1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2013, Ira Cooper. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved. 26 */ 27 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 29 /* All Rights Reserved */ 30 31 /* 32 * University Copyright- Copyright (c) 1982, 1986, 1988 33 * The Regents of the University of California 34 * All Rights Reserved 35 * 36 * University Acknowledgment- Portions of this document are derived from 37 * software developed by the University of California, Berkeley, and its 38 * contributors. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/sysmacros.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/cred_impl.h> 46 #include <sys/policy.h> 47 #include <sys/vnode.h> 48 #include <sys/errno.h> 49 #include <sys/kmem.h> 50 #include <sys/user.h> 51 #include <sys/proc.h> 52 #include <sys/syscall.h> 53 #include <sys/debug.h> 54 #include <sys/atomic.h> 55 #include <sys/ucred.h> 56 #include <sys/prsystm.h> 57 #include <sys/modctl.h> 58 #include <sys/avl.h> 59 #include <sys/door.h> 60 #include <c2/audit.h> 61 #include <sys/zone.h> 62 #include <sys/tsol/label.h> 63 #include <sys/sid.h> 64 #include <sys/idmap.h> 65 #include <sys/klpd.h> 66 #include <sys/varargs.h> 67 #include <sys/sysconf.h> 68 #include <util/qsort.h> 69 70 71 /* Ephemeral IDs Zones specific data */ 72 typedef struct ephemeral_zsd { 73 uid_t min_uid; 74 uid_t last_uid; 75 gid_t min_gid; 76 gid_t last_gid; 77 kmutex_t eph_lock; 78 cred_t *eph_nobody; 79 } ephemeral_zsd_t; 80 81 static void crgrphold(credgrp_t *); 82 83 #define CREDGRPSZ(ngrp) (sizeof (credgrp_t) + ((ngrp - 1) * sizeof (gid_t))) 84 85 static kmutex_t ephemeral_zone_mutex; 86 static zone_key_t ephemeral_zone_key; 87 88 static struct kmem_cache *cred_cache; 89 static size_t crsize = 0; 90 static int audoff = 0; 91 uint32_t ucredsize; 92 cred_t *kcred; 93 static cred_t *dummycr; 94 95 int rstlink; /* link(2) restricted to files owned by user? */ 96 97 static int get_c2audit_load(void); 98 99 #define CR_AUINFO(c) (auditinfo_addr_t *)((audoff == 0) ? NULL : \ 100 ((char *)(c)) + audoff) 101 102 #define REMOTE_PEER_CRED(c) ((c)->cr_gid == -1) 103 104 #define BIN_GROUP_SEARCH_CUTOFF 16 105 106 static boolean_t hasephids = B_FALSE; 107 108 static ephemeral_zsd_t * 109 get_ephemeral_zsd(zone_t *zone) 110 { 111 ephemeral_zsd_t *eph_zsd; 112 113 eph_zsd = zone_getspecific(ephemeral_zone_key, zone); 114 if (eph_zsd != NULL) { 115 return (eph_zsd); 116 } 117 118 mutex_enter(&ephemeral_zone_mutex); 119 eph_zsd = zone_getspecific(ephemeral_zone_key, zone); 120 if (eph_zsd == NULL) { 121 eph_zsd = kmem_zalloc(sizeof (ephemeral_zsd_t), KM_SLEEP); 122 eph_zsd->min_uid = MAXUID; 123 eph_zsd->last_uid = IDMAP_WK__MAX_UID; 124 eph_zsd->min_gid = MAXUID; 125 eph_zsd->last_gid = IDMAP_WK__MAX_GID; 126 mutex_init(&eph_zsd->eph_lock, NULL, MUTEX_DEFAULT, NULL); 127 128 /* 129 * nobody is used to map SID containing CRs. 130 */ 131 eph_zsd->eph_nobody = crdup(zone->zone_kcred); 132 (void) crsetugid(eph_zsd->eph_nobody, UID_NOBODY, GID_NOBODY); 133 CR_FLAGS(eph_zsd->eph_nobody) = 0; 134 eph_zsd->eph_nobody->cr_zone = zone; 135 136 (void) zone_setspecific(ephemeral_zone_key, zone, eph_zsd); 137 } 138 mutex_exit(&ephemeral_zone_mutex); 139 return (eph_zsd); 140 } 141 142 static cred_t *crdup_flags(const cred_t *, int); 143 static cred_t *cralloc_flags(int); 144 145 /* 146 * This function is called when a zone is destroyed 147 */ 148 static void 149 /* ARGSUSED */ 150 destroy_ephemeral_zsd(zoneid_t zone_id, void *arg) 151 { 152 ephemeral_zsd_t *eph_zsd = arg; 153 if (eph_zsd != NULL) { 154 mutex_destroy(&eph_zsd->eph_lock); 155 crfree(eph_zsd->eph_nobody); 156 kmem_free(eph_zsd, sizeof (ephemeral_zsd_t)); 157 } 158 } 159 160 161 162 /* 163 * Initialize credentials data structures. 164 */ 165 166 void 167 cred_init(void) 168 { 169 priv_init(); 170 171 crsize = sizeof (cred_t); 172 173 if (get_c2audit_load() > 0) { 174 #ifdef _LP64 175 /* assure audit context is 64-bit aligned */ 176 audoff = (crsize + 177 sizeof (int64_t) - 1) & ~(sizeof (int64_t) - 1); 178 #else /* _LP64 */ 179 audoff = crsize; 180 #endif /* _LP64 */ 181 crsize = audoff + sizeof (auditinfo_addr_t); 182 crsize = (crsize + sizeof (int) - 1) & ~(sizeof (int) - 1); 183 } 184 185 cred_cache = kmem_cache_create("cred_cache", crsize, 0, 186 NULL, NULL, NULL, NULL, NULL, 0); 187 188 /* 189 * dummycr is used to copy initial state for creds. 