1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2015, Joyent Inc. All rights reserved.
25 * Copyright (c) 2016 by Delphix. All rights reserved.
26 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
27 */
28
29 /*
30 * Zones
31 *
32 * A zone is a named collection of processes, namespace constraints,
33 * and other system resources which comprise a secure and manageable
34 * application containment facility.
35 *
36 * Zones (represented by the reference counted zone_t) are tracked in
37 * the kernel in the zonehash. Elsewhere in the kernel, Zone IDs
38 * (zoneid_t) are used to track zone association. Zone IDs are
39 * dynamically generated when the zone is created; if a persistent
40 * identifier is needed (core files, accounting logs, audit trail,
41 * etc.), the zone name should be used.
42 *
43 *
44 * Global Zone:
45 *
46 * The global zone (zoneid 0) is automatically associated with all
47 * system resources that have not been bound to a user-created zone.
48 * This means that even systems where zones are not in active use
49 * have a global zone, and all processes, mounts, etc. are
50 * associated with that zone. The global zone is generally
51 * unconstrained in terms of privileges and access, though the usual
52 * credential and privilege based restrictions apply.
53 *
54 *
55 * Zone States:
56 *
57 * The states in which a zone may be in and the transitions are as
58 * follows:
59 *
60 * ZONE_IS_UNINITIALIZED: primordial state for a zone. The partially
61 * initialized zone is added to the list of active zones on the system but
62 * isn't accessible.
63 *
64 * ZONE_IS_INITIALIZED: Initialization complete except the ZSD callbacks are
65 * not yet completed. Not possible to enter the zone, but attributes can
66 * be retrieved.
67 *
68 * ZONE_IS_READY: zsched (the kernel dummy process for a zone) is
69 * ready. The zone is made visible after the ZSD constructor callbacks are
70 * executed. A zone remains in this state until it transitions into
71 * the ZONE_IS_BOOTING state as a result of a call to zone_boot().
72 *
73 * ZONE_IS_BOOTING: in this shortlived-state, zsched attempts to start
74 * init. Should that fail, the zone proceeds to the ZONE_IS_SHUTTING_DOWN
75 * state.
76 *
77 * ZONE_IS_RUNNING: The zone is open for business: zsched has
78 * successfully started init. A zone remains in this state until
79 * zone_shutdown() is called.
80 *
81 * ZONE_IS_SHUTTING_DOWN: zone_shutdown() has been called, the system is
82 * killing all processes running in the zone. The zone remains
83 * in this state until there are no more user processes running in the zone.
84 * zone_create(), zone_enter(), and zone_destroy() on this zone will fail.
85 * Since zone_shutdown() is restartable, it may be called successfully
86 * multiple times for the same zone_t. Setting of the zone's state to
87 * ZONE_IS_SHUTTING_DOWN is synchronized with mounts, so VOP_MOUNT() may check
88 * the zone's status without worrying about it being a moving target.
89 *
90 * ZONE_IS_EMPTY: zone_shutdown() has been called, and there
91 * are no more user processes in the zone. The zone remains in this
92 * state until there are no more kernel threads associated with the
93 * zone. zone_create(), zone_enter(), and zone_destroy() on this zone will
94 * fail.
95 *
96 * ZONE_IS_DOWN: All kernel threads doing work on behalf of the zone
97 * have exited. zone_shutdown() returns. Henceforth it is not possible to
98 * join the zone or create kernel threads therein.
99 *
100 * ZONE_IS_DYING: zone_destroy() has been called on the zone; zone
101 * remains in this state until zsched exits. Calls to zone_find_by_*()
102 * return NULL from now on.
103 *
104 * ZONE_IS_DEAD: zsched has exited (zone_ntasks == 0). There are no
105 * processes or threads doing work on behalf of the zone. The zone is
106 * removed from the list of active zones. zone_destroy() returns, and
107 * the zone can be recreated.
108 *
109 * ZONE_IS_FREE (internal state): zone_ref goes to 0, ZSD destructor
110 * callbacks are executed, and all memory associated with the zone is
111 * freed.
112 *
113 * Threads can wait for the zone to enter a requested state by using
114 * zone_status_wait() or zone_status_timedwait() with the desired
115 * state passed in as an argument. Zone state transitions are
116 * uni-directional; it is not possible to move back to an earlier state.
117 *
118 *
119 * Zone-Specific Data:
120 *
121 * Subsystems needing to maintain zone-specific data can store that
122 * data using the ZSD mechanism. This provides a zone-specific data
123 * store, similar to thread-specific data (see pthread_getspecific(3C)
124 * or the TSD code in uts/common/disp/thread.c. Also, ZSD can be used
125 * to register callbacks to be invoked when a zone is created, shut
126 * down, or destroyed. This can be used to initialize zone-specific
127 * data for new zones and to clean up when zones go away.
128 *
129 *
130 * Data Structures:
131 *
132 * The per-zone structure (zone_t) is reference counted, and freed
133 * when all references are released. zone_hold and zone_rele can be
134 * used to adjust the reference count. In addition, reference counts
135 * associated with the cred_t structure are tracked separately using
136 * zone_cred_hold and zone_cred_rele.
137 *
138 * Pointers to active zone_t's are stored in two hash tables; one
139 * for searching by id, the other for searching by name. Lookups
140 * can be performed on either basis, using zone_find_by_id and
141 * zone_find_by_name. Both return zone_t pointers with the zone
142 * held, so zone_rele should be called when the pointer is no longer
143 * needed. Zones can also be searched by path; zone_find_by_path
144 * returns the zone with which a path name is associated (global
145 * zone if the path is not within some other zone's file system
146 * hierarchy). This currently requires iterating through each zone,
147 * so it is slower than an id or name search via a hash table.
148 *
149 *
150 * Locking:
151 *
152 * zonehash_lock: This is a top-level global lock used to protect the
153 * zone hash tables and lists. Zones cannot be created or destroyed
154 * while this lock is held.
155 * zone_status_lock: This is a global lock protecting zone state.
156 * Zones cannot change state while this lock is held. It also
157 * protects the list of kernel threads associated with a zone.
158 * zone_lock: This is a per-zone lock used to protect several fields of
159 * the zone_t (see <sys/zone.h> for details). In addition, holding
160 * this lock means that the zone cannot go away.
161 * zone_nlwps_lock: This is a per-zone lock used to protect the fields
162 * related to the zone.max-lwps rctl.
163 * zone_mem_lock: This is a per-zone lock used to protect the fields
164 * related to the zone.max-locked-memory and zone.max-swap rctls.
165 * zone_rctl_lock: This is a per-zone lock used to protect other rctls,
166 * currently just max_lofi
167 * zsd_key_lock: This is a global lock protecting the key state for ZSD.
168 * zone_deathrow_lock: This is a global lock protecting the "deathrow"
169 * list (a list of zones in the ZONE_IS_DEAD state).
170 *
171 * Ordering requirements:
172 * pool_lock --> cpu_lock --> zonehash_lock --> zone_status_lock -->
173 * zone_lock --> zsd_key_lock --> pidlock --> p_lock
174 *
175 * When taking zone_mem_lock or zone_nlwps_lock, the lock ordering is:
176 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_mem_lock
177 * zonehash_lock --> a_lock --> pidlock --> p_lock --> zone_nlwps_lock
178 *
179 * Blocking memory allocations are permitted while holding any of the
180 * zone locks.
181 *
182 *
183 * System Call Interface:
184 *
185 * The zone subsystem can be managed and queried from user level with
186 * the following system calls (all subcodes of the primary "zone"
187 * system call):
188 * - zone_create: creates a zone with selected attributes (name,
189 * root path, privileges, resource controls, ZFS datasets)
190 * - zone_enter: allows the current process to enter a zone
191 * - zone_getattr: reports attributes of a zone
192 * - zone_setattr: set attributes of a zone
193 * - zone_boot: set 'init' running for the zone
194 * - zone_list: lists all zones active in the system
195 * - zone_lookup: looks up zone id based on name
196 * - zone_shutdown: initiates shutdown process (see states above)
197 * - zone_destroy: completes shutdown process (see states above)
198 *
199 */
200
201 #include <sys/priv_impl.h>
202 #include <sys/cred.h>
203 #include <c2/audit.h>
204 #include <sys/debug.h>
205 #include <sys/file.h>
206 #include <sys/kmem.h>
207 #include <sys/kstat.h>
208 #include <sys/mutex.h>
209 #include <sys/note.h>
210 #include <sys/pathname.h>
211 #include <sys/proc.h>
212 #include <sys/project.h>
213 #include <sys/sysevent.h>
214 #include <sys/task.h>
215 #include <sys/systm.h>
216 #include <sys/types.h>
217 #include <sys/utsname.h>
218 #include <sys/vnode.h>
219 #include <sys/vfs.h>
220 #include <sys/systeminfo.h>
221 #include <sys/policy.h>
222 #include <sys/cred_impl.h>
223 #include <sys/contract_impl.h>
224 #include <sys/contract/process_impl.h>
225 #include <sys/class.h>
226 #include <sys/pool.h>
227 #include <sys/pool_pset.h>
228 #include <sys/pset.h>
229 #include <sys/strlog.h>
230 #include <sys/sysmacros.h>
231 #include <sys/callb.h>
232 #include <sys/vmparam.h>
233 #include <sys/corectl.h>
234 #include <sys/ipc_impl.h>
235 #include <sys/klpd.h>
236
237 #include <sys/door.h>
238 #include <sys/cpuvar.h>
239 #include <sys/sdt.h>
240
241 #include <sys/uadmin.h>
242 #include <sys/session.h>
243 #include <sys/cmn_err.h>
244 #include <sys/modhash.h>
245 #include <sys/sunddi.h>
246 #include <sys/nvpair.h>
247 #include <sys/rctl.h>
248 #include <sys/fss.h>
249 #include <sys/brand.h>
250 #include <sys/zone.h>
251 #include <net/if.h>
252 #include <sys/cpucaps.h>
253 #include <vm/seg.h>
254 #include <sys/mac.h>
255
256 /*
257 * This constant specifies the number of seconds that threads waiting for
258 * subsystems to release a zone's general-purpose references will wait before
259 * they log the zone's reference counts. The constant's value shouldn't
260 * be so small that reference counts are unnecessarily reported for zones
261 * whose references are slowly released. On the other hand, it shouldn't be so
262 * large that users reboot their systems out of frustration over hung zones
263 * before the system logs the zones' reference counts.
264 */
265 #define ZONE_DESTROY_TIMEOUT_SECS 60
266
267 /* List of data link IDs which are accessible from the zone */
268 typedef struct zone_dl {
269 datalink_id_t zdl_id;
270 nvlist_t *zdl_net;
271 list_node_t zdl_linkage;
272 } zone_dl_t;
273
274 /*
275 * cv used to signal that all references to the zone have been released. This
276 * needs to be global since there may be multiple waiters, and the first to
277 * wake up will free the zone_t, hence we cannot use zone->zone_cv.
278 */
279 static kcondvar_t zone_destroy_cv;
280 /*
281 * Lock used to serialize access to zone_cv. This could have been per-zone,
282 * but then we'd need another lock for zone_destroy_cv, and why bother?
283 */
284 static kmutex_t zone_status_lock;
285
286 /*
287 * ZSD-related global variables.
288 */
289 static kmutex_t zsd_key_lock; /* protects the following two */
290 /*
291 * The next caller of zone_key_create() will be assigned a key of ++zsd_keyval.
292 */
293 static zone_key_t zsd_keyval = 0;
294 /*
295 * Global list of registered keys. We use this when a new zone is created.
296 */
297 static list_t zsd_registered_keys;
298
299 int zone_hash_size = 256;
300 static mod_hash_t *zonehashbyname, *zonehashbyid, *zonehashbylabel;
301 static kmutex_t zonehash_lock;
302 static uint_t zonecount;
303 static id_space_t *zoneid_space;
304
305 /*
306 * The global zone (aka zone0) is the all-seeing, all-knowing zone in which the
307 * kernel proper runs, and which manages all other zones.
308 *
309 * Although not declared as static, the variable "zone0" should not be used
310 * except for by code that needs to reference the global zone early on in boot,
311 * before it is fully initialized. All other consumers should use
312 * 'global_zone'.
313 */
314 zone_t zone0;
315 zone_t *global_zone = NULL; /* Set when the global zone is initialized */
316
317 /*
318 * List of active zones, protected by zonehash_lock.
319 */
320 static list_t zone_active;
321
322 /*
323 * List of destroyed zones that still have outstanding cred references.
324 * Used for debugging. Uses a separate lock to avoid lock ordering
325 * problems in zone_free.
326 */
327 static list_t zone_deathrow;
328 static kmutex_t zone_deathrow_lock;
329
330 /* number of zones is limited by virtual interface limit in IP */
331 uint_t maxzones = 8192;
332
333 /* Event channel to sent zone state change notifications */
334 evchan_t *zone_event_chan;
335
336 /*
337 * This table holds the mapping from kernel zone states to
338 * states visible in the state notification API.
339 * The idea is that we only expose "obvious" states and
340 * do not expose states which are just implementation details.
341 */
342 const char *zone_status_table[] = {
343 ZONE_EVENT_UNINITIALIZED, /* uninitialized */
344 ZONE_EVENT_INITIALIZED, /* initialized */
345 ZONE_EVENT_READY, /* ready */
346 ZONE_EVENT_READY, /* booting */
347 ZONE_EVENT_RUNNING, /* running */
348 ZONE_EVENT_SHUTTING_DOWN, /* shutting_down */
349 ZONE_EVENT_SHUTTING_DOWN, /* empty */
350 ZONE_EVENT_SHUTTING_DOWN, /* down */
351 ZONE_EVENT_SHUTTING_DOWN, /* dying */
352 ZONE_EVENT_UNINITIALIZED, /* dead */
353 };
354
355 /*
356 * This array contains the names of the subsystems listed in zone_ref_subsys_t
357 * (see sys/zone.h).
358 */
359 static char *zone_ref_subsys_names[] = {
360 "NFS", /* ZONE_REF_NFS */
361 "NFSv4", /* ZONE_REF_NFSV4 */
362 "SMBFS", /* ZONE_REF_SMBFS */
363 "MNTFS", /* ZONE_REF_MNTFS */
364 "LOFI", /* ZONE_REF_LOFI */
365 "VFS", /* ZONE_REF_VFS */
366 "IPC" /* ZONE_REF_IPC */
367 };
368
369 /*
370 * This isn't static so lint doesn't complain.
371 */
372 rctl_hndl_t rc_zone_cpu_shares;
373 rctl_hndl_t rc_zone_locked_mem;
374 rctl_hndl_t rc_zone_max_swap;
375 rctl_hndl_t rc_zone_max_lofi;
376 rctl_hndl_t rc_zone_cpu_cap;
377 rctl_hndl_t rc_zone_nlwps;
378 rctl_hndl_t rc_zone_nprocs;
379 rctl_hndl_t rc_zone_shmmax;
380 rctl_hndl_t rc_zone_shmmni;
381 rctl_hndl_t rc_zone_semmni;
382 rctl_hndl_t rc_zone_msgmni;
383
384 const char * const zone_default_initname = "/sbin/init";
385 static char * const zone_prefix = "/zone/";
386 static int zone_shutdown(zoneid_t zoneid);
387 static int zone_add_datalink(zoneid_t, datalink_id_t);
388 static int zone_remove_datalink(zoneid_t, datalink_id_t);
389 static int zone_list_datalink(zoneid_t, int *, datalink_id_t *);
390 static int zone_set_network(zoneid_t, zone_net_data_t *);
391 static int zone_get_network(zoneid_t, zone_net_data_t *);
392
393 typedef boolean_t zsd_applyfn_t(kmutex_t *, boolean_t, zone_t *, zone_key_t);
394
395 static void zsd_apply_all_zones(zsd_applyfn_t *, zone_key_t);
396 static void zsd_apply_all_keys(zsd_applyfn_t *, zone_t *);
397 static boolean_t zsd_apply_create(kmutex_t *, boolean_t, zone_t *, zone_key_t);
398 static boolean_t zsd_apply_shutdown(kmutex_t *, boolean_t, zone_t *,
399 zone_key_t);
400 static boolean_t zsd_apply_destroy(kmutex_t *, boolean_t, zone_t *, zone_key_t);
401 static boolean_t zsd_wait_for_creator(zone_t *, struct zsd_entry *,
402 kmutex_t *);
403 static boolean_t zsd_wait_for_inprogress(zone_t *, struct zsd_entry *,
404 kmutex_t *);
405
406 /*
407 * Bump this number when you alter the zone syscall interfaces; this is
408 * because we need to have support for previous API versions in libc
409 * to support patching; libc calls into the kernel to determine this number.
410 *
411 * Version 1 of the API is the version originally shipped with Solaris 10
412 * Version 2 alters the zone_create system call in order to support more
413 * arguments by moving the args into a structure; and to do better
414 * error reporting when zone_create() fails.
415 * Version 3 alters the zone_create system call in order to support the
416 * import of ZFS datasets to zones.
417 * Version 4 alters the zone_create system call in order to support
418 * Trusted Extensions.
419 * Version 5 alters the zone_boot system call, and converts its old
420 * bootargs parameter to be set by the zone_setattr API instead.
421 * Version 6 adds the flag argument to zone_create.
422 */
423 static const int ZONE_SYSCALL_API_VERSION = 6;
424
425 /*
426 * Certain filesystems (such as NFS and autofs) need to know which zone
427 * the mount is being placed in. Because of this, we need to be able to
428 * ensure that a zone isn't in the process of being created/destroyed such
429 * that nfs_mount() thinks it is in the global/NGZ zone, while by the time
430 * it gets added the list of mounted zones, it ends up on the wrong zone's
431 * mount list. Since a zone can't reside on an NFS file system, we don't
432 * have to worry about the zonepath itself.
433 *
434 * The following functions: block_mounts()/resume_mounts() and
435 * mount_in_progress()/mount_completed() are used by zones and the VFS
436 * layer (respectively) to synchronize zone state transitions and new
437 * mounts within a zone. This syncronization is on a per-zone basis, so
438 * activity for one zone will not interfere with activity for another zone.
439 *
440 * The semantics are like a reader-reader lock such that there may
441 * either be multiple mounts (or zone state transitions, if that weren't
442 * serialized by zonehash_lock) in progress at the same time, but not
443 * both.
444 *
445 * We use cv's so the user can ctrl-C out of the operation if it's
446 * taking too long.
447 *
448 * The semantics are such that there is unfair bias towards the
449 * "current" operation. This means that zone halt may starve if
450 * there is a rapid succession of new mounts coming in to the zone.
451 */
452 /*
453 * Prevent new mounts from progressing to the point of calling
454 * VFS_MOUNT(). If there are already mounts in this "region", wait for
455 * them to complete.
456 */
457 static int
458 block_mounts(zone_t *zp)
459 {
460 int retval = 0;
461
462 /*
463 * Since it may block for a long time, block_mounts() shouldn't be
464 * called with zonehash_lock held.
465 */
466 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
467 mutex_enter(&zp->zone_mount_lock);
468 while (zp->zone_mounts_in_progress > 0) {
469 if (cv_wait_sig(&zp->zone_mount_cv, &zp->zone_mount_lock) == 0)
470 goto signaled;
471 }
472 /*
473 * A negative value of mounts_in_progress indicates that mounts
474 * have been blocked by (-mounts_in_progress) different callers
475 * (remotely possible if two threads enter zone_shutdown at the same
476 * time).
477 */
478 zp->zone_mounts_in_progress--;
479 retval = 1;
480 signaled:
481 mutex_exit(&zp->zone_mount_lock);
482 return (retval);
483 }
484
485 /*
486 * The VFS layer may progress with new mounts as far as we're concerned.
487 * Allow them to progress if we were the last obstacle.
488 */
489 static void
490 resume_mounts(zone_t *zp)
491 {
492 mutex_enter(&zp->zone_mount_lock);
493 if (++zp->zone_mounts_in_progress == 0)
494 cv_broadcast(&zp->zone_mount_cv);
495 mutex_exit(&zp->zone_mount_lock);
496 }
497
498 /*
499 * The VFS layer is busy with a mount; this zone should wait until all
500 * of its mounts are completed to progress.
501 */
502 void
503 mount_in_progress(zone_t *zp)
504 {
505 mutex_enter(&zp->zone_mount_lock);
506 while (zp->zone_mounts_in_progress < 0)
507 cv_wait(&zp->zone_mount_cv, &zp->zone_mount_lock);
508 zp->zone_mounts_in_progress++;
509 mutex_exit(&zp->zone_mount_lock);
510 }
511
512 /*
513 * VFS is done with one mount; wake up any waiting block_mounts()
514 * callers if this is the last mount.
515 */
516 void
517 mount_completed(zone_t *zp)
518 {
519 mutex_enter(&zp->zone_mount_lock);
520 if (--zp->zone_mounts_in_progress == 0)
521 cv_broadcast(&zp->zone_mount_cv);
522 mutex_exit(&zp->zone_mount_lock);
523 }
524
525 /*
526 * ZSD routines.
527 *
528 * Zone Specific Data (ZSD) is modeled after Thread Specific Data as
529 * defined by the pthread_key_create() and related interfaces.
530 *
531 * Kernel subsystems may register one or more data items and/or
532 * callbacks to be executed when a zone is created, shutdown, or
533 * destroyed.
534 *
535 * Unlike the thread counterpart, destructor callbacks will be executed
536 * even if the data pointer is NULL and/or there are no constructor
537 * callbacks, so it is the responsibility of such callbacks to check for
538 * NULL data values if necessary.
539 *
540 * The locking strategy and overall picture is as follows:
541 *
542 * When someone calls zone_key_create(), a template ZSD entry is added to the
543 * global list "zsd_registered_keys", protected by zsd_key_lock. While
544 * holding that lock all the existing zones are marked as
545 * ZSD_CREATE_NEEDED and a copy of the ZSD entry added to the per-zone
546 * zone_zsd list (protected by zone_lock). The global list is updated first
547 * (under zone_key_lock) to make sure that newly created zones use the
548 * most recent list of keys. Then under zonehash_lock we walk the zones
549 * and mark them. Similar locking is used in zone_key_delete().
550 *
551 * The actual create, shutdown, and destroy callbacks are done without
552 * holding any lock. And zsd_flags are used to ensure that the operations
553 * completed so that when zone_key_create (and zone_create) is done, as well as
554 * zone_key_delete (and zone_destroy) is done, all the necessary callbacks
555 * are completed.
556 *
557 * When new zones are created constructor callbacks for all registered ZSD
558 * entries will be called. That also uses the above two phases of marking
559 * what needs to be done, and then running the callbacks without holding
560 * any locks.
561 *
562 * The framework does not provide any locking around zone_getspecific() and
563 * zone_setspecific() apart from that needed for internal consistency, so
564 * callers interested in atomic "test-and-set" semantics will need to provide
565 * their own locking.
566 */
567
568 /*
569 * Helper function to find the zsd_entry associated with the key in the
570 * given list.
571 */
572 static struct zsd_entry *
573 zsd_find(list_t *l, zone_key_t key)
574 {
575 struct zsd_entry *zsd;
576
577 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
578 if (zsd->zsd_key == key) {
579 return (zsd);
580 }
581 }
582 return (NULL);
583 }
584
585 /*
586 * Helper function to find the zsd_entry associated with the key in the
587 * given list. Move it to the front of the list.
588 */
589 static struct zsd_entry *
590 zsd_find_mru(list_t *l, zone_key_t key)
591 {
592 struct zsd_entry *zsd;
593
594 for (zsd = list_head(l); zsd != NULL; zsd = list_next(l, zsd)) {
595 if (zsd->zsd_key == key) {
596 /*
597 * Move to head of list to keep list in MRU order.
598 */
599 if (zsd != list_head(l)) {
600 list_remove(l, zsd);
601 list_insert_head(l, zsd);
602 }
603 return (zsd);
604 }
605 }
606 return (NULL);
607 }
608
609 void
610 zone_key_create(zone_key_t *keyp, void *(*create)(zoneid_t),
611 void (*shutdown)(zoneid_t, void *), void (*destroy)(zoneid_t, void *))
612 {
613 struct zsd_entry *zsdp;
614 struct zsd_entry *t;
615 struct zone *zone;
616 zone_key_t key;
617
618 zsdp = kmem_zalloc(sizeof (*zsdp), KM_SLEEP);
619 zsdp->zsd_data = NULL;
620 zsdp->zsd_create = create;
621 zsdp->zsd_shutdown = shutdown;
622 zsdp->zsd_destroy = destroy;
623
624 /*
625 * Insert in global list of callbacks. Makes future zone creations
626 * see it.
627 */
628 mutex_enter(&zsd_key_lock);
629 key = zsdp->zsd_key = ++zsd_keyval;
630 ASSERT(zsd_keyval != 0);
631 list_insert_tail(&zsd_registered_keys, zsdp);
632 mutex_exit(&zsd_key_lock);
633
634 /*
635 * Insert for all existing zones and mark them as needing
636 * a create callback.
637 */
638 mutex_enter(&zonehash_lock); /* stop the world */
639 for (zone = list_head(&zone_active); zone != NULL;
640 zone = list_next(&zone_active, zone)) {
641 zone_status_t status;
642
643 mutex_enter(&zone->zone_lock);
644
645 /* Skip zones that are on the way down or not yet up */
646 status = zone_status_get(zone);
647 if (status >= ZONE_IS_DOWN ||
648 status == ZONE_IS_UNINITIALIZED) {
649 mutex_exit(&zone->zone_lock);
650 continue;
651 }
652
653 t = zsd_find_mru(&zone->zone_zsd, key);
654 if (t != NULL) {
655 /*
656 * A zsd_configure already inserted it after
657 * we dropped zsd_key_lock above.
658 */
659 mutex_exit(&zone->zone_lock);
660 continue;
661 }
662 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
663 t->zsd_key = key;
664 t->zsd_create = create;
665 t->zsd_shutdown = shutdown;
666 t->zsd_destroy = destroy;
667 if (create != NULL) {
668 t->zsd_flags = ZSD_CREATE_NEEDED;
669 DTRACE_PROBE2(zsd__create__needed,
670 zone_t *, zone, zone_key_t, key);
671 }
672 list_insert_tail(&zone->zone_zsd, t);
673 mutex_exit(&zone->zone_lock);
674 }
675 mutex_exit(&zonehash_lock);
676
677 if (create != NULL) {
678 /* Now call the create callback for this key */
679 zsd_apply_all_zones(zsd_apply_create, key);
680 }
681 /*
682 * It is safe for consumers to use the key now, make it
683 * globally visible. Specifically zone_getspecific() will
684 * always successfully return the zone specific data associated
685 * with the key.
686 */
687 *keyp = key;
688
689 }
690
691 /*
692 * Function called when a module is being unloaded, or otherwise wishes
693 * to unregister its ZSD key and callbacks.
694 *
695 * Remove from the global list and determine the functions that need to
696 * be called under a global lock. Then call the functions without
697 * holding any locks. Finally free up the zone_zsd entries. (The apply
698 * functions need to access the zone_zsd entries to find zsd_data etc.)
699 */
700 int
701 zone_key_delete(zone_key_t key)
702 {
703 struct zsd_entry *zsdp = NULL;
704 zone_t *zone;
705
706 mutex_enter(&zsd_key_lock);
707 zsdp = zsd_find_mru(&zsd_registered_keys, key);
708 if (zsdp == NULL) {
709 mutex_exit(&zsd_key_lock);
710 return (-1);
711 }
712 list_remove(&zsd_registered_keys, zsdp);
713 mutex_exit(&zsd_key_lock);
714
715 mutex_enter(&zonehash_lock);
716 for (zone = list_head(&zone_active); zone != NULL;
717 zone = list_next(&zone_active, zone)) {
718 struct zsd_entry *del;
719
720 mutex_enter(&zone->zone_lock);
721 del = zsd_find_mru(&zone->zone_zsd, key);
722 if (del == NULL) {
723 /*
724 * Somebody else got here first e.g the zone going
725 * away.
726 */
727 mutex_exit(&zone->zone_lock);
728 continue;
729 }
730 ASSERT(del->zsd_shutdown == zsdp->zsd_shutdown);
731 ASSERT(del->zsd_destroy == zsdp->zsd_destroy);
732 if (del->zsd_shutdown != NULL &&
733 (del->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
734 del->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
735 DTRACE_PROBE2(zsd__shutdown__needed,
736 zone_t *, zone, zone_key_t, key);
737 }
738 if (del->zsd_destroy != NULL &&
739 (del->zsd_flags & ZSD_DESTROY_ALL) == 0) {
740 del->zsd_flags |= ZSD_DESTROY_NEEDED;
741 DTRACE_PROBE2(zsd__destroy__needed,
742 zone_t *, zone, zone_key_t, key);
743 }
744 mutex_exit(&zone->zone_lock);
745 }
746 mutex_exit(&zonehash_lock);
747 kmem_free(zsdp, sizeof (*zsdp));
748
749 /* Now call the shutdown and destroy callback for this key */
750 zsd_apply_all_zones(zsd_apply_shutdown, key);
751 zsd_apply_all_zones(zsd_apply_destroy, key);
752
753 /* Now we can free up the zsdp structures in each zone */
754 mutex_enter(&zonehash_lock);
755 for (zone = list_head(&zone_active); zone != NULL;
756 zone = list_next(&zone_active, zone)) {
757 struct zsd_entry *del;
758
759 mutex_enter(&zone->zone_lock);
760 del = zsd_find(&zone->zone_zsd, key);
761 if (del != NULL) {
762 list_remove(&zone->zone_zsd, del);
763 ASSERT(!(del->zsd_flags & ZSD_ALL_INPROGRESS));
764 kmem_free(del, sizeof (*del));
765 }
766 mutex_exit(&zone->zone_lock);
767 }
768 mutex_exit(&zonehash_lock);
769
770 return (0);
771 }
772
773 /*
774 * ZSD counterpart of pthread_setspecific().
775 *
776 * Since all zsd callbacks, including those with no create function,
777 * have an entry in zone_zsd, if the key is registered it is part of
778 * the zone_zsd list.
779 * Return an error if the key wasn't registerd.
780 */
781 int
782 zone_setspecific(zone_key_t key, zone_t *zone, const void *data)
783 {
784 struct zsd_entry *t;
785
786 mutex_enter(&zone->zone_lock);
787 t = zsd_find_mru(&zone->zone_zsd, key);
788 if (t != NULL) {
789 /*
790 * Replace old value with new
791 */
792 t->zsd_data = (void *)data;
793 mutex_exit(&zone->zone_lock);
794 return (0);
795 }
796 mutex_exit(&zone->zone_lock);
797 return (-1);
798 }
799
800 /*
801 * ZSD counterpart of pthread_getspecific().
802 */
803 void *
804 zone_getspecific(zone_key_t key, zone_t *zone)
805 {
806 struct zsd_entry *t;
807 void *data;
808
809 mutex_enter(&zone->zone_lock);
810 t = zsd_find_mru(&zone->zone_zsd, key);
811 data = (t == NULL ? NULL : t->zsd_data);
812 mutex_exit(&zone->zone_lock);
813 return (data);
814 }
815
816 /*
817 * Function used to initialize a zone's list of ZSD callbacks and data
818 * when the zone is being created. The callbacks are initialized from
819 * the template list (zsd_registered_keys). The constructor callback is
820 * executed later (once the zone exists and with locks dropped).
821 */
822 static void
823 zone_zsd_configure(zone_t *zone)
824 {
825 struct zsd_entry *zsdp;
826 struct zsd_entry *t;
827
828 ASSERT(MUTEX_HELD(&zonehash_lock));
829 ASSERT(list_head(&zone->zone_zsd) == NULL);
830 mutex_enter(&zone->zone_lock);
831 mutex_enter(&zsd_key_lock);
832 for (zsdp = list_head(&zsd_registered_keys); zsdp != NULL;
833 zsdp = list_next(&zsd_registered_keys, zsdp)) {
834 /*
835 * Since this zone is ZONE_IS_UNCONFIGURED, zone_key_create
836 * should not have added anything to it.
837 */
838 ASSERT(zsd_find(&zone->zone_zsd, zsdp->zsd_key) == NULL);
839
840 t = kmem_zalloc(sizeof (*t), KM_SLEEP);
841 t->zsd_key = zsdp->zsd_key;
842 t->zsd_create = zsdp->zsd_create;
843 t->zsd_shutdown = zsdp->zsd_shutdown;
844 t->zsd_destroy = zsdp->zsd_destroy;
845 if (zsdp->zsd_create != NULL) {
846 t->zsd_flags = ZSD_CREATE_NEEDED;
847 DTRACE_PROBE2(zsd__create__needed,
848 zone_t *, zone, zone_key_t, zsdp->zsd_key);
849 }
850 list_insert_tail(&zone->zone_zsd, t);
851 }
852 mutex_exit(&zsd_key_lock);
853 mutex_exit(&zone->zone_lock);
854 }
855
856 enum zsd_callback_type { ZSD_CREATE, ZSD_SHUTDOWN, ZSD_DESTROY };
857
858 /*
859 * Helper function to execute shutdown or destructor callbacks.
860 */
861 static void
862 zone_zsd_callbacks(zone_t *zone, enum zsd_callback_type ct)
863 {
864 struct zsd_entry *t;
865
866 ASSERT(ct == ZSD_SHUTDOWN || ct == ZSD_DESTROY);
867 ASSERT(ct != ZSD_SHUTDOWN || zone_status_get(zone) >= ZONE_IS_EMPTY);
868 ASSERT(ct != ZSD_DESTROY || zone_status_get(zone) >= ZONE_IS_DOWN);
869
870 /*
871 * Run the callback solely based on what is registered for the zone
872 * in zone_zsd. The global list can change independently of this
873 * as keys are registered and unregistered and we don't register new
874 * callbacks for a zone that is in the process of going away.
875 */
876 mutex_enter(&zone->zone_lock);
877 for (t = list_head(&zone->zone_zsd); t != NULL;
878 t = list_next(&zone->zone_zsd, t)) {
879 zone_key_t key = t->zsd_key;
880
881 /* Skip if no callbacks registered */
882
883 if (ct == ZSD_SHUTDOWN) {
884 if (t->zsd_shutdown != NULL &&
885 (t->zsd_flags & ZSD_SHUTDOWN_ALL) == 0) {
886 t->zsd_flags |= ZSD_SHUTDOWN_NEEDED;
887 DTRACE_PROBE2(zsd__shutdown__needed,
888 zone_t *, zone, zone_key_t, key);
889 }
890 } else {
891 if (t->zsd_destroy != NULL &&
892 (t->zsd_flags & ZSD_DESTROY_ALL) == 0) {
893 t->zsd_flags |= ZSD_DESTROY_NEEDED;
894 DTRACE_PROBE2(zsd__destroy__needed,
895 zone_t *, zone, zone_key_t, key);
896 }
897 }
898 }
899 mutex_exit(&zone->zone_lock);
900
901 /* Now call the shutdown and destroy callback for this key */
902 zsd_apply_all_keys(zsd_apply_shutdown, zone);
903 zsd_apply_all_keys(zsd_apply_destroy, zone);
904
905 }
906
907 /*
908 * Called when the zone is going away; free ZSD-related memory, and
909 * destroy the zone_zsd list.
