* must be less than ZONENAME_MAX */ 3518 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') { 3519 kmem_free(kname, ZONENAME_MAX); 3520 return (EINVAL); 3521 } 3522 3523 /* 3524 * Name must start with an alphanumeric and must contain only 3525 * alphanumerics, '-', '_' and '.'. 3526 */ 3527 if (!isalnum(kname[0])) { 3528 kmem_free(kname, ZONENAME_MAX); 3529 return (EINVAL); 3530 } 3531 for (i = 1; i < len - 1; i++) { 3532 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' && 3533 kname[i] != '.') { 3534 kmem_free(kname, ZONENAME_MAX); 3535 return (EINVAL); 3536 } 3537 } 3538 3539 zone->zone_name = kname; 3540 return (0); 3541 } 3542 3543 /* 3544 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep' 3545 * is NULL or it points to a zone with no hostid emulation, then the machine's 3546 * hostid (i.e., the global zone's hostid) is returned. This function returns 3547 * zero if neither the zone nor the host machine (global zone) have hostids. It 3548 * returns HW_INVALID_HOSTID if the function attempts to return the machine's 3549 * hostid and the machine's hostid is invalid. 3550 */ 3551 uint32_t 3552 zone_get_hostid(zone_t *zonep) 3553 { 3554 unsigned long machine_hostid; 3555 3556 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) { 3557 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0) 3558 return (HW_INVALID_HOSTID); 3559 return ((uint32_t)machine_hostid); 3560 } 3561 return (zonep->zone_hostid); 3562 } 3563 3564 /* 3565 * Similar to thread_create(), but makes sure the thread is in the appropriate 3566 * zone's zsched process (curproc->p_zone->zone_zsched) before returning. 3567 */ 3568 /*ARGSUSED*/ 3569 kthread_t * 3570 zthread_create( 3571 caddr_t stk, 3572 size_t stksize, 3573 void (*proc)(), 3574 void *arg, 3575 size_t len, 3576 pri_t pri) 3577 { 3578 kthread_t *t; 3579 zone_t *zone = curproc->p_zone; 3580 proc_t *pp = zone->zone_zsched; 3581 3582 zone_hold(zone); /* Reference to be dropped when thread exits */ 3583 3584 /* 3585 * No-one should be trying to create threads if the zone is shutting 3586 * down and there aren't any kernel threads around. See comment 3587 * in zthread_exit(). 3588 */ 3589 ASSERT(!(zone->zone_kthreads == NULL && 3590 zone_status_get(zone) >= ZONE_IS_EMPTY)); 3591 /* 3592 * Create a thread, but don't let it run until we've finished setting 3593 * things up. 3594 */ 3595 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri); 3596 ASSERT(t->t_forw == NULL); 3597 mutex_enter(&zone_status_lock); 3598 if (zone->zone_kthreads == NULL) { 3599 t->t_forw = t->t_back = t; 3600 } else { 3601 kthread_t *tx = zone->zone_kthreads; 3602 3603 t->t_forw = tx; 3604 t->t_back = tx->t_back; 3605 tx->t_back->t_forw = t; 3606 tx->t_back = t; 3607 } 3608 zone->zone_kthreads = t; 3609 mutex_exit(&zone_status_lock); 3610 3611 mutex_enter(&pp->p_lock); 3612 t->t_proc_flag |= TP_ZTHREAD; 3613 project_rele(t->t_proj); 3614 t->t_proj = project_hold(pp->p_task->tk_proj); 3615 3616 /* 3617 * Setup complete, let it run. 3618 */ 3619 thread_lock(t); 3620 t->t_schedflag |= TS_ALLSTART; 3621 setrun_locked(t); 3622 thread_unlock(t); 3623 3624 mutex_exit(&pp->p_lock); 3625 3626 return (t); 3627 } 3628 3629 /* 3630 * Similar to thread_exit(). Must be called by threads created via 3631 * zthread_exit(). 3632 */ 3633 void 3634 zthread_exit(void) 3635 { 3636 kthread_t *t = curthread; 3637 proc_t *pp = curproc; 3638 zone_t *zone = pp->p_zone; 3639 3640 mutex_enter(&zone_status_lock); 3641 3642 /* 3643 * Reparent to p0 3644 */ 3645 kpreempt_disable(); 3646 mutex_enter(&pp->p_lock); 3647 t->t_proc_flag &= ~TP_ZTHREAD; 3648 t->t_procp = &p0; 3649 hat_thread_exit(t); 3650 mutex_exit(&pp->p_lock); 3651 kpreempt_enable(); 3652 3653 if (t->t_back == t) { 3654 ASSERT(t->t_forw == t); 3655 /* 3656 * If the zone is empty, once the thread count 3657 * goes to zero no further kernel threads can be 3658 * created. This is because if the creator is a process 3659 * in the zone, then it must have exited before the zone 3660 * state could be set to ZONE_IS_EMPTY. 3661 * Otherwise, if the creator is a kernel thread in the 3662 * zone, the thread count is non-zero. 3663 * 3664 * This really means that non-zone kernel threads should 3665 * not create zone kernel threads. 3666 */ 3667 zone->zone_kthreads = NULL; 3668 if (zone_status_get(zone) == ZONE_IS_EMPTY) { 3669 zone_status_set(zone, ZONE_IS_DOWN); 3670 /* 3671 * Remove any CPU caps on this zone. 3672 */ 3673 cpucaps_zone_remove(zone); 3674 } 3675 } else { 3676 t->t_forw->t_back = t->t_back; 3677 t->t_back->t_forw = t->t_forw; 3678 if (zone->zone_kthreads == t) 3679 zone->zone_kthreads = t->t_forw; 3680 } 3681 mutex_exit(&zone_status_lock); 3682 zone_rele(zone); 3683 thread_exit(); 3684 /* NOTREACHED */ 3685 } 3686 3687 static void 3688 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp) 3689 { 3690 vnode_t *oldvp; 3691 3692 /* we're going to hold a reference here to the directory */ 3693 VN_HOLD(vp); 3694 3695 /* update abs cwd/root path see c2/audit.c */ 3696 if (AU_AUDITING()) 3697 audit_chdirec(vp, vpp); 3698 3699 mutex_enter(&pp->p_lock); 3700 oldvp = *vpp; 3701 *vpp = vp; 3702 mutex_exit(&pp->p_lock); 3703 if (oldvp != NULL) 3704 VN_RELE(oldvp); 3705 } 3706 3707 /* 3708 * Convert an rctl value represented by an nvlist_t into an rctl_val_t. 3709 */ 3710 static int 3711 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv) 3712 { 3713 nvpair_t *nvp = NULL; 3714 boolean_t priv_set = B_FALSE; 3715 boolean_t limit_set = B_FALSE; 3716 boolean_t action_set = B_FALSE; 3717 3718 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3719 const char *name; 3720 uint64_t ui64; 3721 3722 name = nvpair_name(nvp); 3723 if (nvpair_type(nvp) != DATA_TYPE_UINT64) 3724 return (EINVAL); 3725 (void) nvpair_value_uint64(nvp, &ui64); 3726 if (strcmp(name, "privilege") == 0) { 3727 /* 3728 * Currently only privileged values are allowed, but 3729 * this may change in the future. 3730 */ 3731 if (ui64 != RCPRIV_PRIVILEGED) 3732 return (EINVAL); 3733 rv->rcv_privilege = ui64; 3734 priv_set = B_TRUE; 3735 } else if (strcmp(name, "limit") == 0) { 3736 rv->rcv_value = ui64; 3737 limit_set = B_TRUE; 3738 } else if (strcmp(name, "action") == 0) { 3739 if (ui64 != RCTL_LOCAL_NOACTION && 3740 ui64 != RCTL_LOCAL_DENY) 3741 return (EINVAL); 3742 rv->rcv_flagaction = ui64; 3743 action_set = B_TRUE; 3744 } else { 3745 return (EINVAL); 3746 } 3747 } 3748 3749 if (!(priv_set && limit_set && action_set)) 3750 return (EINVAL); 3751 rv->rcv_action_signal = 0; 3752 rv->rcv_action_recipient = NULL; 3753 rv->rcv_action_recip_pid = -1; 3754 rv->rcv_firing_time = 0; 3755 3756 return (0); 3757 } 3758 3759 /* 3760 * Non-global zone version of start_init. 3761 */ 3762 void 3763 zone_start_init(void) 3764 { 3765 proc_t *p = ttoproc(curthread); 3766 zone_t *z = p->p_zone; 3767 3768 ASSERT(!INGLOBALZONE(curproc)); 3769 3770 /* 3771 * For all purposes (ZONE_ATTR_INITPID and restart_init), 3772 * storing just the pid of init is sufficient. 3773 */ 3774 z->zone_proc_initpid = p->p_pid; 3775 3776 /* 3777 * We maintain zone_boot_err so that we can return the cause of the 3778 * failure back to the caller of the zone_boot syscall. 3779 */ 3780 p->p_zone->zone_boot_err = start_init_common(); 3781 3782 /* 3783 * We will prevent booting zones from becoming running zones if the 3784 * global zone is shutting down. 3785 */ 3786 mutex_enter(&zone_status_lock); 3787 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >= 3788 ZONE_IS_SHUTTING_DOWN) { 3789 /* 3790 * Make sure we are still in the booting state-- we could have 3791 * raced and already be shutting down, or even further along. 3792 */ 3793 if (zone_status_get(z) == ZONE_IS_BOOTING) { 3794 zone_status_set(z, ZONE_IS_SHUTTING_DOWN); 3795 } 3796 mutex_exit(&zone_status_lock); 3797 /* It's gone bad, dispose of the process */ 3798 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) { 3799 mutex_enter(&p->p_lock); 3800 ASSERT(p->p_flag & SEXITLWPS); 3801 lwp_exit(); 3802 } 3803 } else { 3804 if (zone_status_get(z) == ZONE_IS_BOOTING) 3805 zone_status_set(z, ZONE_IS_RUNNING); 3806 mutex_exit(&zone_status_lock); 3807 /* cause the process to return to userland. */ 3808 lwp_rtt(); 3809 } 3810 } 3811 3812 struct zsched_arg { 3813 zone_t *zone; 3814 nvlist_t *nvlist; 3815 }; 3816 3817 /* 3818 * Per-zone "sched" workalike. The similarity to "sched" doesn't have 3819 * anything to do with scheduling, but rather with the fact that 3820 * per-zone kernel threads are parented to zsched, just like regular 3821 * kernel threads are parented to sched (p0). 3822 * 3823 * zsched is also responsible for launching init for the zone. 3824 */ 3825 static void 3826 zsched(void *arg) 3827 { 3828 struct zsched_arg *za = arg; 3829 proc_t *pp = curproc; 3830 proc_t *initp = proc_init; 3831 zone_t *zone = za->zone; 3832 cred_t *cr, *oldcred; 3833 rctl_set_t *set; 3834 rctl_alloc_gp_t *gp; 3835 contract_t *ct = NULL; 3836 task_t *tk, *oldtk; 3837 rctl_entity_p_t e; 3838 kproject_t *pj; 3839 3840 nvlist_t *nvl = za->nvlist; 3841 nvpair_t *nvp = NULL; 3842 3843 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched")); 3844 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched")); 3845 PTOU(pp)->u_argc = 0; 3846 PTOU(pp)->u_argv = 0; 3847 PTOU(pp)->u_envp = 0; 3848 PTOU(pp)->u_commpagep = 0; 3849 closeall(P_FINFO(pp)); 3850 3851 /* 3852 * We are this zone's "zsched" process. As the zone isn't generally 3853 * visible yet we don't need to grab any locks before initializing its 3854 * zone_proc pointer. 3855 */ 3856 zone_hold(zone); /* this hold is released by zone_destroy() */ 3857 zone->zone_zsched = pp; 3858 mutex_enter(&pp->p_lock); 3859 pp->p_zone = zone; 3860 mutex_exit(&pp->p_lock); 3861 3862 /* 3863 * Disassociate process from its 'parent'; parent ourselves to init 3864 * (pid 1) and change other values as needed. 3865 */ 3866 sess_create(); 3867 3868 mutex_enter(&pidlock); 3869 proc_detach(pp); 3870 pp->p_ppid = 1; 3871 pp->p_flag |= SZONETOP; 3872 pp->p_ancpid = 1; 3873 pp->p_parent = initp; 3874 pp->p_psibling = NULL; 3875 if (initp->p_child) 3876 initp->p_child->p_psibling = pp; 3877 pp->p_sibling = initp->p_child; 3878 initp->p_child = pp; 3879 3880 /* Decrement what newproc() incremented. */ 3881 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID); 3882 /* 3883 * Our credentials are about to become kcred-like, so we don't care 3884 * about the caller's ruid. 3885 */ 3886 upcount_inc(crgetruid(kcred), zone->zone_id); 3887 mutex_exit(&pidlock); 3888 3889 /* 3890 * getting out of global zone, so decrement lwp and process counts 3891 */ 3892 pj = pp->p_task->tk_proj; 3893 mutex_enter(&global_zone->zone_nlwps_lock); 3894 pj->kpj_nlwps -= pp->p_lwpcnt; 3895 global_zone->zone_nlwps -= pp->p_lwpcnt; 3896 pj->kpj_nprocs--; 3897 global_zone->zone_nprocs--; 3898 mutex_exit(&global_zone->zone_nlwps_lock); 3899 3900 /* 3901 * Decrement locked memory counts on old zone and project. 3902 */ 3903 mutex_enter(&global_zone->zone_mem_lock); 3904 global_zone->zone_locked_mem -= pp->p_locked_mem; 3905 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 3906 mutex_exit(&global_zone->zone_mem_lock); 3907 3908 /* 3909 * Create and join a new task in project '0' of this zone. 3910 * 3911 * We don't need to call holdlwps() since we know we're the only lwp in 3912 * this process. 3913 * 3914 * task_join() returns with p_lock held. 3915 */ 3916 tk = task_create(0, zone); 3917 mutex_enter(&cpu_lock); 3918 oldtk = task_join(tk, 0); 3919 3920 pj = pp->p_task->tk_proj; 3921 3922 mutex_enter(&zone->zone_mem_lock); 3923 zone->zone_locked_mem += pp->p_locked_mem; 3924 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem; 3925 mutex_exit(&zone->zone_mem_lock); 3926 3927 /* 3928 * add lwp and process counts to zsched's zone, and increment 3929 * project's task and process count due to the task created in 3930 * the above task_create. 3931 */ 3932 mutex_enter(&zone->zone_nlwps_lock); 3933 pj->kpj_nlwps += pp->p_lwpcnt; 3934 pj->kpj_ntasks += 1; 3935 zone->zone_nlwps += pp->p_lwpcnt; 3936 pj->kpj_nprocs++; 3937 zone->zone_nprocs++; 3938 mutex_exit(&zone->zone_nlwps_lock); 3939 3940 mutex_exit(&curproc->p_lock); 3941 mutex_exit(&cpu_lock); 3942 task_rele(oldtk); 3943 3944 /* 3945 * The process was created by a process in the global zone, hence the 3946 * credentials are wrong. We might as well have kcred-ish credentials. 3947 */ 3948 cr = zone->zone_kcred; 3949 crhold(cr); 3950 mutex_enter(&pp->p_crlock); 3951 oldcred = pp->p_cred; 3952 pp->p_cred = cr; 3953 mutex_exit(&pp->p_crlock); 3954 crfree(oldcred); 3955 3956 /* 3957 * Hold credentials again (for thread) 3958 */ 3959 crhold(cr); 3960 3961 /* 3962 * p_lwpcnt can't change since this is a kernel process. 3963 */ 3964 crset(pp, cr); 3965 3966 /* 3967 * Chroot 3968 */ 3969 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp); 3970 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp); 3971 3972 /* 3973 * Initialize zone's rctl set. 3974 */ 3975 set = rctl_set_create(); 3976 gp = rctl_set_init_prealloc(RCENTITY_ZONE); 3977 mutex_enter(&pp->p_lock); 3978 e.rcep_p.zone = zone; 3979 e.rcep_t = RCENTITY_ZONE; 3980 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp); 3981 mutex_exit(&pp->p_lock); 3982 rctl_prealloc_destroy(gp); 3983 3984 /* 3985 * Apply the rctls passed in to zone_create(). This is basically a list 3986 * assignment: all of the old values are removed and the new ones 3987 * inserted. That is, if an empty list is passed in, all values are 3988 * removed. 