190 */ 191 dummycr = cralloc(); 192 bzero(dummycr, crsize); 193 dummycr->cr_ref = 1; 194 dummycr->cr_uid = (uid_t)-1; 195 dummycr->cr_gid = (gid_t)-1; 196 dummycr->cr_ruid = (uid_t)-1; 197 dummycr->cr_rgid = (gid_t)-1; 198 dummycr->cr_suid = (uid_t)-1; 199 dummycr->cr_sgid = (gid_t)-1; 200 201 202 /* 203 * kcred is used by anything that needs all privileges; it's 204 * also the template used for crget as it has all the compatible 205 * sets filled in. 206 */ 207 kcred = cralloc(); 208 209 bzero(kcred, crsize); 210 kcred->cr_ref = 1; 211 212 /* kcred is never freed, so we don't need zone_cred_hold here */ 213 kcred->cr_zone = &zone0; 214 215 priv_fillset(&CR_LPRIV(kcred)); 216 CR_IPRIV(kcred) = *priv_basic; 217 218 priv_addset(&CR_IPRIV(kcred), PRIV_PROC_SECFLAGS); 219 220 /* Not a basic privilege, if chown is not restricted add it to I0 */ 221 if (!rstchown) 222 priv_addset(&CR_IPRIV(kcred), PRIV_FILE_CHOWN_SELF); 223 224 /* Basic privilege, if link is restricted remove it from I0 */ 225 if (rstlink) 226 priv_delset(&CR_IPRIV(kcred), PRIV_FILE_LINK_ANY); 227 228 CR_EPRIV(kcred) = CR_PPRIV(kcred) = CR_IPRIV(kcred); 229 230 CR_FLAGS(kcred) = NET_MAC_AWARE; 231 232 /* 233 * Set up credentials of p0. 234 */ 235 ttoproc(curthread)->p_cred = kcred; 236 curthread->t_cred = kcred; 237 238 ucredsize = UCRED_SIZE; 239 240 mutex_init(&ephemeral_zone_mutex, NULL, MUTEX_DEFAULT, NULL); 241 zone_key_create(&ephemeral_zone_key, NULL, NULL, destroy_ephemeral_zsd); 242 } 243 244 /* 245 * Allocate (nearly) uninitialized cred_t. 246 */ 247 static cred_t * 248 cralloc_flags(int flgs) 249 { 250 cred_t *cr = kmem_cache_alloc(cred_cache, flgs); 251 252 if (cr == NULL) 253 return (NULL); 254 255 cr->cr_ref = 1; /* So we can crfree() */ 256 cr->cr_zone = NULL; 257 cr->cr_label = NULL; 258 cr->cr_ksid = NULL; 259 cr->cr_klpd = NULL; 260 cr->cr_grps = NULL; 261 return (cr); 262 } 263 264 cred_t * 265 cralloc(void) 266 { 267 return (cralloc_flags(KM_SLEEP)); 268 } 269 270 /* 271 * As cralloc but prepared for ksid change (if appropriate). 272 */ 273 cred_t * 274 cralloc_ksid(void) 275 { 276 cred_t *cr = cralloc(); 277 if (hasephids) 278 cr->cr_ksid = kcrsid_alloc(); 279 return (cr); 280 } 281 282 /* 283 * Allocate a initialized cred structure and crhold() it. 284 * Initialized means: all ids 0, group count 0, L=Full, E=P=I=I0 285 */ 286 cred_t * 287 crget(void) 288 { 289 cred_t *cr = kmem_cache_alloc(cred_cache, KM_SLEEP); 290 291 bcopy(kcred, cr, crsize); 292 cr->cr_ref = 1; 293 zone_cred_hold(cr->cr_zone); 294 if (cr->cr_label) 295 label_hold(cr->cr_label); 296 ASSERT(cr->cr_klpd == NULL); 297 ASSERT(cr->cr_grps == NULL); 298 return (cr); 299 } 300 301 /* 302 * Broadcast the cred to all the threads in the process. 303 * The current thread's credentials can be set right away, but other 304 * threads must wait until the start of the next system call or trap. 305 * This avoids changing the cred in the middle of a system call. 306 * 307 * The cred has already been held for the process and the thread (2 holds), 308 * and p->p_cred set. 309 * 310 * p->p_crlock shouldn't be held here, since p_lock must be acquired. 311 */ 312 void 313 crset(proc_t *p, cred_t *cr) 314 { 315 kthread_id_t t; 316 kthread_id_t first; 317 cred_t *oldcr; 318 319 ASSERT(p == curproc); /* assumes p_lwpcnt can't change */ 320 321 /* 322 * DTrace accesses t_cred in probe context. t_cred must always be 323 * either NULL, or point to a valid, allocated cred structure. 324 */ 325 t = curthread; 326 oldcr = t->t_cred; 327 t->t_cred = cr; /* the cred is held by caller for this thread */ 328 crfree(oldcr); /* free the old cred for the thread */ 329 330 /* 331 * Broadcast to other threads, if any. 332 */ 333 if (p->p_lwpcnt > 1) { 334 mutex_enter(&p->p_lock); /* to keep thread list safe */ 335 first = curthread; 336 for (t = first->t_forw; t != first; t = t->t_forw) 337 t->t_pre_sys = 1; /* so syscall will get new cred */ 338 mutex_exit(&p->p_lock); 339 } 340 } 341 342 /* 343 * Put a hold on a cred structure. 344 */ 345 void 346 crhold(cred_t *cr) 347 { 348 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0); 349 atomic_inc_32(&cr->cr_ref); 350 } 351 352 /* 353 * Release previous hold on a cred structure. Free it if refcnt == 0. 354 * If cred uses label different from zone label, free it. 355 */ 356 void 357 crfree(cred_t *cr) 358 { 359 ASSERT(cr->cr_ref != 0xdeadbeef && cr->cr_ref != 0); 360 if (atomic_dec_32_nv(&cr->cr_ref) == 0) { 361 ASSERT(cr != kcred); 362 if (cr->cr_label) 363 label_rele(cr->cr_label); 364 if (cr->cr_klpd) 365 crklpd_rele(cr->cr_klpd); 366 if (cr->cr_zone) 367 zone_cred_rele(cr->cr_zone); 368 if (cr->cr_ksid) 369 kcrsid_rele(cr->cr_ksid); 370 if (cr->cr_grps) 371 crgrprele(cr->cr_grps); 372 373 kmem_cache_free(cred_cache, cr); 374 } 375 } 376 377 /* 378 * Copy a cred structure to a new one and free the old one. 379 * The new cred will have two references. One for the calling process, 380 * and one for the thread. 