910 */
911 static void
912 zone_free_zsd(zone_t *zone)
913 {
914 struct zsd_entry *t, *next;
915
916 /*
917 * Free all the zsd_entry's we had on this zone.
918 */
919 mutex_enter(&zone->zone_lock);
920 for (t = list_head(&zone->zone_zsd); t != NULL; t = next) {
921 next = list_next(&zone->zone_zsd, t);
922 list_remove(&zone->zone_zsd, t);
923 ASSERT(!(t->zsd_flags & ZSD_ALL_INPROGRESS));
924 kmem_free(t, sizeof (*t));
925 }
926 list_destroy(&zone->zone_zsd);
927 mutex_exit(&zone->zone_lock);
928
929 }
930
931 /*
932 * Apply a function to all zones for particular key value.
933 *
934 * The applyfn has to drop zonehash_lock if it does some work, and
935 * then reacquire it before it returns.
936 * When the lock is dropped we don't follow list_next even
937 * if it is possible to do so without any hazards. This is
938 * because we want the design to allow for the list of zones
939 * to change in any arbitrary way during the time the
940 * lock was dropped.
941 *
942 * It is safe to restart the loop at list_head since the applyfn
943 * changes the zsd_flags as it does work, so a subsequent
944 * pass through will have no effect in applyfn, hence the loop will terminate
945 * in at worst O(N^2).
946 */
947 static void
948 zsd_apply_all_zones(zsd_applyfn_t *applyfn, zone_key_t key)
949 {
950 zone_t *zone;
951
952 mutex_enter(&zonehash_lock);
953 zone = list_head(&zone_active);
954 while (zone != NULL) {
955 if ((applyfn)(&zonehash_lock, B_FALSE, zone, key)) {
956 /* Lock dropped - restart at head */
957 zone = list_head(&zone_active);
958 } else {
959 zone = list_next(&zone_active, zone);
960 }
961 }
962 mutex_exit(&zonehash_lock);
963 }
964
965 /*
966 * Apply a function to all keys for a particular zone.
967 *
968 * The applyfn has to drop zonehash_lock if it does some work, and
969 * then reacquire it before it returns.
970 * When the lock is dropped we don't follow list_next even
971 * if it is possible to do so without any hazards. This is
972 * because we want the design to allow for the list of zsd callbacks
973 * to change in any arbitrary way during the time the
974 * lock was dropped.
975 *
976 * It is safe to restart the loop at list_head since the applyfn
977 * changes the zsd_flags as it does work, so a subsequent
978 * pass through will have no effect in applyfn, hence the loop will terminate
979 * in at worst O(N^2).
980 */
981 static void
982 zsd_apply_all_keys(zsd_applyfn_t *applyfn, zone_t *zone)
983 {
984 struct zsd_entry *t;
985
986 mutex_enter(&zone->zone_lock);
987 t = list_head(&zone->zone_zsd);
988 while (t != NULL) {
989 if ((applyfn)(NULL, B_TRUE, zone, t->zsd_key)) {
990 /* Lock dropped - restart at head */
991 t = list_head(&zone->zone_zsd);
992 } else {
993 t = list_next(&zone->zone_zsd, t);
994 }
995 }
996 mutex_exit(&zone->zone_lock);
997 }
998
999 /*
1000 * Call the create function for the zone and key if CREATE_NEEDED
1001 * is set.
1002 * If some other thread gets here first and sets CREATE_INPROGRESS, then
1003 * we wait for that thread to complete so that we can ensure that
1004 * all the callbacks are done when we've looped over all zones/keys.
1005 *
1006 * When we call the create function, we drop the global held by the
1007 * caller, and return true to tell the caller it needs to re-evalute the
1008 * state.
1009 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1010 * remains held on exit.
1011 */
1012 static boolean_t
1013 zsd_apply_create(kmutex_t *lockp, boolean_t zone_lock_held,
1014 zone_t *zone, zone_key_t key)
1015 {
1016 void *result;
1017 struct zsd_entry *t;
1018 boolean_t dropped;
1019
1020 if (lockp != NULL) {
1021 ASSERT(MUTEX_HELD(lockp));
1022 }
1023 if (zone_lock_held) {
1024 ASSERT(MUTEX_HELD(&zone->zone_lock));
1025 } else {
1026 mutex_enter(&zone->zone_lock);
1027 }
1028
1029 t = zsd_find(&zone->zone_zsd, key);
1030 if (t == NULL) {
1031 /*
1032 * Somebody else got here first e.g the zone going
1033 * away.
1034 */
1035 if (!zone_lock_held)
1036 mutex_exit(&zone->zone_lock);
1037 return (B_FALSE);
1038 }
1039 dropped = B_FALSE;
1040 if (zsd_wait_for_inprogress(zone, t, lockp))
1041 dropped = B_TRUE;
1042
1043 if (t->zsd_flags & ZSD_CREATE_NEEDED) {
1044 t->zsd_flags &= ~ZSD_CREATE_NEEDED;
1045 t->zsd_flags |= ZSD_CREATE_INPROGRESS;
1046 DTRACE_PROBE2(zsd__create__inprogress,
1047 zone_t *, zone, zone_key_t, key);
1048 mutex_exit(&zone->zone_lock);
1049 if (lockp != NULL)
1050 mutex_exit(lockp);
1051
1052 dropped = B_TRUE;
1053 ASSERT(t->zsd_create != NULL);
1054 DTRACE_PROBE2(zsd__create__start,
1055 zone_t *, zone, zone_key_t, key);
1056
1057 result = (*t->zsd_create)(zone->zone_id);
1058
1059 DTRACE_PROBE2(zsd__create__end,
1060 zone_t *, zone, voidn *, result);
1061
1062 ASSERT(result != NULL);
1063 if (lockp != NULL)
1064 mutex_enter(lockp);
1065 mutex_enter(&zone->zone_lock);
1066 t->zsd_data = result;
1067 t->zsd_flags &= ~ZSD_CREATE_INPROGRESS;
1068 t->zsd_flags |= ZSD_CREATE_COMPLETED;
1069 cv_broadcast(&t->zsd_cv);
1070 DTRACE_PROBE2(zsd__create__completed,
1071 zone_t *, zone, zone_key_t, key);
1072 }
1073 if (!zone_lock_held)
1074 mutex_exit(&zone->zone_lock);
1075 return (dropped);
1076 }
1077
1078 /*
1079 * Call the shutdown function for the zone and key if SHUTDOWN_NEEDED
1080 * is set.
1081 * If some other thread gets here first and sets *_INPROGRESS, then
1082 * we wait for that thread to complete so that we can ensure that
1083 * all the callbacks are done when we've looped over all zones/keys.
1084 *
1085 * When we call the shutdown function, we drop the global held by the
1086 * caller, and return true to tell the caller it needs to re-evalute the
1087 * state.
1088 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1089 * remains held on exit.
1090 */
1091 static boolean_t
1092 zsd_apply_shutdown(kmutex_t *lockp, boolean_t zone_lock_held,
1093 zone_t *zone, zone_key_t key)
1094 {
1095 struct zsd_entry *t;
1096 void *data;
1097 boolean_t dropped;
1098
1099 if (lockp != NULL) {
1100 ASSERT(MUTEX_HELD(lockp));
1101 }
1102 if (zone_lock_held) {
1103 ASSERT(MUTEX_HELD(&zone->zone_lock));
1104 } else {
1105 mutex_enter(&zone->zone_lock);
1106 }
1107
1108 t = zsd_find(&zone->zone_zsd, key);
1109 if (t == NULL) {
1110 /*
1111 * Somebody else got here first e.g the zone going
1112 * away.
1113 */
1114 if (!zone_lock_held)
1115 mutex_exit(&zone->zone_lock);
1116 return (B_FALSE);
1117 }
1118 dropped = B_FALSE;
1119 if (zsd_wait_for_creator(zone, t, lockp))
1120 dropped = B_TRUE;
1121
1122 if (zsd_wait_for_inprogress(zone, t, lockp))
1123 dropped = B_TRUE;
1124
1125 if (t->zsd_flags & ZSD_SHUTDOWN_NEEDED) {
1126 t->zsd_flags &= ~ZSD_SHUTDOWN_NEEDED;
1127 t->zsd_flags |= ZSD_SHUTDOWN_INPROGRESS;
1128 DTRACE_PROBE2(zsd__shutdown__inprogress,
1129 zone_t *, zone, zone_key_t, key);
1130 mutex_exit(&zone->zone_lock);
1131 if (lockp != NULL)
1132 mutex_exit(lockp);
1133 dropped = B_TRUE;
1134
1135 ASSERT(t->zsd_shutdown != NULL);
1136 data = t->zsd_data;
1137
1138 DTRACE_PROBE2(zsd__shutdown__start,
1139 zone_t *, zone, zone_key_t, key);
1140
1141 (t->zsd_shutdown)(zone->zone_id, data);
1142 DTRACE_PROBE2(zsd__shutdown__end,
1143 zone_t *, zone, zone_key_t, key);
1144
1145 if (lockp != NULL)
1146 mutex_enter(lockp);
1147 mutex_enter(&zone->zone_lock);
1148 t->zsd_flags &= ~ZSD_SHUTDOWN_INPROGRESS;
1149 t->zsd_flags |= ZSD_SHUTDOWN_COMPLETED;
1150 cv_broadcast(&t->zsd_cv);
1151 DTRACE_PROBE2(zsd__shutdown__completed,
1152 zone_t *, zone, zone_key_t, key);
1153 }
1154 if (!zone_lock_held)
1155 mutex_exit(&zone->zone_lock);
1156 return (dropped);
1157 }
1158
1159 /*
1160 * Call the destroy function for the zone and key if DESTROY_NEEDED
1161 * is set.
1162 * If some other thread gets here first and sets *_INPROGRESS, then
1163 * we wait for that thread to complete so that we can ensure that
1164 * all the callbacks are done when we've looped over all zones/keys.
1165 *
1166 * When we call the destroy function, we drop the global held by the
1167 * caller, and return true to tell the caller it needs to re-evalute the
1168 * state.
1169 * If the caller holds zone_lock then zone_lock_held is set, and zone_lock
1170 * remains held on exit.
1171 */
1172 static boolean_t
1173 zsd_apply_destroy(kmutex_t *lockp, boolean_t zone_lock_held,
1174 zone_t *zone, zone_key_t key)
1175 {
1176 struct zsd_entry *t;
1177 void *data;
1178 boolean_t dropped;
1179
1180 if (lockp != NULL) {
1181 ASSERT(MUTEX_HELD(lockp));
1182 }
1183 if (zone_lock_held) {
1184 ASSERT(MUTEX_HELD(&zone->zone_lock));
1185 } else {
1186 mutex_enter(&zone->zone_lock);
1187 }
1188
1189 t = zsd_find(&zone->zone_zsd, key);
1190 if (t == NULL) {
1191 /*
1192 * Somebody else got here first e.g the zone going
1193 * away.
1194 */
1195 if (!zone_lock_held)
1196 mutex_exit(&zone->zone_lock);
1197 return (B_FALSE);
1198 }
1199 dropped = B_FALSE;
1200 if (zsd_wait_for_creator(zone, t, lockp))
1201 dropped = B_TRUE;
1202
1203 if (zsd_wait_for_inprogress(zone, t, lockp))
1204 dropped = B_TRUE;
1205
1206 if (t->zsd_flags & ZSD_DESTROY_NEEDED) {
1207 t->zsd_flags &= ~ZSD_DESTROY_NEEDED;
1208 t->zsd_flags |= ZSD_DESTROY_INPROGRESS;
1209 DTRACE_PROBE2(zsd__destroy__inprogress,
1210 zone_t *, zone, zone_key_t, key);
1211 mutex_exit(&zone->zone_lock);
1212 if (lockp != NULL)
1213 mutex_exit(lockp);
1214 dropped = B_TRUE;
1215
1216 ASSERT(t->zsd_destroy != NULL);
1217 data = t->zsd_data;
1218 DTRACE_PROBE2(zsd__destroy__start,
1219 zone_t *, zone, zone_key_t, key);
1220
1221 (t->zsd_destroy)(zone->zone_id, data);
1222 DTRACE_PROBE2(zsd__destroy__end,
1223 zone_t *, zone, zone_key_t, key);
1224
1225 if (lockp != NULL)
1226 mutex_enter(lockp);
1227 mutex_enter(&zone->zone_lock);
1228 t->zsd_data = NULL;
1229 t->zsd_flags &= ~ZSD_DESTROY_INPROGRESS;
1230 t->zsd_flags |= ZSD_DESTROY_COMPLETED;
1231 cv_broadcast(&t->zsd_cv);
1232 DTRACE_PROBE2(zsd__destroy__completed,
1233 zone_t *, zone, zone_key_t, key);
1234 }
1235 if (!zone_lock_held)
1236 mutex_exit(&zone->zone_lock);
1237 return (dropped);
1238 }
1239
1240 /*
1241 * Wait for any CREATE_NEEDED flag to be cleared.
1242 * Returns true if lockp was temporarily dropped while waiting.
1243 */
1244 static boolean_t
1245 zsd_wait_for_creator(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1246 {
1247 boolean_t dropped = B_FALSE;
1248
1249 while (t->zsd_flags & ZSD_CREATE_NEEDED) {
1250 DTRACE_PROBE2(zsd__wait__for__creator,
1251 zone_t *, zone, struct zsd_entry *, t);
1252 if (lockp != NULL) {
1253 dropped = B_TRUE;
1254 mutex_exit(lockp);
1255 }
1256 cv_wait(&t->zsd_cv, &zone->zone_lock);
1257 if (lockp != NULL) {
1258 /* First drop zone_lock to preserve order */
1259 mutex_exit(&zone->zone_lock);
1260 mutex_enter(lockp);
1261 mutex_enter(&zone->zone_lock);
1262 }
1263 }
1264 return (dropped);
1265 }
1266
1267 /*
1268 * Wait for any INPROGRESS flag to be cleared.
1269 * Returns true if lockp was temporarily dropped while waiting.
1270 */
1271 static boolean_t
1272 zsd_wait_for_inprogress(zone_t *zone, struct zsd_entry *t, kmutex_t *lockp)
1273 {
1274 boolean_t dropped = B_FALSE;
1275
1276 while (t->zsd_flags & ZSD_ALL_INPROGRESS) {
1277 DTRACE_PROBE2(zsd__wait__for__inprogress,
1278 zone_t *, zone, struct zsd_entry *, t);
1279 if (lockp != NULL) {
1280 dropped = B_TRUE;
1281 mutex_exit(lockp);
1282 }
1283 cv_wait(&t->zsd_cv, &zone->zone_lock);
1284 if (lockp != NULL) {
1285 /* First drop zone_lock to preserve order */
1286 mutex_exit(&zone->zone_lock);
1287 mutex_enter(lockp);
1288 mutex_enter(&zone->zone_lock);
1289 }
1290 }
1291 return (dropped);
1292 }
1293
1294 /*
1295 * Frees memory associated with the zone dataset list.
1296 */
1297 static void
1298 zone_free_datasets(zone_t *zone)
1299 {
1300 zone_dataset_t *t, *next;
1301
1302 for (t = list_head(&zone->zone_datasets); t != NULL; t = next) {
1303 next = list_next(&zone->zone_datasets, t);
1304 list_remove(&zone->zone_datasets, t);
1305 kmem_free(t->zd_dataset, strlen(t->zd_dataset) + 1);
1306 kmem_free(t, sizeof (*t));
1307 }
1308 list_destroy(&zone->zone_datasets);
1309 }
1310
1311 /*
1312 * zone.cpu-shares resource control support.
1313 */
1314 /*ARGSUSED*/
1315 static rctl_qty_t
1316 zone_cpu_shares_usage(rctl_t *rctl, struct proc *p)
1317 {
1318 ASSERT(MUTEX_HELD(&p->p_lock));
1319 return (p->p_zone->zone_shares);
1320 }
1321
1322 /*ARGSUSED*/
1323 static int
1324 zone_cpu_shares_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1325 rctl_qty_t nv)
1326 {
1327 ASSERT(MUTEX_HELD(&p->p_lock));
1328 ASSERT(e->rcep_t == RCENTITY_ZONE);
1329 if (e->rcep_p.zone == NULL)
1330 return (0);
1331
1332 e->rcep_p.zone->zone_shares = nv;
1333 return (0);
1334 }
1335
1336 static rctl_ops_t zone_cpu_shares_ops = {
1337 rcop_no_action,
1338 zone_cpu_shares_usage,
1339 zone_cpu_shares_set,
1340 rcop_no_test
1341 };
1342
1343 /*
1344 * zone.cpu-cap resource control support.
1345 */
1346 /*ARGSUSED*/
1347 static rctl_qty_t
1348 zone_cpu_cap_get(rctl_t *rctl, struct proc *p)
1349 {
1350 ASSERT(MUTEX_HELD(&p->p_lock));
1351 return (cpucaps_zone_get(p->p_zone));
1352 }
1353
1354 /*ARGSUSED*/
1355 static int
1356 zone_cpu_cap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1357 rctl_qty_t nv)
1358 {
1359 zone_t *zone = e->rcep_p.zone;
1360
1361 ASSERT(MUTEX_HELD(&p->p_lock));
1362 ASSERT(e->rcep_t == RCENTITY_ZONE);
1363
1364 if (zone == NULL)
1365 return (0);
1366
1367 /*
1368 * set cap to the new value.
1369 */
1370 return (cpucaps_zone_set(zone, nv));
1371 }
1372
1373 static rctl_ops_t zone_cpu_cap_ops = {
1374 rcop_no_action,
1375 zone_cpu_cap_get,
1376 zone_cpu_cap_set,
1377 rcop_no_test
1378 };
1379
1380 /*ARGSUSED*/
1381 static rctl_qty_t
1382 zone_lwps_usage(rctl_t *r, proc_t *p)
1383 {
1384 rctl_qty_t nlwps;
1385 zone_t *zone = p->p_zone;
1386
1387 ASSERT(MUTEX_HELD(&p->p_lock));
1388
1389 mutex_enter(&zone->zone_nlwps_lock);
1390 nlwps = zone->zone_nlwps;
1391 mutex_exit(&zone->zone_nlwps_lock);
1392
1393 return (nlwps);
1394 }
1395
1396 /*ARGSUSED*/
1397 static int
1398 zone_lwps_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1399 rctl_qty_t incr, uint_t flags)
1400 {
1401 rctl_qty_t nlwps;
1402
1403 ASSERT(MUTEX_HELD(&p->p_lock));
1404 ASSERT(e->rcep_t == RCENTITY_ZONE);
1405 if (e->rcep_p.zone == NULL)
1406 return (0);
1407 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1408 nlwps = e->rcep_p.zone->zone_nlwps;
1409
1410 if (nlwps + incr > rcntl->rcv_value)
1411 return (1);
1412
1413 return (0);
1414 }
1415
1416 /*ARGSUSED*/
1417 static int
1418 zone_lwps_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1419 {
1420 ASSERT(MUTEX_HELD(&p->p_lock));
1421 ASSERT(e->rcep_t == RCENTITY_ZONE);
1422 if (e->rcep_p.zone == NULL)
1423 return (0);
1424 e->rcep_p.zone->zone_nlwps_ctl = nv;
1425 return (0);
1426 }
1427
1428 static rctl_ops_t zone_lwps_ops = {
1429 rcop_no_action,
1430 zone_lwps_usage,
1431 zone_lwps_set,
1432 zone_lwps_test,
1433 };
1434
1435 /*ARGSUSED*/
1436 static rctl_qty_t
1437 zone_procs_usage(rctl_t *r, proc_t *p)
1438 {
1439 rctl_qty_t nprocs;
1440 zone_t *zone = p->p_zone;
1441
1442 ASSERT(MUTEX_HELD(&p->p_lock));
1443
1444 mutex_enter(&zone->zone_nlwps_lock);
1445 nprocs = zone->zone_nprocs;
1446 mutex_exit(&zone->zone_nlwps_lock);
1447
1448 return (nprocs);
1449 }
1450
1451 /*ARGSUSED*/
1452 static int
1453 zone_procs_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rcntl,
1454 rctl_qty_t incr, uint_t flags)
1455 {
1456 rctl_qty_t nprocs;
1457
1458 ASSERT(MUTEX_HELD(&p->p_lock));
1459 ASSERT(e->rcep_t == RCENTITY_ZONE);
1460 if (e->rcep_p.zone == NULL)
1461 return (0);
1462 ASSERT(MUTEX_HELD(&(e->rcep_p.zone->zone_nlwps_lock)));
1463 nprocs = e->rcep_p.zone->zone_nprocs;
1464
1465 if (nprocs + incr > rcntl->rcv_value)
1466 return (1);
1467
1468 return (0);
1469 }
1470
1471 /*ARGSUSED*/
1472 static int
1473 zone_procs_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e, rctl_qty_t nv)
1474 {
1475 ASSERT(MUTEX_HELD(&p->p_lock));
1476 ASSERT(e->rcep_t == RCENTITY_ZONE);
1477 if (e->rcep_p.zone == NULL)
1478 return (0);
1479 e->rcep_p.zone->zone_nprocs_ctl = nv;
1480 return (0);
1481 }
1482
1483 static rctl_ops_t zone_procs_ops = {
1484 rcop_no_action,
1485 zone_procs_usage,
1486 zone_procs_set,
1487 zone_procs_test,
1488 };
1489
1490 /*ARGSUSED*/
1491 static rctl_qty_t
1492 zone_shmmax_usage(rctl_t *rctl, struct proc *p)
1493 {
1494 ASSERT(MUTEX_HELD(&p->p_lock));
1495 return (p->p_zone->zone_shmmax);
1496 }
1497
1498 /*ARGSUSED*/
1499 static int
1500 zone_shmmax_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1501 rctl_qty_t incr, uint_t flags)
1502 {
1503 rctl_qty_t v;
1504 ASSERT(MUTEX_HELD(&p->p_lock));
1505 ASSERT(e->rcep_t == RCENTITY_ZONE);
1506 v = e->rcep_p.zone->zone_shmmax + incr;
1507 if (v > rval->rcv_value)
1508 return (1);
1509 return (0);
1510 }
1511
1512 static rctl_ops_t zone_shmmax_ops = {
1513 rcop_no_action,
1514 zone_shmmax_usage,
1515 rcop_no_set,
1516 zone_shmmax_test
1517 };
1518
1519 /*ARGSUSED*/
1520 static rctl_qty_t
1521 zone_shmmni_usage(rctl_t *rctl, struct proc *p)
1522 {
1523 ASSERT(MUTEX_HELD(&p->p_lock));
1524 return (p->p_zone->zone_ipc.ipcq_shmmni);
1525 }
1526
1527 /*ARGSUSED*/
1528 static int
1529 zone_shmmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1530 rctl_qty_t incr, uint_t flags)
1531 {
1532 rctl_qty_t v;
1533 ASSERT(MUTEX_HELD(&p->p_lock));
1534 ASSERT(e->rcep_t == RCENTITY_ZONE);
1535 v = e->rcep_p.zone->zone_ipc.ipcq_shmmni + incr;
1536 if (v > rval->rcv_value)
1537 return (1);
1538 return (0);
1539 }
1540
1541 static rctl_ops_t zone_shmmni_ops = {
1542 rcop_no_action,
1543 zone_shmmni_usage,
1544 rcop_no_set,
1545 zone_shmmni_test
1546 };
1547
1548 /*ARGSUSED*/
1549 static rctl_qty_t
1550 zone_semmni_usage(rctl_t *rctl, struct proc *p)
1551 {
1552 ASSERT(MUTEX_HELD(&p->p_lock));
1553 return (p->p_zone->zone_ipc.ipcq_semmni);
1554 }
1555
1556 /*ARGSUSED*/
1557 static int
1558 zone_semmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1559 rctl_qty_t incr, uint_t flags)
1560 {
1561 rctl_qty_t v;
1562 ASSERT(MUTEX_HELD(&p->p_lock));
1563 ASSERT(e->rcep_t == RCENTITY_ZONE);
1564 v = e->rcep_p.zone->zone_ipc.ipcq_semmni + incr;
1565 if (v > rval->rcv_value)
1566 return (1);
1567 return (0);
1568 }
1569
1570 static rctl_ops_t zone_semmni_ops = {
1571 rcop_no_action,
1572 zone_semmni_usage,
1573 rcop_no_set,
1574 zone_semmni_test
1575 };
1576
1577 /*ARGSUSED*/
1578 static rctl_qty_t
1579 zone_msgmni_usage(rctl_t *rctl, struct proc *p)
1580 {
1581 ASSERT(MUTEX_HELD(&p->p_lock));
1582 return (p->p_zone->zone_ipc.ipcq_msgmni);
1583 }
1584
1585 /*ARGSUSED*/
1586 static int
1587 zone_msgmni_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e, rctl_val_t *rval,
1588 rctl_qty_t incr, uint_t flags)
1589 {
1590 rctl_qty_t v;
1591 ASSERT(MUTEX_HELD(&p->p_lock));
1592 ASSERT(e->rcep_t == RCENTITY_ZONE);
1593 v = e->rcep_p.zone->zone_ipc.ipcq_msgmni + incr;
1594 if (v > rval->rcv_value)
1595 return (1);
1596 return (0);
1597 }
1598
1599 static rctl_ops_t zone_msgmni_ops = {
1600 rcop_no_action,
1601 zone_msgmni_usage,
1602 rcop_no_set,
1603 zone_msgmni_test
1604 };
1605
1606 /*ARGSUSED*/
1607 static rctl_qty_t
1608 zone_locked_mem_usage(rctl_t *rctl, struct proc *p)
1609 {
1610 rctl_qty_t q;
1611 ASSERT(MUTEX_HELD(&p->p_lock));
1612 mutex_enter(&p->p_zone->zone_mem_lock);
1613 q = p->p_zone->zone_locked_mem;
1614 mutex_exit(&p->p_zone->zone_mem_lock);
1615 return (q);
1616 }
1617
1618 /*ARGSUSED*/
1619 static int
1620 zone_locked_mem_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1621 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1622 {
1623 rctl_qty_t q;
1624 zone_t *z;
1625
1626 z = e->rcep_p.zone;
1627 ASSERT(MUTEX_HELD(&p->p_lock));
1628 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1629 q = z->zone_locked_mem;
1630 if (q + incr > rcntl->rcv_value)
1631 return (1);
1632 return (0);
1633 }
1634
1635 /*ARGSUSED*/
1636 static int
1637 zone_locked_mem_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1638 rctl_qty_t nv)
1639 {
1640 ASSERT(MUTEX_HELD(&p->p_lock));
1641 ASSERT(e->rcep_t == RCENTITY_ZONE);
1642 if (e->rcep_p.zone == NULL)
1643 return (0);
1644 e->rcep_p.zone->zone_locked_mem_ctl = nv;
1645 return (0);
1646 }
1647
1648 static rctl_ops_t zone_locked_mem_ops = {
1649 rcop_no_action,
1650 zone_locked_mem_usage,
1651 zone_locked_mem_set,
1652 zone_locked_mem_test
1653 };
1654
1655 /*ARGSUSED*/
1656 static rctl_qty_t
1657 zone_max_swap_usage(rctl_t *rctl, struct proc *p)
1658 {
1659 rctl_qty_t q;
1660 zone_t *z = p->p_zone;
1661
1662 ASSERT(MUTEX_HELD(&p->p_lock));
1663 mutex_enter(&z->zone_mem_lock);
1664 q = z->zone_max_swap;
1665 mutex_exit(&z->zone_mem_lock);
1666 return (q);
1667 }
1668
1669 /*ARGSUSED*/
1670 static int
1671 zone_max_swap_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1672 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1673 {
1674 rctl_qty_t q;
1675 zone_t *z;
1676
1677 z = e->rcep_p.zone;
1678 ASSERT(MUTEX_HELD(&p->p_lock));
1679 ASSERT(MUTEX_HELD(&z->zone_mem_lock));
1680 q = z->zone_max_swap;
1681 if (q + incr > rcntl->rcv_value)
1682 return (1);
1683 return (0);
1684 }
1685
1686 /*ARGSUSED*/
1687 static int
1688 zone_max_swap_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1689 rctl_qty_t nv)
1690 {
1691 ASSERT(MUTEX_HELD(&p->p_lock));
1692 ASSERT(e->rcep_t == RCENTITY_ZONE);
1693 if (e->rcep_p.zone == NULL)
1694 return (0);
1695 e->rcep_p.zone->zone_max_swap_ctl = nv;
1696 return (0);
1697 }
1698
1699 static rctl_ops_t zone_max_swap_ops = {
1700 rcop_no_action,
1701 zone_max_swap_usage,
1702 zone_max_swap_set,
1703 zone_max_swap_test
1704 };
1705
1706 /*ARGSUSED*/
1707 static rctl_qty_t
1708 zone_max_lofi_usage(rctl_t *rctl, struct proc *p)
1709 {
1710 rctl_qty_t q;
1711 zone_t *z = p->p_zone;
1712
1713 ASSERT(MUTEX_HELD(&p->p_lock));
1714 mutex_enter(&z->zone_rctl_lock);
1715 q = z->zone_max_lofi;
1716 mutex_exit(&z->zone_rctl_lock);
1717 return (q);
1718 }
1719
1720 /*ARGSUSED*/
1721 static int
1722 zone_max_lofi_test(rctl_t *r, proc_t *p, rctl_entity_p_t *e,
1723 rctl_val_t *rcntl, rctl_qty_t incr, uint_t flags)
1724 {
1725 rctl_qty_t q;
1726 zone_t *z;
1727
1728 z = e->rcep_p.zone;
1729 ASSERT(MUTEX_HELD(&p->p_lock));
1730 ASSERT(MUTEX_HELD(&z->zone_rctl_lock));
1731 q = z->zone_max_lofi;
1732 if (q + incr > rcntl->rcv_value)
1733 return (1);
1734 return (0);
1735 }
1736
1737 /*ARGSUSED*/
1738 static int
1739 zone_max_lofi_set(rctl_t *rctl, struct proc *p, rctl_entity_p_t *e,
1740 rctl_qty_t nv)
1741 {
1742 ASSERT(MUTEX_HELD(&p->p_lock));
1743 ASSERT(e->rcep_t == RCENTITY_ZONE);
1744 if (e->rcep_p.zone == NULL)
1745 return (0);
1746 e->rcep_p.zone->zone_max_lofi_ctl = nv;
1747 return (0);
1748 }
1749
1750 static rctl_ops_t zone_max_lofi_ops = {
1751 rcop_no_action,
1752 zone_max_lofi_usage,
1753 zone_max_lofi_set,
1754 zone_max_lofi_test
1755 };
1756
1757 /*
1758 * Helper function to brand the zone with a unique ID.
1759 */
1760 static void
1761 zone_uniqid(zone_t *zone)
1762 {
1763 static uint64_t uniqid = 0;
1764
1765 ASSERT(MUTEX_HELD(&zonehash_lock));
1766 zone->zone_uniqid = uniqid++;
1767 }
1768
1769 /*
1770 * Returns a held pointer to the "kcred" for the specified zone.