3989 */ 3990 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3991 rctl_dict_entry_t *rde; 3992 rctl_hndl_t hndl; 3993 char *name; 3994 nvlist_t **nvlarray; 3995 uint_t i, nelem; 3996 int error; /* For ASSERT()s */ 3997 3998 name = nvpair_name(nvp); 3999 hndl = rctl_hndl_lookup(name); 4000 ASSERT(hndl != -1); 4001 rde = rctl_dict_lookup_hndl(hndl); 4002 ASSERT(rde != NULL); 4003 4004 for (; /* ever */; ) { 4005 rctl_val_t oval; 4006 4007 mutex_enter(&pp->p_lock); 4008 error = rctl_local_get(hndl, NULL, &oval, pp); 4009 mutex_exit(&pp->p_lock); 4010 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */ 4011 ASSERT(oval.rcv_privilege != RCPRIV_BASIC); 4012 if (oval.rcv_privilege == RCPRIV_SYSTEM) 4013 break; 4014 mutex_enter(&pp->p_lock); 4015 error = rctl_local_delete(hndl, &oval, pp); 4016 mutex_exit(&pp->p_lock); 4017 ASSERT(error == 0); 4018 } 4019 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4020 ASSERT(error == 0); 4021 for (i = 0; i < nelem; i++) { 4022 rctl_val_t *nvalp; 4023 4024 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP); 4025 error = nvlist2rctlval(nvlarray[i], nvalp); 4026 ASSERT(error == 0); 4027 /* 4028 * rctl_local_insert can fail if the value being 4029 * inserted is a duplicate; this is OK. 4030 */ 4031 mutex_enter(&pp->p_lock); 4032 if (rctl_local_insert(hndl, nvalp, pp) != 0) 4033 kmem_cache_free(rctl_val_cache, nvalp); 4034 mutex_exit(&pp->p_lock); 4035 } 4036 } 4037 4038 /* 4039 * Tell the world that we're done setting up. 4040 * 4041 * At this point we want to set the zone status to ZONE_IS_INITIALIZED 4042 * and atomically set the zone's processor set visibility. Once 4043 * we drop pool_lock() this zone will automatically get updated 4044 * to reflect any future changes to the pools configuration. 4045 * 4046 * Note that after we drop the locks below (zonehash_lock in 4047 * particular) other operations such as a zone_getattr call can 4048 * now proceed and observe the zone. That is the reason for doing a 4049 * state transition to the INITIALIZED state. 4050 */ 4051 pool_lock(); 4052 mutex_enter(&cpu_lock); 4053 mutex_enter(&zonehash_lock); 4054 zone_uniqid(zone); 4055 zone_zsd_configure(zone); 4056 if (pool_state == POOL_ENABLED) 4057 zone_pset_set(zone, pool_default->pool_pset->pset_id); 4058 mutex_enter(&zone_status_lock); 4059 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED); 4060 zone_status_set(zone, ZONE_IS_INITIALIZED); 4061 mutex_exit(&zone_status_lock); 4062 mutex_exit(&zonehash_lock); 4063 mutex_exit(&cpu_lock); 4064 pool_unlock(); 4065 4066 /* Now call the create callback for this key */ 4067 zsd_apply_all_keys(zsd_apply_create, zone); 4068 4069 /* The callbacks are complete. Mark ZONE_IS_READY */ 4070 mutex_enter(&zone_status_lock); 4071 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED); 4072 zone_status_set(zone, ZONE_IS_READY); 4073 mutex_exit(&zone_status_lock); 4074 4075 /* 4076 * Once we see the zone transition to the ZONE_IS_BOOTING state, 4077 * we launch init, and set the state to running. 4078 */ 4079 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched"); 4080 4081 if (zone_status_get(zone) == ZONE_IS_BOOTING) { 4082 id_t cid; 4083 4084 /* 4085 * Ok, this is a little complicated. We need to grab the 4086 * zone's pool's scheduling class ID; note that by now, we 4087 * are already bound to a pool if we need to be (zoneadmd 4088 * will have done that to us while we're in the READY 4089 * state). *But* the scheduling class for the zone's 'init' 4090 * must be explicitly passed to newproc, which doesn't 4091 * respect pool bindings. 4092 * 4093 * We hold the pool_lock across the call to newproc() to 4094 * close the obvious race: the pool's scheduling class 4095 * could change before we manage to create the LWP with 4096 * classid 'cid'. 4097 */ 4098 pool_lock(); 4099 if (zone->zone_defaultcid > 0) 4100 cid = zone->zone_defaultcid; 4101 else 4102 cid = pool_get_class(zone->zone_pool); 4103 if (cid == -1) 4104 cid = defaultcid; 4105 4106 /* 4107 * If this fails, zone_boot will ultimately fail. The 4108 * state of the zone will be set to SHUTTING_DOWN-- userland 4109 * will have to tear down the zone, and fail, or try again. 4110 */ 4111 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid, 4112 minclsyspri - 1, &ct, 0)) != 0) { 4113 mutex_enter(&zone_status_lock); 4114 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 4115 mutex_exit(&zone_status_lock); 4116 } else { 4117 zone->zone_boot_time = gethrestime_sec(); 4118 } 4119 4120 pool_unlock(); 4121 } 4122 4123 /* 4124 * Wait for zone_destroy() to be called. This is what we spend 4125 * most of our life doing. 4126 */ 4127 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched"); 4128 4129 if (ct) 4130 /* 4131 * At this point the process contract should be empty. 4132 * (Though if it isn't, it's not the end of the world.) 4133 */ 4134 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0); 4135 4136 /* 4137 * Allow kcred to be freed when all referring processes 4138 * (including this one) go away. We can't just do this in 4139 * zone_free because we need to wait for the zone_cred_ref to 4140 * drop to 0 before calling zone_free, and the existence of 4141 * zone_kcred will prevent that. Thus, we call crfree here to 4142 * balance the crdup in zone_create. The crhold calls earlier 4143 * in zsched will be dropped when the thread and process exit. 4144 */ 4145 crfree(zone->zone_kcred); 4146 zone->zone_kcred = NULL; 4147 4148 exit(CLD_EXITED, 0); 4149 } 4150 4151 /* 4152 * Helper function to determine if there are any submounts of the 4153 * provided path. Used to make sure the zone doesn't "inherit" any 4154 * mounts from before it is created. 4155 */ 4156 static uint_t 4157 zone_mount_count(const char *rootpath) 4158 { 4159 vfs_t *vfsp; 4160 uint_t count = 0; 4161 size_t rootpathlen = strlen(rootpath); 4162 4163 /* 4164 * Holding zonehash_lock prevents race conditions with 4165 * vfs_list_add()/vfs_list_remove() since we serialize with 4166 * zone_find_by_path(). 4167 */ 4168 ASSERT(MUTEX_HELD(&zonehash_lock)); 4169 /* 4170 * The rootpath must end with a '/' 4171 */ 4172 ASSERT(rootpath[rootpathlen - 1] == '/'); 4173 4174 /* 4175 * This intentionally does not count the rootpath itself if that 4176 * happens to be a mount point. 4177 */ 4178 vfs_list_read_lock(); 4179 vfsp = rootvfs; 4180 do { 4181 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt), 4182 rootpathlen) == 0) 4183 count++; 4184 vfsp = vfsp->vfs_next; 4185 } while (vfsp != rootvfs); 4186 vfs_list_unlock(); 4187 return (count); 4188 } 4189 4190 /* 4191 * Helper function to make sure that a zone created on 'rootpath' 4192 * wouldn't end up containing other zones' rootpaths. 4193 */ 4194 static boolean_t 4195 zone_is_nested(const char *rootpath) 4196 { 4197 zone_t *zone; 4198 size_t rootpathlen = strlen(rootpath); 4199 size_t len; 4200 4201 ASSERT(MUTEX_HELD(&zonehash_lock)); 4202 4203 /* 4204 * zone_set_root() appended '/' and '\0' at the end of rootpath 4205 */ 4206 if ((rootpathlen <= 3) && (rootpath[0] == '/') && 4207 (rootpath[1] == '/') && (rootpath[2] == '\0')) 4208 return (B_TRUE); 4209 4210 for (zone = list_head(&zone_active); zone != NULL; 4211 zone = list_next(&zone_active, zone)) { 4212 if (zone == global_zone) 4213 continue; 4214 len = strlen(zone->zone_rootpath); 4215 if (strncmp(rootpath, zone->zone_rootpath, 4216 MIN(rootpathlen, len)) == 0) 4217 return (B_TRUE); 4218 } 4219 return (B_FALSE); 4220 } 4221 4222 static int 4223 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs, 4224 size_t zone_privssz) 4225 { 4226 priv_set_t *privs; 4227 4228 if (zone_privssz < sizeof (priv_set_t)) 4229 return (ENOMEM); 4230 4231 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP); 4232 4233 if (copyin(zone_privs, privs, sizeof (priv_set_t))) { 4234 kmem_free(privs, sizeof (priv_set_t)); 4235 return (EFAULT); 4236 } 4237 4238 zone->zone_privset = privs; 4239 return (0); 4240 } 4241 4242 /* 4243 * We make creative use of nvlists to pass in rctls from userland. The list is 4244 * a list of the following structures: 4245 * 4246 * (name = rctl_name, value = nvpair_list_array) 4247 * 4248 * Where each element of the nvpair_list_array is of the form: 4249 * 4250 * [(name = "privilege", value = RCPRIV_PRIVILEGED), 4251 * (name = "limit", value = uint64_t), 4252 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))] 4253 */ 4254 static int 4255 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp) 4256 { 4257 nvpair_t *nvp = NULL; 4258 nvlist_t *nvl = NULL; 4259 char *kbuf; 4260 int error; 4261 rctl_val_t rv; 4262 4263 *nvlp = NULL; 4264 4265 if (buflen == 0) 4266 return (0); 4267 4268 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4269 return (ENOMEM); 4270 if (copyin(ubuf, kbuf, buflen)) { 4271 error = EFAULT; 4272 goto out; 4273 } 4274 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) { 4275 /* 4276 * nvl may have been allocated/free'd, but the value set to 4277 * non-NULL, so we reset it here. 4278 */ 4279 nvl = NULL; 4280 error = EINVAL; 4281 goto out; 4282 } 4283 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4284 rctl_dict_entry_t *rde; 4285 rctl_hndl_t hndl; 4286 nvlist_t **nvlarray; 4287 uint_t i, nelem; 4288 char *name; 4289 4290 error = EINVAL; 4291 name = nvpair_name(nvp); 4292 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1) 4293 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) { 4294 goto out; 4295 } 4296 if ((hndl = rctl_hndl_lookup(name)) == -1) { 4297 goto out; 4298 } 4299 rde = rctl_dict_lookup_hndl(hndl); 4300 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem); 4301 ASSERT(error == 0); 4302 for (i = 0; i < nelem; i++) { 4303 if (error = nvlist2rctlval(nvlarray[i], &rv)) 4304 goto out; 4305 } 4306 if (rctl_invalid_value(rde, &rv)) { 4307 error = EINVAL; 4308 goto out; 4309 } 4310 } 4311 error = 0; 4312 *nvlp = nvl; 4313 out: 4314 kmem_free(kbuf, buflen); 4315 if (error && nvl != NULL) 4316 nvlist_free(nvl); 4317 return (error); 4318 } 4319 4320 int 4321 zone_create_error(int er_error, int er_ext, int *er_out) 4322 { 4323 if (er_out != NULL) { 4324 if (copyout(&er_ext, er_out, sizeof (int))) { 4325 return (set_errno(EFAULT)); 4326 } 4327 } 4328 return (set_errno(er_error)); 4329 } 4330 4331 static int 4332 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi) 4333 { 4334 ts_label_t *tsl; 4335 bslabel_t blab; 4336 4337 /* Get label from user */ 4338 if (copyin(lab, &blab, sizeof (blab)) != 0) 4339 return (EFAULT); 4340 tsl = labelalloc(&blab, doi, KM_NOSLEEP); 4341 if (tsl == NULL) 4342 return (ENOMEM); 4343 4344 zone->zone_slabel = tsl; 4345 return (0); 4346 } 4347 4348 /* 4349 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary. 4350 */ 4351 static int 4352 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen) 4353 { 4354 char *kbuf; 4355 char *dataset, *next; 4356 zone_dataset_t *zd; 4357 size_t len; 4358 4359 if (ubuf == NULL || buflen == 0) 4360 return (0); 4361 4362 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL) 4363 return (ENOMEM); 4364 4365 if (copyin(ubuf, kbuf, buflen) != 0) { 4366 kmem_free(kbuf, buflen); 4367 return (EFAULT); 4368 } 4369 4370 dataset = next = kbuf; 4371 for (;;) { 4372 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP); 4373 4374 next = strchr(dataset, ','); 4375 4376 if (next == NULL) 4377 len = strlen(dataset); 4378 else 4379 len = next - dataset; 4380 4381 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP); 4382 bcopy(dataset, zd->zd_dataset, len); 4383 zd->zd_dataset[len] = '\0'; 4384 4385 list_insert_head(&zone->zone_datasets, zd); 4386 4387 if (next == NULL) 4388 break; 4389 4390 dataset = next + 1; 4391 } 4392 4393 kmem_free(kbuf, buflen); 4394 return (0); 4395 } 4396 4397 /* 4398 * System call to create/initialize a new zone named 'zone_name', rooted 4399 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs', 4400 * and initialized with the zone-wide rctls described in 'rctlbuf', and 4401 * with labeling set by 'match', 'doi', and 'label'. 4402 * 4403 * If extended error is non-null, we may use it to return more detailed 4404 * error information. 4405 */ 4406 static zoneid_t 4407 zone_create(const char *zone_name, const char *zone_root, 4408 const priv_set_t *zone_privs, size_t zone_privssz, 4409 caddr_t rctlbuf, size_t rctlbufsz, 4410 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error, 4411 int match, uint32_t doi, const bslabel_t *label, 4412 int flags, zoneid_t zone_did) 4413 { 4414 struct zsched_arg zarg; 4415 nvlist_t *rctls = NULL; 4416 proc_t *pp = curproc; 4417 zone_t *zone, *ztmp; 4418 zoneid_t zoneid, start = GLOBAL_ZONEID; 4419 int error; 4420 int error2 = 0; 4421 char *str; 4422 cred_t *zkcr; 4423 boolean_t insert_label_hash; 4424 4425 if (secpolicy_zone_config(CRED()) != 0) 4426 return (set_errno(EPERM)); 4427 4428 /* can't boot zone from within chroot environment */ 4429 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir) 4430 return (zone_create_error(ENOTSUP, ZE_CHROOTED, 4431 extended_error)); 4432 4433 /* 4434 * As the first step of zone creation, we want to allocate a zoneid. 4435 * This allocation is complicated by the fact that netstacks use the 4436 * zoneid to determine their stackid, but netstacks themselves are 4437 * freed asynchronously with respect to zone destruction. This means 4438 * that a netstack reference leak (or in principle, an extraordinarily 4439 * long netstack reference hold) could result in a zoneid being 4440 * allocated that in fact corresponds to a stackid from an active 4441 * (referenced) netstack -- unleashing all sorts of havoc when that 4442 * netstack is actually (re)used. (In the abstract, we might wish a 4443 * zoneid to not be deallocated until its last referencing netstack 4444 * has been released, but netstacks lack a backpointer into their 4445 * referencing zone -- and changing them to have such a pointer would 4446 * be substantial, to put it euphemistically.) To avoid this, we 4447 * detect this condition on allocation: if we have allocated a zoneid 4448 * that corresponds to a netstack that's still in use, we warn about 4449 * it (as it is much more likely to be a reference leak than an actual 4450 * netstack reference), free it, and allocate another. That these 4451 * identifers are allocated out of an ID space assures that we won't 4452 * see the identifier we just allocated. 4453 */ 4454 for (;;) { 4455 zoneid = id_alloc(zoneid_space); 4456 4457 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid))) 4458 break; 4459 4460 id_free(zoneid_space, zoneid); 4461 4462 if (start == GLOBAL_ZONEID) { 4463 start = zoneid; 4464 } else if (zoneid == start) { 4465 /* 4466 * We have managed to iterate over the entire available 4467 * zoneid space -- there are no identifiers available, 4468 * presumably due to some number of leaked netstack 4469 * references. While it's in principle possible for us 4470 * to continue to try, it seems wiser to give up at 4471 * this point to warn and fail explicitly with a 4472 * distinctive error. 