381 */ 382 cred_t * 383 crcopy(cred_t *cr) 384 { 385 cred_t *newcr; 386 387 newcr = cralloc(); 388 bcopy(cr, newcr, crsize); 389 if (newcr->cr_zone) 390 zone_cred_hold(newcr->cr_zone); 391 if (newcr->cr_label) 392 label_hold(newcr->cr_label); 393 if (newcr->cr_ksid) 394 kcrsid_hold(newcr->cr_ksid); 395 if (newcr->cr_klpd) 396 crklpd_hold(newcr->cr_klpd); 397 if (newcr->cr_grps) 398 crgrphold(newcr->cr_grps); 399 crfree(cr); 400 newcr->cr_ref = 2; /* caller gets two references */ 401 return (newcr); 402 } 403 404 /* 405 * Copy a cred structure to a new one and free the old one. 406 * The new cred will have two references. One for the calling process, 407 * and one for the thread. 408 * This variation on crcopy uses a pre-allocated structure for the 409 * "new" cred. 410 */ 411 void 412 crcopy_to(cred_t *oldcr, cred_t *newcr) 413 { 414 credsid_t *nkcr = newcr->cr_ksid; 415 416 bcopy(oldcr, newcr, crsize); 417 if (newcr->cr_zone) 418 zone_cred_hold(newcr->cr_zone); 419 if (newcr->cr_label) 420 label_hold(newcr->cr_label); 421 if (newcr->cr_klpd) 422 crklpd_hold(newcr->cr_klpd); 423 if (newcr->cr_grps) 424 crgrphold(newcr->cr_grps); 425 if (nkcr) { 426 newcr->cr_ksid = nkcr; 427 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid); 428 } else if (newcr->cr_ksid) 429 kcrsid_hold(newcr->cr_ksid); 430 crfree(oldcr); 431 newcr->cr_ref = 2; /* caller gets two references */ 432 } 433 434 /* 435 * Dup a cred struct to a new held one. 436 * The old cred is not freed. 437 */ 438 static cred_t * 439 crdup_flags(const cred_t *cr, int flgs) 440 { 441 cred_t *newcr; 442 443 newcr = cralloc_flags(flgs); 444 445 if (newcr == NULL) 446 return (NULL); 447 448 bcopy(cr, newcr, crsize); 449 if (newcr->cr_zone) 450 zone_cred_hold(newcr->cr_zone); 451 if (newcr->cr_label) 452 label_hold(newcr->cr_label); 453 if (newcr->cr_klpd) 454 crklpd_hold(newcr->cr_klpd); 455 if (newcr->cr_ksid) 456 kcrsid_hold(newcr->cr_ksid); 457 if (newcr->cr_grps) 458 crgrphold(newcr->cr_grps); 459 newcr->cr_ref = 1; 460 return (newcr); 461 } 462 463 cred_t * 464 crdup(cred_t *cr) 465 { 466 return (crdup_flags(cr, KM_SLEEP)); 467 } 468 469 /* 470 * Dup a cred struct to a new held one. 471 * The old cred is not freed. 472 * This variation on crdup uses a pre-allocated structure for the 473 * "new" cred. 474 */ 475 void 476 crdup_to(cred_t *oldcr, cred_t *newcr) 477 { 478 credsid_t *nkcr = newcr->cr_ksid; 479 480 bcopy(oldcr, newcr, crsize); 481 if (newcr->cr_zone) 482 zone_cred_hold(newcr->cr_zone); 483 if (newcr->cr_label) 484 label_hold(newcr->cr_label); 485 if (newcr->cr_klpd) 486 crklpd_hold(newcr->cr_klpd); 487 if (newcr->cr_grps) 488 crgrphold(newcr->cr_grps); 489 if (nkcr) { 490 newcr->cr_ksid = nkcr; 491 kcrsidcopy_to(oldcr->cr_ksid, newcr->cr_ksid); 492 } else if (newcr->cr_ksid) 493 kcrsid_hold(newcr->cr_ksid); 494 newcr->cr_ref = 1; 495 } 496 497 /* 498 * Return the (held) credentials for the current running process. 499 */ 500 cred_t * 501 crgetcred(void) 502 { 503 cred_t *cr; 504 proc_t *p; 505 506 p = ttoproc(curthread); 507 mutex_enter(&p->p_crlock); 508 crhold(cr = p->p_cred); 509 mutex_exit(&p->p_crlock); 510 return (cr); 511 } 512 513 /* 514 * Backward compatibility check for suser(). 515 * Accounting flag is now set in the policy functions; auditing is 516 * done through use of privilege in the audit trail. 517 */ 518 int 519 suser(cred_t *cr) 520 { 521 return (PRIV_POLICY(cr, PRIV_SYS_SUSER_COMPAT, B_FALSE, EPERM, NULL) 522 == 0); 523 } 524 525 /* 526 * Determine whether the supplied group id is a member of the group 527 * described by the supplied credentials. 528 */ 529 int 530 groupmember(gid_t gid, const cred_t *cr) 531 { 532 if (gid == cr->cr_gid) 533 return (1); 534 return (supgroupmember(gid, cr)); 535 } 536 537 /* 538 * As groupmember but only check against the supplemental groups. 539 */ 540 int 541 supgroupmember(gid_t gid, const cred_t *cr) 542 { 543 int hi, lo; 544 credgrp_t *grps = cr->cr_grps; 545 const gid_t *gp, *endgp; 546 547 if (grps == NULL) 548 return (0); 549 550 /* For a small number of groups, use sequentials search. */ 551 if (grps->crg_ngroups <= BIN_GROUP_SEARCH_CUTOFF) { 552 endgp = &grps->crg_groups[grps->crg_ngroups]; 553 for (gp = grps->crg_groups; gp < endgp; gp++) 554 if (*gp == gid) 555 return (1); 556 return (0); 557 } 558 559 /* We use binary search when we have many groups. */ 560 lo = 0; 561 hi = grps->crg_ngroups - 1; 562 gp = grps->crg_groups; 563 564 do { 565 int m = (lo + hi) / 2; 566 567 if (gid > gp[m]) 568 lo = m + 1; 569 else if (gid < gp[m]) 570 hi = m - 1; 571 else 572 return (1); 573 } while (lo <= hi); 574 575 return (0); 576 } 577 578 /* 579 * This function is called to check whether the credentials set 580 * "scrp" has permission to act on credentials set "tcrp". It enforces the 581 * permission requirements needed to send a signal to a process. 