1771 */
1772 struct cred *
1773 zone_get_kcred(zoneid_t zoneid)
1774 {
1775 zone_t *zone;
1776 cred_t *cr;
1777
1778 if ((zone = zone_find_by_id(zoneid)) == NULL)
1779 return (NULL);
1780 cr = zone->zone_kcred;
1781 crhold(cr);
1782 zone_rele(zone);
1783 return (cr);
1784 }
1785
1786 static int
1787 zone_lockedmem_kstat_update(kstat_t *ksp, int rw)
1788 {
1789 zone_t *zone = ksp->ks_private;
1790 zone_kstat_t *zk = ksp->ks_data;
1791
1792 if (rw == KSTAT_WRITE)
1793 return (EACCES);
1794
1795 zk->zk_usage.value.ui64 = zone->zone_locked_mem;
1796 zk->zk_value.value.ui64 = zone->zone_locked_mem_ctl;
1797 return (0);
1798 }
1799
1800 static int
1801 zone_nprocs_kstat_update(kstat_t *ksp, int rw)
1802 {
1803 zone_t *zone = ksp->ks_private;
1804 zone_kstat_t *zk = ksp->ks_data;
1805
1806 if (rw == KSTAT_WRITE)
1807 return (EACCES);
1808
1809 zk->zk_usage.value.ui64 = zone->zone_nprocs;
1810 zk->zk_value.value.ui64 = zone->zone_nprocs_ctl;
1811 return (0);
1812 }
1813
1814 static int
1815 zone_swapresv_kstat_update(kstat_t *ksp, int rw)
1816 {
1817 zone_t *zone = ksp->ks_private;
1818 zone_kstat_t *zk = ksp->ks_data;
1819
1820 if (rw == KSTAT_WRITE)
1821 return (EACCES);
1822
1823 zk->zk_usage.value.ui64 = zone->zone_max_swap;
1824 zk->zk_value.value.ui64 = zone->zone_max_swap_ctl;
1825 return (0);
1826 }
1827
1828 static kstat_t *
1829 zone_kstat_create_common(zone_t *zone, char *name,
1830 int (*updatefunc) (kstat_t *, int))
1831 {
1832 kstat_t *ksp;
1833 zone_kstat_t *zk;
1834
1835 ksp = rctl_kstat_create_zone(zone, name, KSTAT_TYPE_NAMED,
1836 sizeof (zone_kstat_t) / sizeof (kstat_named_t),
1837 KSTAT_FLAG_VIRTUAL);
1838
1839 if (ksp == NULL)
1840 return (NULL);
1841
1842 zk = ksp->ks_data = kmem_alloc(sizeof (zone_kstat_t), KM_SLEEP);
1843 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1844 kstat_named_init(&zk->zk_zonename, "zonename", KSTAT_DATA_STRING);
1845 kstat_named_setstr(&zk->zk_zonename, zone->zone_name);
1846 kstat_named_init(&zk->zk_usage, "usage", KSTAT_DATA_UINT64);
1847 kstat_named_init(&zk->zk_value, "value", KSTAT_DATA_UINT64);
1848 ksp->ks_update = updatefunc;
1849 ksp->ks_private = zone;
1850 kstat_install(ksp);
1851 return (ksp);
1852 }
1853
1854
1855 static int
1856 zone_mcap_kstat_update(kstat_t *ksp, int rw)
1857 {
1858 zone_t *zone = ksp->ks_private;
1859 zone_mcap_kstat_t *zmp = ksp->ks_data;
1860
1861 if (rw == KSTAT_WRITE)
1862 return (EACCES);
1863
1864 zmp->zm_pgpgin.value.ui64 = zone->zone_pgpgin;
1865 zmp->zm_anonpgin.value.ui64 = zone->zone_anonpgin;
1866 zmp->zm_execpgin.value.ui64 = zone->zone_execpgin;
1867 zmp->zm_fspgin.value.ui64 = zone->zone_fspgin;
1868 zmp->zm_anon_alloc_fail.value.ui64 = zone->zone_anon_alloc_fail;
1869
1870 return (0);
1871 }
1872
1873 static kstat_t *
1874 zone_mcap_kstat_create(zone_t *zone)
1875 {
1876 kstat_t *ksp;
1877 zone_mcap_kstat_t *zmp;
1878
1879 if ((ksp = kstat_create_zone("memory_cap", zone->zone_id,
1880 zone->zone_name, "zone_memory_cap", KSTAT_TYPE_NAMED,
1881 sizeof (zone_mcap_kstat_t) / sizeof (kstat_named_t),
1882 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1883 return (NULL);
1884
1885 if (zone->zone_id != GLOBAL_ZONEID)
1886 kstat_zone_add(ksp, GLOBAL_ZONEID);
1887
1888 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_mcap_kstat_t), KM_SLEEP);
1889 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1890 ksp->ks_lock = &zone->zone_mcap_lock;
1891 zone->zone_mcap_stats = zmp;
1892
1893 /* The kstat "name" field is not large enough for a full zonename */
1894 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1895 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1896 kstat_named_init(&zmp->zm_pgpgin, "pgpgin", KSTAT_DATA_UINT64);
1897 kstat_named_init(&zmp->zm_anonpgin, "anonpgin", KSTAT_DATA_UINT64);
1898 kstat_named_init(&zmp->zm_execpgin, "execpgin", KSTAT_DATA_UINT64);
1899 kstat_named_init(&zmp->zm_fspgin, "fspgin", KSTAT_DATA_UINT64);
1900 kstat_named_init(&zmp->zm_anon_alloc_fail, "anon_alloc_fail",
1901 KSTAT_DATA_UINT64);
1902
1903 ksp->ks_update = zone_mcap_kstat_update;
1904 ksp->ks_private = zone;
1905
1906 kstat_install(ksp);
1907 return (ksp);
1908 }
1909
1910 static int
1911 zone_misc_kstat_update(kstat_t *ksp, int rw)
1912 {
1913 zone_t *zone = ksp->ks_private;
1914 zone_misc_kstat_t *zmp = ksp->ks_data;
1915 hrtime_t hrtime;
1916 uint64_t tmp;
1917
1918 if (rw == KSTAT_WRITE)
1919 return (EACCES);
1920
1921 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_STIME);
1922 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1923 scalehrtime(&hrtime);
1924 zmp->zm_stime.value.ui64 = hrtime;
1925
1926 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_UTIME);
1927 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1928 scalehrtime(&hrtime);
1929 zmp->zm_utime.value.ui64 = hrtime;
1930
1931 tmp = cpu_uarray_sum(zone->zone_ustate, ZONE_USTATE_WTIME);
1932 hrtime = UINT64_OVERFLOW_TO_INT64(tmp);
1933 scalehrtime(&hrtime);
1934 zmp->zm_wtime.value.ui64 = hrtime;
1935
1936 zmp->zm_avenrun1.value.ui32 = zone->zone_avenrun[0];
1937 zmp->zm_avenrun5.value.ui32 = zone->zone_avenrun[1];
1938 zmp->zm_avenrun15.value.ui32 = zone->zone_avenrun[2];
1939
1940 zmp->zm_ffcap.value.ui32 = zone->zone_ffcap;
1941 zmp->zm_ffnoproc.value.ui32 = zone->zone_ffnoproc;
1942 zmp->zm_ffnomem.value.ui32 = zone->zone_ffnomem;
1943 zmp->zm_ffmisc.value.ui32 = zone->zone_ffmisc;
1944
1945 zmp->zm_nested_intp.value.ui32 = zone->zone_nested_intp;
1946
1947 zmp->zm_init_pid.value.ui32 = zone->zone_proc_initpid;
1948 zmp->zm_boot_time.value.ui64 = (uint64_t)zone->zone_boot_time;
1949
1950 return (0);
1951 }
1952
1953 static kstat_t *
1954 zone_misc_kstat_create(zone_t *zone)
1955 {
1956 kstat_t *ksp;
1957 zone_misc_kstat_t *zmp;
1958
1959 if ((ksp = kstat_create_zone("zones", zone->zone_id,
1960 zone->zone_name, "zone_misc", KSTAT_TYPE_NAMED,
1961 sizeof (zone_misc_kstat_t) / sizeof (kstat_named_t),
1962 KSTAT_FLAG_VIRTUAL, zone->zone_id)) == NULL)
1963 return (NULL);
1964
1965 if (zone->zone_id != GLOBAL_ZONEID)
1966 kstat_zone_add(ksp, GLOBAL_ZONEID);
1967
1968 zmp = ksp->ks_data = kmem_zalloc(sizeof (zone_misc_kstat_t), KM_SLEEP);
1969 ksp->ks_data_size += strlen(zone->zone_name) + 1;
1970 ksp->ks_lock = &zone->zone_misc_lock;
1971 zone->zone_misc_stats = zmp;
1972
1973 /* The kstat "name" field is not large enough for a full zonename */
1974 kstat_named_init(&zmp->zm_zonename, "zonename", KSTAT_DATA_STRING);
1975 kstat_named_setstr(&zmp->zm_zonename, zone->zone_name);
1976 kstat_named_init(&zmp->zm_utime, "nsec_user", KSTAT_DATA_UINT64);
1977 kstat_named_init(&zmp->zm_stime, "nsec_sys", KSTAT_DATA_UINT64);
1978 kstat_named_init(&zmp->zm_wtime, "nsec_waitrq", KSTAT_DATA_UINT64);
1979 kstat_named_init(&zmp->zm_avenrun1, "avenrun_1min", KSTAT_DATA_UINT32);
1980 kstat_named_init(&zmp->zm_avenrun5, "avenrun_5min", KSTAT_DATA_UINT32);
1981 kstat_named_init(&zmp->zm_avenrun15, "avenrun_15min",
1982 KSTAT_DATA_UINT32);
1983 kstat_named_init(&zmp->zm_ffcap, "forkfail_cap", KSTAT_DATA_UINT32);
1984 kstat_named_init(&zmp->zm_ffnoproc, "forkfail_noproc",
1985 KSTAT_DATA_UINT32);
1986 kstat_named_init(&zmp->zm_ffnomem, "forkfail_nomem", KSTAT_DATA_UINT32);
1987 kstat_named_init(&zmp->zm_ffmisc, "forkfail_misc", KSTAT_DATA_UINT32);
1988 kstat_named_init(&zmp->zm_nested_intp, "nested_interp",
1989 KSTAT_DATA_UINT32);
1990 kstat_named_init(&zmp->zm_init_pid, "init_pid", KSTAT_DATA_UINT32);
1991 kstat_named_init(&zmp->zm_boot_time, "boot_time", KSTAT_DATA_UINT64);
1992
1993 ksp->ks_update = zone_misc_kstat_update;
1994 ksp->ks_private = zone;
1995
1996 kstat_install(ksp);
1997 return (ksp);
1998 }
1999
2000 static void
2001 zone_kstat_create(zone_t *zone)
2002 {
2003 zone->zone_lockedmem_kstat = zone_kstat_create_common(zone,
2004 "lockedmem", zone_lockedmem_kstat_update);
2005 zone->zone_swapresv_kstat = zone_kstat_create_common(zone,
2006 "swapresv", zone_swapresv_kstat_update);
2007 zone->zone_nprocs_kstat = zone_kstat_create_common(zone,
2008 "nprocs", zone_nprocs_kstat_update);
2009
2010 if ((zone->zone_mcap_ksp = zone_mcap_kstat_create(zone)) == NULL) {
2011 zone->zone_mcap_stats = kmem_zalloc(
2012 sizeof (zone_mcap_kstat_t), KM_SLEEP);
2013 }
2014
2015 if ((zone->zone_misc_ksp = zone_misc_kstat_create(zone)) == NULL) {
2016 zone->zone_misc_stats = kmem_zalloc(
2017 sizeof (zone_misc_kstat_t), KM_SLEEP);
2018 }
2019 }
2020
2021 static void
2022 zone_kstat_delete_common(kstat_t **pkstat, size_t datasz)
2023 {
2024 void *data;
2025
2026 if (*pkstat != NULL) {
2027 data = (*pkstat)->ks_data;
2028 kstat_delete(*pkstat);
2029 kmem_free(data, datasz);
2030 *pkstat = NULL;
2031 }
2032 }
2033
2034 static void
2035 zone_kstat_delete(zone_t *zone)
2036 {
2037 zone_kstat_delete_common(&zone->zone_lockedmem_kstat,
2038 sizeof (zone_kstat_t));
2039 zone_kstat_delete_common(&zone->zone_swapresv_kstat,
2040 sizeof (zone_kstat_t));
2041 zone_kstat_delete_common(&zone->zone_nprocs_kstat,
2042 sizeof (zone_kstat_t));
2043 zone_kstat_delete_common(&zone->zone_mcap_ksp,
2044 sizeof (zone_mcap_kstat_t));
2045 zone_kstat_delete_common(&zone->zone_misc_ksp,
2046 sizeof (zone_misc_kstat_t));
2047 }
2048
2049 /*
2050 * Called very early on in boot to initialize the ZSD list so that
2051 * zone_key_create() can be called before zone_init(). It also initializes
2052 * portions of zone0 which may be used before zone_init() is called. The
2053 * variable "global_zone" will be set when zone0 is fully initialized by
2054 * zone_init().
2055 */
2056 void
2057 zone_zsd_init(void)
2058 {
2059 mutex_init(&zonehash_lock, NULL, MUTEX_DEFAULT, NULL);
2060 mutex_init(&zsd_key_lock, NULL, MUTEX_DEFAULT, NULL);
2061 list_create(&zsd_registered_keys, sizeof (struct zsd_entry),
2062 offsetof(struct zsd_entry, zsd_linkage));
2063 list_create(&zone_active, sizeof (zone_t),
2064 offsetof(zone_t, zone_linkage));
2065 list_create(&zone_deathrow, sizeof (zone_t),
2066 offsetof(zone_t, zone_linkage));
2067
2068 mutex_init(&zone0.zone_lock, NULL, MUTEX_DEFAULT, NULL);
2069 mutex_init(&zone0.zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
2070 mutex_init(&zone0.zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
2071 zone0.zone_shares = 1;
2072 zone0.zone_nlwps = 0;
2073 zone0.zone_nlwps_ctl = INT_MAX;
2074 zone0.zone_nprocs = 0;
2075 zone0.zone_nprocs_ctl = INT_MAX;
2076 zone0.zone_locked_mem = 0;
2077 zone0.zone_locked_mem_ctl = UINT64_MAX;
2078 ASSERT(zone0.zone_max_swap == 0);
2079 zone0.zone_max_swap_ctl = UINT64_MAX;
2080 zone0.zone_max_lofi = 0;
2081 zone0.zone_max_lofi_ctl = UINT64_MAX;
2082 zone0.zone_shmmax = 0;
2083 zone0.zone_ipc.ipcq_shmmni = 0;
2084 zone0.zone_ipc.ipcq_semmni = 0;
2085 zone0.zone_ipc.ipcq_msgmni = 0;
2086 zone0.zone_name = GLOBAL_ZONENAME;
2087 zone0.zone_nodename = utsname.nodename;
2088 zone0.zone_domain = srpc_domain;
2089 zone0.zone_hostid = HW_INVALID_HOSTID;
2090 zone0.zone_fs_allowed = NULL;
2091 psecflags_default(&zone0.zone_secflags);
2092 zone0.zone_ref = 1;
2093 zone0.zone_id = GLOBAL_ZONEID;
2094 zone0.zone_status = ZONE_IS_RUNNING;
2095 zone0.zone_rootpath = "/";
2096 zone0.zone_rootpathlen = 2;
2097 zone0.zone_psetid = ZONE_PS_INVAL;
2098 zone0.zone_ncpus = 0;
2099 zone0.zone_ncpus_online = 0;
2100 zone0.zone_proc_initpid = 1;
2101 zone0.zone_initname = initname;
2102 zone0.zone_lockedmem_kstat = NULL;
2103 zone0.zone_swapresv_kstat = NULL;
2104 zone0.zone_nprocs_kstat = NULL;
2105
2106 list_create(&zone0.zone_ref_list, sizeof (zone_ref_t),
2107 offsetof(zone_ref_t, zref_linkage));
2108 list_create(&zone0.zone_zsd, sizeof (struct zsd_entry),
2109 offsetof(struct zsd_entry, zsd_linkage));
2110 list_insert_head(&zone_active, &zone0);
2111
2112 /*
2113 * The root filesystem is not mounted yet, so zone_rootvp cannot be set
2114 * to anything meaningful. It is assigned to be 'rootdir' in
2115 * vfs_mountroot().
2116 */
2117 zone0.zone_rootvp = NULL;
2118 zone0.zone_vfslist = NULL;
2119 zone0.zone_bootargs = initargs;
2120 zone0.zone_privset = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
2121 /*
2122 * The global zone has all privileges
2123 */
2124 priv_fillset(zone0.zone_privset);
2125 /*
2126 * Add p0 to the global zone
2127 */
2128 zone0.zone_zsched = &p0;
2129 p0.p_zone = &zone0;
2130 }
2131
2132 /*
2133 * Compute a hash value based on the contents of the label and the DOI. The
2134 * hash algorithm is somewhat arbitrary, but is based on the observation that
2135 * humans will likely pick labels that differ by amounts that work out to be
2136 * multiples of the number of hash chains, and thus stirring in some primes
2137 * should help.
2138 */
2139 static uint_t
2140 hash_bylabel(void *hdata, mod_hash_key_t key)
2141 {
2142 const ts_label_t *lab = (ts_label_t *)key;
2143 const uint32_t *up, *ue;
2144 uint_t hash;
2145 int i;
2146
2147 _NOTE(ARGUNUSED(hdata));
2148
2149 hash = lab->tsl_doi + (lab->tsl_doi << 1);
2150 /* we depend on alignment of label, but not representation */
2151 up = (const uint32_t *)&lab->tsl_label;
2152 ue = up + sizeof (lab->tsl_label) / sizeof (*up);
2153 i = 1;
2154 while (up < ue) {
2155 /* using 2^n + 1, 1 <= n <= 16 as source of many primes */
2156 hash += *up + (*up << ((i % 16) + 1));
2157 up++;
2158 i++;
2159 }
2160 return (hash);
2161 }
2162
2163 /*
2164 * All that mod_hash cares about here is zero (equal) versus non-zero (not
2165 * equal). This may need to be changed if less than / greater than is ever
2166 * needed.
2167 */
2168 static int
2169 hash_labelkey_cmp(mod_hash_key_t key1, mod_hash_key_t key2)
2170 {
2171 ts_label_t *lab1 = (ts_label_t *)key1;
2172 ts_label_t *lab2 = (ts_label_t *)key2;
2173
2174 return (label_equal(lab1, lab2) ? 0 : 1);
2175 }
2176
2177 /*
2178 * Called by main() to initialize the zones framework.
2179 */
2180 void
2181 zone_init(void)
2182 {
2183 rctl_dict_entry_t *rde;
2184 rctl_val_t *dval;
2185 rctl_set_t *set;
2186 rctl_alloc_gp_t *gp;
2187 rctl_entity_p_t e;
2188 int res;
2189
2190 ASSERT(curproc == &p0);
2191
2192 /*
2193 * Create ID space for zone IDs. ID 0 is reserved for the
2194 * global zone.
2195 */
2196 zoneid_space = id_space_create("zoneid_space", 1, MAX_ZONEID);
2197
2198 /*
2199 * Initialize generic zone resource controls, if any.
2200 */
2201 rc_zone_cpu_shares = rctl_register("zone.cpu-shares",
2202 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_NEVER |
2203 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT | RCTL_GLOBAL_SYSLOG_NEVER,
2204 FSS_MAXSHARES, FSS_MAXSHARES, &zone_cpu_shares_ops);
2205
2206 rc_zone_cpu_cap = rctl_register("zone.cpu-cap",
2207 RCENTITY_ZONE, RCTL_GLOBAL_SIGNAL_NEVER | RCTL_GLOBAL_DENY_ALWAYS |
2208 RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |RCTL_GLOBAL_SYSLOG_NEVER |
2209 RCTL_GLOBAL_INFINITE,
2210 MAXCAP, MAXCAP, &zone_cpu_cap_ops);
2211
2212 rc_zone_nlwps = rctl_register("zone.max-lwps", RCENTITY_ZONE,
2213 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2214 INT_MAX, INT_MAX, &zone_lwps_ops);
2215
2216 rc_zone_nprocs = rctl_register("zone.max-processes", RCENTITY_ZONE,
2217 RCTL_GLOBAL_NOACTION | RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT,
2218 INT_MAX, INT_MAX, &zone_procs_ops);
2219
2220 /*
2221 * System V IPC resource controls
2222 */
2223 rc_zone_msgmni = rctl_register("zone.max-msg-ids",
2224 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2225 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_msgmni_ops);
2226
2227 rc_zone_semmni = rctl_register("zone.max-sem-ids",
2228 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2229 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_semmni_ops);
2230
2231 rc_zone_shmmni = rctl_register("zone.max-shm-ids",
2232 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2233 RCTL_GLOBAL_COUNT, IPC_IDS_MAX, IPC_IDS_MAX, &zone_shmmni_ops);
2234
2235 rc_zone_shmmax = rctl_register("zone.max-shm-memory",
2236 RCENTITY_ZONE, RCTL_GLOBAL_DENY_ALWAYS | RCTL_GLOBAL_NOBASIC |
2237 RCTL_GLOBAL_BYTES, UINT64_MAX, UINT64_MAX, &zone_shmmax_ops);
2238
2239 /*
2240 * Create a rctl_val with PRIVILEGED, NOACTION, value = 1. Then attach
2241 * this at the head of the rctl_dict_entry for ``zone.cpu-shares''.
2242 */
2243 dval = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
2244 bzero(dval, sizeof (rctl_val_t));
2245 dval->rcv_value = 1;
2246 dval->rcv_privilege = RCPRIV_PRIVILEGED;
2247 dval->rcv_flagaction = RCTL_LOCAL_NOACTION;
2248 dval->rcv_action_recip_pid = -1;
2249
2250 rde = rctl_dict_lookup("zone.cpu-shares");
2251 (void) rctl_val_list_insert(&rde->rcd_default_value, dval);
2252
2253 rc_zone_locked_mem = rctl_register("zone.max-locked-memory",
2254 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2255 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2256 &zone_locked_mem_ops);
2257
2258 rc_zone_max_swap = rctl_register("zone.max-swap",
2259 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_BYTES |
2260 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2261 &zone_max_swap_ops);
2262
2263 rc_zone_max_lofi = rctl_register("zone.max-lofi",
2264 RCENTITY_ZONE, RCTL_GLOBAL_NOBASIC | RCTL_GLOBAL_COUNT |
2265 RCTL_GLOBAL_DENY_ALWAYS, UINT64_MAX, UINT64_MAX,
2266 &zone_max_lofi_ops);
2267
2268 /*
2269 * Initialize the ``global zone''.
2270 */
2271 set = rctl_set_create();
2272 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
2273 mutex_enter(&p0.p_lock);
2274 e.rcep_p.zone = &zone0;
2275 e.rcep_t = RCENTITY_ZONE;
2276 zone0.zone_rctls = rctl_set_init(RCENTITY_ZONE, &p0, &e, set,
2277 gp);
2278
2279 zone0.zone_nlwps = p0.p_lwpcnt;
2280 zone0.zone_nprocs = 1;
2281 zone0.zone_ntasks = 1;
2282 mutex_exit(&p0.p_lock);
2283 zone0.zone_restart_init = B_TRUE;
2284 zone0.zone_brand = &native_brand;
2285 rctl_prealloc_destroy(gp);
2286 /*
2287 * pool_default hasn't been initialized yet, so we let pool_init()
2288 * take care of making sure the global zone is in the default pool.
2289 */
2290
2291 /*
2292 * Initialize global zone kstats
2293 */
2294 zone_kstat_create(&zone0);
2295
2296 /*
2297 * Initialize zone label.
2298 * mlp are initialized when tnzonecfg is loaded.
2299 */
2300 zone0.zone_slabel = l_admin_low;
2301 rw_init(&zone0.zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
2302 label_hold(l_admin_low);
2303
2304 /*
2305 * Initialise the lock for the database structure used by mntfs.
2306 */
2307 rw_init(&zone0.zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
2308
2309 zone0.zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
2310
2311 mutex_enter(&zonehash_lock);
2312 zone_uniqid(&zone0);
2313 ASSERT(zone0.zone_uniqid == GLOBAL_ZONEUNIQID);
2314
2315 zonehashbyid = mod_hash_create_idhash("zone_by_id", zone_hash_size,
2316 mod_hash_null_valdtor);
2317 zonehashbyname = mod_hash_create_strhash("zone_by_name",
2318 zone_hash_size, mod_hash_null_valdtor);
2319 /*
2320 * maintain zonehashbylabel only for labeled systems
2321 */
2322 if (is_system_labeled())
2323 zonehashbylabel = mod_hash_create_extended("zone_by_label",
2324 zone_hash_size, mod_hash_null_keydtor,
2325 mod_hash_null_valdtor, hash_bylabel, NULL,
2326 hash_labelkey_cmp, KM_SLEEP);
2327 zonecount = 1;
2328
2329 (void) mod_hash_insert(zonehashbyid, (mod_hash_key_t)GLOBAL_ZONEID,
2330 (mod_hash_val_t)&zone0);
2331 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)zone0.zone_name,
2332 (mod_hash_val_t)&zone0);
2333 if (is_system_labeled()) {
2334 zone0.zone_flags |= ZF_HASHED_LABEL;
2335 (void) mod_hash_insert(zonehashbylabel,
2336 (mod_hash_key_t)zone0.zone_slabel, (mod_hash_val_t)&zone0);
2337 }
2338 mutex_exit(&zonehash_lock);
2339
2340 /*
2341 * We avoid setting zone_kcred until now, since kcred is initialized
2342 * sometime after zone_zsd_init() and before zone_init().
2343 */
2344 zone0.zone_kcred = kcred;
2345 /*
2346 * The global zone is fully initialized (except for zone_rootvp which
2347 * will be set when the root filesystem is mounted).
2348 */
2349 global_zone = &zone0;
2350
2351 /*
2352 * Setup an event channel to send zone status change notifications on
2353 */
2354 res = sysevent_evc_bind(ZONE_EVENT_CHANNEL, &zone_event_chan,
2355 EVCH_CREAT);
2356
2357 if (res)
2358 panic("Sysevent_evc_bind failed during zone setup.\n");
2359
2360 }
2361
2362 static void
2363 zone_free(zone_t *zone)
2364 {
2365 ASSERT(zone != global_zone);
2366 ASSERT(zone->zone_ntasks == 0);
2367 ASSERT(zone->zone_nlwps == 0);
2368 ASSERT(zone->zone_nprocs == 0);
2369 ASSERT(zone->zone_cred_ref == 0);
2370 ASSERT(zone->zone_kcred == NULL);
2371 ASSERT(zone_status_get(zone) == ZONE_IS_DEAD ||
2372 zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
2373 ASSERT(list_is_empty(&zone->zone_ref_list));
2374
2375 /*
2376 * Remove any zone caps.
2377 */
2378 cpucaps_zone_remove(zone);
2379
2380 ASSERT(zone->zone_cpucap == NULL);
2381
2382 /* remove from deathrow list */
2383 if (zone_status_get(zone) == ZONE_IS_DEAD) {
2384 ASSERT(zone->zone_ref == 0);
2385 mutex_enter(&zone_deathrow_lock);
2386 list_remove(&zone_deathrow, zone);
2387 mutex_exit(&zone_deathrow_lock);
2388 }
2389
2390 list_destroy(&zone->zone_ref_list);
2391 zone_free_zsd(zone);
2392 zone_free_datasets(zone);
2393 list_destroy(&zone->zone_dl_list);
2394
2395 cpu_uarray_free(zone->zone_ustate);
2396
2397 if (zone->zone_rootvp != NULL)
2398 VN_RELE(zone->zone_rootvp);
2399 if (zone->zone_rootpath)
2400 kmem_free(zone->zone_rootpath, zone->zone_rootpathlen);
2401 if (zone->zone_name != NULL)
2402 kmem_free(zone->zone_name, ZONENAME_MAX);
2403 if (zone->zone_slabel != NULL)
2404 label_rele(zone->zone_slabel);
2405 if (zone->zone_nodename != NULL)
2406 kmem_free(zone->zone_nodename, _SYS_NMLN);
2407 if (zone->zone_domain != NULL)
2408 kmem_free(zone->zone_domain, _SYS_NMLN);
2409 if (zone->zone_privset != NULL)
2410 kmem_free(zone->zone_privset, sizeof (priv_set_t));
2411 if (zone->zone_rctls != NULL)
2412 rctl_set_free(zone->zone_rctls);
2413 if (zone->zone_bootargs != NULL)
2414 strfree(zone->zone_bootargs);
2415 if (zone->zone_initname != NULL)
2416 strfree(zone->zone_initname);
2417 if (zone->zone_fs_allowed != NULL)
2418 strfree(zone->zone_fs_allowed);
2419 if (zone->zone_pfexecd != NULL)
2420 klpd_freelist(&zone->zone_pfexecd);
2421 id_free(zoneid_space, zone->zone_id);
2422 mutex_destroy(&zone->zone_lock);
2423 cv_destroy(&zone->zone_cv);
2424 rw_destroy(&zone->zone_mlps.mlpl_rwlock);
2425 rw_destroy(&zone->zone_mntfs_db_lock);
2426 kmem_free(zone, sizeof (zone_t));
2427 }
2428
2429 /*
2430 * See block comment at the top of this file for information about zone
2431 * status values.
2432 */
2433 /*
2434 * Convenience function for setting zone status.
2435 */
2436 static void
2437 zone_status_set(zone_t *zone, zone_status_t status)
2438 {
2439
2440 nvlist_t *nvl = NULL;
2441 ASSERT(MUTEX_HELD(&zone_status_lock));
2442 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE &&
2443 status >= zone_status_get(zone));
2444
2445 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) ||
2446 nvlist_add_string(nvl, ZONE_CB_NAME, zone->zone_name) ||
2447 nvlist_add_string(nvl, ZONE_CB_NEWSTATE,
2448 zone_status_table[status]) ||
2449 nvlist_add_string(nvl, ZONE_CB_OLDSTATE,
2450 zone_status_table[zone->zone_status]) ||
2451 nvlist_add_int32(nvl, ZONE_CB_ZONEID, zone->zone_id) ||
2452 nvlist_add_uint64(nvl, ZONE_CB_TIMESTAMP, (uint64_t)gethrtime()) ||
2453 sysevent_evc_publish(zone_event_chan, ZONE_EVENT_STATUS_CLASS,
2454 ZONE_EVENT_STATUS_SUBCLASS, "sun.com", "kernel", nvl, EVCH_SLEEP)) {
2455 #ifdef DEBUG
2456 (void) printf(
2457 "Failed to allocate and send zone state change event.\n");
2458 #endif
2459 }
2460 nvlist_free(nvl);
2461
2462 zone->zone_status = status;
2463
2464 cv_broadcast(&zone->zone_cv);
2465 }
2466
2467 /*
2468 * Public function to retrieve the zone status. The zone status may
2469 * change after it is retrieved.
2470 */
2471 zone_status_t
2472 zone_status_get(zone_t *zone)
2473 {
2474 return (zone->zone_status);
2475 }
2476
2477 static int
2478 zone_set_bootargs(zone_t *zone, const char *zone_bootargs)
2479 {
2480 char *buf = kmem_zalloc(BOOTARGS_MAX, KM_SLEEP);
2481 int err = 0;
2482
2483 ASSERT(zone != global_zone);
2484 if ((err = copyinstr(zone_bootargs, buf, BOOTARGS_MAX, NULL)) != 0)
2485 goto done; /* EFAULT or ENAMETOOLONG */
2486
2487 if (zone->zone_bootargs != NULL)
2488 strfree(zone->zone_bootargs);
2489
2490 zone->zone_bootargs = strdup(buf);
2491
2492 done:
2493 kmem_free(buf, BOOTARGS_MAX);
2494 return (err);
2495 }
2496
2497 static int
2498 zone_set_brand(zone_t *zone, const char *brand)
2499 {
2500 struct brand_attr *attrp;
2501 brand_t *bp;
2502
2503 attrp = kmem_alloc(sizeof (struct brand_attr), KM_SLEEP);
2504 if (copyin(brand, attrp, sizeof (struct brand_attr)) != 0) {
2505 kmem_free(attrp, sizeof (struct brand_attr));
2506 return (EFAULT);
2507 }
2508
2509 bp = brand_register_zone(attrp);
2510 kmem_free(attrp, sizeof (struct brand_attr));
2511 if (bp == NULL)
2512 return (EINVAL);
2513
2514 /*
2515 * This is the only place where a zone can change it's brand.
2516 * We already need to hold zone_status_lock to check the zone
2517 * status, so we'll just use that lock to serialize zone
2518 * branding requests as well.
2519 */
2520 mutex_enter(&zone_status_lock);
2521
2522 /* Re-Branding is not allowed and the zone can't be booted yet */
2523 if ((ZONE_IS_BRANDED(zone)) ||
2524 (zone_status_get(zone) >= ZONE_IS_BOOTING)) {
2525 mutex_exit(&zone_status_lock);
2526 brand_unregister_zone(bp);
2527 return (EINVAL);
2528 }
2529
2530 /* set up the brand specific data */
2531 zone->zone_brand = bp;
2532 ZBROP(zone)->b_init_brand_data(zone);
2533
2534 mutex_exit(&zone_status_lock);
2535 return (0);
2536 }
2537
2538 static int
2539 zone_set_secflags(zone_t *zone, const psecflags_t *zone_secflags)
2540 {
2541 int err = 0;
2542 psecflags_t psf;
2543
2544 ASSERT(zone != global_zone);
2545
2546 if ((err = copyin(zone_secflags, &psf, sizeof (psf))) != 0)
2547 return (err);
2548
2549 if (zone_status_get(zone) > ZONE_IS_READY)
2550 return (EINVAL);
2551
2552 if (!psecflags_validate(&psf))
2553 return (EINVAL);
2554
2555 (void) memcpy(&zone->zone_secflags, &psf, sizeof (psf));
2556
2557 /* Set security flags on the zone's zsched */
2558 (void) memcpy(&zone->zone_zsched->p_secflags, &zone->zone_secflags,
2559 sizeof (zone->zone_zsched->p_secflags));
2560
2561 return (0);
2562 }
2563
2564 static int
2565 zone_set_fs_allowed(zone_t *zone, const char *zone_fs_allowed)
2566 {
2567 char *buf = kmem_zalloc(ZONE_FS_ALLOWED_MAX, KM_SLEEP);
2568 int err = 0;
2569
2570 ASSERT(zone != global_zone);
2571 if ((err = copyinstr(zone_fs_allowed, buf,
2572 ZONE_FS_ALLOWED_MAX, NULL)) != 0)
2573 goto done;
2574
2575 if (zone->zone_fs_allowed != NULL)
2576 strfree(zone->zone_fs_allowed);
2577
2578 zone->zone_fs_allowed = strdup(buf);
2579
2580 done:
2581 kmem_free(buf, ZONE_FS_ALLOWED_MAX);
2582 return (err);
2583 }
2584
2585 static int
2586 zone_set_initname(zone_t *zone, const char *zone_initname)
2587 {
2588 char initname[INITNAME_SZ];
2589 size_t len;
2590 int err = 0;
2591
2592 ASSERT(zone != global_zone);
2593 if ((err = copyinstr(zone_initname, initname, INITNAME_SZ, &len)) != 0)
2594 return (err); /* EFAULT or ENAMETOOLONG */
2595
2596 if (zone->zone_initname != NULL)
2597 strfree(zone->zone_initname);
2598
2599 zone->zone_initname = kmem_alloc(strlen(initname) + 1, KM_SLEEP);
2600 (void) strcpy(zone->zone_initname, initname);
2601 return (0);
2602 }
2603
2604 static int
2605 zone_set_phys_mcap(zone_t *zone, const uint64_t *zone_mcap)
2606 {
2607 uint64_t mcap;
2608 int err = 0;
2609
2610 if ((err = copyin(zone_mcap, &mcap, sizeof (uint64_t))) == 0)
2611 zone->zone_phys_mcap = mcap;
2612
2613 return (err);
2614 }
2615
2616 static int
2617 zone_set_sched_class(zone_t *zone, const char *new_class)
2618 {
2619 char sched_class[PC_CLNMSZ];
2620 id_t classid;
2621 int err;
2622
2623 ASSERT(zone != global_zone);
2624 if ((err = copyinstr(new_class, sched_class, PC_CLNMSZ, NULL)) != 0)
2625 return (err); /* EFAULT or ENAMETOOLONG */
2626
2627 if (getcid(sched_class, &classid) != 0 || CLASS_KERNEL(classid))
2628 return (set_errno(EINVAL));
2629 zone->zone_defaultcid = classid;
2630 ASSERT(zone->zone_defaultcid > 0 &&
2631 zone->zone_defaultcid < loaded_classes);
2632
2633 return (0);
2634 }
2635
2636 /*
2637 * Block indefinitely waiting for (zone_status >= status)
2638 */
2639 void
2640 zone_status_wait(zone_t *zone, zone_status_t status)
2641 {
2642 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2643
2644 mutex_enter(&zone_status_lock);
2645 while (zone->zone_status < status) {
2646 cv_wait(&zone->zone_cv, &zone_status_lock);
2647 }
2648 mutex_exit(&zone_status_lock);
2649 }
2650
2651 /*
2652 * Private CPR-safe version of zone_status_wait().
2653 */
2654 static void
2655 zone_status_wait_cpr(zone_t *zone, zone_status_t status, char *str)
2656 {
2657 callb_cpr_t cprinfo;
2658
2659 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2660
2661 CALLB_CPR_INIT(&cprinfo, &zone_status_lock, callb_generic_cpr,
2662 str);
2663 mutex_enter(&zone_status_lock);
2664 while (zone->zone_status < status) {
2665 CALLB_CPR_SAFE_BEGIN(&cprinfo);
2666 cv_wait(&zone->zone_cv, &zone_status_lock);
2667 CALLB_CPR_SAFE_END(&cprinfo, &zone_status_lock);
2668 }
2669 /*
2670 * zone_status_lock is implicitly released by the following.