4473 */ 4474 cmn_err(CE_WARN, "zone_create() failed: all available " 4475 "zone IDs have netstacks still in use"); 4476 return (set_errno(ENFILE)); 4477 } 4478 4479 cmn_err(CE_WARN, "unable to reuse zone ID %d; " 4480 "netstack still in use", zoneid); 4481 } 4482 4483 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP); 4484 4485 zone->zone_id = zoneid; 4486 zone->zone_did = zone_did; 4487 zone->zone_status = ZONE_IS_UNINITIALIZED; 4488 zone->zone_pool = pool_default; 4489 zone->zone_pool_mod = gethrtime(); 4490 zone->zone_psetid = ZONE_PS_INVAL; 4491 zone->zone_ncpus = 0; 4492 zone->zone_ncpus_online = 0; 4493 zone->zone_restart_init = B_TRUE; 4494 zone->zone_brand = &native_brand; 4495 zone->zone_initname = NULL; 4496 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL); 4497 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL); 4498 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL); 4499 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL); 4500 list_create(&zone->zone_ref_list, sizeof (zone_ref_t), 4501 offsetof(zone_ref_t, zref_linkage)); 4502 list_create(&zone->zone_zsd, sizeof (struct zsd_entry), 4503 offsetof(struct zsd_entry, zsd_linkage)); 4504 list_create(&zone->zone_datasets, sizeof (zone_dataset_t), 4505 offsetof(zone_dataset_t, zd_linkage)); 4506 list_create(&zone->zone_dl_list, sizeof (zone_dl_t), 4507 offsetof(zone_dl_t, zdl_linkage)); 4508 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL); 4509 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL); 4510 4511 if (flags & ZCF_NET_EXCL) { 4512 zone->zone_flags |= ZF_NET_EXCL; 4513 } 4514 4515 if ((error = zone_set_name(zone, zone_name)) != 0) { 4516 zone_free(zone); 4517 return (zone_create_error(error, 0, extended_error)); 4518 } 4519 4520 if ((error = zone_set_root(zone, zone_root)) != 0) { 4521 zone_free(zone); 4522 return (zone_create_error(error, 0, extended_error)); 4523 } 4524 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) { 4525 zone_free(zone); 4526 return (zone_create_error(error, 0, extended_error)); 4527 } 4528 4529 /* initialize node name to be the same as zone name */ 4530 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4531 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN); 4532 zone->zone_nodename[_SYS_NMLN - 1] = '\0'; 4533 4534 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP); 4535 zone->zone_domain[0] = '\0'; 4536 zone->zone_hostid = HW_INVALID_HOSTID; 4537 zone->zone_shares = 1; 4538 zone->zone_shmmax = 0; 4539 zone->zone_ipc.ipcq_shmmni = 0; 4540 zone->zone_ipc.ipcq_semmni = 0; 4541 zone->zone_ipc.ipcq_msgmni = 0; 4542 zone->zone_bootargs = NULL; 4543 zone->zone_fs_allowed = NULL; 4544 4545 psecflags_default(&zone->zone_secflags); 4546 4547 zone->zone_initname = 4548 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP); 4549 (void) strcpy(zone->zone_initname, zone_default_initname); 4550 zone->zone_nlwps = 0; 4551 zone->zone_nlwps_ctl = INT_MAX; 4552 zone->zone_nprocs = 0; 4553 zone->zone_nprocs_ctl = INT_MAX; 4554 zone->zone_locked_mem = 0; 4555 zone->zone_locked_mem_ctl = UINT64_MAX; 4556 zone->zone_max_swap = 0; 4557 zone->zone_max_swap_ctl = UINT64_MAX; 4558 zone->zone_max_lofi = 0; 4559 zone->zone_max_lofi_ctl = UINT64_MAX; 4560 zone0.zone_lockedmem_kstat = NULL; 4561 zone0.zone_swapresv_kstat = NULL; 4562 4563 zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP); 4564 4565 /* 4566 * Zsched initializes the rctls. 4567 */ 4568 zone->zone_rctls = NULL; 4569 4570 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) { 4571 zone_free(zone); 4572 return (zone_create_error(error, 0, extended_error)); 4573 } 4574 4575 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) { 4576 zone_free(zone); 4577 return (set_errno(error)); 4578 } 4579 4580 /* 4581 * Read in the trusted system parameters: 4582 * match flag and sensitivity label. 4583 */ 4584 zone->zone_match = match; 4585 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4586 /* Fail if requested to set doi to anything but system's doi */ 4587 if (doi != 0 && doi != default_doi) { 4588 zone_free(zone); 4589 return (set_errno(EINVAL)); 4590 } 4591 /* Always apply system's doi to the zone */ 4592 error = zone_set_label(zone, label, default_doi); 4593 if (error != 0) { 4594 zone_free(zone); 4595 return (set_errno(error)); 4596 } 4597 insert_label_hash = B_TRUE; 4598 } else { 4599 /* all zones get an admin_low label if system is not labeled */ 4600 zone->zone_slabel = l_admin_low; 4601 label_hold(l_admin_low); 4602 insert_label_hash = B_FALSE; 4603 } 4604 4605 /* 4606 * Stop all lwps since that's what normally happens as part of fork(). 4607 * This needs to happen before we grab any locks to avoid deadlock 4608 * (another lwp in the process could be waiting for the held lock). 4609 */ 4610 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) { 4611 zone_free(zone); 4612 nvlist_free(rctls); 4613 return (zone_create_error(error, 0, extended_error)); 4614 } 4615 4616 if (block_mounts(zone) == 0) { 4617 mutex_enter(&pp->p_lock); 4618 if (curthread != pp->p_agenttp) 4619 continuelwps(pp); 4620 mutex_exit(&pp->p_lock); 4621 zone_free(zone); 4622 nvlist_free(rctls); 4623 return (zone_create_error(error, 0, extended_error)); 4624 } 4625 4626 /* 4627 * Set up credential for kernel access. After this, any errors 4628 * should go through the dance in errout rather than calling 4629 * zone_free directly. 4630 */ 4631 zone->zone_kcred = crdup(kcred); 4632 crsetzone(zone->zone_kcred, zone); 4633 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred)); 4634 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred)); 4635 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred)); 4636 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred)); 4637 4638 mutex_enter(&zonehash_lock); 4639 /* 4640 * Make sure zone doesn't already exist. 4641 * 4642 * If the system and zone are labeled, 4643 * make sure no other zone exists that has the same label. 4644 */ 4645 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL || 4646 (insert_label_hash && 4647 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) { 4648 zone_status_t status; 4649 4650 status = zone_status_get(ztmp); 4651 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING) 4652 error = EEXIST; 4653 else 4654 error = EBUSY; 4655 4656 if (insert_label_hash) 4657 error2 = ZE_LABELINUSE; 4658 4659 goto errout; 4660 } 4661 4662 /* 4663 * Don't allow zone creations which would cause one zone's rootpath to 4664 * be accessible from that of another (non-global) zone. 4665 */ 4666 if (zone_is_nested(zone->zone_rootpath)) { 4667 error = EBUSY; 4668 goto errout; 4669 } 4670 4671 ASSERT(zonecount != 0); /* check for leaks */ 4672 if (zonecount + 1 > maxzones) { 4673 error = ENOMEM; 4674 goto errout; 4675 } 4676 4677 if (zone_mount_count(zone->zone_rootpath) != 0) { 4678 error = EBUSY; 4679 error2 = ZE_AREMOUNTS; 4680 goto errout; 4681 } 4682 4683 /* 4684 * Zone is still incomplete, but we need to drop all locks while 4685 * zsched() initializes this zone's kernel process. We 4686 * optimistically add the zone to the hashtable and associated 4687 * lists so a parallel zone_create() doesn't try to create the 4688 * same zone. 4689 */ 4690 zonecount++; 4691 (void) mod_hash_insert(zonehashbyid, 4692 (mod_hash_key_t)(uintptr_t)zone->zone_id, 4693 (mod_hash_val_t)(uintptr_t)zone); 4694 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP); 4695 (void) strcpy(str, zone->zone_name); 4696 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str, 4697 (mod_hash_val_t)(uintptr_t)zone); 4698 if (insert_label_hash) { 4699 (void) mod_hash_insert(zonehashbylabel, 4700 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone); 4701 zone->zone_flags |= ZF_HASHED_LABEL; 4702 } 4703 4704 /* 4705 * Insert into active list. At this point there are no 'hold's 4706 * on the zone, but everyone else knows not to use it, so we can 4707 * continue to use it. zsched() will do a zone_hold() if the 4708 * newproc() is successful. 4709 */ 4710 list_insert_tail(&zone_active, zone); 4711 mutex_exit(&zonehash_lock); 4712 4713 zarg.zone = zone; 4714 zarg.nvlist = rctls; 4715 /* 4716 * The process, task, and project rctls are probably wrong; 4717 * we need an interface to get the default values of all rctls, 4718 * and initialize zsched appropriately. I'm not sure that that 4719 * makes much of a difference, though. 4720 */ 4721 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0); 4722 if (error != 0) { 4723 /* 4724 * We need to undo all globally visible state. 4725 */ 4726 mutex_enter(&zonehash_lock); 4727 list_remove(&zone_active, zone); 4728 if (zone->zone_flags & ZF_HASHED_LABEL) { 4729 ASSERT(zone->zone_slabel != NULL); 4730 (void) mod_hash_destroy(zonehashbylabel, 4731 (mod_hash_key_t)zone->zone_slabel); 4732 } 4733 (void) mod_hash_destroy(zonehashbyname, 4734 (mod_hash_key_t)(uintptr_t)zone->zone_name); 4735 (void) mod_hash_destroy(zonehashbyid, 4736 (mod_hash_key_t)(uintptr_t)zone->zone_id); 4737 ASSERT(zonecount > 1); 4738 zonecount--; 4739 goto errout; 4740 } 4741 4742 /* 4743 * Zone creation can't fail from now on. 4744 */ 4745 4746 /* 4747 * Create zone kstats 4748 */ 4749 zone_kstat_create(zone); 4750 4751 /* 4752 * Let the other lwps continue. 4753 */ 4754 mutex_enter(&pp->p_lock); 4755 if (curthread != pp->p_agenttp) 4756 continuelwps(pp); 4757 mutex_exit(&pp->p_lock); 4758 4759 /* 4760 * Wait for zsched to finish initializing the zone. 4761 */ 4762 zone_status_wait(zone, ZONE_IS_READY); 4763 /* 4764 * The zone is fully visible, so we can let mounts progress. 4765 */ 4766 resume_mounts(zone); 4767 nvlist_free(rctls); 4768 4769 return (zoneid); 4770 4771 errout: 4772 mutex_exit(&zonehash_lock); 4773 /* 4774 * Let the other lwps continue. 4775 */ 4776 mutex_enter(&pp->p_lock); 4777 if (curthread != pp->p_agenttp) 4778 continuelwps(pp); 4779 mutex_exit(&pp->p_lock); 4780 4781 resume_mounts(zone); 4782 nvlist_free(rctls); 4783 /* 4784 * There is currently one reference to the zone, a cred_ref from 4785 * zone_kcred. To free the zone, we call crfree, which will call 4786 * zone_cred_rele, which will call zone_free. 4787 */ 4788 ASSERT(zone->zone_cred_ref == 1); 4789 ASSERT(zone->zone_kcred->cr_ref == 1); 4790 ASSERT(zone->zone_ref == 0); 4791 zkcr = zone->zone_kcred; 4792 zone->zone_kcred = NULL; 4793 crfree(zkcr); /* triggers call to zone_free */ 4794 return (zone_create_error(error, error2, extended_error)); 4795 } 4796 4797 /* 4798 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do 4799 * the heavy lifting. initname is the path to the program to launch 4800 * at the "top" of the zone; if this is NULL, we use the system default, 4801 * which is stored at zone_default_initname. 4802 */ 4803 static int 4804 zone_boot(zoneid_t zoneid) 4805 { 4806 int err; 4807 zone_t *zone; 4808 4809 if (secpolicy_zone_config(CRED()) != 0) 4810 return (set_errno(EPERM)); 4811 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4812 return (set_errno(EINVAL)); 4813 4814 mutex_enter(&zonehash_lock); 4815 /* 4816 * Look for zone under hash lock to prevent races with calls to 4817 * zone_shutdown, zone_destroy, etc. 4818 */ 4819 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4820 mutex_exit(&zonehash_lock); 4821 return (set_errno(EINVAL)); 4822 } 4823 4824 mutex_enter(&zone_status_lock); 4825 if (zone_status_get(zone) != ZONE_IS_READY) { 4826 mutex_exit(&zone_status_lock); 4827 mutex_exit(&zonehash_lock); 4828 return (set_errno(EINVAL)); 4829 } 4830 zone_status_set(zone, ZONE_IS_BOOTING); 4831 mutex_exit(&zone_status_lock); 4832 4833 zone_hold(zone); /* so we can use the zone_t later */ 4834 mutex_exit(&zonehash_lock); 4835 4836 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) { 4837 zone_rele(zone); 4838 return (set_errno(EINTR)); 4839 } 4840 4841 /* 4842 * Boot (starting init) might have failed, in which case the zone 4843 * will go to the SHUTTING_DOWN state; an appropriate errno will 4844 * be placed in zone->zone_boot_err, and so we return that. 4845 */ 4846 err = zone->zone_boot_err; 4847 zone_rele(zone); 4848 return (err ? set_errno(err) : 0); 4849 } 4850 4851 /* 4852 * Kills all user processes in the zone, waiting for them all to exit 4853 * before returning. 4854 */ 4855 static int 4856 zone_empty(zone_t *zone) 4857 { 4858 int waitstatus; 4859 4860 /* 4861 * We need to drop zonehash_lock before killing all 4862 * processes, otherwise we'll deadlock with zone_find_* 4863 * which can be called from the exit path. 4864 */ 4865 ASSERT(MUTEX_NOT_HELD(&zonehash_lock)); 4866 while ((waitstatus = zone_status_timedwait_sig(zone, 4867 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) { 4868 killall(zone->zone_id); 4869 } 4870 /* 4871 * return EINTR if we were signaled 4872 */ 4873 if (waitstatus == 0) 4874 return (EINTR); 4875 return (0); 4876 } 4877 4878 /* 4879 * This function implements the policy for zone visibility. 4880 * 4881 * In standard Solaris, a non-global zone can only see itself. 4882 * 4883 * In Trusted Extensions, a labeled zone can lookup any zone whose label 4884 * it dominates. For this test, the label of the global zone is treated as 4885 * admin_high so it is special-cased instead of being checked for dominance. 4886 * 4887 * Returns true if zone attributes are viewable, false otherwise. 4888 */ 4889 static boolean_t 4890 zone_list_access(zone_t *zone) 4891 { 4892 4893 if (curproc->p_zone == global_zone || 4894 curproc->p_zone == zone) { 4895 return (B_TRUE); 4896 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) { 4897 bslabel_t *curproc_label; 4898 bslabel_t *zone_label; 4899 4900 curproc_label = label2bslabel(curproc->p_zone->zone_slabel); 4901 zone_label = label2bslabel(zone->zone_slabel); 4902 4903 if (zone->zone_id != GLOBAL_ZONEID && 4904 bldominates(curproc_label, zone_label)) { 4905 return (B_TRUE); 4906 } else { 4907 return (B_FALSE); 4908 } 4909 } else { 4910 return (B_FALSE); 4911 } 4912 } 4913 4914 /* 4915 * Systemcall to start the zone's halt sequence. By the time this 4916 * function successfully returns, all user processes and kernel threads 4917 * executing in it will have exited, ZSD shutdown callbacks executed, 4918 * and the zone status set to ZONE_IS_DOWN. 4919 * 4920 * It is possible that the call will interrupt itself if the caller is the 4921 * parent of any process running in the zone, and doesn't have SIGCHLD blocked. 