582 * The same requirements are imposed by other system calls, however. 583 * 584 * The rules are: 585 * (1) if the credentials are the same, the check succeeds 586 * (2) if the zone ids don't match, and scrp is not in the global zone or 587 * does not have the PRIV_PROC_ZONE privilege, the check fails 588 * (3) if the real or effective user id of scrp matches the real or saved 589 * user id of tcrp or scrp has the PRIV_PROC_OWNER privilege, the check 590 * succeeds 591 * (4) otherwise, the check fails 592 */ 593 int 594 hasprocperm(const cred_t *tcrp, const cred_t *scrp) 595 { 596 if (scrp == tcrp) 597 return (1); 598 if (scrp->cr_zone != tcrp->cr_zone && 599 (scrp->cr_zone != global_zone || 600 secpolicy_proc_zone(scrp) != 0)) 601 return (0); 602 if (scrp->cr_uid == tcrp->cr_ruid || 603 scrp->cr_ruid == tcrp->cr_ruid || 604 scrp->cr_uid == tcrp->cr_suid || 605 scrp->cr_ruid == tcrp->cr_suid || 606 !PRIV_POLICY(scrp, PRIV_PROC_OWNER, B_FALSE, EPERM, "hasprocperm")) 607 return (1); 608 return (0); 609 } 610 611 /* 612 * This interface replaces hasprocperm; it works like hasprocperm but 613 * additionally returns success if the proc_t's match 614 * It is the preferred interface for most uses. 615 * And it will acquire p_crlock itself, so it assert's that it shouldn't 616 * be held. 617 */ 618 int 619 prochasprocperm(proc_t *tp, proc_t *sp, const cred_t *scrp) 620 { 621 int rets; 622 cred_t *tcrp; 623 624 ASSERT(MUTEX_NOT_HELD(&tp->p_crlock)); 625 626 if (tp == sp) 627 return (1); 628 629 if (tp->p_sessp != sp->p_sessp && secpolicy_basic_proc(scrp) != 0) 630 return (0); 631 632 mutex_enter(&tp->p_crlock); 633 crhold(tcrp = tp->p_cred); 634 mutex_exit(&tp->p_crlock); 635 rets = hasprocperm(tcrp, scrp); 636 crfree(tcrp); 637 638 return (rets); 639 } 640 641 /* 642 * This routine is used to compare two credentials to determine if 643 * they refer to the same "user". If the pointers are equal, then 644 * they must refer to the same user. Otherwise, the contents of 645 * the credentials are compared to see whether they are equivalent. 646 * 647 * This routine returns 0 if the credentials refer to the same user, 648 * 1 if they do not. 649 */ 650 int 651 crcmp(const cred_t *cr1, const cred_t *cr2) 652 { 653 credgrp_t *grp1, *grp2; 654 655 if (cr1 == cr2) 656 return (0); 657 658 if (cr1->cr_uid == cr2->cr_uid && 659 cr1->cr_gid == cr2->cr_gid && 660 cr1->cr_ruid == cr2->cr_ruid && 661 cr1->cr_rgid == cr2->cr_rgid && 662 cr1->cr_zone == cr2->cr_zone && 663 ((grp1 = cr1->cr_grps) == (grp2 = cr2->cr_grps) || 664 (grp1 != NULL && grp2 != NULL && 665 grp1->crg_ngroups == grp2->crg_ngroups && 666 bcmp(grp1->crg_groups, grp2->crg_groups, 667 grp1->crg_ngroups * sizeof (gid_t)) == 0))) { 668 return (!priv_isequalset(&CR_OEPRIV(cr1), &CR_OEPRIV(cr2))); 669 } 670 return (1); 671 } 672 673 /* 674 * Read access functions to cred_t. 675 */ 676 uid_t 677 crgetuid(const cred_t *cr) 678 { 679 return (cr->cr_uid); 680 } 681 682 uid_t 683 crgetruid(const cred_t *cr) 684 { 685 return (cr->cr_ruid); 686 } 687 688 uid_t 689 crgetsuid(const cred_t *cr) 690 { 691 return (cr->cr_suid); 692 } 693 694 gid_t 695 crgetgid(const cred_t *cr) 696 { 697 return (cr->cr_gid); 698 } 699 700 gid_t 701 crgetrgid(const cred_t *cr) 702 { 703 return (cr->cr_rgid); 704 } 705 706 gid_t 707 crgetsgid(const cred_t *cr) 708 { 709 return (cr->cr_sgid); 710 } 711 712 const auditinfo_addr_t * 713 crgetauinfo(const cred_t *cr) 714 { 715 return ((const auditinfo_addr_t *)CR_AUINFO(cr)); 716 } 717 718 auditinfo_addr_t * 719 crgetauinfo_modifiable(cred_t *cr) 720 { 721 return (CR_AUINFO(cr)); 722 } 723 724 zoneid_t 725 crgetzoneid(const cred_t *cr) 726 { 727 return (cr->cr_zone == NULL ? 728 (cr->cr_uid == -1 ? (zoneid_t)-1 : GLOBAL_ZONEID) : 729 cr->cr_zone->zone_id); 730 } 731 732 zoneid_t 733 crgetzonedid(const cred_t *cr) 734 { 735 return (cr->cr_zone == NULL ? 736 (cr->cr_uid == -1 ? (zoneid_t)-1 : GLOBAL_ZONEID) : 737 cr->cr_zone->zone_did); 738 } 739 740 projid_t 741 crgetprojid(const cred_t *cr) 742 { 743 return (cr->cr_projid); 744 } 745 746 zone_t * 747 crgetzone(const cred_t *cr) 748 { 749 return (cr->cr_zone); 750 } 751 752 struct ts_label_s * 753 crgetlabel(const cred_t *cr) 754 { 755 return (cr->cr_label ? 