2671 */
2672 CALLB_CPR_EXIT(&cprinfo);
2673 }
2674
2675 /*
2676 * Block until zone enters requested state or signal is received. Return (0)
2677 * if signaled, non-zero otherwise.
2678 */
2679 int
2680 zone_status_wait_sig(zone_t *zone, zone_status_t status)
2681 {
2682 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2683
2684 mutex_enter(&zone_status_lock);
2685 while (zone->zone_status < status) {
2686 if (!cv_wait_sig(&zone->zone_cv, &zone_status_lock)) {
2687 mutex_exit(&zone_status_lock);
2688 return (0);
2689 }
2690 }
2691 mutex_exit(&zone_status_lock);
2692 return (1);
2693 }
2694
2695 /*
2696 * Block until the zone enters the requested state or the timeout expires,
2697 * whichever happens first. Return (-1) if operation timed out, time remaining
2698 * otherwise.
2699 */
2700 clock_t
2701 zone_status_timedwait(zone_t *zone, clock_t tim, zone_status_t status)
2702 {
2703 clock_t timeleft = 0;
2704
2705 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2706
2707 mutex_enter(&zone_status_lock);
2708 while (zone->zone_status < status && timeleft != -1) {
2709 timeleft = cv_timedwait(&zone->zone_cv, &zone_status_lock, tim);
2710 }
2711 mutex_exit(&zone_status_lock);
2712 return (timeleft);
2713 }
2714
2715 /*
2716 * Block until the zone enters the requested state, the current process is
2717 * signaled, or the timeout expires, whichever happens first. Return (-1) if
2718 * operation timed out, 0 if signaled, time remaining otherwise.
2719 */
2720 clock_t
2721 zone_status_timedwait_sig(zone_t *zone, clock_t tim, zone_status_t status)
2722 {
2723 clock_t timeleft = tim - ddi_get_lbolt();
2724
2725 ASSERT(status > ZONE_MIN_STATE && status <= ZONE_MAX_STATE);
2726
2727 mutex_enter(&zone_status_lock);
2728 while (zone->zone_status < status) {
2729 timeleft = cv_timedwait_sig(&zone->zone_cv, &zone_status_lock,
2730 tim);
2731 if (timeleft <= 0)
2732 break;
2733 }
2734 mutex_exit(&zone_status_lock);
2735 return (timeleft);
2736 }
2737
2738 /*
2739 * Zones have two reference counts: one for references from credential
2740 * structures (zone_cred_ref), and one (zone_ref) for everything else.
2741 * This is so we can allow a zone to be rebooted while there are still
2742 * outstanding cred references, since certain drivers cache dblks (which
2743 * implicitly results in cached creds). We wait for zone_ref to drop to
2744 * 0 (actually 1), but not zone_cred_ref. The zone structure itself is
2745 * later freed when the zone_cred_ref drops to 0, though nothing other
2746 * than the zone id and privilege set should be accessed once the zone
2747 * is "dead".
2748 *
2749 * A debugging flag, zone_wait_for_cred, can be set to a non-zero value
2750 * to force halt/reboot to block waiting for the zone_cred_ref to drop
2751 * to 0. This can be useful to flush out other sources of cached creds
2752 * that may be less innocuous than the driver case.
2753 *
2754 * Zones also provide a tracked reference counting mechanism in which zone
2755 * references are represented by "crumbs" (zone_ref structures). Crumbs help
2756 * debuggers determine the sources of leaked zone references. See
2757 * zone_hold_ref() and zone_rele_ref() below for more information.
2758 */
2759
2760 int zone_wait_for_cred = 0;
2761
2762 static void
2763 zone_hold_locked(zone_t *z)
2764 {
2765 ASSERT(MUTEX_HELD(&z->zone_lock));
2766 z->zone_ref++;
2767 ASSERT(z->zone_ref != 0);
2768 }
2769
2770 /*
2771 * Increment the specified zone's reference count. The zone's zone_t structure
2772 * will not be freed as long as the zone's reference count is nonzero.
2773 * Decrement the zone's reference count via zone_rele().
2774 *
2775 * NOTE: This function should only be used to hold zones for short periods of
2776 * time. Use zone_hold_ref() if the zone must be held for a long time.
2777 */
2778 void
2779 zone_hold(zone_t *z)
2780 {
2781 mutex_enter(&z->zone_lock);
2782 zone_hold_locked(z);
2783 mutex_exit(&z->zone_lock);
2784 }
2785
2786 /*
2787 * If the non-cred ref count drops to 1 and either the cred ref count
2788 * is 0 or we aren't waiting for cred references, the zone is ready to
2789 * be destroyed.
2790 */
2791 #define ZONE_IS_UNREF(zone) ((zone)->zone_ref == 1 && \
2792 (!zone_wait_for_cred || (zone)->zone_cred_ref == 0))
2793
2794 /*
2795 * Common zone reference release function invoked by zone_rele() and
2796 * zone_rele_ref(). If subsys is ZONE_REF_NUM_SUBSYS, then the specified
2797 * zone's subsystem-specific reference counters are not affected by the
2798 * release. If ref is not NULL, then the zone_ref_t to which it refers is
2799 * removed from the specified zone's reference list. ref must be non-NULL iff
2800 * subsys is not ZONE_REF_NUM_SUBSYS.
2801 */
2802 static void
2803 zone_rele_common(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2804 {
2805 boolean_t wakeup;
2806
2807 mutex_enter(&z->zone_lock);
2808 ASSERT(z->zone_ref != 0);
2809 z->zone_ref--;
2810 if (subsys != ZONE_REF_NUM_SUBSYS) {
2811 ASSERT(z->zone_subsys_ref[subsys] != 0);
2812 z->zone_subsys_ref[subsys]--;
2813 list_remove(&z->zone_ref_list, ref);
2814 }
2815 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2816 /* no more refs, free the structure */
2817 mutex_exit(&z->zone_lock);
2818 zone_free(z);
2819 return;
2820 }
2821 /* signal zone_destroy so the zone can finish halting */
2822 wakeup = (ZONE_IS_UNREF(z) && zone_status_get(z) >= ZONE_IS_DEAD);
2823 mutex_exit(&z->zone_lock);
2824
2825 if (wakeup) {
2826 /*
2827 * Grabbing zonehash_lock here effectively synchronizes with
2828 * zone_destroy() to avoid missed signals.
2829 */
2830 mutex_enter(&zonehash_lock);
2831 cv_broadcast(&zone_destroy_cv);
2832 mutex_exit(&zonehash_lock);
2833 }
2834 }
2835
2836 /*
2837 * Decrement the specified zone's reference count. The specified zone will
2838 * cease to exist after this function returns if the reference count drops to
2839 * zero. This function should be paired with zone_hold().
2840 */
2841 void
2842 zone_rele(zone_t *z)
2843 {
2844 zone_rele_common(z, NULL, ZONE_REF_NUM_SUBSYS);
2845 }
2846
2847 /*
2848 * Initialize a zone reference structure. This function must be invoked for
2849 * a reference structure before the structure is passed to zone_hold_ref().
2850 */
2851 void
2852 zone_init_ref(zone_ref_t *ref)
2853 {
2854 ref->zref_zone = NULL;
2855 list_link_init(&ref->zref_linkage);
2856 }
2857
2858 /*
2859 * Acquire a reference to zone z. The caller must specify the
2860 * zone_ref_subsys_t constant associated with its subsystem. The specified
2861 * zone_ref_t structure will represent a reference to the specified zone. Use
2862 * zone_rele_ref() to release the reference.
2863 *
2864 * The referenced zone_t structure will not be freed as long as the zone_t's
2865 * zone_status field is not ZONE_IS_DEAD and the zone has outstanding
2866 * references.
2867 *
2868 * NOTE: The zone_ref_t structure must be initialized before it is used.
2869 * See zone_init_ref() above.
2870 */
2871 void
2872 zone_hold_ref(zone_t *z, zone_ref_t *ref, zone_ref_subsys_t subsys)
2873 {
2874 ASSERT(subsys >= 0 && subsys < ZONE_REF_NUM_SUBSYS);
2875
2876 /*
2877 * Prevent consumers from reusing a reference structure before
2878 * releasing it.
2879 */
2880 VERIFY(ref->zref_zone == NULL);
2881
2882 ref->zref_zone = z;
2883 mutex_enter(&z->zone_lock);
2884 zone_hold_locked(z);
2885 z->zone_subsys_ref[subsys]++;
2886 ASSERT(z->zone_subsys_ref[subsys] != 0);
2887 list_insert_head(&z->zone_ref_list, ref);
2888 mutex_exit(&z->zone_lock);
2889 }
2890
2891 /*
2892 * Release the zone reference represented by the specified zone_ref_t.
2893 * The reference is invalid after it's released; however, the zone_ref_t
2894 * structure can be reused without having to invoke zone_init_ref().
2895 * subsys should be the same value that was passed to zone_hold_ref()
2896 * when the reference was acquired.
2897 */
2898 void
2899 zone_rele_ref(zone_ref_t *ref, zone_ref_subsys_t subsys)
2900 {
2901 zone_rele_common(ref->zref_zone, ref, subsys);
2902
2903 /*
2904 * Set the zone_ref_t's zref_zone field to NULL to generate panics
2905 * when consumers dereference the reference. This helps us catch
2906 * consumers who use released references. Furthermore, this lets
2907 * consumers reuse the zone_ref_t structure without having to
2908 * invoke zone_init_ref().
2909 */
2910 ref->zref_zone = NULL;
2911 }
2912
2913 void
2914 zone_cred_hold(zone_t *z)
2915 {
2916 mutex_enter(&z->zone_lock);
2917 z->zone_cred_ref++;
2918 ASSERT(z->zone_cred_ref != 0);
2919 mutex_exit(&z->zone_lock);
2920 }
2921
2922 void
2923 zone_cred_rele(zone_t *z)
2924 {
2925 boolean_t wakeup;
2926
2927 mutex_enter(&z->zone_lock);
2928 ASSERT(z->zone_cred_ref != 0);
2929 z->zone_cred_ref--;
2930 if (z->zone_ref == 0 && z->zone_cred_ref == 0) {
2931 /* no more refs, free the structure */
2932 mutex_exit(&z->zone_lock);
2933 zone_free(z);
2934 return;
2935 }
2936 /*
2937 * If zone_destroy is waiting for the cred references to drain
2938 * out, and they have, signal it.
2939 */
2940 wakeup = (zone_wait_for_cred && ZONE_IS_UNREF(z) &&
2941 zone_status_get(z) >= ZONE_IS_DEAD);
2942 mutex_exit(&z->zone_lock);
2943
2944 if (wakeup) {
2945 /*
2946 * Grabbing zonehash_lock here effectively synchronizes with
2947 * zone_destroy() to avoid missed signals.
2948 */
2949 mutex_enter(&zonehash_lock);
2950 cv_broadcast(&zone_destroy_cv);
2951 mutex_exit(&zonehash_lock);
2952 }
2953 }
2954
2955 void
2956 zone_task_hold(zone_t *z)
2957 {
2958 mutex_enter(&z->zone_lock);
2959 z->zone_ntasks++;
2960 ASSERT(z->zone_ntasks != 0);
2961 mutex_exit(&z->zone_lock);
2962 }
2963
2964 void
2965 zone_task_rele(zone_t *zone)
2966 {
2967 uint_t refcnt;
2968
2969 mutex_enter(&zone->zone_lock);
2970 ASSERT(zone->zone_ntasks != 0);
2971 refcnt = --zone->zone_ntasks;
2972 if (refcnt > 1) { /* Common case */
2973 mutex_exit(&zone->zone_lock);
2974 return;
2975 }
2976 zone_hold_locked(zone); /* so we can use the zone_t later */
2977 mutex_exit(&zone->zone_lock);
2978 if (refcnt == 1) {
2979 /*
2980 * See if the zone is shutting down.
2981 */
2982 mutex_enter(&zone_status_lock);
2983 if (zone_status_get(zone) != ZONE_IS_SHUTTING_DOWN) {
2984 goto out;
2985 }
2986
2987 /*
2988 * Make sure the ntasks didn't change since we
2989 * dropped zone_lock.
2990 */
2991 mutex_enter(&zone->zone_lock);
2992 if (refcnt != zone->zone_ntasks) {
2993 mutex_exit(&zone->zone_lock);
2994 goto out;
2995 }
2996 mutex_exit(&zone->zone_lock);
2997
2998 /*
2999 * No more user processes in the zone. The zone is empty.
3000 */
3001 zone_status_set(zone, ZONE_IS_EMPTY);
3002 goto out;
3003 }
3004
3005 ASSERT(refcnt == 0);
3006 /*
3007 * zsched has exited; the zone is dead.
3008 */
3009 zone->zone_zsched = NULL; /* paranoia */
3010 mutex_enter(&zone_status_lock);
3011 zone_status_set(zone, ZONE_IS_DEAD);
3012 out:
3013 mutex_exit(&zone_status_lock);
3014 zone_rele(zone);
3015 }
3016
3017 zoneid_t
3018 getzoneid(void)
3019 {
3020 return (curproc->p_zone->zone_id);
3021 }
3022
3023 /*
3024 * Internal versions of zone_find_by_*(). These don't zone_hold() or
3025 * check the validity of a zone's state.
3026 */
3027 static zone_t *
3028 zone_find_all_by_id(zoneid_t zoneid)
3029 {
3030 mod_hash_val_t hv;
3031 zone_t *zone = NULL;
3032
3033 ASSERT(MUTEX_HELD(&zonehash_lock));
3034
3035 if (mod_hash_find(zonehashbyid,
3036 (mod_hash_key_t)(uintptr_t)zoneid, &hv) == 0)
3037 zone = (zone_t *)hv;
3038 return (zone);
3039 }
3040
3041 static zone_t *
3042 zone_find_all_by_label(const ts_label_t *label)
3043 {
3044 mod_hash_val_t hv;
3045 zone_t *zone = NULL;
3046
3047 ASSERT(MUTEX_HELD(&zonehash_lock));
3048
3049 /*
3050 * zonehashbylabel is not maintained for unlabeled systems
3051 */
3052 if (!is_system_labeled())
3053 return (NULL);
3054 if (mod_hash_find(zonehashbylabel, (mod_hash_key_t)label, &hv) == 0)
3055 zone = (zone_t *)hv;
3056 return (zone);
3057 }
3058
3059 static zone_t *
3060 zone_find_all_by_name(char *name)
3061 {
3062 mod_hash_val_t hv;
3063 zone_t *zone = NULL;
3064
3065 ASSERT(MUTEX_HELD(&zonehash_lock));
3066
3067 if (mod_hash_find(zonehashbyname, (mod_hash_key_t)name, &hv) == 0)
3068 zone = (zone_t *)hv;
3069 return (zone);
3070 }
3071
3072 /*
3073 * Public interface for looking up a zone by zoneid. Only returns the zone if
3074 * it is fully initialized, and has not yet begun the zone_destroy() sequence.
3075 * Caller must call zone_rele() once it is done with the zone.
3076 *
3077 * The zone may begin the zone_destroy() sequence immediately after this
3078 * function returns, but may be safely used until zone_rele() is called.
3079 */
3080 zone_t *
3081 zone_find_by_id(zoneid_t zoneid)
3082 {
3083 zone_t *zone;
3084 zone_status_t status;
3085
3086 mutex_enter(&zonehash_lock);
3087 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
3088 mutex_exit(&zonehash_lock);
3089 return (NULL);
3090 }
3091 status = zone_status_get(zone);
3092 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3093 /*
3094 * For all practical purposes the zone doesn't exist.
3095 */
3096 mutex_exit(&zonehash_lock);
3097 return (NULL);
3098 }
3099 zone_hold(zone);
3100 mutex_exit(&zonehash_lock);
3101 return (zone);
3102 }
3103
3104 /*
3105 * Similar to zone_find_by_id, but using zone label as the key.
3106 */
3107 zone_t *
3108 zone_find_by_label(const ts_label_t *label)
3109 {
3110 zone_t *zone;
3111 zone_status_t status;
3112
3113 mutex_enter(&zonehash_lock);
3114 if ((zone = zone_find_all_by_label(label)) == NULL) {
3115 mutex_exit(&zonehash_lock);
3116 return (NULL);
3117 }
3118
3119 status = zone_status_get(zone);
3120 if (status > ZONE_IS_DOWN) {
3121 /*
3122 * For all practical purposes the zone doesn't exist.
3123 */
3124 mutex_exit(&zonehash_lock);
3125 return (NULL);
3126 }
3127 zone_hold(zone);
3128 mutex_exit(&zonehash_lock);
3129 return (zone);
3130 }
3131
3132 /*
3133 * Similar to zone_find_by_id, but using zone name as the key.
3134 */
3135 zone_t *
3136 zone_find_by_name(char *name)
3137 {
3138 zone_t *zone;
3139 zone_status_t status;
3140
3141 mutex_enter(&zonehash_lock);
3142 if ((zone = zone_find_all_by_name(name)) == NULL) {
3143 mutex_exit(&zonehash_lock);
3144 return (NULL);
3145 }
3146 status = zone_status_get(zone);
3147 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3148 /*
3149 * For all practical purposes the zone doesn't exist.
3150 */
3151 mutex_exit(&zonehash_lock);
3152 return (NULL);
3153 }
3154 zone_hold(zone);
3155 mutex_exit(&zonehash_lock);
3156 return (zone);
3157 }
3158
3159 /*
3160 * Similar to zone_find_by_id(), using the path as a key. For instance,
3161 * if there is a zone "foo" rooted at /foo/root, and the path argument
3162 * is "/foo/root/proc", it will return the held zone_t corresponding to
3163 * zone "foo".
3164 *
3165 * zone_find_by_path() always returns a non-NULL value, since at the
3166 * very least every path will be contained in the global zone.
3167 *
3168 * As with the other zone_find_by_*() functions, the caller is
3169 * responsible for zone_rele()ing the return value of this function.
3170 */
3171 zone_t *
3172 zone_find_by_path(const char *path)
3173 {
3174 zone_t *zone;
3175 zone_t *zret = NULL;
3176 zone_status_t status;
3177
3178 if (path == NULL) {
3179 /*
3180 * Call from rootconf().
3181 */
3182 zone_hold(global_zone);
3183 return (global_zone);
3184 }
3185 ASSERT(*path == '/');
3186 mutex_enter(&zonehash_lock);
3187 for (zone = list_head(&zone_active); zone != NULL;
3188 zone = list_next(&zone_active, zone)) {
3189 if (ZONE_PATH_VISIBLE(path, zone))
3190 zret = zone;
3191 }
3192 ASSERT(zret != NULL);
3193 status = zone_status_get(zret);
3194 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN) {
3195 /*
3196 * Zone practically doesn't exist.
3197 */
3198 zret = global_zone;
3199 }
3200 zone_hold(zret);
3201 mutex_exit(&zonehash_lock);
3202 return (zret);
3203 }
3204
3205 /*
3206 * Public interface for updating per-zone load averages. Called once per
3207 * second.
3208 *
3209 * Based on loadavg_update(), genloadavg() and calcloadavg() from clock.c.
3210 */
3211 void
3212 zone_loadavg_update(void)
3213 {
3214 zone_t *zp;
3215 zone_status_t status;
3216 struct loadavg_s *lavg;
3217 hrtime_t zone_total;
3218 uint64_t tmp;
3219 int i;
3220 hrtime_t hr_avg;
3221 int nrun;
3222 static int64_t f[3] = { 135, 27, 9 };
3223 int64_t q, r;
3224
3225 mutex_enter(&zonehash_lock);
3226 for (zp = list_head(&zone_active); zp != NULL;
3227 zp = list_next(&zone_active, zp)) {
3228 mutex_enter(&zp->zone_lock);
3229
3230 /* Skip zones that are on the way down or not yet up */
3231 status = zone_status_get(zp);
3232 if (status < ZONE_IS_READY || status >= ZONE_IS_DOWN) {
3233 /* For all practical purposes the zone doesn't exist. */
3234 mutex_exit(&zp->zone_lock);
3235 continue;
3236 }
3237
3238 /*
3239 * Update the 10 second moving average data in zone_loadavg.
3240 */
3241 lavg = &zp->zone_loadavg;
3242
3243 tmp = cpu_uarray_sum_all(zp->zone_ustate);
3244 zone_total = UINT64_OVERFLOW_TO_INT64(tmp);
3245
3246 scalehrtime(&zone_total);
3247
3248 /* The zone_total should always be increasing. */
3249 lavg->lg_loads[lavg->lg_cur] = (zone_total > lavg->lg_total) ?
3250 zone_total - lavg->lg_total : 0;
3251 lavg->lg_cur = (lavg->lg_cur + 1) % S_LOADAVG_SZ;
3252 /* lg_total holds the prev. 1 sec. total */
3253 lavg->lg_total = zone_total;
3254
3255 /*
3256 * To simplify the calculation, we don't calculate the load avg.
3257 * until the zone has been up for at least 10 seconds and our
3258 * moving average is thus full.
3259 */
3260 if ((lavg->lg_len + 1) < S_LOADAVG_SZ) {
3261 lavg->lg_len++;
3262 mutex_exit(&zp->zone_lock);
3263 continue;
3264 }
3265
3266 /* Now calculate the 1min, 5min, 15 min load avg. */
3267 hr_avg = 0;
3268 for (i = 0; i < S_LOADAVG_SZ; i++)
3269 hr_avg += lavg->lg_loads[i];
3270 hr_avg = hr_avg / S_LOADAVG_SZ;
3271 nrun = hr_avg / (NANOSEC / LGRP_LOADAVG_IN_THREAD_MAX);
3272
3273 /* Compute load avg. See comment in calcloadavg() */
3274 for (i = 0; i < 3; i++) {
3275 q = (zp->zone_hp_avenrun[i] >> 16) << 7;
3276 r = (zp->zone_hp_avenrun[i] & 0xffff) << 7;
3277 zp->zone_hp_avenrun[i] +=
3278 ((nrun - q) * f[i] - ((r * f[i]) >> 16)) >> 4;
3279
3280 /* avenrun[] can only hold 31 bits of load avg. */
3281 if (zp->zone_hp_avenrun[i] <
3282 ((uint64_t)1<<(31+16-FSHIFT)))
3283 zp->zone_avenrun[i] = (int32_t)
3284 (zp->zone_hp_avenrun[i] >> (16 - FSHIFT));
3285 else
3286 zp->zone_avenrun[i] = 0x7fffffff;
3287 }
3288
3289 mutex_exit(&zp->zone_lock);
3290 }
3291 mutex_exit(&zonehash_lock);
3292 }
3293
3294 /*
3295 * Get the number of cpus visible to this zone. The system-wide global
3296 * 'ncpus' is returned if pools are disabled, the caller is in the
3297 * global zone, or a NULL zone argument is passed in.
3298 */
3299 int
3300 zone_ncpus_get(zone_t *zone)
3301 {
3302 int myncpus = zone == NULL ? 0 : zone->zone_ncpus;
3303
3304 return (myncpus != 0 ? myncpus : ncpus);
3305 }
3306
3307 /*
3308 * Get the number of online cpus visible to this zone. The system-wide
3309 * global 'ncpus_online' is returned if pools are disabled, the caller
3310 * is in the global zone, or a NULL zone argument is passed in.
3311 */
3312 int
3313 zone_ncpus_online_get(zone_t *zone)
3314 {
3315 int myncpus_online = zone == NULL ? 0 : zone->zone_ncpus_online;
3316
3317 return (myncpus_online != 0 ? myncpus_online : ncpus_online);
3318 }
3319
3320 /*
3321 * Return the pool to which the zone is currently bound.
3322 */
3323 pool_t *
3324 zone_pool_get(zone_t *zone)
3325 {
3326 ASSERT(pool_lock_held());
3327
3328 return (zone->zone_pool);
3329 }
3330
3331 /*
3332 * Set the zone's pool pointer and update the zone's visibility to match
3333 * the resources in the new pool.
3334 */
3335 void
3336 zone_pool_set(zone_t *zone, pool_t *pool)
3337 {
3338 ASSERT(pool_lock_held());
3339 ASSERT(MUTEX_HELD(&cpu_lock));
3340
3341 zone->zone_pool = pool;
3342 zone_pset_set(zone, pool->pool_pset->pset_id);
3343 }
3344
3345 /*
3346 * Return the cached value of the id of the processor set to which the
3347 * zone is currently bound. The value will be ZONE_PS_INVAL if the pools
3348 * facility is disabled.
3349 */
3350 psetid_t
3351 zone_pset_get(zone_t *zone)
3352 {
3353 ASSERT(MUTEX_HELD(&cpu_lock));
3354
3355 return (zone->zone_psetid);
3356 }
3357
3358 /*
3359 * Set the cached value of the id of the processor set to which the zone
3360 * is currently bound. Also update the zone's visibility to match the
3361 * resources in the new processor set.
3362 */
3363 void
3364 zone_pset_set(zone_t *zone, psetid_t newpsetid)
3365 {
3366 psetid_t oldpsetid;
3367
3368 ASSERT(MUTEX_HELD(&cpu_lock));
3369 oldpsetid = zone_pset_get(zone);
3370
3371 if (oldpsetid == newpsetid)
3372 return;
3373 /*
3374 * Global zone sees all.
3375 */
3376 if (zone != global_zone) {
3377 zone->zone_psetid = newpsetid;
3378 if (newpsetid != ZONE_PS_INVAL)
3379 pool_pset_visibility_add(newpsetid, zone);
3380 if (oldpsetid != ZONE_PS_INVAL)
3381 pool_pset_visibility_remove(oldpsetid, zone);
3382 }
3383 /*
3384 * Disabling pools, so we should start using the global values
3385 * for ncpus and ncpus_online.
3386 */
3387 if (newpsetid == ZONE_PS_INVAL) {
3388 zone->zone_ncpus = 0;
3389 zone->zone_ncpus_online = 0;
3390 }
3391 }
3392
3393 /*
3394 * Walk the list of active zones and issue the provided callback for
3395 * each of them.
3396 *
3397 * Caller must not be holding any locks that may be acquired under
3398 * zonehash_lock. See comment at the beginning of the file for a list of
3399 * common locks and their interactions with zones.
3400 */
3401 int
3402 zone_walk(int (*cb)(zone_t *, void *), void *data)
3403 {
3404 zone_t *zone;
3405 int ret = 0;
3406 zone_status_t status;
3407
3408 mutex_enter(&zonehash_lock);
3409 for (zone = list_head(&zone_active); zone != NULL;
3410 zone = list_next(&zone_active, zone)) {
3411 /*
3412 * Skip zones that shouldn't be externally visible.
3413 */
3414 status = zone_status_get(zone);
3415 if (status < ZONE_IS_READY || status > ZONE_IS_DOWN)
3416 continue;
3417 /*
3418 * Bail immediately if any callback invocation returns a
3419 * non-zero value.
3420 */
3421 ret = (*cb)(zone, data);
3422 if (ret != 0)
3423 break;
3424 }
3425 mutex_exit(&zonehash_lock);
3426 return (ret);
3427 }
3428
3429 static int
3430 zone_set_root(zone_t *zone, const char *upath)
3431 {
3432 vnode_t *vp;
3433 int trycount;
3434 int error = 0;
3435 char *path;
3436 struct pathname upn, pn;
3437 size_t pathlen;
3438
3439 if ((error = pn_get((char *)upath, UIO_USERSPACE, &upn)) != 0)
3440 return (error);
3441
3442 pn_alloc(&pn);
3443
3444 /* prevent infinite loop */
3445 trycount = 10;
3446 for (;;) {
3447 if (--trycount <= 0) {
3448 error = ESTALE;
3449 goto out;
3450 }
3451
3452 if ((error = lookuppn(&upn, &pn, FOLLOW, NULLVPP, &vp)) == 0) {
3453 /*
3454 * VOP_ACCESS() may cover 'vp' with a new
3455 * filesystem, if 'vp' is an autoFS vnode.
3456 * Get the new 'vp' if so.
3457 */
3458 if ((error =
3459 VOP_ACCESS(vp, VEXEC, 0, CRED(), NULL)) == 0 &&
3460 (!vn_ismntpt(vp) ||
3461 (error = traverse(&vp)) == 0)) {
3462 pathlen = pn.pn_pathlen + 2;
3463 path = kmem_alloc(pathlen, KM_SLEEP);
3464 (void) strncpy(path, pn.pn_path,
3465 pn.pn_pathlen + 1);
3466 path[pathlen - 2] = '/';
3467 path[pathlen - 1] = '\0';
3468 pn_free(&pn);
3469 pn_free(&upn);
3470
3471 /* Success! */
3472 break;
3473 }
3474 VN_RELE(vp);
3475 }
3476 if (error != ESTALE)
3477 goto out;
3478 }
3479
3480 ASSERT(error == 0);
3481 zone->zone_rootvp = vp; /* we hold a reference to vp */
3482 zone->zone_rootpath = path;
3483 zone->zone_rootpathlen = pathlen;
3484 if (pathlen > 5 && strcmp(path + pathlen - 5, "/lu/") == 0)
3485 zone->zone_flags |= ZF_IS_SCRATCH;
3486 return (0);
3487
3488 out:
3489 pn_free(&pn);
3490 pn_free(&upn);
3491 return (error);
3492 }
3493
3494 #define isalnum(c) (((c) >= '0' && (c) <= '9') || \
3495 ((c) >= 'a' && (c) <= 'z') || \
3496 ((c) >= 'A' && (c) <= 'Z'))
3497
3498 static int
3499 zone_set_name(zone_t *zone, const char *uname)
3500 {
3501 char *kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
3502 size_t len;
3503 int i, err;
3504
3505 if ((err = copyinstr(uname, kname, ZONENAME_MAX, &len)) != 0) {
3506 kmem_free(kname, ZONENAME_MAX);
3507 return (err); /* EFAULT or ENAMETOOLONG */
3508 }
3509
3510 /* must be less than ZONENAME_MAX */
3511 if (len == ZONENAME_MAX && kname[ZONENAME_MAX - 1] != '\0') {
3512 kmem_free(kname, ZONENAME_MAX);
3513 return (EINVAL);
3514 }
3515
3516 /*
3517 * Name must start with an alphanumeric and must contain only
3518 * alphanumerics, '-', '_' and '.'.
3519 */
3520 if (!isalnum(kname[0])) {
3521 kmem_free(kname, ZONENAME_MAX);
3522 return (EINVAL);
3523 }
3524 for (i = 1; i < len - 1; i++) {
3525 if (!isalnum(kname[i]) && kname[i] != '-' && kname[i] != '_' &&
3526 kname[i] != '.') {
3527 kmem_free(kname, ZONENAME_MAX);
3528 return (EINVAL);
3529 }
3530 }
3531
3532 zone->zone_name = kname;
3533 return (0);
3534 }
3535
3536 /*
3537 * Gets the 32-bit hostid of the specified zone as an unsigned int. If 'zonep'
3538 * is NULL or it points to a zone with no hostid emulation, then the machine's
3539 * hostid (i.e., the global zone's hostid) is returned. This function returns
3540 * zero if neither the zone nor the host machine (global zone) have hostids. It
3541 * returns HW_INVALID_HOSTID if the function attempts to return the machine's
3542 * hostid and the machine's hostid is invalid.
3543 */
3544 uint32_t
3545 zone_get_hostid(zone_t *zonep)
3546 {
3547 unsigned long machine_hostid;
3548
3549 if (zonep == NULL || zonep->zone_hostid == HW_INVALID_HOSTID) {
3550 if (ddi_strtoul(hw_serial, NULL, 10, &machine_hostid) != 0)
3551 return (HW_INVALID_HOSTID);
3552 return ((uint32_t)machine_hostid);
3553 }
3554 return (zonep->zone_hostid);
3555 }
3556
3557 /*
3558 * Similar to thread_create(), but makes sure the thread is in the appropriate
3559 * zone's zsched process (curproc->p_zone->zone_zsched) before returning.
3560 */
3561 /*ARGSUSED*/
3562 kthread_t *
3563 zthread_create(
3564 caddr_t stk,
3565 size_t stksize,
3566 void (*proc)(),
3567 void *arg,
3568 size_t len,
3569 pri_t pri)
3570 {
3571 kthread_t *t;
3572 zone_t *zone = curproc->p_zone;
3573 proc_t *pp = zone->zone_zsched;
3574
3575 zone_hold(zone); /* Reference to be dropped when thread exits */
3576
3577 /*
3578 * No-one should be trying to create threads if the zone is shutting
3579 * down and there aren't any kernel threads around. See comment
3580 * in zthread_exit().
3581 */
3582 ASSERT(!(zone->zone_kthreads == NULL &&
3583 zone_status_get(zone) >= ZONE_IS_EMPTY));
3584 /*
3585 * Create a thread, but don't let it run until we've finished setting
3586 * things up.
3587 */
3588 t = thread_create(stk, stksize, proc, arg, len, pp, TS_STOPPED, pri);
3589 ASSERT(t->t_forw == NULL);
3590 mutex_enter(&zone_status_lock);
3591 if (zone->zone_kthreads == NULL) {
3592 t->t_forw = t->t_back = t;
3593 } else {
3594 kthread_t *tx = zone->zone_kthreads;
3595
3596 t->t_forw = tx;
3597 t->t_back = tx->t_back;
3598 tx->t_back->t_forw = t;
3599 tx->t_back = t;
3600 }
3601 zone->zone_kthreads = t;
3602 mutex_exit(&zone_status_lock);
3603
3604 mutex_enter(&pp->p_lock);
3605 t->t_proc_flag |= TP_ZTHREAD;
3606 project_rele(t->t_proj);
3607 t->t_proj = project_hold(pp->p_task->tk_proj);
3608
3609 /*
3610 * Setup complete, let it run.
3611 */
3612 thread_lock(t);
3613 t->t_schedflag |= TS_ALLSTART;
3614 setrun_locked(t);
3615 thread_unlock(t);
3616
3617 mutex_exit(&pp->p_lock);
3618
3619 return (t);
3620 }
3621
3622 /*
3623 * Similar to thread_exit(). Must be called by threads created via
3624 * zthread_exit().