4922 */ 4923 static int 4924 zone_shutdown(zoneid_t zoneid) 4925 { 4926 int error; 4927 zone_t *zone; 4928 zone_status_t status; 4929 4930 if (secpolicy_zone_config(CRED()) != 0) 4931 return (set_errno(EPERM)); 4932 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 4933 return (set_errno(EINVAL)); 4934 4935 mutex_enter(&zonehash_lock); 4936 /* 4937 * Look for zone under hash lock to prevent races with other 4938 * calls to zone_shutdown and zone_destroy. 4939 */ 4940 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 4941 mutex_exit(&zonehash_lock); 4942 return (set_errno(EINVAL)); 4943 } 4944 4945 /* 4946 * We have to drop zonehash_lock before calling block_mounts. 4947 * Hold the zone so we can continue to use the zone_t. 4948 */ 4949 zone_hold(zone); 4950 mutex_exit(&zonehash_lock); 4951 4952 /* 4953 * Block mounts so that VFS_MOUNT() can get an accurate view of 4954 * the zone's status with regards to ZONE_IS_SHUTTING down. 4955 * 4956 * e.g. NFS can fail the mount if it determines that the zone 4957 * has already begun the shutdown sequence. 4958 * 4959 */ 4960 if (block_mounts(zone) == 0) { 4961 zone_rele(zone); 4962 return (set_errno(EINTR)); 4963 } 4964 4965 mutex_enter(&zonehash_lock); 4966 mutex_enter(&zone_status_lock); 4967 status = zone_status_get(zone); 4968 /* 4969 * Fail if the zone isn't fully initialized yet. 4970 */ 4971 if (status < ZONE_IS_READY) { 4972 mutex_exit(&zone_status_lock); 4973 mutex_exit(&zonehash_lock); 4974 resume_mounts(zone); 4975 zone_rele(zone); 4976 return (set_errno(EINVAL)); 4977 } 4978 /* 4979 * If conditions required for zone_shutdown() to return have been met, 4980 * return success. 4981 */ 4982 if (status >= ZONE_IS_DOWN) { 4983 mutex_exit(&zone_status_lock); 4984 mutex_exit(&zonehash_lock); 4985 resume_mounts(zone); 4986 zone_rele(zone); 4987 return (0); 4988 } 4989 /* 4990 * If zone_shutdown() hasn't been called before, go through the motions. 4991 * If it has, there's nothing to do but wait for the kernel threads to 4992 * drain. 4993 */ 4994 if (status < ZONE_IS_EMPTY) { 4995 uint_t ntasks; 4996 4997 mutex_enter(&zone->zone_lock); 4998 if ((ntasks = zone->zone_ntasks) != 1) { 4999 /* 5000 * There's still stuff running. 5001 */ 5002 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 5003 } 5004 mutex_exit(&zone->zone_lock); 5005 if (ntasks == 1) { 5006 /* 5007 * The only way to create another task is through 5008 * zone_enter(), which will block until we drop 5009 * zonehash_lock. The zone is empty. 5010 */ 5011 if (zone->zone_kthreads == NULL) { 5012 /* 5013 * Skip ahead to ZONE_IS_DOWN 5014 */ 5015 zone_status_set(zone, ZONE_IS_DOWN); 5016 } else { 5017 zone_status_set(zone, ZONE_IS_EMPTY); 5018 } 5019 } 5020 } 5021 mutex_exit(&zone_status_lock); 5022 mutex_exit(&zonehash_lock); 5023 resume_mounts(zone); 5024 5025 if (error = zone_empty(zone)) { 5026 zone_rele(zone); 5027 return (set_errno(error)); 5028 } 5029 /* 5030 * After the zone status goes to ZONE_IS_DOWN this zone will no 5031 * longer be notified of changes to the pools configuration, so 5032 * in order to not end up with a stale pool pointer, we point 5033 * ourselves at the default pool and remove all resource 5034 * visibility. This is especially important as the zone_t may 5035 * languish on the deathrow for a very long time waiting for 5036 * cred's to drain out. 5037 * 5038 * This rebinding of the zone can happen multiple times 5039 * (presumably due to interrupted or parallel systemcalls) 5040 * without any adverse effects. 5041 */ 5042 if (pool_lock_intr() != 0) { 5043 zone_rele(zone); 5044 return (set_errno(EINTR)); 5045 } 5046 if (pool_state == POOL_ENABLED) { 5047 mutex_enter(&cpu_lock); 5048 zone_pool_set(zone, pool_default); 5049 /* 5050 * The zone no longer needs to be able to see any cpus. 5051 */ 5052 zone_pset_set(zone, ZONE_PS_INVAL); 5053 mutex_exit(&cpu_lock); 5054 } 5055 pool_unlock(); 5056 5057 /* 5058 * ZSD shutdown callbacks can be executed multiple times, hence 5059 * it is safe to not be holding any locks across this call. 5060 */ 5061 zone_zsd_callbacks(zone, ZSD_SHUTDOWN); 5062 5063 mutex_enter(&zone_status_lock); 5064 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN) 5065 zone_status_set(zone, ZONE_IS_DOWN); 5066 mutex_exit(&zone_status_lock); 5067 5068 /* 5069 * Wait for kernel threads to drain. 5070 */ 5071 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) { 5072 zone_rele(zone); 5073 return (set_errno(EINTR)); 5074 } 5075 5076 /* 5077 * Zone can be become down/destroyable even if the above wait 5078 * returns EINTR, so any code added here may never execute. 5079 * (i.e. don't add code here) 5080 */ 5081 5082 zone_rele(zone); 5083 return (0); 5084 } 5085 5086 /* 5087 * Log the specified zone's reference counts. The caller should not be 5088 * holding the zone's zone_lock. 5089 */ 5090 static void 5091 zone_log_refcounts(zone_t *zone) 5092 { 5093 char *buffer; 5094 char *buffer_position; 5095 uint32_t buffer_size; 5096 uint32_t index; 5097 uint_t ref; 5098 uint_t cred_ref; 5099 5100 /* 5101 * Construct a string representing the subsystem-specific reference 5102 * counts. The counts are printed in ascending order by index into the 5103 * zone_t::zone_subsys_ref array. The list will be surrounded by 5104 * square brackets [] and will only contain nonzero reference counts. 5105 * 5106 * The buffer will hold two square bracket characters plus ten digits, 5107 * one colon, one space, one comma, and some characters for a 5108 * subsystem name per subsystem-specific reference count. (Unsigned 32- 5109 * bit integers have at most ten decimal digits.) The last 5110 * reference count's comma is replaced by the closing square 5111 * bracket and a NULL character to terminate the string. 5112 * 5113 * NOTE: We have to grab the zone's zone_lock to create a consistent 5114 * snapshot of the zone's reference counters. 5115 * 5116 * First, figure out how much space the string buffer will need. 5117 * The buffer's size is stored in buffer_size. 5118 */ 5119 buffer_size = 2; /* for the square brackets */ 5120 mutex_enter(&zone->zone_lock); 5121 zone->zone_flags |= ZF_REFCOUNTS_LOGGED; 5122 ref = zone->zone_ref; 5123 cred_ref = zone->zone_cred_ref; 5124 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) 5125 if (zone->zone_subsys_ref[index] != 0) 5126 buffer_size += strlen(zone_ref_subsys_names[index]) + 5127 13; 5128 if (buffer_size == 2) { 5129 /* 5130 * No subsystems had nonzero reference counts. Don't bother 5131 * with allocating a buffer; just log the general-purpose and 5132 * credential reference counts. 5133 */ 5134 mutex_exit(&zone->zone_lock); 5135 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5136 "Zone '%s' (ID: %d) is shutting down, but %u zone " 5137 "references and %u credential references are still extant", 5138 zone->zone_name, zone->zone_id, ref, cred_ref); 5139 return; 5140 } 5141 5142 /* 5143 * buffer_size contains the exact number of characters that the 5144 * buffer will need. Allocate the buffer and fill it with nonzero 5145 * subsystem-specific reference counts. Surround the results with 5146 * square brackets afterwards. 5147 */ 5148 buffer = kmem_alloc(buffer_size, KM_SLEEP); 5149 buffer_position = &buffer[1]; 5150 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) { 5151 /* 5152 * NOTE: The DDI's version of sprintf() returns a pointer to 5153 * the modified buffer rather than the number of bytes written 5154 * (as in snprintf(3C)). This is unfortunate and annoying. 5155 * Therefore, we'll use snprintf() with INT_MAX to get the 5156 * number of bytes written. Using INT_MAX is safe because 5157 * the buffer is perfectly sized for the data: we'll never 5158 * overrun the buffer. 5159 */ 5160 if (zone->zone_subsys_ref[index] != 0) 5161 buffer_position += snprintf(buffer_position, INT_MAX, 5162 "%s: %u,", zone_ref_subsys_names[index], 5163 zone->zone_subsys_ref[index]); 5164 } 5165 mutex_exit(&zone->zone_lock); 5166 buffer[0] = '['; 5167 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size); 5168 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ','); 5169 buffer_position[-1] = ']'; 5170 5171 /* 5172 * Log the reference counts and free the message buffer. 5173 */ 5174 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE, 5175 "Zone '%s' (ID: %d) is shutting down, but %u zone references and " 5176 "%u credential references are still extant %s", zone->zone_name, 5177 zone->zone_id, ref, cred_ref, buffer); 5178 kmem_free(buffer, buffer_size); 5179 } 5180 5181 /* 5182 * Systemcall entry point to finalize the zone halt process. The caller 5183 * must have already successfully called zone_shutdown(). 5184 * 5185 * Upon successful completion, the zone will have been fully destroyed: 5186 * zsched will have exited, destructor callbacks executed, and the zone 5187 * removed from the list of active zones. 5188 */ 5189 static int 5190 zone_destroy(zoneid_t zoneid) 5191 { 5192 uint64_t uniqid; 5193 zone_t *zone; 5194 zone_status_t status; 5195 clock_t wait_time; 5196 boolean_t log_refcounts; 5197 5198 if (secpolicy_zone_config(CRED()) != 0) 5199 return (set_errno(EPERM)); 5200 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5201 return (set_errno(EINVAL)); 5202 5203 mutex_enter(&zonehash_lock); 5204 /* 5205 * Look for zone under hash lock to prevent races with other 5206 * calls to zone_destroy. 5207 */ 5208 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5209 mutex_exit(&zonehash_lock); 5210 return (set_errno(EINVAL)); 5211 } 5212 5213 if (zone_mount_count(zone->zone_rootpath) != 0) { 5214 mutex_exit(&zonehash_lock); 5215 return (set_errno(EBUSY)); 5216 } 5217 mutex_enter(&zone_status_lock); 5218 status = zone_status_get(zone); 5219 if (status < ZONE_IS_DOWN) { 5220 mutex_exit(&zone_status_lock); 5221 mutex_exit(&zonehash_lock); 5222 return (set_errno(EBUSY)); 5223 } else if (status == ZONE_IS_DOWN) { 5224 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */ 5225 } 5226 mutex_exit(&zone_status_lock); 5227 zone_hold(zone); 5228 mutex_exit(&zonehash_lock); 5229 5230 /* 5231 * wait for zsched to exit 5232 */ 5233 zone_status_wait(zone, ZONE_IS_DEAD); 5234 zone_zsd_callbacks(zone, ZSD_DESTROY); 5235 zone->zone_netstack = NULL; 5236 uniqid = zone->zone_uniqid; 5237 zone_rele(zone); 5238 zone = NULL; /* potentially free'd */ 5239 5240 log_refcounts = B_FALSE; 5241 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS); 5242 mutex_enter(&zonehash_lock); 5243 for (; /* ever */; ) { 5244 boolean_t unref; 5245 boolean_t refs_have_been_logged; 5246 5247 if ((zone = zone_find_all_by_id(zoneid)) == NULL || 5248 zone->zone_uniqid != uniqid) { 5249 /* 5250 * The zone has gone away. Necessary conditions 5251 * are met, so we return success. 5252 */ 5253 mutex_exit(&zonehash_lock); 5254 return (0); 5255 } 5256 mutex_enter(&zone->zone_lock); 5257 unref = ZONE_IS_UNREF(zone); 5258 refs_have_been_logged = (zone->zone_flags & 5259 ZF_REFCOUNTS_LOGGED); 5260 mutex_exit(&zone->zone_lock); 5261 if (unref) { 5262 /* 5263 * There is only one reference to the zone -- that 5264 * added when the zone was added to the hashtables -- 5265 * and things will remain this way until we drop 5266 * zonehash_lock... we can go ahead and cleanup the 5267 * zone. 5268 */ 5269 break; 5270 } 5271 5272 /* 5273 * Wait for zone_rele_common() or zone_cred_rele() to signal 5274 * zone_destroy_cv. zone_destroy_cv is signaled only when 5275 * some zone's general-purpose reference count reaches one. 5276 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting 5277 * on zone_destroy_cv, then log the zone's reference counts and 5278 * continue to wait for zone_rele() and zone_cred_rele(). 5279 */ 5280 if (!refs_have_been_logged) { 5281 if (!log_refcounts) { 5282 /* 5283 * This thread hasn't timed out waiting on 5284 * zone_destroy_cv yet. Wait wait_time clock 5285 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS 5286 * seconds) for the zone's references to clear. 5287 */ 5288 ASSERT(wait_time > 0); 5289 wait_time = cv_reltimedwait_sig( 5290 &zone_destroy_cv, &zonehash_lock, wait_time, 5291 TR_SEC); 5292 if (wait_time > 0) { 5293 /* 5294 * A thread in zone_rele() or 5295 * zone_cred_rele() signaled 5296 * zone_destroy_cv before this thread's 5297 * wait timed out. The zone might have 5298 * only one reference left; find out! 5299 */ 5300 continue; 5301 } else if (wait_time == 0) { 5302 /* The thread's process was signaled. */ 5303 mutex_exit(&zonehash_lock); 5304 return (set_errno(EINTR)); 5305 } 5306 5307 /* 5308 * The thread timed out while waiting on 5309 * zone_destroy_cv. Even though the thread 5310 * timed out, it has to check whether another 5311 * thread woke up from zone_destroy_cv and 5312 * destroyed the zone. 5313 * 5314 * If the zone still exists and has more than 5315 * one unreleased general-purpose reference, 5316 * then log the zone's reference counts. 5317 */ 5318 log_refcounts = B_TRUE; 5319 continue; 5320 } 5321 5322 /* 5323 * The thread already timed out on zone_destroy_cv while 5324 * waiting for subsystems to release the zone's last 5325 * general-purpose references. Log the zone's reference 5326 * counts and wait indefinitely on zone_destroy_cv. 5327 */ 5328 zone_log_refcounts(zone); 5329 } 5330 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) { 5331 /* The thread's process was signaled. */ 5332 mutex_exit(&zonehash_lock); 5333 return (set_errno(EINTR)); 5334 } 5335 } 5336 5337 /* 5338 * Remove CPU cap for this zone now since we're not going to 5339 * fail below this point. 5340 */ 5341 cpucaps_zone_remove(zone); 5342 5343 /* Get rid of the zone's kstats */ 5344 zone_kstat_delete(zone); 5345 5346 /* remove the pfexecd doors */ 5347 if (zone->zone_pfexecd != NULL) { 5348 klpd_freelist(&zone->zone_pfexecd); 5349 zone->zone_pfexecd = NULL; 5350 } 5351 5352 /* free brand specific data */ 5353 if (ZONE_IS_BRANDED(zone)) 5354 ZBROP(zone)->b_free_brand_data(zone); 5355 5356 /* Say goodbye to brand framework. */ 5357 brand_unregister_zone(zone->zone_brand); 5358 5359 /* 5360 * It is now safe to let the zone be recreated; remove it from the 5361 * lists. The memory will not be freed until the last cred 5362 * reference goes away. 5363 */ 5364 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */ 5365 zonecount--; 5366 /* remove from active list and hash tables */ 5367 list_remove(&zone_active, zone); 5368 (void) mod_hash_destroy(zonehashbyname, 5369 (mod_hash_key_t)zone->zone_name); 5370 (void) mod_hash_destroy(zonehashbyid, 5371 (mod_hash_key_t)(uintptr_t)zone->zone_id); 5372 if (zone->zone_flags & ZF_HASHED_LABEL) 5373 (void) mod_hash_destroy(zonehashbylabel, 5374 (mod_hash_key_t)zone->zone_slabel); 5375 mutex_exit(&zonehash_lock); 5376 5377 /* 5378 * Release the root vnode; we're not using it anymore. Nor should any 5379 * other thread that might access it exist. 