756 cr->cr_label : 757 (cr->cr_zone ? cr->cr_zone->zone_slabel : NULL)); 758 } 759 760 boolean_t 761 crisremote(const cred_t *cr) 762 { 763 return (REMOTE_PEER_CRED(cr)); 764 } 765 766 #define BADUID(x, zn) ((x) != -1 && !VALID_UID((x), (zn))) 767 #define BADGID(x, zn) ((x) != -1 && !VALID_GID((x), (zn))) 768 769 int 770 crsetresuid(cred_t *cr, uid_t r, uid_t e, uid_t s) 771 { 772 zone_t *zone = crgetzone(cr); 773 774 ASSERT(cr->cr_ref <= 2); 775 776 if (BADUID(r, zone) || BADUID(e, zone) || BADUID(s, zone)) 777 return (-1); 778 779 if (r != -1) 780 cr->cr_ruid = r; 781 if (e != -1) 782 cr->cr_uid = e; 783 if (s != -1) 784 cr->cr_suid = s; 785 786 return (0); 787 } 788 789 int 790 crsetresgid(cred_t *cr, gid_t r, gid_t e, gid_t s) 791 { 792 zone_t *zone = crgetzone(cr); 793 794 ASSERT(cr->cr_ref <= 2); 795 796 if (BADGID(r, zone) || BADGID(e, zone) || BADGID(s, zone)) 797 return (-1); 798 799 if (r != -1) 800 cr->cr_rgid = r; 801 if (e != -1) 802 cr->cr_gid = e; 803 if (s != -1) 804 cr->cr_sgid = s; 805 806 return (0); 807 } 808 809 int 810 crsetugid(cred_t *cr, uid_t uid, gid_t gid) 811 { 812 zone_t *zone = crgetzone(cr); 813 814 ASSERT(cr->cr_ref <= 2); 815 816 if (!VALID_UID(uid, zone) || !VALID_GID(gid, zone)) 817 return (-1); 818 819 cr->cr_uid = cr->cr_ruid = cr->cr_suid = uid; 820 cr->cr_gid = cr->cr_rgid = cr->cr_sgid = gid; 821 822 return (0); 823 } 824 825 static int 826 gidcmp(const void *v1, const void *v2) 827 { 828 gid_t g1 = *(gid_t *)v1; 829 gid_t g2 = *(gid_t *)v2; 830 831 if (g1 < g2) 832 return (-1); 833 else if (g1 > g2) 834 return (1); 835 else 836 return (0); 837 } 838 839 int 840 crsetgroups(cred_t *cr, int n, gid_t *grp) 841 { 842 ASSERT(cr->cr_ref <= 2); 843 844 if (n > ngroups_max || n < 0) 845 return (-1); 846 847 if (cr->cr_grps != NULL) 848 crgrprele(cr->cr_grps); 849 850 if (n > 0) { 851 cr->cr_grps = kmem_alloc(CREDGRPSZ(n), KM_SLEEP); 852 bcopy(grp, cr->cr_grps->crg_groups, n * sizeof (gid_t)); 853 cr->cr_grps->crg_ref = 1; 854 cr->cr_grps->crg_ngroups = n; 855 qsort(cr->cr_grps->crg_groups, n, sizeof (gid_t), gidcmp); 856 } else { 857 cr->cr_grps = NULL; 858 } 859 860 return (0); 861 } 862 863 void 864 crsetprojid(cred_t *cr, projid_t projid) 865 { 866 ASSERT(projid >= 0 && projid <= MAXPROJID); 867 cr->cr_projid = projid; 868 } 869 870 /* 871 * This routine returns the pointer to the first element of the crg_groups 872 * array. It can move around in an implementation defined way. 873 * Note that when we have no grouplist, we return one element but the 874 * caller should never reference it. 875 */ 876 const gid_t * 877 crgetgroups(const cred_t *cr) 878 { 879 return (cr->cr_grps == NULL ? &cr->cr_gid : cr->cr_grps->crg_groups); 880 } 881 882 int 883 crgetngroups(const cred_t *cr) 884 { 885 return (cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups); 886 } 887 888 void 889 cred2prcred(const cred_t *cr, prcred_t *pcrp) 890 { 891 pcrp->pr_euid = cr->cr_uid; 892 pcrp->pr_ruid = cr->cr_ruid; 893 pcrp->pr_suid = cr->cr_suid; 894 pcrp->pr_egid = cr->cr_gid; 895 pcrp->pr_rgid = cr->cr_rgid; 896 pcrp->pr_sgid = cr->cr_sgid; 897 pcrp->pr_groups[0] = 0; /* in case ngroups == 0 */ 898 pcrp->pr_ngroups = cr->cr_grps == NULL ? 0 : cr->cr_grps->crg_ngroups; 899 900 if (pcrp->pr_ngroups != 0) 901 bcopy(cr->cr_grps->crg_groups, pcrp->pr_groups, 902 sizeof (gid_t) * pcrp->pr_ngroups); 903 } 904 905 static int 906 cred2ucaud(const cred_t *cr, auditinfo64_addr_t *ainfo, const cred_t *rcr) 907 { 908 auditinfo_addr_t *ai; 909 au_tid_addr_t tid; 910 911 if (secpolicy_audit_getattr(rcr, B_TRUE) != 0) 912 return (-1); 913 914 ai = CR_AUINFO(cr); /* caller makes sure this is non-NULL */ 915 tid = ai->ai_termid; 916 917 ainfo->ai_auid = ai->ai_auid; 918 ainfo->ai_mask = ai->ai_mask; 919 ainfo->ai_asid = ai->ai_asid; 920 921 ainfo->ai_termid.at_type = tid.at_type; 922 bcopy(&tid.at_addr, &ainfo->ai_termid.at_addr, 4 * sizeof (uint_t)); 923 924 ainfo->ai_termid.at_port.at_major = (uint32_t)getmajor(tid.at_port); 925 ainfo->ai_termid.at_port.at_minor = (uint32_t)getminor(tid.at_port); 926 927 return (0); 928 } 929 930 void 931 cred2uclabel(const cred_t *cr, bslabel_t *labelp) 932 { 933 ts_label_t *tslp; 934 935 if ((tslp = crgetlabel(cr)) != NULL) 936 bcopy(&tslp->tsl_label, labelp, sizeof (bslabel_t)); 937 } 938 939 /* 940 * Convert a credential into a "ucred". Allow the caller to specify 941 * and aligned buffer, e.g., in an mblk, so we don't have to allocate 942 * memory and copy it twice. 