3625 */
3626 void
3627 zthread_exit(void)
3628 {
3629 kthread_t *t = curthread;
3630 proc_t *pp = curproc;
3631 zone_t *zone = pp->p_zone;
3632
3633 mutex_enter(&zone_status_lock);
3634
3635 /*
3636 * Reparent to p0
3637 */
3638 kpreempt_disable();
3639 mutex_enter(&pp->p_lock);
3640 t->t_proc_flag &= ~TP_ZTHREAD;
3641 t->t_procp = &p0;
3642 hat_thread_exit(t);
3643 mutex_exit(&pp->p_lock);
3644 kpreempt_enable();
3645
3646 if (t->t_back == t) {
3647 ASSERT(t->t_forw == t);
3648 /*
3649 * If the zone is empty, once the thread count
3650 * goes to zero no further kernel threads can be
3651 * created. This is because if the creator is a process
3652 * in the zone, then it must have exited before the zone
3653 * state could be set to ZONE_IS_EMPTY.
3654 * Otherwise, if the creator is a kernel thread in the
3655 * zone, the thread count is non-zero.
3656 *
3657 * This really means that non-zone kernel threads should
3658 * not create zone kernel threads.
3659 */
3660 zone->zone_kthreads = NULL;
3661 if (zone_status_get(zone) == ZONE_IS_EMPTY) {
3662 zone_status_set(zone, ZONE_IS_DOWN);
3663 /*
3664 * Remove any CPU caps on this zone.
3665 */
3666 cpucaps_zone_remove(zone);
3667 }
3668 } else {
3669 t->t_forw->t_back = t->t_back;
3670 t->t_back->t_forw = t->t_forw;
3671 if (zone->zone_kthreads == t)
3672 zone->zone_kthreads = t->t_forw;
3673 }
3674 mutex_exit(&zone_status_lock);
3675 zone_rele(zone);
3676 thread_exit();
3677 /* NOTREACHED */
3678 }
3679
3680 static void
3681 zone_chdir(vnode_t *vp, vnode_t **vpp, proc_t *pp)
3682 {
3683 vnode_t *oldvp;
3684
3685 /* we're going to hold a reference here to the directory */
3686 VN_HOLD(vp);
3687
3688 /* update abs cwd/root path see c2/audit.c */
3689 if (AU_AUDITING())
3690 audit_chdirec(vp, vpp);
3691
3692 mutex_enter(&pp->p_lock);
3693 oldvp = *vpp;
3694 *vpp = vp;
3695 mutex_exit(&pp->p_lock);
3696 if (oldvp != NULL)
3697 VN_RELE(oldvp);
3698 }
3699
3700 /*
3701 * Convert an rctl value represented by an nvlist_t into an rctl_val_t.
3702 */
3703 static int
3704 nvlist2rctlval(nvlist_t *nvl, rctl_val_t *rv)
3705 {
3706 nvpair_t *nvp = NULL;
3707 boolean_t priv_set = B_FALSE;
3708 boolean_t limit_set = B_FALSE;
3709 boolean_t action_set = B_FALSE;
3710
3711 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3712 const char *name;
3713 uint64_t ui64;
3714
3715 name = nvpair_name(nvp);
3716 if (nvpair_type(nvp) != DATA_TYPE_UINT64)
3717 return (EINVAL);
3718 (void) nvpair_value_uint64(nvp, &ui64);
3719 if (strcmp(name, "privilege") == 0) {
3720 /*
3721 * Currently only privileged values are allowed, but
3722 * this may change in the future.
3723 */
3724 if (ui64 != RCPRIV_PRIVILEGED)
3725 return (EINVAL);
3726 rv->rcv_privilege = ui64;
3727 priv_set = B_TRUE;
3728 } else if (strcmp(name, "limit") == 0) {
3729 rv->rcv_value = ui64;
3730 limit_set = B_TRUE;
3731 } else if (strcmp(name, "action") == 0) {
3732 if (ui64 != RCTL_LOCAL_NOACTION &&
3733 ui64 != RCTL_LOCAL_DENY)
3734 return (EINVAL);
3735 rv->rcv_flagaction = ui64;
3736 action_set = B_TRUE;
3737 } else {
3738 return (EINVAL);
3739 }
3740 }
3741
3742 if (!(priv_set && limit_set && action_set))
3743 return (EINVAL);
3744 rv->rcv_action_signal = 0;
3745 rv->rcv_action_recipient = NULL;
3746 rv->rcv_action_recip_pid = -1;
3747 rv->rcv_firing_time = 0;
3748
3749 return (0);
3750 }
3751
3752 /*
3753 * Non-global zone version of start_init.
3754 */
3755 void
3756 zone_start_init(void)
3757 {
3758 proc_t *p = ttoproc(curthread);
3759 zone_t *z = p->p_zone;
3760
3761 ASSERT(!INGLOBALZONE(curproc));
3762
3763 /*
3764 * For all purposes (ZONE_ATTR_INITPID and restart_init),
3765 * storing just the pid of init is sufficient.
3766 */
3767 z->zone_proc_initpid = p->p_pid;
3768
3769 /*
3770 * We maintain zone_boot_err so that we can return the cause of the
3771 * failure back to the caller of the zone_boot syscall.
3772 */
3773 p->p_zone->zone_boot_err = start_init_common();
3774
3775 /*
3776 * We will prevent booting zones from becoming running zones if the
3777 * global zone is shutting down.
3778 */
3779 mutex_enter(&zone_status_lock);
3780 if (z->zone_boot_err != 0 || zone_status_get(global_zone) >=
3781 ZONE_IS_SHUTTING_DOWN) {
3782 /*
3783 * Make sure we are still in the booting state-- we could have
3784 * raced and already be shutting down, or even further along.
3785 */
3786 if (zone_status_get(z) == ZONE_IS_BOOTING) {
3787 zone_status_set(z, ZONE_IS_SHUTTING_DOWN);
3788 }
3789 mutex_exit(&zone_status_lock);
3790 /* It's gone bad, dispose of the process */
3791 if (proc_exit(CLD_EXITED, z->zone_boot_err) != 0) {
3792 mutex_enter(&p->p_lock);
3793 ASSERT(p->p_flag & SEXITLWPS);
3794 lwp_exit();
3795 }
3796 } else {
3797 if (zone_status_get(z) == ZONE_IS_BOOTING)
3798 zone_status_set(z, ZONE_IS_RUNNING);
3799 mutex_exit(&zone_status_lock);
3800 /* cause the process to return to userland. */
3801 lwp_rtt();
3802 }
3803 }
3804
3805 struct zsched_arg {
3806 zone_t *zone;
3807 nvlist_t *nvlist;
3808 };
3809
3810 /*
3811 * Per-zone "sched" workalike. The similarity to "sched" doesn't have
3812 * anything to do with scheduling, but rather with the fact that
3813 * per-zone kernel threads are parented to zsched, just like regular
3814 * kernel threads are parented to sched (p0).
3815 *
3816 * zsched is also responsible for launching init for the zone.
3817 */
3818 static void
3819 zsched(void *arg)
3820 {
3821 struct zsched_arg *za = arg;
3822 proc_t *pp = curproc;
3823 proc_t *initp = proc_init;
3824 zone_t *zone = za->zone;
3825 cred_t *cr, *oldcred;
3826 rctl_set_t *set;
3827 rctl_alloc_gp_t *gp;
3828 contract_t *ct = NULL;
3829 task_t *tk, *oldtk;
3830 rctl_entity_p_t e;
3831 kproject_t *pj;
3832
3833 nvlist_t *nvl = za->nvlist;
3834 nvpair_t *nvp = NULL;
3835
3836 bcopy("zsched", PTOU(pp)->u_psargs, sizeof ("zsched"));
3837 bcopy("zsched", PTOU(pp)->u_comm, sizeof ("zsched"));
3838 PTOU(pp)->u_argc = 0;
3839 PTOU(pp)->u_argv = 0;
3840 PTOU(pp)->u_envp = 0;
3841 PTOU(pp)->u_commpagep = 0;
3842 closeall(P_FINFO(pp));
3843
3844 /*
3845 * We are this zone's "zsched" process. As the zone isn't generally
3846 * visible yet we don't need to grab any locks before initializing its
3847 * zone_proc pointer.
3848 */
3849 zone_hold(zone); /* this hold is released by zone_destroy() */
3850 zone->zone_zsched = pp;
3851 mutex_enter(&pp->p_lock);
3852 pp->p_zone = zone;
3853 mutex_exit(&pp->p_lock);
3854
3855 /*
3856 * Disassociate process from its 'parent'; parent ourselves to init
3857 * (pid 1) and change other values as needed.
3858 */
3859 sess_create();
3860
3861 mutex_enter(&pidlock);
3862 proc_detach(pp);
3863 pp->p_ppid = 1;
3864 pp->p_flag |= SZONETOP;
3865 pp->p_ancpid = 1;
3866 pp->p_parent = initp;
3867 pp->p_psibling = NULL;
3868 if (initp->p_child)
3869 initp->p_child->p_psibling = pp;
3870 pp->p_sibling = initp->p_child;
3871 initp->p_child = pp;
3872
3873 /* Decrement what newproc() incremented. */
3874 upcount_dec(crgetruid(CRED()), GLOBAL_ZONEID);
3875 /*
3876 * Our credentials are about to become kcred-like, so we don't care
3877 * about the caller's ruid.
3878 */
3879 upcount_inc(crgetruid(kcred), zone->zone_id);
3880 mutex_exit(&pidlock);
3881
3882 /*
3883 * getting out of global zone, so decrement lwp and process counts
3884 */
3885 pj = pp->p_task->tk_proj;
3886 mutex_enter(&global_zone->zone_nlwps_lock);
3887 pj->kpj_nlwps -= pp->p_lwpcnt;
3888 global_zone->zone_nlwps -= pp->p_lwpcnt;
3889 pj->kpj_nprocs--;
3890 global_zone->zone_nprocs--;
3891 mutex_exit(&global_zone->zone_nlwps_lock);
3892
3893 /*
3894 * Decrement locked memory counts on old zone and project.
3895 */
3896 mutex_enter(&global_zone->zone_mem_lock);
3897 global_zone->zone_locked_mem -= pp->p_locked_mem;
3898 pj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
3899 mutex_exit(&global_zone->zone_mem_lock);
3900
3901 /*
3902 * Create and join a new task in project '0' of this zone.
3903 *
3904 * We don't need to call holdlwps() since we know we're the only lwp in
3905 * this process.
3906 *
3907 * task_join() returns with p_lock held.
3908 */
3909 tk = task_create(0, zone);
3910 mutex_enter(&cpu_lock);
3911 oldtk = task_join(tk, 0);
3912
3913 pj = pp->p_task->tk_proj;
3914
3915 mutex_enter(&zone->zone_mem_lock);
3916 zone->zone_locked_mem += pp->p_locked_mem;
3917 pj->kpj_data.kpd_locked_mem += pp->p_locked_mem;
3918 mutex_exit(&zone->zone_mem_lock);
3919
3920 /*
3921 * add lwp and process counts to zsched's zone, and increment
3922 * project's task and process count due to the task created in
3923 * the above task_create.
3924 */
3925 mutex_enter(&zone->zone_nlwps_lock);
3926 pj->kpj_nlwps += pp->p_lwpcnt;
3927 pj->kpj_ntasks += 1;
3928 zone->zone_nlwps += pp->p_lwpcnt;
3929 pj->kpj_nprocs++;
3930 zone->zone_nprocs++;
3931 mutex_exit(&zone->zone_nlwps_lock);
3932
3933 mutex_exit(&curproc->p_lock);
3934 mutex_exit(&cpu_lock);
3935 task_rele(oldtk);
3936
3937 /*
3938 * The process was created by a process in the global zone, hence the
3939 * credentials are wrong. We might as well have kcred-ish credentials.
3940 */
3941 cr = zone->zone_kcred;
3942 crhold(cr);
3943 mutex_enter(&pp->p_crlock);
3944 oldcred = pp->p_cred;
3945 pp->p_cred = cr;
3946 mutex_exit(&pp->p_crlock);
3947 crfree(oldcred);
3948
3949 /*
3950 * Hold credentials again (for thread)
3951 */
3952 crhold(cr);
3953
3954 /*
3955 * p_lwpcnt can't change since this is a kernel process.
3956 */
3957 crset(pp, cr);
3958
3959 /*
3960 * Chroot
3961 */
3962 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_cdir, pp);
3963 zone_chdir(zone->zone_rootvp, &PTOU(pp)->u_rdir, pp);
3964
3965 /*
3966 * Initialize zone's rctl set.
3967 */
3968 set = rctl_set_create();
3969 gp = rctl_set_init_prealloc(RCENTITY_ZONE);
3970 mutex_enter(&pp->p_lock);
3971 e.rcep_p.zone = zone;
3972 e.rcep_t = RCENTITY_ZONE;
3973 zone->zone_rctls = rctl_set_init(RCENTITY_ZONE, pp, &e, set, gp);
3974 mutex_exit(&pp->p_lock);
3975 rctl_prealloc_destroy(gp);
3976
3977 /*
3978 * Apply the rctls passed in to zone_create(). This is basically a list
3979 * assignment: all of the old values are removed and the new ones
3980 * inserted. That is, if an empty list is passed in, all values are
3981 * removed.
3982 */
3983 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
3984 rctl_dict_entry_t *rde;
3985 rctl_hndl_t hndl;
3986 char *name;
3987 nvlist_t **nvlarray;
3988 uint_t i, nelem;
3989 int error; /* For ASSERT()s */
3990
3991 name = nvpair_name(nvp);
3992 hndl = rctl_hndl_lookup(name);
3993 ASSERT(hndl != -1);
3994 rde = rctl_dict_lookup_hndl(hndl);
3995 ASSERT(rde != NULL);
3996
3997 for (; /* ever */; ) {
3998 rctl_val_t oval;
3999
4000 mutex_enter(&pp->p_lock);
4001 error = rctl_local_get(hndl, NULL, &oval, pp);
4002 mutex_exit(&pp->p_lock);
4003 ASSERT(error == 0); /* Can't fail for RCTL_FIRST */
4004 ASSERT(oval.rcv_privilege != RCPRIV_BASIC);
4005 if (oval.rcv_privilege == RCPRIV_SYSTEM)
4006 break;
4007 mutex_enter(&pp->p_lock);
4008 error = rctl_local_delete(hndl, &oval, pp);
4009 mutex_exit(&pp->p_lock);
4010 ASSERT(error == 0);
4011 }
4012 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4013 ASSERT(error == 0);
4014 for (i = 0; i < nelem; i++) {
4015 rctl_val_t *nvalp;
4016
4017 nvalp = kmem_cache_alloc(rctl_val_cache, KM_SLEEP);
4018 error = nvlist2rctlval(nvlarray[i], nvalp);
4019 ASSERT(error == 0);
4020 /*
4021 * rctl_local_insert can fail if the value being
4022 * inserted is a duplicate; this is OK.
4023 */
4024 mutex_enter(&pp->p_lock);
4025 if (rctl_local_insert(hndl, nvalp, pp) != 0)
4026 kmem_cache_free(rctl_val_cache, nvalp);
4027 mutex_exit(&pp->p_lock);
4028 }
4029 }
4030
4031 /*
4032 * Tell the world that we're done setting up.
4033 *
4034 * At this point we want to set the zone status to ZONE_IS_INITIALIZED
4035 * and atomically set the zone's processor set visibility. Once
4036 * we drop pool_lock() this zone will automatically get updated
4037 * to reflect any future changes to the pools configuration.
4038 *
4039 * Note that after we drop the locks below (zonehash_lock in
4040 * particular) other operations such as a zone_getattr call can
4041 * now proceed and observe the zone. That is the reason for doing a
4042 * state transition to the INITIALIZED state.
4043 */
4044 pool_lock();
4045 mutex_enter(&cpu_lock);
4046 mutex_enter(&zonehash_lock);
4047 zone_uniqid(zone);
4048 zone_zsd_configure(zone);
4049 if (pool_state == POOL_ENABLED)
4050 zone_pset_set(zone, pool_default->pool_pset->pset_id);
4051 mutex_enter(&zone_status_lock);
4052 ASSERT(zone_status_get(zone) == ZONE_IS_UNINITIALIZED);
4053 zone_status_set(zone, ZONE_IS_INITIALIZED);
4054 mutex_exit(&zone_status_lock);
4055 mutex_exit(&zonehash_lock);
4056 mutex_exit(&cpu_lock);
4057 pool_unlock();
4058
4059 /* Now call the create callback for this key */
4060 zsd_apply_all_keys(zsd_apply_create, zone);
4061
4062 /* The callbacks are complete. Mark ZONE_IS_READY */
4063 mutex_enter(&zone_status_lock);
4064 ASSERT(zone_status_get(zone) == ZONE_IS_INITIALIZED);
4065 zone_status_set(zone, ZONE_IS_READY);
4066 mutex_exit(&zone_status_lock);
4067
4068 /*
4069 * Once we see the zone transition to the ZONE_IS_BOOTING state,
4070 * we launch init, and set the state to running.
4071 */
4072 zone_status_wait_cpr(zone, ZONE_IS_BOOTING, "zsched");
4073
4074 if (zone_status_get(zone) == ZONE_IS_BOOTING) {
4075 id_t cid;
4076
4077 /*
4078 * Ok, this is a little complicated. We need to grab the
4079 * zone's pool's scheduling class ID; note that by now, we
4080 * are already bound to a pool if we need to be (zoneadmd
4081 * will have done that to us while we're in the READY
4082 * state). *But* the scheduling class for the zone's 'init'
4083 * must be explicitly passed to newproc, which doesn't
4084 * respect pool bindings.
4085 *
4086 * We hold the pool_lock across the call to newproc() to
4087 * close the obvious race: the pool's scheduling class
4088 * could change before we manage to create the LWP with
4089 * classid 'cid'.
4090 */
4091 pool_lock();
4092 if (zone->zone_defaultcid > 0)
4093 cid = zone->zone_defaultcid;
4094 else
4095 cid = pool_get_class(zone->zone_pool);
4096 if (cid == -1)
4097 cid = defaultcid;
4098
4099 /*
4100 * If this fails, zone_boot will ultimately fail. The
4101 * state of the zone will be set to SHUTTING_DOWN-- userland
4102 * will have to tear down the zone, and fail, or try again.
4103 */
4104 if ((zone->zone_boot_err = newproc(zone_start_init, NULL, cid,
4105 minclsyspri - 1, &ct, 0)) != 0) {
4106 mutex_enter(&zone_status_lock);
4107 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4108 mutex_exit(&zone_status_lock);
4109 } else {
4110 zone->zone_boot_time = gethrestime_sec();
4111 }
4112
4113 pool_unlock();
4114 }
4115
4116 /*
4117 * Wait for zone_destroy() to be called. This is what we spend
4118 * most of our life doing.
4119 */
4120 zone_status_wait_cpr(zone, ZONE_IS_DYING, "zsched");
4121
4122 if (ct)
4123 /*
4124 * At this point the process contract should be empty.
4125 * (Though if it isn't, it's not the end of the world.)
4126 */
4127 VERIFY(contract_abandon(ct, curproc, B_TRUE) == 0);
4128
4129 /*
4130 * Allow kcred to be freed when all referring processes
4131 * (including this one) go away. We can't just do this in
4132 * zone_free because we need to wait for the zone_cred_ref to
4133 * drop to 0 before calling zone_free, and the existence of
4134 * zone_kcred will prevent that. Thus, we call crfree here to
4135 * balance the crdup in zone_create. The crhold calls earlier
4136 * in zsched will be dropped when the thread and process exit.
4137 */
4138 crfree(zone->zone_kcred);
4139 zone->zone_kcred = NULL;
4140
4141 exit(CLD_EXITED, 0);
4142 }
4143
4144 /*
4145 * Helper function to determine if there are any submounts of the
4146 * provided path. Used to make sure the zone doesn't "inherit" any
4147 * mounts from before it is created.
4148 */
4149 static uint_t
4150 zone_mount_count(const char *rootpath)
4151 {
4152 vfs_t *vfsp;
4153 uint_t count = 0;
4154 size_t rootpathlen = strlen(rootpath);
4155
4156 /*
4157 * Holding zonehash_lock prevents race conditions with
4158 * vfs_list_add()/vfs_list_remove() since we serialize with
4159 * zone_find_by_path().
4160 */
4161 ASSERT(MUTEX_HELD(&zonehash_lock));
4162 /*
4163 * The rootpath must end with a '/'
4164 */
4165 ASSERT(rootpath[rootpathlen - 1] == '/');
4166
4167 /*
4168 * This intentionally does not count the rootpath itself if that
4169 * happens to be a mount point.
4170 */
4171 vfs_list_read_lock();
4172 vfsp = rootvfs;
4173 do {
4174 if (strncmp(rootpath, refstr_value(vfsp->vfs_mntpt),
4175 rootpathlen) == 0)
4176 count++;
4177 vfsp = vfsp->vfs_next;
4178 } while (vfsp != rootvfs);
4179 vfs_list_unlock();
4180 return (count);
4181 }
4182
4183 /*
4184 * Helper function to make sure that a zone created on 'rootpath'
4185 * wouldn't end up containing other zones' rootpaths.
4186 */
4187 static boolean_t
4188 zone_is_nested(const char *rootpath)
4189 {
4190 zone_t *zone;
4191 size_t rootpathlen = strlen(rootpath);
4192 size_t len;
4193
4194 ASSERT(MUTEX_HELD(&zonehash_lock));
4195
4196 /*
4197 * zone_set_root() appended '/' and '\0' at the end of rootpath
4198 */
4199 if ((rootpathlen <= 3) && (rootpath[0] == '/') &&
4200 (rootpath[1] == '/') && (rootpath[2] == '\0'))
4201 return (B_TRUE);
4202
4203 for (zone = list_head(&zone_active); zone != NULL;
4204 zone = list_next(&zone_active, zone)) {
4205 if (zone == global_zone)
4206 continue;
4207 len = strlen(zone->zone_rootpath);
4208 if (strncmp(rootpath, zone->zone_rootpath,
4209 MIN(rootpathlen, len)) == 0)
4210 return (B_TRUE);
4211 }
4212 return (B_FALSE);
4213 }
4214
4215 static int
4216 zone_set_privset(zone_t *zone, const priv_set_t *zone_privs,
4217 size_t zone_privssz)
4218 {
4219 priv_set_t *privs;
4220
4221 if (zone_privssz < sizeof (priv_set_t))
4222 return (ENOMEM);
4223
4224 privs = kmem_alloc(sizeof (priv_set_t), KM_SLEEP);
4225
4226 if (copyin(zone_privs, privs, sizeof (priv_set_t))) {
4227 kmem_free(privs, sizeof (priv_set_t));
4228 return (EFAULT);
4229 }
4230
4231 zone->zone_privset = privs;
4232 return (0);
4233 }
4234
4235 /*
4236 * We make creative use of nvlists to pass in rctls from userland. The list is
4237 * a list of the following structures:
4238 *
4239 * (name = rctl_name, value = nvpair_list_array)
4240 *
4241 * Where each element of the nvpair_list_array is of the form:
4242 *
4243 * [(name = "privilege", value = RCPRIV_PRIVILEGED),
4244 * (name = "limit", value = uint64_t),
4245 * (name = "action", value = (RCTL_LOCAL_NOACTION || RCTL_LOCAL_DENY))]
4246 */
4247 static int
4248 parse_rctls(caddr_t ubuf, size_t buflen, nvlist_t **nvlp)
4249 {
4250 nvpair_t *nvp = NULL;
4251 nvlist_t *nvl = NULL;
4252 char *kbuf;
4253 int error;
4254 rctl_val_t rv;
4255
4256 *nvlp = NULL;
4257
4258 if (buflen == 0)
4259 return (0);
4260
4261 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4262 return (ENOMEM);
4263 if (copyin(ubuf, kbuf, buflen)) {
4264 error = EFAULT;
4265 goto out;
4266 }
4267 if (nvlist_unpack(kbuf, buflen, &nvl, KM_SLEEP) != 0) {
4268 /*
4269 * nvl may have been allocated/free'd, but the value set to
4270 * non-NULL, so we reset it here.
4271 */
4272 nvl = NULL;
4273 error = EINVAL;
4274 goto out;
4275 }
4276 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4277 rctl_dict_entry_t *rde;
4278 rctl_hndl_t hndl;
4279 nvlist_t **nvlarray;
4280 uint_t i, nelem;
4281 char *name;
4282
4283 error = EINVAL;
4284 name = nvpair_name(nvp);
4285 if (strncmp(nvpair_name(nvp), "zone.", sizeof ("zone.") - 1)
4286 != 0 || nvpair_type(nvp) != DATA_TYPE_NVLIST_ARRAY) {
4287 goto out;
4288 }
4289 if ((hndl = rctl_hndl_lookup(name)) == -1) {
4290 goto out;
4291 }
4292 rde = rctl_dict_lookup_hndl(hndl);
4293 error = nvpair_value_nvlist_array(nvp, &nvlarray, &nelem);
4294 ASSERT(error == 0);
4295 for (i = 0; i < nelem; i++) {
4296 if (error = nvlist2rctlval(nvlarray[i], &rv))
4297 goto out;
4298 }
4299 if (rctl_invalid_value(rde, &rv)) {
4300 error = EINVAL;
4301 goto out;
4302 }
4303 }
4304 error = 0;
4305 *nvlp = nvl;
4306 out:
4307 kmem_free(kbuf, buflen);
4308 if (error && nvl != NULL)
4309 nvlist_free(nvl);
4310 return (error);
4311 }
4312
4313 int
4314 zone_create_error(int er_error, int er_ext, int *er_out)
4315 {
4316 if (er_out != NULL) {
4317 if (copyout(&er_ext, er_out, sizeof (int))) {
4318 return (set_errno(EFAULT));
4319 }
4320 }
4321 return (set_errno(er_error));
4322 }
4323
4324 static int
4325 zone_set_label(zone_t *zone, const bslabel_t *lab, uint32_t doi)
4326 {
4327 ts_label_t *tsl;
4328 bslabel_t blab;
4329
4330 /* Get label from user */
4331 if (copyin(lab, &blab, sizeof (blab)) != 0)
4332 return (EFAULT);
4333 tsl = labelalloc(&blab, doi, KM_NOSLEEP);
4334 if (tsl == NULL)
4335 return (ENOMEM);
4336
4337 zone->zone_slabel = tsl;
4338 return (0);
4339 }
4340
4341 /*
4342 * Parses a comma-separated list of ZFS datasets into a per-zone dictionary.
4343 */
4344 static int
4345 parse_zfs(zone_t *zone, caddr_t ubuf, size_t buflen)
4346 {
4347 char *kbuf;
4348 char *dataset, *next;
4349 zone_dataset_t *zd;
4350 size_t len;
4351
4352 if (ubuf == NULL || buflen == 0)
4353 return (0);
4354
4355 if ((kbuf = kmem_alloc(buflen, KM_NOSLEEP)) == NULL)
4356 return (ENOMEM);
4357
4358 if (copyin(ubuf, kbuf, buflen) != 0) {
4359 kmem_free(kbuf, buflen);
4360 return (EFAULT);
4361 }
4362
4363 dataset = next = kbuf;
4364 for (;;) {
4365 zd = kmem_alloc(sizeof (zone_dataset_t), KM_SLEEP);
4366
4367 next = strchr(dataset, ',');
4368
4369 if (next == NULL)
4370 len = strlen(dataset);
4371 else
4372 len = next - dataset;
4373
4374 zd->zd_dataset = kmem_alloc(len + 1, KM_SLEEP);
4375 bcopy(dataset, zd->zd_dataset, len);
4376 zd->zd_dataset[len] = '\0';
4377
4378 list_insert_head(&zone->zone_datasets, zd);
4379
4380 if (next == NULL)
4381 break;
4382
4383 dataset = next + 1;
4384 }
4385
4386 kmem_free(kbuf, buflen);
4387 return (0);
4388 }
4389
4390 /*
4391 * System call to create/initialize a new zone named 'zone_name', rooted
4392 * at 'zone_root', with a zone-wide privilege limit set of 'zone_privs',
4393 * and initialized with the zone-wide rctls described in 'rctlbuf', and
4394 * with labeling set by 'match', 'doi', and 'label'.
4395 *
4396 * If extended error is non-null, we may use it to return more detailed
4397 * error information.
4398 */
4399 static zoneid_t
4400 zone_create(const char *zone_name, const char *zone_root,
4401 const priv_set_t *zone_privs, size_t zone_privssz,
4402 caddr_t rctlbuf, size_t rctlbufsz,
4403 caddr_t zfsbuf, size_t zfsbufsz, int *extended_error,
4404 int match, uint32_t doi, const bslabel_t *label,
4405 int flags)
4406 {
4407 struct zsched_arg zarg;
4408 nvlist_t *rctls = NULL;
4409 proc_t *pp = curproc;
4410 zone_t *zone, *ztmp;
4411 zoneid_t zoneid, start = GLOBAL_ZONEID;
4412 int error;
4413 int error2 = 0;
4414 char *str;
4415 cred_t *zkcr;
4416 boolean_t insert_label_hash;
4417
4418 if (secpolicy_zone_config(CRED()) != 0)
4419 return (set_errno(EPERM));
4420
4421 /* can't boot zone from within chroot environment */
4422 if (PTOU(pp)->u_rdir != NULL && PTOU(pp)->u_rdir != rootdir)
4423 return (zone_create_error(ENOTSUP, ZE_CHROOTED,
4424 extended_error));
4425 /*
4426 * As the first step of zone creation, we want to allocate a zoneid.
4427 * This allocation is complicated by the fact that netstacks use the
4428 * zoneid to determine their stackid, but netstacks themselves are
4429 * freed asynchronously with respect to zone destruction. This means
4430 * that a netstack reference leak (or in principle, an extraordinarily
4431 * long netstack reference hold) could result in a zoneid being
4432 * allocated that in fact corresponds to a stackid from an active
4433 * (referenced) netstack -- unleashing all sorts of havoc when that
4434 * netstack is actually (re)used. (In the abstract, we might wish a
4435 * zoneid to not be deallocated until its last referencing netstack
4436 * has been released, but netstacks lack a backpointer into their
4437 * referencing zone -- and changing them to have such a pointer would
4438 * be substantial, to put it euphemistically.) To avoid this, we
4439 * detect this condition on allocation: if we have allocated a zoneid
4440 * that corresponds to a netstack that's still in use, we warn about
4441 * it (as it is much more likely to be a reference leak than an actual
4442 * netstack reference), free it, and allocate another. That these
4443 * identifers are allocated out of an ID space assures that we won't
4444 * see the identifier we just allocated.
4445 */
4446 for (;;) {
4447 zoneid = id_alloc(zoneid_space);
4448
4449 if (!netstack_inuse_by_stackid(zoneid_to_netstackid(zoneid)))
4450 break;
4451
4452 id_free(zoneid_space, zoneid);
4453
4454 if (start == GLOBAL_ZONEID) {
4455 start = zoneid;
4456 } else if (zoneid == start) {
4457 /*
4458 * We have managed to iterate over the entire available
4459 * zoneid space -- there are no identifiers available,
4460 * presumably due to some number of leaked netstack
4461 * references. While it's in principle possible for us
4462 * to continue to try, it seems wiser to give up at
4463 * this point to warn and fail explicitly with a
4464 * distinctive error.
4465 */
4466 cmn_err(CE_WARN, "zone_create() failed: all available "
4467 "zone IDs have netstacks still in use");
4468 return (set_errno(ENFILE));
4469 }
4470
4471 cmn_err(CE_WARN, "unable to reuse zone ID %d; "
4472 "netstack still in use", zoneid);
4473 }
4474
4475 zone = kmem_zalloc(sizeof (zone_t), KM_SLEEP);
4476 zone->zone_id = zoneid;
4477 zone->zone_status = ZONE_IS_UNINITIALIZED;
4478 zone->zone_pool = pool_default;
4479 zone->zone_pool_mod = gethrtime();
4480 zone->zone_psetid = ZONE_PS_INVAL;
4481 zone->zone_ncpus = 0;
4482 zone->zone_ncpus_online = 0;
4483 zone->zone_restart_init = B_TRUE;
4484 zone->zone_brand = &native_brand;
4485 zone->zone_initname = NULL;
4486 mutex_init(&zone->zone_lock, NULL, MUTEX_DEFAULT, NULL);
4487 mutex_init(&zone->zone_nlwps_lock, NULL, MUTEX_DEFAULT, NULL);
4488 mutex_init(&zone->zone_mem_lock, NULL, MUTEX_DEFAULT, NULL);
4489 cv_init(&zone->zone_cv, NULL, CV_DEFAULT, NULL);
4490 list_create(&zone->zone_ref_list, sizeof (zone_ref_t),
4491 offsetof(zone_ref_t, zref_linkage));
4492 list_create(&zone->zone_zsd, sizeof (struct zsd_entry),
4493 offsetof(struct zsd_entry, zsd_linkage));
4494 list_create(&zone->zone_datasets, sizeof (zone_dataset_t),
4495 offsetof(zone_dataset_t, zd_linkage));
4496 list_create(&zone->zone_dl_list, sizeof (zone_dl_t),
4497 offsetof(zone_dl_t, zdl_linkage));
4498 rw_init(&zone->zone_mlps.mlpl_rwlock, NULL, RW_DEFAULT, NULL);
4499 rw_init(&zone->zone_mntfs_db_lock, NULL, RW_DEFAULT, NULL);
4500
4501 if (flags & ZCF_NET_EXCL) {
4502 zone->zone_flags |= ZF_NET_EXCL;
4503 }
4504
4505 if ((error = zone_set_name(zone, zone_name)) != 0) {
4506 zone_free(zone);
4507 return (zone_create_error(error, 0, extended_error));
4508 }
4509
4510 if ((error = zone_set_root(zone, zone_root)) != 0) {
4511 zone_free(zone);
4512 return (zone_create_error(error, 0, extended_error));
4513 }
4514 if ((error = zone_set_privset(zone, zone_privs, zone_privssz)) != 0) {
4515 zone_free(zone);
4516 return (zone_create_error(error, 0, extended_error));
4517 }
4518
4519 /* initialize node name to be the same as zone name */
4520 zone->zone_nodename = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4521 (void) strncpy(zone->zone_nodename, zone->zone_name, _SYS_NMLN);
4522 zone->zone_nodename[_SYS_NMLN - 1] = '\0';
4523
4524 zone->zone_domain = kmem_alloc(_SYS_NMLN, KM_SLEEP);
4525 zone->zone_domain[0] = '\0';
4526 zone->zone_hostid = HW_INVALID_HOSTID;
4527 zone->zone_shares = 1;
4528 zone->zone_shmmax = 0;
4529 zone->zone_ipc.ipcq_shmmni = 0;
4530 zone->zone_ipc.ipcq_semmni = 0;
4531 zone->zone_ipc.ipcq_msgmni = 0;
4532 zone->zone_bootargs = NULL;
4533 zone->zone_fs_allowed = NULL;
4534
4535 psecflags_default(&zone->zone_secflags);
4536
4537 zone->zone_initname =
4538 kmem_alloc(strlen(zone_default_initname) + 1, KM_SLEEP);
4539 (void) strcpy(zone->zone_initname, zone_default_initname);
4540 zone->zone_nlwps = 0;
4541 zone->zone_nlwps_ctl = INT_MAX;
4542 zone->zone_nprocs = 0;
4543 zone->zone_nprocs_ctl = INT_MAX;
4544 zone->zone_locked_mem = 0;
4545 zone->zone_locked_mem_ctl = UINT64_MAX;
4546 zone->zone_max_swap = 0;
4547 zone->zone_max_swap_ctl = UINT64_MAX;
4548 zone->zone_max_lofi = 0;
4549 zone->zone_max_lofi_ctl = UINT64_MAX;
4550 zone0.zone_lockedmem_kstat = NULL;
4551 zone0.zone_swapresv_kstat = NULL;
4552
4553 zone->zone_ustate = cpu_uarray_zalloc(ZONE_USTATE_MAX, KM_SLEEP);
4554
4555 /*
4556 * Zsched initializes the rctls.