5380 */ 5381 if (zone->zone_rootvp != NULL) { 5382 VN_RELE(zone->zone_rootvp); 5383 zone->zone_rootvp = NULL; 5384 } 5385 5386 /* add to deathrow list */ 5387 mutex_enter(&zone_deathrow_lock); 5388 list_insert_tail(&zone_deathrow, zone); 5389 mutex_exit(&zone_deathrow_lock); 5390 5391 /* 5392 * Drop last reference (which was added by zsched()), this will 5393 * free the zone unless there are outstanding cred references. 5394 */ 5395 zone_rele(zone); 5396 return (0); 5397 } 5398 5399 /* 5400 * Systemcall entry point for zone_getattr(2). 5401 */ 5402 static ssize_t 5403 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5404 { 5405 size_t size; 5406 int error = 0, err; 5407 zone_t *zone; 5408 char *zonepath; 5409 char *outstr; 5410 zone_status_t zone_status; 5411 pid_t initpid; 5412 boolean_t global = (curzone == global_zone); 5413 boolean_t inzone = (curzone->zone_id == zoneid); 5414 ushort_t flags; 5415 zone_net_data_t *zbuf; 5416 5417 mutex_enter(&zonehash_lock); 5418 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5419 mutex_exit(&zonehash_lock); 5420 return (set_errno(EINVAL)); 5421 } 5422 zone_status = zone_status_get(zone); 5423 if (zone_status < ZONE_IS_INITIALIZED) { 5424 mutex_exit(&zonehash_lock); 5425 return (set_errno(EINVAL)); 5426 } 5427 zone_hold(zone); 5428 mutex_exit(&zonehash_lock); 5429 5430 /* 5431 * If not in the global zone, don't show information about other zones, 5432 * unless the system is labeled and the local zone's label dominates 5433 * the other zone. 5434 */ 5435 if (!zone_list_access(zone)) { 5436 zone_rele(zone); 5437 return (set_errno(EINVAL)); 5438 } 5439 5440 switch (attr) { 5441 case ZONE_ATTR_ROOT: 5442 if (global) { 5443 /* 5444 * Copy the path to trim the trailing "/" (except for 5445 * the global zone). 5446 */ 5447 if (zone != global_zone) 5448 size = zone->zone_rootpathlen - 1; 5449 else 5450 size = zone->zone_rootpathlen; 5451 zonepath = kmem_alloc(size, KM_SLEEP); 5452 bcopy(zone->zone_rootpath, zonepath, size); 5453 zonepath[size - 1] = '\0'; 5454 } else { 5455 if (inzone || !is_system_labeled()) { 5456 /* 5457 * Caller is not in the global zone. 5458 * if the query is on the current zone 5459 * or the system is not labeled, 5460 * just return faked-up path for current zone. 5461 */ 5462 zonepath = "/"; 5463 size = 2; 5464 } else { 5465 /* 5466 * Return related path for current zone. 5467 */ 5468 int prefix_len = strlen(zone_prefix); 5469 int zname_len = strlen(zone->zone_name); 5470 5471 size = prefix_len + zname_len + 1; 5472 zonepath = kmem_alloc(size, KM_SLEEP); 5473 bcopy(zone_prefix, zonepath, prefix_len); 5474 bcopy(zone->zone_name, zonepath + 5475 prefix_len, zname_len); 5476 zonepath[size - 1] = '\0'; 5477 } 5478 } 5479 if (bufsize > size) 5480 bufsize = size; 5481 if (buf != NULL) { 5482 err = copyoutstr(zonepath, buf, bufsize, NULL); 5483 if (err != 0 && err != ENAMETOOLONG) 5484 error = EFAULT; 5485 } 5486 if (global || (is_system_labeled() && !inzone)) 5487 kmem_free(zonepath, size); 5488 break; 5489 5490 case ZONE_ATTR_NAME: 5491 size = strlen(zone->zone_name) + 1; 5492 if (bufsize > size) 5493 bufsize = size; 5494 if (buf != NULL) { 5495 err = copyoutstr(zone->zone_name, buf, bufsize, NULL); 5496 if (err != 0 && err != ENAMETOOLONG) 5497 error = EFAULT; 5498 } 5499 break; 5500 5501 case ZONE_ATTR_STATUS: 5502 /* 5503 * Since we're not holding zonehash_lock, the zone status 5504 * may be anything; leave it up to userland to sort it out. 5505 */ 5506 size = sizeof (zone_status); 5507 if (bufsize > size) 5508 bufsize = size; 5509 zone_status = zone_status_get(zone); 5510 if (buf != NULL && 5511 copyout(&zone_status, buf, bufsize) != 0) 5512 error = EFAULT; 5513 break; 5514 case ZONE_ATTR_FLAGS: 5515 size = sizeof (zone->zone_flags); 5516 if (bufsize > size) 5517 bufsize = size; 5518 flags = zone->zone_flags; 5519 if (buf != NULL && 5520 copyout(&flags, buf, bufsize) != 0) 5521 error = EFAULT; 5522 break; 5523 case ZONE_ATTR_PRIVSET: 5524 size = sizeof (priv_set_t); 5525 if (bufsize > size) 5526 bufsize = size; 5527 if (buf != NULL && 5528 copyout(zone->zone_privset, buf, bufsize) != 0) 5529 error = EFAULT; 5530 break; 5531 case ZONE_ATTR_UNIQID: 5532 size = sizeof (zone->zone_uniqid); 5533 if (bufsize > size) 5534 bufsize = size; 5535 if (buf != NULL && 5536 copyout(&zone->zone_uniqid, buf, bufsize) != 0) 5537 error = EFAULT; 5538 break; 5539 case ZONE_ATTR_POOLID: 5540 { 5541 pool_t *pool; 5542 poolid_t poolid; 5543 5544 if (pool_lock_intr() != 0) { 5545 error = EINTR; 5546 break; 5547 } 5548 pool = zone_pool_get(zone); 5549 poolid = pool->pool_id; 5550 pool_unlock(); 5551 size = sizeof (poolid); 5552 if (bufsize > size) 5553 bufsize = size; 5554 if (buf != NULL && copyout(&poolid, buf, size) != 0) 5555 error = EFAULT; 5556 } 5557 break; 5558 case ZONE_ATTR_SLBL: 5559 size = sizeof (bslabel_t); 5560 if (bufsize > size) 5561 bufsize = size; 5562 if (zone->zone_slabel == NULL) 5563 error = EINVAL; 5564 else if (buf != NULL && 5565 copyout(label2bslabel(zone->zone_slabel), buf, 5566 bufsize) != 0) 5567 error = EFAULT; 5568 break; 5569 case ZONE_ATTR_INITPID: 5570 size = sizeof (initpid); 5571 if (bufsize > size) 5572 bufsize = size; 5573 initpid = zone->zone_proc_initpid; 5574 if (initpid == -1) { 5575 error = ESRCH; 5576 break; 5577 } 5578 if (buf != NULL && 5579 copyout(&initpid, buf, bufsize) != 0) 5580 error = EFAULT; 5581 break; 5582 case ZONE_ATTR_BRAND: 5583 size = strlen(zone->zone_brand->b_name) + 1; 5584 5585 if (bufsize > size) 5586 bufsize = size; 5587 if (buf != NULL) { 5588 err = copyoutstr(zone->zone_brand->b_name, buf, 5589 bufsize, NULL); 5590 if (err != 0 && err != ENAMETOOLONG) 5591 error = EFAULT; 5592 } 5593 break; 5594 case ZONE_ATTR_INITNAME: 5595 size = strlen(zone->zone_initname) + 1; 5596 if (bufsize > size) 5597 bufsize = size; 5598 if (buf != NULL) { 5599 err = copyoutstr(zone->zone_initname, buf, bufsize, 5600 NULL); 5601 if (err != 0 && err != ENAMETOOLONG) 5602 error = EFAULT; 5603 } 5604 break; 5605 case ZONE_ATTR_BOOTARGS: 5606 if (zone->zone_bootargs == NULL) 5607 outstr = ""; 5608 else 5609 outstr = zone->zone_bootargs; 5610 size = strlen(outstr) + 1; 5611 if (bufsize > size) 5612 bufsize = size; 5613 if (buf != NULL) { 5614 err = copyoutstr(outstr, buf, bufsize, NULL); 5615 if (err != 0 && err != ENAMETOOLONG) 5616 error = EFAULT; 5617 } 5618 break; 5619 case ZONE_ATTR_PHYS_MCAP: 5620 size = sizeof (zone->zone_phys_mcap); 5621 if (bufsize > size) 5622 bufsize = size; 5623 if (buf != NULL && 5624 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0) 5625 error = EFAULT; 5626 break; 5627 case ZONE_ATTR_SCHED_CLASS: 5628 mutex_enter(&class_lock); 5629 5630 if (zone->zone_defaultcid >= loaded_classes) 5631 outstr = ""; 5632 else 5633 outstr = sclass[zone->zone_defaultcid].cl_name; 5634 size = strlen(outstr) + 1; 5635 if (bufsize > size) 5636 bufsize = size; 5637 if (buf != NULL) { 5638 err = copyoutstr(outstr, buf, bufsize, NULL); 5639 if (err != 0 && err != ENAMETOOLONG) 5640 error = EFAULT; 5641 } 5642 5643 mutex_exit(&class_lock); 5644 break; 5645 case ZONE_ATTR_HOSTID: 5646 if (zone->zone_hostid != HW_INVALID_HOSTID && 5647 bufsize == sizeof (zone->zone_hostid)) { 5648 size = sizeof (zone->zone_hostid); 5649 if (buf != NULL && copyout(&zone->zone_hostid, buf, 5650 bufsize) != 0) 5651 error = EFAULT; 5652 } else { 5653 error = EINVAL; 5654 } 5655 break; 5656 case ZONE_ATTR_FS_ALLOWED: 5657 if (zone->zone_fs_allowed == NULL) 5658 outstr = ""; 5659 else 5660 outstr = zone->zone_fs_allowed; 5661 size = strlen(outstr) + 1; 5662 if (bufsize > size) 5663 bufsize = size; 5664 if (buf != NULL) { 5665 err = copyoutstr(outstr, buf, bufsize, NULL); 5666 if (err != 0 && err != ENAMETOOLONG) 5667 error = EFAULT; 5668 } 5669 break; 5670 case ZONE_ATTR_SECFLAGS: 5671 size = sizeof (zone->zone_secflags); 5672 if (bufsize > size) 5673 bufsize = size; 5674 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0) 5675 error = EFAULT; 5676 break; 5677 case ZONE_ATTR_NETWORK: 5678 bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t)); 5679 size = bufsize; 5680 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5681 if (copyin(buf, zbuf, bufsize) != 0) { 5682 error = EFAULT; 5683 } else { 5684 error = zone_get_network(zoneid, zbuf); 5685 if (error == 0 && copyout(zbuf, buf, bufsize) != 0) 5686 error = EFAULT; 5687 } 5688 kmem_free(zbuf, bufsize); 5689 break; 5690 case ZONE_ATTR_DID: 5691 size = sizeof (zoneid_t); 5692 if (bufsize > size) 5693 bufsize = size; 5694 5695 if (buf != NULL && copyout(&zone->zone_did, buf, bufsize) != 0) 5696 error = EFAULT; 5697 break; 5698 default: 5699 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) { 5700 size = bufsize; 5701 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size); 5702 } else { 5703 error = EINVAL; 5704 } 5705 } 5706 zone_rele(zone); 5707 5708 if (error) 5709 return (set_errno(error)); 5710 return ((ssize_t)size); 5711 } 5712 5713 /* 5714 * Systemcall entry point for zone_setattr(2). 5715 */ 5716 /*ARGSUSED*/ 5717 static int 5718 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize) 5719 { 5720 zone_t *zone; 5721 zone_status_t zone_status; 5722 int err = -1; 5723 zone_net_data_t *zbuf; 5724 5725 if (secpolicy_zone_config(CRED()) != 0) 5726 return (set_errno(EPERM)); 5727 5728 /* 5729 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the 5730 * global zone. 5731 */ 5732 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) { 5733 return (set_errno(EINVAL)); 5734 } 5735 5736 mutex_enter(&zonehash_lock); 5737 if ((zone = zone_find_all_by_id(zoneid)) == NULL) { 5738 mutex_exit(&zonehash_lock); 5739 return (set_errno(EINVAL)); 5740 } 5741 zone_hold(zone); 5742 mutex_exit(&zonehash_lock); 5743 5744 /* 5745 * At present most attributes can only be set on non-running, 5746 * non-global zones. 5747 */ 5748 zone_status = zone_status_get(zone); 5749 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) { 5750 err = EINVAL; 5751 goto done; 5752 } 5753 5754 switch (attr) { 5755 case ZONE_ATTR_INITNAME: 5756 err = zone_set_initname(zone, (const char *)buf); 5757 break; 5758 case ZONE_ATTR_INITNORESTART: 5759 zone->zone_restart_init = B_FALSE; 5760 err = 0; 5761 break; 5762 case ZONE_ATTR_BOOTARGS: 5763 err = zone_set_bootargs(zone, (const char *)buf); 5764 break; 5765 case ZONE_ATTR_BRAND: 5766 err = zone_set_brand(zone, (const char *)buf); 5767 break; 5768 case ZONE_ATTR_FS_ALLOWED: 5769 err = zone_set_fs_allowed(zone, (const char *)buf); 5770 break; 5771 case ZONE_ATTR_SECFLAGS: 5772 err = zone_set_secflags(zone, (psecflags_t *)buf); 5773 break; 5774 case ZONE_ATTR_PHYS_MCAP: 5775 err = zone_set_phys_mcap(zone, (const uint64_t *)buf); 5776 break; 5777 case ZONE_ATTR_SCHED_CLASS: 5778 err = zone_set_sched_class(zone, (const char *)buf); 5779 break; 5780 case ZONE_ATTR_HOSTID: 5781 if (bufsize == sizeof (zone->zone_hostid)) { 5782 if (copyin(buf, &zone->zone_hostid, bufsize) == 0) 5783 err = 0; 5784 else 5785 err = EFAULT; 5786 } else { 5787 err = EINVAL; 5788 } 5789 break; 5790 case ZONE_ATTR_NETWORK: 5791 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) { 5792 err = EINVAL; 5793 break; 5794 } 5795 zbuf = kmem_alloc(bufsize, KM_SLEEP); 5796 if (copyin(buf, zbuf, bufsize) != 0) { 5797 kmem_free(zbuf, bufsize); 5798 err = EFAULT; 5799 break; 5800 } 5801 err = zone_set_network(zoneid, zbuf); 5802 kmem_free(zbuf, bufsize); 5803 break; 5804 default: 5805 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) 5806 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize); 5807 else 5808 err = EINVAL; 5809 } 5810 5811 done: 5812 zone_rele(zone); 5813 ASSERT(err != -1); 5814 return (err != 0 ? set_errno(err) : 0); 5815 } 5816 5817 /* 5818 * Return zero if the process has at least one vnode mapped in to its 5819 * address space which shouldn't be allowed to change zones. 5820 * 5821 * Also return zero if the process has any shared mappings which reserve 5822 * swap. This is because the counting for zone.max-swap does not allow swap 5823 * reservation to be shared between zones. zone swap reservation is counted 5824 * on zone->zone_max_swap. 5825 */ 5826 static int 5827 as_can_change_zones(void) 5828 { 5829 proc_t *pp = curproc; 5830 struct seg *seg; 5831 struct as *as = pp->p_as; 5832 vnode_t *vp; 5833 int allow = 1; 5834 5835 ASSERT(pp->p_as != &kas); 5836 AS_LOCK_ENTER(as, RW_READER); 5837 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) { 5838 5839 /* 5840 * Cannot enter zone with shared anon memory which 5841 * reserves swap. See comment above. 5842 */ 5843 if (seg_can_change_zones(seg) == B_FALSE) { 5844 allow = 0; 5845 break; 5846 } 5847 /* 5848 * if we can't get a backing vnode for this segment then skip 5849 * it. 5850 */ 5851 vp = NULL; 5852 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL) 5853 continue; 5854 if (!vn_can_change_zones(vp)) { /* bail on first match */ 5855 allow = 0; 5856 break; 5857 } 5858 } 5859 AS_LOCK_EXIT(as); 5860 return (allow); 5861 } 5862 5863 /* 5864 * Count swap reserved by curproc's address space 5865 */ 5866 static size_t 5867 as_swresv(void) 5868 { 5869 proc_t *pp = curproc; 5870 struct seg *seg; 5871 struct as *as = pp->p_as; 5872 size_t swap = 0; 5873 5874 ASSERT(pp->p_as != &kas); 5875 ASSERT(AS_WRITE_HELD(as)); 5876 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) 5877 swap += seg_swresv(seg); 5878 5879 return (swap); 5880 } 5881 5882 /* 5883 * Systemcall entry point for zone_enter(). 5884 * 5885 * The current process is injected into said zone. In the process 5886 * it will change its project membership, privileges, rootdir/cwd, 5887 * zone-wide rctls, and pool association to match those of the zone. 5888 * 5889 * The first zone_enter() called while the zone is in the ZONE_IS_READY 5890 * state will transition it to ZONE_IS_RUNNING. Processes may only 5891 * enter a zone that is "ready" or "running". 