943 * 944 * This function may call cred2ucaud(), which calls CRED(). Since this 945 * can be called from an interrupt thread, receiver's cred (rcr) is needed 946 * to determine whether audit info should be included. 947 */ 948 struct ucred_s * 949 cred2ucred(const cred_t *cr, pid_t pid, void *buf, const cred_t *rcr) 950 { 951 struct ucred_s *uc; 952 uint32_t realsz = ucredminsize(cr); 953 ts_label_t *tslp = is_system_labeled() ? crgetlabel(cr) : NULL; 954 955 /* The structure isn't always completely filled in, so zero it */ 956 if (buf == NULL) { 957 uc = kmem_zalloc(realsz, KM_SLEEP); 958 } else { 959 bzero(buf, realsz); 960 uc = buf; 961 } 962 uc->uc_size = realsz; 963 uc->uc_pid = pid; 964 uc->uc_projid = cr->cr_projid; 965 uc->uc_zoneid = crgetzoneid(cr); 966 967 if (REMOTE_PEER_CRED(cr)) { 968 /* 969 * Other than label, the rest of cred info about a 970 * remote peer isn't available. Copy the label directly 971 * after the header where we generally copy the prcred. 972 * That's why we use sizeof (struct ucred_s). The other 973 * offset fields are initialized to 0. 974 */ 975 uc->uc_labeloff = tslp == NULL ? 0 : sizeof (struct ucred_s); 976 } else { 977 uc->uc_credoff = UCRED_CRED_OFF; 978 uc->uc_privoff = UCRED_PRIV_OFF; 979 uc->uc_audoff = UCRED_AUD_OFF; 980 uc->uc_labeloff = tslp == NULL ? 0 : UCRED_LABEL_OFF; 981 982 cred2prcred(cr, UCCRED(uc)); 983 cred2prpriv(cr, UCPRIV(uc)); 984 985 if (audoff == 0 || cred2ucaud(cr, UCAUD(uc), rcr) != 0) 986 uc->uc_audoff = 0; 987 } 988 if (tslp != NULL) 989 bcopy(&tslp->tsl_label, UCLABEL(uc), sizeof (bslabel_t)); 990 991 return (uc); 992 } 993 994 /* 995 * Don't allocate the non-needed group entries. Note: this function 996 * must match the code in cred2ucred; they must agree about the 997 * minimal size of the ucred. 998 */ 999 uint32_t 1000 ucredminsize(const cred_t *cr) 1001 { 1002 int ndiff; 1003 1004 if (cr == NULL) 1005 return (ucredsize); 1006 1007 if (REMOTE_PEER_CRED(cr)) { 1008 if (is_system_labeled()) 1009 return (sizeof (struct ucred_s) + sizeof (bslabel_t)); 1010 else 1011 return (sizeof (struct ucred_s)); 1012 } 1013 1014 if (cr->cr_grps == NULL) 1015 ndiff = ngroups_max - 1; /* Needs one for prcred_t */ 1016 else 1017 ndiff = ngroups_max - cr->cr_grps->crg_ngroups; 1018 1019 return (ucredsize - ndiff * sizeof (gid_t)); 1020 } 1021 1022 /* 1023 * Get the "ucred" of a process. 1024 */ 1025 struct ucred_s * 1026 pgetucred(proc_t *p) 1027 { 1028 cred_t *cr; 1029 struct ucred_s *uc; 1030 1031 mutex_enter(&p->p_crlock); 1032 cr = p->p_cred; 1033 crhold(cr); 1034 mutex_exit(&p->p_crlock); 1035 1036 uc = cred2ucred(cr, p->p_pid, NULL, CRED()); 1037 crfree(cr); 1038 1039 return (uc); 1040 } 1041 1042 /* 1043 * If the reply status is NFSERR_EACCES, it may be because we are 1044 * root (no root net access). Check the real uid, if it isn't root 1045 * make that the uid instead and retry the call. 1046 * Private interface for NFS. 1047 */ 1048 cred_t * 1049 crnetadjust(cred_t *cr) 1050 { 1051 if (cr->cr_uid == 0 && cr->cr_ruid != 0) { 1052 cr = crdup(cr); 1053 cr->cr_uid = cr->cr_ruid; 1054 return (cr); 1055 } 1056 return (NULL); 1057 } 1058 1059 /* 1060 * The reference count is of interest when you want to check 1061 * whether it is ok to modify the credential in place. 1062 */ 1063 uint_t 1064 crgetref(const cred_t *cr) 1065 { 1066 return (cr->cr_ref); 1067 } 1068 1069 static int 1070 get_c2audit_load(void) 1071 { 1072 static int gotit = 0; 1073 static int c2audit_load; 1074 1075 if (gotit) 1076 return (c2audit_load); 1077 c2audit_load = 1; /* set default value once */ 1078 if (mod_sysctl(SYS_CHECK_EXCLUDE, "c2audit") != 0) 1079 c2audit_load = 0; 1080 gotit++; 1081 1082 return (c2audit_load); 1083 } 1084 1085 int 1086 get_audit_ucrsize(void) 1087 { 1088 return (get_c2audit_load() ? sizeof (auditinfo64_addr_t) : 0); 1089 } 1090 1091 /* 1092 * Set zone pointer in credential to indicated value. First adds a 1093 * hold for the new zone, then drops the hold on previous zone (if any). 1094 * This is done in this order in case the old and new zones are the 1095 * same. 1096 */ 1097 void 1098 crsetzone(cred_t *cr, zone_t *zptr) 1099 { 1100 zone_t *oldzptr = cr->cr_zone; 1101 1102 ASSERT(cr != kcred); 1103 ASSERT(cr->cr_ref <= 2); 1104 cr->cr_zone = zptr; 1105 zone_cred_hold(zptr); 1106 if (oldzptr) 1107 zone_cred_rele(oldzptr); 1108 } 1109 1110 /* 1111 * Create a new cred based on the supplied label 1112 */ 1113 cred_t * 1114 newcred_from_bslabel(bslabel_t *blabel, uint32_t doi, int flags) 1115 { 1116 ts_label_t *lbl = labelalloc(blabel, doi, flags); 1117 cred_t *cr = NULL; 1118 1119 if (lbl != NULL) { 1120 if ((cr = crdup_flags(dummycr, flags)) != NULL) { 1121 cr->cr_label = lbl; 1122 } else { 1123 label_rele(lbl); 1124 } 1125 } 1126 1127 return (cr); 1128 } 1129 1130 /* 1131 * Derive a new cred from the existing cred, but with a different label. 