4557 */
4558 zone->zone_rctls = NULL;
4559
4560 if ((error = parse_rctls(rctlbuf, rctlbufsz, &rctls)) != 0) {
4561 zone_free(zone);
4562 return (zone_create_error(error, 0, extended_error));
4563 }
4564
4565 if ((error = parse_zfs(zone, zfsbuf, zfsbufsz)) != 0) {
4566 zone_free(zone);
4567 return (set_errno(error));
4568 }
4569
4570 /*
4571 * Read in the trusted system parameters:
4572 * match flag and sensitivity label.
4573 */
4574 zone->zone_match = match;
4575 if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4576 /* Fail if requested to set doi to anything but system's doi */
4577 if (doi != 0 && doi != default_doi) {
4578 zone_free(zone);
4579 return (set_errno(EINVAL));
4580 }
4581 /* Always apply system's doi to the zone */
4582 error = zone_set_label(zone, label, default_doi);
4583 if (error != 0) {
4584 zone_free(zone);
4585 return (set_errno(error));
4586 }
4587 insert_label_hash = B_TRUE;
4588 } else {
4589 /* all zones get an admin_low label if system is not labeled */
4590 zone->zone_slabel = l_admin_low;
4591 label_hold(l_admin_low);
4592 insert_label_hash = B_FALSE;
4593 }
4594
4595 /*
4596 * Stop all lwps since that's what normally happens as part of fork().
4597 * This needs to happen before we grab any locks to avoid deadlock
4598 * (another lwp in the process could be waiting for the held lock).
4599 */
4600 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK)) {
4601 zone_free(zone);
4602 nvlist_free(rctls);
4603 return (zone_create_error(error, 0, extended_error));
4604 }
4605
4606 if (block_mounts(zone) == 0) {
4607 mutex_enter(&pp->p_lock);
4608 if (curthread != pp->p_agenttp)
4609 continuelwps(pp);
4610 mutex_exit(&pp->p_lock);
4611 zone_free(zone);
4612 nvlist_free(rctls);
4613 return (zone_create_error(error, 0, extended_error));
4614 }
4615
4616 /*
4617 * Set up credential for kernel access. After this, any errors
4618 * should go through the dance in errout rather than calling
4619 * zone_free directly.
4620 */
4621 zone->zone_kcred = crdup(kcred);
4622 crsetzone(zone->zone_kcred, zone);
4623 priv_intersect(zone->zone_privset, &CR_PPRIV(zone->zone_kcred));
4624 priv_intersect(zone->zone_privset, &CR_EPRIV(zone->zone_kcred));
4625 priv_intersect(zone->zone_privset, &CR_IPRIV(zone->zone_kcred));
4626 priv_intersect(zone->zone_privset, &CR_LPRIV(zone->zone_kcred));
4627
4628 mutex_enter(&zonehash_lock);
4629 /*
4630 * Make sure zone doesn't already exist.
4631 *
4632 * If the system and zone are labeled,
4633 * make sure no other zone exists that has the same label.
4634 */
4635 if ((ztmp = zone_find_all_by_name(zone->zone_name)) != NULL ||
4636 (insert_label_hash &&
4637 (ztmp = zone_find_all_by_label(zone->zone_slabel)) != NULL)) {
4638 zone_status_t status;
4639
4640 status = zone_status_get(ztmp);
4641 if (status == ZONE_IS_READY || status == ZONE_IS_RUNNING)
4642 error = EEXIST;
4643 else
4644 error = EBUSY;
4645
4646 if (insert_label_hash)
4647 error2 = ZE_LABELINUSE;
4648
4649 goto errout;
4650 }
4651
4652 /*
4653 * Don't allow zone creations which would cause one zone's rootpath to
4654 * be accessible from that of another (non-global) zone.
4655 */
4656 if (zone_is_nested(zone->zone_rootpath)) {
4657 error = EBUSY;
4658 goto errout;
4659 }
4660
4661 ASSERT(zonecount != 0); /* check for leaks */
4662 if (zonecount + 1 > maxzones) {
4663 error = ENOMEM;
4664 goto errout;
4665 }
4666
4667 if (zone_mount_count(zone->zone_rootpath) != 0) {
4668 error = EBUSY;
4669 error2 = ZE_AREMOUNTS;
4670 goto errout;
4671 }
4672
4673 /*
4674 * Zone is still incomplete, but we need to drop all locks while
4675 * zsched() initializes this zone's kernel process. We
4676 * optimistically add the zone to the hashtable and associated
4677 * lists so a parallel zone_create() doesn't try to create the
4678 * same zone.
4679 */
4680 zonecount++;
4681 (void) mod_hash_insert(zonehashbyid,
4682 (mod_hash_key_t)(uintptr_t)zone->zone_id,
4683 (mod_hash_val_t)(uintptr_t)zone);
4684 str = kmem_alloc(strlen(zone->zone_name) + 1, KM_SLEEP);
4685 (void) strcpy(str, zone->zone_name);
4686 (void) mod_hash_insert(zonehashbyname, (mod_hash_key_t)str,
4687 (mod_hash_val_t)(uintptr_t)zone);
4688 if (insert_label_hash) {
4689 (void) mod_hash_insert(zonehashbylabel,
4690 (mod_hash_key_t)zone->zone_slabel, (mod_hash_val_t)zone);
4691 zone->zone_flags |= ZF_HASHED_LABEL;
4692 }
4693
4694 /*
4695 * Insert into active list. At this point there are no 'hold's
4696 * on the zone, but everyone else knows not to use it, so we can
4697 * continue to use it. zsched() will do a zone_hold() if the
4698 * newproc() is successful.
4699 */
4700 list_insert_tail(&zone_active, zone);
4701 mutex_exit(&zonehash_lock);
4702
4703 zarg.zone = zone;
4704 zarg.nvlist = rctls;
4705 /*
4706 * The process, task, and project rctls are probably wrong;
4707 * we need an interface to get the default values of all rctls,
4708 * and initialize zsched appropriately. I'm not sure that that
4709 * makes much of a difference, though.
4710 */
4711 error = newproc(zsched, (void *)&zarg, syscid, minclsyspri, NULL, 0);
4712 if (error != 0) {
4713 /*
4714 * We need to undo all globally visible state.
4715 */
4716 mutex_enter(&zonehash_lock);
4717 list_remove(&zone_active, zone);
4718 if (zone->zone_flags & ZF_HASHED_LABEL) {
4719 ASSERT(zone->zone_slabel != NULL);
4720 (void) mod_hash_destroy(zonehashbylabel,
4721 (mod_hash_key_t)zone->zone_slabel);
4722 }
4723 (void) mod_hash_destroy(zonehashbyname,
4724 (mod_hash_key_t)(uintptr_t)zone->zone_name);
4725 (void) mod_hash_destroy(zonehashbyid,
4726 (mod_hash_key_t)(uintptr_t)zone->zone_id);
4727 ASSERT(zonecount > 1);
4728 zonecount--;
4729 goto errout;
4730 }
4731
4732 /*
4733 * Zone creation can't fail from now on.
4734 */
4735
4736 /*
4737 * Create zone kstats
4738 */
4739 zone_kstat_create(zone);
4740
4741 /*
4742 * Let the other lwps continue.
4743 */
4744 mutex_enter(&pp->p_lock);
4745 if (curthread != pp->p_agenttp)
4746 continuelwps(pp);
4747 mutex_exit(&pp->p_lock);
4748
4749 /*
4750 * Wait for zsched to finish initializing the zone.
4751 */
4752 zone_status_wait(zone, ZONE_IS_READY);
4753 /*
4754 * The zone is fully visible, so we can let mounts progress.
4755 */
4756 resume_mounts(zone);
4757 nvlist_free(rctls);
4758
4759 return (zoneid);
4760
4761 errout:
4762 mutex_exit(&zonehash_lock);
4763 /*
4764 * Let the other lwps continue.
4765 */
4766 mutex_enter(&pp->p_lock);
4767 if (curthread != pp->p_agenttp)
4768 continuelwps(pp);
4769 mutex_exit(&pp->p_lock);
4770
4771 resume_mounts(zone);
4772 nvlist_free(rctls);
4773 /*
4774 * There is currently one reference to the zone, a cred_ref from
4775 * zone_kcred. To free the zone, we call crfree, which will call
4776 * zone_cred_rele, which will call zone_free.
4777 */
4778 ASSERT(zone->zone_cred_ref == 1);
4779 ASSERT(zone->zone_kcred->cr_ref == 1);
4780 ASSERT(zone->zone_ref == 0);
4781 zkcr = zone->zone_kcred;
4782 zone->zone_kcred = NULL;
4783 crfree(zkcr); /* triggers call to zone_free */
4784 return (zone_create_error(error, error2, extended_error));
4785 }
4786
4787 /*
4788 * Cause the zone to boot. This is pretty simple, since we let zoneadmd do
4789 * the heavy lifting. initname is the path to the program to launch
4790 * at the "top" of the zone; if this is NULL, we use the system default,
4791 * which is stored at zone_default_initname.
4792 */
4793 static int
4794 zone_boot(zoneid_t zoneid)
4795 {
4796 int err;
4797 zone_t *zone;
4798
4799 if (secpolicy_zone_config(CRED()) != 0)
4800 return (set_errno(EPERM));
4801 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4802 return (set_errno(EINVAL));
4803
4804 mutex_enter(&zonehash_lock);
4805 /*
4806 * Look for zone under hash lock to prevent races with calls to
4807 * zone_shutdown, zone_destroy, etc.
4808 */
4809 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4810 mutex_exit(&zonehash_lock);
4811 return (set_errno(EINVAL));
4812 }
4813
4814 mutex_enter(&zone_status_lock);
4815 if (zone_status_get(zone) != ZONE_IS_READY) {
4816 mutex_exit(&zone_status_lock);
4817 mutex_exit(&zonehash_lock);
4818 return (set_errno(EINVAL));
4819 }
4820 zone_status_set(zone, ZONE_IS_BOOTING);
4821 mutex_exit(&zone_status_lock);
4822
4823 zone_hold(zone); /* so we can use the zone_t later */
4824 mutex_exit(&zonehash_lock);
4825
4826 if (zone_status_wait_sig(zone, ZONE_IS_RUNNING) == 0) {
4827 zone_rele(zone);
4828 return (set_errno(EINTR));
4829 }
4830
4831 /*
4832 * Boot (starting init) might have failed, in which case the zone
4833 * will go to the SHUTTING_DOWN state; an appropriate errno will
4834 * be placed in zone->zone_boot_err, and so we return that.
4835 */
4836 err = zone->zone_boot_err;
4837 zone_rele(zone);
4838 return (err ? set_errno(err) : 0);
4839 }
4840
4841 /*
4842 * Kills all user processes in the zone, waiting for them all to exit
4843 * before returning.
4844 */
4845 static int
4846 zone_empty(zone_t *zone)
4847 {
4848 int waitstatus;
4849
4850 /*
4851 * We need to drop zonehash_lock before killing all
4852 * processes, otherwise we'll deadlock with zone_find_*
4853 * which can be called from the exit path.
4854 */
4855 ASSERT(MUTEX_NOT_HELD(&zonehash_lock));
4856 while ((waitstatus = zone_status_timedwait_sig(zone,
4857 ddi_get_lbolt() + hz, ZONE_IS_EMPTY)) == -1) {
4858 killall(zone->zone_id);
4859 }
4860 /*
4861 * return EINTR if we were signaled
4862 */
4863 if (waitstatus == 0)
4864 return (EINTR);
4865 return (0);
4866 }
4867
4868 /*
4869 * This function implements the policy for zone visibility.
4870 *
4871 * In standard Solaris, a non-global zone can only see itself.
4872 *
4873 * In Trusted Extensions, a labeled zone can lookup any zone whose label
4874 * it dominates. For this test, the label of the global zone is treated as
4875 * admin_high so it is special-cased instead of being checked for dominance.
4876 *
4877 * Returns true if zone attributes are viewable, false otherwise.
4878 */
4879 static boolean_t
4880 zone_list_access(zone_t *zone)
4881 {
4882
4883 if (curproc->p_zone == global_zone ||
4884 curproc->p_zone == zone) {
4885 return (B_TRUE);
4886 } else if (is_system_labeled() && !(zone->zone_flags & ZF_IS_SCRATCH)) {
4887 bslabel_t *curproc_label;
4888 bslabel_t *zone_label;
4889
4890 curproc_label = label2bslabel(curproc->p_zone->zone_slabel);
4891 zone_label = label2bslabel(zone->zone_slabel);
4892
4893 if (zone->zone_id != GLOBAL_ZONEID &&
4894 bldominates(curproc_label, zone_label)) {
4895 return (B_TRUE);
4896 } else {
4897 return (B_FALSE);
4898 }
4899 } else {
4900 return (B_FALSE);
4901 }
4902 }
4903
4904 /*
4905 * Systemcall to start the zone's halt sequence. By the time this
4906 * function successfully returns, all user processes and kernel threads
4907 * executing in it will have exited, ZSD shutdown callbacks executed,
4908 * and the zone status set to ZONE_IS_DOWN.
4909 *
4910 * It is possible that the call will interrupt itself if the caller is the
4911 * parent of any process running in the zone, and doesn't have SIGCHLD blocked.
4912 */
4913 static int
4914 zone_shutdown(zoneid_t zoneid)
4915 {
4916 int error;
4917 zone_t *zone;
4918 zone_status_t status;
4919
4920 if (secpolicy_zone_config(CRED()) != 0)
4921 return (set_errno(EPERM));
4922 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
4923 return (set_errno(EINVAL));
4924
4925 mutex_enter(&zonehash_lock);
4926 /*
4927 * Look for zone under hash lock to prevent races with other
4928 * calls to zone_shutdown and zone_destroy.
4929 */
4930 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
4931 mutex_exit(&zonehash_lock);
4932 return (set_errno(EINVAL));
4933 }
4934
4935 /*
4936 * We have to drop zonehash_lock before calling block_mounts.
4937 * Hold the zone so we can continue to use the zone_t.
4938 */
4939 zone_hold(zone);
4940 mutex_exit(&zonehash_lock);
4941
4942 /*
4943 * Block mounts so that VFS_MOUNT() can get an accurate view of
4944 * the zone's status with regards to ZONE_IS_SHUTTING down.
4945 *
4946 * e.g. NFS can fail the mount if it determines that the zone
4947 * has already begun the shutdown sequence.
4948 *
4949 */
4950 if (block_mounts(zone) == 0) {
4951 zone_rele(zone);
4952 return (set_errno(EINTR));
4953 }
4954
4955 mutex_enter(&zonehash_lock);
4956 mutex_enter(&zone_status_lock);
4957 status = zone_status_get(zone);
4958 /*
4959 * Fail if the zone isn't fully initialized yet.
4960 */
4961 if (status < ZONE_IS_READY) {
4962 mutex_exit(&zone_status_lock);
4963 mutex_exit(&zonehash_lock);
4964 resume_mounts(zone);
4965 zone_rele(zone);
4966 return (set_errno(EINVAL));
4967 }
4968 /*
4969 * If conditions required for zone_shutdown() to return have been met,
4970 * return success.
4971 */
4972 if (status >= ZONE_IS_DOWN) {
4973 mutex_exit(&zone_status_lock);
4974 mutex_exit(&zonehash_lock);
4975 resume_mounts(zone);
4976 zone_rele(zone);
4977 return (0);
4978 }
4979 /*
4980 * If zone_shutdown() hasn't been called before, go through the motions.
4981 * If it has, there's nothing to do but wait for the kernel threads to
4982 * drain.
4983 */
4984 if (status < ZONE_IS_EMPTY) {
4985 uint_t ntasks;
4986
4987 mutex_enter(&zone->zone_lock);
4988 if ((ntasks = zone->zone_ntasks) != 1) {
4989 /*
4990 * There's still stuff running.
4991 */
4992 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
4993 }
4994 mutex_exit(&zone->zone_lock);
4995 if (ntasks == 1) {
4996 /*
4997 * The only way to create another task is through
4998 * zone_enter(), which will block until we drop
4999 * zonehash_lock. The zone is empty.
5000 */
5001 if (zone->zone_kthreads == NULL) {
5002 /*
5003 * Skip ahead to ZONE_IS_DOWN
5004 */
5005 zone_status_set(zone, ZONE_IS_DOWN);
5006 } else {
5007 zone_status_set(zone, ZONE_IS_EMPTY);
5008 }
5009 }
5010 }
5011 mutex_exit(&zone_status_lock);
5012 mutex_exit(&zonehash_lock);
5013 resume_mounts(zone);
5014
5015 if (error = zone_empty(zone)) {
5016 zone_rele(zone);
5017 return (set_errno(error));
5018 }
5019 /*
5020 * After the zone status goes to ZONE_IS_DOWN this zone will no
5021 * longer be notified of changes to the pools configuration, so
5022 * in order to not end up with a stale pool pointer, we point
5023 * ourselves at the default pool and remove all resource
5024 * visibility. This is especially important as the zone_t may
5025 * languish on the deathrow for a very long time waiting for
5026 * cred's to drain out.
5027 *
5028 * This rebinding of the zone can happen multiple times
5029 * (presumably due to interrupted or parallel systemcalls)
5030 * without any adverse effects.
5031 */
5032 if (pool_lock_intr() != 0) {
5033 zone_rele(zone);
5034 return (set_errno(EINTR));
5035 }
5036 if (pool_state == POOL_ENABLED) {
5037 mutex_enter(&cpu_lock);
5038 zone_pool_set(zone, pool_default);
5039 /*
5040 * The zone no longer needs to be able to see any cpus.
5041 */
5042 zone_pset_set(zone, ZONE_PS_INVAL);
5043 mutex_exit(&cpu_lock);
5044 }
5045 pool_unlock();
5046
5047 /*
5048 * ZSD shutdown callbacks can be executed multiple times, hence
5049 * it is safe to not be holding any locks across this call.
5050 */
5051 zone_zsd_callbacks(zone, ZSD_SHUTDOWN);
5052
5053 mutex_enter(&zone_status_lock);
5054 if (zone->zone_kthreads == NULL && zone_status_get(zone) < ZONE_IS_DOWN)
5055 zone_status_set(zone, ZONE_IS_DOWN);
5056 mutex_exit(&zone_status_lock);
5057
5058 /*
5059 * Wait for kernel threads to drain.
5060 */
5061 if (!zone_status_wait_sig(zone, ZONE_IS_DOWN)) {
5062 zone_rele(zone);
5063 return (set_errno(EINTR));
5064 }
5065
5066 /*
5067 * Zone can be become down/destroyable even if the above wait
5068 * returns EINTR, so any code added here may never execute.
5069 * (i.e. don't add code here)
5070 */
5071
5072 zone_rele(zone);
5073 return (0);
5074 }
5075
5076 /*
5077 * Log the specified zone's reference counts. The caller should not be
5078 * holding the zone's zone_lock.
5079 */
5080 static void
5081 zone_log_refcounts(zone_t *zone)
5082 {
5083 char *buffer;
5084 char *buffer_position;
5085 uint32_t buffer_size;
5086 uint32_t index;
5087 uint_t ref;
5088 uint_t cred_ref;
5089
5090 /*
5091 * Construct a string representing the subsystem-specific reference
5092 * counts. The counts are printed in ascending order by index into the
5093 * zone_t::zone_subsys_ref array. The list will be surrounded by
5094 * square brackets [] and will only contain nonzero reference counts.
5095 *
5096 * The buffer will hold two square bracket characters plus ten digits,
5097 * one colon, one space, one comma, and some characters for a
5098 * subsystem name per subsystem-specific reference count. (Unsigned 32-
5099 * bit integers have at most ten decimal digits.) The last
5100 * reference count's comma is replaced by the closing square
5101 * bracket and a NULL character to terminate the string.
5102 *
5103 * NOTE: We have to grab the zone's zone_lock to create a consistent
5104 * snapshot of the zone's reference counters.
5105 *
5106 * First, figure out how much space the string buffer will need.
5107 * The buffer's size is stored in buffer_size.
5108 */
5109 buffer_size = 2; /* for the square brackets */
5110 mutex_enter(&zone->zone_lock);
5111 zone->zone_flags |= ZF_REFCOUNTS_LOGGED;
5112 ref = zone->zone_ref;
5113 cred_ref = zone->zone_cred_ref;
5114 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index)
5115 if (zone->zone_subsys_ref[index] != 0)
5116 buffer_size += strlen(zone_ref_subsys_names[index]) +
5117 13;
5118 if (buffer_size == 2) {
5119 /*
5120 * No subsystems had nonzero reference counts. Don't bother
5121 * with allocating a buffer; just log the general-purpose and
5122 * credential reference counts.
5123 */
5124 mutex_exit(&zone->zone_lock);
5125 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5126 "Zone '%s' (ID: %d) is shutting down, but %u zone "
5127 "references and %u credential references are still extant",
5128 zone->zone_name, zone->zone_id, ref, cred_ref);
5129 return;
5130 }
5131
5132 /*
5133 * buffer_size contains the exact number of characters that the
5134 * buffer will need. Allocate the buffer and fill it with nonzero
5135 * subsystem-specific reference counts. Surround the results with
5136 * square brackets afterwards.
5137 */
5138 buffer = kmem_alloc(buffer_size, KM_SLEEP);
5139 buffer_position = &buffer[1];
5140 for (index = 0; index < ZONE_REF_NUM_SUBSYS; ++index) {
5141 /*
5142 * NOTE: The DDI's version of sprintf() returns a pointer to
5143 * the modified buffer rather than the number of bytes written
5144 * (as in snprintf(3C)). This is unfortunate and annoying.
5145 * Therefore, we'll use snprintf() with INT_MAX to get the
5146 * number of bytes written. Using INT_MAX is safe because
5147 * the buffer is perfectly sized for the data: we'll never
5148 * overrun the buffer.
5149 */
5150 if (zone->zone_subsys_ref[index] != 0)
5151 buffer_position += snprintf(buffer_position, INT_MAX,
5152 "%s: %u,", zone_ref_subsys_names[index],
5153 zone->zone_subsys_ref[index]);
5154 }
5155 mutex_exit(&zone->zone_lock);
5156 buffer[0] = '[';
5157 ASSERT((uintptr_t)(buffer_position - buffer) < buffer_size);
5158 ASSERT(buffer_position[0] == '\0' && buffer_position[-1] == ',');
5159 buffer_position[-1] = ']';
5160
5161 /*
5162 * Log the reference counts and free the message buffer.
5163 */
5164 (void) strlog(0, 0, 1, SL_CONSOLE | SL_NOTE,
5165 "Zone '%s' (ID: %d) is shutting down, but %u zone references and "
5166 "%u credential references are still extant %s", zone->zone_name,
5167 zone->zone_id, ref, cred_ref, buffer);
5168 kmem_free(buffer, buffer_size);
5169 }
5170
5171 /*
5172 * Systemcall entry point to finalize the zone halt process. The caller
5173 * must have already successfully called zone_shutdown().
5174 *
5175 * Upon successful completion, the zone will have been fully destroyed:
5176 * zsched will have exited, destructor callbacks executed, and the zone
5177 * removed from the list of active zones.
5178 */
5179 static int
5180 zone_destroy(zoneid_t zoneid)
5181 {
5182 uint64_t uniqid;
5183 zone_t *zone;
5184 zone_status_t status;
5185 clock_t wait_time;
5186 boolean_t log_refcounts;
5187
5188 if (secpolicy_zone_config(CRED()) != 0)
5189 return (set_errno(EPERM));
5190 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5191 return (set_errno(EINVAL));
5192
5193 mutex_enter(&zonehash_lock);
5194 /*
5195 * Look for zone under hash lock to prevent races with other
5196 * calls to zone_destroy.
5197 */
5198 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5199 mutex_exit(&zonehash_lock);
5200 return (set_errno(EINVAL));
5201 }
5202
5203 if (zone_mount_count(zone->zone_rootpath) != 0) {
5204 mutex_exit(&zonehash_lock);
5205 return (set_errno(EBUSY));
5206 }
5207 mutex_enter(&zone_status_lock);
5208 status = zone_status_get(zone);
5209 if (status < ZONE_IS_DOWN) {
5210 mutex_exit(&zone_status_lock);
5211 mutex_exit(&zonehash_lock);
5212 return (set_errno(EBUSY));
5213 } else if (status == ZONE_IS_DOWN) {
5214 zone_status_set(zone, ZONE_IS_DYING); /* Tell zsched to exit */
5215 }
5216 mutex_exit(&zone_status_lock);
5217 zone_hold(zone);
5218 mutex_exit(&zonehash_lock);
5219
5220 /*
5221 * wait for zsched to exit
5222 */
5223 zone_status_wait(zone, ZONE_IS_DEAD);
5224 zone_zsd_callbacks(zone, ZSD_DESTROY);
5225 zone->zone_netstack = NULL;
5226 uniqid = zone->zone_uniqid;
5227 zone_rele(zone);
5228 zone = NULL; /* potentially free'd */
5229
5230 log_refcounts = B_FALSE;
5231 wait_time = SEC_TO_TICK(ZONE_DESTROY_TIMEOUT_SECS);
5232 mutex_enter(&zonehash_lock);
5233 for (; /* ever */; ) {
5234 boolean_t unref;
5235 boolean_t refs_have_been_logged;
5236
5237 if ((zone = zone_find_all_by_id(zoneid)) == NULL ||
5238 zone->zone_uniqid != uniqid) {
5239 /*
5240 * The zone has gone away. Necessary conditions
5241 * are met, so we return success.
5242 */
5243 mutex_exit(&zonehash_lock);
5244 return (0);
5245 }
5246 mutex_enter(&zone->zone_lock);
5247 unref = ZONE_IS_UNREF(zone);
5248 refs_have_been_logged = (zone->zone_flags &
5249 ZF_REFCOUNTS_LOGGED);
5250 mutex_exit(&zone->zone_lock);
5251 if (unref) {
5252 /*
5253 * There is only one reference to the zone -- that
5254 * added when the zone was added to the hashtables --
5255 * and things will remain this way until we drop
5256 * zonehash_lock... we can go ahead and cleanup the
5257 * zone.
5258 */
5259 break;
5260 }
5261
5262 /*
5263 * Wait for zone_rele_common() or zone_cred_rele() to signal
5264 * zone_destroy_cv. zone_destroy_cv is signaled only when
5265 * some zone's general-purpose reference count reaches one.
5266 * If ZONE_DESTROY_TIMEOUT_SECS seconds elapse while waiting
5267 * on zone_destroy_cv, then log the zone's reference counts and
5268 * continue to wait for zone_rele() and zone_cred_rele().
5269 */
5270 if (!refs_have_been_logged) {
5271 if (!log_refcounts) {
5272 /*
5273 * This thread hasn't timed out waiting on
5274 * zone_destroy_cv yet. Wait wait_time clock
5275 * ticks (initially ZONE_DESTROY_TIMEOUT_SECS
5276 * seconds) for the zone's references to clear.
5277 */
5278 ASSERT(wait_time > 0);
5279 wait_time = cv_reltimedwait_sig(
5280 &zone_destroy_cv, &zonehash_lock, wait_time,
5281 TR_SEC);
5282 if (wait_time > 0) {
5283 /*
5284 * A thread in zone_rele() or
5285 * zone_cred_rele() signaled
5286 * zone_destroy_cv before this thread's
5287 * wait timed out. The zone might have
5288 * only one reference left; find out!
5289 */
5290 continue;
5291 } else if (wait_time == 0) {
5292 /* The thread's process was signaled. */
5293 mutex_exit(&zonehash_lock);
5294 return (set_errno(EINTR));
5295 }
5296
5297 /*
5298 * The thread timed out while waiting on
5299 * zone_destroy_cv. Even though the thread
5300 * timed out, it has to check whether another
5301 * thread woke up from zone_destroy_cv and
5302 * destroyed the zone.
5303 *
5304 * If the zone still exists and has more than
5305 * one unreleased general-purpose reference,
5306 * then log the zone's reference counts.
5307 */
5308 log_refcounts = B_TRUE;
5309 continue;
5310 }
5311
5312 /*
5313 * The thread already timed out on zone_destroy_cv while
5314 * waiting for subsystems to release the zone's last
5315 * general-purpose references. Log the zone's reference
5316 * counts and wait indefinitely on zone_destroy_cv.
5317 */
5318 zone_log_refcounts(zone);
5319 }
5320 if (cv_wait_sig(&zone_destroy_cv, &zonehash_lock) == 0) {
5321 /* The thread's process was signaled. */
5322 mutex_exit(&zonehash_lock);
5323 return (set_errno(EINTR));
5324 }
5325 }
5326
5327 /*
5328 * Remove CPU cap for this zone now since we're not going to
5329 * fail below this point.
5330 */
5331 cpucaps_zone_remove(zone);
5332
5333 /* Get rid of the zone's kstats */
5334 zone_kstat_delete(zone);
5335
5336 /* remove the pfexecd doors */
5337 if (zone->zone_pfexecd != NULL) {
5338 klpd_freelist(&zone->zone_pfexecd);
5339 zone->zone_pfexecd = NULL;
5340 }
5341
5342 /* free brand specific data */
5343 if (ZONE_IS_BRANDED(zone))
5344 ZBROP(zone)->b_free_brand_data(zone);
5345
5346 /* Say goodbye to brand framework. */
5347 brand_unregister_zone(zone->zone_brand);
5348
5349 /*
5350 * It is now safe to let the zone be recreated; remove it from the
5351 * lists. The memory will not be freed until the last cred
5352 * reference goes away.
5353 */
5354 ASSERT(zonecount > 1); /* must be > 1; can't destroy global zone */
5355 zonecount--;
5356 /* remove from active list and hash tables */
5357 list_remove(&zone_active, zone);
5358 (void) mod_hash_destroy(zonehashbyname,
5359 (mod_hash_key_t)zone->zone_name);
5360 (void) mod_hash_destroy(zonehashbyid,
5361 (mod_hash_key_t)(uintptr_t)zone->zone_id);
5362 if (zone->zone_flags & ZF_HASHED_LABEL)
5363 (void) mod_hash_destroy(zonehashbylabel,
5364 (mod_hash_key_t)zone->zone_slabel);
5365 mutex_exit(&zonehash_lock);
5366
5367 /*
5368 * Release the root vnode; we're not using it anymore. Nor should any
5369 * other thread that might access it exist.
5370 */
5371 if (zone->zone_rootvp != NULL) {
5372 VN_RELE(zone->zone_rootvp);
5373 zone->zone_rootvp = NULL;
5374 }
5375
5376 /* add to deathrow list */
5377 mutex_enter(&zone_deathrow_lock);
5378 list_insert_tail(&zone_deathrow, zone);
5379 mutex_exit(&zone_deathrow_lock);
5380
5381 /*
5382 * Drop last reference (which was added by zsched()), this will
5383 * free the zone unless there are outstanding cred references.
5384 */
5385 zone_rele(zone);
5386 return (0);
5387 }
5388
5389 /*
5390 * Systemcall entry point for zone_getattr(2).
5391 */
5392 static ssize_t
5393 zone_getattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5394 {
5395 size_t size;
5396 int error = 0, err;
5397 zone_t *zone;
5398 char *zonepath;
5399 char *outstr;
5400 zone_status_t zone_status;
5401 pid_t initpid;
5402 boolean_t global = (curzone == global_zone);
5403 boolean_t inzone = (curzone->zone_id == zoneid);
5404 ushort_t flags;
5405 zone_net_data_t *zbuf;
5406
5407 mutex_enter(&zonehash_lock);
5408 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5409 mutex_exit(&zonehash_lock);
5410 return (set_errno(EINVAL));
5411 }
5412 zone_status = zone_status_get(zone);
5413 if (zone_status < ZONE_IS_INITIALIZED) {
5414 mutex_exit(&zonehash_lock);
5415 return (set_errno(EINVAL));
5416 }
5417 zone_hold(zone);
5418 mutex_exit(&zonehash_lock);
5419
5420 /*
5421 * If not in the global zone, don't show information about other zones,
5422 * unless the system is labeled and the local zone's label dominates
5423 * the other zone.
5424 */
5425 if (!zone_list_access(zone)) {
5426 zone_rele(zone);
5427 return (set_errno(EINVAL));
5428 }
5429
5430 switch (attr) {
5431 case ZONE_ATTR_ROOT:
5432 if (global) {
5433 /*
5434 * Copy the path to trim the trailing "/" (except for
5435 * the global zone).
5436 */
5437 if (zone != global_zone)
5438 size = zone->zone_rootpathlen - 1;
5439 else
5440 size = zone->zone_rootpathlen;
5441 zonepath = kmem_alloc(size, KM_SLEEP);
5442 bcopy(zone->zone_rootpath, zonepath, size);
5443 zonepath[size - 1] = '\0';
5444 } else {
5445 if (inzone || !is_system_labeled()) {
5446 /*
5447 * Caller is not in the global zone.
5448 * if the query is on the current zone
5449 * or the system is not labeled,
5450 * just return faked-up path for current zone.
5451 */
5452 zonepath = "/";
5453 size = 2;
5454 } else {
5455 /*
5456 * Return related path for current zone.
5457 */
5458 int prefix_len = strlen(zone_prefix);
5459 int zname_len = strlen(zone->zone_name);
5460
5461 size = prefix_len + zname_len + 1;
5462 zonepath = kmem_alloc(size, KM_SLEEP);
5463 bcopy(zone_prefix, zonepath, prefix_len);
5464 bcopy(zone->zone_name, zonepath +
5465 prefix_len, zname_len);
5466 zonepath[size - 1] = '\0';
5467 }
5468 }
5469 if (bufsize > size)
5470 bufsize = size;
5471 if (buf != NULL) {
5472 err = copyoutstr(zonepath, buf, bufsize, NULL);
5473 if (err != 0 && err != ENAMETOOLONG)
5474 error = EFAULT;
5475 }
5476 if (global || (is_system_labeled() && !inzone))
5477 kmem_free(zonepath, size);
5478 break;
5479
5480 case ZONE_ATTR_NAME:
5481 size = strlen(zone->zone_name) + 1;
5482 if (bufsize > size)
5483 bufsize = size;
5484 if (buf != NULL) {
5485 err = copyoutstr(zone->zone_name, buf, bufsize, NULL);
5486 if (err != 0 && err != ENAMETOOLONG)
5487 error = EFAULT;
5488 }
5489 break;
5490
5491 case ZONE_ATTR_STATUS:
5492 /*
5493 * Since we're not holding zonehash_lock, the zone status
5494 * may be anything; leave it up to userland to sort it out.