5892 */ 5893 static int 5894 zone_enter(zoneid_t zoneid) 5895 { 5896 zone_t *zone; 5897 vnode_t *vp; 5898 proc_t *pp = curproc; 5899 contract_t *ct; 5900 cont_process_t *ctp; 5901 task_t *tk, *oldtk; 5902 kproject_t *zone_proj0; 5903 cred_t *cr, *newcr; 5904 pool_t *oldpool, *newpool; 5905 sess_t *sp; 5906 uid_t uid; 5907 zone_status_t status; 5908 int err = 0; 5909 rctl_entity_p_t e; 5910 size_t swap; 5911 kthread_id_t t; 5912 5913 if (secpolicy_zone_config(CRED()) != 0) 5914 return (set_errno(EPERM)); 5915 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID) 5916 return (set_errno(EINVAL)); 5917 5918 /* 5919 * Stop all lwps so we don't need to hold a lock to look at 5920 * curproc->p_zone. This needs to happen before we grab any 5921 * locks to avoid deadlock (another lwp in the process could 5922 * be waiting for the held lock). 5923 */ 5924 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) 5925 return (set_errno(EINTR)); 5926 5927 /* 5928 * Make sure we're not changing zones with files open or mapped in 5929 * to our address space which shouldn't be changing zones. 5930 */ 5931 if (!files_can_change_zones()) { 5932 err = EBADF; 5933 goto out; 5934 } 5935 if (!as_can_change_zones()) { 5936 err = EFAULT; 5937 goto out; 5938 } 5939 5940 mutex_enter(&zonehash_lock); 5941 if (pp->p_zone != global_zone) { 5942 mutex_exit(&zonehash_lock); 5943 err = EINVAL; 5944 goto out; 5945 } 5946 5947 zone = zone_find_all_by_id(zoneid); 5948 if (zone == NULL) { 5949 mutex_exit(&zonehash_lock); 5950 err = EINVAL; 5951 goto out; 5952 } 5953 5954 /* 5955 * To prevent processes in a zone from holding contracts on 5956 * extrazonal resources, and to avoid process contract 5957 * memberships which span zones, contract holders and processes 5958 * which aren't the sole members of their encapsulating process 5959 * contracts are not allowed to zone_enter. 5960 */ 5961 ctp = pp->p_ct_process; 5962 ct = &ctp->conp_contract; 5963 mutex_enter(&ct->ct_lock); 5964 mutex_enter(&pp->p_lock); 5965 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) { 5966 mutex_exit(&pp->p_lock); 5967 mutex_exit(&ct->ct_lock); 5968 mutex_exit(&zonehash_lock); 5969 err = EINVAL; 5970 goto out; 5971 } 5972 5973 /* 5974 * Moreover, we don't allow processes whose encapsulating 5975 * process contracts have inherited extrazonal contracts. 5976 * While it would be easier to eliminate all process contracts 5977 * with inherited contracts, we need to be able to give a 5978 * restarted init (or other zone-penetrating process) its 5979 * predecessor's contracts. 5980 */ 5981 if (ctp->conp_ninherited != 0) { 5982 contract_t *next; 5983 for (next = list_head(&ctp->conp_inherited); next; 5984 next = list_next(&ctp->conp_inherited, next)) { 5985 if (contract_getzuniqid(next) != zone->zone_uniqid) { 5986 mutex_exit(&pp->p_lock); 5987 mutex_exit(&ct->ct_lock); 5988 mutex_exit(&zonehash_lock); 5989 err = EINVAL; 5990 goto out; 5991 } 5992 } 5993 } 5994 5995 mutex_exit(&pp->p_lock); 5996 mutex_exit(&ct->ct_lock); 5997 5998 status = zone_status_get(zone); 5999 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) { 6000 /* 6001 * Can't join 6002 */ 6003 mutex_exit(&zonehash_lock); 6004 err = EINVAL; 6005 goto out; 6006 } 6007 6008 /* 6009 * Make sure new priv set is within the permitted set for caller 6010 */ 6011 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) { 6012 mutex_exit(&zonehash_lock); 6013 err = EPERM; 6014 goto out; 6015 } 6016 /* 6017 * We want to momentarily drop zonehash_lock while we optimistically 6018 * bind curproc to the pool it should be running in. This is safe 6019 * since the zone can't disappear (we have a hold on it). 6020 */ 6021 zone_hold(zone); 6022 mutex_exit(&zonehash_lock); 6023 6024 /* 6025 * Grab pool_lock to keep the pools configuration from changing 6026 * and to stop ourselves from getting rebound to another pool 6027 * until we join the zone. 6028 */ 6029 if (pool_lock_intr() != 0) { 6030 zone_rele(zone); 6031 err = EINTR; 6032 goto out; 6033 } 6034 ASSERT(secpolicy_pool(CRED()) == 0); 6035 /* 6036 * Bind ourselves to the pool currently associated with the zone. 6037 */ 6038 oldpool = curproc->p_pool; 6039 newpool = zone_pool_get(zone); 6040 if (pool_state == POOL_ENABLED && newpool != oldpool && 6041 (err = pool_do_bind(newpool, P_PID, P_MYID, 6042 POOL_BIND_ALL)) != 0) { 6043 pool_unlock(); 6044 zone_rele(zone); 6045 goto out; 6046 } 6047 6048 /* 6049 * Grab cpu_lock now; we'll need it later when we call 6050 * task_join(). 6051 */ 6052 mutex_enter(&cpu_lock); 6053 mutex_enter(&zonehash_lock); 6054 /* 6055 * Make sure the zone hasn't moved on since we dropped zonehash_lock. 6056 */ 6057 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) { 6058 /* 6059 * Can't join anymore. 6060 */ 6061 mutex_exit(&zonehash_lock); 6062 mutex_exit(&cpu_lock); 6063 if (pool_state == POOL_ENABLED && 6064 newpool != oldpool) 6065 (void) pool_do_bind(oldpool, P_PID, P_MYID, 6066 POOL_BIND_ALL); 6067 pool_unlock(); 6068 zone_rele(zone); 6069 err = EINVAL; 6070 goto out; 6071 } 6072 6073 /* 6074 * a_lock must be held while transfering locked memory and swap 6075 * reservation from the global zone to the non global zone because 6076 * asynchronous faults on the processes' address space can lock 6077 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE 6078 * segments respectively. 6079 */ 6080 AS_LOCK_ENTER(pp->p_as, RW_WRITER); 6081 swap = as_swresv(); 6082 mutex_enter(&pp->p_lock); 6083 zone_proj0 = zone->zone_zsched->p_task->tk_proj; 6084 /* verify that we do not exceed and task or lwp limits */ 6085 mutex_enter(&zone->zone_nlwps_lock); 6086 /* add new lwps to zone and zone's proj0 */ 6087 zone_proj0->kpj_nlwps += pp->p_lwpcnt; 6088 zone->zone_nlwps += pp->p_lwpcnt; 6089 /* add 1 task to zone's proj0 */ 6090 zone_proj0->kpj_ntasks += 1; 6091 6092 zone_proj0->kpj_nprocs++; 6093 zone->zone_nprocs++; 6094 mutex_exit(&zone->zone_nlwps_lock); 6095 6096 mutex_enter(&zone->zone_mem_lock); 6097 zone->zone_locked_mem += pp->p_locked_mem; 6098 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem; 6099 zone->zone_max_swap += swap; 6100 mutex_exit(&zone->zone_mem_lock); 6101 6102 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6103 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem; 6104 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock)); 6105 6106 /* remove lwps and process from proc's old zone and old project */ 6107 mutex_enter(&pp->p_zone->zone_nlwps_lock); 6108 pp->p_zone->zone_nlwps -= pp->p_lwpcnt; 6109 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt; 6110 pp->p_task->tk_proj->kpj_nprocs--; 6111 pp->p_zone->zone_nprocs--; 6112 mutex_exit(&pp->p_zone->zone_nlwps_lock); 6113 6114 mutex_enter(&pp->p_zone->zone_mem_lock); 6115 pp->p_zone->zone_locked_mem -= pp->p_locked_mem; 6116 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem; 6117 pp->p_zone->zone_max_swap -= swap; 6118 mutex_exit(&pp->p_zone->zone_mem_lock); 6119 6120 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6121 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem; 6122 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock)); 6123 6124 pp->p_flag |= SZONETOP; 6125 pp->p_zone = zone; 6126 mutex_exit(&pp->p_lock); 6127 AS_LOCK_EXIT(pp->p_as); 6128 6129 /* 6130 * Joining the zone cannot fail from now on. 6131 * 6132 * This means that a lot of the following code can be commonized and 6133 * shared with zsched(). 6134 */ 6135 6136 /* 6137 * If the process contract fmri was inherited, we need to 6138 * flag this so that any contract status will not leak 6139 * extra zone information, svc_fmri in this case 6140 */ 6141 if (ctp->conp_svc_ctid != ct->ct_id) { 6142 mutex_enter(&ct->ct_lock); 6143 ctp->conp_svc_zone_enter = ct->ct_id; 6144 mutex_exit(&ct->ct_lock); 6145 } 6146 6147 /* 6148 * Reset the encapsulating process contract's zone. 6149 */ 6150 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID); 6151 contract_setzuniqid(ct, zone->zone_uniqid); 6152 6153 /* 6154 * Create a new task and associate the process with the project keyed 6155 * by (projid,zoneid). 6156 * 6157 * We might as well be in project 0; the global zone's projid doesn't 6158 * make much sense in a zone anyhow. 6159 * 6160 * This also increments zone_ntasks, and returns with p_lock held. 6161 */ 6162 tk = task_create(0, zone); 6163 oldtk = task_join(tk, 0); 6164 mutex_exit(&cpu_lock); 6165 6166 /* 6167 * call RCTLOP_SET functions on this proc 6168 */ 6169 e.rcep_p.zone = zone; 6170 e.rcep_t = RCENTITY_ZONE; 6171 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL, 6172 RCD_CALLBACK); 6173 mutex_exit(&pp->p_lock); 6174 6175 /* 6176 * We don't need to hold any of zsched's locks here; not only do we know 6177 * the process and zone aren't going away, we know its session isn't 6178 * changing either. 6179 * 6180 * By joining zsched's session here, we mimic the behavior in the 6181 * global zone of init's sid being the pid of sched. We extend this 6182 * to all zlogin-like zone_enter()'ing processes as well. 6183 */ 6184 mutex_enter(&pidlock); 6185 sp = zone->zone_zsched->p_sessp; 6186 sess_hold(zone->zone_zsched); 6187 mutex_enter(&pp->p_lock); 6188 pgexit(pp); 6189 sess_rele(pp->p_sessp, B_TRUE); 6190 pp->p_sessp = sp; 6191 pgjoin(pp, zone->zone_zsched->p_pidp); 6192 6193 /* 6194 * If any threads are scheduled to be placed on zone wait queue they 6195 * should abandon the idea since the wait queue is changing. 6196 * We need to be holding pidlock & p_lock to do this. 6197 */ 6198 if ((t = pp->p_tlist) != NULL) { 6199 do { 6200 thread_lock(t); 6201 /* 6202 * Kick this thread so that it doesn't sit 6203 * on a wrong wait queue. 6204 */ 6205 if (ISWAITING(t)) 6206 setrun_locked(t); 6207 6208 if (t->t_schedflag & TS_ANYWAITQ) 6209 t->t_schedflag &= ~ TS_ANYWAITQ; 6210 6211 thread_unlock(t); 6212 } while ((t = t->t_forw) != pp->p_tlist); 6213 } 6214 6215 /* 6216 * If there is a default scheduling class for the zone and it is not 6217 * the class we are currently in, change all of the threads in the 6218 * process to the new class. We need to be holding pidlock & p_lock 6219 * when we call parmsset so this is a good place to do it. 6220 */ 6221 if (zone->zone_defaultcid > 0 && 6222 zone->zone_defaultcid != curthread->t_cid) { 6223 pcparms_t pcparms; 6224 6225 pcparms.pc_cid = zone->zone_defaultcid; 6226 pcparms.pc_clparms[0] = 0; 6227 6228 /* 6229 * If setting the class fails, we still want to enter the zone. 6230 */ 6231 if ((t = pp->p_tlist) != NULL) { 6232 do { 6233 (void) parmsset(&pcparms, t); 6234 } while ((t = t->t_forw) != pp->p_tlist); 6235 } 6236 } 6237 6238 mutex_exit(&pp->p_lock); 6239 mutex_exit(&pidlock); 6240 6241 mutex_exit(&zonehash_lock); 6242 /* 6243 * We're firmly in the zone; let pools progress. 6244 */ 6245 pool_unlock(); 6246 task_rele(oldtk); 6247 /* 6248 * We don't need to retain a hold on the zone since we already 6249 * incremented zone_ntasks, so the zone isn't going anywhere. 6250 */ 6251 zone_rele(zone); 6252 6253 /* 6254 * Chroot 6255 */ 6256 vp = zone->zone_rootvp; 6257 zone_chdir(vp, &PTOU(pp)->u_cdir, pp); 6258 zone_chdir(vp, &PTOU(pp)->u_rdir, pp); 6259 6260 /* 6261 * Change process security flags. Note that the _effective_ flags 6262 * cannot change 6263 */ 6264 secflags_copy(&pp->p_secflags.psf_lower, 6265 &zone->zone_secflags.psf_lower); 6266 secflags_copy(&pp->p_secflags.psf_upper, 6267 &zone->zone_secflags.psf_upper); 6268 secflags_copy(&pp->p_secflags.psf_inherit, 6269 &zone->zone_secflags.psf_inherit); 6270 6271 /* 6272 * Change process credentials 6273 */ 6274 newcr = cralloc(); 6275 mutex_enter(&pp->p_crlock); 6276 cr = pp->p_cred; 6277 crcopy_to(cr, newcr); 6278 crsetzone(newcr, zone); 6279 pp->p_cred = newcr; 6280 6281 /* 6282 * Restrict all process privilege sets to zone limit 6283 */ 6284 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr)); 6285 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr)); 6286 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr)); 6287 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr)); 6288 mutex_exit(&pp->p_crlock); 6289 crset(pp, newcr); 6290 6291 /* 6292 * Adjust upcount to reflect zone entry. 6293 */ 6294 uid = crgetruid(newcr); 6295 mutex_enter(&pidlock); 6296 upcount_dec(uid, GLOBAL_ZONEID); 6297 upcount_inc(uid, zoneid); 6298 mutex_exit(&pidlock); 6299 6300 /* 6301 * Set up core file path and content. 6302 */ 6303 set_core_defaults(); 6304 6305 out: 6306 /* 6307 * Let the other lwps continue. 6308 */ 6309 mutex_enter(&pp->p_lock); 6310 if (curthread != pp->p_agenttp) 6311 continuelwps(pp); 6312 mutex_exit(&pp->p_lock); 6313 6314 return (err != 0 ? set_errno(err) : 0); 6315 } 6316 6317 /* 6318 * Systemcall entry point for zone_list(2). 6319 * 6320 * Processes running in a (non-global) zone only see themselves. 6321 * On labeled systems, they see all zones whose label they dominate. 6322 */ 6323 static int 6324 zone_list(zoneid_t *zoneidlist, uint_t *numzones) 6325 { 6326 zoneid_t *zoneids; 6327 zone_t *zone, *myzone; 6328 uint_t user_nzones, real_nzones; 6329 uint_t domi_nzones; 6330 int error; 6331 6332 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0) 6333 return (set_errno(EFAULT)); 6334 6335 myzone = curproc->p_zone; 6336 ASSERT(zonecount > 0); 6337 if (myzone != global_zone) { 6338 bslabel_t *mybslab; 6339 6340 if (!is_system_labeled()) { 6341 /* just return current zone */ 6342 real_nzones = domi_nzones = 1; 6343 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP); 6344 zoneids[0] = myzone->zone_id; 6345 } else { 6346 /* return all zones that are dominated */ 6347 mutex_enter(&zonehash_lock); 6348 real_nzones = zonecount; 6349 domi_nzones = 0; 6350 zoneids = kmem_alloc(real_nzones * 6351 sizeof (zoneid_t), KM_SLEEP); 6352 mybslab = label2bslabel(myzone->zone_slabel); 6353 for (zone = list_head(&zone_active); 6354 zone != NULL; 6355 zone = list_next(&zone_active, zone)) { 6356 if (zone->zone_id == GLOBAL_ZONEID) 6357 continue; 6358 if (zone != myzone && 6359 (zone->zone_flags & ZF_IS_SCRATCH)) 6360 continue; 6361 /* 6362 * Note that a label always dominates 6363 * itself, so myzone is always included 6364 * in the list. 6365 */ 6366 if (bldominates(mybslab, 6367 label2bslabel(zone->zone_slabel))) { 6368 zoneids[domi_nzones++] = zone->zone_id; 6369 } 6370 } 6371 mutex_exit(&zonehash_lock); 6372 } 6373 } else { 6374 mutex_enter(&zonehash_lock); 6375 real_nzones = zonecount; 6376 domi_nzones = 0; 6377 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP); 6378 for (zone = list_head(&zone_active); zone != NULL; 6379 zone = list_next(&zone_active, zone)) 6380 zoneids[domi_nzones++] = zone->zone_id; 6381 6382 ASSERT(domi_nzones == real_nzones); 6383 mutex_exit(&zonehash_lock); 6384 } 6385 6386 /* 6387 * If user has allocated space for fewer entries than we found, then 6388 * return only up to their limit. Either way, tell them exactly how 6389 * many we found. 