1132 * To be used when a cred is being shared, but the label needs to be changed 1133 * by a caller without affecting other users 1134 */ 1135 cred_t * 1136 copycred_from_tslabel(const cred_t *cr, ts_label_t *label, int flags) 1137 { 1138 cred_t *newcr = NULL; 1139 1140 if ((newcr = crdup_flags(cr, flags)) != NULL) { 1141 if (newcr->cr_label != NULL) 1142 label_rele(newcr->cr_label); 1143 label_hold(label); 1144 newcr->cr_label = label; 1145 } 1146 1147 return (newcr); 1148 } 1149 1150 /* 1151 * Derive a new cred from the existing cred, but with a different label. 1152 */ 1153 cred_t * 1154 copycred_from_bslabel(const cred_t *cr, bslabel_t *blabel, 1155 uint32_t doi, int flags) 1156 { 1157 ts_label_t *lbl = labelalloc(blabel, doi, flags); 1158 cred_t *newcr = NULL; 1159 1160 if (lbl != NULL) { 1161 newcr = copycred_from_tslabel(cr, lbl, flags); 1162 label_rele(lbl); 1163 } 1164 1165 return (newcr); 1166 } 1167 1168 /* 1169 * This function returns a pointer to the kcred-equivalent in the current zone. 1170 */ 1171 cred_t * 1172 zone_kcred(void) 1173 { 1174 zone_t *zone; 1175 1176 if ((zone = CRED()->cr_zone) != NULL) 1177 return (zone->zone_kcred); 1178 else 1179 return (kcred); 1180 } 1181 1182 boolean_t 1183 valid_ephemeral_uid(zone_t *zone, uid_t id) 1184 { 1185 ephemeral_zsd_t *eph_zsd; 1186 if (id <= IDMAP_WK__MAX_UID) 1187 return (B_TRUE); 1188 1189 eph_zsd = get_ephemeral_zsd(zone); 1190 ASSERT(eph_zsd != NULL); 1191 membar_consumer(); 1192 return (id > eph_zsd->min_uid && id <= eph_zsd->last_uid); 1193 } 1194 1195 boolean_t 1196 valid_ephemeral_gid(zone_t *zone, gid_t id) 1197 { 1198 ephemeral_zsd_t *eph_zsd; 1199 if (id <= IDMAP_WK__MAX_GID) 1200 return (B_TRUE); 1201 1202 eph_zsd = get_ephemeral_zsd(zone); 1203 ASSERT(eph_zsd != NULL); 1204 membar_consumer(); 1205 return (id > eph_zsd->min_gid && id <= eph_zsd->last_gid); 1206 } 1207 1208 int 1209 eph_uid_alloc(zone_t *zone, int flags, uid_t *start, int count) 1210 { 1211 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1212 1213 ASSERT(eph_zsd != NULL); 1214 1215 mutex_enter(&eph_zsd->eph_lock); 1216 1217 /* Test for unsigned integer wrap around */ 1218 if (eph_zsd->last_uid + count < eph_zsd->last_uid) { 1219 mutex_exit(&eph_zsd->eph_lock); 1220 return (-1); 1221 } 1222 1223 /* first call or idmap crashed and state corrupted */ 1224 if (flags != 0) 1225 eph_zsd->min_uid = eph_zsd->last_uid; 1226 1227 hasephids = B_TRUE; 1228 *start = eph_zsd->last_uid + 1; 1229 atomic_add_32(&eph_zsd->last_uid, count); 1230 mutex_exit(&eph_zsd->eph_lock); 1231 return (0); 1232 } 1233 1234 int 1235 eph_gid_alloc(zone_t *zone, int flags, gid_t *start, int count) 1236 { 1237 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1238 1239 ASSERT(eph_zsd != NULL); 1240 1241 mutex_enter(&eph_zsd->eph_lock); 1242 1243 /* Test for unsigned integer wrap around */ 1244 if (eph_zsd->last_gid + count < eph_zsd->last_gid) { 1245 mutex_exit(&eph_zsd->eph_lock); 1246 return (-1); 1247 } 1248 1249 /* first call or idmap crashed and state corrupted */ 1250 if (flags != 0) 1251 eph_zsd->min_gid = eph_zsd->last_gid; 1252 1253 hasephids = B_TRUE; 1254 *start = eph_zsd->last_gid + 1; 1255 atomic_add_32(&eph_zsd->last_gid, count); 1256 mutex_exit(&eph_zsd->eph_lock); 1257 return (0); 1258 } 1259 1260 /* 1261 * IMPORTANT.The two functions get_ephemeral_data() and set_ephemeral_data() 1262 * are project private functions that are for use of the test system only and 1263 * are not to be used for other purposes. 1264 */ 1265 1266 void 1267 get_ephemeral_data(zone_t *zone, uid_t *min_uid, uid_t *last_uid, 1268 gid_t *min_gid, gid_t *last_gid) 1269 { 1270 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1271 1272 ASSERT(eph_zsd != NULL); 1273 1274 mutex_enter(&eph_zsd->eph_lock); 1275 1276 *min_uid = eph_zsd->min_uid; 1277 *last_uid = eph_zsd->last_uid; 1278 *min_gid = eph_zsd->min_gid; 1279 *last_gid = eph_zsd->last_gid; 1280 1281 mutex_exit(&eph_zsd->eph_lock); 1282 } 1283 1284 1285 void 1286 set_ephemeral_data(zone_t *zone, uid_t min_uid, uid_t last_uid, 1287 gid_t min_gid, gid_t last_gid) 1288 { 1289 ephemeral_zsd_t *eph_zsd = get_ephemeral_zsd(zone); 1290 1291 ASSERT(eph_zsd != NULL); 1292 1293 mutex_enter(&eph_zsd->eph_lock); 1294 1295 if (min_uid != 0) 1296 eph_zsd->min_uid = min_uid; 1297 if (last_uid != 0) 1298 eph_zsd->last_uid = last_uid; 1299 if (min_gid != 0) 1300 eph_zsd->min_gid = min_gid; 1301 if (last_gid != 0) 1302 eph_zsd->last_gid = last_gid; 1303 1304 mutex_exit(&eph_zsd->eph_lock); 1305 } 1306 1307 /* 1308 * If the credential user SID or group SID is mapped to an ephemeral 1309 * ID, map the credential to nobody. 