5495 */
5496 size = sizeof (zone_status);
5497 if (bufsize > size)
5498 bufsize = size;
5499 zone_status = zone_status_get(zone);
5500 if (buf != NULL &&
5501 copyout(&zone_status, buf, bufsize) != 0)
5502 error = EFAULT;
5503 break;
5504 case ZONE_ATTR_FLAGS:
5505 size = sizeof (zone->zone_flags);
5506 if (bufsize > size)
5507 bufsize = size;
5508 flags = zone->zone_flags;
5509 if (buf != NULL &&
5510 copyout(&flags, buf, bufsize) != 0)
5511 error = EFAULT;
5512 break;
5513 case ZONE_ATTR_PRIVSET:
5514 size = sizeof (priv_set_t);
5515 if (bufsize > size)
5516 bufsize = size;
5517 if (buf != NULL &&
5518 copyout(zone->zone_privset, buf, bufsize) != 0)
5519 error = EFAULT;
5520 break;
5521 case ZONE_ATTR_UNIQID:
5522 size = sizeof (zone->zone_uniqid);
5523 if (bufsize > size)
5524 bufsize = size;
5525 if (buf != NULL &&
5526 copyout(&zone->zone_uniqid, buf, bufsize) != 0)
5527 error = EFAULT;
5528 break;
5529 case ZONE_ATTR_POOLID:
5530 {
5531 pool_t *pool;
5532 poolid_t poolid;
5533
5534 if (pool_lock_intr() != 0) {
5535 error = EINTR;
5536 break;
5537 }
5538 pool = zone_pool_get(zone);
5539 poolid = pool->pool_id;
5540 pool_unlock();
5541 size = sizeof (poolid);
5542 if (bufsize > size)
5543 bufsize = size;
5544 if (buf != NULL && copyout(&poolid, buf, size) != 0)
5545 error = EFAULT;
5546 }
5547 break;
5548 case ZONE_ATTR_SLBL:
5549 size = sizeof (bslabel_t);
5550 if (bufsize > size)
5551 bufsize = size;
5552 if (zone->zone_slabel == NULL)
5553 error = EINVAL;
5554 else if (buf != NULL &&
5555 copyout(label2bslabel(zone->zone_slabel), buf,
5556 bufsize) != 0)
5557 error = EFAULT;
5558 break;
5559 case ZONE_ATTR_INITPID:
5560 size = sizeof (initpid);
5561 if (bufsize > size)
5562 bufsize = size;
5563 initpid = zone->zone_proc_initpid;
5564 if (initpid == -1) {
5565 error = ESRCH;
5566 break;
5567 }
5568 if (buf != NULL &&
5569 copyout(&initpid, buf, bufsize) != 0)
5570 error = EFAULT;
5571 break;
5572 case ZONE_ATTR_BRAND:
5573 size = strlen(zone->zone_brand->b_name) + 1;
5574
5575 if (bufsize > size)
5576 bufsize = size;
5577 if (buf != NULL) {
5578 err = copyoutstr(zone->zone_brand->b_name, buf,
5579 bufsize, NULL);
5580 if (err != 0 && err != ENAMETOOLONG)
5581 error = EFAULT;
5582 }
5583 break;
5584 case ZONE_ATTR_INITNAME:
5585 size = strlen(zone->zone_initname) + 1;
5586 if (bufsize > size)
5587 bufsize = size;
5588 if (buf != NULL) {
5589 err = copyoutstr(zone->zone_initname, buf, bufsize,
5590 NULL);
5591 if (err != 0 && err != ENAMETOOLONG)
5592 error = EFAULT;
5593 }
5594 break;
5595 case ZONE_ATTR_BOOTARGS:
5596 if (zone->zone_bootargs == NULL)
5597 outstr = "";
5598 else
5599 outstr = zone->zone_bootargs;
5600 size = strlen(outstr) + 1;
5601 if (bufsize > size)
5602 bufsize = size;
5603 if (buf != NULL) {
5604 err = copyoutstr(outstr, buf, bufsize, NULL);
5605 if (err != 0 && err != ENAMETOOLONG)
5606 error = EFAULT;
5607 }
5608 break;
5609 case ZONE_ATTR_PHYS_MCAP:
5610 size = sizeof (zone->zone_phys_mcap);
5611 if (bufsize > size)
5612 bufsize = size;
5613 if (buf != NULL &&
5614 copyout(&zone->zone_phys_mcap, buf, bufsize) != 0)
5615 error = EFAULT;
5616 break;
5617 case ZONE_ATTR_SCHED_CLASS:
5618 mutex_enter(&class_lock);
5619
5620 if (zone->zone_defaultcid >= loaded_classes)
5621 outstr = "";
5622 else
5623 outstr = sclass[zone->zone_defaultcid].cl_name;
5624 size = strlen(outstr) + 1;
5625 if (bufsize > size)
5626 bufsize = size;
5627 if (buf != NULL) {
5628 err = copyoutstr(outstr, buf, bufsize, NULL);
5629 if (err != 0 && err != ENAMETOOLONG)
5630 error = EFAULT;
5631 }
5632
5633 mutex_exit(&class_lock);
5634 break;
5635 case ZONE_ATTR_HOSTID:
5636 if (zone->zone_hostid != HW_INVALID_HOSTID &&
5637 bufsize == sizeof (zone->zone_hostid)) {
5638 size = sizeof (zone->zone_hostid);
5639 if (buf != NULL && copyout(&zone->zone_hostid, buf,
5640 bufsize) != 0)
5641 error = EFAULT;
5642 } else {
5643 error = EINVAL;
5644 }
5645 break;
5646 case ZONE_ATTR_FS_ALLOWED:
5647 if (zone->zone_fs_allowed == NULL)
5648 outstr = "";
5649 else
5650 outstr = zone->zone_fs_allowed;
5651 size = strlen(outstr) + 1;
5652 if (bufsize > size)
5653 bufsize = size;
5654 if (buf != NULL) {
5655 err = copyoutstr(outstr, buf, bufsize, NULL);
5656 if (err != 0 && err != ENAMETOOLONG)
5657 error = EFAULT;
5658 }
5659 break;
5660 case ZONE_ATTR_SECFLAGS:
5661 size = sizeof (zone->zone_secflags);
5662 if (bufsize > size)
5663 bufsize = size;
5664 if ((err = copyout(&zone->zone_secflags, buf, bufsize)) != 0)
5665 error = EFAULT;
5666 break;
5667 case ZONE_ATTR_NETWORK:
5668 bufsize = MIN(bufsize, PIPE_BUF + sizeof (zone_net_data_t));
5669 size = bufsize;
5670 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5671 if (copyin(buf, zbuf, bufsize) != 0) {
5672 error = EFAULT;
5673 } else {
5674 error = zone_get_network(zoneid, zbuf);
5675 if (error == 0 && copyout(zbuf, buf, bufsize) != 0)
5676 error = EFAULT;
5677 }
5678 kmem_free(zbuf, bufsize);
5679 break;
5680 default:
5681 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone)) {
5682 size = bufsize;
5683 error = ZBROP(zone)->b_getattr(zone, attr, buf, &size);
5684 } else {
5685 error = EINVAL;
5686 }
5687 }
5688 zone_rele(zone);
5689
5690 if (error)
5691 return (set_errno(error));
5692 return ((ssize_t)size);
5693 }
5694
5695 /*
5696 * Systemcall entry point for zone_setattr(2).
5697 */
5698 /*ARGSUSED*/
5699 static int
5700 zone_setattr(zoneid_t zoneid, int attr, void *buf, size_t bufsize)
5701 {
5702 zone_t *zone;
5703 zone_status_t zone_status;
5704 int err = -1;
5705 zone_net_data_t *zbuf;
5706
5707 if (secpolicy_zone_config(CRED()) != 0)
5708 return (set_errno(EPERM));
5709
5710 /*
5711 * Only the ZONE_ATTR_PHYS_MCAP attribute can be set on the
5712 * global zone.
5713 */
5714 if (zoneid == GLOBAL_ZONEID && attr != ZONE_ATTR_PHYS_MCAP) {
5715 return (set_errno(EINVAL));
5716 }
5717
5718 mutex_enter(&zonehash_lock);
5719 if ((zone = zone_find_all_by_id(zoneid)) == NULL) {
5720 mutex_exit(&zonehash_lock);
5721 return (set_errno(EINVAL));
5722 }
5723 zone_hold(zone);
5724 mutex_exit(&zonehash_lock);
5725
5726 /*
5727 * At present most attributes can only be set on non-running,
5728 * non-global zones.
5729 */
5730 zone_status = zone_status_get(zone);
5731 if (attr != ZONE_ATTR_PHYS_MCAP && zone_status > ZONE_IS_READY) {
5732 err = EINVAL;
5733 goto done;
5734 }
5735
5736 switch (attr) {
5737 case ZONE_ATTR_INITNAME:
5738 err = zone_set_initname(zone, (const char *)buf);
5739 break;
5740 case ZONE_ATTR_INITNORESTART:
5741 zone->zone_restart_init = B_FALSE;
5742 err = 0;
5743 break;
5744 case ZONE_ATTR_BOOTARGS:
5745 err = zone_set_bootargs(zone, (const char *)buf);
5746 break;
5747 case ZONE_ATTR_BRAND:
5748 err = zone_set_brand(zone, (const char *)buf);
5749 break;
5750 case ZONE_ATTR_FS_ALLOWED:
5751 err = zone_set_fs_allowed(zone, (const char *)buf);
5752 break;
5753 case ZONE_ATTR_SECFLAGS:
5754 err = zone_set_secflags(zone, (psecflags_t *)buf);
5755 break;
5756 case ZONE_ATTR_PHYS_MCAP:
5757 err = zone_set_phys_mcap(zone, (const uint64_t *)buf);
5758 break;
5759 case ZONE_ATTR_SCHED_CLASS:
5760 err = zone_set_sched_class(zone, (const char *)buf);
5761 break;
5762 case ZONE_ATTR_HOSTID:
5763 if (bufsize == sizeof (zone->zone_hostid)) {
5764 if (copyin(buf, &zone->zone_hostid, bufsize) == 0)
5765 err = 0;
5766 else
5767 err = EFAULT;
5768 } else {
5769 err = EINVAL;
5770 }
5771 break;
5772 case ZONE_ATTR_NETWORK:
5773 if (bufsize > (PIPE_BUF + sizeof (zone_net_data_t))) {
5774 err = EINVAL;
5775 break;
5776 }
5777 zbuf = kmem_alloc(bufsize, KM_SLEEP);
5778 if (copyin(buf, zbuf, bufsize) != 0) {
5779 kmem_free(zbuf, bufsize);
5780 err = EFAULT;
5781 break;
5782 }
5783 err = zone_set_network(zoneid, zbuf);
5784 kmem_free(zbuf, bufsize);
5785 break;
5786 default:
5787 if ((attr >= ZONE_ATTR_BRAND_ATTRS) && ZONE_IS_BRANDED(zone))
5788 err = ZBROP(zone)->b_setattr(zone, attr, buf, bufsize);
5789 else
5790 err = EINVAL;
5791 }
5792
5793 done:
5794 zone_rele(zone);
5795 ASSERT(err != -1);
5796 return (err != 0 ? set_errno(err) : 0);
5797 }
5798
5799 /*
5800 * Return zero if the process has at least one vnode mapped in to its
5801 * address space which shouldn't be allowed to change zones.
5802 *
5803 * Also return zero if the process has any shared mappings which reserve
5804 * swap. This is because the counting for zone.max-swap does not allow swap
5805 * reservation to be shared between zones. zone swap reservation is counted
5806 * on zone->zone_max_swap.
5807 */
5808 static int
5809 as_can_change_zones(void)
5810 {
5811 proc_t *pp = curproc;
5812 struct seg *seg;
5813 struct as *as = pp->p_as;
5814 vnode_t *vp;
5815 int allow = 1;
5816
5817 ASSERT(pp->p_as != &kas);
5818 AS_LOCK_ENTER(as, RW_READER);
5819 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
5820
5821 /*
5822 * Cannot enter zone with shared anon memory which
5823 * reserves swap. See comment above.
5824 */
5825 if (seg_can_change_zones(seg) == B_FALSE) {
5826 allow = 0;
5827 break;
5828 }
5829 /*
5830 * if we can't get a backing vnode for this segment then skip
5831 * it.
5832 */
5833 vp = NULL;
5834 if (SEGOP_GETVP(seg, seg->s_base, &vp) != 0 || vp == NULL)
5835 continue;
5836 if (!vn_can_change_zones(vp)) { /* bail on first match */
5837 allow = 0;
5838 break;
5839 }
5840 }
5841 AS_LOCK_EXIT(as);
5842 return (allow);
5843 }
5844
5845 /*
5846 * Count swap reserved by curproc's address space
5847 */
5848 static size_t
5849 as_swresv(void)
5850 {
5851 proc_t *pp = curproc;
5852 struct seg *seg;
5853 struct as *as = pp->p_as;
5854 size_t swap = 0;
5855
5856 ASSERT(pp->p_as != &kas);
5857 ASSERT(AS_WRITE_HELD(as));
5858 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg))
5859 swap += seg_swresv(seg);
5860
5861 return (swap);
5862 }
5863
5864 /*
5865 * Systemcall entry point for zone_enter().
5866 *
5867 * The current process is injected into said zone. In the process
5868 * it will change its project membership, privileges, rootdir/cwd,
5869 * zone-wide rctls, and pool association to match those of the zone.
5870 *
5871 * The first zone_enter() called while the zone is in the ZONE_IS_READY
5872 * state will transition it to ZONE_IS_RUNNING. Processes may only
5873 * enter a zone that is "ready" or "running".
5874 */
5875 static int
5876 zone_enter(zoneid_t zoneid)
5877 {
5878 zone_t *zone;
5879 vnode_t *vp;
5880 proc_t *pp = curproc;
5881 contract_t *ct;
5882 cont_process_t *ctp;
5883 task_t *tk, *oldtk;
5884 kproject_t *zone_proj0;
5885 cred_t *cr, *newcr;
5886 pool_t *oldpool, *newpool;
5887 sess_t *sp;
5888 uid_t uid;
5889 zone_status_t status;
5890 int err = 0;
5891 rctl_entity_p_t e;
5892 size_t swap;
5893 kthread_id_t t;
5894
5895 if (secpolicy_zone_config(CRED()) != 0)
5896 return (set_errno(EPERM));
5897 if (zoneid < MIN_USERZONEID || zoneid > MAX_ZONEID)
5898 return (set_errno(EINVAL));
5899
5900 /*
5901 * Stop all lwps so we don't need to hold a lock to look at
5902 * curproc->p_zone. This needs to happen before we grab any
5903 * locks to avoid deadlock (another lwp in the process could
5904 * be waiting for the held lock).
5905 */
5906 if (curthread != pp->p_agenttp && !holdlwps(SHOLDFORK))
5907 return (set_errno(EINTR));
5908
5909 /*
5910 * Make sure we're not changing zones with files open or mapped in
5911 * to our address space which shouldn't be changing zones.
5912 */
5913 if (!files_can_change_zones()) {
5914 err = EBADF;
5915 goto out;
5916 }
5917 if (!as_can_change_zones()) {
5918 err = EFAULT;
5919 goto out;
5920 }
5921
5922 mutex_enter(&zonehash_lock);
5923 if (pp->p_zone != global_zone) {
5924 mutex_exit(&zonehash_lock);
5925 err = EINVAL;
5926 goto out;
5927 }
5928
5929 zone = zone_find_all_by_id(zoneid);
5930 if (zone == NULL) {
5931 mutex_exit(&zonehash_lock);
5932 err = EINVAL;
5933 goto out;
5934 }
5935
5936 /*
5937 * To prevent processes in a zone from holding contracts on
5938 * extrazonal resources, and to avoid process contract
5939 * memberships which span zones, contract holders and processes
5940 * which aren't the sole members of their encapsulating process
5941 * contracts are not allowed to zone_enter.
5942 */
5943 ctp = pp->p_ct_process;
5944 ct = &ctp->conp_contract;
5945 mutex_enter(&ct->ct_lock);
5946 mutex_enter(&pp->p_lock);
5947 if ((avl_numnodes(&pp->p_ct_held) != 0) || (ctp->conp_nmembers != 1)) {
5948 mutex_exit(&pp->p_lock);
5949 mutex_exit(&ct->ct_lock);
5950 mutex_exit(&zonehash_lock);
5951 err = EINVAL;
5952 goto out;
5953 }
5954
5955 /*
5956 * Moreover, we don't allow processes whose encapsulating
5957 * process contracts have inherited extrazonal contracts.
5958 * While it would be easier to eliminate all process contracts
5959 * with inherited contracts, we need to be able to give a
5960 * restarted init (or other zone-penetrating process) its
5961 * predecessor's contracts.
5962 */
5963 if (ctp->conp_ninherited != 0) {
5964 contract_t *next;
5965 for (next = list_head(&ctp->conp_inherited); next;
5966 next = list_next(&ctp->conp_inherited, next)) {
5967 if (contract_getzuniqid(next) != zone->zone_uniqid) {
5968 mutex_exit(&pp->p_lock);
5969 mutex_exit(&ct->ct_lock);
5970 mutex_exit(&zonehash_lock);
5971 err = EINVAL;
5972 goto out;
5973 }
5974 }
5975 }
5976
5977 mutex_exit(&pp->p_lock);
5978 mutex_exit(&ct->ct_lock);
5979
5980 status = zone_status_get(zone);
5981 if (status < ZONE_IS_READY || status >= ZONE_IS_SHUTTING_DOWN) {
5982 /*
5983 * Can't join
5984 */
5985 mutex_exit(&zonehash_lock);
5986 err = EINVAL;
5987 goto out;
5988 }
5989
5990 /*
5991 * Make sure new priv set is within the permitted set for caller
5992 */
5993 if (!priv_issubset(zone->zone_privset, &CR_OPPRIV(CRED()))) {
5994 mutex_exit(&zonehash_lock);
5995 err = EPERM;
5996 goto out;
5997 }
5998 /*
5999 * We want to momentarily drop zonehash_lock while we optimistically
6000 * bind curproc to the pool it should be running in. This is safe
6001 * since the zone can't disappear (we have a hold on it).
6002 */
6003 zone_hold(zone);
6004 mutex_exit(&zonehash_lock);
6005
6006 /*
6007 * Grab pool_lock to keep the pools configuration from changing
6008 * and to stop ourselves from getting rebound to another pool
6009 * until we join the zone.
6010 */
6011 if (pool_lock_intr() != 0) {
6012 zone_rele(zone);
6013 err = EINTR;
6014 goto out;
6015 }
6016 ASSERT(secpolicy_pool(CRED()) == 0);
6017 /*
6018 * Bind ourselves to the pool currently associated with the zone.
6019 */
6020 oldpool = curproc->p_pool;
6021 newpool = zone_pool_get(zone);
6022 if (pool_state == POOL_ENABLED && newpool != oldpool &&
6023 (err = pool_do_bind(newpool, P_PID, P_MYID,
6024 POOL_BIND_ALL)) != 0) {
6025 pool_unlock();
6026 zone_rele(zone);
6027 goto out;
6028 }
6029
6030 /*
6031 * Grab cpu_lock now; we'll need it later when we call
6032 * task_join().
6033 */
6034 mutex_enter(&cpu_lock);
6035 mutex_enter(&zonehash_lock);
6036 /*
6037 * Make sure the zone hasn't moved on since we dropped zonehash_lock.
6038 */
6039 if (zone_status_get(zone) >= ZONE_IS_SHUTTING_DOWN) {
6040 /*
6041 * Can't join anymore.
6042 */
6043 mutex_exit(&zonehash_lock);
6044 mutex_exit(&cpu_lock);
6045 if (pool_state == POOL_ENABLED &&
6046 newpool != oldpool)
6047 (void) pool_do_bind(oldpool, P_PID, P_MYID,
6048 POOL_BIND_ALL);
6049 pool_unlock();
6050 zone_rele(zone);
6051 err = EINVAL;
6052 goto out;
6053 }
6054
6055 /*
6056 * a_lock must be held while transfering locked memory and swap
6057 * reservation from the global zone to the non global zone because
6058 * asynchronous faults on the processes' address space can lock
6059 * memory and reserve swap via MCL_FUTURE and MAP_NORESERVE
6060 * segments respectively.
6061 */
6062 AS_LOCK_ENTER(pp->p_as, RW_WRITER);
6063 swap = as_swresv();
6064 mutex_enter(&pp->p_lock);
6065 zone_proj0 = zone->zone_zsched->p_task->tk_proj;
6066 /* verify that we do not exceed and task or lwp limits */
6067 mutex_enter(&zone->zone_nlwps_lock);
6068 /* add new lwps to zone and zone's proj0 */
6069 zone_proj0->kpj_nlwps += pp->p_lwpcnt;
6070 zone->zone_nlwps += pp->p_lwpcnt;
6071 /* add 1 task to zone's proj0 */
6072 zone_proj0->kpj_ntasks += 1;
6073
6074 zone_proj0->kpj_nprocs++;
6075 zone->zone_nprocs++;
6076 mutex_exit(&zone->zone_nlwps_lock);
6077
6078 mutex_enter(&zone->zone_mem_lock);
6079 zone->zone_locked_mem += pp->p_locked_mem;
6080 zone_proj0->kpj_data.kpd_locked_mem += pp->p_locked_mem;
6081 zone->zone_max_swap += swap;
6082 mutex_exit(&zone->zone_mem_lock);
6083
6084 mutex_enter(&(zone_proj0->kpj_data.kpd_crypto_lock));
6085 zone_proj0->kpj_data.kpd_crypto_mem += pp->p_crypto_mem;
6086 mutex_exit(&(zone_proj0->kpj_data.kpd_crypto_lock));
6087
6088 /* remove lwps and process from proc's old zone and old project */
6089 mutex_enter(&pp->p_zone->zone_nlwps_lock);
6090 pp->p_zone->zone_nlwps -= pp->p_lwpcnt;
6091 pp->p_task->tk_proj->kpj_nlwps -= pp->p_lwpcnt;
6092 pp->p_task->tk_proj->kpj_nprocs--;
6093 pp->p_zone->zone_nprocs--;
6094 mutex_exit(&pp->p_zone->zone_nlwps_lock);
6095
6096 mutex_enter(&pp->p_zone->zone_mem_lock);
6097 pp->p_zone->zone_locked_mem -= pp->p_locked_mem;
6098 pp->p_task->tk_proj->kpj_data.kpd_locked_mem -= pp->p_locked_mem;
6099 pp->p_zone->zone_max_swap -= swap;
6100 mutex_exit(&pp->p_zone->zone_mem_lock);
6101
6102 mutex_enter(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6103 pp->p_task->tk_proj->kpj_data.kpd_crypto_mem -= pp->p_crypto_mem;
6104 mutex_exit(&(pp->p_task->tk_proj->kpj_data.kpd_crypto_lock));
6105
6106 pp->p_flag |= SZONETOP;
6107 pp->p_zone = zone;
6108 mutex_exit(&pp->p_lock);
6109 AS_LOCK_EXIT(pp->p_as);
6110
6111 /*
6112 * Joining the zone cannot fail from now on.
6113 *
6114 * This means that a lot of the following code can be commonized and
6115 * shared with zsched().
6116 */
6117
6118 /*
6119 * If the process contract fmri was inherited, we need to
6120 * flag this so that any contract status will not leak
6121 * extra zone information, svc_fmri in this case
6122 */
6123 if (ctp->conp_svc_ctid != ct->ct_id) {
6124 mutex_enter(&ct->ct_lock);
6125 ctp->conp_svc_zone_enter = ct->ct_id;
6126 mutex_exit(&ct->ct_lock);
6127 }
6128
6129 /*
6130 * Reset the encapsulating process contract's zone.
6131 */
6132 ASSERT(ct->ct_mzuniqid == GLOBAL_ZONEUNIQID);
6133 contract_setzuniqid(ct, zone->zone_uniqid);
6134
6135 /*
6136 * Create a new task and associate the process with the project keyed
6137 * by (projid,zoneid).
6138 *
6139 * We might as well be in project 0; the global zone's projid doesn't
6140 * make much sense in a zone anyhow.
6141 *
6142 * This also increments zone_ntasks, and returns with p_lock held.
6143 */
6144 tk = task_create(0, zone);
6145 oldtk = task_join(tk, 0);
6146 mutex_exit(&cpu_lock);
6147
6148 /*
6149 * call RCTLOP_SET functions on this proc
6150 */
6151 e.rcep_p.zone = zone;
6152 e.rcep_t = RCENTITY_ZONE;
6153 (void) rctl_set_dup(NULL, NULL, pp, &e, zone->zone_rctls, NULL,
6154 RCD_CALLBACK);
6155 mutex_exit(&pp->p_lock);
6156
6157 /*
6158 * We don't need to hold any of zsched's locks here; not only do we know
6159 * the process and zone aren't going away, we know its session isn't
6160 * changing either.
6161 *
6162 * By joining zsched's session here, we mimic the behavior in the
6163 * global zone of init's sid being the pid of sched. We extend this
6164 * to all zlogin-like zone_enter()'ing processes as well.
6165 */
6166 mutex_enter(&pidlock);
6167 sp = zone->zone_zsched->p_sessp;
6168 sess_hold(zone->zone_zsched);
6169 mutex_enter(&pp->p_lock);
6170 pgexit(pp);
6171 sess_rele(pp->p_sessp, B_TRUE);
6172 pp->p_sessp = sp;
6173 pgjoin(pp, zone->zone_zsched->p_pidp);
6174
6175 /*
6176 * If any threads are scheduled to be placed on zone wait queue they
6177 * should abandon the idea since the wait queue is changing.
6178 * We need to be holding pidlock & p_lock to do this.
6179 */
6180 if ((t = pp->p_tlist) != NULL) {
6181 do {
6182 thread_lock(t);
6183 /*
6184 * Kick this thread so that it doesn't sit
6185 * on a wrong wait queue.
6186 */
6187 if (ISWAITING(t))
6188 setrun_locked(t);
6189
6190 if (t->t_schedflag & TS_ANYWAITQ)
6191 t->t_schedflag &= ~ TS_ANYWAITQ;
6192
6193 thread_unlock(t);
6194 } while ((t = t->t_forw) != pp->p_tlist);
6195 }
6196
6197 /*
6198 * If there is a default scheduling class for the zone and it is not
6199 * the class we are currently in, change all of the threads in the
6200 * process to the new class. We need to be holding pidlock & p_lock
6201 * when we call parmsset so this is a good place to do it.
6202 */
6203 if (zone->zone_defaultcid > 0 &&
6204 zone->zone_defaultcid != curthread->t_cid) {
6205 pcparms_t pcparms;
6206
6207 pcparms.pc_cid = zone->zone_defaultcid;
6208 pcparms.pc_clparms[0] = 0;
6209
6210 /*
6211 * If setting the class fails, we still want to enter the zone.
6212 */
6213 if ((t = pp->p_tlist) != NULL) {
6214 do {
6215 (void) parmsset(&pcparms, t);
6216 } while ((t = t->t_forw) != pp->p_tlist);
6217 }
6218 }
6219
6220 mutex_exit(&pp->p_lock);
6221 mutex_exit(&pidlock);
6222
6223 mutex_exit(&zonehash_lock);
6224 /*
6225 * We're firmly in the zone; let pools progress.
6226 */
6227 pool_unlock();
6228 task_rele(oldtk);
6229 /*
6230 * We don't need to retain a hold on the zone since we already
6231 * incremented zone_ntasks, so the zone isn't going anywhere.
6232 */
6233 zone_rele(zone);
6234
6235 /*
6236 * Chroot
6237 */
6238 vp = zone->zone_rootvp;
6239 zone_chdir(vp, &PTOU(pp)->u_cdir, pp);
6240 zone_chdir(vp, &PTOU(pp)->u_rdir, pp);
6241
6242 /*
6243 * Change process security flags. Note that the _effective_ flags
6244 * cannot change
6245 */
6246 secflags_copy(&pp->p_secflags.psf_lower,
6247 &zone->zone_secflags.psf_lower);
6248 secflags_copy(&pp->p_secflags.psf_upper,
6249 &zone->zone_secflags.psf_upper);
6250 secflags_copy(&pp->p_secflags.psf_inherit,
6251 &zone->zone_secflags.psf_inherit);
6252
6253 /*
6254 * Change process credentials
6255 */
6256 newcr = cralloc();
6257 mutex_enter(&pp->p_crlock);
6258 cr = pp->p_cred;
6259 crcopy_to(cr, newcr);
6260 crsetzone(newcr, zone);
6261 pp->p_cred = newcr;
6262
6263 /*
6264 * Restrict all process privilege sets to zone limit
6265 */
6266 priv_intersect(zone->zone_privset, &CR_PPRIV(newcr));
6267 priv_intersect(zone->zone_privset, &CR_EPRIV(newcr));
6268 priv_intersect(zone->zone_privset, &CR_IPRIV(newcr));
6269 priv_intersect(zone->zone_privset, &CR_LPRIV(newcr));
6270 mutex_exit(&pp->p_crlock);
6271 crset(pp, newcr);
6272
6273 /*
6274 * Adjust upcount to reflect zone entry.
6275 */
6276 uid = crgetruid(newcr);
6277 mutex_enter(&pidlock);
6278 upcount_dec(uid, GLOBAL_ZONEID);
6279 upcount_inc(uid, zoneid);
6280 mutex_exit(&pidlock);
6281
6282 /*
6283 * Set up core file path and content.
6284 */
6285 set_core_defaults();
6286
6287 out:
6288 /*
6289 * Let the other lwps continue.
6290 */
6291 mutex_enter(&pp->p_lock);
6292 if (curthread != pp->p_agenttp)
6293 continuelwps(pp);
6294 mutex_exit(&pp->p_lock);
6295
6296 return (err != 0 ? set_errno(err) : 0);
6297 }
6298
6299 /*
6300 * Systemcall entry point for zone_list(2).
6301 *
6302 * Processes running in a (non-global) zone only see themselves.
6303 * On labeled systems, they see all zones whose label they dominate.
6304 */
6305 static int
6306 zone_list(zoneid_t *zoneidlist, uint_t *numzones)
6307 {
6308 zoneid_t *zoneids;
6309 zone_t *zone, *myzone;
6310 uint_t user_nzones, real_nzones;
6311 uint_t domi_nzones;
6312 int error;
6313
6314 if (copyin(numzones, &user_nzones, sizeof (uint_t)) != 0)
6315 return (set_errno(EFAULT));
6316
6317 myzone = curproc->p_zone;
6318 ASSERT(zonecount > 0);
6319 if (myzone != global_zone) {
6320 bslabel_t *mybslab;
6321
6322 if (!is_system_labeled()) {
6323 /* just return current zone */
6324 real_nzones = domi_nzones = 1;
6325 zoneids = kmem_alloc(sizeof (zoneid_t), KM_SLEEP);
6326 zoneids[0] = myzone->zone_id;
6327 } else {
6328 /* return all zones that are dominated */
6329 mutex_enter(&zonehash_lock);
6330 real_nzones = zonecount;
6331 domi_nzones = 0;
6332 zoneids = kmem_alloc(real_nzones *
6333 sizeof (zoneid_t), KM_SLEEP);
6334 mybslab = label2bslabel(myzone->zone_slabel);
6335 for (zone = list_head(&zone_active);
6336 zone != NULL;
6337 zone = list_next(&zone_active, zone)) {
6338 if (zone->zone_id == GLOBAL_ZONEID)
6339 continue;
6340 if (zone != myzone &&
6341 (zone->zone_flags & ZF_IS_SCRATCH))
6342 continue;
6343 /*
6344 * Note that a label always dominates
6345 * itself, so myzone is always included
6346 * in the list.
6347 */
6348 if (bldominates(mybslab,
6349 label2bslabel(zone->zone_slabel))) {
6350 zoneids[domi_nzones++] = zone->zone_id;
6351 }
6352 }
6353 mutex_exit(&zonehash_lock);
6354 }
6355 } else {
6356 mutex_enter(&zonehash_lock);
6357 real_nzones = zonecount;
6358 domi_nzones = 0;
6359 zoneids = kmem_alloc(real_nzones * sizeof (zoneid_t), KM_SLEEP);
6360 for (zone = list_head(&zone_active); zone != NULL;
6361 zone = list_next(&zone_active, zone))
6362 zoneids[domi_nzones++] = zone->zone_id;
6363
6364 ASSERT(domi_nzones == real_nzones);
6365 mutex_exit(&zonehash_lock);
6366 }
6367
6368 /*
6369 * If user has allocated space for fewer entries than we found, then
6370 * return only up to their limit. Either way, tell them exactly how
6371 * many we found.
6372 */
6373 if (domi_nzones < user_nzones)
6374 user_nzones = domi_nzones;
6375 error = 0;
6376 if (copyout(&domi_nzones, numzones, sizeof (uint_t)) != 0) {
6377 error = EFAULT;
6378 } else if (zoneidlist != NULL && user_nzones != 0) {
6379 if (copyout(zoneids, zoneidlist,
6380 user_nzones * sizeof (zoneid_t)) != 0)
6381 error = EFAULT;
6382 }
6383
6384 kmem_free(zoneids, real_nzones * sizeof (zoneid_t));
6385
6386 if (error != 0)
6387 return (set_errno(error));
6388 else
6389 return (0);
6390 }
6391
6392 /*
6393 * Systemcall entry point for zone_lookup(2).
6394 *
6395 * Non-global zones are only able to see themselves and (on labeled systems)
6396 * the zones they dominate.
6397 */
6398 static zoneid_t
6399 zone_lookup(const char *zone_name)
6400 {
6401 char *kname;
6402 zone_t *zone;
6403 zoneid_t zoneid;
6404 int err;
6405
6406 if (zone_name == NULL) {
6407 /* return caller's zone id */
6408 return (getzoneid());
6409 }
6410
6411 kname = kmem_zalloc(ZONENAME_MAX, KM_SLEEP);
6412 if ((err = copyinstr(zone_name, kname, ZONENAME_MAX, NULL)) != 0) {
6413 kmem_free(kname, ZONENAME_MAX);
6414 return (set_errno(err));
6415 }
6416
6417 mutex_enter(&zonehash_lock);
6418 zone = zone_find_all_by_name(kname);
6419 kmem_free(kname, ZONENAME_MAX);
6420 /*
6421 * In a non-global zone, can only lookup global and own name.