6390 */ 6391 if (domi_nzones < user_nzones) 6392 user_nzones = domi_nzones; 6393 error = 0; 6394 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) { 6395 error = EFAULT; 6396 } else if (zoneidlist != NULL && user_nzones != 0) { 6397 if (copyout(zoneids, zoneidlist, 6398 user_nzones * sizeof (zoneid_t)) != 0) 6399 error = EFAULT; 6400 } 6401 6402 kmem_free(zoneids, real_nzones * sizeof (zoneid_t)); 6403 6404 if (error != 0) 6405 return (set_errno(error)); 6406 else 6407 return (0); 6408 } 6409 6410 /* 6411 * Systemcall entry point for zone_lookup(2). 6412 * 6413 * Non-global zones are only able to see themselves and (on labeled systems) 6414 * the zones they dominate. 6415 */ 6416 static zoneid_t 6417 zone_lookup(const char *zone_name) 6418 { 6419 char *kname; 6420 zone_t *zone; 6421 zoneid_t zoneid; 6422 int err; 6423 6424 if (zone_name == NULL) { 6425 /* return caller's zone id */ 6426 return (getzoneid()); 6427 } 6428 6429 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP); 6430 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) { 6431 kmem_free(kname, ZONENAME_MAX); 6432 return (set_errno(err)); 6433 } 6434 6435 mutex_enter(&zonehash_lock); 6436 zone = zone_find_all_by_name(kname); 6437 kmem_free(kname, ZONENAME_MAX); 6438 /* 6439 * In a non-global zone, can only lookup global and own name. 6440 * In Trusted Extensions zone label dominance rules apply. 6441 */ 6442 if (zone == NULL || 6443 zone_status_get(zone) < ZONE_IS_READY || 6444 !zone_list_access(zone)) { 6445 mutex_exit(&zonehash_lock); 6446 return (set_errno(EINVAL)); 6447 } else { 6448 zoneid = zone->zone_id; 6449 mutex_exit(&zonehash_lock); 6450 return (zoneid); 6451 } 6452 } 6453 6454 static int 6455 zone_version(int *version_arg) 6456 { 6457 int version = ZONE_SYSCALL_API_VERSION; 6458 6459 if (copyout(&version, version_arg, sizeof (int)) != 0) 6460 return (set_errno(EFAULT)); 6461 return (0); 6462 } 6463 6464 /* ARGSUSED */ 6465 long 6466 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 6467 { 6468 zone_def zs; 6469 int err; 6470 6471 switch (cmd) { 6472 case ZONE_CREATE: 6473 if (get_udatamodel() == DATAMODEL_NATIVE) { 6474 if (copyin(arg1, &zs, sizeof (zone_def))) { 6475 return (set_errno(EFAULT)); 6476 } 6477 } else { 6478 #ifdef _SYSCALL32_IMPL 6479 zone_def32 zs32; 6480 6481 if (copyin(arg1, &zs32, sizeof (zone_def32))) { 6482 return (set_errno(EFAULT)); 6483 } 6484 zs.zone_name = 6485 (const char *)(unsigned long)zs32.zone_name; 6486 zs.zone_root = 6487 (const char *)(unsigned long)zs32.zone_root; 6488 zs.zone_privs = 6489 (const struct priv_set *) 6490 (unsigned long)zs32.zone_privs; 6491 zs.zone_privssz = zs32.zone_privssz; 6492 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf; 6493 zs.rctlbufsz = zs32.rctlbufsz; 6494 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf; 6495 zs.zfsbufsz = zs32.zfsbufsz; 6496 zs.extended_error = 6497 (int *)(unsigned long)zs32.extended_error; 6498 zs.match = zs32.match; 6499 zs.doi = zs32.doi; 6500 zs.label = (const bslabel_t *)(uintptr_t)zs32.label; 6501 zs.flags = zs32.flags; 6502 zs.zone_did = zs32.zone_did; 6503 #else 6504 panic("get_udatamodel() returned bogus result\n"); 6505 #endif 6506 } 6507 6508 return (zone_create(zs.zone_name, zs.zone_root, 6509 zs.zone_privs, zs.zone_privssz, 6510 (caddr_t)zs.rctlbuf, zs.rctlbufsz, 6511 (caddr_t)zs.zfsbuf, zs.zfsbufsz, 6512 zs.extended_error, zs.match, zs.doi, 6513 zs.label, zs.flags, zs.zone_did)); 6514 case ZONE_BOOT: 6515 return (zone_boot((zoneid_t)(uintptr_t)arg1)); 6516 case ZONE_DESTROY: 6517 return (zone_destroy((zoneid_t)(uintptr_t)arg1)); 6518 case ZONE_GETATTR: 6519 return (zone_getattr((zoneid_t)(uintptr_t)arg1, 6520 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6521 case ZONE_SETATTR: 6522 return (zone_setattr((zoneid_t)(uintptr_t)arg1, 6523 (int)(uintptr_t)arg2, arg3, (size_t)arg4)); 6524 case ZONE_ENTER: 6525 return (zone_enter((zoneid_t)(uintptr_t)arg1)); 6526 case ZONE_LIST: 6527 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2)); 6528 case ZONE_SHUTDOWN: 6529 return (zone_shutdown((zoneid_t)(uintptr_t)arg1)); 6530 case ZONE_LOOKUP: 6531 return (zone_lookup((const char *)arg1)); 6532 case ZONE_VERSION: 6533 return (zone_version((int *)arg1)); 6534 case ZONE_ADD_DATALINK: 6535 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1, 6536 (datalink_id_t)(uintptr_t)arg2)); 6537 case ZONE_DEL_DATALINK: 6538 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1, 6539 (datalink_id_t)(uintptr_t)arg2)); 6540 case ZONE_CHECK_DATALINK: { 6541 zoneid_t zoneid; 6542 boolean_t need_copyout; 6543 6544 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0) 6545 return (EFAULT); 6546 need_copyout = (zoneid == ALL_ZONES); 6547 err = zone_check_datalink(&zoneid, 6548 (datalink_id_t)(uintptr_t)arg2); 6549 if (err == 0 && need_copyout) { 6550 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0) 6551 err = EFAULT; 6552 } 6553 return (err == 0 ? 0 : set_errno(err)); 6554 } 6555 case ZONE_LIST_DATALINK: 6556 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1, 6557 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3)); 6558 default: 6559 return (set_errno(EINVAL)); 6560 } 6561 } 6562 6563 struct zarg { 6564 zone_t *zone; 6565 zone_cmd_arg_t arg; 6566 }; 6567 6568 static int 6569 zone_lookup_door(const char *zone_name, door_handle_t *doorp) 6570 { 6571 char *buf; 6572 size_t buflen; 6573 int error; 6574 6575 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name); 6576 buf = kmem_alloc(buflen, KM_SLEEP); 6577 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name); 6578 error = door_ki_open(buf, doorp); 6579 kmem_free(buf, buflen); 6580 return (error); 6581 } 6582 6583 static void 6584 zone_release_door(door_handle_t *doorp) 6585 { 6586 door_ki_rele(*doorp); 6587 *doorp = NULL; 6588 } 6589 6590 static void 6591 zone_ki_call_zoneadmd(struct zarg *zargp) 6592 { 6593 door_handle_t door = NULL; 6594 door_arg_t darg, save_arg; 6595 char *zone_name; 6596 size_t zone_namelen; 6597 zoneid_t zoneid; 6598 zone_t *zone; 6599 zone_cmd_arg_t arg; 6600 uint64_t uniqid; 6601 size_t size; 6602 int error; 6603 int retry; 6604 6605 zone = zargp->zone; 6606 arg = zargp->arg; 6607 kmem_free(zargp, sizeof (*zargp)); 6608 6609 zone_namelen = strlen(zone->zone_name) + 1; 6610 zone_name = kmem_alloc(zone_namelen, KM_SLEEP); 6611 bcopy(zone->zone_name, zone_name, zone_namelen); 6612 zoneid = zone->zone_id; 6613 uniqid = zone->zone_uniqid; 6614 /* 6615 * zoneadmd may be down, but at least we can empty out the zone. 6616 * We can ignore the return value of zone_empty() since we're called 6617 * from a kernel thread and know we won't be delivered any signals. 6618 */ 6619 ASSERT(curproc == &p0); 6620 (void) zone_empty(zone); 6621 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY); 6622 zone_rele(zone); 6623 6624 size = sizeof (arg); 6625 darg.rbuf = (char *)&arg; 6626 darg.data_ptr = (char *)&arg; 6627 darg.rsize = size; 6628 darg.data_size = size; 6629 darg.desc_ptr = NULL; 6630 darg.desc_num = 0; 6631 6632 save_arg = darg; 6633 /* 6634 * Since we're not holding a reference to the zone, any number of 6635 * things can go wrong, including the zone disappearing before we get a 6636 * chance to talk to zoneadmd. 6637 */ 6638 for (retry = 0; /* forever */; retry++) { 6639 if (door == NULL && 6640 (error = zone_lookup_door(zone_name, &door)) != 0) { 6641 goto next; 6642 } 6643 ASSERT(door != NULL); 6644 6645 if ((error = door_ki_upcall_limited(door, &darg, NULL, 6646 SIZE_MAX, 0)) == 0) { 6647 break; 6648 } 6649 switch (error) { 6650 case EINTR: 6651 /* FALLTHROUGH */ 6652 case EAGAIN: /* process may be forking */ 6653 /* 6654 * Back off for a bit 6655 */ 6656 break; 6657 case EBADF: 6658 zone_release_door(&door); 6659 if (zone_lookup_door(zone_name, &door) != 0) { 6660 /* 6661 * zoneadmd may be dead, but it may come back to 6662 * life later. 6663 */ 6664 break; 6665 } 6666 break; 6667 default: 6668 cmn_err(CE_WARN, 6669 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n", 6670 error); 6671 goto out; 6672 } 6673 next: 6674 /* 6675 * If this isn't the same zone_t that we originally had in mind, 6676 * then this is the same as if two kadmin requests come in at 6677 * the same time: the first one wins. This means we lose, so we 6678 * bail. 6679 */ 6680 if ((zone = zone_find_by_id(zoneid)) == NULL) { 6681 /* 6682 * Problem is solved. 6683 */ 6684 break; 6685 } 6686 if (zone->zone_uniqid != uniqid) { 6687 /* 6688 * zoneid recycled 6689 */ 6690 zone_rele(zone); 6691 break; 6692 } 6693 /* 6694 * We could zone_status_timedwait(), but there doesn't seem to 6695 * be much point in doing that (plus, it would mean that 6696 * zone_free() isn't called until this thread exits). 6697 */ 6698 zone_rele(zone); 6699 delay(hz); 6700 darg = save_arg; 6701 } 6702 out: 6703 if (door != NULL) { 6704 zone_release_door(&door); 6705 } 6706 kmem_free(zone_name, zone_namelen); 6707 thread_exit(); 6708 } 6709 6710 /* 6711 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to 6712 * kadmin(). The caller is a process in the zone. 6713 * 6714 * In order to shutdown the zone, we will hand off control to zoneadmd 6715 * (running in the global zone) via a door. We do a half-hearted job at 6716 * killing all processes in the zone, create a kernel thread to contact 6717 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is 6718 * a form of generation number used to let zoneadmd (as well as 6719 * zone_destroy()) know exactly which zone they're re talking about. 6720 */ 6721 int 6722 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp) 6723 { 6724 struct zarg *zargp; 6725 zone_cmd_t zcmd; 6726 zone_t *zone; 6727 6728 zone = curproc->p_zone; 6729 ASSERT(getzoneid() != GLOBAL_ZONEID); 6730 6731 switch (cmd) { 6732 case A_SHUTDOWN: 6733 switch (fcn) { 6734 case AD_HALT: 6735 case AD_POWEROFF: 6736 zcmd = Z_HALT; 6737 break; 6738 case AD_BOOT: 6739 zcmd = Z_REBOOT; 6740 break; 6741 case AD_IBOOT: 6742 case AD_SBOOT: 6743 case AD_SIBOOT: 6744 case AD_NOSYNC: 6745 return (ENOTSUP); 6746 default: 6747 return (EINVAL); 6748 } 6749 break; 6750 case A_REBOOT: 6751 zcmd = Z_REBOOT; 6752 break; 6753 case A_FTRACE: 6754 case A_REMOUNT: 6755 case A_FREEZE: 6756 case A_DUMP: 6757 case A_CONFIG: 6758 return (ENOTSUP); 6759 default: 6760 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */ 6761 return (EINVAL); 6762 } 6763 6764 if (secpolicy_zone_admin(credp, B_FALSE)) 6765 return (EPERM); 6766 mutex_enter(&zone_status_lock); 6767 6768 /* 6769 * zone_status can't be ZONE_IS_EMPTY or higher since curproc 6770 * is in the zone. 6771 */ 6772 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY); 6773 if (zone_status_get(zone) > ZONE_IS_RUNNING) { 6774 /* 6775 * This zone is already on its way down. 6776 */ 6777 mutex_exit(&zone_status_lock); 6778 return (0); 6779 } 6780 /* 6781 * Prevent future zone_enter()s 6782 */ 6783 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN); 6784 mutex_exit(&zone_status_lock); 6785 6786 /* 6787 * Kill everyone now and call zoneadmd later. 6788 * zone_ki_call_zoneadmd() will do a more thorough job of this 6789 * later. 6790 */ 6791 killall(zone->zone_id); 6792 /* 6793 * Now, create the thread to contact zoneadmd and do the rest of the 6794 * work. This thread can't be created in our zone otherwise 6795 * zone_destroy() would deadlock. 6796 */ 6797 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP); 6798 zargp->arg.cmd = zcmd; 6799 zargp->arg.uniqid = zone->zone_uniqid; 6800 zargp->zone = zone; 6801 (void) strcpy(zargp->arg.locale, "C"); 6802 /* mdep was already copied in for us by uadmin */ 6803 if (mdep != NULL) 6804 (void) strlcpy(zargp->arg.bootbuf, mdep, 6805 sizeof (zargp->arg.bootbuf)); 6806 zone_hold(zone); 6807 6808 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0, 6809 TS_RUN, minclsyspri); 6810 exit(CLD_EXITED, 0); 6811 6812 return (EINVAL); 6813 } 6814 6815 /* 6816 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's 6817 * status to ZONE_IS_SHUTTING_DOWN. 6818 * 6819 * This function also shuts down all running zones to ensure that they won't 6820 * fork new processes. 6821 */ 6822 void 6823 zone_shutdown_global(void) 6824 { 6825 zone_t *current_zonep; 6826 6827 ASSERT(INGLOBALZONE(curproc)); 6828 mutex_enter(&zonehash_lock); 6829 mutex_enter(&zone_status_lock); 6830 6831 /* Modify the global zone's status first. */ 6832 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING); 6833 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN); 6834 6835 /* 6836 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN. 6837 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so 6838 * could cause assertions to fail (e.g., assertions about a zone's 6839 * state during initialization, readying, or booting) or produce races. 6840 * We'll let threads continue to initialize and ready new zones: they'll 6841 * fail to boot the new zones when they see that the global zone is 6842 * shutting down. 6843 */ 6844 for (current_zonep = list_head(&zone_active); current_zonep != NULL; 6845 current_zonep = list_next(&zone_active, current_zonep)) { 6846 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING) 6847 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN); 6848 } 6849 mutex_exit(&zone_status_lock); 6850 mutex_exit(&zonehash_lock); 6851 } 6852 6853 /* 6854 * Returns true if the named dataset is visible in the current zone. 6855 * The 'write' parameter is set to 1 if the dataset is also writable. 6856 */ 6857 int 6858 zone_dataset_visible(const char *dataset, int *write) 6859 { 6860 static int zfstype = -1; 6861 zone_dataset_t *zd; 6862 size_t len; 6863 zone_t *zone = curproc->p_zone; 6864 const char *name = NULL; 6865 vfs_t *vfsp = NULL; 6866 6867 if (dataset[0] == '\0') 6868 return (0); 6869 6870 /* 6871 * Walk the list once, looking for datasets which match exactly, or 6872 * specify a dataset underneath an exported dataset. If found, return 6873 * true and note that it is writable. 