1310 */ 1311 cred_t * 1312 crgetmapped(const cred_t *cr) 1313 { 1314 ephemeral_zsd_t *eph_zsd; 1315 /* 1316 * Someone incorrectly passed a NULL cred to a vnode operation 1317 * either on purpose or by calling CRED() in interrupt context. 1318 */ 1319 if (cr == NULL) 1320 return (NULL); 1321 1322 if (cr->cr_ksid != NULL) { 1323 if (cr->cr_ksid->kr_sidx[KSID_USER].ks_id > MAXUID) { 1324 eph_zsd = get_ephemeral_zsd(crgetzone(cr)); 1325 return (eph_zsd->eph_nobody); 1326 } 1327 1328 if (cr->cr_ksid->kr_sidx[KSID_GROUP].ks_id > MAXUID) { 1329 eph_zsd = get_ephemeral_zsd(crgetzone(cr)); 1330 return (eph_zsd->eph_nobody); 1331 } 1332 } 1333 1334 return ((cred_t *)cr); 1335 } 1336 1337 /* index should be in range for a ksidindex_t */ 1338 void 1339 crsetsid(cred_t *cr, ksid_t *ksp, int index) 1340 { 1341 ASSERT(cr->cr_ref <= 2); 1342 ASSERT(index >= 0 && index < KSID_COUNT); 1343 if (cr->cr_ksid == NULL && ksp == NULL) 1344 return; 1345 cr->cr_ksid = kcrsid_setsid(cr->cr_ksid, ksp, index); 1346 } 1347 1348 void 1349 crsetsidlist(cred_t *cr, ksidlist_t *ksl) 1350 { 1351 ASSERT(cr->cr_ref <= 2); 1352 if (cr->cr_ksid == NULL && ksl == NULL) 1353 return; 1354 cr->cr_ksid = kcrsid_setsidlist(cr->cr_ksid, ksl); 1355 } 1356 1357 ksid_t * 1358 crgetsid(const cred_t *cr, int i) 1359 { 1360 ASSERT(i >= 0 && i < KSID_COUNT); 1361 if (cr->cr_ksid != NULL && cr->cr_ksid->kr_sidx[i].ks_domain) 1362 return ((ksid_t *)&cr->cr_ksid->kr_sidx[i]); 1363 return (NULL); 1364 } 1365 1366 ksidlist_t * 1367 crgetsidlist(const cred_t *cr) 1368 { 1369 if (cr->cr_ksid != NULL) 1370 return (cr->cr_ksid->kr_sidlist); 1371 return (NULL); 1372 } 1373 1374 /* 1375 * Interface to set the effective and permitted privileges for 1376 * a credential; this interface does no security checks and is 1377 * intended for kernel (file)servers creating credentials with 1378 * specific privileges. 1379 */ 1380 int 1381 crsetpriv(cred_t *cr, ...) 1382 { 1383 va_list ap; 1384 const char *privnm; 1385 1386 ASSERT(cr->cr_ref <= 2); 1387 1388 priv_set_PA(cr); 1389 1390 va_start(ap, cr); 1391 1392 while ((privnm = va_arg(ap, const char *)) != NULL) { 1393 int priv = priv_getbyname(privnm, 0); 1394 if (priv < 0) 1395 return (-1); 1396 1397 priv_addset(&CR_PPRIV(cr), priv); 1398 priv_addset(&CR_EPRIV(cr), priv); 1399 } 1400 priv_adjust_PA(cr); 1401 va_end(ap); 1402 return (0); 1403 } 1404 1405 /* 1406 * Interface to effectively set the PRIV_ALL for 1407 * a credential; this interface does no security checks and is 1408 * intended for kernel (file)servers to extend the user credentials 1409 * to be ALL, like either kcred or zcred. 1410 */ 1411 void 1412 crset_zone_privall(cred_t *cr) 1413 { 1414 zone_t *zone = crgetzone(cr); 1415 1416 priv_fillset(&CR_LPRIV(cr)); 1417 CR_EPRIV(cr) = CR_PPRIV(cr) = CR_IPRIV(cr) = CR_LPRIV(cr); 1418 priv_intersect(zone->zone_privset, &CR_LPRIV(cr)); 1419 priv_intersect(zone->zone_privset, &CR_EPRIV(cr)); 1420 priv_intersect(zone->zone_privset, &CR_IPRIV(cr)); 1421 priv_intersect(zone->zone_privset, &CR_PPRIV(cr)); 1422 } 1423 1424 struct credklpd * 1425 crgetcrklpd(const cred_t *cr) 1426 { 1427 return (cr->cr_klpd); 1428 } 1429 1430 void 1431 crsetcrklpd(cred_t *cr, struct credklpd *crklpd) 1432 { 1433 ASSERT(cr->cr_ref <= 2); 1434 1435 if (cr->cr_klpd != NULL) 1436 crklpd_rele(cr->cr_klpd); 1437 cr->cr_klpd = crklpd; 1438 } 1439 1440 credgrp_t * 1441 crgrpcopyin(int n, gid_t *gidset) 1442 { 1443 credgrp_t *mem; 1444 size_t sz = CREDGRPSZ(n); 1445 1446 ASSERT(n > 0); 1447 1448 mem = kmem_alloc(sz, KM_SLEEP); 1449 1450 if (copyin(gidset, mem->crg_groups, sizeof (gid_t) * n)) { 1451 kmem_free(mem, sz); 1452 return (NULL); 1453 } 1454 mem->crg_ref = 1; 1455 mem->crg_ngroups = n; 1456 qsort(mem->crg_groups, n, sizeof (gid_t), gidcmp); 1457 return (mem); 1458 } 1459 1460 const gid_t * 1461 crgetggroups(const credgrp_t *grps) 1462 { 1463 return (grps->crg_groups); 1464 } 1465 1466 void 1467 crsetcredgrp(cred_t *cr, credgrp_t *grps) 1468 { 1469 ASSERT(cr->cr_ref <= 2); 1470 1471 if (cr->cr_grps != NULL) 1472 crgrprele(cr->cr_grps); 1473 1474 cr->cr_grps = grps; 1475 } 1476 1477 void 1478 crgrprele(credgrp_t *grps) 1479 { 1480 if (atomic_dec_32_nv(&grps->crg_ref) == 0) 1481 kmem_free(grps, CREDGRPSZ(grps->crg_ngroups)); 1482 } 1483 1484 static void 1485 crgrphold(credgrp_t *grps) 1486 { 1487 atomic_inc_32(&grps->crg_ref); 1488 }