6422 * In Trusted Extensions zone label dominance rules apply.
6423 */
6424 if (zone == NULL ||
6425 zone_status_get(zone) < ZONE_IS_READY ||
6426 !zone_list_access(zone)) {
6427 mutex_exit(&zonehash_lock);
6428 return (set_errno(EINVAL));
6429 } else {
6430 zoneid = zone->zone_id;
6431 mutex_exit(&zonehash_lock);
6432 return (zoneid);
6433 }
6434 }
6435
6436 static int
6437 zone_version(int *version_arg)
6438 {
6439 int version = ZONE_SYSCALL_API_VERSION;
6440
6441 if (copyout(&version, version_arg, sizeof (int)) != 0)
6442 return (set_errno(EFAULT));
6443 return (0);
6444 }
6445
6446 /* ARGSUSED */
6447 long
6448 zone(int cmd, void *arg1, void *arg2, void *arg3, void *arg4)
6449 {
6450 zone_def zs;
6451 int err;
6452
6453 switch (cmd) {
6454 case ZONE_CREATE:
6455 if (get_udatamodel() == DATAMODEL_NATIVE) {
6456 if (copyin(arg1, &zs, sizeof (zone_def))) {
6457 return (set_errno(EFAULT));
6458 }
6459 } else {
6460 #ifdef _SYSCALL32_IMPL
6461 zone_def32 zs32;
6462
6463 if (copyin(arg1, &zs32, sizeof (zone_def32))) {
6464 return (set_errno(EFAULT));
6465 }
6466 zs.zone_name =
6467 (const char *)(unsigned long)zs32.zone_name;
6468 zs.zone_root =
6469 (const char *)(unsigned long)zs32.zone_root;
6470 zs.zone_privs =
6471 (const struct priv_set *)
6472 (unsigned long)zs32.zone_privs;
6473 zs.zone_privssz = zs32.zone_privssz;
6474 zs.rctlbuf = (caddr_t)(unsigned long)zs32.rctlbuf;
6475 zs.rctlbufsz = zs32.rctlbufsz;
6476 zs.zfsbuf = (caddr_t)(unsigned long)zs32.zfsbuf;
6477 zs.zfsbufsz = zs32.zfsbufsz;
6478 zs.extended_error =
6479 (int *)(unsigned long)zs32.extended_error;
6480 zs.match = zs32.match;
6481 zs.doi = zs32.doi;
6482 zs.label = (const bslabel_t *)(uintptr_t)zs32.label;
6483 zs.flags = zs32.flags;
6484 #else
6485 panic("get_udatamodel() returned bogus result\n");
6486 #endif
6487 }
6488
6489 return (zone_create(zs.zone_name, zs.zone_root,
6490 zs.zone_privs, zs.zone_privssz,
6491 (caddr_t)zs.rctlbuf, zs.rctlbufsz,
6492 (caddr_t)zs.zfsbuf, zs.zfsbufsz,
6493 zs.extended_error, zs.match, zs.doi,
6494 zs.label, zs.flags));
6495 case ZONE_BOOT:
6496 return (zone_boot((zoneid_t)(uintptr_t)arg1));
6497 case ZONE_DESTROY:
6498 return (zone_destroy((zoneid_t)(uintptr_t)arg1));
6499 case ZONE_GETATTR:
6500 return (zone_getattr((zoneid_t)(uintptr_t)arg1,
6501 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6502 case ZONE_SETATTR:
6503 return (zone_setattr((zoneid_t)(uintptr_t)arg1,
6504 (int)(uintptr_t)arg2, arg3, (size_t)arg4));
6505 case ZONE_ENTER:
6506 return (zone_enter((zoneid_t)(uintptr_t)arg1));
6507 case ZONE_LIST:
6508 return (zone_list((zoneid_t *)arg1, (uint_t *)arg2));
6509 case ZONE_SHUTDOWN:
6510 return (zone_shutdown((zoneid_t)(uintptr_t)arg1));
6511 case ZONE_LOOKUP:
6512 return (zone_lookup((const char *)arg1));
6513 case ZONE_VERSION:
6514 return (zone_version((int *)arg1));
6515 case ZONE_ADD_DATALINK:
6516 return (zone_add_datalink((zoneid_t)(uintptr_t)arg1,
6517 (datalink_id_t)(uintptr_t)arg2));
6518 case ZONE_DEL_DATALINK:
6519 return (zone_remove_datalink((zoneid_t)(uintptr_t)arg1,
6520 (datalink_id_t)(uintptr_t)arg2));
6521 case ZONE_CHECK_DATALINK: {
6522 zoneid_t zoneid;
6523 boolean_t need_copyout;
6524
6525 if (copyin(arg1, &zoneid, sizeof (zoneid)) != 0)
6526 return (EFAULT);
6527 need_copyout = (zoneid == ALL_ZONES);
6528 err = zone_check_datalink(&zoneid,
6529 (datalink_id_t)(uintptr_t)arg2);
6530 if (err == 0 && need_copyout) {
6531 if (copyout(&zoneid, arg1, sizeof (zoneid)) != 0)
6532 err = EFAULT;
6533 }
6534 return (err == 0 ? 0 : set_errno(err));
6535 }
6536 case ZONE_LIST_DATALINK:
6537 return (zone_list_datalink((zoneid_t)(uintptr_t)arg1,
6538 (int *)arg2, (datalink_id_t *)(uintptr_t)arg3));
6539 default:
6540 return (set_errno(EINVAL));
6541 }
6542 }
6543
6544 struct zarg {
6545 zone_t *zone;
6546 zone_cmd_arg_t arg;
6547 };
6548
6549 static int
6550 zone_lookup_door(const char *zone_name, door_handle_t *doorp)
6551 {
6552 char *buf;
6553 size_t buflen;
6554 int error;
6555
6556 buflen = sizeof (ZONE_DOOR_PATH) + strlen(zone_name);
6557 buf = kmem_alloc(buflen, KM_SLEEP);
6558 (void) snprintf(buf, buflen, ZONE_DOOR_PATH, zone_name);
6559 error = door_ki_open(buf, doorp);
6560 kmem_free(buf, buflen);
6561 return (error);
6562 }
6563
6564 static void
6565 zone_release_door(door_handle_t *doorp)
6566 {
6567 door_ki_rele(*doorp);
6568 *doorp = NULL;
6569 }
6570
6571 static void
6572 zone_ki_call_zoneadmd(struct zarg *zargp)
6573 {
6574 door_handle_t door = NULL;
6575 door_arg_t darg, save_arg;
6576 char *zone_name;
6577 size_t zone_namelen;
6578 zoneid_t zoneid;
6579 zone_t *zone;
6580 zone_cmd_arg_t arg;
6581 uint64_t uniqid;
6582 size_t size;
6583 int error;
6584 int retry;
6585
6586 zone = zargp->zone;
6587 arg = zargp->arg;
6588 kmem_free(zargp, sizeof (*zargp));
6589
6590 zone_namelen = strlen(zone->zone_name) + 1;
6591 zone_name = kmem_alloc(zone_namelen, KM_SLEEP);
6592 bcopy(zone->zone_name, zone_name, zone_namelen);
6593 zoneid = zone->zone_id;
6594 uniqid = zone->zone_uniqid;
6595 /*
6596 * zoneadmd may be down, but at least we can empty out the zone.
6597 * We can ignore the return value of zone_empty() since we're called
6598 * from a kernel thread and know we won't be delivered any signals.
6599 */
6600 ASSERT(curproc == &p0);
6601 (void) zone_empty(zone);
6602 ASSERT(zone_status_get(zone) >= ZONE_IS_EMPTY);
6603 zone_rele(zone);
6604
6605 size = sizeof (arg);
6606 darg.rbuf = (char *)&arg;
6607 darg.data_ptr = (char *)&arg;
6608 darg.rsize = size;
6609 darg.data_size = size;
6610 darg.desc_ptr = NULL;
6611 darg.desc_num = 0;
6612
6613 save_arg = darg;
6614 /*
6615 * Since we're not holding a reference to the zone, any number of
6616 * things can go wrong, including the zone disappearing before we get a
6617 * chance to talk to zoneadmd.
6618 */
6619 for (retry = 0; /* forever */; retry++) {
6620 if (door == NULL &&
6621 (error = zone_lookup_door(zone_name, &door)) != 0) {
6622 goto next;
6623 }
6624 ASSERT(door != NULL);
6625
6626 if ((error = door_ki_upcall_limited(door, &darg, NULL,
6627 SIZE_MAX, 0)) == 0) {
6628 break;
6629 }
6630 switch (error) {
6631 case EINTR:
6632 /* FALLTHROUGH */
6633 case EAGAIN: /* process may be forking */
6634 /*
6635 * Back off for a bit
6636 */
6637 break;
6638 case EBADF:
6639 zone_release_door(&door);
6640 if (zone_lookup_door(zone_name, &door) != 0) {
6641 /*
6642 * zoneadmd may be dead, but it may come back to
6643 * life later.
6644 */
6645 break;
6646 }
6647 break;
6648 default:
6649 cmn_err(CE_WARN,
6650 "zone_ki_call_zoneadmd: door_ki_upcall error %d\n",
6651 error);
6652 goto out;
6653 }
6654 next:
6655 /*
6656 * If this isn't the same zone_t that we originally had in mind,
6657 * then this is the same as if two kadmin requests come in at
6658 * the same time: the first one wins. This means we lose, so we
6659 * bail.
6660 */
6661 if ((zone = zone_find_by_id(zoneid)) == NULL) {
6662 /*
6663 * Problem is solved.
6664 */
6665 break;
6666 }
6667 if (zone->zone_uniqid != uniqid) {
6668 /*
6669 * zoneid recycled
6670 */
6671 zone_rele(zone);
6672 break;
6673 }
6674 /*
6675 * We could zone_status_timedwait(), but there doesn't seem to
6676 * be much point in doing that (plus, it would mean that
6677 * zone_free() isn't called until this thread exits).
6678 */
6679 zone_rele(zone);
6680 delay(hz);
6681 darg = save_arg;
6682 }
6683 out:
6684 if (door != NULL) {
6685 zone_release_door(&door);
6686 }
6687 kmem_free(zone_name, zone_namelen);
6688 thread_exit();
6689 }
6690
6691 /*
6692 * Entry point for uadmin() to tell the zone to go away or reboot. Analog to
6693 * kadmin(). The caller is a process in the zone.
6694 *
6695 * In order to shutdown the zone, we will hand off control to zoneadmd
6696 * (running in the global zone) via a door. We do a half-hearted job at
6697 * killing all processes in the zone, create a kernel thread to contact
6698 * zoneadmd, and make note of the "uniqid" of the zone. The uniqid is
6699 * a form of generation number used to let zoneadmd (as well as
6700 * zone_destroy()) know exactly which zone they're re talking about.
6701 */
6702 int
6703 zone_kadmin(int cmd, int fcn, const char *mdep, cred_t *credp)
6704 {
6705 struct zarg *zargp;
6706 zone_cmd_t zcmd;
6707 zone_t *zone;
6708
6709 zone = curproc->p_zone;
6710 ASSERT(getzoneid() != GLOBAL_ZONEID);
6711
6712 switch (cmd) {
6713 case A_SHUTDOWN:
6714 switch (fcn) {
6715 case AD_HALT:
6716 case AD_POWEROFF:
6717 zcmd = Z_HALT;
6718 break;
6719 case AD_BOOT:
6720 zcmd = Z_REBOOT;
6721 break;
6722 case AD_IBOOT:
6723 case AD_SBOOT:
6724 case AD_SIBOOT:
6725 case AD_NOSYNC:
6726 return (ENOTSUP);
6727 default:
6728 return (EINVAL);
6729 }
6730 break;
6731 case A_REBOOT:
6732 zcmd = Z_REBOOT;
6733 break;
6734 case A_FTRACE:
6735 case A_REMOUNT:
6736 case A_FREEZE:
6737 case A_DUMP:
6738 case A_CONFIG:
6739 return (ENOTSUP);
6740 default:
6741 ASSERT(cmd != A_SWAPCTL); /* handled by uadmin() */
6742 return (EINVAL);
6743 }
6744
6745 if (secpolicy_zone_admin(credp, B_FALSE))
6746 return (EPERM);
6747 mutex_enter(&zone_status_lock);
6748
6749 /*
6750 * zone_status can't be ZONE_IS_EMPTY or higher since curproc
6751 * is in the zone.
6752 */
6753 ASSERT(zone_status_get(zone) < ZONE_IS_EMPTY);
6754 if (zone_status_get(zone) > ZONE_IS_RUNNING) {
6755 /*
6756 * This zone is already on its way down.
6757 */
6758 mutex_exit(&zone_status_lock);
6759 return (0);
6760 }
6761 /*
6762 * Prevent future zone_enter()s
6763 */
6764 zone_status_set(zone, ZONE_IS_SHUTTING_DOWN);
6765 mutex_exit(&zone_status_lock);
6766
6767 /*
6768 * Kill everyone now and call zoneadmd later.
6769 * zone_ki_call_zoneadmd() will do a more thorough job of this
6770 * later.
6771 */
6772 killall(zone->zone_id);
6773 /*
6774 * Now, create the thread to contact zoneadmd and do the rest of the
6775 * work. This thread can't be created in our zone otherwise
6776 * zone_destroy() would deadlock.
6777 */
6778 zargp = kmem_zalloc(sizeof (*zargp), KM_SLEEP);
6779 zargp->arg.cmd = zcmd;
6780 zargp->arg.uniqid = zone->zone_uniqid;
6781 zargp->zone = zone;
6782 (void) strcpy(zargp->arg.locale, "C");
6783 /* mdep was already copied in for us by uadmin */
6784 if (mdep != NULL)
6785 (void) strlcpy(zargp->arg.bootbuf, mdep,
6786 sizeof (zargp->arg.bootbuf));
6787 zone_hold(zone);
6788
6789 (void) thread_create(NULL, 0, zone_ki_call_zoneadmd, zargp, 0, &p0,
6790 TS_RUN, minclsyspri);
6791 exit(CLD_EXITED, 0);
6792
6793 return (EINVAL);
6794 }
6795
6796 /*
6797 * Entry point so kadmin(A_SHUTDOWN, ...) can set the global zone's
6798 * status to ZONE_IS_SHUTTING_DOWN.
6799 *
6800 * This function also shuts down all running zones to ensure that they won't
6801 * fork new processes.
6802 */
6803 void
6804 zone_shutdown_global(void)
6805 {
6806 zone_t *current_zonep;
6807
6808 ASSERT(INGLOBALZONE(curproc));
6809 mutex_enter(&zonehash_lock);
6810 mutex_enter(&zone_status_lock);
6811
6812 /* Modify the global zone's status first. */
6813 ASSERT(zone_status_get(global_zone) == ZONE_IS_RUNNING);
6814 zone_status_set(global_zone, ZONE_IS_SHUTTING_DOWN);
6815
6816 /*
6817 * Now change the states of all running zones to ZONE_IS_SHUTTING_DOWN.
6818 * We don't mark all zones with ZONE_IS_SHUTTING_DOWN because doing so
6819 * could cause assertions to fail (e.g., assertions about a zone's
6820 * state during initialization, readying, or booting) or produce races.
6821 * We'll let threads continue to initialize and ready new zones: they'll
6822 * fail to boot the new zones when they see that the global zone is
6823 * shutting down.
6824 */
6825 for (current_zonep = list_head(&zone_active); current_zonep != NULL;
6826 current_zonep = list_next(&zone_active, current_zonep)) {
6827 if (zone_status_get(current_zonep) == ZONE_IS_RUNNING)
6828 zone_status_set(current_zonep, ZONE_IS_SHUTTING_DOWN);
6829 }
6830 mutex_exit(&zone_status_lock);
6831 mutex_exit(&zonehash_lock);
6832 }
6833
6834 /*
6835 * Returns true if the named dataset is visible in the current zone.
6836 * The 'write' parameter is set to 1 if the dataset is also writable.
6837 */
6838 int
6839 zone_dataset_visible(const char *dataset, int *write)
6840 {
6841 static int zfstype = -1;
6842 zone_dataset_t *zd;
6843 size_t len;
6844 zone_t *zone = curproc->p_zone;
6845 const char *name = NULL;
6846 vfs_t *vfsp = NULL;
6847
6848 if (dataset[0] == '\0')
6849 return (0);
6850
6851 /*
6852 * Walk the list once, looking for datasets which match exactly, or
6853 * specify a dataset underneath an exported dataset. If found, return
6854 * true and note that it is writable.
6855 */
6856 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6857 zd = list_next(&zone->zone_datasets, zd)) {
6858
6859 len = strlen(zd->zd_dataset);
6860 if (strlen(dataset) >= len &&
6861 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6862 (dataset[len] == '\0' || dataset[len] == '/' ||
6863 dataset[len] == '@')) {
6864 if (write)
6865 *write = 1;
6866 return (1);
6867 }
6868 }
6869
6870 /*
6871 * Walk the list a second time, searching for datasets which are parents
6872 * of exported datasets. These should be visible, but read-only.
6873 *
6874 * Note that we also have to support forms such as 'pool/dataset/', with
6875 * a trailing slash.
6876 */
6877 for (zd = list_head(&zone->zone_datasets); zd != NULL;
6878 zd = list_next(&zone->zone_datasets, zd)) {
6879
6880 len = strlen(dataset);
6881 if (dataset[len - 1] == '/')
6882 len--; /* Ignore trailing slash */
6883 if (len < strlen(zd->zd_dataset) &&
6884 bcmp(dataset, zd->zd_dataset, len) == 0 &&
6885 zd->zd_dataset[len] == '/') {
6886 if (write)
6887 *write = 0;
6888 return (1);
6889 }
6890 }
6891
6892 /*
6893 * We reach here if the given dataset is not found in the zone_dataset
6894 * list. Check if this dataset was added as a filesystem (ie. "add fs")
6895 * instead of delegation. For this we search for the dataset in the
6896 * zone_vfslist of this zone. If found, return true and note that it is
6897 * not writable.
6898 */
6899
6900 /*
6901 * Initialize zfstype if it is not initialized yet.
6902 */
6903 if (zfstype == -1) {
6904 struct vfssw *vswp = vfs_getvfssw("zfs");
6905 zfstype = vswp - vfssw;
6906 vfs_unrefvfssw(vswp);
6907 }
6908
6909 vfs_list_read_lock();
6910 vfsp = zone->zone_vfslist;
6911 do {
6912 ASSERT(vfsp);
6913 if (vfsp->vfs_fstype == zfstype) {
6914 name = refstr_value(vfsp->vfs_resource);
6915
6916 /*
6917 * Check if we have an exact match.
6918 */
6919 if (strcmp(dataset, name) == 0) {
6920 vfs_list_unlock();
6921 if (write)
6922 *write = 0;
6923 return (1);
6924 }
6925 /*
6926 * We need to check if we are looking for parents of
6927 * a dataset. These should be visible, but read-only.
6928 */
6929 len = strlen(dataset);
6930 if (dataset[len - 1] == '/')
6931 len--;
6932
6933 if (len < strlen(name) &&
6934 bcmp(dataset, name, len) == 0 && name[len] == '/') {
6935 vfs_list_unlock();
6936 if (write)
6937 *write = 0;
6938 return (1);
6939 }
6940 }
6941 vfsp = vfsp->vfs_zone_next;
6942 } while (vfsp != zone->zone_vfslist);
6943
6944 vfs_list_unlock();
6945 return (0);
6946 }
6947
6948 /*
6949 * zone_find_by_any_path() -
6950 *
6951 * kernel-private routine similar to zone_find_by_path(), but which
6952 * effectively compares against zone paths rather than zonerootpath
6953 * (i.e., the last component of zonerootpaths, which should be "root/",
6954 * are not compared.) This is done in order to accurately identify all
6955 * paths, whether zone-visible or not, including those which are parallel
6956 * to /root/, such as /dev/, /home/, etc...
6957 *
6958 * If the specified path does not fall under any zone path then global
6959 * zone is returned.
6960 *
6961 * The treat_abs parameter indicates whether the path should be treated as
6962 * an absolute path although it does not begin with "/". (This supports
6963 * nfs mount syntax such as host:any/path.)
6964 *
6965 * The caller is responsible for zone_rele of the returned zone.
6966 */
6967 zone_t *
6968 zone_find_by_any_path(const char *path, boolean_t treat_abs)
6969 {
6970 zone_t *zone;
6971 int path_offset = 0;
6972
6973 if (path == NULL) {
6974 zone_hold(global_zone);
6975 return (global_zone);
6976 }
6977
6978 if (*path != '/') {
6979 ASSERT(treat_abs);
6980 path_offset = 1;
6981 }
6982
6983 mutex_enter(&zonehash_lock);
6984 for (zone = list_head(&zone_active); zone != NULL;
6985 zone = list_next(&zone_active, zone)) {
6986 char *c;
6987 size_t pathlen;
6988 char *rootpath_start;
6989
6990 if (zone == global_zone) /* skip global zone */
6991 continue;
6992
6993 /* scan backwards to find start of last component */
6994 c = zone->zone_rootpath + zone->zone_rootpathlen - 2;
6995 do {
6996 c--;
6997 } while (*c != '/');
6998
6999 pathlen = c - zone->zone_rootpath + 1 - path_offset;
7000 rootpath_start = (zone->zone_rootpath + path_offset);
7001 if (strncmp(path, rootpath_start, pathlen) == 0)
7002 break;
7003 }
7004 if (zone == NULL)
7005 zone = global_zone;
7006 zone_hold(zone);
7007 mutex_exit(&zonehash_lock);
7008 return (zone);
7009 }
7010
7011 /*
7012 * Finds a zone_dl_t with the given linkid in the given zone. Returns the
7013 * zone_dl_t pointer if found, and NULL otherwise.
7014 */
7015 static zone_dl_t *
7016 zone_find_dl(zone_t *zone, datalink_id_t linkid)
7017 {
7018 zone_dl_t *zdl;
7019
7020 ASSERT(mutex_owned(&zone->zone_lock));
7021 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7022 zdl = list_next(&zone->zone_dl_list, zdl)) {
7023 if (zdl->zdl_id == linkid)
7024 break;
7025 }
7026 return (zdl);
7027 }
7028
7029 static boolean_t
7030 zone_dl_exists(zone_t *zone, datalink_id_t linkid)
7031 {
7032 boolean_t exists;
7033
7034 mutex_enter(&zone->zone_lock);
7035 exists = (zone_find_dl(zone, linkid) != NULL);
7036 mutex_exit(&zone->zone_lock);
7037 return (exists);
7038 }
7039
7040 /*
7041 * Add an data link name for the zone.
7042 */
7043 static int
7044 zone_add_datalink(zoneid_t zoneid, datalink_id_t linkid)
7045 {
7046 zone_dl_t *zdl;
7047 zone_t *zone;
7048 zone_t *thiszone;
7049
7050 if ((thiszone = zone_find_by_id(zoneid)) == NULL)
7051 return (set_errno(ENXIO));
7052
7053 /* Verify that the datalink ID doesn't already belong to a zone. */
7054 mutex_enter(&zonehash_lock);
7055 for (zone = list_head(&zone_active); zone != NULL;
7056 zone = list_next(&zone_active, zone)) {
7057 if (zone_dl_exists(zone, linkid)) {
7058 mutex_exit(&zonehash_lock);
7059 zone_rele(thiszone);
7060 return (set_errno((zone == thiszone) ? EEXIST : EPERM));
7061 }
7062 }
7063
7064 zdl = kmem_zalloc(sizeof (*zdl), KM_SLEEP);
7065 zdl->zdl_id = linkid;
7066 zdl->zdl_net = NULL;
7067 mutex_enter(&thiszone->zone_lock);
7068 list_insert_head(&thiszone->zone_dl_list, zdl);
7069 mutex_exit(&thiszone->zone_lock);
7070 mutex_exit(&zonehash_lock);
7071 zone_rele(thiszone);
7072 return (0);
7073 }
7074
7075 static int
7076 zone_remove_datalink(zoneid_t zoneid, datalink_id_t linkid)
7077 {
7078 zone_dl_t *zdl;
7079 zone_t *zone;
7080 int err = 0;
7081
7082 if ((zone = zone_find_by_id(zoneid)) == NULL)
7083 return (set_errno(EINVAL));
7084
7085 mutex_enter(&zone->zone_lock);
7086 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7087 err = ENXIO;
7088 } else {
7089 list_remove(&zone->zone_dl_list, zdl);
7090 nvlist_free(zdl->zdl_net);
7091 kmem_free(zdl, sizeof (zone_dl_t));
7092 }
7093 mutex_exit(&zone->zone_lock);
7094 zone_rele(zone);
7095 return (err == 0 ? 0 : set_errno(err));
7096 }
7097
7098 /*
7099 * Using the zoneidp as ALL_ZONES, we can lookup which zone has been assigned
7100 * the linkid. Otherwise we just check if the specified zoneidp has been
7101 * assigned the supplied linkid.
7102 */
7103 int
7104 zone_check_datalink(zoneid_t *zoneidp, datalink_id_t linkid)
7105 {
7106 zone_t *zone;
7107 int err = ENXIO;
7108
7109 if (*zoneidp != ALL_ZONES) {
7110 if ((zone = zone_find_by_id(*zoneidp)) != NULL) {
7111 if (zone_dl_exists(zone, linkid))
7112 err = 0;
7113 zone_rele(zone);
7114 }
7115 return (err);
7116 }
7117
7118 mutex_enter(&zonehash_lock);
7119 for (zone = list_head(&zone_active); zone != NULL;
7120 zone = list_next(&zone_active, zone)) {
7121 if (zone_dl_exists(zone, linkid)) {
7122 *zoneidp = zone->zone_id;
7123 err = 0;
7124 break;
7125 }
7126 }
7127 mutex_exit(&zonehash_lock);
7128 return (err);
7129 }
7130
7131 /*
7132 * Get the list of datalink IDs assigned to a zone.
7133 *
7134 * On input, *nump is the number of datalink IDs that can fit in the supplied
7135 * idarray. Upon return, *nump is either set to the number of datalink IDs
7136 * that were placed in the array if the array was large enough, or to the
7137 * number of datalink IDs that the function needs to place in the array if the
7138 * array is too small.
7139 */
7140 static int
7141 zone_list_datalink(zoneid_t zoneid, int *nump, datalink_id_t *idarray)
7142 {
7143 uint_t num, dlcount;
7144 zone_t *zone;
7145 zone_dl_t *zdl;
7146 datalink_id_t *idptr = idarray;
7147
7148 if (copyin(nump, &dlcount, sizeof (dlcount)) != 0)
7149 return (set_errno(EFAULT));
7150 if ((zone = zone_find_by_id(zoneid)) == NULL)
7151 return (set_errno(ENXIO));
7152
7153 num = 0;
7154 mutex_enter(&zone->zone_lock);
7155 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7156 zdl = list_next(&zone->zone_dl_list, zdl)) {
7157 /*
7158 * If the list is bigger than what the caller supplied, just
7159 * count, don't do copyout.
7160 */
7161 if (++num > dlcount)
7162 continue;
7163 if (copyout(&zdl->zdl_id, idptr, sizeof (*idptr)) != 0) {
7164 mutex_exit(&zone->zone_lock);
7165 zone_rele(zone);
7166 return (set_errno(EFAULT));
7167 }
7168 idptr++;
7169 }
7170 mutex_exit(&zone->zone_lock);
7171 zone_rele(zone);
7172
7173 /* Increased or decreased, caller should be notified. */
7174 if (num != dlcount) {
7175 if (copyout(&num, nump, sizeof (num)) != 0)
7176 return (set_errno(EFAULT));
7177 }
7178 return (0);
7179 }
7180
7181 /*
7182 * Public interface for looking up a zone by zoneid. It's a customized version
7183 * for netstack_zone_create(). It can only be called from the zsd create
7184 * callbacks, since it doesn't have reference on the zone structure hence if
7185 * it is called elsewhere the zone could disappear after the zonehash_lock
7186 * is dropped.
7187 *
7188 * Furthermore it
7189 * 1. Doesn't check the status of the zone.
7190 * 2. It will be called even before zone_init is called, in that case the
7191 * address of zone0 is returned directly, and netstack_zone_create()
7192 * will only assign a value to zone0.zone_netstack, won't break anything.
7193 * 3. Returns without the zone being held.
7194 */
7195 zone_t *
7196 zone_find_by_id_nolock(zoneid_t zoneid)
7197 {
7198 zone_t *zone;
7199
7200 mutex_enter(&zonehash_lock);
7201 if (zonehashbyid == NULL)
7202 zone = &zone0;
7203 else
7204 zone = zone_find_all_by_id(zoneid);
7205 mutex_exit(&zonehash_lock);
7206 return (zone);
7207 }
7208
7209 /*
7210 * Walk the datalinks for a given zone
7211 */
7212 int
7213 zone_datalink_walk(zoneid_t zoneid, int (*cb)(datalink_id_t, void *),
7214 void *data)
7215 {
7216 zone_t *zone;
7217 zone_dl_t *zdl;
7218 datalink_id_t *idarray;
7219 uint_t idcount = 0;
7220 int i, ret = 0;
7221
7222 if ((zone = zone_find_by_id(zoneid)) == NULL)
7223 return (ENOENT);
7224
7225 /*
7226 * We first build an array of linkid's so that we can walk these and
7227 * execute the callback with the zone_lock dropped.
7228 */
7229 mutex_enter(&zone->zone_lock);
7230 for (zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7231 zdl = list_next(&zone->zone_dl_list, zdl)) {
7232 idcount++;
7233 }
7234
7235 if (idcount == 0) {
7236 mutex_exit(&zone->zone_lock);
7237 zone_rele(zone);
7238 return (0);
7239 }
7240
7241 idarray = kmem_alloc(sizeof (datalink_id_t) * idcount, KM_NOSLEEP);
7242 if (idarray == NULL) {
7243 mutex_exit(&zone->zone_lock);
7244 zone_rele(zone);
7245 return (ENOMEM);
7246 }
7247
7248 for (i = 0, zdl = list_head(&zone->zone_dl_list); zdl != NULL;
7249 i++, zdl = list_next(&zone->zone_dl_list, zdl)) {
7250 idarray[i] = zdl->zdl_id;
7251 }
7252
7253 mutex_exit(&zone->zone_lock);
7254
7255 for (i = 0; i < idcount && ret == 0; i++) {
7256 if ((ret = (*cb)(idarray[i], data)) != 0)
7257 break;
7258 }
7259
7260 zone_rele(zone);
7261 kmem_free(idarray, sizeof (datalink_id_t) * idcount);
7262 return (ret);
7263 }
7264
7265 static char *
7266 zone_net_type2name(int type)
7267 {
7268 switch (type) {
7269 case ZONE_NETWORK_ADDRESS:
7270 return (ZONE_NET_ADDRNAME);
7271 case ZONE_NETWORK_DEFROUTER:
7272 return (ZONE_NET_RTRNAME);
7273 default:
7274 return (NULL);
7275 }
7276 }
7277
7278 static int
7279 zone_set_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7280 {
7281 zone_t *zone;
7282 zone_dl_t *zdl;
7283 nvlist_t *nvl;
7284 int err = 0;
7285 uint8_t *new = NULL;
7286 char *nvname;
7287 int bufsize;
7288 datalink_id_t linkid = znbuf->zn_linkid;
7289
7290 if (secpolicy_zone_config(CRED()) != 0)
7291 return (set_errno(EPERM));
7292
7293 if (zoneid == GLOBAL_ZONEID)
7294 return (set_errno(EINVAL));
7295
7296 nvname = zone_net_type2name(znbuf->zn_type);
7297 bufsize = znbuf->zn_len;
7298 new = znbuf->zn_val;
7299 if (nvname == NULL)
7300 return (set_errno(EINVAL));
7301
7302 if ((zone = zone_find_by_id(zoneid)) == NULL) {
7303 return (set_errno(EINVAL));
7304 }
7305
7306 mutex_enter(&zone->zone_lock);
7307 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7308 err = ENXIO;
7309 goto done;
7310 }
7311 if ((nvl = zdl->zdl_net) == NULL) {
7312 if (nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP)) {
7313 err = ENOMEM;
7314 goto done;
7315 } else {
7316 zdl->zdl_net = nvl;
7317 }
7318 }
7319 if (nvlist_exists(nvl, nvname)) {
7320 err = EINVAL;
7321 goto done;
7322 }
7323 err = nvlist_add_uint8_array(nvl, nvname, new, bufsize);
7324 ASSERT(err == 0);
7325 done:
7326 mutex_exit(&zone->zone_lock);
7327 zone_rele(zone);
7328 if (err != 0)
7329 return (set_errno(err));
7330 else
7331 return (0);
7332 }
7333
7334 static int
7335 zone_get_network(zoneid_t zoneid, zone_net_data_t *znbuf)
7336 {
7337 zone_t *zone;
7338 zone_dl_t *zdl;
7339 nvlist_t *nvl;
7340 uint8_t *ptr;
7341 uint_t psize;
7342 int err = 0;
7343 char *nvname;
7344 int bufsize;
7345 void *buf;
7346 datalink_id_t linkid = znbuf->zn_linkid;
7347
7348 if (zoneid == GLOBAL_ZONEID)
7349 return (set_errno(EINVAL));
7350
7351 nvname = zone_net_type2name(znbuf->zn_type);
7352 bufsize = znbuf->zn_len;
7353 buf = znbuf->zn_val;
7354
7355 if (nvname == NULL)
7356 return (set_errno(EINVAL));
7357 if ((zone = zone_find_by_id(zoneid)) == NULL)
7358 return (set_errno(EINVAL));
7359
7360 mutex_enter(&zone->zone_lock);
7361 if ((zdl = zone_find_dl(zone, linkid)) == NULL) {
7362 err = ENXIO;
7363 goto done;
7364 }
7365 if ((nvl = zdl->zdl_net) == NULL || !nvlist_exists(nvl, nvname)) {
7366 err = ENOENT;
7367 goto done;
7368 }
7369 err = nvlist_lookup_uint8_array(nvl, nvname, &ptr, &psize);
7370 ASSERT(err == 0);
7371
7372 if (psize > bufsize) {
7373 err = ENOBUFS;
7374 goto done;
7375 }
7376 znbuf->zn_len = psize;
7377 bcopy(ptr, buf, psize);
7378 done:
7379 mutex_exit(&zone->zone_lock);
7380 zone_rele(zone);
7381 if (err != 0)
7382 return (set_errno(err));
7383 else
7384 return (0);
7385 }