6874 */ 6875 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6876 zd = list_next(&zone->zone_datasets, zd)) { 6877 6878 len = strlen(zd->zd_dataset); 6879 if (strlen(dataset) >= len && 6880 bcmp(dataset, zd->zd_dataset, len) == 0 && 6881 (dataset[len] == '\0' || dataset[len] == '/' || 6882 dataset[len] == '@')) { 6883 if (write) 6884 *write = 1; 6885 return (1); 6886 } 6887 } 6888 6889 /* 6890 * Walk the list a second time, searching for datasets which are parents 6891 * of exported datasets. These should be visible, but read-only. 6892 * 6893 * Note that we also have to support forms such as 'pool/dataset/', with 6894 * a trailing slash. 6895 */ 6896 for (zd = list_head(&zone->zone_datasets); zd != NULL; 6897 zd = list_next(&zone->zone_datasets, zd)) { 6898 6899 len = strlen(dataset); 6900 if (dataset[len - 1] == '/') 6901 len--; /* Ignore trailing slash */ 6902 if (len < strlen(zd->zd_dataset) && 6903 bcmp(dataset, zd->zd_dataset, len) == 0 && 6904 zd->zd_dataset[len] == '/') { 6905 if (write) 6906 *write = 0; 6907 return (1); 6908 } 6909 } 6910 6911 /* 6912 * We reach here if the given dataset is not found in the zone_dataset 6913 * list. Check if this dataset was added as a filesystem (ie. "add fs") 6914 * instead of delegation. For this we search for the dataset in the 6915 * zone_vfslist of this zone. If found, return true and note that it is 6916 * not writable. 6917 */ 6918 6919 /* 6920 * Initialize zfstype if it is not initialized yet. 6921 */ 6922 if (zfstype == -1) { 6923 struct vfssw *vswp = vfs_getvfssw("zfs"); 6924 zfstype = vswp - vfssw; 6925 vfs_unrefvfssw(vswp); 6926 } 6927 6928 vfs_list_read_lock(); 6929 vfsp = zone->zone_vfslist; 6930 do { 6931 ASSERT(vfsp); 6932 if (vfsp->vfs_fstype == zfstype) { 6933 name = refstr_value(vfsp->vfs_resource); 6934 6935 /* 6936 * Check if we have an exact match. 6937 */ 6938 if (strcmp(dataset, name) == 0) { 6939 vfs_list_unlock(); 6940 if (write) 6941 *write = 0; 6942 return (1); 6943 } 6944 /* 6945 * We need to check if we are looking for parents of 6946 * a dataset. These should be visible, but read-only. 6947 */ 6948 len = strlen(dataset); 6949 if (dataset[len - 1] == '/') 6950 len--; 6951 6952 if (len < strlen(name) && 6953 bcmp(dataset, name, len) == 0 && name[len] == '/') { 6954 vfs_list_unlock(); 6955 if (write) 6956 *write = 0; 6957 return (1); 6958 } 6959 } 6960 vfsp = vfsp->vfs_zone_next; 6961 } while (vfsp != zone->zone_vfslist); 6962 6963 vfs_list_unlock(); 6964 return (0); 6965 } 6966 6967 /* 6968 * zone_find_by_any_path() - 6969 * 6970 * kernel-private routine similar to zone_find_by_path(), but which 6971 * effectively compares against zone paths rather than zonerootpath 6972 * (i.e., the last component of zonerootpaths, which should be "root/", 6973 * are not compared.) This is done in order to accurately identify all 6974 * paths, whether zone-visible or not, including those which are parallel 6975 * to /root/, such as /dev/, /home/, etc... 6976 * 6977 * If the specified path does not fall under any zone path then global 6978 * zone is returned. 6979 * 6980 * The treat_abs parameter indicates whether the path should be treated as 6981 * an absolute path although it does not begin with "/". (This supports 6982 * nfs mount syntax such as host:any/path.) 6983 * 6984 * The caller is responsible for zone_rele of the returned zone. 6985 */ 6986 zone_t * 6987 zone_find_by_any_path(const char *path, boolean_t treat_abs) 6988 { 6989 zone_t *zone; 6990 int path_offset = 0; 6991 6992 if (path == NULL) { 6993 zone_hold(global_zone); 6994 return (global_zone); 6995 } 6996 6997 if (*path != '/') { 6998 ASSERT(treat_abs); 6999 path_offset = 1; 7000 } 7001 7002 mutex_enter(&zonehash_lock); 7003 for (zone = list_head(&zone_active); zone != NULL; 7004 zone = list_next(&zone_active, zone)) { 7005 char *c; 7006 size_t pathlen; 7007 char *rootpath_start; 7008 7009 if (zone == global_zone) /* skip global zone */ 7010 continue; 7011 7012 /* scan backwards to find start of last component */ 7013 c = zone->zone_rootpath + zone->zone_rootpathlen - 2; 7014 do { 7015 c--; 7016 } while (*c != '/'); 7017 7018 pathlen = c - zone->zone_rootpath + 1 - path_offset; 7019 rootpath_start = (zone->zone_rootpath + path_offset); 7020 if (strncmp(path, rootpath_start, pathlen) == 0) 7021 break; 7022 } 7023 if (zone == NULL) 7024 zone = global_zone; 7025 zone_hold(zone); 7026 mutex_exit(&zonehash_lock); 7027 return (zone); 7028 } 7029 7030 /* 7031 * Finds a zone_dl_t with the given linkid in the given zone. Returns the 7032 * zone_dl_t pointer if found, and NULL otherwise. 7033 */ 7034 static zone_dl_t * 7035 zone_find_dl(zone_t *zone, datalink_id_t linkid) 7036 { 7037 zone_dl_t *zdl; 7038 7039 ASSERT(mutex_owned(&zone->zone_lock)); 7040 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7041 zdl = list_next(&zone->zone_dl_list, zdl)) { 7042 if (zdl->zdl_id == linkid) 7043 break; 7044 } 7045 return (zdl); 7046 } 7047 7048 static boolean_t 7049 zone_dl_exists(zone_t *zone, datalink_id_t linkid) 7050 { 7051 boolean_t exists; 7052 7053 mutex_enter(&zone->zone_lock); 7054 exists = (zone_find_dl(zone, linkid) != NULL); 7055 mutex_exit(&zone->zone_lock); 7056 return (exists); 7057 } 7058 7059 /* 7060 * Add an data link name for the zone. 7061 */ 7062 static int 7063 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid) 7064 { 7065 zone_dl_t *zdl; 7066 zone_t *zone; 7067 zone_t *thiszone; 7068 7069 if ((thiszone = zone_find_by_id(zoneid)) == NULL) 7070 return (set_errno(ENXIO)); 7071 7072 /* Verify that the datalink ID doesn't already belong to a zone. */ 7073 mutex_enter(&zonehash_lock); 7074 for (zone = list_head(&zone_active); zone != NULL; 7075 zone = list_next(&zone_active, zone)) { 7076 if (zone_dl_exists(zone, linkid)) { 7077 mutex_exit(&zonehash_lock); 7078 zone_rele(thiszone); 7079 return (set_errno((zone == thiszone) ? EEXIST : EPERM)); 7080 } 7081 } 7082 7083 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP); 7084 zdl->zdl_id = linkid; 7085 zdl->zdl_net = NULL; 7086 mutex_enter(&thiszone->zone_lock); 7087 list_insert_head(&thiszone->zone_dl_list, zdl); 7088 mutex_exit(&thiszone->zone_lock); 7089 mutex_exit(&zonehash_lock); 7090 zone_rele(thiszone); 7091 return (0); 7092 } 7093 7094 static int 7095 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid) 7096 { 7097 zone_dl_t *zdl; 7098 zone_t *zone; 7099 int err = 0; 7100 7101 if ((zone = zone_find_by_id(zoneid)) == NULL) 7102 return (set_errno(EINVAL)); 7103 7104 mutex_enter(&zone->zone_lock); 7105 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7106 err = ENXIO; 7107 } else { 7108 list_remove(&zone->zone_dl_list, zdl); 7109 nvlist_free(zdl->zdl_net); 7110 kmem_free(zdl, sizeof (zone_dl_t)); 7111 } 7112 mutex_exit(&zone->zone_lock); 7113 zone_rele(zone); 7114 return (err == 0 ? 0 : set_errno(err)); 7115 } 7116 7117 /* 7118 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned 7119 * the linkid. Otherwise we just check if the specified zoneidp has been 7120 * assigned the supplied linkid. 7121 */ 7122 int 7123 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid) 7124 { 7125 zone_t *zone; 7126 int err = ENXIO; 7127 7128 if (*zoneidp != ALL_ZONES) { 7129 if ((zone = zone_find_by_id(*zoneidp)) != NULL) { 7130 if (zone_dl_exists(zone, linkid)) 7131 err = 0; 7132 zone_rele(zone); 7133 } 7134 return (err); 7135 } 7136 7137 mutex_enter(&zonehash_lock); 7138 for (zone = list_head(&zone_active); zone != NULL; 7139 zone = list_next(&zone_active, zone)) { 7140 if (zone_dl_exists(zone, linkid)) { 7141 *zoneidp = zone->zone_id; 7142 err = 0; 7143 break; 7144 } 7145 } 7146 mutex_exit(&zonehash_lock); 7147 return (err); 7148 } 7149 7150 /* 7151 * Get the list of datalink IDs assigned to a zone. 7152 * 7153 * On input, *nump is the number of datalink IDs that can fit in the supplied 7154 * idarray. Upon return, *nump is either set to the number of datalink IDs 7155 * that were placed in the array if the array was large enough, or to the 7156 * number of datalink IDs that the function needs to place in the array if the 7157 * array is too small. 7158 */ 7159 static int 7160 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray) 7161 { 7162 uint_t num, dlcount; 7163 zone_t *zone; 7164 zone_dl_t *zdl; 7165 datalink_id_t *idptr = idarray; 7166 7167 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0) 7168 return (set_errno(EFAULT)); 7169 if ((zone = zone_find_by_id(zoneid)) == NULL) 7170 return (set_errno(ENXIO)); 7171 7172 num = 0; 7173 mutex_enter(&zone->zone_lock); 7174 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7175 zdl = list_next(&zone->zone_dl_list, zdl)) { 7176 /* 7177 * If the list is bigger than what the caller supplied, just 7178 * count, don't do copyout. 7179 */ 7180 if (++num > dlcount) 7181 continue; 7182 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) { 7183 mutex_exit(&zone->zone_lock); 7184 zone_rele(zone); 7185 return (set_errno(EFAULT)); 7186 } 7187 idptr++; 7188 } 7189 mutex_exit(&zone->zone_lock); 7190 zone_rele(zone); 7191 7192 /* Increased or decreased, caller should be notified. */ 7193 if (num != dlcount) { 7194 if (copyout(&num, nump, sizeof (num)) != 0) 7195 return (set_errno(EFAULT)); 7196 } 7197 return (0); 7198 } 7199 7200 /* 7201 * Public interface for looking up a zone by zoneid. It's a customized version 7202 * for netstack_zone_create(). It can only be called from the zsd create 7203 * callbacks, since it doesn't have reference on the zone structure hence if 7204 * it is called elsewhere the zone could disappear after the zonehash_lock 7205 * is dropped. 7206 * 7207 * Furthermore it 7208 * 1. Doesn't check the status of the zone. 7209 * 2. It will be called even before zone_init is called, in that case the 7210 * address of zone0 is returned directly, and netstack_zone_create() 7211 * will only assign a value to zone0.zone_netstack, won't break anything. 7212 * 3. Returns without the zone being held. 7213 */ 7214 zone_t * 7215 zone_find_by_id_nolock(zoneid_t zoneid) 7216 { 7217 zone_t *zone; 7218 7219 mutex_enter(&zonehash_lock); 7220 if (zonehashbyid == NULL) 7221 zone = &zone0; 7222 else 7223 zone = zone_find_all_by_id(zoneid); 7224 mutex_exit(&zonehash_lock); 7225 return (zone); 7226 } 7227 7228 /* 7229 * Walk the datalinks for a given zone 7230 */ 7231 int 7232 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *), 7233 void *data) 7234 { 7235 zone_t *zone; 7236 zone_dl_t *zdl; 7237 datalink_id_t *idarray; 7238 uint_t idcount = 0; 7239 int i, ret = 0; 7240 7241 if ((zone = zone_find_by_id(zoneid)) == NULL) 7242 return (ENOENT); 7243 7244 /* 7245 * We first build an array of linkid's so that we can walk these and 7246 * execute the callback with the zone_lock dropped. 7247 */ 7248 mutex_enter(&zone->zone_lock); 7249 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7250 zdl = list_next(&zone->zone_dl_list, zdl)) { 7251 idcount++; 7252 } 7253 7254 if (idcount == 0) { 7255 mutex_exit(&zone->zone_lock); 7256 zone_rele(zone); 7257 return (0); 7258 } 7259 7260 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP); 7261 if (idarray == NULL) { 7262 mutex_exit(&zone->zone_lock); 7263 zone_rele(zone); 7264 return (ENOMEM); 7265 } 7266 7267 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL; 7268 i++, zdl = list_next(&zone->zone_dl_list, zdl)) { 7269 idarray[i] = zdl->zdl_id; 7270 } 7271 7272 mutex_exit(&zone->zone_lock); 7273 7274 for (i = 0; i < idcount && ret == 0; i++) { 7275 if ((ret = (*cb)(idarray[i], data)) != 0) 7276 break; 7277 } 7278 7279 zone_rele(zone); 7280 kmem_free(idarray, sizeof (datalink_id_t) * idcount); 7281 return (ret); 7282 } 7283 7284 static char * 7285 zone_net_type2name(int type) 7286 { 7287 switch (type) { 7288 case ZONE_NETWORK_ADDRESS: 7289 return (ZONE_NET_ADDRNAME); 7290 case ZONE_NETWORK_DEFROUTER: 7291 return (ZONE_NET_RTRNAME); 7292 default: 7293 return (NULL); 7294 } 7295 } 7296 7297 static int 7298 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7299 { 7300 zone_t *zone; 7301 zone_dl_t *zdl; 7302 nvlist_t *nvl; 7303 int err = 0; 7304 uint8_t *new = NULL; 7305 char *nvname; 7306 int bufsize; 7307 datalink_id_t linkid = znbuf->zn_linkid; 7308 7309 if (secpolicy_zone_config(CRED()) != 0) 7310 return (set_errno(EPERM)); 7311 7312 if (zoneid == GLOBAL_ZONEID) 7313 return (set_errno(EINVAL)); 7314 7315 nvname = zone_net_type2name(znbuf->zn_type); 7316 bufsize = znbuf->zn_len; 7317 new = znbuf->zn_val; 7318 if (nvname == NULL) 7319 return (set_errno(EINVAL)); 7320 7321 if ((zone = zone_find_by_id(zoneid)) == NULL) { 7322 return (set_errno(EINVAL)); 7323 } 7324 7325 mutex_enter(&zone->zone_lock); 7326 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7327 err = ENXIO; 7328 goto done; 7329 } 7330 if ((nvl = zdl->zdl_net) == NULL) { 7331 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) { 7332 err = ENOMEM; 7333 goto done; 7334 } else { 7335 zdl->zdl_net = nvl; 7336 } 7337 } 7338 if (nvlist_exists(nvl, nvname)) { 7339 err = EINVAL; 7340 goto done; 7341 } 7342 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize); 7343 ASSERT(err == 0); 7344 done: 7345 mutex_exit(&zone->zone_lock); 7346 zone_rele(zone); 7347 if (err != 0) 7348 return (set_errno(err)); 7349 else 7350 return (0); 7351 } 7352 7353 static int 7354 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf) 7355 { 7356 zone_t *zone; 7357 zone_dl_t *zdl; 7358 nvlist_t *nvl; 7359 uint8_t *ptr; 7360 uint_t psize; 7361 int err = 0; 7362 char *nvname; 7363 int bufsize; 7364 void *buf; 7365 datalink_id_t linkid = znbuf->zn_linkid; 7366 7367 if (zoneid == GLOBAL_ZONEID) 7368 return (set_errno(EINVAL)); 7369 7370 nvname = zone_net_type2name(znbuf->zn_type); 7371 bufsize = znbuf->zn_len; 7372 buf = znbuf->zn_val; 7373 7374 if (nvname == NULL) 7375 return (set_errno(EINVAL)); 7376 if ((zone = zone_find_by_id(zoneid)) == NULL) 7377 return (set_errno(EINVAL)); 7378 7379 mutex_enter(&zone->zone_lock); 7380 if ((zdl = zone_find_dl(zone, linkid)) == NULL) { 7381 err = ENXIO; 7382 goto done; 7383 } 7384 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) { 7385 err = ENOENT; 7386 goto done; 7387 } 7388 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize); 7389 ASSERT(err == 0); 7390 7391 if (psize > bufsize) { 7392 err = ENOBUFS; 7393 goto done; 7394 } 7395 znbuf->zn_len = psize; 7396 bcopy(ptr, buf, psize); 7397 done: 7398 mutex_exit(&zone->zone_lock); 7399 zone_rele(zone); 7400 if (err != 0) 7401 return (set_errno(err)); 7402 else 7403 return (0); 7404 }